Younger, Andrew K D; Su, Peter Y; Shepard, Andrea J; Udani, Shreya V; Cybulski, Thaddeus R; Tyo, Keith E J; Leonard, Joshua N
2018-02-01
Naturally evolved metabolite-responsive biosensors enable applications in metabolic engineering, ranging from screening large genetic libraries to dynamically regulating biosynthetic pathways. However, there are many metabolites for which a natural biosensor does not exist. To address this need, we developed a general method for converting metabolite-binding proteins into metabolite-responsive transcription factors-Biosensor Engineering by Random Domain Insertion (BERDI). This approach takes advantage of an in vitro transposon insertion reaction to generate all possible insertions of a DNA-binding domain into a metabolite-binding protein, followed by fluorescence activated cell sorting to isolate functional biosensors. To develop and evaluate the BERDI method, we generated a library of candidate biosensors in which a zinc finger DNA-binding domain was inserted into maltose binding protein, which served as a model well-studied metabolite-binding protein. Library diversity was characterized by several methods, a selection scheme was deployed, and ultimately several distinct and functional maltose-responsive transcriptional biosensors were identified. We hypothesize that the BERDI method comprises a generalizable strategy that may ultimately be applied to convert a wide range of metabolite-binding proteins into novel biosensors for applications in metabolic engineering and synthetic biology. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lim, Kwang-il; Klimczak, Ryan; Yu, Julie H.; Schaffer, David V.
2010-01-01
Retroviral vectors offer benefits of efficient delivery and stable gene expression; however, their clinical use raises the concerns of insertional mutagenesis and potential oncogenesis due to genomic integration preferences in transcriptional start sites (TSS). We have shifted the integration preferences of retroviral vectors by generating a library of viral variants with a DNA-binding domain inserted at random positions throughout murine leukemia virus Gag-Pol, then selecting for variants that are viable and exhibit altered integration properties. We found seven permissive zinc finger domain (ZFD) insertion sites throughout Gag-Pol, including within p12, reverse transcriptase, and integrase. Comprehensive genome integration analysis showed that several ZFD insertions yielded retroviral vector variants with shifted integration patterns that did not favor TSS. Furthermore, integration site analysis revealed selective integration for numerous mutants. For example, two retroviral variants with a given ZFD at appropriate positions in Gag-Pol strikingly integrated primarily into four common sites out of 3.1 × 109 possible human genome locations (P = 4.6 × 10-29). Our findings demonstrate that insertion of DNA-binding motifs into multiple locations in Gag-Pol can make considerable progress toward engineering safer retroviral vectors that integrate into a significantly narrowed pool of sites on human genome and overcome the preference for TSS. PMID:20616052
Method of generating ploynucleotides encoding enhanced folding variants
Bradbury, Andrew M.; Kiss, Csaba; Waldo, Geoffrey S.
2017-05-02
The invention provides directed evolution methods for improving the folding, solubility and stability (including thermostability) characteristics of polypeptides. In one aspect, the invention provides a method for generating folding and stability-enhanced variants of proteins, including but not limited to fluorescent proteins, chromophoric proteins and enzymes. In another aspect, the invention provides methods for generating thermostable variants of a target protein or polypeptide via an internal destabilization baiting strategy. Internally destabilization a protein of interest is achieved by inserting a heterologous, folding-destabilizing sequence (folding interference domain) within DNA encoding the protein of interest, evolving the protein sequences adjacent to the heterologous insertion to overcome the destabilization (using any number of mutagenesis methods), thereby creating a library of variants. The variants in the library are expressed, and those with enhanced folding characteristics selected.
A universal phage display system for the seamless construction of Fab libraries.
Nelson, Renae S; Valadon, Philippe
2017-11-01
The construction of Fab phage libraries requires the cloning of domains from both the light and the heavy chain of antibodies. Despite the advent of powerful strategies such as splicing-by-overlap extension PCR, obtaining high quality libraries with excellent coverage remains challenging. Here, we explored the use of type IIS restriction enzymes for the seamless cloning of Fab libraries. We analyzed human, murine and rabbit germline antibody repertoires and identified combinations of restriction enzymes that exhibit very few or no recognition sites in the antibody sequences. We describe three phagemid vectors, pUP-22Hb, pUP-22Mc and pUP-22Rc, which were employed for cloning the Fab repertoire of these hosts using BsmBI and SapI (human) or SapI alone (mouse and rabbit). Using human serum albumin as a model immunization, we built a mouse/human chimeric Fab library and a mouse Fab library in a single step ligation and successfully panned multiple cognate antibodies. The overall process is highly scalable and faster than PCR-based techniques, with a Fab insertion success rate of around 80%. By using carefully chosen overhangs on each end of the antibody domains, this approach paves the way to the universal, sequence- and vector-independent cloning and reformatting of antibody libraries. Copyright © 2017 Elsevier B.V. All rights reserved.
Mesarich, Carl H.; Rees-George, Jonathan; Gardner, Paul P.; Ghomi, Fatemeh Ashari; Gerth, Monica L.; Andersen, Mark T.; Rikkerink, Erik H. A.; Fineran, Peter C.
2017-01-01
Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit canker, is one of the most devastating plant diseases of recent times. We have generated two mini-Tn5-based random insertion libraries of Psa ICMP 18884. The first, a ‘phenotype of interest’ (POI) library, consists of 10,368 independent mutants gridded into 96-well plates. By replica plating onto selective media, the POI library was successfully screened for auxotrophic and motility mutants. Lipopolysaccharide (LPS) biosynthesis mutants with ‘Fuzzy-Spreader’-like morphologies were also identified through a visual screen. The second, a ‘mutant of interest’ (MOI) library, comprises around 96,000 independent mutants, also stored in 96-well plates, with approximately 200 individuals per well. The MOI library was sequenced on the Illumina MiSeq platform using Transposon-Directed Insertion site Sequencing (TraDIS) to map insertion sites onto the Psa genome. A grid-based PCR method was developed to recover individual mutants, and using this strategy, the MOI library was successfully screened for a putative LPS mutant not identified in the visual screen. The Psa chromosome and plasmid had 24,031 and 1,236 independent insertion events respectively, giving insertion frequencies of 3.65 and 16.6 per kb respectively. These data suggest that the MOI library is near saturation, with the theoretical probability of finding an insert in any one chromosomal gene estimated to be 97.5%. However, only 47% of chromosomal genes had insertions. This surprisingly low rate cannot be solely explained by the lack of insertions in essential genes, which would be expected to be around 5%. Strikingly, many accessory genes, including most of those encoding type III effectors, lacked insertions. In contrast, 94% of genes on the Psa plasmid had insertions, including for example, the type III effector HopAU1. These results suggest that some chromosomal sites are rendered inaccessible to transposon insertion, either by DNA-binding proteins or by the architecture of the nucleoid. PMID:28249011
White, K Makay; Matthews, Melinda K; Hughes, Rachel C; Sommer, Andrew J; Griffitts, Joel S; Newell, Peter D; Chaston, John M
2018-03-28
A metagenome wide association (MGWA) study of bacterial host association determinants in Drosophila predicted that LPS biosynthesis genes are significantly associated with host colonization. We were unable to create site-directed mutants for each of the predicted genes in Acetobacter , so we created an arrayed transposon insertion library using Acetobacter fabarum DsW_054 isolated from Drosophila Creation of the A. fabarum DsW_054 gene knock-out library was performed by combinatorial mapping and Illumina sequencing of random transposon insertion mutants. Transposon insertion locations for 6,418 mutants were successfully mapped, including hits within 63% of annotated genes in the A. fabarum DsW_054 genome. For 45/45 members of the library, insertion sites were verified by arbitrary PCR and Sanger sequencing. Mutants with insertions in four different LPS biosynthesis genes were selected from the library to validate the MGWA predictions. Insertion mutations in two genes biosynthetically upstream of Lipid-A formation, lpxC and lpxB , show significant differences in host association, whereas mutations in two genes encoding LPS biosynthesis functions downstream of Lipid-A biosynthesis had no effect. These results suggest an impact of bacterial cell surface molecules on the bacterial capacity for host association. Also, the transposon insertion mutant library will be a useful resource for ongoing research on the genetic basis for Acetobacter traits. Copyright © 2018 White et al.
Soares, Marcelo Bento; Bonaldo, Maria de Fatima
1998-01-01
This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods.
Soares, M.B.; Fatima Bonaldo, M. de
1998-12-08
This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods. 25 figs.
Using Phage Display to Create Recombinant Antibodies.
Dasch, James R; Dasch, Amy L
2017-09-01
A variety of phage display technologies have been developed since the approach was first described for antibodies. The most widely used approaches incorporate antibody sequences into the minor coat protein pIII of the nonlytic filamentous phage fd or M13. Libraries of variable gene sequences, encoding either scFv or Fab fragments, are made by incorporating sequences into phagemid vectors. The phagemid is packaged into phage particles with the assistance of a helper phage to produce the antibody display phage. This protocol describes a method for creating a phagemid library. The multiple cloning site (MCS) of the pBluescript KS(-) phagemid vector is replaced by digestion with the restriction enzyme BssHII, followed by the insertion of four overlapping oligonucleotides to create a new MCS within the vector. Next, the 3' portion of gene III (from M13mp18) is amplified and combined with an antibody sequence using overlap extension PCR. This product is inserted into the phagemid vector to create pPDS. Two helper plasmids are also created from the modified pBluescript vector: pLINK provides the linker between the heavy and light chains, and pFABC provides the CH1 domain of the heavy chain. An antibody cDNA library is constructed from the RNA of interest and ligated into pPDS. The phagemid library is electroporated into Escherichia coli cells along with the VCS-M13 helper phage. © 2017 Cold Spring Harbor Laboratory Press.
Construction of High-Quality Camel Immune Antibody Libraries.
Romão, Ema; Poignavent, Vianney; Vincke, Cécile; Ritzenthaler, Christophe; Muyldermans, Serge; Monsion, Baptiste
2018-01-01
Single-domain antibodies libraries of heavy-chain only immunoglobulins from camelids or shark are enriched for high-affinity antigen-specific binders by a short in vivo immunization. Thus, potent binders are readily retrieved from relatively small-sized libraries of 10 7 -10 8 individual transformants, mostly after phage display and panning on a purified target. However, the remaining drawback of this strategy arises from the need to generate a dedicated library, for nearly every envisaged target. Therefore, all the procedures that shorten and facilitate the construction of an immune library of best possible quality are definitely a step forward. In this chapter, we provide the protocol to generate a high-quality immune VHH library using the Golden Gate Cloning strategy employing an adapted phage display vector where a lethal ccdB gene has to be substituted by the VHH gene. With this procedure, the construction of the library can be shortened to less than a week starting from bleeding the animal. Our libraries exceed 10 8 individual transformants and close to 100% of the clones harbor a phage display vector having an insert with the length of a VHH gene. These libraries are also more economic to make than previous standard approaches using classical restriction enzymes and ligations. The quality of the Nanobodies that are retrieved from immune libraries obtained by Golden Gate Cloning is identical to those from immune libraries made according to the classical procedure.
Using PATIMDB to Create Bacterial Transposon Insertion Mutant Libraries
Urbach, Jonathan M.; Wei, Tao; Liberati, Nicole; Grenfell-Lee, Daniel; Villanueva, Jacinto; Wu, Gang; Ausubel, Frederick M.
2015-01-01
PATIMDB is a software package for facilitating the generation of transposon mutant insertion libraries. The software has two main functions: process tracking and automated sequence analysis. The process tracking function specifically includes recording the status and fates of multiwell plates and samples in various stages of library construction. Automated sequence analysis refers specifically to the pipeline of sequence analysis starting with ABI files from a sequencing facility and ending with insertion location identifications. The protocols in this unit describe installation and use of PATIMDB software. PMID:19343706
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullinax, R.L.; Gross, E.A.; Amberg, J.R.
1990-10-01
The authors have applied a molecular biology approach to the identification of human monoclonal antibodies. Human peripheral blood lymphocyte mRNA was converted to cDNA and a select subset was amplified by the polymerase chain reaction. These products, containing coding sequences for numerous immunoglobulin heavy- and {kappa} light-chain variable and constant region domains, were inserted into modified bacteriophase {lambda} expression vectors and introduced into Escherichia coli by infection to yield a combinatorial immunoexpression library. Clones with binding activity to tetanus toxoid were identified by filter hybridization with radiolabeled antigen and appeared at a frequency of 0.2{percent} in the library. These humanmore » antigen binding fragments, consisting of a heavy-chain fragment covalently linked to a light chain, displayed high affinity of binding to tetanus toxoid with equilibrium constants in the nanomolar range but did not cross-react with other proteins tested. They estimate that this human immunoexpression library contains 20,000 clones with high affinity and specificity to our chosen antigen.« less
Chen, Bo-Ruei; Hale, Devin C; Ciolek, Peter J; Runge, Kurt W
2012-05-03
Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches.
Rollefson, Janet B.; Levar, Caleb E.; Bond, Daniel R.
2009-01-01
Electron transfer from cells to metals and electrodes by the Fe(III)-reducing anaerobe Geobacter sulfurreducens requires proper expression of redox proteins and attachment mechanisms to interface bacteria with surfaces and neighboring cells. We hypothesized that transposon mutagenesis would complement targeted knockout studies in Geobacter spp. and identify novel genes involved in this process. Escherichia coli mating strains and plasmids were used to develop a conjugation protocol and deliver mini-Himar transposons, creating a library of over 8,000 mutants that was anaerobically arrayed and screened for a range of phenotypes, including auxotrophy for amino acids, inability to reduce Fe(III) citrate, and attachment to surfaces. Following protocol validation, mutants with strong phenotypes were further characterized in a three-electrode system to simultaneously quantify attachment, biofilm development, and respiratory parameters, revealing mutants defective in Fe(III) reduction but unaffected in electron transfer to electrodes (such as an insertion in GSU1330, a putative metal export protein) or defective in electrode reduction but demonstrating wild-type biofilm formation (due to an insertion upstream of the NHL domain protein GSU2505). An insertion in a putative ATP-dependent transporter (GSU1501) eliminated electrode colonization but not Fe(III) citrate reduction. A more complex phenotype was demonstrated by a mutant containing an insertion in a transglutaminase domain protein (GSU3361), which suddenly ceased to respire when biofilms reached approximately 50% of the wild-type levels. As most insertions were not in cytochromes but rather in transporters, two-component signaling proteins, and proteins of unknown function, this collection illustrates how biofilm formation and electron transfer are separate but complementary phenotypes, controlled by multiple loci not commonly studied in Geobacter spp. PMID:19395486
A novel helper phage enabling construction of genome-scale ORF-enriched phage display libraries.
