Sample records for doe waste storage

  1. Nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review themore » alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.« less

  2. 40 CFR 266.220 - What does a storage and treatment conditional exemption do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage... exemption exempts your low-level mixed waste from the regulatory definition of hazardous waste in 40 CFR 261...

  3. Hanford facility dangerous waste permit application, PUREX storage tunnels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, C. R.

    1997-09-08

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24).

  4. Tank 19F Folding Crawler Final Evaluation, Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nance, T.

    2000-10-25

    The Department of Energy (DOE) is committed to removing millions of gallons of high-level radioactive waste from 51 underground waste storage tanks at the Savannah River Site (SRS). The primary radioactive waste constituents are strontium, plutonium,and cesium. It is recognized that the continued storage of this waste is a risk to the public, workers, and the environment. SRS was the first site in the DOE complex to have emptied and operationally closed a high-level radioactive waste tank. The task of emptying and closing the rest of the tanks will be completed by FY28.

  5. Progress and future direction for the interim safe storage and disposal of Hanford high-level waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less

  6. The mixed low-level waste problem in BE/NWN capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, D.C.

    1999-07-01

    The Boh Environmental, LLC (BE) and Northwest Nuclear, LLC (NWN) program addresses the problem of diminishing capacity in the United States to store mixed waste. A lack of an alternative program has caused the US Department of Energy (DOE) to indefinitely store all of its mixed waste in Resource Conservation and Recovery Act (RCRA) compliant storage facilities. Unfortunately, this capacity is fast approaching the administrative control limit. The combination of unique BE encapsulation and NWN waste characterization technologies provides an effective solution to DOE's mixed-waste dilemma. The BE ARROW-PAK technique encapsulates mixed low-level waste (MLLW) in extra-high molecular weight, high-densitymore » polyethylene, pipe-grade resin cylinders. ARROW-PAK applications include waste treatment, disposal, transportation (per 49 CFR 173), vault encasement, and interim/long-term storage for 100 to 300 yr. One of the first demonstrations of this treatment/storage technique successfully treated 880 mixed-waste debris drums at the DOE Hanford Site in 1997. NWN, deploying the APNea neutron assay technology, provides the screening and characterization capability necessary to ensure that radioactive waste is correctly categorized as either transuranic (TRU) or LLW. MLLW resulting from D and D activities conducted at the Oak Ridge East Tennessee Technology Park will be placed into ARROW-PAK containers following comprehensive characterization of the waste by NWN. The characterized and encapsulated waste will then be shipped to a commercial disposal facility, where the shipments meet all waste acceptance criteria of the disposal facility including treatment criteria.« less

  7. Management of solid waste

    NASA Astrophysics Data System (ADS)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  8. Robotics for mixed waste operations, demonstration description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.R.

    The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. Thismore » waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.« less

  9. Waste Management Facilities Cost Information report for Greater-Than-Class C and DOE equivalent special case waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feizollahi, F.; Shropshire, D.

    This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosedmore » vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.« less

  10. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-levelmore » waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.« less

  11. RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, J.; Baillieul, T. A.; Biedscheid, J.

    2003-02-26

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. Themore » first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.« less

  12. 40 CFR 264.551 - Grandfathered Corrective Action Management Units (CAMUs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE... remediation wastes into or within a CAMU does not constitute creation of a unit subject to minimum technology... wastes for implementing corrective action or cleanup at the facility. A CAMU must be located within the...

  13. Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castiglioni, Andrew J.; Gelis, Artem V.

    This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.

  14. ICPP tank farm closure study. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituentsmore » are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.« less

  15. Performance assessment for continuing and future operations at solid waste storage area 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility.

  16. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-01-01

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723).DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 etmore » seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations:Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho;Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.« less

  17. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321more » et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.« less

  18. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumedmore » to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely.« less

  19. 300 Area dangerous waste tank management system: Compliance plan approach. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    In its Dec. 5, 1989 letter to DOE-Richland (DOE-RL) Operations, the Washington State Dept. of Ecology requested that DOE-RL prepare ``a plant evaluating alternatives for storage and/or treatment of hazardous waste in the 300 Area...``. This document, prepared in response to that letter, presents the proposed approach to compliance of the 300 Area with the federal Resource Conservation and Recovery Act and Washington State`s Chapter 173-303 WAC, Dangerous Waste Regulations. It also contains 10 appendices which were developed as bases for preparing the compliance plan approach. It refers to the Radioactive Liquid Waste System facilities and to the radioactive mixedmore » waste.« less

  20. [The ecological and epidemiological principles of prevention of ascariasis under the conditions of large-scale solid waste storage].

    PubMed

    Kas'ianov, V I

    2005-01-01

    The paper presents the results of a study of the impact of large-scale solid waste storage on ascariasis morbidity in the population. The use of sewage sediments as an organic soil fertilizer to grow strawberries and table greens is shown to substantially increase the risk of Ascaris infection in the population. Storage of solid domestic garbage on specialized dumping grounds does not lead to mass environmental pollution with geohelminthic eggs.

  1. Hanford Waste Physical and Rheological Properties: Data and Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.

    2011-08-01

    The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shellmore » tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.« less

  2. 78 FR 23548 - Draft Supplemental Environmental Impact Statement for the Long-Term Management and Storage of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... Control Specialists, LLC, site near Andrews, Texas. Since publication of the 2011 Mercury Storage EIS, DOE... identified the Waste Control Specialists, LLC location near Andrews, Texas, as the Preferred Alternative in...

  3. Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program -12184

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Christopher; Kothari, Vijendra; Starr, Ken

    2012-02-26

    The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collectionmore » adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program: Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators.« less

  4. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining themore » facility and executing the mission of the High-Level Waste Storage Tank Farms.« less

  5. Site maps and facilities listings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used formore » production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.« less

  6. Performance assessment for continuing and future operations at Solid Waste Storage Area 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    This radiological performance assessment for the continued disposal operations at Solid Waste Storage Area 6 (SWSA 6) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US DOE. The analysis of SWSA 6 required the use of assumptions to supplement the available site data when the available data were incomplete for the purpose of analysis. Results indicate that SWSA 6 does not presently meet the performance objectives of DOE Order 5820.2A. Changes in operations and continued work on the performance assessment are expected to demonstrate compliance with the performance objectives for continuingmore » operations at the Interim Waste Management Facility (IWMF). All other disposal operations in SWSA 6 are to be discontinued as of January 1, 1994. The disposal units at which disposal operations are discontinued will be subject to CERCLA remediation, which will result in acceptable protection of the public health and safety.« less

  7. Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Patrice Ann; Baumer, Andrew Ronald

    Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Cañada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste managementmore » and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste management units at Area G. These MDA G disposal units include 32 pits, 193 shafts, and 4 trenches and contain LLW, MLLW and TRU waste. The remaining 105 solid waste management units (SWMUs) include RCRA-regulated landfill and storage units and DOE-regulated LLW disposal units. The TA-54 closure project must ensure that continuing waste operations at Area G and their transition to an interim or enduring facility are coordinated with closure activities.« less

  8. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.« less

  9. Criticality Safety Evaluations on the Use of 200-gram Pu Mass Limit for RHWM Waste Storage Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, P

    This work establishes the criticality safety technical basis to increase the fissile mass limit from 120 grams to 200 grams for Type A 55-gallon drums and their equivalents. Current RHWM fissile mass limit is 120 grams Pu for Type A 55-gallon containers and their equivalent. In order to increase the Type A 55-gallon drum limit to 200 grams, a few additional criticality safety control requirements are needed on moderators, reflectors, and array controls to ensure that the 200-gram Pu drums remain criticality safe with inadvertent criticality remains incredible. The purpose of this work is to analyze the use of 200-grammore » Pu drum mass limit for waste storage operations in Radioactive and Hazardous Waste Management (RHWM) Facilities. In this evaluation, the criticality safety controls associated with the 200-gram Pu drums are established for the RHWM waste storage operations. With the implementation of these criticality safety controls, the 200-gram Pu waste drum storage operations are demonstrated to be criticality safe and meet the double-contingency-principle requirement per DOE O 420.1.« less

  10. Developing a concept for a national used fuel interim storage facility in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Donald Wayne

    2013-07-01

    In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less

  11. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  12. Nevada Test Site Waste Acceptance Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  13. Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-12-31

    The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.

  14. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for themore » facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.« less

  15. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less

  16. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developedmore » that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.« less

  17. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    DTIC Science & Technology

    2009-02-06

    metric tons of spent fuel at the nine decommissioned sites could be shipped to a federal central storage facility by 2018 , but that DOE had no...Disposal of High- Level Radioactive Waste into the Seabed, Overview of Research and Conclusions, Volume 1, Paris , 1988, p. 60. 63 1996 Protocol to...Convention on Prevention of Marine Pollution by Dumping of Wastes, Treaty Doc. 110-5, September 4, 2007

  18. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, P.H.

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  19. Generation of 3-D surface maps in waste storage silos using a structured light source

    NASA Technical Reports Server (NTRS)

    Burks, B. L.; Rowe, J. C.; Dinkins, M. A.; Christensen, B.; Selleck, C.; Jacoboski, D.; Markus, R.

    1992-01-01

    Surface contours inside the large waste storage tanks typical of the Department of Energy (DOE) complex are, in general, highly irregular. In addition to pipes and other pieces of equipment in the tanks, the surfaces may have features such as mounds, fissures, crystalline structures, and mixed solid and liquid forms. Prior to remediation activities, it will be necessary to characterize the waste to determine the most effective remediation approaches. Surface contour data will be required both prior to and during remediation. The use is described of a structured light source to generate 3-D surface contour maps of the interior of waste storage silos at the Feed Materials Production Center at Fernald, OH. The landscape inside these large waste storage tanks bears a strong resemblance to some of the landscapes that might be encountered during lunar or planetary exploration. Hence, these terrestrial 3-D mapping techniques may be directly applicable to extraterrestrial exploration. In further development, it will be demonstrated that these 3-D data can be used for robotic task planning just as 3-D surface contour data of a satellite could be used to plan maintenance tasks for a space-based servicing robot.

  20. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP). Attachments: Volume 4 of 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Volume IV contains the following attachments for Module IV: VOC monitoring plan for bin-room tests (Appendix D12); bin emission control and VOC monitoring system drawings; bin scale test room ventilation drawings; WIPP supplementary roof support system, underground storage area, room 1, panel 1, DOE/WIPP 91-057; and WIPP supplementary roof support system, room 1, panel 1, geotechnical field data analysis bi-annual report, DOE/WIPP 92-024.

  1. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... includes direct-contact cooling water. Spent caustic waste stream means the continuously flowing process... compounds from process streams, typically cracked gas. The spent caustic waste stream does not include spent..., and the C4 butadiene storage equipment; and spent wash water from the C4 crude butadiene carbonyl wash...

  2. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... includes direct-contact cooling water. Spent caustic waste stream means the continuously flowing process... compounds from process streams, typically cracked gas. The spent caustic waste stream does not include spent..., and the C4 butadiene storage equipment; and spent wash water from the C4 crude butadiene carbonyl wash...

  3. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... includes direct-contact cooling water. Spent caustic waste stream means the continuously flowing process... compounds from process streams, typically cracked gas. The spent caustic waste stream does not include spent..., and the C4 butadiene storage equipment; and spent wash water from the C4 crude butadiene carbonyl wash...

  4. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... includes direct-contact cooling water. Spent caustic waste stream means the continuously flowing process... compounds from process streams, typically cracked gas. The spent caustic waste stream does not include spent..., and the C4 butadiene storage equipment; and spent wash water from the C4 crude butadiene carbonyl wash...

  5. Greater-than-Class C low-level waste characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piscitella, R.R.

    1991-12-31

    In 1985, Public Law 99-240 (Low-Level Radioactive Waste Policy Amendments Act of 1985) made the Department of Energy (DOE) responsible for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW). DOE strategies for storage and disposal of GTCC LLW required characterization of volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate characteristics, project volumes, and determine radionuclide activities to the years 2035 and 2055. Twenty-year life extensions for 70% of the operating nuclear reactors were assumed to calculate the GTCC LLW available in 2055. The following categories of GTCCmore » LLW were addressed: Nuclear Utilities Waste; Potential Sealed Sources GTCC LLW; DOE-Held Potential GTCC LLW; and Other Generator Waste. It was determined that the largest volume of these wastes, approximately 57%, is generated by nuclear utilities. The Other Generator Waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. DOE-Held Potential GTCC LLW accounts for nearly 33% of all waste projected to the year 2035. Potential Sealed Sources GTCC LLW is less than 0.2% of the total projected volume. The base case total projected volume of GTCC LLW for all categories was 3,250 cubic meters. This was substantially less than previous estimates.« less

  6. Resource Management Plan for the US Department of Energy Oak Ridge Reservation. Volume 15, Appendix P: waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, B.A.

    1984-07-01

    Since their inception, the DOE facilities on the Oak Ridge Reservation have been the source of a variety of airborne, liquid, and solid wastes which are characterized as nonhazardous, hazardous, and/or radioactive. The major airborne releases come from three primary sources: steam plant emissions, process discharge, and cooling towers. Liquid wastes are handled in various manners depending upon the particular waste, but in general, major corrosive waste streams are neutralized prior to discharge with the discharge routed to holding or settling ponds. The major solid wastes are derived from construction debris, sanitary operation, and radioactive processes, and the machining operationsmore » at Y-12. Nonradioactive hazardous wastes are disposed in solid waste storage areas, shipped to commercial disposal facilities, returned in sludge ponds, or sent to radioactive waste burial areas. The radioactive-hazardous wastes are treated in two manners: storage of the waste until acceptable disposal options are developed, or treatment of the waste to remove or destroy one of the components prior to disposal. 5 references, 4 figures, 13 tables.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When themore » proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.« less

  8. Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds inmore » Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology.« less

  9. Demonstration of ATG Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference # 2407

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-09-01

    Mercury contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with <260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m 3). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels the U. S. Environmentalmore » Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20 mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. It must also be proven feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.« less

  10. Storage for greater-than-Class C low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beitel, G.A.

    1991-12-31

    EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) is actively pursuing technical storage alternatives for greater-than-Class C low-level radioactive waste (GTCC LLW) until a suitable licensed disposal facility is operating. A recently completed study projects that between 2200 and 6000 m{sup 3} of GTCC LLW will be generated by the year 2035; the base case estimate is 3250 m{sup 3}. The current plan envisions a disposal facility available as early as the year 2010. A long-term dedicated storage facility could be available in 1997. In the meantime, it is anticipated that a limited number of sealedmore » sources that are no longer useful and have GTCC concentrations of radionuclides will require storage. Arrangements are being made to provide this interim storage at an existing DOE waste management facility. All interim stored waste will subsequently be moved to the dedicated storage facility once it is operating. Negotiations are under way to establish a host site for interim storage, which may be operational, at the earliest, by the second quarter of 1993. Two major activities toward developing a long-term dedicated storage facility are ongoing. (a) An engineering study, which explores costs for alternatives to provide environmentally safe storage and satisfy all regulations, is being prepared. Details of some of the findings of that study will be presented. (b) There is also an effort under way to seek the assistance of one or more private companies in providing dedicated storage. Alternatives and options will be discussed.« less

  11. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect thatmore » packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.« less

  12. Corrosion of radioactive waste tanks containing washed sludge and precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1988-05-01

    At the US Department of Energy (DOE) Savannah River Plant, the corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Laboratory tests, conducted to determine minimum corrosion inhibitor levels, indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations were conducted to assess the validity of laboratory tests. The in situ results are compared to those of laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species formore » carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 M nitrite required for reactor fuel reprocessing wastes.« less

  13. 75 FR 20582 - Record of Decision: Final Environmental Impact Statement for Decommissioning and/or Long-Term...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... storage tanks and facilities used in the solidification of high-level radioactive waste, and any material... Act (Pub. L. 96-368, 42 U.S.C. 2021a). The WVDP Act requires DOE to demonstrate that the liquid high... take the following actions: 1. Solidify high-level radioactive waste by vitrification or such other...

  14. Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program - 12184

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Christopher; Kothari, Vijendra; Starr, Ken

    2012-07-01

    The U.S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequatelymore » described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS and M) program: - Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. - DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. - DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators. After review of historical site documentation, DOE reports, and USACE radiological data, DOE concluded the following: - DOE had access to adequate documentation to evaluate site conditions at the former LOOW. This is important to confirm now, while institutional knowledge of early FUSRAP work remains available. - DOE remediated the completed VPs to conditions that are protective for unrestricted residential use. Sample and walkover gamma scan results indicate that no wastes remain that exceed cleanup criteria. - Process knowledge and field observations establish that Cs-137 is the predominant radionuclide in the KAPL waste stream. Cs-137, a strong gamma emitter, was used as an indicator for remediation of KAPL waste. Other radionuclides were present in much lower relative concentrations and were likely also removed during remediation of the VPs. - KAPL contaminants were removed during remedial activities at the former LOOW as either co-located or co-mingled with other radionuclides. - For the active VPs (VP-E, VP-E', and VP-G), results of DOE's cleanup of the accessible portions of these properties indicate that KAPL waste does not remain at concentrations greater than the DOE cleanup limit: - Inaccessible areas were not associated with historic KAPL waste handling. Therefore, it is unlikely that KAPL waste remains on the active VPs. - Because gamma activity was used by DOE during remediation/verification activities for excavation control, additional USACE cleanup of FUSRAP wastes on these properties will likely result in the remediation of any co-located residual KAPL wastes to acceptable levels or identification of KAPL waste that is not co-located. - Although USACE has not established a cleanup level for Cs-137 on the active NFSS VPs, DOE assessment and remediation data indicate that assessed Cs-137 was remediated and significant Cs-137 is unlikely to remain. Because of the low likelihood of encountering significant KAPL waste on the active NFSS VPs, additional remediation is not anticipated at these properties. - USACE assessment soil sampling results on the NFSS proper indicate that KAPL waste does not exceed the DOE cleanup level for Cs-137. USACE has not established a cleanup level for Cs-137 on NFSS proper. The USACE cleanup of FUSRAP wastes on the NFSS proper will likely result in the remediation of any co-located residual KAPL wastes or identification of KAPL waste that is not co-located. DOE is drafting a report of the investigation of KAPL waste at LOOW. The report will be released to the public for comment when the draft is complete. DOE responses to stakeholder inquiries resulted in a common understanding of site conditions and site risk. DOE expects additional interaction with stakeholders at the former LOOW as USACE completes remediation of the active VPs and the NFSS proper, and these relationships will hopefully have built trust between DOE and the stakeholders that DOE will perform its duties in an open and transparent manner that includes stakeholders as stewards for remediated FUSRAP sites. (authors)« less

  15. Mercury stabilization in chemically bonded phosphate ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.; Jeong, Seung-Young; Singh, Dileep

    1997-07-01

    We have investigated mercury stabilization in chemically bonded phosphate ceramic (CBPC) using four surrogate waste streams that represent U.S. Department of Energy (DOE) ash, soil, and two secondary waste streams resulting from the destruction of DOE`s high-organic wastes by the DETOX{sup SM} Wet Oxidation Process. Hg content in the waste streams was 0.1 to 0.5 wt.% (added as soluble salts). Sulfidation of Hg and its concurrent stabilization in the CBPC matrix yielded highly nonleachable waste forms. The Toxicity Characteristic Leaching Procedure showed that leaching levels were well below the U.S. Environmental Protection Agency`s regulatory limits. The American Nuclear Society`s ANSmore » 16.1 immersion test also gave very high leaching indices, indicating excellent retention of the contaminants. In particular, leaching levels of Hg in the ash waste form were below the measurement detection limit in neutral and alkaline water, negligibly low but measureable in the first 72 h of leaching in acid water, and below the detection limit after that. These studies indicate that the waste forms are stable in a wide range of chemical environments during storage. 9 refs., 5 tabs.« less

  16. Idaho National Engineering Laboratory High-Level Waste Roadmap. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ``where we are now`` to ``where we want and need to be.`` The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment.more » By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    GOLDSTON, WELFORD T.; SMITH, WINCHESTER IV

    DOE issued Order 435.1, ''Radioactive Waste Management,'' on July 9, 1999 for immediate implementation. The requirements for Low Level Mixed, Transuranic, and High Level Waste have been completely rewritten. The entire DOE complex has been struggling with how to implement these new requirements within the one year required timeframe. This paper will chronicle the implementation strategy and actual results of the work to carry out that strategy at the Savannah River Site. DOE-SR and the site contractors worked closely together to implement each of the new requirements across the SRS, crossing many barriers and providing innovative solutions to the manymore » problems that surfaced throughout the year. The results are that SRS declared compliance with all of the requirements of the Order within the prescribed timeframe. The challenge included all waste types in SRS facilities and programs that handle LLW, MLLW, TRU, and HLW. This paper will describe the implementation details for development of Radioactive Waste Management Basis for each facility, Identification of Wastes with No Path to Disposal, Waste Incidental to Reprocessing Determinations, Low Level Waste 90-Day Staging and One Year Limits for Storage Programs, to name a few of the requirements that were addressed by the SRS 435.1 Implementation Team. This paper will trace the implementation, problems (both technical and administrative), and the current pushback efforts associated with the DOE ''Top-to-Bottom'' review.« less

  18. Tanks Focus Area annual report FY2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2000-12-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for overmore » 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.« less

  19. The effect of radioactive waste storage in Andreev Bay on contamination of the Barents Sea ecosystem

    NASA Astrophysics Data System (ADS)

    Matishov, G. G.; Ilyin, G. V.; Usyagina, I. S.; Moiseev, D. V.; Dahle, Salve; Kasatkina, N. E.; Valuyskaya, D. A.

    2017-02-01

    The effect of temporary radioactive waste storage on the ecological status of the sea and biota in the littoral of Andreev and Malaya Andreev bays and near the shore of Motovskii Gulf (including the mouth part of the Zapadnaya Litsa Bay) was analyzed. The littoral sediments contaminated by the 137Cs, 90Sr, 238Pu, and 239,240Pu isotopes are located in the zones of constant groundwater discharge on the shores of Andreev and Malaya Andreev bays. The littoral slopes and bottom depressions of the bays accumulate finely dispersed terrigenous material and 137Cs. The investigations have shown that the storage does not exert a significant adverse effect on the radioactive conditions and the status of the sea ecosystems beyond Andreev Bay.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, Deborah L.

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) tomore » submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.« less

  1. Mercury contamination - Amalgamate (contract with NFS and ADA). Stabilize Elemental Mercury Wastes. Mixed Waste Focus Area. OST Reference Number 1675

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-09-01

    Through efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of bulk elemental mercury contaminated with radionuclides stored at various U. S. Department of Energy (DOE) sites is thought to be approximately 16 m3 (Conley et al. 1998). At least 19 different DOE sites have this type of mixed low-level waste in their storage facilities. The U. S. Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is well known, the practical engineering of a sizable amalgamation process has not beenmore » tested (Tyson 1993). To eliminate the existing DOE inventory in a reasonable timeframe, scaleable equipment is needed that can: produce waste forms that meet the EPA definition of amalgamation, produce waste forms that pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.20 mg/L, limit mercury vapor concentrations during processing to below the Occupational Safety and Health Administration’s (OSHA) 8-hour worker exposure limit (50 mg/m3) for mercury, and perform the above economically.« less

  2. Initial Radionuclide Inventories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, H

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclearmore » fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as 2030 and 2033, depending on the type of waste. TSPA-LA uses the results of this analysis to decay the inventory to the year of repository closure projected for the year of 2060.« less

  3. Disaster waste management: a review article.

    PubMed

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Disaster waste management: A review article

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Charlotte, E-mail: charlotte.brown@pg.canterbury.ac.nz; Milke, Mark, E-mail: mark.milke@canterbury.ac.nz; Seville, Erica, E-mail: erica.seville@canterbury.ac.nz

    2011-06-15

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.;more » however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.« less

  5. De-Inventory Plan for Transuranic Waste Stored at Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Kenneth Marshall; Christensen, Davis V.; Shepard, Mark D.

    This report describes the strategy and detailed work plan developed by Los Alamos National Laboratory (LANL) to disposition transuranic (TRU) waste stored at its Area G radioactive waste storage site. The focus at this time is on disposition of 3,706 m 3 of TRU waste stored above grade by June 30, 2014, which is one of the commitments within the Framework Agreement: Realignment of Environmental Priorities between the Department of Energy (DOE) National Nuclear Security Administration (NNSA) and the State of New Mexico Environment Department (NMED), Reference 1. A detailed project management schedule has been developed to manage this workmore » and better ensure that all required activities are aligned and integrated. The schedule was developed in conjunction with personnel from the NNSA Los Alamos Site Office (LASO), the DOE Carlsbad Field Office (CBFO), the Central Characterization Project (CCP), and Los Alamos National Security, LLC (LANS). A detailed project management schedule for the remainder of the above grade inventory and the below grade inventory will be developed and incorporated into the De-Inventory Plan by December 31, 2012. This schedule will also include all newly-generated TRU waste received at Area G in FYs 2012 and 2013, which must be removed by no later than December 31, 2014, under the Framework Agreement. The TRU waste stored above grade at Area G is considered to be one of the highest nuclear safety risks at LANL, and the Defense Nuclear Facility Safety Board has expressed concern for the radioactive material at risk (MAR) contained within the above grade TRU waste inventory and has formally requested that DOE reduce the MAR. A large wildfire called the Las Conchas Fire burned extensive areas west of LANL in late June and July 2011. Although there was minimal to no impact by the fire to LANL, the fire heightened public concern and news media attention on TRU waste storage at Area G. After the fire, New Mexico Governor Susana Martinez also requested that LANL accelerate disposition of TRU waste stored above grade at Area G. The 3,706 m 3 volume of TRU waste stored above grade consists of 4,495 containers that include all above grade non-cemented waste as well as above grade cemented waste that was ready for characterization on October 1, 2011. This volume includes all newly-generated TRU waste currently stored at Area G as of October 1, 2011. This volume does not include the Bolas Grandes spheres, mixed low level waste (MLLW) containers, empty containers, cemented waste that requires remediation, projected newly generated TRU waste from FY 2012 and later, or TRU waste stored below grade. The 3,706 m 3 volume represents about 86 per cent of the total volume of TRU waste stored above grade on October 1, 2011. The De-Inventory Plan supports the DOE Office of Environmental Management (EM) goal to disposition 90% of the Legacy TRU waste within the DOE complex by the end of 2015 as stated in its Roadmap for EM’s Journey to Excellence (Reference 2). The plan also addresses precursor actions for disposition of TRU waste that are necessary for compliance with the Compliance Order on Consent issued by the NMED in 2005 (Reference 3).« less

  6. Toxic Substances Control Act (TSCA) Polychlorinated Biphenyl (PCB)/Radioactive Waste Annual Inventory for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    no author on report

    2014-06-01

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) tomore » submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.« less

  7. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets themore » needs of both operations and management while providing a high level of management flexibility.« less

  8. Advanced Microgrid Concepts and Technologies Workshop

    DTIC Science & Technology

    2013-04-01

    number of wind turbines (2)  Battery charge/discharge rates  Max instantaneous load (600 kW)  Required duration of energy storage (10-day episode...for components that have developed methods (gearbox, generator, sensors , small gas turbines , or reciprocating engines, etc.) o The health information...Force), superconducting wind turbine generators (DOE ARPA-E), and thermoelectric waste-heat recovery for vehicles (DOE EERE and NSF). 111 1145

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, Steven C.; Warmann, Stephan A.; Rusch, Chris

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. The UFDC Storage and Transportation staffs are responsible for addressing issues regarding the extended or long-term storage of UNFmore » and its subsequent transportation. The near-term objectives of the Storage and Transportation task are to use a science-based approach to develop the technical bases to support the continued safe and secure storage of UNF for extended periods, subsequent retrieval, and transportation. While low burnup fuel [that characterized as having a burnup of less than 45 gigawatt days per metric tonne uranium (GWD/MTU)] has been stored for nearly three decades, the storage of high burnup used fuels is more recent. The DOE has funded a demonstration project to confirm the behavior of used high burnup fuel under prototypic conditions. The Electric Power Research Institute (EPRI) is leading a project team to develop and implement the Test Plan to collect this data from a UNF dry storage system containing high burnup fuel. The Draft Test Plan for the demonstration outlines the data to be collected; the high burnup fuel to be included; the technical data gaps the data will address; and the storage system design, procedures, and licensing necessary to implement the Test Plan. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must closely mimic real conditions high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to an Independent Spent Fuel Storage Installation (ISFSI) for multi-year storage. To document the initial condition of the used fuel prior to emplacement in a storage system, “sister ” fuel rods will be harvested and sent to a national laboratory for characterization and archival purposes. This report supports the demonstration by describing how sister rods will be shipped and received at a national laboratory, and recommending basic nondestructive and destructive analyses to assure the fuel rods are adequately characterized for UFDC work. For this report, a hub-and-spoke model is proposed, with one location serving as the hub for fuel rod receipt and characterization. In this model, fuel and/or clad would be sent to other locations when capabilities at the hub were inadequate or nonexistent. This model has been proposed to reduce DOE-NE’s obligation for waste cleanup and decontamination of equipment.« less

  10. The Time Needed to Implement the Blue Ribbon Commission Recommendation on Interim Storage - 13124

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voegele, Michael D.; Vieth, Donald

    2013-07-01

    The report of the Blue Ribbon Commission on America's Nuclear Future [1] makes a number of important recommendations to be considered if Congress elects to redirect U.S. high-level radioactive waste disposal policy. Setting aside for the purposes of this discussion any issues related to political forces leading to stopping progress on the Yucca Mountain project and driving the creation of the Commission, an important recommendation of the Commission was to institute prompt efforts to develop one or more consolidated storage facilities. The Blue Ribbon Commission noted that this recommended strategy for future storage and disposal facilities and operations should bemore » implemented regardless of what happens with Yucca Mountain. It is too easy, however, to focus on interim storage as an alternative to geologic disposal. The Blue Ribbon Commission report does not go far enough in addressing the magnitude of the contentious problems associated with reopening the issues of relative authorities of the states and federal government with which Congress wrestled in crafting the Nuclear Waste Policy Act [2]. The Blue Ribbon Commission recommendation for prompt adoption of an interim storage program does not appear to be fully informed about the actions that must be taken, the relative cost of the effort, or the realistic time line that would be involved. In essence, the recommendation leaves to others the details of the systems engineering analyses needed to understand the nature and details of all the operations required to reach an operational interim storage facility without derailing forever the true end goal of geologic disposal. The material presented identifies a number of impediments that must be overcome before the country could develop a centralized federal interim storage facility. In summary, and in the order presented, they are: 1. Change the law, HJR 87, PL 107-200, designating Yucca Mountain for the development of a repository. 2. Bring new nuclear waste legislation to the floor of the Senate, overcoming existing House support for Yucca Mountain; 3. Change the longstanding focus of Congress from disposal to storage; 4. Change the funding concepts embodied in the Nuclear Waste Policy Act to allow the Nuclear Waste fund to be used to pay for interim storage; 5. Reverse the Congressional policy not to give states or tribes veto or consent authority, and to reserve to Congress the authority to override a state or tribal disapproval; 6. Promulgate interim storage facility siting regulations to reflect the new policies after such changes to policy and law; 7. Complete already underway changes to storage and transportation regulations, possibly incorporating changes to reflect changes to waste disposal law; 8. Promulgate new repository siting regulations if the interim storage facility is to support repository development; 9. Identify volunteer sites, negotiate agreements, and get Congressional approval for negotiated benefits packages; 10. Design, License and develop the interim storage facility. The time required to accomplish these ten items depends on many factors. The estimate developed assumes that certain of the items must be completed before other items are started; given past criticisms of the current program, such an assumption appears appropriate. Estimated times for completion of individual items are based on historical precedent. (authors)« less

  11. TWRS Retrieval and Storage Mission and Immobilized Low Activity Waste (ILAW) Disposal Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BURBANK, D.A.