Gupta, Amita; Shrivastava, Nimisha; Grover, Payal; Singh, Ajay; Mathur, Kapil; Verma, Vaishali; Kaur, Charanpreet; Chaudhary, Vijay K
2013-01-01
Phagemid-based expression of cloned genes fused to the gIIIP coding sequence and rescue using helper phages, such as VCSM13, has been used extensively for constructing large antibody phage display libraries. However, for randomly primed cDNA and gene fragment libraries, this system encounters reading frame problems wherein only one of 18 phages display the translated foreign peptide/protein fused to phagemid-encoded gIIIP. The elimination of phages carrying out-of-frame inserts is vital in order to improve the quality of phage display libraries. In this study, we designed a novel helper phage, AGM13, which carries trypsin-sensitive sites within the linker regions of gIIIP. This renders the phage highly sensitive to trypsin digestion, which abolishes its infectivity. For open reading frame (ORF) selection, the phagemid-borne phages are rescued using AGM13, so that clones with in-frame inserts express fusion proteins with phagemid-encoded trypsin-resistant gIIIP, which becomes incorporated into the phages along with a few copies of AGM13-encoded trypsin-sensitive gIIIP. In contrast, clones with out-of-frame inserts produce phages carrying only AGM13-encoded trypsin-sensitive gIIIP. Trypsin treatment of the phage population renders the phages with out-of-frame inserts non-infectious, whereas phages carrying in-frame inserts remain fully infectious and can hence be enriched by infection. This strategy was applied efficiently at a genome scale to generate an ORF-enriched whole genome fragment library from Mycobacterium tuberculosis, in which nearly 100% of the clones carried in-frame inserts after selection. The ORF-enriched libraries were successfully used for identification of linear and conformational epitopes for monoclonal antibodies specific to mycobacterial proteins.
[cDNA library construction from panicle meristem of finger millet].
Radchuk, V; Pirko, Ia V; Isaenkov, S V; Emets, A I; Blium, Ia B
2014-01-01
The protocol for production of full-size cDNA using SuperScript Full-Length cDNA Library Construction Kit II (Invitrogen) was tested and high quality cDNA library from meristematic tissue of finger millet panicle (Eleusine coracana (L.) Gaertn) was created. The titer of obtained cDNA library comprised 3.01 x 10(5) CFU/ml in avarage. In average the length of cDNA insertion consisted about 1070 base pairs, the effectivity of cDNA fragment insertions--99.5%. The selective sequencing of cDNA clones from created library was performed. The sequences of cDNA clones were identified with usage of BLAST-search. The results of cDNA library analysis and selective sequencing represents prove good functionality and full length character of inserted cDNA clones. Obtained cDNA library from meristematic tissue of finger millet panicle represents good and valuable source for isolation and identification of key genes regulating metabolism and meristematic development and for mining of new molecular markers to conduct out high quality genetic investigations and molecular breeding as well.
Shi, Xue; Zeng, Haiyang; Xue, Yadong; Luo, Meizhong
2011-10-11
Large-insert BAC and BIBAC libraries are important tools for structural and functional genomics studies of eukaryotic genomes. To facilitate the construction of BAC and BIBAC libraries and the transfer of complete large BAC inserts into BIBAC vectors, which is desired in positional cloning, we developed a pair of new BAC and BIBAC vectors. The new BAC vector pIndigoBAC536-S and the new BIBAC vector BIBAC-S have the following features: 1) both contain two 18-bp non-palindromic I-SceI sites in an inverted orientation at positions that flank an identical DNA fragment containing the lacZ selection marker and the cloning site. Large DNA inserts can be excised from the vectors as single fragments by cutting with I-SceI, allowing the inserts to be easily sized. More importantly, because the two vectors contain different antibiotic resistance genes for transformant selection and produce the same non-complementary 3' protruding ATAA ends by I-SceI that suppress self- and inter-ligations, the exchange of intact large genomic DNA inserts between the BAC and BIBAC vectors is straightforward; 2) both were constructed as high-copy composite vectors. Reliable linearized and dephosphorylated original low-copy pIndigoBAC536-S and BIBAC-S vectors that are ready for library construction can be prepared from the high-copy composite vectors pHZAUBAC1 and pHZAUBIBAC1, respectively, without the need for additional preparation steps or special reagents, thus simplifying the construction of BAC and BIBAC libraries. BIBAC clones constructed with the new BIBAC-S vector are stable in both E. coli and Agrobacterium. The vectors can be accessed through our website http://GResource.hzau.edu.cn. The two new vectors and their respective high-copy composite vectors can largely facilitate the construction and characterization of BAC and BIBAC libraries. The transfer of complete large genomic DNA inserts from one vector to the other is made straightforward.
Yang, XinChao; Li, MengHui; Liu, JianHua; Ji, YiHong; Li, XiangRui; Xu, LiXin; Yan, RuoFeng; Song, XiaoKai
2017-02-16
Eimeria maxima is one of the most prevalent Eimeria species causing avian coccidiosis, and results in huge economic loss to the global poultry industry. Current control strategies, such as anti-coccidial medication and live vaccines have been limited because of their drawbacks. The third generation anticoccidial vaccines including the recombinant vaccines as well as DNA vaccines have been suggested as a promising alternative strategy. To date, only a few protective antigens of E. maxima have been reported. Hence, there is an urgent need to identify novel protective antigens of E. maxima for the development of neotype anticoccidial vaccines. With the aim of identifying novel protective genes of E. maxima, a cDNA expression library of E. maxima sporozoites was constructed using Gateway technology. Subsequently, the cDNA expression library was divided into 15 sub-libraries for cDNA expression library immunization (cDELI) using parasite challenged model in chickens. Protective sub-libraries were selected for the next round of screening until individual protective clones were obtained, which were further sequenced and analyzed. Adopting the Gateway technology, a high-quality entry library was constructed, containing 9.2 × 10 6 clones with an average inserted fragments length of 1.63 kb. The expression library capacity was 2.32 × 10 7 colony-forming units (cfu) with an average inserted fragments length of 1.64 Kb. The expression library was screened using parasite challenged model in chickens. The screening yielded 6 immune protective genes including four novel protective genes of EmJS-1, EmRP, EmHP-1 and EmHP-2, and two known protective genes of EmSAG and EmCKRS. EmJS-1 is the selR domain-containing protein of E. maxima whose function is unknown. EmHP-1 and EmHP-2 are the hypothetical proteins of E. maxima. EmRP and EmSAG are rhomboid-like protein and surface antigen glycoproteins of E. maxima respectively, and involved in invasion of the parasite. Our results provide a cDNA expression library for further screening of T cell stimulating or inhibiting antigens of E. maxima. Moreover, our results provide six candidate protective antigens for developing new vaccines against E. maxima.
Hasenhindl, Christoph; Lai, Balder; Delgado, Javier; Traxlmayr, Michael W.; Stadlmayr, Gerhard; Rüker, Florian; Serrano, Luis; Oostenbrink, Chris; Obinger, Christian
2014-01-01
Fcabs (Fc antigen binding) are crystallizable fragments of IgG where the C-terminal structural loops of the CH3 domain are engineered for antigen binding. For the design of libraries it is beneficial to know positions that will permit loop elongation to increase the potential interaction surface with antigen. However, the insertion of additional loop residues might impair the immunoglobulin fold. In the present work we have probed whether stabilizing mutations flanking the randomized and elongated loop region improve the quality of Fcab libraries. In detail, 13 libraries were constructed having the C-terminal part of the EF loop randomized and carrying additional residues (1, 2, 3, 5 or 10, respectively) in the absence and presence of two flanking mutations. The latter have been demonstrated to increase the thermal stability of the CH3 domain of the respective solubly expressed proteins. Assessment of the stability of the libraries expressed on the surface of yeast cells by flow cytometry demonstrated that loop elongation was considerably better tolerated in the stabilized libraries. By using in silico loop reconstruction and mimicking randomization together with MD simulations the underlying molecular dynamics were investigated. In the presence of stabilizing stem residues the backbone flexibility of the engineered EF loop as well as the fluctuation between its accessible conformations were decreased. In addition the CD loop (but not the AB loop) and most of the framework regions were rigidified. The obtained data are discussed with respect to the design of Fcabs and available data on the relation between flexibility and affinity of CDR loops in Ig-like molecules. PMID:24792385
Hasenhindl, Christoph; Lai, Balder; Delgado, Javier; Traxlmayr, Michael W; Stadlmayr, Gerhard; Rüker, Florian; Serrano, Luis; Oostenbrink, Chris; Obinger, Christian
2014-09-01
Fcabs (Fc antigen binding) are crystallizable fragments of IgG where the C-terminal structural loops of the CH3 domain are engineered for antigen binding. For the design of libraries it is beneficial to know positions that will permit loop elongation to increase the potential interaction surface with antigen. However, the insertion of additional loop residues might impair the immunoglobulin fold. In the present work we have probed whether stabilizing mutations flanking the randomized and elongated loop region improve the quality of Fcab libraries. In detail, 13 libraries were constructed having the C-terminal part of the EF loop randomized and carrying additional residues (1, 2, 3, 5 or 10, respectively) in the absence and presence of two flanking mutations. The latter have been demonstrated to increase the thermal stability of the CH3 domain of the respective solubly expressed proteins. Assessment of the stability of the libraries expressed on the surface of yeast cells by flow cytometry demonstrated that loop elongation was considerably better tolerated in the stabilized libraries. By using in silico loop reconstruction and mimicking randomization together with MD simulations the underlying molecular dynamics were investigated. In the presence of stabilizing stem residues the backbone flexibility of the engineered EF loop as well as the fluctuation between its accessible conformations were decreased. In addition the CD loop (but not the AB loop) and most of the framework regions were rigidified. The obtained data are discussed with respect to the design of Fcabs and available data on the relation between flexibility and affinity of CDR loops in Ig-like molecules. Copyright © 2014. Published by Elsevier B.V.
Comparison of large-insert, small-insert and pyrosequencing libraries for metagenomic analysis.
Danhorn, Thomas; Young, Curtis R; DeLong, Edward F
2012-11-01
The development of DNA sequencing methods for characterizing microbial communities has evolved rapidly over the past decades. To evaluate more traditional, as well as newer methodologies for DNA library preparation and sequencing, we compared fosmid, short-insert shotgun and 454 pyrosequencing libraries prepared from the same metagenomic DNA samples. GC content was elevated in all fosmid libraries, compared with shotgun and 454 libraries. Taxonomic composition of the different libraries suggested that this was caused by a relative underrepresentation of dominant taxonomic groups with low GC content, notably Prochlorales and the SAR11 cluster, in fosmid libraries. While these abundant taxa had a large impact on library representation, we also observed a positive correlation between taxon GC content and fosmid library representation in other low-GC taxa, suggesting a general trend. Analysis of gene category representation in different libraries indicated that the functional composition of a library was largely a reflection of its taxonomic composition, and no additional systematic biases against particular functional categories were detected at the level of sequencing depth in our samples. Another important but less predictable factor influencing the apparent taxonomic and functional library composition was the read length afforded by the different sequencing technologies. Our comparisons and analyses provide a detailed perspective on the influence of library type on the recovery of microbial taxa in metagenomic libraries and underscore the different uses and utilities of more traditional, as well as contemporary 'next-generation' DNA library construction and sequencing technologies for exploring the genomics of the natural microbial world.
2012-01-01
Background Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. Results An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. Conclusions This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches. PMID:22554201
Zhou, Wen-Zhao; Zhang, Yan-Mei; Lu, Jun-Ying; Li, Jun-Feng
2012-01-01
To provide a resource of sisal-specific expressed sequence data and facilitate this powerful approach in new gene research, the preparation of normalized cDNA libraries enriched with full-length sequences is necessary. Four libraries were produced with RNA pooled from Agave sisalana multiple tissues to increase efficiency of normalization and maximize the number of independent genes by SMART™ method and the duplex-specific nuclease (DSN). This procedure kept the proportion of full-length cDNAs in the subtracted/normalized libraries and dramatically enhanced the discovery of new genes. Sequencing of 3875 cDNA clones of libraries revealed 3320 unigenes with an average insert length about 1.2 kb, indicating that the non-redundancy of libraries was about 85.7%. These unigene functions were predicted by comparing their sequences to functional domain databases and extensively annotated with Gene Ontology (GO) terms. Comparative analysis of sisal unigenes and other plant genomes revealed that four putative MADS-box genes and knotted-like homeobox (knox) gene were obtained from a total of 1162 full-length transcripts. Furthermore, real-time PCR showed that the characteristics of their transcripts mainly depended on the tight expression regulation of a number of genes during the leaf and flower development. Analysis of individual library sequence data indicated that the pooled-tissue approach was highly effective in discovering new genes and preparing libraries for efficient deep sequencing. PMID:23202944
Preparation and screening of an arrayed human genomic library generated with the P1 cloning system.