    This project plan has a twofold purpose. First, it provides a waste stream project plan specific to the River Protection Project (RPP) (formerly the Tank Waste Remediation System [TWRS] Project) Immobilized Low-Activity Waste (LAW) Disposal Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-90-01 (Ecology et al. 1994) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan (Ecology et al. 1998). Second, it provides an upper tier document that can be used as themore » basis for future subproject line-item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 [DOE 1992] and 430.1 [DOE 1995a]). The format and content of this project plan are designed to accommodate the requirements mentioned by the Tri-Party Agreement and the DOE orders. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.« less

  12. Final report on decommissioning of wells, boreholes, and tiltmeter sites, Gulf Coast Interior Salt Domes of Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-07-01

    In the late 1970s, test holes were drilled in northern Louisiana in the vicinity of Vacherie and Rayburn`s Salt Domes as part of the Department of Energy`s (DOE) National Waste Terminal Storage (NWTS) (rename the Civilian Radioactive Waste Management (CRWM)) program. The purpose of the program was to evaluate the suitability of salt domes for long term storage or disposal of high-level nuclear waste. The Institute for Environmental Studies at Louisiana State University (IES/LSU) and Law Engineering Testing Company (LETCo) of Marietta, Georgia performed the initial field studies. In 1982, DOE awarded a contract to the Earth Technology Corporation (TETC)more » of Long Beach, California to continue the Gulf Coast Salt Dome studies. In 1986, DOE deferred salt domes from further consideration as repository sites. This report describes test well plugging and site abandonment activities performed by SWEC in accordance with Activity Plan (AP) 1--3, Well Plugging and Site Restoration of Work Sites in Louisiana. The objective of the work outlined in this AP was to return test sites to as near original condition as possible by plugging boreholes, removing equipment, regrading, and seeding. Appendices to this report contain forms required by State of Louisiana, used by SWEC to document decommissioning activities, and pertinent documentation related to lease/access agreements.« less

  13. Mercury Contamination - Amalgamate (contract with NFS and ADA). Demonstration of DeHg SM Process. Mixed Waste Focus Area. OST Reference Number 1675

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-09-01

    Through efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of bulk elemental mercury contaminated with radionuclides stored at various U.S. Department of Energy (DOE) sites is thought to be approximately 16 m3 (Conley et al. 1998). At least 19 different DOE sites have this type of mixed low-level waste in their storage facilities. The U.S. Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is well known, the practical engineering of a sizable amalgamation process has not been tested (Tysonmore » 1993). To eliminate the existing DOE inventory in a reasonable timeframe, scalable equipment is needed that can produce waste forms that meet the EPA definition of amalgamation, produce waste forms that pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.20 mg/L, limit mercury vapor concentrations during processing to below the Occupational Safety and Health Administration’s (OSHA) 8-h worker exposure limit (50 mg/m3) for mercury, and perform the above economically.« less

  14. Deep Bore Storage of Nuclear Waste Using MMW (Millimeter Wave) Technology. Full Project Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert

    This DOE Nuclear STTR project DE-SC001238 investigated the use of MMW directed energy to form rock melt and steel plugs in deep wellbores to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This current project builds upon a prior DOE project, DE-EE0005504, which developed the basic low power, low 28 GHz frequency waveguide setup, process and instruments. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future higher power field prototype testing. This technology also has potential for deep well drillingmore » for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled, called 'mono-bore drilling'. This allows for higher levels of safety and protection of the environment during deep drilling operations while providing vast cost savings. The larger purpose of this project was to find answers to key questions in developing MMW technology for its many subsurface applications.« less

  15. Direct cementitious waste option study report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dafoe, R.E.; Losinski, S.J.

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target data of 2035. This study investigates the direct grouting of all ICPP calcine (including the HLW dry calcine and those resulting from calcining sodium-bearing liquid waste currently residing in the ICPP storage tanks) as the treatment method to comply with the settlement agreement. This method involves grouting the calcined waste andmore » casting the resulting hydroceramic grout into stainless steel canisters. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a national geologic repository. The operating period for grouting treatment will be from 2013 through 2032, and all the HLW will be treated and in interim storage by the end of 2032.« less

  16. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), themore » Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.« less

  17. Advanced Fuel Cycle Cost Basis – 2017 Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, B. W.; Ganda, F.; Williams, K. A.

    This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less

  18. Development of consistent hazard controls for DOE transuranic waste operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woody, W.J.

    2007-07-01

    This paper describes the results of a re-engineering initiative undertaken with the Department of Energy's (DOE) Office of Environmental Management (EM) in order to standardize hazard analysis assumptions and methods and resulting safety controls applied to multiple transuranic (TRU) waste operations located across the United States. A wide range of safety controls are historically applied to transuranic waste operations, in spite of the fact that these operations have similar operational characteristics and hazard/accident potential. The re-engineering effort supported the development of a DOE technical standard with specific safety controls designated for accidents postulated during waste container retrieval, staging/storage, venting, onsitemore » movements, and characterization activities. Controls cover preventive and mitigative measures; include both hardware and specific administrative controls; and provide protection to the facility worker, onsite co-located workers and the general public located outside of facility boundaries. The Standard development involved participation from all major DOE sites conducting TRU waste operations. Both safety analysts and operations personnel contributed to the re-engineering effort. Acknowledgment is given in particular to the following individuals who formed a core working group: Brenda Hawks, (DOE Oak Ridge Office), Patrice McEahern (CWI-Idaho), Jofu Mishima (Consultant), Louis Restrepo (Omicron), Jay Mullis (DOE-ORO), Mike Hitchler (WSMS), John Menna (WSMS), Jackie East (WSMS), Terry Foppe (CTAC), Carla Mewhinney (WIPP-SNL), Stephie Jennings (WIPP-LANL), Michael Mikolanis (DOESRS), Kraig Wendt (BBWI-Idaho), Lee Roberts (Fluor Hanford), and Jim Blankenhorn (WSRC). Additional acknowledgment is given to Dae Chung (EM) and Ines Triay (EM) for leadership and management of the re-engineering effort. (authors)« less

  19. WIPP Remote-Handled TRU Waste Program Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Most, W.; Kehrman, B.

    2006-07-01

    There are two major regulatory approval milestones necessary in order to commence disposal operations for remote-handled transuranic (RH TRU) waste at the Waste Isolation Pilot Plant (WIPP)-the RH TRU hazardous waste permit modification request [1] and the radiological characterization plan [2]. One of those milestones has been achieved. The US Environmental Protection Agency (EPA) issued its final decision to approve the Department of Energy's (DOE) RH TRU radiological characterization plan along with the RH TRU Waste Characterization Program Implementation Plan [3], on March 26, 2004. The RH TRU hazardous waste permit modification request still awaits agency approval. In EPA's decisionmore » to approve the DOE's RH TRU radiological characterization plan, the EPA also set forth the process for approving site-specific RH TRU waste characterization programs. Included in the March 29, 2005, RH TRU second Notice of Deficiency [4] (NOD) on the Class 3 Permit Modification Request for RH TRU Waste, the New Mexico Environment Department (NMED) requested that the Permittees combine their responses for the RH TRU Waste NOD with the Section 311 permit modification request NOD. The Combined Response Document was submitted April 28, 2005 [5]. Another NOD [6] was issued by the NMED on September 1, 2005, to clarify the Permittees' proposal and submit these clarifications to the administrative record. Combining both the chap. 311 [7] and RH TRU waste permit modification requests allows for both the regulator and Permittees to expedite action on the modification requests. The Combined Response Document preserves human resources and costs by having only one administrative process for both modification requests. Facility readiness requirements of the RH TRU waste final permit [8] must be implemented to declare that the WIPP is ready to receive RH TRU waste for storage and disposal. To demonstrate readiness, the WIPP is preparing for an Operational Readiness Review (ORR) of the RH TRU waste management equipment, system, and procedures. Required by DOE Order, the ORR demonstrates the capability of managing RH TRU waste. The Management and Operating Contractor (MOC) for the WIPP must first perform a Line Management Assessment. Upon successful completion of the Line Management Assessment, the MOC performs the Contractor ORR and presents the results to the local DOE office. At that time, the local DOE office performs its own ORR to declare readiness to DOE Headquarters. (authors)« less

  20. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  1. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockie, K.A.; Suttora, L.C.; Quigley, K.D.

    2007-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  2. Waste Isolation Pilot Plant (WIPP) fact sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    Pursuant to the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (RCRA), as amended (42 USC 6901, et seq.), and the New Mexico Hazardous Waste Act (Section 74-4-1 et seq., NMSA 1978), Permit is issued to the owner and operator of the US DOE, WIPP site (hereafter called the Permittee(s)) to operate a hazardous waste storage facility consisting of a container storage unit (Waste Handling Building) and two Subpart X miscellaneous below-ground storage units (Bin Scale Test Rooms 1 and 3), all are located at the above location. The Permittee must comply with all termsmore » and conditions of this Permit. This Permit consists of the conditions contained herein, including the attachments. Applicable regulations cited are the New Mexico Hazardous Waste Management Regulations, as amended 1992 (HWMR-7), the regulations that are in effect on the date of permit issuance. This Permit shall become effective upon issuance by the Secretary of the New Mexico Environment Department and shall be in effect for a period of ten (10) years from issuance. This Permit is also based on the assumption that all information contained in the Permit application and the administrative record is accurate and that the activity will be conducted as specified in the application and the administrative record. The Permit application consists of Revision 3, as well as associated attachments and clarifying information submitted on January 25, 1993, and May 17, 1993.« less

  3. Reconnaissance investigation of petroleum products in soil and ground water at Longmire, Mount Rainier National Park, Washington, 1990

    USGS Publications Warehouse

    Sumioka, S.S.

    1995-01-01

    The removal of an underground waste-oil storage tank in Mount Rainier National Park, at Longmire, Washington, led to the discovery that soil surrounding the tank was saturated with unidentified petroleum hydrocarbons. Subsequent investigations by the National Park Service indicated that a petroleum product smelling like diesel oil was present in the unsaturated zone as far as 120 feet from the tank site. A study was conducted by the U.S. Geological Survey in cooperation with the National Park Service to determine the extent to which the petroleum hydrocarbons have affected the unsaturated zone and ground water in the Longmire area. Measurements of water levels in wells and of water-surface elevations of the Nisqually River and a wetland west of Longmire indicate that ground water does not flow from the maintenance area to the river or to the wetland. Waste oil and diesel oil were detected in soil samples from the site closest to the waste-oil storage-tank site. Diesel oil was also detected in samples from a site about 200 feet northwest of the storage-tank site. Organic compounds of undetermined origin were detected in soil samples from all of the other sites. Waste oil was not conclusively detected in any of the ground-water samples. Diesel oil was detected in water samples from the well closest to the storage tank and from a well about 200 feet west of the storage-tank site. Ground-water samples from all of the other wells contained organic compounds of undetermined origin.

  4. Recent developments - US spent fuel disposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    One of a US utility's major risk factors in continuing to operate a nuclear plant is managing discharged spent fuel. The US Department of Energy (DOE) signed contracts with utilities guaranteeing government acceptance of spent fuel by 1988. However, on December 17, 1992, DOE Secretary Watkins wrote to Sen. J. Bennett Johnston (D-LA), Chairman of the Senate Energy Committee, indicating a reassessment of DOE's programs, the results of which will be presented to Congress in January 1993. He indicated the Department may not be able to meet the 1988 date, because of difficulty in finding a site for the Monitoredmore » Retrievable Storage facility. Watkins indicated that DOE has investigated an interim solution and decided to expedite a program to certify a multi-purpose standardized cask system for spent fuel receipt, storage, transport, and disposal. To meet the expectations of US utilities, DOE is considering a plan to use federal sites for interim storage of the casks. Secretary Watkins recommended the waste program be taken off-budget and put in a revolving fund established to ensure that money already collected from utilities will be available to meet the schedule for completion of the repository.« less

  5. Hanford facility dangerous waste permit application, general information portion. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnichsen, J.C.

    1997-08-21

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit,more » which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which Part B permit application documentation has been, or is anticipated to be, submitted. Documentation for treatment, storage, and/or disposal units undergoing closure, or for units that are, or are anticipated to be, dispositioned through other options, will continue to be submitted by the Permittees in accordance with the provisions of the Hanford Federal Facility Agreement and Consent Order. However, the scope of the General Information Portion includes information that could be used to discuss operating units, units undergoing closure, or units being dispositioned through other options. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the contents of the Part B permit application guidance documentation prepared by the Washington State Department of Ecology and the U.S. Environmental Protection Agency, with additional information needs defined by revisions of Washington Administrative Code 173-303 and by the Hazardous and Solid Waste Amendments. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (i.e., either operating units, units undergoing closure, or units being dispositioned through other options).« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. L. Poe, Jr.; P.F. Wise

    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facilitymore » pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfred J. Karns

    This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC (NSTec), for the U. S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during CY06. This report was developed in accordance with the requirements of the Nevada Test Site (NTS) Resource Conservation and Recovery Act (RCRA) Permit (No. NEV HW0021) and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the DOE, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process to reduce the volume andmore » toxicity of waste generated by the NNSA/NSO and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by the NNSA/NSO.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, Suzanne; Biyani, Rabindra; Holmes, Erika

    The United States Department of Energy's (US DOE's) Hanford Nuclear Site has 177 underground waste storage tanks located 19 to 24 km (12 to 15 miles) from the Columbia River in south-central Washington State. Hanford's tanks now hold about 212,000 cu m (56 million gallons) of highly radioactive and chemically hazardous waste. Sixty-seven tanks have leaked an estimated 3,785 cu m (1 million gallons) of this waste into the surrounding soil. Further releases to soil, groundwater, and the Columbia River are the inevitable result of the tanks continuing to age. The risk from this waste is recognized as a threatmore » to the Northwest by both State and Federal governments. US DOE and Bechtel National, Inc., are building the Waste Treatment and Immobilization Plant (WTP) to treat and vitrify (immobilize in glass) the waste from Hanford's tanks. As is usual for any groundbreaking project, problems have arisen that must be resolved as they occur if treatment is to take place as specified in the court-enforceable Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) and the Consent Decree, entered into by US DOE, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology (Ecology). At times, US DOE's approach to solving these critical issues seems to have caused undue wastes of time, energy, and, ultimately, public funds. Upon reviewing the history of Hanford's tank waste treatment project, Ecology hopes that constructive criticism of past failures and praise of successes will inspire US DOE to consider changing practices, be more transparent with regulatory agencies and the public, and take a 'lean production' approach to successfully completing this project. All three Tri-Party Agreement agencies share the goal of completing WTP on time, ensuring it is operational and in compliance with safety standards. To do this, Ecology believes US DOE should: - Maintain focus on the primary goal of completing the five major facilities of WTP. - Construct a supplemental low-activity waste (LAW) vitrification facility for the two-thirds balance of LAW that will not be treated by the vitrification facility under construction. - Prepare infrastructure for waste feed from the tanks and facilities to handle the WTP waste streams. To support this project track, Ecology expedites dangerous waste permitting by using a design-build approach to integrate WTP into the Resource Conservation and Recovery Act permit for Hanford. (authors)« less

  9. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulse, R.A.

    1991-08-01

    Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the totalmore » GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW.« less

  10. Environmental Compliance Assessment System (USA ECAS)

    DTIC Science & Technology

    1991-09-01

    Fuberidazole 100/10,000 3878-19-1 Fulminic acid , mercu- 10 P065 628-86-4 ry(I1) salt Fumaric acid 5000 110-17-8 Furan, tetrahydro- 1000 LT213 109-99-9 Furan...etc.)? S. Does the installation have any bulk acid storage? 6. Does the installation store batteries and/or have a battery reclamation point? I...gas turbines (greater than 1 MBtuhr) - bulk gasoline terminals - municipal waste combustors - sulfuric and nitric acid plants - rotogravure printers

  11. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided inmore » companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.« less

  12. Advanced Borobond™ Shields for Nuclear Materials Containment and Borobond™ Immobilization of Volatile Fission Products - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.

    2016-05-19

    Borobond is a company-proprietary material developed by the CRADA partner in collaboration with Argonne, and is based on Argonne's Ceramicrete technology. It is being used by DOE for nuclear materials safe storage, and Boron Products, LLC is the manufacturer and supplier of Borobond. The major objective of this project was to produce a more versatile composition of this material and find new applications. Major target applications were use for nuclear radiation shields, such as in dry storage casks; use in immobilization of most difficult waste streams, such as Hanford K-Basin waste; use for soluble and volatile fission products, such asmore » Cs, Tc, Sr, and I; and use for corrosion and fire protection applications in nuclear facilities.« less

  13. Corrosion probe. Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less

  14. Transuranic Waste Processing Center (TWPC) Legacy Tank RH-TRU Sludge Processing and Compliance Strategy - 13255

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Ben C.; Heacker, Fred K.; Shannon, Christopher

    2013-07-01

    The U.S. Department of Energy (DOE) needs to safely and efficiently treat its 'legacy' transuranic (TRU) waste and mixed low-level waste (LLW) from past research and defense activities at the Oak Ridge National Laboratory (ORNL) so that the waste is prepared for safe and secure disposal. The TWPC operates an Environmental Management (EM) waste processing facility on the Oak Ridge Reservation (ORR). The TWPC is classified as a Hazard Category 2, non-reactor nuclear facility. This facility receives, treats, and packages low-level waste and TRU waste stored at various facilities on the ORR for eventual off-site disposal at various DOE sitesmore » and commercial facilities. The Remote Handled TRU Waste Sludge held in the Melton Valley Storage Tanks (MVSTs) was produced as a result of the collection, treatment, and storage of liquid radioactive waste originating from the ORNL radiochemical processing and radioisotope production programs. The MVSTs contain most of the associated waste from the Gunite and Associated Tanks (GAAT) in the ORNL's Tank Farms in Bethel Valley and the sludge (SL) and associated waste from the Old Hydro-fracture Facility tanks and other Federal Facility Agreement (FFA) tanks. The SL Processing Facility Build-outs (SL-PFB) Project is integral to the EM cleanup mission at ORNL and is being accelerated by DOE to meet updated regulatory commitments in the Site Treatment Plan. To meet these commitments a Baseline (BL) Change Proposal (BCP) is being submitted to provide continued spending authority as the project re-initiation extends across fiscal year 2012 (FY2012) into fiscal year 2013. Future waste from the ORNL Building 3019 U-233 Disposition project, in the form of U-233 dissolved in nitric acid and water, down-blended with depleted uranyl nitrate solution is also expected to be transferred to the 7856 MVST Annex Facility (formally the Capacity Increase Project (CIP) Tanks) for co-processing with the SL. The SL-PFB project will construct and install the necessary integrated systems to process the accumulated MVST Facilities SL inventory at the TWPC thus enabling safe and effective disposal of the waste. This BCP does not include work to support current MVST Facility Surveillance and Maintenance programs or the ORNL Building 3019 U-233 Disposition project, since they are not currently part of the TWPC prime contract. The purpose of the environmental compliance strategy is to identify the environmental permits and other required regulatory documents necessary for the construction and operation of the SL- PFB at the TWPC, Oak Ridge, TN. The permits and other regulatory documents identified are necessary to comply with the environmental laws and regulations of DOE Orders, and other requirements documented in the SL-PFB, Safety Design Strategy (SDS), SL-A-AD-002, R0 draft, and the Systems, Function and Requirements Document (SFRD), SL-X-AD-002, R1 draft. This compliance strategy is considered a 'living strategy' and it is anticipated that it will be revised as design progresses and more detail is known. The design basis on which this environmental permitting and compliance strategy is based is the Wastren Advantage, Inc., (WAI), TWPC, SL-PFB (WAI-BL-B.01.06) baseline. (authors)« less

  15. Environmental Assessment for the Above Ground Storage Capability at the Waste Isolation Pilot Plant Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Waste Isolation Pilot Plant (WIPP) is the nation’s only approved repository for the disposal of defense related/defense generated transuranic (TRU) and mixed hazardous TRU waste (henceforth called TRU waste). The mission of the WIPP Project is to realize the safe disposal of TRU waste from TRU waste generator sites in the Department of Energy waste complex. The WIPP Project was authorized by Title II, Section 213(a) of Public Law 96-164 (U. S. Congress 1979). Congress designated the WIPP facility “for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resultingmore » from the defense activities and programs of the United States exempted from regulation by the Nuclear Regulatory Commission (NRC).” The WIPP facility is operated by the U. S. Department of Energy (DOE). Transuranic waste that is disposed in the WIPP facility is defined by Section 2(18) the WIPP Land Withdrawal Act of 1992 (LWA) (U. S. Congress, 1992) as: “waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years, except for: (A) high-level radioactive waste; (B) waste that the Secretary has determined, with the concurrence of the Administrator, does not need the degree of isolation required by the disposal regulations; or (C) waste that the NRC has approved for disposal on a case-by-case basis in accordance with part 61 of title 10, Code of Federal Regulations (CFR).« less

  16. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The impact on space systems of three alternative waste mixes was evaluated as part of an effort to investigate the disposal of certain high-level nuclear wastes in space as a complement to mined geologic repositories. A brief overview of the study background, objectives, scope, approach and guidelines, and limitations is presented. The effects of variations in waste mixes on space system concepts were studied in order to provide data for determining relative total system risk benefits resulting from space disposal of the alternative waste mixes. Overall objectives of the NASA-DOE sustaining-level study program are to investigate space disposal concepts which can provide information to support future nuclear waste terminal storage programmatic decisions and to maintain a low level of research activity in this area to provide a baseline for future development should a decision be made to increase the emphasis on this option.

  17. WESF (173)Cs gamma ray sources

    NASA Astrophysics Data System (ADS)

    Kenna, B. T.

    1984-10-01

    The Waste Encapsulation and Storage Facility (WESP) at Hanford, Washington has been separating cesium from stored liquid defense waste since 1945. This is done to alleviate the heat generated by the decay of radioactive Cs137. The cesium is converted to CsCl, doubly encapsulated in 316l stainless steel, and placed in storage. The potential utility of these Cs137 capsules as gamma radiation sources was demonstrated. Registration of the capsule with the NRC as a sealed gamma source would facilitate the licensing of non-DOE irradiation facilities using this source. To grant this registration, the NRC requires characteristics of the capsule. It must also be demonstrated that the capsule will maintain its integrity under both normal circumstances and specified abnormal conditions. The required information is provided through collation of results of studies and tests done previously by other laboratories.

  18. Environmental and economic evaluation of pre-disaster plans for disaster waste management: Case study of Minami-Ise, Japan.

    PubMed

    Tabata, Tomohiro; Wakabayashi, Yohei; Tsai, Peii; Saeki, Takashi

    2017-03-01

    Although it is important that disaster waste be demolished and removed as soon as possible after a natural disaster, it is also important that its treatment is environmentally friendly and economic. Local municipalities do not conduct environmental and economic feasibility studies of pre-disaster waste management; nevertheless, pre-disaster waste management is extremely important to promote treatment of waste after natural disasters. One of the reasons that they cannot conduct such evaluations is that the methods and inventory data required for the environmental and economic evaluation does not exist. In this study, we created the inventory data needed for evaluation and constructed evaluation methods using life cycle assessment (LCA) and life cycle cost (LCC) methodologies for future natural disasters. We selected the Japanese town of Minami-Ise for the related case study. Firstly, we estimated that the potential disaster waste generation derived from dwellings would be approximately 554,000t. Based on this result, the land area required for all the temporary storage sites for storing the disaster waste was approximately 55ha. Although the public domain and private land area in this case study is sufficient, several sites would be necessary to transport waste to other sites with enough space because local space is scarce. Next, we created inventory data of each process such as waste transportation, operation of the temporary storage sites, and waste treatment. We evaluated the environmental burden and cost for scenarios in which the disaster waste derived from specified kinds of home appliances (refrigerators, washing machines, air-conditioners and TV sets) was transported, stored and recycled. In the scenario, CO 2 , SO x , NO X and PM emissions and total cost were 142t, 7kg, 257kg, 38kg and 1772 thousand USD, respectively. We also focused on SO x emission as a regional pollution source because transportation and operation of the temporary storage sites generates air pollution. If the treatment of all waste were finished in 3years, the environmental standard would be satisfied by setting work duration to 4.8h/d. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, M.S.

    The Barnwell Waste Management Facility (BWMF) is scheduled to restrict access to waste generators outside of the Atlantic Compact (SC, CT, NJ) on July 1, 2008. South Carolina, authorized under the Low-Level Waste Policy Act of 1980 and Amendments Act of 1985, and in agreement with the other Atlantic Compact states, will only accept Class A, B, and C low-level radioactive waste (LLRW) generated within compact. For many years, the BWMF has been the only LLRW disposal facility to accept Class B and C waste from LLRW generators throughout the country, except those that have access to the Northwest Compactmore » Site. Many Class B/C waste generators consider this to be a national crisis situation requiring interim or possible permanent storage, changes in operation, significant cost impacts, and/or elimination of services, especially in the health care and non-power generation industries. With proper in-house waste management practices and utilization of commercial processor services, a national crisis can be avoided, although some generators with specific waste forms or radionuclides will remain without options. In summary: It is unknown what the future will bring for commercial LLRW disposal. Could the anticipated post Barnwell Class B/C crisis be avoided by any of the following? - Barnwell Site remains open for the nation's commercial Class B/C waste; - Richland Site opens back up to the nation for commercial Class B/C waste; - Texas Site opens up to the nation for commercial Class B/C waste; - Federal Government intervenes by keeping a commercial Class B/C site open for the nation's commercial Class B/C waste; - Federal Government makes a DOE site available for commercial Class B/C waste; - Federal Government revisits the LLRW Policy Act of 1980 and Amendments Act of 1985. Without a future LLRW site capable of accepting Class B/C currently on the horizon, commercial LLRW generators are faced with waste volume elimination, reduction, or storage. With proper in-house waste management practices, utilization of commercial processor services and regulatory relief, a national crisis can be avoided. Waste volumes for storage can be reduced to as little as 10% of the current Class B/C volume. Although a national LLRW crisis can be avoided, some generators with specific waste forms or radionuclides will have a significant financial and/or operational impact due to a lack of commercial LLRW management options. (authors)« less

  20. Hanford Facility Dangerous Waste Permit Application for T Plant Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BARNES, B.M.