Shepherd, N S; Pfrogner, B D; Coulby, J N; Ackerman, S L; Vaidyanathan, G; Sauer, R H; Balkenhol, T C; Sternberg, N
1994-01-01
We describe here the construction and initial characterization of a 3-fold coverage genomic library of the human haploid genome that was prepared using the bacteriophage P1 cloning system. The cloned DNA inserts were produced by size fractionation of a Sau3AI partial digest of high molecular weight genomic DNA isolated from primary cells of human foreskin fibroblasts. The inserts were cloned into the pAd10sacBII vector and packaged in vitro into P1 phage. These were used to generate recombinant bacterial clones, each of which was picked robotically from an agar plate into a well of a 96-well microtiter dish, grown overnight, and stored at -70 degrees C. The resulting library, designated DMPC-HFF#1 series A, consists of approximately 130,000-140,000 recombinant clones that were stored in 1500 microtiter dishes. To screen the library, clones were combined in a pooling strategy and specific loci were identified by PCR analysis. On average, the library contains two or three different clones for each locus screened. To date we have identified a total of 17 clones containing the hypoxanthine-guanine phosphoribosyltransferase, human serum albumin-human alpha-fetoprotein, p53, cyclooxygenase I, human apurinic endonuclease, beta-polymerase, and DNA ligase I genes. The cloned inserts average 80 kb in size and range from 70 to 95 kb, with one 49-kb insert and one 62-kb insert. Images PMID:8146166
Wu, Chengcang; Proestou, Dina; Carter, Dorothy; Nicholson, Erica; Santos, Filippe; Zhao, Shaying; Zhang, Hong-Bin; Goldsmith, Marian R
2009-01-01
Background Manduca sexta, Heliothis virescens, and Heliconius erato represent three widely-used insect model species for genomic and fundamental studies in Lepidoptera. Large-insert BAC libraries of these insects are critical resources for many molecular studies, including physical mapping and genome sequencing, but not available to date. Results We report the construction and characterization of six large-insert BAC libraries for the three species and sampling sequence analysis of the genomes. The six BAC libraries were constructed with two restriction enzymes, two libraries for each species, and each has an average clone insert size ranging from 152–175 kb. We estimated that the genome coverage of each library ranged from 6–9 ×, with the two combined libraries of each species being equivalent to 13.0–16.3 × haploid genomes. The genome coverage, quality and utility of the libraries were further confirmed by library screening using 6~8 putative single-copy probes. To provide a first glimpse into these genomes, we sequenced and analyzed the BAC ends of ~200 clones randomly selected from the libraries of each species. The data revealed that the genomes are AT-rich, contain relatively small fractions of repeat elements with a majority belonging to the category of low complexity repeats, and are more abundant in retro-elements than DNA transposons. Among the species, the H. erato genome is somewhat more abundant in repeat elements and simple repeats than those of M. sexta and H. virescens. The BLAST analysis of the BAC end sequences suggested that the evolution of the three genomes is widely varied, with the genome of H. virescens being the most conserved as a typical lepidopteran, whereas both genomes of H. erato and M. sexta appear to have evolved significantly, resulting in a higher level of species- or evolutionary lineage-specific sequences. Conclusion The high-quality and large-insert BAC libraries of the insects, together with the identified BACs containing genes of interest, provide valuable information, resources and tools for comprehensive understanding and studies of the insect genomes and for addressing many fundamental questions in Lepidoptera. The sample of the genomic sequences provides the first insight into the constitution and evolution of the insect genomes. PMID:19558662
Chimeric TALE recombinases with programmable DNA sequence specificity.
Mercer, Andrew C; Gaj, Thomas; Fuller, Roberta P; Barbas, Carlos F
2012-11-01
Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.
Matthews, R J; Cahir, E D; Thomas, M L
1990-01-01
Protein-tyrosine-phosphatases (protein-tyrosine-phosphate phosphohydrolase, EC 3.13.48) have been implicated in the regulation of cell growth; however, to date few tyrosine phosphatases have been characterized. To identify additional family members, the cDNA for the human tyrosine phosphatase leukocyte common antigen (LCA; CD45) was used to screen, under low stringency, a mouse pre-B-cell cDNA library. Two cDNA clones were isolated and sequence analysis predicts a protein sequence of 793 amino acids. We have named the molecule LRP (LCA-related phosphatase). RNA transfer analysis indicates that the cDNAs were derived from a 3.2-kilobase mRNA. The LRP mRNA is transcribed in a wide variety of tissues. The predicted protein structure can be divided into the following structural features: a short 19-amino acid leader sequence, an exterior domain of 123 amino acids that is predicted to be highly glycosylated, a 24-amino acid membrane-spanning region, and a 627-amino acid cytoplasmic region. The cytoplasmic region contains two approximately 260-amino acid domains, each with homology to the tyrosine phosphatase family. One of the cDNA clones differed in that it had a 108-base-pair insertion that, while preserving the reading frame, would disrupt the first protein-tyrosine-phosphatase domain. Analysis of genomic DNA indicates that the insertion is due to an alternatively spliced exon. LRP appears to be evolutionarily conserved as a putative homologue has been identified in the invertebrate Styela plicata. Images PMID:2162042
Bacterial Artificial Chromosome Libraries for Mouse Sequencing and Functional Analysis
Osoegawa, Kazutoyo; Tateno, Minako; Woon, Peng Yeong; Frengen, Eirik; Mammoser, Aaron G.; Catanese, Joseph J.; Hayashizaki, Yoshihide; de Jong, Pieter J.
2000-01-01
Bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC) libraries providing a combined 33-fold representation of the murine genome have been constructed using two different restriction enzymes for genomic digestion. A large-insert PAC library was prepared from the 129S6/SvEvTac strain in a bacterial/mammalian shuttle vector to facilitate functional gene studies. For genome mapping and sequencing, we prepared BAC libraries from the 129S6/SvEvTac and the C57BL/6J strains. The average insert sizes for the three libraries range between 130 kb and 200 kb. Based on the numbers of clones and the observed average insert sizes, we estimate each library to have slightly in excess of 10-fold genome representation. The average number of clones found after hybridization screening with 28 probes was in the range of 9–14 clones per marker. To explore the fidelity of the genomic representation in the three libraries, we analyzed three contigs, each established after screening with a single unique marker. New markers were established from the end sequences and screened against all the contig members to determine if any of the BACs and PACs are chimeric or rearranged. Only one chimeric clone and six potential deletions have been observed after extensive analysis of 113 PAC and BAC clones. Seventy-one of the 113 clones were conclusively nonchimeric because both end markers or sequences were mapped to the other confirmed contig members. We could not exclude chimerism for the remaining 41 clones because one or both of the insert termini did not contain unique sequence to design markers. The low rate of chimerism, ∼1%, and the low level of detected rearrangements support the anticipated usefulness of the BAC libraries for genome research. [The sequence data described in this paper have been submitted to the GenBank data library under accession numbers AQ797173–AQ797398.] PMID:10645956
Yang, Bing-Yan; Huo, Xiu-Ai; Li, Peng-Fei; Wang, Cui-Xia; Duan, Hui-Jun
2014-08-01
Full-length cDNAs are very important for genome annotation and functional analysis of genes. The number of full-length cDNAs from watermelon remains limited. Here we report first the construction of a full-length enriched cDNA library from Fusarium wilt stressed watermelon (Citrullus lanatus Thunb.) cultivar PI296341 root tissues using the SMART method. The titer of primary cDNA library and amplified library was 2.21 x 10(6) and 2.0 x 10(10) pfu/ml, respectively and the rate of recombinant was above 85%. The size of insert fragment ranged from 0.3 to 2.0 kb. In this study, we first cloned a gene named ClWRKY1, which was 1981 bp long and encoded a protein consisting of 394 amino acids. It contained two characteristic WRKY domains and two zinc finger motifs. Quantitative real-time PCR showed that ClWRKY1 expression levels reached maximum level at 12 h after inoculation with Fusarium oxysporum f. sp. niveum. The full-length cDNA library of watermelon root tissues is not only essential for the cloning of genes which are known, but also an initial key for the screening and cloning of new genes that might be involved in resistance to Fusarium wilt.
Library Research: A Domain Comparison of Two Library Journals
ERIC Educational Resources Information Center
Davies, Karen; Thiele, Jennifer
2013-01-01
Research articles published by the "Community & Junior College Libraries" journal and the "College & Undergraduate Libraries" journal were analyzed to determine their domain. The discussion includes a comparison of past domain studies with the current research. The researchers found the majority of articles (52%) in the…
Physical mapping of complex genomes
Evans, G.A.
1993-06-15
A method for the simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts in the pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert in the common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed.
Construction of C35 gene bait recombinants and T47D cell cDNA library.
Yin, Kun; Xu, Chao; Zhao, Gui-Hua; Liu, Ye; Xiao, Ting; Zhu, Song; Yan, Ge
2017-11-20
C35 is a novel tumor biomarker associated with metastasis progression. To investigate the interaction factors of C35 in its high expressed breast cancer cell lines, we constructed bait recombinant plasmids of C35 gene and T47D cell cDNA library for yeast two-hybrid screening. Full length C35 sequences were subcloned using RT-PCR from cDNA template extracted from T47D cells. Based on functional domain analysis, the full-length C35 1-348bp was also truncated into two fragments C351-153bp and C35154-348bp to avoid auto-activation. The three kinds of C35 genes were successfully amplified and inserted into pGBKT7 to construct bait recombinant plasmids pGBKT7-C351-348bp, pGBKT7-C351-153bp and pGBKT7-C35154-348bp, then transformed into Y187 yeast cells by the lithium acetate method. Auto-activation and toxicity of C35 baits were detected using nutritional deficient medium and X-α-Gal assays. The T47D cell ds cDNA was generated by SMART TM technology and the library was constructed using in vivo recombination-mediated cloning in the AH109 yeast strain using a pGADT7-Rec plasmid. The transformed Y187/pGBKT7-C351-348bp line was intensively inhibited while the truncated Y187/pGBKT7-C35 lines had no auto-activation and toxicity in yeast cells. The titer of established cDNA library was 2 × 10 7 pfu/mL with high transformation efficiency of 1.4 × 10 6 , and the insert size of ds cDNA was distributed homogeneously between 0.5-2.0 kb. Our research generated a T47D cell cDNA library with high titer, and the constructed two C35 "baits" contained a respective functional immunoreceptor tyrosine based activation motif (ITAM) and the conserved last four amino acids Cys-Ile-Leu-Val (CILV) motif, and therefore laid a foundation for screening the C35 interaction factors in a BC cell line.
Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch.
Oakes, Benjamin L; Nadler, Dana C; Flamholz, Avi; Fellmann, Christof; Staahl, Brett T; Doudna, Jennifer A; Savage, David F
2016-06-01
The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated protein Cas9 from Streptococcus pyogenes is an RNA-guided DNA endonuclease with widespread utility for genome modification. However, the structural constraints limiting the engineering of Cas9 have not been determined. Here we experimentally profile Cas9 using randomized insertional mutagenesis and delineate hotspots in the structure capable of tolerating insertions of a PDZ domain without disruption of the enzyme's binding and cleavage functions. Orthogonal domains or combinations of domains can be inserted into the identified sites with minimal functional consequence. To illustrate the utility of the identified sites, we construct an allosterically regulated Cas9 by insertion of the estrogen receptor-α ligand-binding domain. This protein showed robust, ligand-dependent activation in prokaryotic and eukaryotic cells, establishing a versatile one-component system for inducible and reversible Cas9 activation. Thus, domain insertion profiling facilitates the rapid generation of new Cas9 functionalities and provides useful data for future engineering of Cas9.
[Construction of large fragment metagenome library of natural mangrove soil].
Jiang, Yun-Xia; Zheng, Tian-Ling
2007-11-01
Applying our optimized direct extraction method, the percentage of large fragment DNA in the total extracted mangrove soil DNA was significant increased. The large fragment metagenome library derived from natural mangrove soil over four seasons was successfully constructed by the optimized DNA extraction and electro elution purification method. All of the clones had recombinant Cosmids and each differed in their fragment profiles when Cosmid DNA was extracted from 12 randomly picked colonies and digested with BamHI. The average insert size for this library was larger than 35 kbp. This culturing-independent library at least encompassed 335 Mbp valuable genetic information of mangrove soil microbes. It allowed mining of valuable intertidal microbial resource to become a reality. It is a recommended method for those researchers who have still not circumvented the large insert environmental libraries or for those beginning research in this field, so as to avoid them attempting repetitive, fussy work.