    2002-09-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the T Plant Complex (this document, DOE/RL-95-36). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agencymore » (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the T Plant Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the T Plant Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text.« less

  1. Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy`s Mound Plant, Miamisburg, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating themore » need for an environmental impact statement.« less

  2. TRU Waste Management Program. Cost/schedule optimization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.

    This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office Rockwell International (JIO/RI) during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, taskmore » guidance development, task monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short-term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. Systems models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.« less

  3. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  4. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  5. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  6. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  7. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB... to manage municipal or industrial solid waste, or in a facility with an approval to dispose of PCB...

  8. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SIMMONS, F.M.

    2000-03-29

    This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cellsmore » 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas.« less

  9. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not availablemore » or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.« less

  10. Accelerator-driven Transmutation of Waste

    NASA Astrophysics Data System (ADS)

    Venneri, Francesco

    1998-04-01

    Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the facility, using an accelerator-driven subcritical burner cooled by liquid lead/bismuth and limited pyrochemical treatment of the spent fuel and residual waste. This approach contrasts with the present-day practices of aqueous reprocessing (Europe and Japan), in which high purity plutonium is produced and used in the fabrication of fresh mixed oxide fuel (MOX) that is shipped off-site for use in light water reactors.

  11. Managing Waste Inventory and License Limits at the Perma-Fix Northwest Facility to Meet CH2M Hill Plateau Remediation Company (CHPRC) American Recovery and Reinvestment Act (ARRA) Deliverables - 12335

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moak, Don J.; Grondin, Richard L.; Triner, Glen C.

    CH2M Hill Plateau Remediation Company (CHRPC) is a prime contractor to the U.S. Department of Energy (DOE) focused on the largest ongoing environmental remediation project in the world at the DOE Hanford Site Central Plateau, i.e. the DOE Hanford Plateau Remediation Contract. The East Tennessee Materials and Energy Corporation (M and EC); a wholly owned subsidiary of Perma-Fix Environmental Services, Inc. (PESI), is a small business team member to CHPRC. Our scope includes project management; operation and maintenance of on-site storage, repackaging, treatment, and disposal facilities; and on-site waste management including waste receipt from generators and delivery to on-site andmore » off-site treatment, storage, and disposal facilities. As part of this scope, M and EC staffs the centralized Waste Support Services organization responsible for all waste characterization and acceptance required to support CHPRC and waste generators across the Hanford Site. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m{sup 3}) of legacy waste was defined as 'no-path-forward waste'. A significant portion of this waste (7,650 m{sup 3}) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from the Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed that took advantage of commercial treatment capabilities at a nearby vendor facility, Perma-Fix Northwest (PFNW). In the spring of 2009, CHPRC initiated a pilot program under which they began shipping large package, low gram suspect TRU (<15 g SNM per container), and large package contact and remote handled MLLW to the off-site PFNW facility for treatment. PFNW is restricted by the SNM limits set for the total quantity of SNM allowed at the facility in accordance with the facility's radioactive materials license(s) (RML). While both CHPRC and PFNW maintain waste databases to track all waste movements, it became evident early in the process that a tool was needed that married the two systems to better track SNM inventories and sequence waste from the point of generation, through the PFNW facility, and back to the Hanford site for final disposition. This tool, known as the Treatment Integration and Planning Tool (TIPT), has become a robust planning tool that provides real-time data to support compliant and efficient waste generation, transportation, treatment, and disposition. TIPT is developing into the next generation tool that will change the way in which legacy wastes, retrieval wastes and decontamination and decommissioning operations are conducted on the Plateau Remediation Contract (PRC). The real value of the TIPT is its predictive capability. It allows the W and FMP to map out optimal windows for processing waste through the PFNW facility, or through any process that is in some way resource limited. It allows project managers to identify and focus on problem areas before shipments are affected. It has been modified for use in broader applications to predict turnaround times and identify windows of opportunity for processing higher gram wastes through PFNW and to allow waste generators, site-wide, to accurately predict scope, cost, and schedule for waste generation to optimize processing and eliminate storage, double handling, and related costs and unnecessary safety risks. The TIPT addresses the years old problem of how to effectively predict not only what needs to be done, but when. 'When' is the key planning parameter that has been ignored by the generator and processor for many years, but has proven to be the most important parameter for both parties. While further refinement is a natural part of any development process, the current improvements on the TIPT have shown that prediction is a powerful consideration. Even in lean times expected for the foreseeable future, the improved TIPT continues to play a central role in managing our way through those times to assure facilities remain viable and available. It is recommended that other major remediation projects and waste processing facilities incorporate a tool such as TIPT to improve customer-commercial supplier communications and better optimization of resources. (authors)« less

  12. Pretest characterization of WIPP experimental waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.; Davis, H.; Drez, P.E.

    The Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, is an underground repository designed for the storage and disposal of transuranic (TRU) wastes from US Department of Energy (DOE) facilities across the country. The Performance Assessment (PA) studies for WIPP address compliance of the repository with applicable regulations, and include full-scale experiments to be performed at the WIPP site. These experiments are the bin-scale and alcove tests to be conducted by Sandia National Laboratories (SNL). Prior to conducting these experiments, the waste to be used in these tests needs to be characterized to provide data on the initial conditionsmore » for these experiments. This characterization is referred to as the Pretest Characterization of WIPP Experimental Waste, and is also expected to provide input to other programmatic efforts related to waste characterization. The purpose of this paper is to describe the pretest waste characterization activities currently in progress for the WIPP bin-scale waste, and to discuss the program plan and specific analytical protocols being developed for this characterization. The relationship between different programs and documents related to waste characterization efforts is also highlighted in this paper.« less

  13. Hanford facility dangerous waste permit application, general information portion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, C.B.

    1998-05-19

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. Documentation contained in the General Information Portion ismore » broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in this report).« less

  14. Environmental Management vitrification activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumrine, P.H.

    1996-05-01

    Both the Mixed Waste and Landfill Stabilization Focus Areas as part of the Office of Technology Development efforts within the Department of Energy`s (DOE) Environmental Management (EM) Division have been developing various vitrification technologies as a treatment approach for the large quantities of transuranic (TRU), TRU mixed and Mixed Low Level Wastes that are stored in either landfills or above ground storage facilities. The technologies being developed include joule heated, plasma torch, plasma arc, induction, microwave, combustion, molten metal, and in situ methods. There are related efforts going into development glass, ceramic, and slag waste form windows of opportunity formore » the diverse quantities of heterogeneous wastes needing treatment. These studies look at both processing parameters, and long term performance parameters as a function of composition to assure that developed technologies have the right chemistry for success.« less

  15. Importance of storage time in mesophilic anaerobic digestion of food waste.

    PubMed

    Lü, Fan; Xu, Xian; Shao, Liming; He, Pinjing

    2016-07-01

    Storage was used as a pretreatment to enhance the methanization performance of mesophilic anaerobic digestion of food waste. Food wastes were separately stored for 0, 1, 2, 3, 4, 5, 7, and 12days, and then fed into a methanogenic reactor for a biochemical methane potential (BMP) test lasting up to 60days. Relative to the methane production of food waste stored for 0-1day (285-308mL/g-added volatile solids (VSadded)), that after 2-4days and after 5-12days of storage increased to 418-530 and 618-696mL/g-VSadded, respectively. The efficiency of hydrolysis and acidification of pre-stored food waste in the methanization reactors increased with storage time. The characteristics of stored waste suggest that methane production was not correlated with the total hydrolysis efficiency of organics in pre-stored food waste but was positively correlated with the storage time and acidification level of the waste. From the results, we recommend 5-7days of storage of food waste in anaerobic digestion treatment plants. Copyright © 2016. Published by Elsevier B.V.

  16. Management of the Cs/Sr Capsule Project at the Hanford Site. Technology Readiness Assessment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Federal Project Director (FPD) for the U.S. Department of Energy (DOE), Richland Operations Office (RL) Waste Management and D&D Division (WMD) requested a Technology Readiness Assessment (TRA) for the Management of the Cesium/Strontium Capsule Storage Project (MCSCP) at the Waste Encapsulation and Storage Facility (WESF) on the Hanford Site in Washington State. The MCSCP CD-1 TRA was performed by a team selected in collaboration between the Office of Environmental Management (EM) Chief Engineer (EM-3.3) and RL, WMD FPD. The TRA Team included subject matter and technical experts having experience in cask storage, process engineering, and system design who weremore » independent of the MCSCP, and the team was led by the Director of Operations and Processes from the EM Chief Engineer's Office (EM-3.32). Movement of the Cs/Sr capsules to dry storage, based on information from the conceptual design, involves (1) capsule packaging, (2) capsule transfer, and (3) capsule storage. The project has developed a conceptual process, described in 30059-R-02, "NAC Conceptual Design Report for the Management of the Cesium and Strontium Capsules Project", which identifies the five major activities in the process to complete the transfer from storage pool to pad-mounted cask storage. The process, shown schematically in Figure 1, is comprised of the following process steps: (1) loading capsules into the UCS; (2) UCS processing; (3) UCS insertion into the TSC Basket; (4) cask transport from WESF to CSA and (5) extended storage at the CSA.« less

  17. Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2013-07-01

    Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for themore » selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)« less

  18. CsIX/TRU Grout Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. J. Losinski; C. M. Barnes; B. K. Grover

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that liquid waste now stored at the Idaho Nuclear Technology Engineering Center (INTEC - formerly the Idaho Chemical Processing Plant, ICPP) will be calcined by the end of year 2012. This study investigates an alternative treatment of the liquid waste that removes undissolved solids (UDS) by filtration and removes cesium by ion exchange followed by cement-based grouting of the remaining liquid into 55-gal drums. Operations are assumed to be from January 2008 through December 2012. The grouted waste will be contact-handled and will be shippedmore » to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. The small volume of secondary wastes such as the filtered solids and cesium sorbent (resin) would remain in storage at the Idaho National Engineering and Environmental Laboratory for treatment and disposal under another project, with an option to dispose of the filtered solids as a r emote-handled waste at WIPP.« less

  19. System for decision analysis support on complex waste management issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shropshire, D.E.

    1997-10-01

    A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs,more » or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years.« less

  20. B Plant Complex preclosure work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ADLER, J.G.

    1999-02-02

    This preclosure work plan describes the condition of the dangerous waste treatment storage, and/or disposal (TSD) unit after completion of the B Plant Complex decommissioning Transition Phase preclosure activities. This description includes waste characteristics, waste types, locations, and associated hazards. The goal to be met by the Transition Phase preclosure activities is to place the TSD unit into a safe and environmentally secure condition for the long-term Surveillance and Maintenance (S&M) Phase of the facility decommissioning process. This preclosure work plan has been prepared in accordance with Section 8.0 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement)more » (Ecology et al. 1996). The preclosure work plan is one of three critical Transition Phase documents, the other two being: B Plant End Points Document (WHC-SD-WM-TPP-054) and B Plant S&M plan. These documents are prepared by the U.S. Department of Energy, Richland Operations Office (DOE-RL) and its contractors with the involvement of Washington State Department of Ecology (Ecology). The tanks and vessels addressed by this preclosure work plan are limited to those tanks end vessels included on the B Plant Complex Part A, Form 3, Permit Application (DOE/RL-88-21). The criteria for determining which tanks or vessels are in the Part A, Form 3, are discussed in the following. The closure plan for the TSD unit will not be prepared until the Disposition Phase of the facility decommissioning process is initiated, which follows the long-term S&M Phase. Final closure will occur during the Disposition Phase of the facility decommissioning process. The Waste Encapsulation Storage Facility (WESF) is excluded from the scope of this preclosure work plan.« less

  1. U.S. Department of Energy's initiatives for proliferation prevention program: solidification technologies for radioactive waste treatment in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhitonov, Y.; Kelley, D.

    Large amounts of liquid radioactive waste have existed in the U.S. and Russia since the 1950's as a result of the Cold War. Comprehensive action to treat and dispose of waste products has been lacking due to insufficient funding, ineffective technologies or no proven technologies, low priority by governments among others. Today the U.S. and Russian governments seek new, more reliable methods to treat liquid waste, in particular the legacy waste streams. A primary objective of waste generators and regulators is to find economical and proven technologies that can provide long-term stability for repository storage. In 2001, the V.G. Khlopinmore » Radium Institute (Khlopin), St. Petersburg, Russia, and Pacific Nuclear Solutions (PNS), Indianapolis, Indiana, began extensive research and test programs to determine the validity of polymer technology for the absorption and immobilization of standard and complex waste streams. Over 60 liquid compositions have been tested including extensive irradiation tests to verify polymer stability and possible degradation. With conclusive scientific evidence of the polymer's effectiveness in treating liquid waste, both parties have decided to enter the Russian market and offer the solidification technology to nuclear sites for waste treatment and disposal. In conjunction with these efforts, the U.S. Department of Energy (DOE) will join Khlopin and PNS to explore opportunities for direct application of the polymers at predetermined sites and to conduct research for new product development. Under DOE's 'Initiatives for Proliferation Prevention'(IPP) program, funding will be provided to the Russian participants over a three year period to implement the program plan. This paper will present details of U.S. DOE's IPP program, the project structure and its objectives both short and long-term, training programs for scientists, polymer tests and applications for LLW, ILW and HLW, and new product development initiatives. (authors)« less

  2. German Support Program for Retrieval and Safe Storage of Disused Radioactive Sealed Sources in Ukraine - 13194

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretzsch, Gunter; Salewski, Peter; Sogalla, Martin

    2013-07-01

    The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) on behalf of the Government of the Federal Republic of Germany supports the State Nuclear Regulatory Inspectorate of Ukraine (SNRIU) in enhancement of nuclear safety and radiation protection and strengthening of the physical protection. One of the main objectives of the agreement concluded by these parties in 2008 was the retrieval and safe interim storage of disused orphan high radioactive sealed sources in Ukraine. At present, the Ukrainian National Registry does not account all high active radiation sources but only for about 70 - 80 %. GRSmore » in charge of BMU to execute the program since 2008 concluded subcontracts with the waste management and interim storage facilities RADON at different regions in Ukraine as well with the waste management and interim storage facility IZOTOP at Kiev. Below selected examples of removal of high active Co-60 and Cs-137 sources from irradiation facilities at research institutes are described. By end of 2012 removal and safe interim storage of 12.000 disused radioactive sealed sources with a total activity of more than 5,7.10{sup 14} Bq was achieved within the frame of this program. The German support program will be continued up to the end of 2013 with the aim to remove and safely store almost all disused radioactive sealed sources in Ukraine. (authors)« less

  3. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, G.D.; Beaulieu, D.H.; Wolaver, R.W.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part ofmore » this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.« less

  4. An Overview of Food Loss and Waste: why does it Matter?

    NASA Astrophysics Data System (ADS)

    Ghosh, Purabi R.; Sharma, Shashi B.; Haigh, Yvonne T.; Evers, A. L. Barbara; Ho, Goen

    2015-10-01

    This paper provides an overview of food waste in the context of food security, resources management and environment health. It compares approaches taken by various governments, community groups, civil societies and private sector organisations to reduce food waste in the developed and developing countries. What constitutes ‘food waste’ is not as simple as it may appear due to diverse food waste measurement protocols and different data documentation methods used worldwide. There is a need to improve food waste data collection methods and implementation of effective strategies, policies and actions to reduce food waste. Global initiatives are urgently needed to: enhance awareness of the value of food; encourage countries to develop policies that motivate community and businesses to reduce food waste; encourage and provide assistance to needy countries for improving markets, transport and storage infrastructure to minimise food waste across the value chain; and, develop incentives that encourage businesses to donate food. In some countries, particularly in Europe, initiatives on food waste management have started to gain momentum. Food waste is a global problem and it needs urgent attention and integrated actions of stakeholders across the food value chain to develop global solutions for the present and future generations.

  5. Pacific Northwest Laboratory annual report for 1980 to the DOE Assistant Secretary for Environment. Part 5. Environmental assessment, control, health and safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baalman, R.W.; Hays, I.D.

    1981-02-01

    Pacific Northwest Laboratory's (PNL) 1980 annual report to the DOE Assistant Secretary for Environment describes research in environment, health, and safety conducted during fiscal year 1980. Part 5 includes technology assessments for natural gas, enhanced oil recovery, oil shale, uranium mining, magnetic fusion energy, solar energy, uranium enrichment and industrial energy utilization; regional analysis studies of environmental transport and community impacts; environmental and safety engineering for LNG, oil spills, LPG, shale oil waste waters, geothermal liquid waste disposal, compressed air energy storage, and nuclear/fusion fuel cycles; operational and environmental safety studies of decommissioning, environmental monitoring, personnel dosimetry, and analysis ofmore » criticality safety; health physics studies; and epidemiological studies. Also included are an author index, organization of PNL charts and distribution lists of the annual report, along with lists of presentations and publications. (DLS)« less

  6. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, E.W.; Wu, C.F.; Goff, T.E.

    1993-12-31

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from amore » sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.« less

  7. Estimate of the Potential Amount of Low-Level Waste from the Fukushima Prefecture - 12370

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Carolyn; Olson, Eric A.J.; Elmer, John

    2012-07-01

    The amount of waste generated by the cleanup of the Fukushima Prefecture (Fukushima-ken) following the releases from the Fukushima Daiichi nuclear power plant accident (March 2011) is dependent on many factors, including: - Contamination amounts; - Cleanup levels determined for the radioisotopes contaminating the area; - Future land use expectations and human exposure scenarios; - Groundwater contamination considerations; - Costs and availability of storage areas, and eventually disposal areas for the waste; and - Decontamination and volume reduction techniques and technologies used. For the purposes of estimating these waste volumes, Fukushima-ken is segregated into zones of similar contamination level andmore » expected future use. Techniques for selecting the appropriate cleanup methods for each area are shown in a decision tree format. This approach is broadly applied to the 20 km evacuation zone and the total amounts and types of waste are estimated; waste resulting from cleanup efforts outside of the evacuation zone is not considered. Some of the limits of future use and potential zones where residents must be excluded within the prefecture are also described. The size and design of the proposed intermediate storage facility is also discussed and the current situation, cleanup, waste handling, and waste storage issues in Japan are described. The method for estimating waste amounts outlined above illustrates the large amount of waste that could potentially be generated by remediation of the 20 km evacuation zone (619 km{sup 2} total) if the currently proposed cleanup goals are uniformly applied. The Japanese environment ministry estimated in early October that the 1 mSv/year exposure goal would make the government responsible for decontaminating about 8,000 km{sup 2} within Fukushima-ken and roughly 4,900 km{sup 2} in areas outside the prefecture. The described waste volume estimation method also does not give any consideration to areas with localized hot spots. Land use and area dose rate estimates for the 20 km evacuation zone indicate there are large areas where doses to the public can be mitigated through methods other than removal and disposal of soil and other wastes. Several additional options for waste reduction can also be considered, including: - Recycling/reusing or disposing of as municipal waste material that can be unconditionally cleared; - Establishing additional precautionary (e.g., liners) and monitoring requirements for municipal landfills to dispose of some conditionally-cleared material; and - Using slightly-contaminated material in construction of reclamations, banks and roads. Waste estimates for cleanup will continue to evolve as decontamination plans are drafted and finalized. (authors)« less

  8. Niagara Falls Storage Site environmental report for calendar year 1992, 1397 Pletcher Road, Lewiston, New York. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    This report describes the environmental surveillance program at the Niagara Falls Storage Site (NFSS) and provides the results for 1992. From 1944 to the present, the primary use of NFSS has been storage of radioactive residues produced as a by-product of uranium production. All onsite areas of residual radioactivity above guidelines have been remediated. Materials generated during remediation are stored onsite in the 4-ha (10-acre) waste containment structure (WCS). The WCS is a clay-lined, clay-capped, and grass-covered storage pile. The environmental surveillance program at NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uraniummore » and radium-226 concentrations in surface water, sediments, and groundwater. Several chemical parameters, including seven metals, are also routinely measured in groundwater. This surveillance program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and New York State Department of Environmental Conservation (NYSDEC) standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. Results of environmental monitoring during 1992 indicate that levels of the parameters measured were in compliance with all but one requirement: Concentrations of iron and manganese in groundwater were above NYSDEC groundwater quality standards. However, these elements occur naturally in the soils and groundwater associated with this region. In 1992 there were no environmental occurrences or reportable quantity releases.« less

  9. Nuclear waste`s human dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erikson, K.; Colglazier, E.W.; White, G.F.

    1994-12-31

    The United States has pinned its hopes for a permanent underground repository for its high-level nuclear wastes on Yucca Mountain, Nevada. Nevertheless, the Department of Energy`s (DOE) site research efforts have failed {open_quotes}to adequately consider human behavior and emotions,{close_quotes} write Kai Erikson of Yale University, E. William Colglazier of the National Academy of Sciences, and Gilbert F. White of the University of Colorado. The authors maintain that it is impossible to predict changes in geology, seismology, and hydrology that may affect the Yucca Mountain area over the next 1,000 years. Predicting human behavior in that time frame remains even moremore » daunting, they insist. They admit that {open_quotes}DOE...has been given the impossible assignment to take tens of thousands of metric tons of the most hazardous materials ever created and, in the face of growing opposition, entomb them so that they will do little harm for thousands of years.{close_quotes} The researchers suggest that the government seek a secure, retrievable storage arrangement while it continues its search for safer long-term options.« less

  10. Cementitious waste option scoping study report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored asmore » a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.« less

  11. HLW Melter Control Strategy Without Visual Feedback VSL-12R2500-1 Rev 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A A.; Joseph, Innocent; Matlack, Keith S.

    2012-11-13

    Plans for the treatment of high level waste (HL W) at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) are based upon the inventory of the tank wastes, the anticipated performance of the pretreatment processes, and current understanding of the capability of the borosilicate glass waste form [I]. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat and mass transfer and increase glass melting rates. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth ofmore » ~ 1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HL W waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150°C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage.« less

  12. U.S. Department of Energy Nevada Operations Office Environmental Monitoring Program summary data report, second calendar quarter 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, S.C.; Townsend, Y.E.

    1997-02-01

    The Nevada Test Site (NTS), located in southern Nevada, has been the primary location for testing of nuclear explosives in the continental US. Testing began in 1951 and continued until the moratorium in 1992. Waste storage and disposal facilities for defense radioactive and mixed waste are located in Areas 3 and 5. At the Area 5 Radioactive Waste Management Site (RWMS-5), low-level wastes (LLW) from US Department of Energy (DOE) affiliated onsite and offsite generators are disposed of using standard shallow land disposal techniques. Transuranic wastes are retrievably stored at the RWMS-5 in containers on a surface pad, pending shipmentmore » to the Waste Isolation Pilot Plant facility in New Mexico. Nonradioactive hazardous wastes are accumulated at a special site before shipment to a licensed offsite disposal facility. Non-standard packages of LLW are buried in subsidence craters in the Area 3 RWMS. This report describes these activities on and around the NTS and includes a listing of the results obtained from environmental surveillance activities during the second calendar quarter of 1996.« less

  13. Listed waste determination report. Environmental characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-01

    On September 23, 1988, the US Environmental Protection Agency (EPA) published a notice clarifying interim status requirements for the management of radioactive mixed waste thereby subjecting the Idaho National Engineering Laboratory (INEL) and other applicable Department of Energy (DOE) sites to regulation under the Resource Conservation and Recovery Act (RCRA). Therefore, the DOE was required to submit a Part A Permit application for each treatment, storage, and disposal (TSD) unit within the INEL, defining the waste codes and processes to be regulated under RCRA. The September 1990 revised Part A Permit application, that was approved by the State of Idahomore » identified 101 potential acute and toxic hazardous waste codes (F-, P-, and U- listed wastes according to 40 CFR 261.31 and 40 CFR 261.33) for some TSD units at the Idaho Chemical Processing Plant. Most of these waste were assumed to have been introduced into the High-level Liquid Waste TSD units via laboratory drains connected to the Process Equipment Waste (PEW) evaporator (PEW system). At that time, a detailed and systematic evaluation of hazardous chemical use and disposal practices had not been conducted to determine if F-, P-, or Unlisted waste had been disposed to the PEW system. The purpose of this investigation was to perform a systematic and detailed evaluation of the use and disposal of the 101 F-, P-, and Unlisted chemicals found in the approved September 1990 Part A Permit application. This investigation was aimed at determining which listed wastes, as defined in 40 CFR 261.31 (F-listed) and 261.33 (P & Unlisted) were discharged to the PEW system. Results of this investigation will be used to support revisions to the RCRA Part A Permit application.« less

  14. Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.J. Orchard; L.A. Harvego; T.L. Carlson

    The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation’s expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answersmore » to national infrastructure needs. As a result of the Laboratory’s NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL’s contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL’s TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: 1) required remote-handled TRU packaging configuration(s) vs. current facility capabilities, 2) long-term NE mission activities, 3) WIPP certification requirements, and 4) budget considerations.« less

  15. Conceptual design statement of work for the immobilized low-activity waste interim storage facility project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, T.A., Fluor Daniel Hanford

    1997-02-06

    The Immobilized Low-Activity Waste Interim Storage subproject will provide storage capacity for immobilized low-activity waste product sold to the U.S. Department of Energy by the privatization contractor. This statement of work describes the work scope (encompassing definition of new installations and retrofit modifications to four existing grout vaults), to be performed by the Architect-Engineer, in preparation of a conceptual design for the Immobilized Low-Activity Waste Interim Storage Facility.

  16. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissani, M; Fischer, R; Kidd, S

    2006-04-03

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility,more » waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.« less

  17. Nuclear waste storage container with metal matrix

    DOEpatents

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  18. On-site low level radwaste storage facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauss, C.H.; Gardner, D.A.

    1993-12-31

    This paper will explore several storage and processing technologies that are available for the safe storage of low-level waste, their advantages and their limitations such that potential users may be able to determine which technology may be most appropriate for their particular application. Also, a brief discussion will be included on available types of shipping and disposal containers and waste forms for use in those containers when ready for ultimate disposal. For the purposes of this paper, the waste streams considered will be restricted to nuclear power plant wastes. Wastes that will be discussed are powdered and bead resins formore » cooling and reactor water clean-up, filter cartridges, solidified waste oils, and Dry Active Wastes (DAW), which consist of contaminated clothing, tools, respirator filters, etc. On-site storage methods that will be analyzed include a storage facility constructed of individual temporary shielded waste containers on a hard surface; an on-site, self contained low level radwaste facility for resins and filters; and an on-site storage and volume reduction facility for resins and filters; and an on-site DAW. Simple, warehouse-type buildings and pre-engineered metal buildings will be discussed only to a limited degree since dose rate projections can be high due to their lack of adequate shielding for radiation protection. Waste processing alternatives that will be analyzed for resins include dewatering, solidifying in Portland cement, solidifying in bituminous material, and solidifying in a vinyl ester styrene matrix. The storage methods describes will be analyzed for their ability to shield the populace from the effects of direct transmission and skyshine radiation when storing the above mentioned materials, which have been properly processed for storage and have been placed in suitable storage containers.« less

  19. 40 CFR 273.53 - Storage time limits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Storage time limits. 273.53 Section 273.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.53 Storage time...

  20. 40 CFR 273.53 - Storage time limits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Storage time limits. 273.53 Section 273.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.53 Storage time...

  1. 40 CFR 273.53 - Storage time limits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Storage time limits. 273.53 Section 273.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.53 Storage time...

  2. Fires at storage sites of organic materials, waste fuels and recyclables.

    PubMed

    Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William

    2013-09-01

    During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.

  3. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...

  4. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...

  5. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2003-09-12

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in themore » final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning for cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (10) ongoing characterization of facilities such as the waste tank farm and process cells; (11) monitoring the environment and managing contaminated areas within the Project facility premises; and (12) flushing and rinsing HLW solidification facilities.« less

  6. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    ERIC Educational Resources Information Center

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  7. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLWmore » until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control strategies to a nitrite-based control, where there is no constant depletion mechanism as with hydroxide, should greatly enhance tank lifetime, tank space availability, and reduce downstream reprocessing costs by reducing chemical addition to the tanks.« less

  8. Data on subsurface storage of liquid waste near Pensacola, Florida, 1963-1980

    USGS Publications Warehouse

    Hull, R.W.; Martin, J.B.

    1982-01-01

    Since 1963, when industrial waste was first injected into the subsurface in northwest Florida, considerable data have been collected relating to the geochemistry of subsurface waste storage. This report presents hydrogeologic data on two subsurface waste storage. This report presents hydrogeologic data on two subsurface storage systems near Pensacola, Fla., which inject liquid industrial waste through deep wells into a saline aquifer. Injection sites are described giving a history of well construction, injection, and testing; geologic data from cores and grab samples; hydrographs of injection rates, volume, pressure, and water levels; and chemical and physical data from water-quality samples collected from injection and monitor wells. (USGS)

  9. FY 1987 current fiscal year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This Current Year Work Plan presents a detailed description of the activities to be performed by the Joint Integration Office during FY87. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance, task monitoring, informationmore » gathering and task reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of program status reports for DOE. Program Analysis is performed by the JIO to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. This work plan includes: system analyses, requirements analyses, interim and procedure development, legislative and regulatory analyses, dispatch and traffic analyses, and data bases.« less

  10. Dielectric Properties of Low-Level Liquid Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. E. Lagos; M. A. Ebadian

    1998-10-20

    The purpose of this study was to develop a data collection containing values for the dielectric properties of various low-level liquid waste (LLLW) simulants measured as a function of frequency, temperature, and composition. The investigation was motivated by current interest in the use of microwave processing for the treatment of radioactive waste. A large volume of transuranic liquid and sludge produced by the U.S. Department of Defense (DOD) during the production of nuclear fiel bars is stored at several U.S. Department of Energy (DOE) sites around the United States. Waste storage and disposal space is scarce, expensive, and must bemore » minimized. Thus, several DOE sites are pursuing the use of microwave heating as a means of achieving volume reduction and solidification of low-level liquid wastes. It is important to know which microwave frequencies should be employed tc achieve the most efficient processing at a range of different temperatures. The dielectric properties of the LLLW simulants can be utilized to determine the optimum frequencies for use with a particular LLLW or with other LLLWS of similar composition. Furthermore, nonlinear thermal processes, such as thermal runaway, which occur in the material being treated cannot be modeled without a knowledge of the temperature dependence of the dielectric properties. Often, this data does not exist; however, when it does, only very limited data near room temperature are available. The data collection generated in this study can be used to predict the behavior of a variety of microwave thermal treatment technologies, which have the potential of substantially reducing the volume of the LLLWS that are currently stored at many DOE sites. This information should help the users of the microwave reduction and solidification technology to optimize microwave processes used in the treatment of LLLW. The microwave reduction and solidification technology has clear advantages over other methods of reducing LLLWS. These include the incineration of combustibles, the evaporation of combustibles, the evaporation of liquids, and the compaction of noncombustibles. The handling of radioactive liquid waste is generally carried out within closed systems consisting of highly corrosion-resistant, welded, leak-tight pipes, tanks, and other apparatus. High power microwave processing is a promising technology for reducing risks to the environment and human health, thereby supporting the DOE's decontamination and decommissioning (D&D) objectives.« less

  11. ENRAF Series 854 Advanced Technology Gauge (ATG) Acceptance Test Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUBER, J.H.

    1999-08-17

    This procedure provides acceptance testing for Enraf Series 854 level gauges used to monitor levels in Hanford Waste Storage Tanks. The test will verify that the gauge functions according to the manufacturer's instructions and specifications and is properly setup prior to being delivered to the tank farm area. This ATP does not set up the gauge for any specific tank, but is generalized to permit testing the gauge prior to installation package preparation.

  12. Report on the Status of the SFWST Campaign International Activities in Disposal Research at SNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, Kevin A.

    The following summaries are provided as fulfillment of milestone M4SF-17SN080305022 and represent international coordination activities in disposal research funded by the US DOE Spent Fuel and Waste Storage and Technologies (SFWST) Campaign during Fiscal Year 2017: SFWST funded bi-lateral interactions with Taiwan, OECD-NEA Repository Metadata (RepMet) project, SFWST funded bi-lateral interactions with the Republic of Korea.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, L.D.

    Oak Ridge National Laboratory (ORNL) is a principle Department of Energy (DOE) Research Institution operated by the Union Carbide Corporation - Nuclear Division (UCC-ND) under direction of the DOE Oak Ridge Operations Office (DOE-ORO). The Laboratory was established in east Tennessee, near what is now the city of Oak Ridge, in the mid 1940s as a part of the World War II effort to develop a nuclear weapon. Since its inception, disposal of radioactively contaminated materials, both solid and liquid, has been an integral part of Laboratory operations. The purpose of this document is to provide a detailed description ofmore » the ORNL Solid Waste Storage Areas, to describe the practice and procedure of their operation, and to address the health and safety impacts and concerns of that operation.« less

  14. Targeted Health Assessment for Wastes Contained at the Niagara Falls Storage Site to Guide Planning for Remedial Action Alternatives - 13428

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busse, John; Keil, Karen; Staten, Jane

    2013-07-01

    The U.S. Army Corps of Engineers (USACE) is evaluating potential remedial alternatives at the 191-acre Niagara Falls Storage Site (NFSS) in Lewiston, New York, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) brought radioactive wastes to the site during the 1940's and 1950's, and the U.S. Department of Energy (US DOE) consolidated these wastes into a 10-acre interim waste containment structure (IWCS) in the southwest portion of the site during the 1980's. The USACE is evaluating remedial alternatives for radioactive waste contained within the IWCS at the NFSS undermore » the Feasibility Study phase of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process. A preliminary evaluation of the IWCS has been conducted to assess potential airborne releases associated with uncovered wastes, particularly during waste excavation, as well as direct exposures to uncovered wastes. Key technical issues for this assessment include: (1) limitations in waste characterization data; (2) representative receptors and exposure routes; (3) estimates of contaminant emissions at an early stage of the evaluation process; (4) consideration of candidate meteorological data and air dispersion modeling approaches; and (5) estimates of health effects from potential exposures to both radionuclides and chemicals that account for recent updates of exposure and toxicity factors. Results of this preliminary health risk assessment indicate if the wastes were uncovered and someone stayed at the IWCS for a number of days to weeks, substantial doses and serious health effects could be incurred. Current controls prevent such exposures, and the controls that would be applied to protect onsite workers during remedial action at the IWCS would also effectively protect the public nearby. This evaluation provides framing context for the upcoming development and detailed evaluation of remedial alternatives for the IWCS. (authors)« less

  15. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...

  16. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...

  17. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., storage or disposal of hazardous waste must institute corrective action as necessary to protect human... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...

  18. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...

  19. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... applicable to the storage of solid waste military munitions. (a) Criteria for hazardous waste regulation of...

  20. Subseabed storage of radioactive waste

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The subject of the storage of nuclear wastes products incites emotional responses from the public, and thus the U.S. Subseabed Disposal Program will have to make a good case for waste storage beneath the ocean floor. The facts attendant, however, describe circumstances necessitating cool-headed analysis to achieve a solution to the growing nuclear waste problem. Emotion aside, a good case indeed is being made for safe disposal beneath the ocean floor.The problems of nuclear waste storage are acute. A year ago, U.S. military weapons production had accumulated over seventy-five million gallons of high-level radioactive liquid waste; solid wastes, such as spent nuclear fuel rods from reactors, amounted to more than 12,000 tons. These wastes are corrosive and will release heat for 1000 years or more. The wastes will remain dangerously radioactive for a period of 10,000 years. There are advantages in storing the wastes on land, in special underground repositories, or on the surface. These include the accessibility to monitor the waste and the possibility of taking action should a container rupture occur, and thus the major efforts to determine suitable disposal at this time are focused on land-based storage. New efforts, not to be confused with ocean dumping practices of the past, are demonstrating that waste containers isolated in the clays and sediments of the ocean floor may be superior (Environ. Sci. Tech., 16, 28A-37A 1982).

  1. Radioactive waste storage issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunz, Daniel E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal)more » of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.« less

  2. Effect of storage conditions on the calorific value of municipal solid waste.

    PubMed

    Nzioka, Antony Mutua; Hwang, Hyeon-Uk; Kim, Myung-Gyun; Yan, Cao Zheng; Lee, Chang-Soo; Kim, Young-Ju

    2017-08-01

    Storage conditions are considered to be an important factor as far as waste material characteristics are concerned. This experimental investigation was conducted using municipal solid waste (MSW) with a high moisture content and varying composition of organic waste. The objective of this study was to understand the effect of storage conditions and temperature on the moisture content and calorific value of the waste. Samples were subjected to two different storage conditions and investigated at specified temperatures. The composition of sample materials investigated was varied for each storage condition and temperature respectively. Gross calorific value was determined experimentally while net calorific value was calculated using empirical formulas proposed by other researchers. Results showed minimal changes in moisture content as well as in gross and net calorific values when the samples were subjected to sealed storage conditions. Moisture content reduced due to the ventilation process and the rate of moisture removal increased with a rise in storage temperature. As expected, rate of moisture removal had a positive effect on gross and net calorific values. Net calorific values also increased at varying rates with a simultaneous decrease in moisture content. Experimental investigation showed the effectiveness of ventilation in improving the combustion characteristics of the waste.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Karen; McCormick, Matt

    Hanford's DOE offices are responsible for one of the largest nuclear cleanup efforts in the world, cleaning up the legacy of nearly five decades of nuclear weapons production. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford cleanup entails remediation of hundreds of large complex hazardous waste sites; disposition of nine production reactors and the preservation of one as a National Historic Landmark; demolition of hundreds of contaminated facilities including five enormous process canyons; remediation of billions of gallons of contaminated groundwater; disposition of millions of tons of low-level, mixed low-level,more » and transuranic waste; disposition of significant quantities of special nuclear material; storage and ultimate disposition of irradiated nuclear fuel; remediation of contamination deep in the soil that could impact groundwater; decontamination and decommissioning of hundreds of buildings and structures; and treatment of 56 million gallons of radioactive waste in 177 large underground tanks through the construction of a first-of-its-kind Waste Treatment Plant. Cleanup of the Hanford Site is a complex and challenging undertaking. The DOE Richland Operations Office has a vision and a strategy for completing Hanford's cleanup including the transition to post-cleanup activities. Information on the strategy is outlined in the Hanford Site Completion Framework. The framework describes three major components of cleanup - River Corridor, Central Plateau, and Tank Waste. It provides the context for individual cleanup actions by describing the key challenges and approaches for the decisions needed to complete cleanup. The U.S. Department of Energy (DOE), as regulated by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology), is implementing a strategy to achieve final cleanup decisions for the River Corridor portion of the Hanford Site. The DOE Richland Operations Office (RL) and DOE Office of River Protection (ORP) have prepared this document to describe the strategy and to begin developing the approach for making cleanup decisions for the remainder of the Hanford Site. DOE's intent is that the Completion Framework document will facilitate dialogue among the Tri-Parties and with Hanford's diverse interest groups, including Tribal Nations, State of Oregon, Hanford Advisory Board, Natural Resource Trustees, and the public. Future cleanup decisions will be enhanced by an improved understanding of the challenges facing cleanup and a common understanding of the goals and approaches for cleanup completion. The overarching goals for cleanup are sevenfold. - Goal 1: Protect the Columbia River. - Goal 2: Restore groundwater to its beneficial use to protect human health, the environment, and the Columbia River. - Goal 3: Clean up River Corridor waste sites and facilities to: Protect groundwater and the Columbia River. Shrink the active cleanup footprint to the Central Plateau, and support anticipated future uses of the land. - Goal 4: Clean up Central Plateau waste sites, tank farms, and facilities to: Protect groundwater. Minimize the footprint of areas requiring long-term waste management activities. Support anticipated future uses of the land. - Goal 5: Safely manage and transfer legacy materials scheduled for off-site disposition including special nuclear material (including plutonium), spent nuclear fuel, transuranic waste, and immobilized high-level waste. - Goal 6: Consolidate waste treatment, storage, and disposal operations on the Central Plateau. - Goal 7: Develop and implement institutional controls and long-term stewardship activities that protect human health, the environment, and Hanford's unique cultural, historical and ecological resources after cleanup activities are completed. These goals embody more than 20 years of dialogue among the Tri-Party Agencies, Tribal Nations, State of Oregon, stakeholders, and the public. They carry forward key values captured in forums such as the Hanford Future Site Uses Working Group, Tank Waste Task Force, Hanford Summits, and Hanford Advisory Board Exposure Scenario Workshops, as well as more than 200 advice letters issued by the Hanford Advisory Board (http://www.hanford.gov/page.cfm/hab). These goals help guide all aspects of Hanford Site cleanup. Cleanup activities at various areas of the site support the achievement of one or more of these goals. These goals help set priorities to apply resources and sequence cleanup efforts for the greatest benefit. These goals reflect DOE's recognition that the Columbia River is a critical resource for the people and ecology of the Pacific Northwest. The 50-mile stretch of the river known as the Hanford Reach is home to the last free-flowing section of the river in the U.S. As one of the largest rivers in North America, its waters support a multitude of uses that are vital to the economic and environmental well being of the region and it is particularly important in sustaining the culture of Native Americans. Cleanup actions must protect this river. (authors)« less

  4. Supplement Analysis for the Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory -- Recovery and Storage of Strontium-90 Fueled Radioisotope Thermal Electric Generators at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2004-01-22

    This Supplement Analysis (SA) has been prepared to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) (DOE/EIS-0238) adequately addresses the environmental effects of recovery and storage for disposal of six strontium-90 (Sr-90) fueled radioisotope thermal electric generators (RTGs) at the Los Alamos National Laboratory (LANL) Technical Area (TA)-54, Area G, or if the SWEIS needs to be supplemented. DOE's National Nuclear Security Administration (NNSA) proposed to recover and store six Sr-90 RTGs from the commercial sector as part of its Offsite-Source Recovery Project (OSRP). The OSRP focuses on the proactive recovery andmore » storage of unwanted radioactive sealed sources exceeding the US Nuclear Regulatory Commission (NRC) limits for Class C low-level waste (also known as Greater than Class C waste, or GTCC). In response to the events of September 11, 2001, NRC conducted a risk-based evaluation of potential vulnerabilities to terrorist threats involving NRC-licensed nuclear facilities and materials. NRC's evaluation concluded that possession of unwanted radioactive sealed sources with no disposal outlet presents a potential vulnerability (NRC 2002). In a November 25, 2003 letter to the manager of the NNSA's Los Alamos Site Office, the NRC Office of Nuclear Security and Incident Response identified recovery of several Sr-90 RTGs as the highest priority and requested that DOE take whatever actions necessary to recovery these sources as soon as possible. This SA specifically compares key impact assessment parameters of this proposal to the offsite source recovery program evaluated in the SWEIS and a subsequent SA that evaluated a change to the approach of a portion of the recovery program. It also provides an explanation of any differences between the Proposed Action and activities described in the previous SWEIS and SA analyses.« less

  5. Radionuclides in shallow groundwater at Solid Waste Storage Area 5 North, Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashwood, T.L.; Marsh, J.D. Jr.

    1994-04-01

    This report presents a compilation of groundwater monitoring data from Solid Waste Storage Area (SWSA) 5 North at Oak Ridge National Laboratory (ORNL) between November 1989 and September 1993. Monitoring data were collected as part of the Active Sites Environmental Monitoring Program that was implemented in 1989 in response to DOE Order 5820.2A. SWSA 5 North was established for the retrievable storage of transuranic (TRU) wastes in 1970. Four types of storage have been used within SWSA 5 North: bunkers, vaults, wells, and trenches. The fenced portion of SWSA 5 North covers about 3.7 ha (9 acres) in the Whitemore » Oak Creek watershed south of ORNL. The area is bounded by White Oak Creek and two ephemeral tributaries of White Oak Creek. Since 1989, groundwater has been monitored in wells around SWSA 5 North. During that time, elevated gross alpha contamination (reaching as high as 210 Bq/L) has consistently been detected in well 516. This well is adjacent to burial trenches in the southwest corner of the area. Water level measurements in wells 516 and 518 suggest that water periodically inundates the bottom of some of those trenches. Virtually all of the gross alpha contamination is generated by Curium 244 and Americium 241. A special geochemical investigation of well 516 suggests that nearly all of the Curium 44 and Americium 241 is dissolved or associated with dissolved organic matter. These are being transported at the rate of about 2 m/year from the burial trenches, through well 516, to White Oak Creek, where Curium 244 has been detected in a few bank seeps. Concentrations at these seeps are near detection levels (<1 Bq/L).« less

  6. Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, Robert O.; Aulich, Ted R.

    1997-12-31

    Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less

  7. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  8. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analysesmore » and forms, inspection logs, equipment identification, etc.« less

  9. Monitored retrievable storage submission to Congress: Volume 2, Environmental assessment for a monitored retrievable storage facility. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1986-02-01

    This Environmental Assessment (EA) supports the DOE proposal to Congress to construct and operate a facility for monitored retrievable storage (MRS) of spent fuel at a site on the Clinch River in the Roane County portion of Oak Ridge, Tennessee. The first part of this document is an assessment of the value of, need for, and feasibility of an MRS facility as an integral component of the waste management system. The second part is an assessment and comparison of the potential environmental impacts projected for each of six site-design combinations. The MRS facility would be centrally located with respect tomore » existing reactors, and would receive and canister spent fuel in preparation for shipment to and disposal in a geologic repository. 207 refs., 57 figs., 132 tabs.« less

  10. 10 CFR 72.8 - Denial of licensing by Agreement States.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...

  11. 10 CFR 72.8 - Denial of licensing by Agreement States.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...

  12. REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Lee Poe, Jr

    1998-10-01

    In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are themore » same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR analysis. It is divided into Part 1 that defines time-dependent releases from each regional site, Part 2 that defines transport conditions through the groundwater, and Part 3 that defines transport through surface water and populations using the surface waters for drinking.« less

  13. [Microbiological Aspects of Radioactive Waste Storage].

    PubMed

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).

  14. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Wojnar, F.; Lunberg, W. L.

    1980-03-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  15. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Technical Reports Server (NTRS)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacRae, W.T.

    The Donald C. Cook nuclear plant is located in Bridgman, Michigan. As such, no low-level radioactive waste from the facility has been sent to burial since November 1990. The only option is storage. The plant is well prepared for storage. A new facility was built, so the plant now has >2265 M3 (80 000 ft 3 ) of storage capacity. There are a number of issues that have had to be addressed during the period of storage. These items include storage capacity and waste generation rates, the waste form and the packages used, and the regulatory issues.

  17. Reengineering of waste management at the Oak Ridge National Laboratory. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myrick, T.E.

    1997-08-01

    A reengineering evaluation of the waste management program at the Oak Ridge National Laboratory (ORNL) was conducted during the months of February through July 1997. The goal of the reengineering was to identify ways in which the waste management process could be streamlined and improved to reduce costs while maintaining full compliance and customer satisfaction. A Core Team conducted preliminary evaluations and determined that eight particular aspects of the ORNL waste management program warranted focused investigations during the reengineering. The eight areas included Pollution Prevention, Waste Characterization, Waste Certification/Verification, Hazardous/Mixed Waste Stream, Generator/WM Teaming, Reporting/Records, Disposal End Points, and On-Sitemore » Treatment/Storage. The Core Team commissioned and assembled Process Teams to conduct in-depth evaluations of each of these eight areas. The Core Team then evaluated the Process Team results and consolidated the 80 process-specific recommendations into 15 overall recommendations. Benchmarking of a commercial nuclear facility, a commercial research facility, and a DOE research facility was conducted to both validate the efficacy of these findings and seek additional ideas for improvement. The outcome of this evaluation is represented by the 15 final recommendations that are described in this report.« less

  18. Data sharing report characterization of the surveillance and maintenance project miscellaneous process inventory waste items Oak Ridge National Laboratory, Oak Ridge, TN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Phyllis C.

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, to provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a sampling and analysis campaign to target certain items associated with URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in themore » Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing for final disposal. This waste was generated during processing, surveillance, and maintenance activities associated with the facilities identified in the process knowledge (PK) provided in Appendix A. A list of items for sampling and analysis were generated from a subset of materials identified in the WHP populations (POPs) 4, 5, 6, 7, and 8, plus a small number of items not explicitly addressed by the WHP. Specifically, UCOR S&M project personnel identified 62 miscellaneous waste items that would require some level of evaluation to identify the appropriate pathway for disposal. These items are highly diverse, relative to origin; composition; physical description; contamination level; data requirements; and the presumed treatment, storage, and disposal facility (TSDF). Because of this diversity, ORAU developed a structured approach to address item-specific data requirements necessary for acceptance in a presumed TSDF that includes the Environmental Management Waste Management Facility (EMWMF)—using the approved Waste Lot (WL) 108.1 profile—the Y-12 Sanitary Landfill (SLF) if appropriate; EnergySolutions Clive; and the Nevada National Security Site (NNSS) (ORAU 2013b). Finally, the evaluation of these wastes was more suited to a judgmental sampling approach rather than a statistical design, meaning data were collected for each individual item, thereby providing information for item-byitem disposition decisions. ORAU prepared a sampling and analysis plan (SAP) that outlined data collection strategies, methodologies, and analytical guidelines and requirements necessary for characterizing targeted items (ORAU 2013b). The SAP described an approach to collect samples that allowed evaluation as to whether or not the waste would be eligible for disposal at the EMWMF. If the waste was determined not to be eligible for EMWMF disposal, then there would be adequate information collected that would allow the waste to be profiled for one of the alternate TSDFs listed above.« less

  19. SRS stainless steel beneficial reuse program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other typesmore » of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.« less

  20. Waste canister for storage of nuclear wastes

    DOEpatents

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  1. Environmental cleanup: The challenge at the Hanford Site, Washington, USA

    NASA Astrophysics Data System (ADS)

    Gray, Robert H.; Becker, C. Dale

    1993-07-01

    Numerous challenges face those involved with developing a coordinated and consistent approach to cleaning up the US Department of Energy’s (DOE) Hanford Site in southeastern Washington. These challenges are much greater than those encountered when the site was selected and the world’s first nuclear complex was developed almost 50 years ago. This article reviews Hanford’s history, operations, waste storage/disposal activities, environmental monitoring, and today’s approach to characterize and clean up Hanford under a Federal Facility Agreement and Consent Order, signed by DOE, the Environmental Protection Agency, and the Washington Sate Department of Ecology. Although cleanup of defense-related waste at Hanford holds many positive benefits, negative features include high costs to the US taxpayer, numerous uncertainties concerning the technologies to be employed and the risks involved, and the high probability that special interest groups and activists at large will never be completely satisfied. Issues concerning future use of the site, whether to protect and preserve its natural features or open it to public exploitation, remain to be resolved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmanlioglu, Ahmet Erdal

    Available in abstract form only. Full text of publication follows: Naturally occurring radioactive material (NORM) in concentrated forms arises both in industry and in nature where natural radioisotopes accumulate at particular sites. Technically enhanced naturally occurring radioactive materials (TE-NORM) often occurs in an acidic environment where precipitates containing radionuclides plate out onto pipe walls, filters, tank linings, etc. Because of the radionuclides are selectively deposited at these sites, radioactivity concentration is extremely higher than the natural concentration. This paper presents characterization and related considerations of TE-NORM wastes in Turkey. Generally, accumulation conditions tend to favour the build-up of radium. Asmore » radium is highly radio-toxic, handling, treatment, storage and disposal of such material requires careful management. Turkey has the only low level waste processing and storage facility (WPSF) in Istanbul. This facility has interim storage buildings and storage area for storage of packaged radioactive waste which are containing artificial radioisotopes, but there is an increasing demand for the storage to accept bulk concentrated TE-NORM wastes from iron-steel and related industries. Most of these wastes generated from scrap metal piles which are imported from other countries. These wastes generally contain radium. (authors)« less

  3. Safety analysis report for the Waste Storage Facility. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  4. 78 FR 66858 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ...-2012-0246] RIN 3150-AJ20 Waste Confidence--Continued Storage of Spent Nuclear Fuel AGENCY: Nuclear... its generic determination on the environmental impacts of the continued storage of spent nuclear fuel... revising the generic determination of the environmental impacts of the continued storage of spent nuclear...

  5. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, K.R.; Mayes, E.L.

    1994-07-29

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. Thismore » work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).« less

  6. Uncertainty analysis for low-level radioactive waste disposal performance assessment at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.W.; Yambert, M.W.; Kocher, D.C.

    1994-12-31

    A performance assessment of the operating Solid Waste Storage Area 6 (SWSA 6) facility for the disposal of low-level radioactive waste at the Oak Ridge National Laboratory has been prepared to provide the technical basis for demonstrating compliance with the performance objectives of DOE Order 5820.2A, Chapter 111.2 An analysis of the uncertainty incorporated into the assessment was performed which addressed the quantitative uncertainty in the data used by the models, the subjective uncertainty associated with the models used for assessing performance of the disposal facility and site, and the uncertainty in the models used for estimating dose and humanmore » exposure. The results of the uncertainty analysis were used to interpret results and to formulate conclusions about the performance assessment. This paper discusses the approach taken in analyzing the uncertainty in the performance assessment and the role of uncertainty in performance assessment.« less

  7. Innovative Soft-Sided Waste Packaging System Implementation at a Small Department of Energy Environmental Restoration/Waste Management (ER/WM) Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, J.

    2002-02-28

    Weiss Associates (WA) performs a broad range of environmental restoration/waste management (ER/WM) activities for the U.S. Department of Energy (DOE) at the former Laboratory for Energy-Related Health Research (LEHR), University of California, Davis (UC Davis). Over the last three years, the LEHR ER/WM program transitioned from a baseline packaging system of steel, 2.7 cubic meter (3.5-cubic yard) B-25 boxes to a 7.0 cubic meter (9.1-cubic yard) soft-sided container (Lift Liner) system. The transition increased efficiencies in processing, packaging, and storage, and when combined with decreased procurement costs, achieved a $402,000 cost savings (Table I). Additional disposal costs between $128,600 andmore » $182,600 were avoided by minimizing void space. Future cost savings by the end of fiscal year 2003 are projected between $250,640 and $1,003,360.« less

  8. Hazmat storage requires a zero-risk attitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roer, M.

    It does not matter whether a company accumulates, transports, treats, stores or disposes hazardous chemicals--it is held responsible by the Environmental Protection Agency for environmental damage caused by leaks and spills. As a result, facilities must take sufficient precautions to minimize damage and avoid liability under the federal Comprehensive Environmental Response, Compensation and Liability Act, applicable state statute, Occupational Safety and Health Administration regulations, and Department of Transportation (DOT) requirements. A facility may accumulate hazardous waste onsite--without a permit or having interim status--for 90 days or less, or up to 120 days with an extension. However, certain conditions must bemore » met. Companies can determine their specific storage requirements in accordance with federal regulations and local requirements. To help these companies, various laboratories have developed procedures for examining, testing, listing and labeling hazardous materials storage lockers. A pre-examination service and accompanying approval label should provide generators and authorities with an increased level of confidence when selecting storage containment systems.« less

  9. FY 1986 current fiscal year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office/RI during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance development, taskmore » monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. System models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.« less

  10. Yucca Mountain Site Characterization Project bibliography, 1992--1994. Supplement 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are includedmore » in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE).« less

  11. Anthropogenic water bodies as drought refuge for aquatic macroinvertebrates and macrophytes.

    PubMed

    Dodemaide, David T; Matthews, Ty G; Iervasi, Dion; Lester, Rebecca E

    2018-03-01

    Ecological research associated with the importance of refuges has tended to focus on natural rather than anthropogenic water bodies. The frequency of disturbances, including drought events, is predicted to increase in many regions worldwide due to human-induced climate change. More frequent disturbance will affect freshwater ecosystems by altering hydrologic regimes, water chemistry, available habitat and assemblage structure. Under this scenario, many aquatic biota are likely to rely on permanent water bodies as refuge, including anthropogenic water bodies. Here, macroinvertebrate and macrophyte assemblages from waste-water treatment and raw-water storages (i.e. untreated potable water) were compared with nearby natural water bodies during autumn and winter 2013. We expected macroinvertebrate and macrophyte assemblages in raw-water storages to be representative of natural water bodies, while waste-water treatment storages would not, due to degraded water quality. However, water quality in natural water bodies differed from raw-water storages but was similar to waste-water treatment storages. Macroinvertebrate patterns matched those of water quality, with no differences occurring between natural water bodies and waste-water treatment storages, but assemblages in raw-water storages differed from the other two water bodies. Unexpectedly, differences associated with raw-water storages were attributable to low abundances of several taxa. Macrophyte assemblages in raw-water storages were representative of natural water bodies, but were less diverse and abundant in, or absent from, waste-water treatment storages. No clear correlations existed between any habitat variables and macroinvertebrate assemblages but a significant correlation between macrophyte assemblages and habitat characteristics existed. Thus, there were similarities in both water quality and macroinvertebrate assemblages between natural water bodies and waste-water treatment storages, and similarities in macrophyte assemblages between raw-water storages and natural water bodies. These similarities illustrate that anthropogenic water storages support representative populations of some aquatic biota across the landscape, and thus, may provide important refuge following disturbance where dispersal capabilities allow. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Groundwork for Universal Canister System Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Laura L.; Gross, Mike; Prouty, Jeralyn L.