Shimoda, Yoshikazu; Mitsui, Hisayuki; Kamimatsuse, Hiroko; Minamisawa, Kiwamu; Nishiyama, Eri; Ohtsubo, Yoshiyuki; Nagata, Yuji; Tsuda, Masataka; Shinpo, Sayaka; Watanabe, Akiko; Kohara, Mitsuyo; Yamada, Manabu; Nakamura, Yasukazu; Tabata, Satoshi; Sato, Shusei
2008-01-01
Rhizobia are nitrogen-fixing soil bacteria that establish endosymbiosis with some leguminous plants. The completion of several rhizobial genome sequences provides opportunities for genome-wide functional studies of the physiological roles of many rhizobial genes. In order to carry out genome-wide phenotypic screenings, we have constructed a large mutant library of the nitrogen-fixing symbiotic bacterium, Mesorhizobium loti, by transposon mutagenesis. Transposon insertion mutants were generated using the signature-tagged mutagenesis (STM) technique and a total of 29 330 independent mutants were obtained. Along with the collection of transposon mutants, we have determined the transposon insertion sites for 7892 clones, and confirmed insertions in 3680 non-redundant M. loti genes (50.5% of the total number of M. loti genes). Transposon insertions were randomly distributed throughout the M. loti genome without any bias toward G+C contents of insertion target sites and transposon plasmids used for the mutagenesis. We also show the utility of STM mutants by examining the specificity of signature tags and test screenings for growth- and nodulation-deficient mutants. This defined mutant library allows for genome-wide forward- and reverse-genetic functional studies of M. loti and will serve as an invaluable resource for researchers to further our understanding of rhizobial biology. PMID:18658183
SLEEC: Semantics-Rich Libraries for Effective Exascale Computation. Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milind, Kulkarni
SLEEC (Semantics-rich Libraries for Effective Exascale Computation) was a project funded by the Department of Energy X-Stack Program, award number DE-SC0008629. The initial project period was September 2012–August 2015. The project was renewed for an additional year, expiring August 2016. Finally, the project received a no-cost extension, leading to a final expiry date of August 2017. Modern applications, especially those intended to run at exascale, are not written from scratch. Instead, they are built by stitching together various carefully-written, hand-tuned libraries. Correctly composing these libraries is difficult, but traditional compilers are unable to effectively analyze and transform across abstraction layers.more » Domain specific compilers integrate semantic knowledge into compilers, allowing them to transform applications that use particular domain-specific languages, or domain libraries. But they do not help when new domains are developed, or applications span multiple domains. SLEEC aims to fix these problems. To do so, we are building generic compiler and runtime infrastructures that are semantics-aware but not domain-specific. By performing optimizations related to the semantics of a domain library, the same infrastructure can be made generic and apply across multiple domains.« less
Lam, Kathy N; Charles, Trevor C
2015-01-01
Clone libraries provide researchers with a powerful resource to study nucleic acid from diverse sources. Metagenomic clone libraries in particular have aided in studies of microbial biodiversity and function, and allowed the mining of novel enzymes. Libraries are often constructed by cloning large inserts into cosmid or fosmid vectors. Recently, there have been reports of GC bias in fosmid metagenomic libraries, and it was speculated to be a result of fragmentation and loss of AT-rich sequences during cloning. However, evidence in the literature suggests that transcriptional activity or gene product toxicity may play a role. To explore possible mechanisms responsible for sequence bias in clone libraries, we constructed a cosmid library from a human microbiome sample and sequenced DNA from different steps during library construction: crude extract DNA, size-selected DNA, and cosmid library DNA. We confirmed a GC bias in the final cosmid library, and we provide evidence that the bias is not due to fragmentation and loss of AT-rich sequences but is likely occurring after DNA is introduced into Escherichia coli. To investigate the influence of strong constitutive transcription, we searched the sequence data for promoters and found that rpoD/σ(70) promoter sequences were underrepresented in the cosmid library. Furthermore, when we examined the genomes of taxa that were differentially abundant in the cosmid library relative to the original sample, we found the bias to be more correlated with the number of rpoD/σ(70) consensus sequences in the genome than with simple GC content. The GC bias of metagenomic libraries does not appear to be due to DNA fragmentation. Rather, analysis of promoter sequences provides support for the hypothesis that strong constitutive transcription from sequences recognized as rpoD/σ(70) consensus-like in E. coli may lead to instability, causing loss of the plasmid or loss of the insert DNA that gives rise to the transcription. Despite widespread use of E. coli to propagate foreign DNA in metagenomic libraries, the effects of in vivo transcriptional activity on clone stability are not well understood. Further work is required to tease apart the effects of transcription from those of gene product toxicity.
Specificity profiling of protein-binding domains using one-bead-one-compound Peptide libraries.
Kunys, Andrew R; Lian, Wenlong; Pei, Dehua
2012-12-01
One-bead-one-compound (OBOC) libraries consist of structurally related compounds (e.g., peptides) covalently attached to a solid support, with each resin bead carrying a unique compound. OBOC libraries of high structural diversity can be rapidly synthesized and screened without the need for any special equipment, and therefore can be employed in any chemical or biochemical laboratory. OBOC peptide libraries have been widely used to map the ligand specificity of proteins, to determine the substrate specificity of enzymes, and to develop inhibitors against macromolecular targets. They have proven particularly useful in profiling the binding specificity of protein modular domains (e.g., SH2 domains, BIR domains, and PDZ domains); subsequently, the specificity information can be used to predict the protein targets of these domains. The protocols outlined in this article describe the methodologies for synthesizing and screening OBOC peptide libraries against SH2 and PDZ domains, and the related data analysis. Curr. Protoc. Chem. Biol. 4:331-355 © 2012 by John Wiley & Sons, Inc.
C3 Domain Analysis, Lessons Learned
1993-09-30
organize the domain. This approach is heavily based on the principles of library science and is geared toward a reuse effort with a large library-like...method adapts many principles from library science to the organization and implementation of a reuse library. C-1 DEFENSE INFORMATION SYSTEMS AGENCY
Naumer, Matthias; Ying, Ying; Michelfelder, Stefan; Reuter, Antje; Trepel, Martin; Müller, Oliver J; Kleinschmidt, Jürgen A
2012-05-01
Libraries based on the insertion of random peptide ligands into the capsid of adeno-associated virus type 2 (AAV2) have been widely used to improve the efficiency and selectivity of the AAV vector system. However, so far only libraries of 7-mer peptide ligands have been inserted at one well-characterized capsid position. Here, we expanded the combinatorial AAV2 display system to a panel of novel AAV libraries, displaying peptides of 5, 7, 12, 19, or 26 amino acids in length at capsid position 588 or displaying 7-mer peptides at position 453, the most prominently exposed region of the viral capsid. Library selections on two unrelated cell types-human coronary artery endothelial cells and rat cardiomyoblasts-revealed the isolation of cell type-characteristic peptides of different lengths mediating strongly improved target-cell transduction, except for the 26-mer peptide ligands. Characterization of vector selectivity by transduction of nontarget cells and comparative gene-transduction analysis using a panel of 44 human tumor cell lines revealed that insertion of different-length peptides allows targeting of distinct cellular receptors for cell entry with similar efficiency, but with different selectivity. The application of such novel AAV2 libraries broadens the spectrum of targetable receptors by capsid-modified AAV vectors and provides the opportunity to choose the best suited targeting ligand for a certain application from a number of different candidates.
Aschard, Hugues; Cattoir, Vincent; Yoder-Himes, Deborah; Lory, Stephen; Pier, Gerald B.
2013-01-01
High-throughput sequencing of transposon (Tn) libraries created within entire genomes identifies and quantifies the contribution of individual genes and operons to the fitness of organisms in different environments. We used insertion-sequencing (INSeq) to analyze the contribution to fitness of all non-essential genes in the chromosome of Pseudomonas aeruginosa strain PA14 based on a library of ∼300,000 individual Tn insertions. In vitro growth in LB provided a baseline for comparison with the survival of the Tn insertion strains following 6 days of colonization of the murine gastrointestinal tract as well as a comparison with Tn-inserts subsequently able to systemically disseminate to the spleen following induction of neutropenia. Sequencing was performed following DNA extraction from the recovered bacteria, digestion with the MmeI restriction enzyme that hydrolyzes DNA 16 bp away from the end of the Tn insert, and fractionation into oligonucleotides of 1,200–1,500 bp that were prepared for high-throughput sequencing. Changes in frequency of Tn inserts into the P. aeruginosa genome were used to quantify in vivo fitness resulting from loss of a gene. 636 genes had <10 sequencing reads in LB, thus defined as unable to grow in this medium. During in vivo infection there were major losses of strains with Tn inserts in almost all known virulence factors, as well as respiration, energy utilization, ion pumps, nutritional genes and prophages. Many new candidates for virulence factors were also identified. There were consistent changes in the recovery of Tn inserts in genes within most operons and Tn insertions into some genes enhanced in vivo fitness. Strikingly, 90% of the non-essential genes were required for in vivo survival following systemic dissemination during neutropenia. These experiments resulted in the identification of the P. aeruginosa strain PA14 genes necessary for optimal survival in the mucosal and systemic environments of a mammalian host. PMID:24039572
Thermodynamics of membrane insertion and refolding of the diphtheria toxin T-domain
Vargas-Uribe, Mauricio; Rodnin, Mykola V.; Öjemalm, Karin; Holgado, Aurora; Kyrychenko, Alexander; Nilsson, IngMarie; Posokhov, Yevgen O.; Makhatadze, George; von Heijne, Gunnar; Ladokhin, Alexey S.
2014-01-01
The diphtheria toxin translocation (T) domain inserts into the endosomal membrane in response to the endosomal acidification and enables the delivery of the catalytic domain into the cell. The insertion pathway consists of a series of conformational changes that occur in solution and in the membrane and leads to the conversion of a water-soluble state into a transmembrane state. In this work, we utilize various biophysical techniques to characterize the insertion pathway from the thermodynamic perspective. Thermal and chemical unfolding measured by differential scanning calorimetry, circular dichroism and tryptophan fluorescence reveal that the free energy of unfolding of the T-domain at neutral and mildly acidic pH differ by 3–5 kcal/mol, depending on the experimental conditions. Fluorescence correlation spectroscopy measurements show that the free energy change from the membrane-competent state to the interfacial state is approximately −8 kcal/mol and is pH-independent, while that from the membrane-competent state to the transmembrane state ranges between −9.5 to −12 kcal/mol, depending on the membrane lipid composition and pH. Finally, the thermodynamics of transmembrane insertion of individual helices was tested using an in vitro assay that measures the translocon-assisted integration of test sequences into the microsomal membrane. These experiments suggest that even the most hydrophobic helix TH8 has only a small favorable free energy of insertion. The free energy for the insertion of the consensus insertion unit TH8-TH9 is slightly more favorable, yet less favorable than that measured for the entire protein, suggesting a cooperative effect for the membrane insertion of the helices of the T-domain. PMID:25281329
Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture.
Eswaran, Jeyanthy; Bernad, Antonio; Ligos, Jose M; Guinea, Barbara; Debreczeni, Judit E; Sobott, Frank; Parker, Sirlester A; Najmanovich, Rafael; Turk, Benjamin E; Knapp, Stefan
2008-01-01
The activation segment of protein kinases is structurally highly conserved and central to regulation of kinase activation. Here we report an atypical activation segment architecture in human MPSK1 comprising a beta sheet and a large alpha-helical insertion. Sequence comparisons suggested that similar activation segments exist in all members of the MPSK1 family and in MAST kinases. The consequence of this nonclassical activation segment on substrate recognition was studied using peptide library screens that revealed a preferred substrate sequence of X-X-P/V/I-phi-H/Y-T*-N/G-X-X-X (phi is an aliphatic residue). In addition, we identified the GTPase DRG1 as an MPSK1 interaction partner and specific substrate. The interaction domain in DRG1 was mapped to the N terminus, leading to recruitment and phosphorylation at Thr100 within the GTPase domain. The presented data reveal an atypical kinase structural motif and suggest a role of MPSK1 regulating DRG1, a GTPase involved in regulation of cellular growth.
Zhang, Lu; Xu, Jinhao; Ma, Jinbiao
2016-07-25
RNA-binding protein exerts important biological function by specifically recognizing RNA motif. SELEX (Systematic evolution of ligands by exponential enrichment), an in vitro selection method, can obtain consensus motif with high-affinity and specificity for many target molecules from DNA or RNA libraries. Here, we combined SELEX with next-generation sequencing to study the protein-RNA interaction in vitro. A pool of RNAs with 20 bp random sequences were transcribed by T7 promoter, and target protein was inserted into plasmid containing SBP-tag, which can be captured by streptavidin beads. Through only one cycle, the specific RNA motif can be obtained, which dramatically improved the selection efficiency. Using this method, we found that human hnRNP A1 RRMs domain (UP1 domain) bound RNA motifs containing AGG and AG sequences. The EMSA experiment indicated that hnRNP A1 RRMs could bind the obtained RNA motif. Taken together, this method provides a rapid and effective method to study the RNA binding specificity of proteins.
Physical mapping of complex genomes
Evans, Glen A.
1993-01-01
Method for simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts int he pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert int he common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed. In other preferred embodiments, the cosmid clones are arranged in a three dimensional matrix, pooled and compared in threes according to intersecting planes of the three dimensional matrix. Arrangements corresponding to geometries of higher dimensions may also be prepared and used to simultaneously identify overlapping clones in highly complex libraries with relatively few hybridization reactions.
Hogg, Matthew; Seki, Mineaki; Wood, Richard D; Doublié, Sylvie; Wallace, Susan S
2011-01-21
DNA polymerase θ (POLQ, polθ) is a large, multidomain DNA polymerase encoded in higher eukaryotic genomes. It is important for maintaining genetic stability in cells and helping protect cells from DNA damage caused by ionizing radiation. POLQ contains an N-terminal helicase-like domain, a large central domain of indeterminate function, and a C-terminal polymerase domain with sequence similarity to the A-family of DNA polymerases. The enzyme has several unique properties, including low fidelity and the ability to insert and extend past abasic sites and thymine glycol lesions. It is not known whether the abasic site bypass activity is an intrinsic property of the polymerase domain or whether helicase activity is also required. Three "insertion" sequence elements present in POLQ are not found in any other A-family DNA polymerase, and it has been proposed that they may lend some unique properties to POLQ. Here, we analyzed the activity of the DNA polymerase in the absence of each sequence insertion. We found that the pol domain is capable of highly efficient bypass of abasic sites in the absence of the helicase-like or central domains. Insertion 1 increases the processivity of the polymerase but has little, if any, bearing on the translesion synthesis properties of the enzyme. However, removal of insertions 2 and 3 reduces activity on undamaged DNA and completely abrogates the ability of the enzyme to bypass abasic sites or thymine glycol lesions. Copyright © 2010 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
We developed two leafy spurge BAC libraries that together represent approximately 5X coverage of the leafy spurge genome. The BAC libraries have an average insert size of approximately 143 kb, and copies of the library and filters for hybridization-based screening are publicly available through the ...