    2015-09-01

    The mission of the United States Department of Energy's Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and go vernment - sponsored nuclear energy re search. S ome of the waste s that that must be managed have be en identified as good candidates for disposal in a deep borehole in crystalline rock (SNL 2014 a). In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister - based system that can be used formore » handling these wastes during the disposition process (i.e., storage, transfers, transportation, and disposal) could facilitate the eventual disposal of these wastes. This report provides information for a program plan for developing specifications regarding a canister - based system that facilitates small waste form packaging and disposal and that is integrated with the overall efforts of the DOE's Office of Nuclear Energy Used Fuel Dis position Camp aign's Deep Borehole Field Test . Groundwork for Universal Ca nister System Development September 2015 ii W astes to be considered as candidates for the universal canister system include capsules containing cesium and strontium currently stored in pools at the Hanford Site, cesium to be processed using elutable or nonelutable resins at the Hanford Site, and calcine waste from Idaho National Laboratory. The initial emphasis will be on disposal of the cesium and strontium capsules in a deep borehole that has been drilled into crystalline rock. Specifications for a universal canister system are derived from operational, performance, and regulatory requirements for storage, transfers, transportation, and disposal of radioactive waste. Agreements between the Department of Energy and the States of Washington and Idaho, as well as the Deep Borehole Field Test plan provide schedule requirements for development of the universal canister system . Future work includes collaboration with the Hanford Site to move the cesium and strontium capsules into dry storage, collaboration with the Deep Borehole Field Tes t to develop surface handling and emplacement techniques and to develop the waste package design requirements, developing universal canister system design options and concepts of operations, and developing system analysis tools. Areas in which f urther research and development are needed include material properties and structural integrity, in - package sorbents and fillers, waste form tolerance to heat and postweld stress relief, waste package impact limiters, sensors, cesium mobility under downhol e conditions, and the impact of high pressure and high temperature environment on seals design.« less

  13. Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence: Supplement LLNL Subcontract #B568621 Lightning Protection at the Yucca Mountain Waste Storage Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uman, M A

    2008-10-09

    The University of Florida has surveyed all relevant publications reporting lightning damage to metals, metals which could be used as components of storage containers for nuclear waste materials. We show that even the most severe lightning could not penetrate the stainless steel thicknesses proposed for nuclear waste storage casks.

  14. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  15. 40 CFR 63.748 - Standards: Handling and storage of waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  16. 40 CFR 63.748 - Standards: Handling and storage of waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  17. 40 CFR 63.748 - Standards: Handling and storage of waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  18. High Efficiency and Low Cost Thermal Energy Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sienicki, James J.; Lv, Qiuping; Moisseytsev, Anton

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Comparedmore » to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.« less

  19. Dry transfer system for spent fuel: Project report, A system designed to achieve the dry transfer of bare spent fuel between two casks. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, D.M.; Guerra, G.; Neider, T.

    1995-12-01

    This report describes the system developed by EPRI/DOE for the dry transfer of spent fuel assemblies outside the reactor spent fuel pool. The system is designed to allow spent fuel assemblies to be removed from a spent fuel pool in a small cask, transported to the transfer facility, and transferred to a larger cask, either for off-site transportation or on-site storage. With design modifications, this design is capable of transferring single spent fuel assemblies from dry storage casks to transportation casks or visa versa. One incentive for the development of this design is that utilities with limited lifting capacity ormore » other physical or regulatory constraints are limited in their ability to utilize the current, more efficient transportation and storage cask designs. In addition, DOE, in planning to develop and implement the multi-purpose canister (MPC) system for the Civilian Radioactive Waste Management System, included the concept of an on-site dry transfer system to support the implementation of the MPC system at reactors with limitations that preclude the handling of the MPC system transfer casks. This Dry Transfer System can also be used at reactors wi decommissioned spent fuel pools and fuel in dry storage in non-MPC systems to transfer fuel into transportation casks. It can also be used at off-reactor site interim storage facilities for the same purpose.« less

  20. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oilymore » wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.« less

  1. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...

  2. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...

  3. Analysis of Transportation Options for Commercial Spent Fuel in the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena; Busch, Ingrid Karin

    The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S.more » Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF)...« less

  4. 1998 report on Hanford Site land disposal restrictions for mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, D.G.

    1998-04-10

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of bothmore » the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities stored, generation rates, location and method of storage, an assessment of storage-unit compliance status, storage capacity, and the bases and assumptions used in making the estimates.« less

  5. Solid waste containing persistent organic pollutants in Serbia: From precautionary measures to the final treatment (case study).

    PubMed

    Stevanovic-Carapina, Hristina; Milic, Jelena; Curcic, Marijana; Randjelovic, Jasminka; Krinulovic, Katarina; Jovovic, Aleksandar; Brnjas, Zvonko

    2016-07-01

    Sustainable solid waste management needs more dedicated attention in respect of environmental and human health protection. Solid waste containing persistent organic pollutants is of special concern, since persistent organic pollutants are persistent, toxic and of high risk to human health and the environment. The objective of this investigation was to identify critical points in the Serbian system of solid waste and persistent organic pollutants management, to assure the life cycle management of persistent organic pollutants and products containing these chemicals, including prevention and final destruction. Data were collected from the Serbian competent authorities, and led us to identify preventive actions for solid waste management that should reduce or minimise release of persistent organic pollutants into the environment, and to propose actions necessary for persistent organic pollutants solid waste. The adverse impact of persistent organic pollutants is multidimensional. Owing to the lack of treatment or disposal plants for hazardous waste in Serbia, the only option at the moment to manage persistent organic pollutants waste is to keep it in temporary storage and when conditions are created (primarily financial), such waste should be exported for destruction in hazardous waste incinerators. Meanwhile, it needs to be assured that any persistent organic pollutants management activity does not negatively impact recycling flows or disturb progress towards a more circular economy in Serbia. © The Author(s) 2016.

  6. Establishing a store baseline during interim storage of waste packages and a review of potential technologies for base-lining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McTeer, Jennifer; Morris, Jenny; Wickham, Stephen

    Interim storage is an essential component of the waste management lifecycle, providing a safe, secure environment for waste packages awaiting final disposal. In order to be able to monitor and detect change or degradation of the waste packages, storage building or equipment, it is necessary to know the original condition of these components (the 'waste storage system'). This paper presents an approach to establishing the baseline for a waste-storage system, and provides guidance on the selection and implementation of potential base-lining technologies. The approach is made up of two sections; assessment of base-lining needs and definition of base-lining approach. Duringmore » the assessment of base-lining needs a review of available monitoring data and store/package records should be undertaken (if the store is operational). Evolutionary processes (affecting safety functions), and their corresponding indicators, that can be measured to provide a baseline for the waste-storage system should then be identified in order for the most suitable indicators to be selected for base-lining. In defining the approach, identification of opportunities to collect data and constraints is undertaken before selecting the techniques for base-lining and developing a base-lining plan. Base-lining data may be used to establish that the state of the packages is consistent with the waste acceptance criteria for the storage facility and to support the interpretation of monitoring and inspection data collected during store operations. Opportunities and constraints are identified for different store and package types. Technologies that could potentially be used to measure baseline indicators are also reviewed. (authors)« less

  7. Audits of hazardous waste TSDFs let generators sleep easy. [Hazardous waste treatment, storage and disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, F.H.

    1990-02-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them.

  8. Method for utilizing decay heat from radioactive nuclear wastes

    DOEpatents

    Busey, H.M.

    1974-10-14

    Management of radioactive heat-producing waste material while safely utilizing the heat thereof is accomplished by encapsulating the wastes after a cooling period, transporting the capsules to a facility including a plurality of vertically disposed storage tubes, lowering the capsules as they arrive at the facility into the storage tubes, cooling the storage tubes by circulating a gas thereover, employing the so heated gas to obtain an economically beneficial result, and continually adding waste capsules to the facility as they arrive thereat over a substantial period of time.

  9. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staiger, Merle Daniel; M. C. Swenson

    2005-01-01

    This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less

  10. DOE Waste Treatability Group Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less

  11. Industrial waste materials and by-products as thermal energy storage (TES) materials: A review

    NASA Astrophysics Data System (ADS)

    Gutierrez, Andrea; Miró, Laia; Gil, Antoni; Rodríguez-Aseguinolaza, Javier; Barreneche, Camila; Calvet, Nicolas; Py, Xavier; Fernández, A. Inés; Grágeda, Mario; Ushak, Svetlana; Cabeza, Luisa F.

    2016-05-01

    A wide variety of potential materials for thermal energy storage (TES) have been identify depending on the implemented TES method, Sensible, latent or thermochemical. In order to improve the efficiency of TES systems more alternatives are continuously being sought. In this regard, this paper presents the review of low cost heat storage materials focused mainly in two objectives: on the one hand, the implementation of improved heat storage devices based on new appropriate materials and, on the other hand, the valorisation of waste industrial materials will have strong environmental, economic and societal benefits such as reducing the landfilled waste amounts, reducing the greenhouse emissions and others. Different industrial and municipal waste materials and by products have been considered as potential TES materials and have been characterized as such. Asbestos containing wastes, fly ashes, by-products from the salt industry and from the metal industry, wastes from recycling steel process and from copper refining process and dross from the aluminium industry, and municipal wastes (glass and nylon) have been considered. This work shows a great revalorization of wastes and by-product opportunity as TES materials, although more studies are needed to achieve industrial deployment of the idea.

  12. Method of preparing nuclear wastes for tansportation and interim storage

    DOEpatents

    Bandyopadhyay, Gautam; Galvin, Thomas M.

    1984-01-01

    Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

  13. Air modelling as an alternative to sampling for low-level radioactive airborne releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgenstern, M.Y.; Hueske, K.

    1995-05-01

    This paper describes our efforts to assess the effect of airborne releases at one DOE laboratory using air modelling based on historical data. Among the facilities affected by these developments is Los Alamos National Laboratory (LANL) in New Mexico. RCRA, as amended by the Hazardous and Solid Waste Amendments (HSWA) in 1984, requires all facilities which involve the treatment, storage, and disposal of hazardous waste obtain a RCRA/HSWA waste facility permit. LANL complied with CEARP by initiating a process of identifying potential release sites associated with LANL operations prior to filing a RCRA/HSWA permit application. In the process of preparingmore » the RCRA/HSWA waste facility permit application to the U.S. Environmental Protection Agency (EPA), a total of 603 Solid Waste Management Units (SWMUs) were identified as part of the requirements of the HSWA Module VIH permit requirements. The HSWA Module VIII permit requires LANL to determine whether there have been any releases of hazardous waste or hazardous constituents from SWMUs at the facility dating from the 1940`s by performing a RCRA Facility Investigation to address known or suspected releases from specified SWMUs to affected media (i.e. soil, groundwater, surface water, and air). Among the most troublesome of the potential releases sites are those associated with airborne radioactive releases. In order to assess health risks associated with radioactive contaminants in a manner consistent with exposure standards currently in place, the DOE and LANL have established Screening Action Levels (SALs) for radioactive soil contamination. The SALs for each radionuclide in soil are derived from calculations based on a residential scenario in which individuals are exposed to contaminated soil via inhalation and ingestion as well as external exposure to gamma emitters in the soil. The applicable SALs are shown.« less

  14. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.

    2018-04-01

    Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple mockups of the DSTs being used to develop the sensor system.

  15. 40 CFR 270.1 - Purpose and scope of these regulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...

  16. 40 CFR 270.1 - Purpose and scope of these regulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...

  17. 40 CFR 270.1 - Purpose and scope of these regulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...

  18. 40 CFR 270.1 - Purpose and scope of these regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...

  19. 78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... radiological impacts of spent nuclear fuel and high-level waste disposal. DATES: Submit comments on the... determination. The ``Offsite radiological impacts of spent nuclear fuel and high-level waste disposal'' issue.... Geologic Repository--Technical Feasibility and Availability C3. Storage of Spent Nuclear Fuel C3.a...

  20. Vascular plants of waste storage sites in the 200 areas of the Hanford reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, K.R.; Rickard, W.H.

    1973-12-01

    A brief accounting of terrestrial, riparian and semi-aquatic plants known to be associated with radioactive waste storage sites in the 200 Areas of the Hanford Reservation is given. In most cases the species are characteristic of those which generally inhabit the reservation, but some plants are restricted to specialized habitats provided by particular waste storage sites. It is impractical to list all species growing at each waste storage site because of seasonal variation and changes brought about by environmental management practices. An alpbabetical listing has been prepared with an example of where each species is known to occur. The listmore » will be updated as needed and expanded to include other waste storage areas. Plant specimens were collected during spring and fall when flowering material was available. Herbarium mounts were prepared of many specimens and have been retained as part of the Hanford Reservation herbarium collection. Identification to species level was made whenever possible. Color photographs of the specimen mounts are used as training aids and demonstration material by ARHCO Radiation Monitoring personnel. (auth)« less

  1. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpackmore » canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel {open_quotes}scrap{close_quotes} metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques.« less

  2. Legislative aspects of hazardous waste management.

    PubMed Central

    Friedman, M

    1983-01-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  3. Energy content of municipal solid waste bales.

    PubMed

    Ozbay, Ismail; Durmusoglu, Ertan

    2013-07-01

    Baling technology is a preferred method for temporary storage of municipal solid waste (MSW) prior to final disposal. If incineration is intended for final disposal of the bales, the energy content of the baled MSW gains importance. In this study, nine cylindrical bales containing a mix of different waste materials were constructed and several parameters, including total carbon (TC), total organic carbon (TOC), total Kjeldahl nitrogen, moisture content, loss on ignition, gross calorific value and net calorific value (NCV) were determined before the baling and at the end of 10 months of storage. In addition, the relationships between the waste materials and the energy contents of the bales were investigated by the bivariate correlation analyses. At the end, linear regression models were developed in order to forecast the decrease of energy content during storage. While the NCVs of the waste materials before the baling ranged between 6.2 and 23.7 MJ kg(-1) dry basis, they ranged from 1.0 to 16.4 MJ kg(-1) dry basis at the end of the storage period. Moreover, food wastes exhibited the highest negative correlation with NCVs, whereas plastics have significant positive correlation with both NCVs and TCs. Similarly, TOCs and carbon/nitrogen ratios decreased with the increase in food amounts inside the bales. In addition, textile, wood and yard wastes increase the energy content of the bales slightly over the storage period.

  4. Sandia Review of High Bridge Associates Report: Comparison of Plutonium Disposition Alternatives: WIPP Diluted Plutonium Storage and MOX Fuel Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoemaker, Paul E.; Hardin, Ernest; Park, HeeHo Daniel

    The subject report from High Bridge Associates (HBA) was issued on March 2, 2016, in reaction to a U.S. Department of Energy (DOE) program decision to pursue down-blending of surplus Pu and geologic disposal at the Waste Isolation Pilot Plant (WIPP). Sandia National Laboratories was requested by the DOE to review the technical arguments presented in the HBA report. Specifically, this review is organized around three technical topics: criticality safety, radiological release limits, and thermal impacts. Questions raised by the report pertaining to legal and regulatory requirements, safeguards and security, international agreements, and costing of alternatives, are beyond the scopemore » of this review.« less

  5. ENRAF Series 854 Advanced Technology Gauge (ATG) with SPU ll Card for Leak Detector Use Acceptance Test Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SMITH, S.G.

    1999-08-13

    This procedure checks the Enraf gauge received at Hanford is completely functional and has received no shipping damage. This procedure does not certify the gauge operation. The manufacturer certifies gauge operation. This procedure provides acceptance testing for Enraf Series 854 level gauges used to detect leaks in Hanford Waste Storage Tank annuli. The test will verify that the gauge functions according to the manufacturer's instructions and specifications and is properly setup prior to being delivered to the tank farm area. This ATP does not set up the gauge for any specific tank, but is generalized to permit testing the gaugemore » prior to installation package preparation.« less

  6. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  7. Method of encapsulating solid radioactive waste material for storage

    DOEpatents

    Bunnell, Lee Roy; Bates, J. Lambert

    1976-01-01

    High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.

  8. 40 CFR 761.65 - Storage for disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... storage of non-liquid PCB/ radioactive wastes must be designed to prevent the buildup of liquids if such... conditions: (i) The waste is placed in a pile designed and operated to control dispersal of the waste by wind...) A run-on control system designed, constructed, operated, and maintained such that: (1) It prevents...

  9. 10 CFR 72.22 - Contents of application: General and financial information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste from storage. (f) Each applicant for a license under this part to receive, transfer, and possess power reactor spent fuel, power...

  10. 40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...

  11. 40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...

  12. Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, J.A.; Turner, D.W.

    1994-12-31

    Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation`s total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shieldingmore » Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory`s (ORNL`s) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels.« less

  13. Pulp fiction - The volunteer concept (or how not to site additional LLRW disposal capacity)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, D.A.

    1995-12-31

    Experiences of compacts and of individual states throughout the nation indicate that low-level radioactive waste disposal siting processes, based from the beginning upon the volunteer concept are fraught with problems. Most apparent among these problems is that the volunteer concept does not lead to scientifically and technically based siting endeavors. Ten years have passed since the Amendments Act of 1985, and no compact or state has been - successful in providing for new LLRW disposal capacity. That failure can be traced in part to the reliance upon the volunteer concept in siting attempts. If success is to be achieved, themore » future direction for LLRW management must focus on three areas: first, a comprehensive evaluation of all LLRW management options, including reduction of waste generated and on-site storage; secondly, a comprehensive evaluation of the current as well as projected waste stream, to determine the amount of disposal capacity actually needed; and, finally, sound scientifically and technically based siting processes.« less

  14. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit applicationmore » guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating text. 38 39 Information provided in this Liquid Effluent Retention Facility and 40 200 Area Effluent Treatment Facility permit application documentation is 41 current as of June 1, 1997.« less

  15. Recycling of waste lead storage battery by vacuum methods.

    PubMed

    Lin, Deqiang; Qiu, Keqiang

    2011-07-01

    Waste lead storage battery is the most important recyclable lead material not only in various European and other OECD countries but also in China. Pollution control of lead has become the focus of people's attention in the world. A vacuum process for recycling waste lead storage battery was developed in this work. The experimental results showed that all the valuable materials in waste lead storage battery could be satisfactorily recycled by vacuum technologies. The vacuum melting of lead grids and the vacuum reduction of lead pastes produce the lead bullion with the direct recovery ratio of 96.29% and 98.98%, respectively. The vacuum pyrolysis of plastics can produce pyrolysis oil with yield of more than 93 wt.%. These vacuum recycling technologies offer improvements in metallurgical and environmental performance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Waste Determination Equivalency - 12172

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposedmore » of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)« less

  17. [Current status on storage, processing and risk communication of medical radioactive waste in Japan].

    PubMed

    Watanabe, Hiroshi; Yamaguchi, Ichiro; Kida, Tetsuo; Hiraki, Hitoshi; Fujibuchi, Toshioh; Maehara, Yoshiaki; Tsukamoto, Atsuko; Koizumi, Mitsue; Kimura, Yumi; Horitsugi, Genki

    2013-03-01

    Decay-in-storage for radioactive waste including that of nuclear medicine has not been implemented in Japan. Therefore, all medical radioactive waste is collected and stored at the Japan Radioisotope Association Takizawa laboratory, even if the radioactivity has already decayed out. To clarify the current situation between Takizawa village and Takizawa laboratory, we investigated the radiation management status and risk communication activities at the laboratory via a questionnaire and site visiting survey in June 2010. Takizawa laboratory continues to maintain an interactive relationship with local residents. As a result, Takizawa village permitted the acceptance of new medical radioactive waste containing Sr-89 and Y-90. However, the village did not accept any non-medical radioactive waste such as waste from research laboratories. To implement decay-in-storage in Japan, it is important to obtain agreement with all stakeholders. We must continue to exert sincere efforts to acquire the trust of all stakeholders.

  18. 10 CFR 62.13 - Contents of a request for emergency access: Alternatives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... following: (1) Storage of low-level radioactive waste at the site of generation; (2) Storage of low-level... disposal at a Federal low-level radioactive waste disposal facility in the case of a Federal or defense...

  19. Final Report: Characterization of Canister Mockup Weld Residual Stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enos, David; Bryan, Charles R.

    2016-12-01

    Stress corrosion cracking (SCC) of interim storage containers has been indicated as a high priority data gap by the Department of Energy (DOE) (Hanson et al., 2012), the Electric Power Research Institute (EPRI, 2011), the Nuclear Waste Technical Review Board (NWTRB, 2010a), and the Nuclear Regulatory Commission (NRC, 2012a, 2012b). Uncertainties exist in terms of the environmental conditions that prevail on the surface of the storage containers, the stress state within the container walls associated both with weldments as well as within the base metal itself, and the electrochemical properties of the storage containers themselves. The goal of the workmore » described in this document is to determine the stress states that exists at various locations within a typical storage canister by evaluating the properties of a full-diameter cylindrical mockup of an interim storage canister. This mockup has been produced using the same manufacturing procedures as the majority of the fielded spent nuclear fuel interim storage canisters. This document describes the design and procurement of the mockup and the characterization of the stress state associated with various portions of the container. It also describes the cutting of the mockup into sections for further analyses, and a discussion of the potential impact of the results from the stress characterization effort.« less

  20. 200-BP-1 Prototype Hanford Barrier - 15 Years of Performance Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Anderson L.; Link, Steven O.; Draper, Kathryn E.

    2009-09-01

    Engineered surface barriers are recognized as a remedial alternative to the removal, treatment and disposal of near-surface contaminants at a variety of waste sites within the DOE complex. One issue impacting their acceptance by stakeholders the use of limited data to predict long-term performance. In 1994, a 2-ha multi-component barrier was constructed over an existing waste disposal site at Hanford using natural materials. Monitoring has been almost continuous for the last 15 yrs and has focused on barrier stability, vegetative cover, plant and animal intrusion, and the components of the water balance, including precipitation, runoff, storage, drainage, and percolation. Themore » total precipitation received from October 1994 through August 2008 was 3311 mm on the northern half (formerly irrigated), and 2638 mm on the southern, non-irrigated half. Water storage in the fine-soil layer shows a cyclic pattern, increasing in the winter and decreasing in the spring and summer to a lower limit of around 100 mm, regardless of precipitation, in response to evapotranspiration. Topographic surveys show the barrier and side slopes to be stable and the pea-gravel admix has proven effective in minimizing erosion through the creation of a desert pavement during deflationary periods. Three runoff events have been observed but the 600-mm design storage capacity has never been exceeded. Total percolation ranged from near zero amounts under the soil-covered plots to over 600 mm under the side slopes. The asphaltic concrete prevented any of this water from reaching the buried waste thereby eliminating the driving force for the contaminant remobilization. Plant surveys show a relatively high coverage of native plants still persists after the initial revegetation although the number of species decreased from 35 in 1994 to 10 in 2009. Ample evidence of insect and small mammal use suggests that the barrier is behaving like a recovering ecosystem. In September 2008, the north half of the barrier was burned to remove vegetation and study the effects of fire on barrier performance. The most immediate effects has been on water storage patterns with the bare surface showing a slower accumulation of water, a smaller peak storage and a delayed release relative to the unburned side due to evaporation . Nonetheless the residual storage at the end of the year was similar for the burned and unburned sides.« less

  1. Magnitude of anthropogenic phosphorus storage in the agricultural production and the waste management systems at the regional and country scales.

    PubMed

    Chowdhury, Rubel Biswas; Chakraborty, Priyanka

    2016-08-01

    Based on a systematic review of 17 recent substance flow analyses of phosphorus (P) at the regional and country scales, this study presents an assessment of the magnitude of anthropogenic P storage in the agricultural production and the waste management systems to identify the potential for minimizing unnecessary P storage to reduce the input of P as mineral fertilizer and the loss of P. The assessment indicates that in case of all (6) P flow analyses at the regional scale, the combined mass of annual P storage in the agricultural production and the waste management systems is greater than 50 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while this is close to or more than 100 % in case of half of these analyses. At the country scale, in case of the majority (7 out of 11) of analyses, the combined mass of annual P storage in the agricultural production and the waste management systems has been found to be roughly equivalent or greater than 100 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while it ranged from 30 to 60 % in the remaining analyses. A simple scenario analysis has revealed that the annual storage of P in this manner over 100 years could result in the accumulation of a massive amount of P in the agricultural production and the waste management systems at both the regional and country scales. This study suggests that sustainable P management initiatives at the regional and country scales should put more emphasis on minimizing unwanted P storage in the agricultural production and the waste management systems.

  2. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs,more » and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less

  3. Implementation of an intraoperative blood transport and storage initiative and its effect on reducing red blood cell and plasma waste.

    PubMed

    Brown, Michael J; Button, Lisa M; Badjie, Karafa S; Guyer, Jean M; Dhanorker, Sarah R; Brach, Erin J; Johnson, Pamela M; Stubbs, James R

    2014-03-01

    The national waste rate for hospital-issued blood products ranges from 0% to 6%, with operating room-responsible waste representing up to 70% of total hospital waste. A common reason for blood product waste is inadequate intraoperative storage. Our transfusion service database was used to quantify and categorize red blood cell (RBC) and fresh-frozen plasma (FFP) units issued for intraoperative transfusion that were wasted over a 27-month period. Two cohorts were created: 1) before implementation of a blood transport and storage initiative (BTSI)-RBC and plasma waste January 1, 2011-May 31, 2012; 2) after implementation of BTSI-RBC and plasma waste June 1, 2012, to March 31, 2013. The BTSI replaced existing storage coolers (8-hr coolant life span with temperature range of 1-10°C) with a cooler that had a coolant life span of 18 hours and a temperature range of 1 to 6°C and included an improved educational cooler placard and an alert mechanism in the electronic health record. Monthly median RBC and plasma waste and its associated cost were the primary outcomes. An intraoperative BTSI significantly reduced median monthly RBC (1.3% vs. 0.07%) and FFP (0.4% vs. 0%) waste and its associated institutional cost. The majority of blood product waste was due to an unacceptable temperature of unused returned blood products. An intraoperative BTSI significantly reduced median monthly RBC and FFP waste. The cost to implement this initiative was small, resulting in a significant estimated return on investment that may be reproducible in institutions other than ours. © 2013 American Association of Blood Banks.

  4. Low-level radwaste storage facility at Hope Creek and Salem Generating Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyen, L.C.; Lee, K.; Bravo, R.

    Following the January 1, 1993, closure of the radwaste disposal facilities at Beatty, Nevada, and Richland, Washington (to waste generators outside the compact), only Barnwell, South Carolina, is open to waste generators in most states. Barnwell is scheduled to stay open to waste generators outside the Southeast Compact until June 30, 1994. Continued delays in opening regional radwaste disposal facilities have forced most nuclear utilities to consider on-site storage of low-level radwaste. Public Service Electric and Gas Company (PSE G) considered several different radwaste storage options before selecting the design based on the steel-frame and metal-siding building design described inmore » the Electric Power Research Institute's (EPRI's) TR-100298 Vol. 2, Project 3800 report. The storage facility will accommodate waste generated by Salem units 1 and 2 and Hope Creek unit 1 for a 5-yr period and will be located within their common protected area.« less

  5. Geomechanical/Geochemical Modeling Studies Conducted within theInternational DECOVALEX Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, J.T.; Rutqvist, J.; Sonnenthal, E.L.

    2005-10-19

    The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysismore » of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.« less

  6. Geomechanical/ Geochemical Modeling Studies onducted Within the International DECOVALEX Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.T. Birkholzer; J. Rutqvist; E.L. Sonnenthal

    2006-02-01

    The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysismore » of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.« less

  7. Effects of storage environment on the moisture content and microbial growth of food waste.

    PubMed

    Chen, Ying-Chu; Hsu, Yi-Cheng; Wang, Chung-Ting

    2018-05-15

    Food waste (FW) has become a critical issue in sustainable development as the world's population has increased. Direct incineration of FW remains the primary treatment option. The moisture content of FW may affect the energy efficiency of incineration. In Taiwan, FW, which includes raw (r-FW) and post-consumer (p-FW) waste, is often stored in freezers before pretreatment. This study evaluated the effects of storage environment on the moisture content and microbial growth of FW. Storage at 263 K was associated with the largest reduction in moisture content in both r-FW and p-FW. At 263 K, the moisture content of r-FW and p-FW was lowest at 96 and 72 h, respectively. The E.coli and total bacteria counts were steady over 120 h when stored at 263 K. Storage at 253 K required the greatest electricity consumption, followed by 263 K and 258 K. Based on the reduction of moisture content and increase in energy efficiency, it is suggested that FW is placed in temporary storage at 263 K before (pre)treatment. The results of this study will help waste-to-energy plants, incinerators, and waste management enterprises to implement proper (pre)treatment of FW for sustainable waste management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Technical area status report for waste destruction and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, J.D.; Harris, T.L.; DeWitt, L.M.

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office ofmore » Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.« less

  9. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. D. Staiger

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  10. RCRA Refresher Self-Study, Course 28582

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    Federal and state regulations require hazardous and mixed waste facility workers at treatment and storage facilities (TSFs) and <90-day accumulation areas to be trained in hazardous and mixed waste management. This course will refamiliarize and update <90-day accumulation area workers, TSF workers, and supervisors of TSF workers regarding waste identification, pollution prevention, storage area requirements, emergency response procedures, and record-keeping requirements.

  11. RCRA Personnel Training, Course 7488

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    Federal and state regulations require hazardous and mixed waste facility workers at treatment and storage facilities (TSFs) and <90-day accumulation areas to be trained in hazardous and mixed waste management. This course will refamiliarize and update <90-day accumulation area workers, TSF workers, and supervisors of TSF workers regarding waste identification, pollution prevention, storage area requirements, emergency response procedures, and record-keeping requirements.

  12. 78 FR 56944 - Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Class C (GTCC) process waste at the Humboldt Bay ISFSI. PG&E submitted its license amendment request by... proposed amendment to License No. SNM-2514 to allow storage of GTCC process waste at the Humboldt Bay ISFSI... fuel and is authorized by NRC, under License No. SNM-2514, to also store GTCC activated metal waste at...

  13. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release frommore » the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs.« less

  14. 40 CFR 264.603 - Post-closure care.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... treatment or storage unit has contaminated soils or ground water that cannot be completely removed or...

  15. CHARACTERIZATION REPORT FOR STRONTIUM TITANATE IN SWSA 7 AND ADJACENT PARCELS IN SUPPORT OF THE NATIONAL PRIORITIES LIST SITE BOUNDARY DEFINITION PROGRAM OAK RIDGE, TENNESSEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. King

    2011-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office requested support from the Oak Ridge Institute for Science and Education (ORISE) contract to delineate the extent of strontium titanate (SrTiO3) contamination in and around Solid Waste Storage Area (SWSA) 7 as part of the Oak Ridge National Priorities List Site boundary definition program. The study area is presented in Fig. 1.1 relative to the Oak Ridge Reservation (ORR). The investigation was executed according to Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP) (DOE 2011) to supplement previous investigations noted below and to determine what areas, if any, have been adverselymore » impacted by site operations.« less

  16. Waste Information Management System with 2012-13 Waste Streams - 13095

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, H.; Quintero, W.; Lagos, L.

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)« less

  17. Classification methodology for tritiated waste requiring interim storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cana, D.; Dall'ava, D.; Decanis, C.

    2015-03-15

    Fusion machines like the ITER experimental research facility will use tritium as fuel. Therefore, most of the solid radioactive waste will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. As a consequence, optimizing the treatment process for waste containing tritium (tritiated waste) is a major challenge. This paper summarizes the studies conducted in France within the framework of the French national plan for the management of radioactive materials and waste. The paper recommends a reference program for managing this waste based on its sorting, treatment and packaging by the producer. It also recommendsmore » setting up a 50-year temporary storage facility to allow for tritium decay and designing future disposal facilities using tritiated radwaste characteristics as input data. This paper first describes this waste program and then details an optimized classification methodology which takes into account tritium decay over a 50-year storage period. The paper also describes a specific application for purely tritiated waste and discusses the set-up expected to be implemented for ITER decommissioning waste (current assumption). Comparison between this optimized approach and other viable detritiation techniques will be drawn. (authors)« less

  18. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groth, B.D.

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

  19. Increased Levels of Markers of Microbial Exposure in Homes with Indoor Storage of Organic Household Waste

    PubMed Central

    Wouters, Inge M.; Douwes, Jeroen; Doekes, Gert; Thorne, Peter S.; Brunekreef, Bert; Heederik, Dick J. J.

    2000-01-01

    As part of environmental management policies in Europe, separate collection of organic household waste and nonorganic household waste has become increasingly common. As waste is often stored indoors, this policy might increase microbial exposure in the home environment. In this study we evaluated the association between indoor storage of organic waste and levels of microbial agents in house dust. The levels of bacterial endotoxins, mold β(1→3)-glucans, and fungal extracullar polysaccharides (EPS) of Aspergillus and Penicillium species were determined in house dust extracts as markers of microbial exposure. House dust samples were collected in 99 homes in The Netherlands selected on the basis of whether separated organic waste was present in the house. In homes in which separated organic waste was stored indoors for 1 week or more the levels of endotoxin, EPS, and glucan were 3.2-, 7.6-, and 4.6-fold higher, respectively (all P < 0.05), on both living room and kitchen floors than the levels in homes in which only nonorganic residual waste was stored indoors. Increased levels of endotoxin and EPS were observed, 2.6- and 2.1-fold (P < 0.1), respectively, when separated organic waste was stored indoors for 1 week or less, whereas storage of nonseparated waste indoors had no effect on microbial agent levels (P > 0.2). The presence of textile floor covering was another major determinant of microbial levels (P < 0.05). Our results indicate that increased microbial contaminant levels in homes are associated with indoor storage of separated organic waste. These increased levels might increase the risk of bioaerosol-related respiratory symptoms in susceptible people. PMID:10653727

  20. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generatingmore » facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.« less

  1. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-01

    US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC ormore » state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.« less

  2. Applications for activated carbons from waste tires: Natural gas storage and air pollution control

    USGS Publications Warehouse

    Brady, T.A.; Rostam-Abadi, M.; Rood, M.J.

    1996-01-01

    Natural gas storage for natural gas vehicles and the separation and removal of gaseous contaminants from gas streams represent two emerging applications for carbon adsorbents. A possible precursor for such adsorbents is waste tires. In this study, activated carbon has been developed from waste tires and tested for its methane storage capacity and SO2 removal from a simulated flue-gas. Tire-derived carbons exhibit methane adsorption capacities (g/g) within 10% of a relatively expensive commercial activated carbon; however, their methane storage capacities (Vm/Vs) are almost 60% lower. The unactivated tire char exhibits SO2 adsorption kinetics similar to a commercial carbon used for flue-gas clean-up. Copyright ?? 1996 Elsevier Science Ltd.

  3. The NGA-DOE grant to examine critical issues related to radioactive waste and materials disposition involving DOE facilities. Quarterly report, October 1--December 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beauchesne, A.M.

    1997-12-31

    Topics explored through this project include: decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis; interstate waste and materials shipments; and reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes.more » The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE`s proposed National Dialogue.« less

  4. 20. VIEW OF THE WASTE STORAGE TANKS ASSOCIATED WITH THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF THE WASTE STORAGE TANKS ASSOCIATED WITH THE PLATING LABORATORY. (11/15/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  5. Annual Report 1998: Chemical Structure and Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SD Colson; RS McDowell

    1999-05-10

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generatedmore » can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).« less

  6. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage atmore » the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.« less

  7. Management of radioactive waste in Belgium: ONDRAF/NIRAS and Belgoprocess as major actors of the waste acceptance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaelen, Gunter van; Verheyen, Annick

    2007-07-01

    The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) anmore » acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)« less

  8. Superfund Record of Decision (EPA Region 5): South Andover Salvage Yards, Operable Unit 1, Anoka County, Andover, MN. (Second remedial action), (amendment), June 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The 50-acre South Andover site is composed of several privately owned parcels of land near Minneapolis in Anoka County, Minnesota. There are several source areas where former activities included drum storage, waste storage, and waste burning. Solid and liquid chemical waste dumping and open pit burning of solvents occurred during the 1960's and 1970's. Investigations showed that drum storage and chemical waste disposal sites were partially obscured by auto salvage operations and more than 3 million waste tires. The ROD amendment changes the 1988 ROD for ground water based on current data from a 1990 Design Investigation. The primary contaminantsmore » of concern affecting the ground water are VOCs, including acetone, ethyl benzene, methylchloride, PCE, TCE, toluene; and metals, including arsenic, chromium, and lead.« less

  9. EPA's Review of DOE's Inventory Tracking for TRU Wastes at Waste Control Specialists

    EPA Pesticide Factsheets

    On April 9, 2014, EPA's Waste Isolation Pilot Plant (WIPP) waste characterization team visited Waste Control Specialists (WCS) to determine whether DOE was meeting EPA's waste inventory tracking requirements at 40 CFR 194.24(c)(4).

  10. Hanford solid-waste handling facility strategy

    NASA Astrophysics Data System (ADS)

    Albaugh, J. F.

    1982-05-01

    Prior to 1970, transuranic (TRU) solid waste was disposed of at Hanford by shallow land burial. Since 1970, TRU solid waste has been stored in near surface trenches designed to facilitate retrieval after twenty year storage period. Current strategy calls for final disposal in a geologic repository. Funding permitting, in 1983, certification of newly generated TRU waste to the Waste Isolation Pilot Plant (WIPP) criteria for geologic disposal will be initiated. Certified and uncertified waste will continue to be stored at Hanford in retrievable storage until a firm schedule for shipment to WIPP is developed. Previously stored wastes retrieved for geologic disposal and newly generated uncertified waste requires processing to assure compliance with disposal criteria. A facility to perform this function is being developed. A study to determine the requirements of this Waste Receiving and Processing (WRAP) Facility is currently being conducted.

  11. How the University of Texas system responded to the need for interim storage of low-level radioactive waste materials.

    PubMed

    Emery, Robert J

    2012-11-01

    Faced with the prospect of being unable to permanently dispose of low-level radioactive wastes (LLRW) generated from teaching, research, and patient care activities, component institutions of the University of Texas System worked collaboratively to create a dedicated interim storage facility to be used until a permanent disposal facility became available. Located in a remote section of West Texas, the University of Texas System Interim Storage Facility (UTSISF) was licensed and put into operation in 1993, and since then has provided safe and secure interim storage for up to 350 drums of dry solid LLRW at any given time. Interim storage capability provided needed relief to component institutions, whose on-site waste facilities could have possibly become overburdened. Experiences gained from the licensing and operation of the site are described, and as a new permanent LLRW disposal facility emerges in Texas, a potential new role for the storage facility as a surge capacity storage site in times of natural disasters and emergencies is also discussed.

  12. Use of Drying Technologies for Resource Recovery from Solid Wastes and Brines

    NASA Technical Reports Server (NTRS)

    Wignarajah, Kanapathipillai; Alba, Ric; Fisher, John W.; Hogan, John A.; Polonsky, Alex

    2010-01-01

    Long term storage of unprocessed biological wastes and human wastes can present major health issues and a loss of potential resources. Space vehicles and planetary habitats are typically resource-scarce or resource-limited environments for long-term human habitation. To-date, most of the resources will need to be supplied from Earth, but this may not be possible for long duration human exploration. Based on present knowledge, there is only very limited in-situ resources on planetary habitats. Hence, the opportunity to "live off the land" in a planetary habitat is limited. However, if we assume that wastes generated by human explorers are viewed as resources, there is great potential to utilize and recycle them, thereby reducing the requirements for supply Earth and enabling the "live off the land" exploration scenario. Technologies used for the recovery of resources from wastes should be reliable, safe, easy to operate, fail-proof, modular, automated and preferably multifunctional in being capable of handling mixed solid and liquid wastes. For a lunar habitat, energy does not appear to be the major driving factor amongst the technologies studied. Instead, reliability appears to be more important[1] . This paper reports studies to date on drying technologies to remove water from solid wastes and brines. Experimental performance data obtained for recovery water from wastes and brine are presented. Simplicity of operation of hardware and energy efficiency are discussed. Some improvements and modifications to hardware were performed. Hopefully, this information will assist in future efforts in the "downselection" of technologies for recovery of water and resources from solid wastes and brines.

  13. Comprehensive implementation plan for the DOE defense buried TRU- contaminated waste program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everette, S.E.; Detamore, J.A.; Raudenbush, M.H.

    1988-02-01

    In 1970, the US Atomic Energy Commission established a transuranic'' (TRU) waste classification. Waste disposed of prior to the decision to retrievably store the waste and which may contain TRU contamination is referred to as buried transuranic-contaminated waste'' (BTW). The DOE reference plan for BTW, stated in the Defense Waste Management Plan, is to monitor it, to take such remedial actions as may be necessary, and to re-evaluate its safety as necessary or in about 10-year periods. Responsibility for management of radioactive waste and byproducts generated by DOE belongs to the Secretary of Energy. Regulatory control for these sites containingmore » mixed waste is exercised by both DOE (radionuclides) and EPA (hazardous constituents). Each DOE Operations Office is responsible for developing and implementing plans for long-term management of its radioactive and hazardous waste sites. This comprehensive plan includes site-by-site long-range plans, site characteristics, site costs, and schedules at each site. 13 figs., 15 tabs.« less

  14. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlach, Robin; Peyton, Brent M.; Apel, William A.

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and othermore » contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in the subsurface; a primary concern of the DOE Environmental Remediation Science Division (ERSD) and Subsurface Geochemical Research (SBR) Program.« less

  15. Waste Information Management System-2012 - 12114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, H.; Quintero, W.; Shoffner, P.

    2012-07-01

    The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different databases and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast and transportation information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made since its initial deployment include the addition of new DOE sites and facilities, an updated waste and transportation information, and the ability to easily display and print customized waste forecast, the disposition maps, GIS maps and transportation information. The system also allows users to customize and generate reports over the web. These reports can be exported to various formats, such as Adobe{sup R} PDF, Microsoft Excel{sup R}, and Microsoft Word{sup R} and downloaded to the user's computer. Future enhancements will include database/application migration to the next level. A new data import interface will be developed to integrate 2012-13 forecast waste streams. In addition, the application is updated on a continuous basis based on DOE feedback. (authors)« less

  16. Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 2, Detailed description of first example flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, J.L.

    1993-09-01

    Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and wastemore » minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.« less

  17. 30 CFR 784.23 - Operation plan: Maps and plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste storage area; (6) Each water diversion, collection, conveyance, treatment, storage and discharge... structure, permanent water impoundment, refuse pile, and coal mine waste impoundment for which plans are...; (12) Location of each water and subsidence monitoring point; (13) Location of each facility that will...

  18. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading ofmore » vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.« less

  19. Public acceptance for centralized storage and repositories of low-level waste session (Panel)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, H.R.

    1995-12-31

    Participants from various parts of the world will provide a summary of their particular country`s approach to low-level waste management and the cost of public acceptance for low-level waste management facilities. Participants will discuss the number, geographic location, and type of low-level waste repositories and centralized storage facilities located in their countries. Each will discuss the amount, distribution, and duration of funds to gain public acceptance of these facilities. Participants will provide an estimated $/meter for centralized storage facilities and repositories. The panel will include a brief discussion about the ethical aspects of public acceptance costs, approaches for negotiating acceptance,more » and lessons learned in each country. The audience is invited to participate in the discussion.« less

  20. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1997 through December 31, 1997, under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE's proposed National Dialogue.« less

  1. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

    1999-10-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptionsmore » used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a significant source of brine to the repository, which is consumed in the corrosion of iron and thus contributes to increased repository pressures. Fourth, the DRZ itself lowers repository pressures by providing storage for gas and access to additional gas storage in areas of the repository. Fifth, given the pathway that the DRZ provides for gas and brine to flow around the panel closures, isolation of the waste panels by the panel closures was not essential to compliance with the U.S. Environment Protection Agency's regulations in the 1996 WIPP PA.« less

  2. Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, S.M.

    1997-04-30

    This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.

  3. Waste information management system: a web-based system for DOE waste forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisler, T.J.; Shoffner, P.A.; Upadhyay, U.

    2007-07-01

    The implementation of the Department of Energy (DOE) mandated accelerated cleanup program has created significant potential technical impediments that must be overcome. The schedule compression will require close coordination and a comprehensive review and prioritization of the barriers that may impede treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal have now become potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE headquarters in Washington, D.C., need timely waste forecast information regarding the volumes andmore » types of waste that will be generated by DOE sites over the next 25 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needs a common application to allow interested parties to understand and view the complete complex-wide picture. A common application would allow identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the development of this web-based forecast system. (authors)« less

  4. Favorable Decision Upholding Radioactive/Hazardous Mixed Waste Storage Civil Enforcement Policy

    EPA Pesticide Factsheets

    This page contains a copy of the U.S. Court of Appeals (District of Columbia Circuit) decision in Edison Electric Institute, et al. v. EPA, No. 91-1586, which upheld the EPA's August 29, 1991, radioactive/hazardous 'mixed waste' storage civil enforcement policy

  5. 40 CFR 240.200-3 - Recommended procedures: Operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200-3 Recommended procedures: Operations. (a) Storage areas for special wastes should be... acceptance of Special Wastes. ...

  6. 40 CFR 240.200-3 - Recommended procedures: Operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200-3 Recommended procedures: Operations. (a) Storage areas for special wastes should be... acceptance of Special Wastes. ...

  7. Waste reduction plan for The Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, R.M.

    1990-04-01

    The Oak Ridge National Laboratory (ORNL) is a multipurpose Research and Development (R D) facility. These R D activities generate numerous small waste streams. Waste minimization is defined as any action that minimizes the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution, changes to processes, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction efforts. Federal regulations, DOE policies and guidelines, increased costs and liabilities associatedmore » with the management of wastes, limited disposal options and facility capacities, and public consciousness have been motivating factors for implementing comprehensive waste reduction programs. DOE Order 5820.2A, Section 3.c.2.4 requires DOE facilities to establish an auditable waste reduction program for all LLW generators. In addition, it further states that any new facilities, or changes to existing facilities, incorporate waste minimization into design considerations. A more recent DOE Order, 3400.1, Section 4.b, requires the preparation of a waste reduction program plan which must be reviewed annually and updated every three years. Implementation of a waste minimization program for hazardous and radioactive mixed wastes is sited in DOE Order 5400.3, Section 7.d.5. This document has been prepared to address these requirements. 6 refs., 1 fig., 2 tabs.« less

  8. Solid Waste Assurance Program Implementation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irons, L.G.

    1995-06-19

    On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixedmore » waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.« less

  9. Yucca Mountain nuclear waste repository prompts heated congressional hearing

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-11-01

    Although the final report of the Blue Ribbon Commission on America's Nuclear Future is not expected until January 2012, the tentative conclusions of the commission's draft report were dissected during a recent joint hearing by two subcommittees of the House of Representatives' Committee on Science, Space, and Technology. Among the more heated issues debated at the hearing was the fate of the stalled Yucca Mountain nuclear waste repository in Nevada. The Blue Ribbon Commission's (BRC) draft report includes recommendations for managing nuclear waste and for developing one or more permanent deep geological repositories and interim storage facilities, but the report does not address the future of Yucca Mountain. The BRC charter indicates that the commission is to "conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle." However, the draft report states that the commission was not asked to consider, and therefore did not address, several key issues. "We have not rendered an opinion on the suitability of the Yucca Mountain site or on the request to withdraw the license application for Yucca Mountain," the draft report states.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.S.C.

    The evaluation addresses the waste reduction/pollution prevention and economic issues involved in replacing chromated copper arsenate (CCA) with ammoniacal copper/quaternary ammonium (ACQ) as a way to preserve wood. The most obvious pollution prevention benefit gained by using ACQ is eliminating the use of arsenic and chromium, both of which generate hazardous wastes and a risk of contaminating the environment via chemical spills. Because most treatment plants are self-contained in that they reuse all wastewater produced within the plant and on the drip pads, no liquid waste problems were addressed for either the CCA or the ACQ treating process. The ACQmore » system generates more air pollution than does the CCA system, mainly as ammonia (NH3). For a plant with an annual production of 1 million cu ft (or about 20 million board feet), 90,000 lb of NH3 would be released per year from the ACQ treatment operations and the ACQ-treated wood. The treated wood, after being transferred from the drip pads to the outside storage yard, could become a major source of contamination.« less

  11. 40 CFR 264.230 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wastes. 264.230 Section 264.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.230 Special requirements for incompatible wastes...

  12. Nevada National Security Site Radiological Control Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radiological Control Managers’ Council

    2012-03-26

    This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted bymore » programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.« less

  13. Public Preferences Related to Radioactive Waste Management in the United States: Methodology and Response Reference Report for the 2016 Energy and Environment Survey.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins-Smith, Hank C.; Silva, Carol L.; Gupta, Kuhika

    This report presents the questions and responses to a nationwide survey taken June 2016 to track preferences of US residents concerning the environment, energy, and radioactive waste management. A focus of the 2016 survey is public perceptions on different options for managing spent nuclear fuel, including on-site storage, interim storage, deep boreholes, general purpose geologic repositories, and geologic repositories for only defense-related waste. Highlights of the survey results include the following: (1) public attention to the 2011 accident and subsequent cleanup at the Fukushima nuclear facility continues to influence the perceived balance of risk and benefit for nuclear energy; (2)more » the incident at the Waste Isolation Pilot Plant in 2014 could influence future public support for nuclear waste management; (3) public knowledge about US nuclear waste management policies has remined higher than seen prior to the Fukushima nuclear accident and submittal of the Yucca Mountain application; (6) support for a mined disposal facility is higher than for deep borehole disposal, building one more interim storage facilities, or continued on-site storage of spent nuclear fuel; (7) support for a repository that comingles commercial and defense related waste is higher than for a repository for only defense related waste; (8) the public’s level of trust accorded to the National Academies, university scientists, and local emergency responders is the highest and the level trust accorded to advocacy organizations, public utilities, and local/national press is the lowest; and (9) the public is willing to serve on citizens panels but, in general, will only modestly engage in issues related to radioactive waste management.« less

  14. Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayancsik, B.A.

    1994-10-13

    During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200more » West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above.« less

  15. Environmental Hazards of Nuclear Wastes

    ERIC Educational Resources Information Center

    Micklin, Philip P.

    1974-01-01

    Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)

  16. 40 CFR 243.200 - Storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Storage. 243.200 Section 243.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE STORAGE... Procedures § 243.200 Storage. ...

  17. 40 CFR 243.200 - Storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Storage. 243.200 Section 243.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE STORAGE... Procedures § 243.200 Storage. ...

  18. 40 CFR 243.200 - Storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Storage. 243.200 Section 243.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE STORAGE... Procedures § 243.200 Storage. ...

  19. 40 CFR 243.200 - Storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Storage. 243.200 Section 243.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE STORAGE... Procedures § 243.200 Storage. ...

  20. 40 CFR 243.200 - Storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Storage. 243.200 Section 243.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE STORAGE... Procedures § 243.200 Storage. ...

  1. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: Defense waste processing facility

    NASA Astrophysics Data System (ADS)

    Huang, J. C.; Wright, W. V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built. High level waste is produced when reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The risks associated with the manufacture and interim storage of these two forms in the DWPF are compared. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information.

  2. Dynamic mechanical analysis of waste tyre rubber filled brake friction composite materials

    NASA Astrophysics Data System (ADS)

    Rathi, Mukesh Kumar; Singh, Tej; Chauhan, Ranchan

    2018-05-01

    In this research work, the dynamic mechanical properties of waste tyre rubber filled friction composites were studied. Four friction composites with varying amount of waste rubber (0, 4, 8, 12 wt.%) and barium sulphate (38, 42, 46, 50 wt.%) were designed and fabricated as per industrial norms. Dynamic mechanical analysis has been carried out to characterize the storage modulus, loss modulus and damping factor of the fabricated friction composite. Experimental results indicated that storage modulus decreases with increasing waste rubber content up to particular loading (4 wt.%), and after that it increases with further loading. The loss modulus of the composites increases steadily with increasing waste rubber content whereas, damping factor remain maximum for 12 wt.% waste rubber filled friction composites.

  3. Development of in-structure design spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julyk, L.J.

    1995-09-01

    In-structure response spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site are developed on the basis of recent soil-structure-interaction analyses. Recommended design spectra are provided for various locations on the tank dome.

  4. 10 CFR 72.216 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false [Reserved] 72.216 Section 72.216 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at...

  5. Land Application of Wastes: An Educational Program. Climate and Wastewater Storage - Module 8, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module discusses the hydrologic considerations that apply to land application of wastes. These are precipitation, infiltration and percolation, evapotranspiration, runoff, and groundwater. Climatic considerations that relate to wastewater storage are also discussed. Particular emphasis is given to wastewater flow, precipitation, evaporation,…

  6. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.

    2013-02-24

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.« less

  7. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasbarro, Christina; Bello, Job; Bryan, Samuel

    2013-07-01

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)« less

  8. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.

    A preliminary evaluation of removing spent nuclear fuel (SNF) from 13 shutdown nuclear power plant sites was performed. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, San Onofre, and Vermont Yankee. The evaluation was divided into four components: Characterization of the SNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory A description of the on-site infrastructure at the shutdown sitesmore » An evaluation of the near-site transportation infrastructure and transportation experience at the shutdown sites An evaluation of the actions necessary to prepare for and remove SNF and GTCC waste. The primary sources for the inventory of SNF and GTCC waste were the U.S. Department of Energy (DOE) spent nuclear fuel inventory database, industry publications such as StoreFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of on-site infrastructure and near-site transportation infrastructure and experience included information collected during site visits, information provided by managers at the shutdown sites, Facility Interface Data Sheets compiled for DOE in 2005, Services Planning Documents prepared for DOE in 1993 and 1994, industry publications such as Radwaste Solutions, and Google Earth. State staff, State Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative have participated in nine of the shutdown site visits. Every shutdown site was found to have at least one off-site transportation mode option for removing its SNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. Additional conclusions from this evaluation include: The 13 shutdown sites use designs from 4 different suppliers involving 11 different (horizontal and vertical) dry storage systems that would require the use of 9 different transportation cask designs to remove the SNF and GTCC waste from the shutdown sites. Although some changes to transportation certificates of compliance will be required, the SNF at the initial 9 shutdown sites (Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion) is in dual purpose dry storage canisters that can be transported, including a small amount of high-burnup fuel. Most sites indicated that 2-3 years of advance time would be required for its preparations before shipments could begin. Some sites could be ready in less time. As additional sites such as Fort Calhoun, Clinton, Quad Cities, Pilgrim, Oyster Creek, and Diablo Canyon shut down, these sites will be included in updates to the evaluation.« less

  9. 40 CFR 264.282 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...

  10. 40 CFR 264.282 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...

  11. 40 CFR 264.282 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...

  12. 40 CFR 264.282 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...

  13. 40 CFR 264.1083 - Waste determination procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste determination procedures. 264... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1083 Waste...

  14. Enhanced Shielding Performance of HLW Storage Packages via Multi- Component Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winfrey, Leigh

    The steel coatings developed here prevent water, dirt, and chemical contaminants from the atmosphere or soil from making contact with waste packages that would damage and weaken them during long-term storage. In addition, through this project we demonstrated that a range of coatings have this capability, will survive in the environment they will be used in, and can be deposited readily on large surfaces which is critical for their use in waste storage.

  15. 40 CFR 264.281 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...

  16. 40 CFR 264.281 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...

  17. 40 CFR 264.281 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...

  18. 40 CFR 264.281 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...

  19. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less

  20. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  1. Compactor for Space Toilet

    NASA Technical Reports Server (NTRS)

    Autrey, David (Inventor); Morrison, Terrell Lee (Inventor); Kaufman, Cory (Inventor)

    2017-01-01

    A toilet for use on a space vehicle has a toilet bowl having a storage canister at a remote end for receiving human waste. The compactor includes a cable connected to a lever which pulls the cable in a direction forcing the compactor into the storage canister to compact the captured waste when the lever is actuated.

  2. 30 CFR 780.14 - Operation plan: Maps and plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and non-coal waste storage area; (6) Each water diversion, collection, conveyance, treatment, storage... water impoundment, refuse pile, and coal mine waste impoundment for which plans are required by § 780.25... architecture. [44 FR 15357, Mar. 13, 1979; 44 FR 49685, Aug. 24, 1979, as amended at 45 FR 51550, Aug. 4, 1980...

  3. Hazardous Waste Treatment, Storage, and Disposal Facilities-Organic Air Emission Standards for Process Vents and Equipment Leaks - Technical Amendment - Federal Register Notice, April 26, 1991

    EPA Pesticide Factsheets

    This document corrects typographical errors in the regulatory text of the final standards that would limit organic air emissions as a class at hazardous waste treatment, storage, and disposal facilities (TSDF) that are subject to regulation under subtitle

  4. Cost Implications of an Interim Storage Facility in the Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, Joshua J.; Joseph, III, Robert Anthony; Howard, Rob L

    2016-09-01

    This report provides an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). Specifically, the impacts of the timing of opening an ISF relative to opening a repository were analyzed to understand the potential effects on total system costs.

  5. Study of extraterrestrial disposal of radioactive wastes. Part 2: Preliminary feasibility screening study of extraterrestrial disposal of radioactive wastes in concentrations, matrix materials, and containers designed for storage on earth

    NASA Technical Reports Server (NTRS)

    Hyland, R. E.; Wohl, M. L.; Thompson, R. L.; Finnegan, P. M.

    1972-01-01

    The results are reported of a preliminary feasibility screening study for providing long-term solutions to the problems of handling and managing radioactive wastes by extraterrestrial transportation of the wastes. Matrix materials and containers are discussed along with payloads, costs, and destinations for candidate space vehicles. The conclusions reached are: (1) Matrix material such as spray melt can be used without exceeding temperature limits of the matrix. (2) The cost in mills per kw hr electric, of space disposal of fission products is 4, 5, and 28 mills per kw hr for earth escape, solar orbit, and solar escape, respectively. (3) A major factor effecting cost is the earth storage time. Based on a normal operating condition design for solar escape, a storage time of more than sixty years is required to make the space disposal charge less than 10% of the bus-bar electric cost. (4) Based on a 10 year earth storage without further processing, the number of shuttle launches required would exceed one per day.

  6. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  7. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  8. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  9. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  10. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  11. Brominated flame retardants (BFRs) in air and dust from electronic waste storage facilities in Thailand.