Takeshita, S; Kikuno, R; Tezuka, K; Amann, E
1993-01-01
A cDNA library prepared from the mouse osteoblastic cell line MC3T3-E1 was screened for the presence of specifically expressed genes by employing a combined subtraction hybridization/differential screening approach. A cDNA was identified and sequenced which encodes a protein designated osteoblast-specific factor 2 (OSF-2) comprising 811 amino acids. OSF-2 has a typical signal sequence, followed by a cysteine-rich domain, a fourfold repeated domain and a C-terminal domain. The protein lacks a typical transmembrane region. The fourfold repeated domain of OSF-2 shows homology with the insect protein fasciclin I. RNA analyses revealed that OSF-2 is expressed in bone and to a lesser extent in lung, but not in other tissues. Mouse OSF-2 cDNA was subsequently used as a probe to clone the human counterpart. Mouse and human OSF-2 show a high amino acid sequence conservation except for the signal sequence and two regions in the C-terminal domain in which 'in-frame' insertions or deletions are observed, implying alternative splicing events. On the basis of the amino acid sequence homology with fasciclin I, we suggest that OSF-2 functions as a homophilic adhesion molecule in bone formation. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8363580
Méré, Jocelyn; Morlon-Guyot, Juliette; Bonhoure, Anne; Chiche, Laurent; Beaumelle, Bruno
2005-06-03
Exposure to low endosomal pH during internalization of Pseudomonas exotoxin A (PE) triggers membrane insertion of its translocation domain. This process is a prerequisite for PE translocation to the cytosol where it inactivates protein synthesis. Although hydrophobic helices enable membrane insertion of related bacterial toxins such as diphtheria toxin, the PE translocation domain is devoid of hydrophobic stretches and the structural features triggering acid-induced membrane insertion of PE are not known. Here we have identified a molecular device that enables PE membrane insertion. This process is promoted by exposure of a key tryptophan residue. At neutral pH, this Trp is buried in a hydrophobic pocket closed by the smallest alpha-helix of the translocation domain. Upon acidification, protonation of the Asp that is the N-cap residue of the helix leads to its destabilization, enabling Trp side chain insertion into the endosome membrane. This tryptophan-based membrane insertion system is surprisingly similar to the membrane-anchoring mechanism of human annexin-V and could be used by other proteins as well.
DOMAIN MISMATCH COMPENSATION FOR SPEAKER RECOGNITION USING A LIBRARY OF WHITENERS
2015-05-29
DOMAIN MISMATCH COMPENSATION FOR SPEAKER RECOGNITION USING A LIBRARY OF WHITENERS Elliot Singer and Douglas Reynolds Massachusetts Institute of...development data is assumed to be unavailable. The method is based on a generalization of data whitening used in association with i-vector length...normalization and utilizes a library of whitening transforms trained at system development time using strictly out-of-domain data. The approach is
Public antibodies to malaria antigens generated by two LAIR1 insertion modalities.
Pieper, Kathrin; Tan, Joshua; Piccoli, Luca; Foglierini, Mathilde; Barbieri, Sonia; Chen, Yiwei; Silacci-Fregni, Chiara; Wolf, Tobias; Jarrossay, David; Anderle, Marica; Abdi, Abdirahman; Ndungu, Francis M; Doumbo, Ogobara K; Traore, Boubacar; Tran, Tuan M; Jongo, Said; Zenklusen, Isabelle; Crompton, Peter D; Daubenberger, Claudia; Bull, Peter C; Sallusto, Federica; Lanzavecchia, Antonio
2017-08-31
In two previously described donors, the extracellular domain of LAIR1, a collagen-binding inhibitory receptor encoded on chromosome 19 (ref. 1), was inserted between the V and DJ segments of an antibody. This insertion generated, through somatic mutations, broadly reactive antibodies against RIFINs, a type of variant antigen expressed on the surface of Plasmodium falciparum-infected erythrocytes. To investigate how frequently such antibodies are produced in response to malaria infection, we screened plasma from two large cohorts of individuals living in malaria-endemic regions. Here we report that 5-10% of malaria-exposed individuals, but none of the European blood donors tested, have high levels of LAIR1-containing antibodies that dominate the response to infected erythrocytes without conferring enhanced protection against febrile malaria. By analysing the antibody-producing B cell clones at the protein, cDNA and gDNA levels, we characterized additional LAIR1 insertions between the V and DJ segments and discovered a second insertion modality whereby the LAIR1 exon encoding the extracellular domain and flanking intronic sequences are inserted into the switch region. By exon shuffling, this mechanism leads to the production of bispecific antibodies in which the LAIR1 domain is precisely positioned at the elbow between the VH and CH1 domains. Additionally, in one donor the genomic DNA encoding the VH and CH1 domains was deleted, leading to the production of a camel-like LAIR1-containing antibody. Sequencing of the switch regions of memory B cells from European blood donors revealed frequent templated inserts originating from transcribed genes that, in rare cases, comprised exons with orientations and frames compatible with expression. These results reveal different modalities of LAIR1 insertion that lead to public and dominant antibodies against infected erythrocytes and suggest that insertion of templated DNA represents an additional mechanism of antibody diversification that can be selected in the immune response against pathogens and exploited for B cell engineering.
Conformational Dynamics inside Amino-Terminal Disease Hotspot of Ryanodine Receptor
Zhong, Xiaowei; Liu, Ying; Zhu, Li; Meng, Xing; Wang, Ruiwu; Van Petegem, Filip; Wagenknecht, Terence; Wayne Chen, S. R.; Liu, Zheng
2013-01-01
Summary The N-terminal region of both skeletal and cardiac ryanodine receptor is a disease mutation hotspot. Recently, a crystal structure of the RyR1 fragment (residues 1-559) was solved. This N-terminal structure contains three separate domains, A, B, and C, and was docked into a central vestibule in a full-length RyR1 cryo-EM map. Here we reconstructed 3D cryo-EM structures of two GFP-tagged RyR2s with GFP inserted after residue Glu-310 and Ser-437, respectively. The structures of RyR2E310-GFP and RyR2S437-GFP displayed an extra mass on domain B and C, directly validating the predicted docking model. Next, we revealed domain movements in molecular dynamics flexible fitting models in both the closed and open state cryo-EM maps. To further probe the conformational changes, we generated FRET pairs by inserting CFP or YFP in two selected domains, FRET studies of three dual-insertion pairs and three co-expressed single-insertion pairs showed the dynamic structural changes within the N-terminal domains. PMID:24139989
A Framework for Concept-Based Digital Course Libraries
ERIC Educational Resources Information Center
Dicheva, Darina; Dichev, Christo
2004-01-01
This article presents a general framework for building conceptbased digital course libraries. The framework is based on the idea of using a conceptual structure that represents a subject domain ontology for classification of the course library content. Two aspects, domain conceptualization, which supports findability and ontologies, which support…
Wang, Chun Ming; Lo, Loong Chueng; Feng, Felicia; Gong, Ping; Li, Jian; Zhu, Ze Yuan; Lin, Grace; Yue, Gen Hua
2008-03-25
Barramundi (Lates calcarifer) is an important farmed marine food fish species. Its first generation linkage map has been applied to map QTL for growth traits. To identify genes located in QTL responsible for specific traits, genomic large insert libraries are of crucial importance. We reported herein a bacterial artificial chromosome (BAC) library and the mapping of BAC clones to the linkage map. This BAC library consisted of 49,152 clones with an average insert size of 98 kb, representing 6.9-fold haploid genome coverage. Screening the library with 24 microsatellites and 15 ESTs/genes demonstrated that the library had good genome coverage. In addition, 62 novel microsatellites each isolated from 62 BAC clones were mapped onto the first generation linkage map. A total of 86 BAC clones were anchored on the linkage map with at least one BAC clone on each linkage group. We have constructed the first BAC library for L. calcarifer and mapped 86 BAC clones to the first generation linkage map. This BAC library and the improved linkage map with 302 DNA markers not only supply an indispensable tool to the integration of physical and linkage maps, the fine mapping of QTL and map based cloning genes located in QTL of commercial importance, but also contribute to comparative genomic studies and eventually whole genome sequencing.
Rapid isolation of IgNAR variable single-domain antibody fragments from a shark synthetic library.
Shao, Cui-Ying; Secombes, Chris J; Porter, Andrew J
2007-01-01
The immunoglobulin isotype IgNAR (Novel Antigen Receptor) was discovered in the serum of the nurse shark (Ginglymostoma cirratum) and wobbegong shark (Orectolobus maculates) as a homodimer of two protein chains, each composed of a single variable domain (V) domain and five constant domains. The IgNAR variable domain contains an intact antigen-binding site and functions as an independent domain able to react to antigen with both high specificity and affinity. Here we describe the successful construction of a synthetic phage-displayed library based upon a single anti-lysozyme clone HEL-5A7 scaffold, which was previously selected from an immune IgNAR variable domain library. The complementarity-determining region 3 (CDR3) loop of this clone was varied in both length and composition and the derived library was used to pan against two model proteins, lysozyme and leptin. A single anti-lysozyme clone (Ly-X20) and anti-leptin clone (Lep-12E1) were selected for further study. Both clones were shown to be functionally expressed in Escherichia coli, extremely thermostable and bind to corresponding antigens specifically. The results here demonstrate that a synthetic IgNAR variable domain library based on a single framework scaffold can be used as a route to generate antigen binders quickly, easily and without the need of immunization.
Construction of BAC Libraries from Flow-Sorted Chromosomes.
Šafář, Jan; Šimková, Hana; Doležel, Jaroslav
2016-01-01
Cloned DNA libraries in bacterial artificial chromosome (BAC) are the most widely used form of large-insert DNA libraries. BAC libraries are typically represented by ordered clones derived from genomic DNA of a particular organism. In the case of large eukaryotic genomes, whole-genome libraries consist of a hundred thousand to a million clones, which make their handling and screening a daunting task. The labor and cost of working with whole-genome libraries can be greatly reduced by constructing a library derived from a smaller part of the genome. Here we describe construction of BAC libraries from mitotic chromosomes purified by flow cytometric sorting. Chromosome-specific BAC libraries facilitate positional gene cloning, physical mapping, and sequencing in complex plant genomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, Michael S
2017-11-08
HPC software for ab-initio, condensed-matter physics, quantum mechanics calculations needs to be built on top of well tested libraries some of which address requirements unique to the programming domain. During the development of the DCA++ code, that we use in our research, we have developed a collection of libraries that may be of use to other computational scientists working in the same or similar domains. The libraries include: a) a pythonic input-language system, b) tensors whose shape is constructed from generalized dimension objects such at time domains. frequency domains, momentum domains, vertex domains et. al. and c) linear algebra operationsmore » that resolve to BLA/LAPACK operations when possible. This supports the implementation of Greens functions and operations on them such as are used in condensed matter physics.« less
The development and characterisation of a bacterial artificial chromosome library for Fragaria vesca
Bonet, Julio; Girona, Elena Lopez; Sargent, Daniel J; Muñoz-Torres, Monica C; Monfort, Amparo; Abbott, Albert G; Arús, Pere; Simpson, David W; Davik, Jahn
2009-01-01
Background The cultivated strawberry Fragaria ×ananassa is one of the most economically-important soft-fruit species. Few structural genomic resources have been reported for Fragaria and there exists an urgent need for the development of physical mapping resources for the genus. The first stage in the development of a physical map for Fragaria is the construction and characterisation of a high molecular weight bacterial artificial chromosome (BAC) library. Methods A BAC library, consisting of 18,432 clones was constructed from Fragaria vesca f. semperflorens accession 'Ali Baba'. BAC DNA from individual library clones was pooled to create a PCR-based screening assay for the library, whereby individual clones could be identified with just 34 PCR reactions. These pools were used to screen the BAC library and anchor individual clones to the diploid Fragaria reference map (FV×FN). Findings Clones from the BAC library developed contained an average insert size of 85 kb, representing over seven genome equivalents. The pools and superpools developed were used to identify a set of BAC clones containing 70 molecular markers previously mapped to the diploid Fragaria FV×FN reference map. The number of positive colonies identified for each marker suggests the library represents between 4× and 10× coverage of the diploid Fragaria genome, which is in accordance with the estimate of library coverage based on average insert size. Conclusion This BAC library will be used for the construction of a physical map for F. vesca and the superpools will permit physical anchoring of molecular markers using PCR. PMID:19772672
A gene-trap strategy identifies quiescence-induced genes in synchronized myoblasts.
Sambasivan, Ramkumar; Pavlath, Grace K; Dhawan, Jyotsna
2008-03-01
Cellular quiescence is characterized not only by reduced mitotic and metabolic activity but also by altered gene expression. Growing evidence suggests that quiescence is not merely a basal state but is regulated by active mechanisms. To understand the molecular programme that governs reversible cell cycle exit, we focused on quiescence-related gene expression in a culture model of myogenic cell arrest and activation. Here we report the identification of quiescence-induced genes using a gene-trap strategy. Using a retroviral vector, we generated a library of gene traps in C2C12 myoblasts that were screened for arrest-induced insertions by live cell sorting (FACS-gal). Several independent gene- trap lines revealed arrest-dependent induction of betagal activity, confirming the efficacy of the FACS screen. The locus of integration was identified in 15 lines. In three lines,insertion occurred in genes previously implicated in the control of quiescence, i.e. EMSY - a BRCA2--interacting protein, p8/com1 - a p300HAT -- binding protein and MLL5 - a SET domain protein. Our results demonstrate that expression of chromatin modulatory genes is induced in G0, providing support to the notion that this reversibly arrested state is actively regulated.
Mishima, Eriko; Sato, Yoko; Nanatani, Kei; Hoshi, Naomi; Lee, Jong-Kook; Schiller, Nina; von Heijne, Gunnar; Sakaguchi, Masao; Uozumi, Nobuyuki
2016-12-01
Voltage-dependent K + (K V ) channels control K + permeability in response to shifts in the membrane potential. Voltage sensing in K V channels is mediated by the positively charged transmembrane domain S4. The best-characterized K V channel, KvAP, lacks the distinct hydrophilic region corresponding to the S3-S4 extracellular loop that is found in other K + channels. In the present study, we evaluated the topogenic properties of the transmembrane regions within the voltage-sensing domain in KvAP. S3 had low membrane insertion activity, whereas S4 possessed a unique type-I signal anchor (SA-I) function, which enabled it to insert into the membrane by itself. S4 was also found to function as a stop-transfer signal for retention in the membrane. The length and structural nature of the extracellular S3-S4 loop affected the membrane insertion of S3 and S4, suggesting that S3 membrane insertion was dependent on S4. Replacement of charged residues within the transmembrane regions with residues of opposite charge revealed that Asp 72 in S2 and Glu 93 in S3 contributed to membrane insertion of S3 and S4, and increased the stability of S4 in the membrane. These results indicate that the SA-I function of S4, unique among K + channels studied to date, promotes the insertion of S3 into the membrane, and that the charged residues essential for voltage sensing contribute to the membrane-insertion of the voltage sensor domain in KvAP. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
2013-10-09
have desirable traits. We aim to enlarge the E. coli genome using Lactobacillusplantarum genes to build cells tolerant to EtOH and BT. L. plantarum is...chemicals III. Approach Objective 1 & la: Integrated heterologous (L. plantarum ) DNA into the E. coli chromosome and selected for insertions that...developed in combination with genes identified from screening L. plantarum libraries. Additionally, we have screened heterologous libraries for
Gong, Qian; Li, Chang-ying; Chang, Ji-wu; Zhu, Tie-hong
2012-06-01
To screen monoclonal antibodies to amylin from a constructed human phage antibody library and identify their antigenic specificity and combining activities. The heavy chain Fd fragment and light chain of human immunoglobulin genes were amplified from peripheral blood lymphocytes of healthy donors using RT-PCR, and then inserted into phagemid pComb3XSS to generate a human phage antibody library. The insertion of light chain or heavy chain Fd genes were identified by PCR after the digestion of Sac I, Xba I, Xho Iand Spe I. One of positive clones was analyzed by DNA sequencing. The specific anti-amylin clones were screened from antibody library against human amylin antigens and then the positive clones were determined by Phage-ELISA analysis. A Fab phage antibody library with 0.8×10(8); members was constructed with the efficacy of about 70%. DNA sequence analysis indicated V(H); gene belonged to V(H);3 gene family and V(λ); gene belonged to the V(λ); gene family. Using human amylin as panning antigen, specific anti-amylin Fab antibodies were enriched by screening the library for three times. Phage-ELISA assay showed the positive clones had very good specificity to amylin antigen. The successful construction of a phage antibody library and the identification of anti-amylin Fab antibodies provide a basis for further study and preparation of human anti-amylin antibodies.
The carnegie protein trap library: a versatile tool for Drosophila developmental studies.
Buszczak, Michael; Paterno, Shelley; Lighthouse, Daniel; Bachman, Julia; Planck, Jamie; Owen, Stephenie; Skora, Andrew D; Nystul, Todd G; Ohlstein, Benjamin; Allen, Anna; Wilhelm, James E; Murphy, Terence D; Levis, Robert W; Matunis, Erika; Srivali, Nahathai; Hoskins, Roger A; Spradling, Allan C
2007-03-01
Metazoan physiology depends on intricate patterns of gene expression that remain poorly known. Using transposon mutagenesis in Drosophila, we constructed a library of 7404 protein trap and enhancer trap lines, the Carnegie collection, to facilitate gene expression mapping at single-cell resolution. By sequencing the genomic insertion sites, determining splicing patterns downstream of the enhanced green fluorescent protein (EGFP) exon, and analyzing expression patterns in the ovary and salivary gland, we found that 600-900 different genes are trapped in our collection. A core set of 244 lines trapped different identifiable protein isoforms, while insertions likely to act as GFP-enhancer traps were found in 256 additional genes. At least 8 novel genes were also identified. Our results demonstrate that the Carnegie collection will be useful as a discovery tool in diverse areas of cell and developmental biology and suggest new strategies for greatly increasing the coverage of the Drosophila proteome with protein trap insertions.
HangOut: generating clean PSI-BLAST profiles for domains with long insertions.
Kim, Bong-Hyun; Cong, Qian; Grishin, Nick V
2010-06-15
Profile-based similarity search is an essential step in structure-function studies of proteins. However, inclusion of non-homologous sequence segments into a profile causes its corruption and results in false positives. Profile corruption is common in multidomain proteins, and single domains with long insertions are a significant source of errors. We developed a procedure (HangOut) that, for a single domain with specified insertion position, cleans erroneously extended PSI-BLAST alignments to generate better profiles. HangOut is implemented in Python 2.3 and runs on all Unix-compatible platforms. The source code is available under the GNU GPL license at http://prodata.swmed.edu/HangOut/. Supplementary data are available at Bioinformatics online.
76 FR 60013 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-28
... per 35.17(b): Amendment--docket number inserted 09192011 to be effective 10/11/2011. Filed Date: 09/19... Northeast LLC submits tariff filing per 35.17(b): Amendment--docket number inserted 09192011 to be effective... Commission's eLibrary system by clicking on the links or querying the docket number. Any person desiring to...
Zygiel, Emily M.; Noren, Karen A.; Adamkiewicz, Marta A.; Aprile, Richard J.; Bowditch, Heather K.; Carroll, Christine L.; Cerezo, Maria Abigail S.; Dagher, Adelle M.; Hebert, Courtney R.; Hebert, Lauren E.; Mahame, Gloria M.; Milne, Stephanie C.; Silvestri, Kelly M.; Sutherland, Sara E.; Sylvia, Alexandria M.; Taveira, Caitlyn N.; VanValkenburgh, David J.; Noren, Christopher J.
2017-01-01
M13 and other members of the Ff class of filamentous bacteriophages have been extensively employed in myriad applications. The Ph.D. series of phage-displayed peptide libraries were constructed from the M13-based vector M13KE. As a direct descendent of M13mp19, M13KE contains the lacZα insert in the intergenic region between genes IV and II, where it interrupts the replication enhancer of the (+) strand origin. Phage carrying this 816-nucleotide insert are viable, but propagate in E. coli at a reduced rate compared to wild-type M13 phage, presumably due to a replication defect caused by the insert. We have previously reported thirteen compensatory mutations in the 5’-untranslated region of gene II, which encodes the replication initiator protein gIIp. Here we report several additional mutations in M13KE that restore a wild-type propagation rate. Several clones from constrained-loop variable peptide libraries were found to have ejected the majority of lacZα gene in order to reconstruct the replication enhancer, albeit with a small scar. In addition, new point mutations in the gene II 5’-untranslated region or the gene IV coding sequence have been spontaneously observed or synthetically engineered. Through phage propagation assays, we demonstrate that all these genetic modifications compensate for the replication defect in M13KE and restore the wild-type propagation rate. We discuss the mechanisms by which the insertion and ejection of the lacZα gene, as well as the mutations in the regulatory region of gene II, influence the efficiency of replication initiation at the (+) strand origin. We also examine the presence and relevance of fast-propagating mutants in phage-displayed peptide libraries. PMID:28445507
Zygiel, Emily M; Noren, Karen A; Adamkiewicz, Marta A; Aprile, Richard J; Bowditch, Heather K; Carroll, Christine L; Cerezo, Maria Abigail S; Dagher, Adelle M; Hebert, Courtney R; Hebert, Lauren E; Mahame, Gloria M; Milne, Stephanie C; Silvestri, Kelly M; Sutherland, Sara E; Sylvia, Alexandria M; Taveira, Caitlyn N; VanValkenburgh, David J; Noren, Christopher J; Hall, Marilena Fitzsimons
2017-01-01
M13 and other members of the Ff class of filamentous bacteriophages have been extensively employed in myriad applications. The Ph.D. series of phage-displayed peptide libraries were constructed from the M13-based vector M13KE. As a direct descendent of M13mp19, M13KE contains the lacZα insert in the intergenic region between genes IV and II, where it interrupts the replication enhancer of the (+) strand origin. Phage carrying this 816-nucleotide insert are viable, but propagate in E. coli at a reduced rate compared to wild-type M13 phage, presumably due to a replication defect caused by the insert. We have previously reported thirteen compensatory mutations in the 5'-untranslated region of gene II, which encodes the replication initiator protein gIIp. Here we report several additional mutations in M13KE that restore a wild-type propagation rate. Several clones from constrained-loop variable peptide libraries were found to have ejected the majority of lacZα gene in order to reconstruct the replication enhancer, albeit with a small scar. In addition, new point mutations in the gene II 5'-untranslated region or the gene IV coding sequence have been spontaneously observed or synthetically engineered. Through phage propagation assays, we demonstrate that all these genetic modifications compensate for the replication defect in M13KE and restore the wild-type propagation rate. We discuss the mechanisms by which the insertion and ejection of the lacZα gene, as well as the mutations in the regulatory region of gene II, influence the efficiency of replication initiation at the (+) strand origin. We also examine the presence and relevance of fast-propagating mutants in phage-displayed peptide libraries.
Lesion insertion in the projection domain: Methods and initial results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Baiyu; Leng, Shuai; Yu, Lifeng
2015-12-15
Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated bothmore » axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically acquired for the ACR phantom in terms of Hounsfield unit and high-contrast resolution. For the validation of the lesion realism, lesions of various types were successfully inserted, including well circumscribed and invasive lesions, homogeneous and heterogeneous lesions, high-contrast and low-contrast lesions, isolated and vessel-attached lesions, and small and large lesions. The two experienced radiologists who reviewed the original and inserted lesions could not identify the lesions that were inserted. The same lesion, when inserted into the projection domain and reconstructed with different parameters, demonstrated a parameter-dependent appearance. Conclusions: A framework has been developed for projection-domain insertion of lesions into commercial CT images, which can be potentially expanded to all geometries of CT scanners. Compared to conventional image-domain methods, the authors’ method reflected the impact of scan and reconstruction parameters on lesion appearance. Compared to prior projection-domain methods, the authors’ method has the potential to achieve higher anatomical complexity by employing clinical patient projections and real patient lesions.« less
Lesion insertion in the projection domain: Methods and initial results
Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Yu, Zhicong; Ma, Chi; McCollough, Cynthia
2015-01-01
Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated both axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically acquired for the ACR phantom in terms of Hounsfield unit and high-contrast resolution. For the validation of the lesion realism, lesions of various types were successfully inserted, including well circumscribed and invasive lesions, homogeneous and heterogeneous lesions, high-contrast and low-contrast lesions, isolated and vessel-attached lesions, and small and large lesions. The two experienced radiologists who reviewed the original and inserted lesions could not identify the lesions that were inserted. The same lesion, when inserted into the projection domain and reconstructed with different parameters, demonstrated a parameter-dependent appearance. Conclusions: A framework has been developed for projection-domain insertion of lesions into commercial CT images, which can be potentially expanded to all geometries of CT scanners. Compared to conventional image-domain methods, the authors’ method reflected the impact of scan and reconstruction parameters on lesion appearance. Compared to prior projection-domain methods, the authors’ method has the potential to achieve higher anatomical complexity by employing clinical patient projections and real patient lesions. PMID:26632058
Yung, Pui Yi; Burke, Catherine; Lewis, Matt; Egan, Suhelen; Kjelleberg, Staffan; Thomas, Torsten
2009-01-01
Metagenomics provides access to the uncultured majority of the microbial world. The approaches employed in this field have, however, had limited success in linking functional genes to the taxonomic or phylogenetic origin of the organism they belong to. Here we present an efficient strategy to recover environmental DNA fragments that contain phylogenetic marker genes from metagenomic libraries. Our method involves the cleavage of 23S ribsosmal RNA (rRNA) genes within pooled library clones by the homing endonuclease I-CeuI followed by the insertion and selection of an antibiotic resistance cassette. This approach was applied to screen a library of 6500 fosmid clones derived from the microbial community associated with the sponge Cymbastela concentrica. Several fosmid clones were recovered after the screen and detailed phylogenetic and taxonomic assignment based on the rRNA gene showed that they belong to previously unknown organisms. In addition, compositional features of these fosmid clones were used to classify and taxonomically assign a dataset of environmental shotgun sequences. Our approach represents a valuable tool for the analysis of rapidly increasing, environmental DNA sequencing information. PMID:19767618
Ruiz, Lorena; Motherway, Mary O'Connell; Lanigan, Noreen; van Sinderen, Douwe
2013-01-01
Bifidobacteria are claimed to contribute positively to human health through a range of beneficial or probiotic activities, including amelioration of gastrointestinal and metabolic disorders, and therefore this particular group of gastrointestinal commensals has enjoyed increasing industrial and scientific attention in recent years. However, the molecular mechanisms underlying these probiotic mechanisms are still largely unknown, mainly due to the fact that molecular tools for bifidobacteria are rather poorly developed, with many strains lacking genetic accessibility. In this work, we describe the generation of transposon insertion mutants in two bifidobacterial strains, B. breve UCC2003 and B. breve NCFB2258. We also report the creation of the first transposon mutant library in a bifidobacterial strain, employing B. breve UCC2003 and a Tn5-based transposome strategy. The library was found to be composed of clones containing single transposon insertions which appear to be randomly distributed along the genome. The usefulness of the library to perform phenotypic screenings was confirmed through identification and analysis of mutants defective in D-galactose, D-lactose or pullulan utilization abilities.