    PubMed

    Muenhor, Dudsadee; Harrad, Stuart; Ali, Nadeem; Covaci, Adrian

    2010-10-01

    This study reports concentrations of brominated flame retardants in dust samples (n=25) and in indoor (n=5) and outdoor air (n=10) (using PUF disk passive air samplers) from 5 electronic and electrical waste (e-waste) storage facilities in Thailand. Concentrations of Sigma(10)PBDEs (BDEs 17, 28, 47, 49, 66, 85, 99, 100, 153 and 154) in outdoor air in the vicinity of e-waste storage facilities ranged from 8 to 150 pg m(-3). Indoor air concentrations ranged from 46 to 350 pg m(-3), with highest concentrations found in a personal computer and printer waste storage room at an e-waste storage facility. These are lower than reported previously for electronic waste treatment facilities in China, Sweden, and the US. Concentrations of Sigma(21)PBDEs (Sigma(10)PBDEs+BDEs 181, 183, 184, 191, 196, 197, 203, 206, 207, 208 and 209), decabromodiphenylethane (DBDPE), decabromobiphenyl (BB-209) in dust were 320-290,000, 43-8700 and <20-2300 ng g(-1) respectively, with the highest concentrations of Sigma(21)PBDEs, BDE-209 and DBDPE in a room used to house discarded TVs, stereos and radios. PBDE concentrations in dust were slightly higher but within the range of those detected in workshop floor dust from an e-waste recycling centre in China. The highest concentration of BB-209 was detected in a room storing discarded personal computers and printers. Consistent with recent reports of elevated ratios of BDE-208:BDE-209 and BDE-183:BDE-209 in household electronics from South China, percentage ratios of BDE-208:BDE-209 (0.64-2.9%) and of BDE-208:BDE-183 (2.8-933%) in dust samples exceeded substantially those present in commercial deca-BDE and octa-BDE formulations. This suggests direct migration of BDE-208 and other nonabrominated BDEs from e-waste to the environment. Under realistic high-end scenarios of occupational exposure to BDE-99, workers in the facilities were exposed above a recently-published Health Based Limit Value for this congener. Reassuringly, estimated exposures to BDE-209 were below the USEPA's reference dose for this congener. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Waste Management Decision-Making Process During a Homeland Security Incident Response

    EPA Pesticide Factsheets

    A step-by-step guide on how to make waste management-related decisions including how waste can be minimized, collected and treated, as well as where waste can be sent for staging, storage and final disposal.

  13. The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulik, V.I.; Biland, A.B.

    2012-07-01

    New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spentmore » nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)« less

  14. Evaluation of the geologic and hydrologic factors related to the waste-storage potential of Mesozoic aquifers in the southern part of the Atlantic Coastal Plain, South Carolina and Georgia

    USGS Publications Warehouse

    Brown, Philip M.; Brown, D.L.; Reid, M.S.; Lloyd, O.B.

    1979-01-01

    The report describes the subsurface distribution of rocks of Cretaceous to Late Jurassic( ) age in the Atlantic Coastal Plain , South Carolina, and Georgia, and examines their potential for deep-well waste storage into th part of the regional sediment mass which lies below the deepest zones containing usable ground waters. For the study, usable ground water is considered to be that which contains less than 10,000 mg/L dissolved solids. Using a group of geohydrologic parameters derived from or combining 21 categories of basic data, established from study and interpretation of well cuttings and geophysical logs, a series of 32 regional maps and 8 stratigraphic cross sections was constructed. For each of the eight geologic units delineated in the subsurface, the maps illustrate the distribution of waste-storage potential in terms of areal extent, depth below land surface, sand-shale geometry, and the approximate sodium chloride concentration of a unit 's nonusable ground water. In areas where the geologic units contain nonusable ground water, the depth below land surface and the thickness of potential waste-storage reservoir and reservoir-seal combinations are variable. The range in variability appears to be broad enough to meet the need for a wide choice among the geologic requirements that would normally be considered in selecting specific waste-storage sites for detailed examination. (Woodard-USGS)

  15. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...

  16. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...

  17. 40 CFR 266.205 - Standards applicable to the storage of solid waste military munitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... solid waste military munitions. 266.205 Section 266.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.205 Standards...

  18. Increase in energy efficiency of use of vegetable waste

    NASA Astrophysics Data System (ADS)

    Safin, R. R.; Safiullina, A. K.; Nazipova, F. V.

    2017-10-01

    Wastes of woodworking which are exposed to granulation for equalization of humidity, dispersion and also for increase in energy efficiency are the most widespread types of alternative fuel in Russia. Besides, one of the effective methods of the increase in calorific capability of granulates now is the preliminary torrefaction of wood waste - heat treatment without air oxygen access. However this technology is rather researched in detail only in relation to wood particles, while pellets from wastes of agricultural productions are also popular in the market in recent years. The possibility of the increase of the efficiency of production of pellets from sunflower pod by torrefaction is considered in this article, and the analysis of their characteristics in comparison with wood pellets is carried out. It is established that the process of heat treatment of waste of sunflower production is similar to torrefaction of wood raw materials in many respects; therefore, the equipment with similar characteristics can be used. According to the received results on pellet’s properties it is established that hygroscopicity and swelling of samples of fuel granules from sunflower pod considerably decreases with the increase in temperature of treatment that simplifies requirements for their storage and transportation. Besides, it is defined that torrefaction of the granulated fuel from sunflower pod does not yield in calorific properties to the similar fuel granules made of wood sawdust. Thus feasibility of use of heat treatment in production of fuel granules from waste of vegetable raw materials is proved.

  19. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-04-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from December 31, 1997 through April 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions in preparation for the March 30-31, 1998 NGA Federal Facilities Compliance Task Force Meeting with DOE. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.« less

  20. Public health response to striking solid waste management.

    PubMed

    Murti, Michelle; Ayre, Reg; Shapiro, Howard; de Burger, Ron

    2011-10-01

    In 2009, the City of Toronto, Ontario, Canada, experienced a six-week labor disruption involving 24,000 city workers that included solid waste and public health employees. In an attempt to control illegal dumping and to manage garbage storage across the city during this period, 24 temporary garbage storage sites were established by the city (mostly in local parks) for residents to dispose of their household waste. No other municipality in North America has attempted to operate this many temporary sites for this long a period. Management and nonunion staff from Healthy Environments in Toronto Public Health performed daily inspections, responded to community questions, issued public health orders, and worked closely with Solid Waste Management and the Ministry of the Environment to actively manage the public health concerns associated with these sites. This intensive oversight mitigated public health risks to the community and facilitated an effective, safe solution to the temporary garbage storage problem.

  1. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    PubMed

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Investigation of potential waste material insulating properties at different temperature for thermal storage application

    NASA Astrophysics Data System (ADS)

    Ali, T. Z. S.; Rosli, A. B.; Gan, L. M.; Billy, A. S.; Farid, Z.

    2013-12-01

    Thermal energy storage system (TES) is developed to extend the operation of power generation. TES system is a key component in a solar energy power generation plant, but the main issue in designing the TES system is its thermal capacity of storage materials, e.g. insulator. This study is focusing on the potential waste material acts as an insulator for thermal energy storage applications. As the insulator is used to absorb heat, it is needed to find suitable material for energy conversion and at the same time reduce the waste generation. Thus, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room is conducted. The experiment is repeated by changing the insulator from the potential waste material and also by changing the heat transfer fluid (HTF). The analysis presented the relationship between heat loss and the reserved period by the insulator. The results show the percentage of period of the insulated tank withstands compared to tank insulated by foam, e.g. newspaper reserved the period of 84.6% as much as foam insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator for different temperature range of heat transfer fluid.

  3. Unitized regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  4. Computer vision barrel inspection

    NASA Astrophysics Data System (ADS)

    Wolfe, William J.; Gunderson, James; Walworth, Matthew E.

    1994-02-01

    One of the Department of Energy's (DOE) ongoing tasks is the storage and inspection of a large number of waste barrels containing a variety of hazardous substances. Martin Marietta is currently contracted to develop a robotic system -- the Intelligent Mobile Sensor System (IMSS) -- for the automatic monitoring and inspection of these barrels. The IMSS is a mobile robot with multiple sensors: video cameras, illuminators, laser ranging and barcode reader. We assisted Martin Marietta in this task, specifically in the development of image processing algorithms that recognize and classify the barrel labels. Our subsystem uses video images to detect and locate the barcode, so that the barcode reader can be pointed at the barcode.

  5. Resource Conservation and Recovery Act (RCRA) Part B Permit Application for Production Associated Units at the Oak Ridge Y-12 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This is the RCRA required permit application for Radioactive and Hazardous Waste Management at the Oak Ridge Y-12 Plant for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; Cyanide Treatment Unit. All four of these units are associated with the recovery of enriched uranium and other metals from wastes generated during the processing of nuclear materials.

  6. Method for storage of solid waste

    DOEpatents

    Mecham, William J.

    1976-01-01

    Metal canisters for long-term storage of calcined highlevel radioactive wastes can be made self-sealing against a breach in the canister wall by the addition of powdered cement to the canister with the calcine before it is sealed for storage. Any breach in the canister wall will permit entry of water which will mix with the cement and harden to form a concrete patch, thus sealing the opening in the wall of the canister and preventing the release of radioactive material to the cooling water or atmosphere.

  7. The state of municipal solid waste management in Israel.

    PubMed

    Daskal, Shira; Ayalon, Ofira; Shechter, Mordechai

    2018-06-01

    Regulation is a key tool for implementing municipal solid waste (MSW) management strategies and plans. While local authorities in Israel are responsible for the storage, collection, and disposal of MSW, Israel's Ministry of Environmental Protection (MoEP) is responsible for the formulation and implementation of waste management policies and legislation. For the past 12 years, about 80% of the MSW in Israel has been landfilled and recycling rates have not increased, despite regulations. This paper presents the state of MSW management in Israel in light of the MoEP's strategic goal of landfilling reduction, the regulations and legislation designed and implemented for achieving this goal, and the ensuing results. Among other things, the results indicate the importance of monitoring and assessing policy and regulations to examine whether regulation is in fact effective and whether it keeps track of its own targets and goals or not. It is also concluded that even when there is an extensive regulation that includes a wide range of laws, economic penalties and financial incentives (such as landfill levy and financing of MSW separation at source arrangements), this does not guarantee proper treatment or even an improvement in waste management. The key to success is first and foremost a suitable infrastructure that will enable achievement of the desired results.

  8. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  9. Practices and challenges of infectious waste management: A qualitative descriptive study from tertiary care hospitals in Pakistan

    PubMed Central

    Kumar, Ramesh; Shaikh, Babar Tasneem; Somrongthong, Ratana; Chapman, Robert S

    2015-01-01

    Background and Objective: Infectious waste management practices among health care workers in the tertiary care hospitals have been questionable. The study intended to identify issues that impede a proper infectious waste management. Methods: Besides direct observation, in-depths interviews were conducted with the hospital administrators and senior management involved in healthcare waste management during March 2014. We looked at the processes related to segregation, collection, storage and disposal of hospital waste, and identified variety of issues in all the steps. Results: Serious gaps and deficiencies were observed related to segregation, collection, storage and disposal of the hospital wastes, hence proving to be hazardous to the patients as well as the visitors. Poor safety, insufficient budget, lack of trainings, weak monitoring and supervision, and poor coordination has eventually resulted in improper waste management in the tertiary hospitals of Rawalpindi. Conclusion: Study has concluded that the poor resources and lack of healthcare worker’s training in infectious waste results in poor waste management at hospitals. PMID:26430405

  10. Towards Sustainable Ambon Bay: Evaluation of Solid Waste Management in Ambon City

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Miharja, M.; Iscahyono, A. F.; Arsallia, S.; Humaira, AN S.

    2017-07-01

    Ambon Bay is a strategic area in the context of regional economic development, however it also faced environmental problems due to economic development and the growth of population. One of the environmental problems in the Ambon Bay is the growing solid waste which in turn lowers the quality of the water. The purpose of this study is to evaluate solid waste management in the Ambon City and propose recommendation in order to reduce solid waste in the Ambon Bay. The analytical method used is descriptive analysis by comparing a number of criteria based on the concept of solid waste management in coastal region with the current conditions of solid waste management in Ambon City. Criteria for waste management are divided into generation, storage, collection, transport, transfer and disposal. From the results of analysis, it can be concluded that the components of solid waste management at transport, transfer, and disposal level are generally still adequate, but solid waste management at source, storage and collection level have to be improved.

  11. 40 CFR 265.72 - Manifest discrepancies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...

  12. 40 CFR 265.72 - Manifest discrepancies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...

  13. 40 CFR 265.72 - Manifest discrepancies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...

  14. 40 CFR 264.110 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post... and operators of: (1) All hazardous waste disposal facilities; (2) Waste piles and surface....115 (which concern closure) apply to the owners and operators of all hazardous waste management...

  15. 40 CFR 264.54 - Amendment of contingency plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 264.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency...

  16. 40 CFR 265.54 - Amendment of contingency plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 265.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND..., explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary...

  17. 40 CFR 265.54 - Amendment of contingency plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND..., explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary...

  18. 40 CFR 264.54 - Amendment of contingency plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 264.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency...

  19. 10 CFR 72.24 - Contents of application: Technical information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... radioactive waste, and/or reactor-related GTCC waste as appropriate, including how the ISFSI or MRS will be... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste as appropriate for...

  20. 40 CFR 191.02 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...

  1. 40 CFR 191.02 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...

  2. 40 CFR 191.02 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...

  3. 40 CFR 191.02 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...

  4. 40 CFR 262.104 - What are the minimum performance criteria?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste en route from a laboratory to an on-site hazardous waste accumulation area; or (2) To a treatment... hazardous waste and that it is prudent to transfer it directly to a treatment, storage, and disposal...) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE University Laboratories...

  5. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.101 Corrective action for...

  6. 40 CFR 264.101 - Corrective action for solid waste management units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.101 Corrective action for...

  7. 40 CFR 264.199 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264.199 Special requirements for incompatible wastes. (a) Incompatible...(b) is complied with. (b) Hazardous waste must not be placed in a tank system that has not been...

  8. 40 CFR 761.216 - Unmanifested waste report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Unmanifested waste report. 761.216... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.216 Unmanifested waste report. (a) If a facility accepts for storage or disposal any PCB waste from an off-site source without an accompanying manifest, or...

  9. 10 CFR 72.120 - General considerations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor-related GTCC waste in an MRS must include the design criteria for the proposed storage installation. These...

  10. 10 CFR 72.120 - General considerations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor-related GTCC waste in an MRS must include the design criteria for the proposed storage installation. These...

  11. 40 CFR 761.216 - Unmanifested waste report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Unmanifested waste report. 761.216... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.216 Unmanifested waste report. (a) If a facility accepts for storage or disposal any PCB waste from an off-site source without an accompanying manifest, or...

  12. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from April 30, 1998 through June 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.« less

  13. β-Irradiation Effects on the Formation and Stability of CaMoO4 in a Soda Lime Borosilicate Glass Ceramic for Nuclear Waste Storage.

    PubMed

    Patel, Karishma B; Boizot, Bruno; Facq, Sébastien P; Lampronti, Giulio I; Peuget, Sylvain; Schuller, Sophie; Farnan, Ian

    2017-02-06

    Molybdenum solubility is a limiting factor to actinide loading in nuclear waste glasses, as it initiates the formation of water-soluble crystalline phases such as alkali molybdates. To increase waste loading efficiency, alternative glass ceramic structures are sought that prove resistant to internal radiation resulting from radioisotope decay. In this study, selective formation of water-durable CaMoO 4 in a soda lime borosilicate is achieved by introducing up to 10 mol % MoO 3 in a 1:1 ratio to CaO using a sintering process. The resulting homogeneously dispersed spherical CaMoO 4 nanocrystallites were analyzed using electron microscopy, X-ray diffraction (XRD), Raman and electron paramagnetic resonance (EPR) spectroscopies prior to and post irradiation, which replicated internal β-irradiation damage on an accelerated scale. Following 0.77 to 1.34 GGy of 2.5 MeV electron radiation CaMoO 4 does not exhibit amorphization or significant transformation. Nor does irradiation induce glass-in-glass phase separation in the surrounding amorphous matrix, or the precipitation of other molybdates, thus proving that excess molybdenum can be successfully incorporated into a structure that it is resistant to β-irradiation proportional to 1000 years of storage without water-soluble byproducts. The CaMoO 4 crystallites do however exhibit a nonlinear Scherrer crystallite size pattern with dose, as determined by a Rietveld refinement of XRD patterns and an alteration in crystal quality as deduced by anisotropic peak changes in both XRD and Raman spectroscopy. Radiation-induced modifications in the CaMoO 4 tetragonal unit cell occurred primarily along the c-axis indicating relaxation of stacked calcium polyhedra. Concurrently, a strong reduction of Mo 6+ to Mo 5+ during irradiation is observed by EPR, which is believed to enhance Ca mobility. These combined results are used to hypothesize a crystallite size alteration model based on a combination of relaxation and diffusion-based processes initiated by added energy from β-impingement and second-order structural modifications induced by defect accumulation.

  14. 40 CFR 246.200-6 - Recommended procedures: Storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...

  15. 40 CFR 246.200-6 - Recommended procedures: Storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...

  16. 29 CFR 1926.857 - Storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...

  17. 40 CFR 246.200-6 - Recommended procedures: Storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...

  18. 40 CFR 246.200-6 - Recommended procedures: Storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...

  19. 29 CFR 1926.857 - Storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...

  20. 29 CFR 1926.857 - Storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...

  1. 29 CFR 1926.857 - Storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...

  2. 40 CFR 246.200-6 - Recommended procedures: Storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...

  3. 29 CFR 1926.857 - Storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Storage. 1926.857 Section 1926.857 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926.857 Storage. (a) The storage of waste... provide storage space for debris, provided falling material is not permitted to endanger the stability of...

  4. 40 CFR 761.65 - Storage for disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Storage for disposal. 761.65 Section... PROHIBITIONS Storage and Disposal § 761.65 Storage for disposal. This section applies to the storage for... greater. (a)(1) Storage limitations. Any PCB waste shall be disposed of as required by subpart D of this...

  5. 40 CFR 761.65 - Storage for disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Storage for disposal. 761.65 Section... PROHIBITIONS Storage and Disposal § 761.65 Storage for disposal. This section applies to the storage for... greater. (a)(1) Storage limitations. Any PCB waste shall be disposed of as required by subpart D of this...

  6. Waste Generation Overview Refresher, Course 21464

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    This course, Waste Generation Overview Refresher (COURSE 21464), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to- grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL.

  7. Evaporative oxidation treatability test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatmentmore » Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.« less

  8. U.S. Nuclear Regulatory Commission Role and Activities Related to U.S. Department of Energy Incidental Waste Determinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradford, A.H.; Esh, D.W.; Ridge, A.C.

    2006-07-01

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste (HLW) determinations. Under the NDAA, NRC performs consultative technical reviews of DOE's waste determinations and monitors DOE's disposal actions for such waste, but the NRC does not have regulatory authority over DOE's waste disposal activities. The NDAA provides the criteria that must be met to determine that waste is not HLW. The criteria require that the waste does not need to be disposedmore » of in a geologic repository, that highly radioactive radionuclides be removed to the maximum extent practical, and that the performance objectives of 10 CFR 61, Subpart C, be met. The performance objectives contain criteria for protection of the public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. This paper describes NRC's approach to implementing its responsibilities under the NDAA, as well as similar activities being performed for sites not covered by the NDAA. (authors)« less

  9. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the conditionmore » that the total uranium-233 ( 233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).« less

  10. Radon exposure at a radioactive waste storage facility.

    PubMed

    Manocchi, F H; Campos, M P; Dellamano, J C; Silva, G M

    2014-06-01

    The Waste Management Department of Nuclear and Energy Research Institute (IPEN) is responsible for the safety management of the waste generated at all internal research centers and that of other waste producers such as industry, medical facilities, and universities in Brazil. These waste materials, after treatment, are placed in an interim storage facility. Among them are (226)Ra needles used in radiotherapy, siliceous cake arising from conversion processes, and several other classes of waste from the nuclear fuel cycle, which contain Ra-226 producing (222)Rn gas daughter.In order to estimate the effective dose for workers due to radon inhalation, the radon concentration at the storage facility has been assessed within this study. Radon measurements have been carried out through the passive method with solid-state nuclear track detectors (CR-39) over a period of nine months, changing detectors every month in order to determine the long-term average levels of indoor radon concentrations. The radon concentration results, covering the period from June 2012 to March 2013, varied from 0.55 ± 0.05 to 5.19 ± 0.45 kBq m(-3). The effective dose due to (222)Rn inhalation was further assessed following ICRP Publication 65.

  11. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service followingmore » deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.« less

  12. 40 CFR 265.256 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.256 Special requirements for ignitable or reactive waste. (a) Ignitable or reactive waste must not be placed in a pile unless the waste and pile satisfy all applicable requirements of 40 CFR part 268, and: (1) Addition of the waste to an existing pile...

  13. 40 CFR 265.142 - Cost estimate for closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...

  14. 40 CFR 265.142 - Cost estimate for closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...

  15. 40 CFR 265.142 - Cost estimate for closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...

  16. 40 CFR 761.340 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... leaching characteristics for storage or disposal. (a) Existing accumulations of non-liquid, non-metal PCB bulk product waste. (b) Non-liquid, non-metal PCB bulk product waste from processes that continuously generate new waste. (c) Non-liquid PCB remediation waste from processes that continuously generate new...

  17. 40 CFR 265.110 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... the owners and operators of: (1) All hazardous waste disposal facilities; (2) Waste piles and surface... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...

  18. 40 CFR 264.13 - General waste analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...

  19. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  20. 40 CFR 264.76 - Unmanifested waste report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...

  1. 40 CFR 264.13 - General waste analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...

  2. 40 CFR 264.13 - General waste analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...

  3. 40 CFR 264.13 - General waste analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...

  4. 40 CFR 264.76 - Unmanifested waste report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...

  5. 40 CFR 265.13 - General waste analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...

  6. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  7. 40 CFR 264.76 - Unmanifested waste report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...

  8. 40 CFR 264.76 - Unmanifested waste report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...

  9. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  10. 40 CFR 265.13 - General waste analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...

  11. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  12. 40 CFR 265.13 - General waste analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...

  13. 40 CFR 264.76 - Unmanifested waste report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...

  14. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  15. 40 CFR 265.13 - General waste analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...

  16. Management of Legacy Spent Nuclear Fuel Wastes at the Chalk River Laboratories: The Challenges and Innovative Solutions Implemented - 13301

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schruder, Kristan; Goodwin, Derek

    2013-07-01

    AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for themore » ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)« less

  17. Waste handling and storage in the decontamination pilot projects of JAEA for environments of Fukushima

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, S.; Kawase, K.; Iijima, K.

    2013-07-01

    After the Fukushima Daiichi nuclear accident, Japan Atomic Energy Agency (JAEA) was chosen by the national government to conduct decontamination pilot projects at selected sites in Fukushima prefecture. Despite tight boundary conditions in terms of timescale and resources, the projects served their primary purpose to develop a knowledge base to support more effective planning and implementation of stepwise regional remediation of the evacuated zone. A range of established, modified and newly developed techniques were tested under realistic field conditions and their performance characteristics were determined. The results of the project can be summarized in terms of site characterization, cleanup andmore » waste management. A range of options were investigated to reduce the volumes of waste produced and to ensure that decontamination water could be cleaned to the extent that it could be discharged to normal drainage. Resultant solid wastes were packaged in standard flexible containers, labelled and stored at the remediation site (temporary storage until central interim storage becomes available). The designs of such temporary storage facilities were tailored to available sites, but all designs included measures to ensure mechanical stability (e.g., filling void spaces between containers with sand, graded cover with soil) and prevent releases to groundwater (impermeable base and cap, gravity flow drainage including radiation monitors and catch tanks). Storage site monitoring was also needed to check that storage structures would not be perturbed by external events that could include typhoons, heavy snowfalls, freeze/thaw cycles and earthquakes. (authors)« less

  18. 40 CFR 273.53 - Storage time limits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transfer facility for ten days or less. (b) If a universal waste transporter stores universal waste for more than ten days, the transporter becomes a universal waste handler and must comply with the...

  19. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  20. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  1. Radioactive waste material melter apparatus

    DOEpatents

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  2. Leaking Underground Storage Tank (LUST) Trust Fund

    EPA Pesticide Factsheets

    In 1986, Congress created the Leaking Underground Storage Tank (LUST) Trust Fund to address releases from federally regulated underground storage tanks (USTs) by amending Subtitle I of the Solid Waste Disposal Act.

  3. Design Improvements and Analysis of Innovative High-Level Waste Pipeline Unplugging Technologies - 12171

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribanic, Tomas; Awwad, Amer; Crespo, Jairo

    2012-07-01

    Transferring high-level waste (HLW) between storage tanks or to treatment facilities is a common practice performed at the Department of Energy (DoE) sites. Changes in the chemical and/or physical properties of the HLW slurry during the transfer process may lead to the formation of blockages inside the pipelines resulting in schedule delays and increased costs. To improve DoE's capabilities in the event of a pipeline plugging incident, FIU has continued to develop two novel unplugging technologies: an asynchronous pulsing system and a peristaltic crawler. The asynchronous pulsing system uses a hydraulic pulse generator to create pressure disturbances at two oppositemore » inlet locations of the pipeline to dislodge blockages by attacking the plug from both sides remotely. The peristaltic crawler is a pneumatic/hydraulic operated crawler that propels itself by a sequence of pressurization/depressurization of cavities (inner tubes). The crawler includes a frontal attachment that has a hydraulically powered unplugging tool. In this paper, details of the asynchronous pulsing system's ability to unplug a pipeline on a small-scale test-bed and results from the experimental testing of the second generation peristaltic crawler are provided. The paper concludes with future improvements for the third generation crawler and a recommended path forward for the asynchronous pulsing testing. (authors)« less

  4. Special Analysis for the Disposal of the Materials and Energy Corporation Sealed Sources at the Area 5 Radioactive Waste Management Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory

    This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.

  5. Savannah River Site Eastern Transportation Hub: A Concept For a DOE Eastern Packaging, Staging and Maintenance Center - 13143

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, Jeffery L.; Adams, Karen; Maxted, Maxcine

    2013-07-01

    The Department of Energy (DOE) is working to de-inventory sites and consolidate hazardous materials for processing and disposal. The DOE administers a wide range of certified shipping packages for the transport of hazardous materials to include Special Nuclear Material (SNM), radioactive materials, sealed sources and radioactive wastes. A critical element to successful and safe transportation of these materials is the availability of certified shipping packages. There are over seven thousand certified packagings (i.e., Type B/Type AF) utilized within the DOE for current missions. The synergistic effects of consolidated maintenance, refurbishment, testing, certification, and costing of these services would allow formore » efficient management of the packagings inventory and to support anticipated future in-commerce shipping needs. The Savannah River Site (SRS) receives and ships radioactive materials (including SNM) and waste on a regular basis for critical missions such as consolidated storage, stabilization, purification, or disposition using H-Canyon and HB-Line. The Savannah River National Laboratory (SRNL) has the technical capability and equipment for all aspects of packaging management. SRS has the only active material processing facility in the DOE complex and is one of the sites of choice for nuclear material consolidation. SRS is a logical location to perform maintenance and periodic testing of the DOE fleet of certified packagings. This initiative envisions a DOE Eastern Packaging Staging and Maintenance Center (PSMC) at the SRS and a western hub at the Nevada National Security Site (NNSS), an active DOE Regional Disposal Site. The PSMC's would be the first place DOE would go to meet their radioactive packaging needs and the primary locations projects would go to disposition excess packaging for beneficial reuse. These two hubs would provide the centralized management of a packaging fleet rather than the current approach to design, procure, maintain and dispose of packagings on a project-by-project basis. This initiative provides significant savings in packaging costs and acceleration of project schedules. In addition to certified packaging, the PSMC would be well suited for select designs of 7A Type A packaging and Industrial Packaging. (authors)« less

  6. Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, V.

    Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton,more » Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.« less

  7. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conca, James; Wright, Judith

    2012-07-01

    To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all aboutmore » the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific community. (authors)« less

  8. 40 CFR 265.257 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.257 Special requirements for incompatible wastes. (a... the same pile, unless § 265.17(b) is complied with. (b) A pile of hazardous waste that is incompatible with any waste or other material stored nearby in other containers, piles, open tanks, or surface...

  9. 40 CFR 761.211 - Unmanifested waste report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Unmanifested waste report. (a) After April 4, 1990, if a PCB commercial storage or disposal facility receives any shipment of PCB waste from an off...), and any part of the shipment consists of any PCB waste regulated for disposal, then the owner or...

  10. 40 CFR 761.211 - Unmanifested waste report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Unmanifested waste report. (a) After April 4, 1990, if a PCB commercial storage or disposal facility receives any shipment of PCB waste from an off...), and any part of the shipment consists of any PCB waste regulated for disposal, then the owner or...

  11. 40 CFR 761.211 - Unmanifested waste report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Unmanifested waste report. (a) After April 4, 1990, if a PCB commercial storage or disposal facility receives any shipment of PCB waste from an off...), and any part of the shipment consists of any PCB waste regulated for disposal, then the owner or...

  12. 40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 265.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste... hazardous waste in overpacked drums (lab packs). 265.316 Section 265.316 Protection of Environment...

  13. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment...

  14. 40 CFR 264.31 - Design and operation of facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...

  15. 40 CFR 264.31 - Design and operation of facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...

  16. 40 CFR 264.31 - Design and operation of facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...

  17. 40 CFR 264.142 - Cost estimate for closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...

  18. 40 CFR 264.142 - Cost estimate for closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...

  19. 40 CFR 264.142 - Cost estimate for closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...

  20. 40 CFR 264.142 - Cost estimate for closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...