2011-01-01
Background One of the key goals of oak genomics research is to identify genes of adaptive significance. This information may help to improve the conservation of adaptive genetic variation and the management of forests to increase their health and productivity. Deep-coverage large-insert genomic libraries are a crucial tool for attaining this objective. We report herein the construction of a BAC library for Quercus robur, its characterization and an analysis of BAC end sequences. Results The EcoRI library generated consisted of 92,160 clones, 7% of which had no insert. Levels of chloroplast and mitochondrial contamination were below 3% and 1%, respectively. Mean clone insert size was estimated at 135 kb. The library represents 12 haploid genome equivalents and, the likelihood of finding a particular oak sequence of interest is greater than 99%. Genome coverage was confirmed by PCR screening of the library with 60 unique genetic loci sampled from the genetic linkage map. In total, about 20,000 high-quality BAC end sequences (BESs) were generated by sequencing 15,000 clones. Roughly 5.88% of the combined BAC end sequence length corresponded to known retroelements while ab initio repeat detection methods identified 41 additional repeats. Collectively, characterized and novel repeats account for roughly 8.94% of the genome. Further analysis of the BESs revealed 1,823 putative genes suggesting at least 29,340 genes in the oak genome. BESs were aligned with the genome sequences of Arabidopsis thaliana, Vitis vinifera and Populus trichocarpa. One putative collinear microsyntenic region encoding an alcohol acyl transferase protein was observed between oak and chromosome 2 of V. vinifera. Conclusions This BAC library provides a new resource for genomic studies, including SSR marker development, physical mapping, comparative genomics and genome sequencing. BES analysis provided insight into the structure of the oak genome. These sequences will be used in the assembly of a future genome sequence for oak. PMID:21645357
Henry, Kevin A; Tanha, Jamshid
2018-05-01
Fully human synthetic single-domain antibodies (sdAbs) are desirable therapeutic molecules but their development is a considerable challenge. Here, using a retrospective analysis of in-house historical data, we examined the parameters that impact the outcome of screening phage-displayed synthetic human sdAb libraries to discover antigen-specific binders. We found no evidence for a differential effect of domain type (V H or V L ), library randomization strategy, incorporation of a stabilizing disulfide linkage or sdAb display format (monovalent vs. multivalent) on the probability of obtaining any antigen-binding human sdAbs, instead finding that the success of library screens was primarily related to properties of target antigens, especially molecular mass. The solubility and binding affinity of sdAbs isolated from successful screens depended both on properties of the sdAb libraries (primarily domain type) and the target antigens. Taking attrition of sdAbs with major manufacturability concerns (aggregation; low expression) and sdAbs that do not recognize native cell-surface antigens as independent probabilities, we calculate the overall likelihood of obtaining ≥1 antigen-binding human sdAb from a single library-target screen as ~24%. Successful library-target screens should be expected to yield ~1.3 human sdAbs on average, each with average binding affinity of ~2 μM. Copyright © 2018 Elsevier B.V. All rights reserved.
[Cosmid libraries containing DNA from human chromosome 13].
Kapanadze, B I; Brodianskiĭ, V M; Baranova, A V; Sevat'ianov, S Iu; Fedorova, N D; Kurskov, M M; Kostina, M A; Mironov, A A; Sineokiĭ, S P; Zakhar'ev, V M; Grafodatskiĭ, A S; Modianov, N N; Iankovskiĭ, N K
1996-03-01
We characterized two cosmid libraries constructed from flow-sorted chromosome 13 at the Imperial Cancer Research Fund (ICRF), UK (13,000 clones) and Los Alamos National Laboratory (LANL), USA (17,000 clones). After storage for two years, clones showed high viability (95%) and structural stability. EcoR I and Hind III restriction patterns were studied in more than 500 ICRF and 200 LANL cosmids. The average size of inserts was shown to be 35-37 kb in both the libraries. Most cosmids (83% and 93% of ICRF and LANL libraries, respectively) exceed the lower size limit of DNA fragments that can be packaged and represent a good source for physical mapping of chromosome 13. Total length of inserts is four and five genome equivalents in the ICRF and LANL libraries, respectively. ICRF cosmids showed hybridization to 22 of 24 unique probes tested, which corresponds to a 90% probability of having any DNA fragment represented in the library. More than 1 Mb of chromosome 13 is overlapped by 90 cosmids of 22 groups revealed. A chromosomal region of more than 150 kb, containing the ATP1AL1 gene for alpha-1 peptide of Na+, K(+)-ATPase, is covered by 12 cosmids forming a contig. The results of restriction and hybridization analyses are stored in a CLONE database. These data and all the cosmids described are publicly available.
NASA Astrophysics Data System (ADS)
Yamagata, Atsushi; Yoshida, Tomoyuki; Sato, Yusuke; Goto-Ito, Sakurako; Uemura, Takeshi; Maeda, Asami; Shiroshima, Tomoko; Iwasawa-Okamoto, Shiho; Mori, Hisashi; Mishina, Masayoshi; Fukai, Shuya
2015-04-01
Synapse formation is triggered through trans-synaptic interaction between pairs of pre- and postsynaptic adhesion molecules, the specificity of which depends on splice inserts known as `splice-insert signaling codes'. Receptor protein tyrosine phosphatase δ (PTPδ) can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to interleukin-1 receptor accessory protein (IL-1RAcP) and IL-1RAcP-like-1 (IL1RAPL1) in a splicing-dependent manner. Here, we report crystal structures of PTPδ in complex with IL1RAPL1 and IL-1RAcP. The first immunoglobulin-like (Ig) domain of IL1RAPL1 directly recognizes the first splice insert, which is critical for binding to IL1RAPL1. The second splice insert functions as an adjustable linker that positions the Ig2 and Ig3 domains of PTPδ for simultaneously interacting with the Ig1 domain of IL1RAPL1 or IL-1RAcP. We further identified the IL1RAPL1-specific interaction, which appears coupled to the first-splice-insert-mediated interaction. Our results thus reveal the decoding mechanism of splice-insert signaling codes for synaptic differentiation induced by trans-synaptic adhesion between PTPδ and IL1RAPL1/IL-1RAcP.
Martínez-Arteaga, Rocio; Ruano-Gallego, David; Fraile, Sofía; Margolles, Yago; Teira, Xema; Gutierrez, Carlos; Bodelón, Gustavo; Fernández, Luis Ángel
2013-01-01
Screening of antibody (Ab) libraries by direct display on the surface of E. coli cells is hampered by the presence of the outer membrane (OM). In this work we demonstrate that the native β-domains of EhaA autotransporter and intimin, two proteins from enterohemorrhagic E. coli O157:H7 (EHEC) with opposite topologies in the OM, are effective systems for the display of immune libraries of single domain Abs (sdAbs) from camelids (nanobodies or VHH) on the surface of E. coli K-12 cells and for the selection of high affinity sdAbs using magnetic cell sorting (MACS). We analyzed the capacity of EhaA and intimin β-domains to display individual sdAbs and sdAb libraries obtained after immunization with the extracellular domain of the translocated intimin receptor from EHEC (TirMEHEC). We demonstrated that both systems displayed functional sdAbs on the surface of E. coli cells with little proteolysis and cellular toxicity, although E. coli cells displaying sdAbs with the β-domain of intimin showed higher antigen-binding capacity. Both E. coli display libraries were screened for TirMEHEC binding clones by MACS. High affinity binders were selected by both display systems, although more efficiently with the intimin β-domain. The specificity of the selected clones against TirMEHEC was demonstrated by flow cytometry of E. coli cells, along with ELISA and surface plasmon resonance with purified sdAbs. Finally, we employed the E. coli cell display systems to provide an estimation of the affinity of the selected sdAb by flow cytometry analysis under equilibrium conditions. PMID:24086454
Roggo, Clémence; Coronado, Edith; Moreno-Forero, Silvia K; Harshman, Keith; Weber, Johann; van der Meer, Jan Roelof
2013-10-01
Sphingomonas wittichii RW1 is a dibenzofuran and dibenzodioxin-degrading bacterium with potentially interesting properties for bioaugmentation of contaminated sites. In order to understand the capacity of the microorganism to survive in the environment we used a genome-wide transposon scanning approach. RW1 transposon libraries were generated with around 22,000 independent insertions. Libraries were grown for an average of 50 generations (five successive passages in batch liquid medium) with salicylate as sole carbon and energy source in presence or absence of salt stress at -1.5 MPa. Alternatively, libraries were grown in sand with salicylate, at 50% water holding capacity, for 4 and 10 days (equivalent to 7 generations). Library DNA was recovered from the different growth conditions and scanned by ultrahigh throughput sequencing for the positions and numbers of inserted transposed kanamycin resistance gene. No transposon reads were recovered in 579 genes (10% of all annotated genes in the RW1 genome) in any of the libraries, suggesting those to be essential for survival under the used conditions. Libraries recovered from sand differed strongly from those incubated in liquid batch medium. In particular, important functions for survival of cells in sand at the short term concerned nutrient scavenging, energy metabolism and motility. In contrast to this, fatty acid metabolism and oxidative stress response were essential for longer term survival of cells in sand. Comparison to transcriptome data suggested important functions in sand for flagellar movement, pili synthesis, trehalose and polysaccharide synthesis and putative cell surface antigen proteins. Interestingly, a variety of genes were also identified, interruption of which cause significant increase in fitness during growth on salicylate. One of these was an Lrp family transcription regulator and mutants in this gene covered more than 90% of the total library after 50 generations of growth on salicylate. Our results demonstrate the power of genome-wide transposon scanning approaches for analysis of complex traits. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Structural diversity of domain superfamilies in the CATH database.
Reeves, Gabrielle A; Dallman, Timothy J; Redfern, Oliver C; Akpor, Adrian; Orengo, Christine A
2006-07-14
The CATH database of domain structures has been used to explore the structural variation of homologous domains in 294 well populated domain structure superfamilies, each containing at least three sequence diverse relatives. Our analyses confirm some previously detected trends relating sequence divergence to structural variation but for a much larger dataset and in some superfamilies the new data reveal exceptional structural variation. Use of a new algorithm (2DSEC) to analyse variability in secondary structure compositions across a superfamily sheds new light on how structures evolve. 2DSEC detects inserted secondary structures that embellish the core of conserved secondary structures found throughout the superfamily. Analysis showed that for 56% of highly populated superfamilies (>9 sequence diverse relatives), there are twofold or more increases in the numbers of secondary structures in some relatives. In some families fivefold increases occur, sometimes modifying the fold of the domain. Manual inspection of secondary structure insertions or embellishments in 48 particularly variable superfamilies revealed that although these insertions were usually discontiguous in the sequence they were often co-located in 3D resulting in a larger structural motif that often modified the geometry of the active site or the surface conformation promoting diverse domain partnerships and protein interactions. These observations, supported by automatic analysis of all well populated CATH families, suggest that accretion of small secondary structure insertions may provide a simple mechanism for evolving new functions in diverse relatives. Some layered domain architectures (e.g. mainly-beta and alpha-beta sandwiches) that recur highly in the genomes more frequently exploit these types of embellishments to modify function. In these architectures, aggregation occurs most often at the edges, top or bottom of the beta-sheets. Information on structural variability across domain superfamilies has been made available through the CATH Dictionary of Homologous Structures (DHS).
Library Involvement in State Government Information Policy Development in the United States.
ERIC Educational Resources Information Center
Weaver, Barbara F.
This paper focuses on efforts by library groups and individuals to influence the development of state government information policy in various states in the United States, and emphasizes the need for librarians to make sure they either initiate such development or insert themselves into any existing policy development processes. Emphasis is given…
Bui, Huyen T.; Karren, Mary A.; Bhar, Debjani
2012-01-01
To initiate mitochondrial fission, dynamin-related proteins (DRPs) must bind specific adaptors on the outer mitochondrial membrane. The structural features underlying this interaction are poorly understood. Using yeast as a model, we show that the Insert B domain of the Dnm1 guanosine triphosphatase (a DRP) contains a novel motif required for association with the mitochondrial adaptor Mdv1. Mutation of this conserved motif specifically disrupted Dnm1–Mdv1 interactions, blocking Dnm1 recruitment and mitochondrial fission. Suppressor mutations in Mdv1 that restored Dnm1–Mdv1 interactions and fission identified potential protein-binding interfaces on the Mdv1 β-propeller domain. These results define the first known function for Insert B in DRP–adaptor interactions. Based on the variability of Insert B sequences and adaptor proteins, we propose that Insert B domains and mitochondrial adaptors have coevolved to meet the unique requirements for mitochondrial fission of different organisms. PMID:23148233
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelinka, L.; McCann, S.; Budde, J.
2011-08-05
Highlights: {yields} Affinity purification of the autoimmune rippling muscle disease immunogenic domain of titin. {yields} Partial sequence analysis confirms that the peptides is in the I band region of titin. {yields} This region of the human titin shows high degree of homology to mouse titin N2-A. -- Abstract: Autoimmune rippling muscle disease (ARMD) is an autoimmune neuromuscular disease associated with myasthenia gravis (MG). Past studies in our laboratory recognized a very high molecular weight skeletal muscle protein antigen identified by ARMD patient antisera as the titin isoform. These past studies used antisera from ARMD and MG patients as probes tomore » screen a human skeletal muscle cDNA library and several pBluescript clones revealed supporting expression of immunoreactive peptides. This study characterizes the products of subcloning the titin immunoreactive domain into pGEX-3X and the subsequent fusion protein. Sequence analysis of the fusion gene indicates the cloned titin domain (GenBank ID: (EU428784)) is in frame and is derived from a sequence of N2-A spanning the exons 248-250 an area that encodes the fibronectin III domain. PCR and EcoR1 restriction mapping studies have demonstrated that the inserted cDNA is of a size that is predicted by bioinformatics analysis of the subclone. Expression of the fusion protein result in the isolation of a polypeptide of 52 kDa consistent with the predicted inferred amino acid sequence. Immunoblot experiments of the fusion protein, using rippling muscle/myasthenia gravis antisera, demonstrate that only the titin domain is immunoreactive.« less
Daday, Csaba; Kolšek, Katra; Gräter, Frauke
2017-09-15
The plakin family of proteins, important actors in cross-linking force-bearing structures in the cell, contain a curious SH3 domain insertion in their chain of spectrin repeats (SRs). While SH3 domains are known to mediate protein-protein interactions, here, its canonical binding site is autoinhibited by the preceding SR. Under force, however, this SH3 domain could be released, and possibly launch a signaling cascade. We performed large-scale force-probe molecular dynamics simulations, across two orders of magnitude of loading rates, to test this hypothesis, on two prominent members of the plakin family: desmoplakin and plectin, obligate proteins at desmosomes and hemidesmosomes, respectively. Our simulations show that force unravels the SRs and abolishes the autoinhibition of the SH3 domain, an event well separated from the unfolding of this domain. The SH3 domain is free and fully functional for a significant portion of the unfolding trajectories. The rupture forces required for the two proteins significantly decrease when the SH3 domain is removed, which implies that the SH3 domain also stabilizes this junction. Our results persist across all simulations, and support a force-sensing as well as a stabilizing role of the unique SH3 insertion, putting forward this protein family as a new class of mechano-sensors.