  1. 40 CFR 264.31 - Design and operation of facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...

  2. 40 CFR 264.229 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reactive waste. 264.229 Section 264.229 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.229 Special requirements for ignitable or reactive...

  3. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann M. Beauchesne

    1999-07-30

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from May 1, 1999, through July 30, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and Secretary Richardson.« less

  4. The nitrate to ammonia and ceramic (NAC) process for the denitration and immobilization of low-level radioactive liquid waste (LLW)

    NASA Astrophysics Data System (ADS)

    Muguercia, Ivan

    Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the lower temperature range investigated. With respect to leachability, the experimental final NAC ceramic waste form is comparable to the final product of vitrification, the technology chosen by DOE to treat these wastes. As the NAC process has the potential of reducing the volume of nitrate-based radioactive liquid waste by as much as 70 percent, it not only promises to enhance environmental remediation efforts but also effect substantial cost savings.

  5. Glasses for immobilization of low- and intermediate-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Omel'yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.; Nikonov, B. S.

    2013-03-01

    Reprocessing of spent nuclear fuel (SNF) for recovery of fissionable elements is a precondition of long-term development of nuclear energetics. Solution of this problem is hindered by the production of a great amount of liquid waste; 99% of its volume is low- and intermediate-level radioactive waste (LILW). The volume of high-level radioactive waste (HLW), which is characterized by high heat release, does not exceed a fraction of a percent. Solubility of glasses at an elevated temperature makes them unfit for immobilization of HLW, the insulation of which is ensured only by mineral-like matrices. At the same time, glasses are a perfect matrix for LILW, which are distinguished by low heat release. The solubility of borosilicate glass at a low temperature is so low that even a glass with relatively low resistance enables them to retain safety of under-ground LILW depositories without additional engineering barriers. The optimal technology of liquid confinement is their concentration and immobilization in borosilicate glasses, which are disposed in shallow-seated geological repositories. The vitrification of 1 m3 liquid LILW with a salt concentration of ˜300 kg/m3 leaves behind only 0.2 m3 waste, that is, 4-6 times less than by bitumen impregnation and 10 times less than by cementation. Environmental and economic advantages of LILW vitrification result from (1) low solubility of the vitrified LILW in natural water; (2) significant reduction of LILW volume; (3) possibility to dispose the vitrified waste without additional engineering barriers under shallow conditions and in diverse geological media; (4) the strength of glass makes its transportation and storage possible; and finally (5) reliable longterm safety of repositories. When the composition of the glass matrix for LILW is being chosen, attention should be paid to the factors that ensure high technological and economic efficiency of vitrification. The study of vitrified LILW from the Kursk nuclear power plant with high-power channel reactors (HPCR; equivalent Russian acronym, RBMK) and the Kalinin nuclear power plant with pressurized water reactors (PWR; equivalent Russian acronym VVER) after their 14-yr storage in the shallow-seated repository at the MosNPO Radon testing ground has confirmed the safety of repositories ensured by confinement properties of borosilicate matrix. The most efficient vitrification technology is based on cold crucible induction melting. If the content of a chemical element in waste exceeds its solubility in glass, a crystalline phase is formed in the course of vitrification, so that the glass ceramics become a matrix for such waste. Vitrified waste with high Fe; Na and Al; Na, Fe, and Al; Na and B is characterized. The composition of frit and its proportion to waste depends on waste composition. This procedure requires careful laboratory testing.

  6. 40 CFR 266.255 - When is your LLMW no longer eligible for the storage and treatment conditional exemption?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false When is your LLMW no longer eligible for the storage and treatment conditional exemption? 266.255 Section 266.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES O...

  7. 125. ARAI Contaminated waste storage tank (ARA729). Shows location of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    125. ARA-I Contaminated waste storage tank (ARA-729). Shows location of tank on the ARA-I site, section views, connecting pipeline, and other details. Norman Engineering Company 961-area/SF-301-3. Date: January 1959. Ineel index code no. 068-0301-00-613-102711. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  8. Hospital waste management in El-Beheira Governorate, Egypt.

    PubMed

    Abd El-Salam, Magda Magdy

    2010-01-01

    This study investigated the hospital waste management practices used by eight randomly selected hospitals located in Damanhour City of El-Beheira Governorate and determined the total daily generation rate of their wastes. Physico-chemical characteristics of hospital wastes were determined according to standard methods. A survey was conducted using a questionnaire to collect information about the practices related to waste segregation, collection procedures, the type of temporary storage containers, on-site transport and central storage area, treatment of wastes, off-site transport, and final disposal options. This study indicated that the quantity of medical waste generated by these hospitals was 1.249tons/day. Almost two-thirds was waste similar to domestic waste. The remainder (38.9%) was considered to be hazardous waste. The survey results showed that segregation of all wastes was not conducted according to consistent rules and standards where some quantity of medical waste was disposed of with domestic wastes. The most frequently used treatment method for solid medical waste was incineration which is not accepted at the current time due to the risks associated with it. Only one of the hospitals was equipped with an incinerator which is devoid of any air pollution control system. Autoclaving was also used in only one of the selected hospitals. As for the liquid medical waste, the survey results indicated that nearly all of the surveyed hospitals were discharging it in the municipal sewerage system without any treatment. It was concluded that the inadequacies in the current hospital waste management practices in Damanhour City were mainly related to ineffective segregation at the source, inappropriate collection methods, unsafe storage of waste, insufficient financial and human resources for proper management, and poor control of waste disposal. The other issues that need to be considered are a lack of appropriate protective equipment and lack of training and clear lines of responsibilities between the departments involved in hospital waste management. Effective medical waste management programs are multisectoral and require cooperation between all levels of implementation, from national and local governments to hospital staff and private businesses. 2009 Elsevier Ltd. All rights reserved.

  9. 78 FR 73566 - Standard Format and Content for a License Application for an Independent Spent Fuel Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-3042, ``Standard Format and Content for a License Application for an Independent Spent Fuel Storage Installation or a Monitored Retrievable Storage Facility.'' This draft regulatory guide is proposed revision 2 of Regulatory Guide 3.50, which provides a format that the NRC considers acceptable for submitting the information for license applications to store spent nuclear fuel, high-level radioactive waste, and/or reactor-related Greater than Class C waste.

  10. Integrated waste management system costs in a MPC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supko, E.M.

    1995-12-01

    The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility.

  11. 40 CFR 264.551 - Grandfathered Corrective Action Management Units (CAMUs).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... risks to humans or to the environment resulting from exposure to hazardous wastes or hazardous... human health and the environment, to include, for areas where wastes will remain in place, monitoring... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...

  12. 40 CFR 264.551 - Grandfathered Corrective Action Management Units (CAMUs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... risks to humans or to the environment resulting from exposure to hazardous wastes or hazardous... human health and the environment, to include, for areas where wastes will remain in place, monitoring... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...

  13. 40 CFR 264.113 - Closure; time allowed for closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....113 Section 264.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... the final volume of hazardous wastes, or the final volume of non-hazardous wastes if the owner or...

  14. 40 CFR 240.206-3 - Recommended procedures: Operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended... spillages occur, emptying the solid waste storage area at least weekly, and routinely cleaning the remainder of the facility. (b) Solid waste and residue should not be allowed to accumulate at the facility for...

  15. 40 CFR 265.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure and... as long as it remains in service as a munitions or explosives magazine or storage unit. (b) If, after...

  16. 40 CFR 265.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure and... as long as it remains in service as a munitions or explosives magazine or storage unit. (b) If, after...

  17. 40 CFR 265.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure and... as long as it remains in service as a munitions or explosives magazine or storage unit. (b) If, after...

  18. 40 CFR 265.1202 - Closure and post-closure care.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure and... as long as it remains in service as a munitions or explosives magazine or storage unit. (b) If, after...

  19. Novel Fission-Product Separation based on Room-Temperature Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Robin D.

    2004-12-31

    U.S. DOE's underground storage tanks at Hanford, SRS, and INEEL contain liquid wastes with high concentrations of radioactive cesium-137 and strontium-90. Because the primary chemical components of alkaline supernatants are sodium nitrate and sodium hydroxide, the majority of this could be disposed of as low level waste if radioactive cesium-137 and strontium- 90 could be selectively removed. The underlying goal of this project was to investigate the application of ionic liquids as novel solvents for new solvent extraction processes for separation of cesium-137 and strontium-90 from tank wastes. Ionic liquids are a distinct sub-set of liquids, comprising only of cationsmore » and anions they are proving to be increasingly interesting fluids for application in systems from electrochemistry to energetic materials, and are also rapidly establishing their promise as viable media for synthesis and separations operations. Properties including low melting points, electrochemical conductivity, wide liquid ranges, lack of vapor-pressure, and chemical tunability have encouraged researchers to explore the uses of ILs in place of volatile organic solvents. The most promising current developments arise from control of the unique combinations of chemical and physical properties characteristic of ionic liquids.« less

  20. Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A; Burks, Barry L; Quigley, Keith D

    2001-09-28

    The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. Thismore » review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.« less

  1. Pipe overpack container for trasuranic waste storage and shipment

    DOEpatents

    Geinitz, Richard R.; Thorp, Donald T.; Rivera, Michael A.

    1999-01-01

    A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

  2. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann M. Beauchesne

    1999-04-30

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from February 1, 1999, through April 30, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and continued to serve as a liaison between the NGA FFCA Task Force states and the Department.« less

  3. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann B. Beauchesne

    1998-09-30

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: (1) Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; (2) Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; (3) Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect onmore » individual sites in the complex; (4) Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; (5) Interstate waste and materials shipments; and (6) Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from June 1, 1998 through September 30, 1998, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: (1) maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; (2) maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and (3) continued to serve as a liaison between the NGA FFCA Task Force states and the Department.« less

  4. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann M. Beauchesne

    1999-01-31

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: (1) Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; (2) Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; (3) Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect onmore » individual sites in the complex; (4) Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; (5) Interstate waste and materials shipments; and (6) Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1998 through January 31, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: (1) maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; (2) maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and (3) continued to serve as a liaison between the NGA FFCA Task Force states and the Department.« less

  5. Process for disposal of aqueous solutions containing radioactive isotopes

    DOEpatents

    Colombo, Peter; Neilson, Jr., Robert M.; Becker, Walter W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99.degree. C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump.

  6. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.

    2013-07-01

    Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. Themore » initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  8. 300 Area waste acid treatment system closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to themore » General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.« less

  9. Batch Tests with IONSIV IE-911 and a Simulant of the Savannah River Site ''Average'' Supernatant: Distribution Ratios vs Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, K.K.; Collins, J.L.; Hunt, R.D.

    1999-02-01

    The Department of Energy (DOE) is required by law to treat and safely dispose of the radioactive wastes from its nuclear weapon production activities. The primary radionuclide in the DOE liquid wastes or supernatants is {sup 137}Cs. At the Savannah River Site (SRS), the In-Tank Precipitation (ITP) process was selected as the baseline technology to remove {sup 137}Cs from the supernatants, which are stored in underground storage tanks. In the ITP process, tetraphenylborate reacts with the water-soluble cesium to form a precipitant. The treated supernatant can then be immobilized in grout or saltstone and stored in vaults at the SRS.more » However, problems were encountered during the full-scale ITP processing. These difficulties have led to the evaluation of alternative technologies and/or concepts to the currently configured ITP process. The High-Level Waste Salt Disposition Team at the SRS is currently performing this assessment. After an initial screening of all potential alternatives, the Salt Disposition Team selected four primary options to evaluate further before the final down-selection. Crystalline silicotitanate (CST), an inorganic ion exchanger, was chosen as one of the leading alternatives. Since nearly all of the CST tests have been performed on supernatants from Hanford and Oak Ridge, the Salt Disposition Team has requested that personnel at the SRS and Oak Ridge National Laboratory (ORNL) determine the performance of the engineered form of CST, IONSIV{reg_sign} IE-911, with actual and simulated SRS supernatants.« less

  10. Waste Information Management System: One Year After Web Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.

    2008-07-01

    The implementation of the Department of Energy (DOE) mandated accelerated cleanup program created significant potential technical impediments. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast information regarding the volumes and types of waste that would be generated by DOEmore » sites over the next 30 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. A common application allows identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the deployment of this fully operational, web-based forecast system. New functional modules and annual waste forecast data updates have been added to ensure the long-term viability and value of this system. In conclusion: WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. WIMS has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different database and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made over the year since its web deployment include the addition of new DOE sites, an updated data set, and the ability to easily print the forecast data tables, the disposition maps, and the GIS maps. Future enhancements will include a high-level waste summary, a display of waste forecast by mode of transportation, and a user help module. The waste summary display module will provide a high-level summary view of the waste forecast data based on the selection of sites, facilities, material types, and forecast years. The waste summary report module will allow users to build custom filtered reports in a variety of formats, such as MS Excel, MS Word, and PDF. The user help module will provide a step-by-step explanation of various modules, using screen shots and general tutorials. The help module will also provide instructions for printing and margin/layout settings to assist users in using their local printers to print maps and reports. (authors)« less

  11. DWPF Safely Dispositioning Liquid Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-01-05

    The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.

  12. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF)more » and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.« less

  13. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    NASA Astrophysics Data System (ADS)

    Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.

    2011-04-01

    The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.

  14. Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage.

    PubMed

    Ma, Qinglang; Yu, Yifu; Sindoro, Melinda; Fane, Anthony G; Wang, Rong; Zhang, Hua

    2017-04-01

    Carbon-based functional materials hold the key for solving global challenges in the areas of water scarcity and the energy crisis. Although carbon nanotubes (CNTs) and graphene have shown promising results in various fields of application, their high preparation cost and low production yield still dramatically hinder their wide practical applications. Therefore, there is an urgent call for preparing carbon-based functional materials from low-cost, abundant, and sustainable sources. Recent innovative strategies have been developed to convert various waste materials into valuable carbon-based functional materials. These waste-derived carbon-based functional materials have shown great potential in many applications, especially as sorbents for water remediation and electrodes for energy storage. Here, the research progress in the preparation of waste-derived carbon-based functional materials is summarized, along with their applications in water remediation and energy storage; challenges and future research directions in this emerging research field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ethan W. Brown

    2001-09-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from April 1, 2001 through June 30, 2001, under the NGA grant.« less

  16. Structural and seismic analyses of waste facility reinforced concrete storage vaults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.Y.

    1995-07-01

    Facility 317 of Argonne National Laboratory consists of several reinforced concrete waste storage vaults designed and constructed in the late 1940`s through the early 1960`s. In this paper, structural analyses of these concrete vaults subjected to various natural hazards are described, emphasizing the northwest shallow vault. The natural phenomenon hazards considered include both earthquakes and tornados. Because these vaults are deeply embedded in the soil, the SASSI (System Analysis of Soil-Structure Interaction) code was utilized for the seismic calculations. The ultimate strength method was used to analyze the reinforced concrete structures. In all studies, moment and shear strengths at criticalmore » locations of the storage vaults were evaluated. Results of the structural analyses show that almost all the waste storage vaults meet the code requirements according to ACI 349--85. These vaults also satisfy the performance goal such that confinement of hazardous materials is maintained and functioning of the facility is not interrupted.« less

  17. Removal or storage of environmental pollutants and alternative fuel sources with inorganic adsorbents via host–guest encapsulation

    DOE PAGES

    Cramer, Alisha J.; Cole, Jacqueline M.

    2017-05-08

    The ever-increasing demands of the modern world continue to place substantial strain on the environment. To help alleviate the damage done to the natural world, the encapsulation of small molecules or ions (guests) into porous inorganic structural frameworks (hosts) provides a potential remedy for some of the environmental concerns facing us today. These concerns include the removal of harmful pollutants from water or air, the safe entrapment of nuclear waste materials, or the purification and storage of small molecules that act as alternative fuel sources. For this study, we review the trends in using inorganic materials as hostmedia for themore » removal or storage of various wastes and alternative fuels. In conclusion, we cover the treatment of water contaminated with dyes or heavy metals, air pollution alleviation via CO 2, SO x, NO x, and volatile organic compound containment, nuclear waste immobilization, and storage for H 2 and methane as alternative fuels.« less

  18. 40 CFR 264.51 - Purpose and implementation of contingency plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...

  19. 40 CFR 264.51 - Purpose and implementation of contingency plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...

  20. 40 CFR 264.51 - Purpose and implementation of contingency plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...

  1. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...

  2. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...

  3. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...

  4. 40 CFR 264.51 - Purpose and implementation of contingency plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water. (b) The provisions of the plan must be carried out immediately whenever there...

  5. 40 CFR 761.215 - Exception reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.215 Exception reporting. (a) A generator of PCB waste... the designated PCB commercial storage or disposal facility within 35 days of the date the waste was... commitments or other factors affecting the facility's disposal capacity, the disposer of PCB waste could not...

  6. 40 CFR 761.215 - Exception reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.215 Exception reporting. (a) A generator of PCB waste... the designated PCB commercial storage or disposal facility within 35 days of the date the waste was... commitments or other factors affecting the facility's disposal capacity, the disposer of PCB waste could not...

  7. 40 CFR 264.120 - Certification of completion of post-closure care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification that the post-closure care period for the hazardous waste disposal unit was performed in...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... later than 60 days after completion of the established post-closure care period for each hazardous waste...

  8. 40 CFR 761.61 - PCB remediation waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB remediation waste. 761.61 Section... PROHIBITIONS Storage and Disposal § 761.61 PCB remediation waste. This section provides cleanup and disposal options for PCB remediation waste. Any person cleaning up and disposing of PCBs managed under this section...

  9. Aqueous Electrochemical Mechanisms in Actinide Residue Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, David E.; Burns, Carol J.; Smith, Wayne H.

    2000-12-31

    Plutonium and uranium residues (e.g., incinerator ash, combustibles, and sand/slag/crucibles) resulting from the purification and processing of nuclear materials constitute an enormous volume of ''lean'' processing waste and represent a significant fraction of the U. S. Department of Energy's (DOE) legacy waste from fifty years of nuclear weapons production activities. Much of this material is presently in storage at sites throughout the DOE weapons production complex (most notably Rocky Flats, Savannah River and Hanford) awaiting further processing and/or final disposition. The chemical and physical stability of much of this material has been called into question recently by the Defense Nuclearmore » Facility Safety Board (DNFSB) and resulted in the issuance of a mandate by the DNFSB to undertake a program to stabilize these materials [1]. The ultimate disposition for much of these materials is anticipated to be geologic repositories such as the proposed Waste Isolation Pilot Plant in New Mexico. However, in light of the mandate to stabilize existing residues and the probable concomitant increase in the volume of material to be disposed as a result of stabilization (e.g., from repackaging at lower residue densities), the projected storage volume for these wastes within anticipated geologic repositories will likely be exceeded simply to handle existing wastes. Additional processing of some of these residue waste streams to reduce radionuclide activity levels, matrix volume, or both is a potentially important strategy to achieve both stabilization and volume reduction so that the anticipated geologic repositories will provide adequate storage volume. In general, the plutonium and uranium that remains in solid residue materials exists in a very stable chemical form (e.g., as binary oxides), and the options available to remove the actinides are limited. However, there have been some demonstrated successes in this vain using aqueous phase electrochemical methods such as the Catalyzed Electrochemical Plutonium Oxide Dissolution (CEPOD) process pioneered by workers at Pacific Northwest National Laboratory in the mid-1970s [2]. The basis for most of these mediated electrochemical oxidation/reduction (MEO/R) processes is the generation of a dissolved electrochemical catalyst, such as Ag2+, which is capable of oxidizing or reducing solid-phase actinide species or actinide sorbates via 7 heterogeneous electron transfer to oxidation states that have significantly greater solubilities (e.g., PuO2(s) to PuO2 2+ (dissolved)). The solubilized actinide can then be recovered by ion exchange or other mechanisms. These aqueous electrochemical methods for residue treatment have been considered in many of the ''trade studies'' to evaluate options for stabilization of the various categories of residue materials. While some concerns generally arise (e.g., large secondary waste volumes could results since the process stream normally goes th rough anion exchange or precipitation steps to remove the actinide), the real utility and versatility of these methods should not be overlooked. They are low temperature, ambient pressure processes that operate in a non-corrosive environment. In principle, they can be designed to be highly selective for the actinides (i.e., no substrate degradation occurs), they can be utilized for many categories of residue materials with little or no modification in hardware or operating conditions, and they can conceivably be engineered to minimize secondary waste stream volume. However, some fundamental questions remain concerning the mechanisms through which these processes act, and how the processes might be optimized to maximize efficiency while minimizing secondary waste. In addition, given the success achieved to date on the limited set of residues, further research is merited to extend the range of applicability of these electrochemical methods to other residue and waste streams. The principal goal of the work described here is to develop a fundamental understanding of the heterogeneous electron transfer thermodynamics and kinetics that lie at the heart of the MEO/R processes for actinide solids and actinide species entrained in or surface-bound to residue substrates. This has been accomplished as described in detail below through spectroscopic characterization of actinide-bearing substrates and electrochemical investigations of electron transfer reactions between uranium- and plutonium- (or surrogates) bearing solids (dispersed actinide solid phases and actinides sorbed to inorganic and organic colloids) and polarizable electrode materials. In general, the actinide solids or substrate-supported species were chosen to represent relevant residue materials (e.g., incinerator ash, sand/slag/crucible, and combustibles).« less

  10. Annual Summary of the Integrated Disposal Facility Performance Assessment 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, L. L.

    2012-03-12

    An annual summary of the adequacy of the Hanford Immobilized Low-Activity Waste (ILAW) Performance Assessment (PA) is required each year (DOE O 435.1 Chg 1,1 DOE M 435.1-1 Chg 1,2 DOE/ORP-2000-013). The most recently approved PA is DOE/ORP-2000-24.4 The ILAW PA evaluated the adequacy of the ILAW disposal facility, now referred to as the Integrated Disposal Facility (IDF), for the safe disposal of vitrified Hanford Site tank waste. More recently, a preliminary evaluation for the disposal of offsite low-level waste and mixed low-level waste was considered in RPP-1583.

  11. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in themore » HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. The PA is needed to satisfy both Washington State IDF Permit and DOE Order requirements. Cast Stone has been selected for solidification of radioactive wastes including WTP aqueous secondary wastes treated at the Effluent Treatment Facility (ETF) at Hanford. A similar waste form called Saltstone is used at the Savannah River Site (SRS) to solidify its LAW tank wastes.« less

  12. Birds of a Feather - Developments towards shared, regional geological disposal in the EU?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Codee, H.D.K.; Verhoef, E.V.; McCombie, Ch.

    2008-07-01

    Geological disposal is an essential component of the long-term management of spent fuel, high level and other long-lived radioactive waste. In the EU, all 25 member states generate radioactive waste. Of course, there are large differences in type and quantity between the member states, but all of them need a long-term solution. Even a country with only lightning rods with radium will need a long-term solution for the disposal. The 1600 year half-life of radium does not fit in a solution with a span of control of just a few hundred years. Implementation of a suitable deep repository may, however,more » be difficult or impossible for countries with small volumes of waste, because of the high costs involved. Will economy of scale force these birds of a feather to wait to flock together and share a repository? Implementing a small repository and operating it for very long times is very costly. There are past and current examples of countries being prepared to accept radioactive waste from others if a better environmental solution is thus achieved and if the arrangements are fair for all parties involved. The need for supranational surveillance also points to shared solutions. Although the European Parliament and the Commission have both supported the concept of shared regional repositories in Europe, (national) political and societal constraints have hampered the realization of such facilities up to now. The first step in this staged process was the EC funded project, SAPIERR I. The project (2003 to 2005) studied the feasibility of shared regional storage facilities and geological repositories, for use by European countries. It showed that, if shared regional repositories are to be implemented even some decades ahead, efforts must already be increased now. The next step in the process is to develop a practical implementation strategy and organizational structures to work on shared EU radioactive waste storage and disposal activities. This is addressed in the EC funded project SAPIERR II (2006-2008). The paper gives an update of the SAPIERR II project and describes the progress achieved. (authors)« less

  13. External Performance Evaluation Program Participation at Fluor Hanford (FH) 222S Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CLARK, G.A.

    2002-06-01

    Fluor Hanford operates the U. S. Department of Energy's (DOE) 2224 Laboratory on the Hanford Site in Southeastern Washington State. 222-S Laboratory recently celebrated its 50th anniversary of providing laboratory services to DOE and DOE contractors on the Hanford Site. The laboratory operated for many years as a production support analytical laboratory, but in the last two decades has supported the Hanford Site cleanup mission. The laboratory performs radioanalytical, inorganic, and organic characterization analyses on highly radioactive liquid and solid tank waste that will eventually be vitrified for long-term storage and or disposal. It is essential that the laboratory reportmore » defensible, highly credible data in its role as a service provider to DOE and DOE contractors. Among other things, the participation in a number of performance evaluation (PE) programs helps to ensure the credibility of the laboratory. The laboratory currently participates in Environmental Resource Associates' Water Pollution (WP) Studies and the DOE Environmental Management Laboratory (EML) Quality Assessment Program (QAP). DOE has mandated participation of the laboratory in the EML QAP. This EML program evaluates the competence of laboratories performing environmental radioanalytical measurements for DOE, and is the most comprehensive and well-established PE program in the DOE community for radiochemical laboratories. Samples are received and analyzed for radionuclides in air filter, soil, vegetation, and water matrices on a semiannual basis. The 222-S Laboratory has performed well in this program over the years as evidenced by the scores in the chart below.« less

  14. Opportunities for Cost Effective Disposal of Radioactively Contaminated Solid Waste on the Oak Ridge Reservation, Oak Ridge, TN - 13045

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMonia, Brian; Dunning, Don; Hampshire John

    2013-07-01

    Department of Energy (DOE) requirements for the release of non-real property, including solid waste, containing low levels of residual radioactive materials are specified in DOE Order 458.1 and associated guidance. Authorized limits have been approved under the requirements of DOE Order 5400.5, predecessor to DOE Order 458.1, to permit disposal of solid waste containing low levels of residual radioactive materials at solid waste landfills located within the DOE Oak Ridge Reservation (ORR). Specifically, volumetric concentration limits for disposal of solid waste at Industrial Landfill V and at Construction/Demolition Landfill VII were established in 2003 and 2007, respectively, based on themore » requirements in effect at that time, which included: an evaluation to ensure that radiation doses to the public would not exceed 25 mrem/year and would be as low as reasonably achievable (ALARA), with a goal of a few mrem/year or less (in fact, these authorized limits actually were derived to meet a dose constraint of 1 mrem/year); an evaluation of compliance with groundwater protection requirements; and reasonable assurance that the proposed disposal is not likely to result in a future requirement for remediation of the landfill. Prior to approval as DOE authorized limits, these volumetric concentration limits were coordinated with the Tennessee Department of Environment and Conservation (TDEC) and documented in a Memorandum of Understanding (MOU) between the TDEC Division of Radiological Health and the TDEC Division of Solid Waste Management. These limits apply to the disposal of soil and debris waste generated from construction, maintenance, environmental restoration, and decontamination and decommissioning (D and D) activities on the DOE Oak Ridge Reservation. The approved site-specific authorized limits were incorporated in the URS/CH2M Oak Ridge LLC (UCOR) waste profile system that authorizes disposal of special wastes at either of the RCRA Subtitle D landfills. However, a recent DOE assessment found that implementation of the site-specific authorized limits for volumetrically contaminated waste was potentially limited due in part to confusion regarding the applicability of volumetric concentration limits and/or surface activity limits to specific wastes. This paper describes recent efforts to update the authorized limits for Industrial Landfill V and Construction/Demolition Landfill VII and to improve the procedures for implementation of these criteria. The approved authorized limits have been evaluated and confirmed to meet the current requirements of DOE Order 458.1, which superseded DOE Order 5400.5 in February 2011. In addition, volumetric concentration limits have been developed for additional radionuclides, and site-specific authorized limits for wastes with surface contamination have been developed. Implementing procedures have been revised to clarify the applicability of volumetric concentration limits and surface activity limits, and to allow the use of non-destructive waste characterization methods. These changes have been designed to promote improved utilization of available disposal capacity of the onsite disposal facilities within the DOE Oak Ridge Reservation. In addition, these changes serve to bring the waste acceptance requirements at these DOE onsite landfills into greater consistency with the requirements for commercial/ public landfills under the TDEC Bulk Survey for Release (BSFR) program, including two public RCRA Subtitle D landfills in close proximity to the DOE Oak Ridge Reservation. (authors)« less

  15. Safety evaluation for packaging (onsite) concrete-lined waste packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, T.

    1997-09-25

    The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.

  16. 40 CFR 265.110 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...

  17. 40 CFR 264.110 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post....115 (which concern closure) apply to the owners and operators of all hazardous waste management...

  18. 40 CFR 261.142 - Cost estimate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary... hazardous waste, and the potential cost of closing the facility as a treatment, storage, and disposal...

  19. 40 CFR 261.142 - Cost estimate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary... hazardous waste, and the potential cost of closing the facility as a treatment, storage, and disposal...

  20. 40 CFR 261.142 - Cost estimate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary... hazardous waste, and the potential cost of closing the facility as a treatment, storage, and disposal...

Top