Henry, Kevin A
2018-01-01
Immunogenetic analyses of expressed antibody repertoires are becoming increasingly common experimental investigations and are critical to furthering our understanding of autoimmunity, infectious disease, and cancer. Next-generation DNA sequencing (NGS) technologies have now made it possible to interrogate antibody repertoires to unprecedented depths, typically by sequencing of cDNAs encoding immunoglobulin variable domains. In this chapter, we describe simple, fast, and reliable methods for producing and sequencing multiplex PCR amplicons derived from the variable regions (V H , V H H or V L ) of rearranged immunoglobulin heavy and light chain genes using the Illumina MiSeq platform. We include complete protocols and primer sets for amplicon sequencing of V H /V H H/V L repertoires directly from human, mouse, and llama lymphocytes as well as from phage-displayed V H /V H H/V L libraries; these can be easily be adapted to other types of amplicons with little modification. The resulting amplicons are diverse and representative, even using as few as 10 3 input B cells, and their generation is relatively inexpensive, requiring no special equipment and only a limited set of primers. In the absence of heavy-light chain pairing, single-domain antibodies are uniquely amenable to NGS analyses. We present a number of applications of NGS technology useful in discovery of single-domain antibodies from phage display libraries, including: (i) assessment of library functionality; (ii) confirmation of desired library randomization; (iii) estimation of library diversity; and (iv) monitoring the progress of panning experiments. While the case studies presented here are of phage-displayed single-domain antibody libraries, the principles extend to other types of in vitro display libraries.
Shin, Sung Jae; Wu, Chia-wei; Steinberg, Howard; Talaat, Adel M.
2006-01-01
Johne's disease, caused by Mycobacterium paratuberculosis infection, is a worldwide problem for the dairy industry and has a possible involvement in Crohn's disease in humans. To identify virulence determinants of this economically important pathogen, a library of 5,060 transposon mutants was constructed using Tn5367 insertion mutagenesis, followed by large-scale sequencing to identify disrupted genes. In this report, 1,150 mutants were analyzed and 970 unique insertion sites were identified. Sequence analysis of the disrupted genes indicated that the insertion of Tn5367 was more prevalent in genomic regions with G+C content (50.5 to 60.5%) lower than the average G+C content (69.3%) of the rest of the genome. Phenotypic screening of the library identified disruptions of genes involved in iron, tryptophan, or mycolic acid metabolic pathways that displayed unique growth characteristics. Bioinformatic analysis of disrupted genes identified a list of potential virulence determinants for further testing with animals. Mouse infection studies showed a significant decrease in tissue colonization by mutants with a disruption in the gcpE, pstA, kdpC, papA2, impA, umaA1, or fabG2_2 gene. Attenuation phenotypes were tissue specific (e.g., for the umaA1 mutant) as well as time specific (e.g., for the impA mutant), suggesting that those genes may be involved in different virulence mechanisms. The identified potential virulence determinants represent novel functional classes that could be necessary for mycobacterial survival during infection and could provide suitable targets for vaccine and drug development against Johne's and Crohn's diseases. PMID:16790754
The Carnegie Protein Trap Library: A Versatile Tool for Drosophila Developmental Studies
Buszczak, Michael; Paterno, Shelley; Lighthouse, Daniel; Bachman, Julia; Planck, Jamie; Owen, Stephenie; Skora, Andrew D.; Nystul, Todd G.; Ohlstein, Benjamin; Allen, Anna; Wilhelm, James E.; Murphy, Terence D.; Levis, Robert W.; Matunis, Erika; Srivali, Nahathai; Hoskins, Roger A.; Spradling, Allan C.
2007-01-01
Metazoan physiology depends on intricate patterns of gene expression that remain poorly known. Using transposon mutagenesis in Drosophila, we constructed a library of 7404 protein trap and enhancer trap lines, the Carnegie collection, to facilitate gene expression mapping at single-cell resolution. By sequencing the genomic insertion sites, determining splicing patterns downstream of the enhanced green fluorescent protein (EGFP) exon, and analyzing expression patterns in the ovary and salivary gland, we found that 600–900 different genes are trapped in our collection. A core set of 244 lines trapped different identifiable protein isoforms, while insertions likely to act as GFP-enhancer traps were found in 256 additional genes. At least 8 novel genes were also identified. Our results demonstrate that the Carnegie collection will be useful as a discovery tool in diverse areas of cell and developmental biology and suggest new strategies for greatly increasing the coverage of the Drosophila proteome with protein trap insertions. PMID:17194782
Crystallographic studies of the anthrax lethal toxin. Final report, 1 July 1994-31 December 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, C.A.
1997-01-01
Protective Antigen (PA) is the central component of the three-part protein toxin secreted by Bacillus anthraces, the organism responsible for anthrax. Following proteolytic activation on the host cell surface, PA forms a membrane-inserting heptamer that translocates the toxic enzymes into the cytosol. We have solved the crystal structure of monomeric PA at 2.1 A resolution and the water-soluble heptamer at 4.5 A resolution. The monomer is organized mainly into antiparallel b-sheets and has four domains: an N-terminal domain containing two calcium ions; a heptamerization domain containing a large flexible loop implicated in membrane insertion; a small domain of unknown function;more » and a C-terminal receptor-binding domain. Removal of a 20 kDa fragment from the N-terminal domain permits assembly of the heptamer, a ring-shaped structure with a negatively charged lumen, and exposes a large hydrophobic surface for binding the toxic enzymes. We present a model of pH-dependent membrane insertion involving formation of a porin-like membrane-spanning b barrel. These studies greatly enhance current understanding of the mechanism of anthrax intoxication, and will be useful in the design of recombinant anthrax vaccines.« less
AMPHION: Specification-based programming for scientific subroutine libraries
NASA Technical Reports Server (NTRS)
Lowry, Michael; Philpot, Andrew; Pressburger, Thomas; Underwood, Ian; Waldinger, Richard; Stickel, Mark
1994-01-01
AMPHION is a knowledge-based software engineering (KBSE) system that guides a user in developing a diagram representing a formal problem specification. It then automatically implements a solution to this specification as a program consisting of calls to subroutines from a library. The diagram provides an intuitive domain oriented notation for creating a specification that also facilitates reuse and modification. AMPHION'S architecture is domain independent. AMPHION is specialized to an application domain by developing a declarative domain theory. Creating a domain theory is an iterative process that currently requires the joint expertise of domain experts and experts in automated formal methods for software development.
Entcheva, P; Liebl, W; Johann, A; Hartsch, T; Streit, W R
2001-01-01
Enrichment cultures of microbial consortia enable the diverse metabolic and catabolic activities of these populations to be studied on a molecular level and to be explored as potential sources for biotechnology processes. We have used a combined approach of enrichment culture and direct cloning to construct cosmid libraries with large (>30-kb) inserts from microbial consortia. Enrichment cultures were inoculated with samples from five environments, and high amounts of avidin were added to the cultures to favor growth of biotin-producing microbes. DNA was extracted from three of these enrichment cultures and used to construct cosmid libraries; each library consisted of between 6,000 and 35,000 clones, with an average insert size of 30 to 40 kb. The inserts contained a diverse population of genomic DNA fragments isolated from the consortia organisms. These three libraries were used to complement the Escherichia coli biotin auxotrophic strain ATCC 33767 Delta(bio-uvrB). Initial screens resulted in the isolation of seven different complementing cosmid clones, carrying biotin biosynthesis operons. Biotin biosynthesis capabilities and growth under defined conditions of four of these clones were studied. Biotin measured in the different culture supernatants ranged from 42 to 3,800 pg/ml/optical density unit. Sequencing the identified biotin synthesis genes revealed high similarities to bio operons from gram-negative bacteria. In addition, random sequencing identified other interesting open reading frames, as well as two operons, the histidine utilization operon (hut), and the cluster of genes involved in biosynthesis of molybdopterin cofactors in bacteria (moaABCDE).
Vettore, André L.; da Silva, Felipe R.; Kemper, Edson L.; Souza, Glaucia M.; da Silva, Aline M.; Ferro, Maria Inês T.; Henrique-Silva, Flavio; Giglioti, Éder A.; Lemos, Manoel V.F.; Coutinho, Luiz L.; Nobrega, Marina P.; Carrer, Helaine; França, Suzelei C.; Bacci, Maurício; Goldman, Maria Helena S.; Gomes, Suely L.; Nunes, Luiz R.; Camargo, Luis E.A.; Siqueira, Walter J.; Van Sluys, Marie-Anne; Thiemann, Otavio H.; Kuramae, Eiko E.; Santelli, Roberto V.; Marino, Celso L.; Targon, Maria L.P.N.; Ferro, Jesus A.; Silveira, Henrique C.S.; Marini, Danyelle C.; Lemos, Eliana G.M.; Monteiro-Vitorello, Claudia B.; Tambor, José H.M.; Carraro, Dirce M.; Roberto, Patrícia G.; Martins, Vanderlei G.; Goldman, Gustavo H.; de Oliveira, Regina C.; Truffi, Daniela; Colombo, Carlos A.; Rossi, Magdalena; de Araujo, Paula G.; Sculaccio, Susana A.; Angella, Aline; Lima, Marleide M.A.; de Rosa, Vicente E.; Siviero, Fábio; Coscrato, Virginia E.; Machado, Marcos A.; Grivet, Laurent; Di Mauro, Sonia M.Z.; Nobrega, Francisco G.; Menck, Carlos F.M.; Braga, Marilia D.V.; Telles, Guilherme P.; Cara, Frank A.A.; Pedrosa, Guilherme; Meidanis, João; Arruda, Paulo
2003-01-01
To contribute to our understanding of the genome complexity of sugarcane, we undertook a large-scale expressed sequence tag (EST) program. More than 260,000 cDNA clones were partially sequenced from 26 standard cDNA libraries generated from different sugarcane tissues. After the processing of the sequences, 237,954 high-quality ESTs were identified. These ESTs were assembled into 43,141 putative transcripts. Of the assembled sequences, 35.6% presented no matches with existing sequences in public databases. A global analysis of the whole SUCEST data set indicated that 14,409 assembled sequences (33% of the total) contained at least one cDNA clone with a full-length insert. Annotation of the 43,141 assembled sequences associated almost 50% of the putative identified sugarcane genes with protein metabolism, cellular communication/signal transduction, bioenergetics, and stress responses. Inspection of the translated assembled sequences for conserved protein domains revealed 40,821 amino acid sequences with 1415 Pfam domains. Reassembling the consensus sequences of the 43,141 transcripts revealed a 22% redundancy in the first assembling. This indicated that possibly 33,620 unique genes had been identified and indicated that >90% of the sugarcane expressed genes were tagged. PMID:14613979
Software Library for Bruker TopSpin NMR Data Files
DOE Office of Scientific and Technical Information (OSTI.GOV)
A software library for parsing and manipulating frequency-domain data files that have been processed using the Bruker TopSpin NMR software package. In the context of NMR, the term "processed" indicates that the end-user of the Bruker TopSpin NMR software package has (a) Fourier transformed the raw, time-domain data (the Free Induction Decay) into the frequency-domain and (b) has extracted the list of NMR peaks.
Losing Libraries, Saving Libraries
ERIC Educational Resources Information Center
Miller, Rebecca
2010-01-01
This summer, as public libraries continued to get budget hit after budget hit across the country, several readers asked for a comprehensive picture of the ravages of the recession on library service. In partnership with 2010 Movers & Shakers Laura Solomon and Mandy Knapp, Ohio librarians who bought the Losing Libraries domain name,…
Linking Semantic and Knowledge Representations in a Multi-Domain Dialogue System
2007-06-01
accuracy evaluation presented in the next section shows that the generic version of the grammar performs similarly well on two evaluation domains...of extra insertions; for example, discourse adverbials such as now were inserted if present in the lattice. In addition, different tense and pronoun...automatic lexicon specialization technique improves parser speed and accuracy. 1 Introduction This paper presents an architecture of a language
[Primary culture of cat intestinal epithelial cell and construction of its cDNA library].
Ye, L; Gui-Hua, Z; Kun, Y; Hong-Fa, W; Ting, X; Gong-Zhen, L; Wei-Xia, Z; Yong, C
2017-04-12
Objective To establish the primary cat intestinal epithelial cells (IECs) culture methods and construct the cDNA library for the following yeast two-hybrid experiment, so as to screen the virulence interaction factors among the final host. Methods The primary cat IECs were cultured by the tissue cultivation and combined digestion with collagenase XI and dispase I separately. Then the cat IECs cultured was identified with the morphological observation and cyto-keratin detection, by using goat anti-cyto-keratin monoclonal antibodies. The mRNA of cat IECs was isolated and used as the template to synthesize the first strand cDNA by SMART™ technology, and then the double-strand cDNAs were acquired by LD-PCR, which were subsequently cloned into the plasmid PGADT7-Rec to construct yeast two-hybrid cDNA library in the yeast strain Y187 by homologous recombination. Matchmaker™ Insert Check PCR was used to detect the size distribution of cDNA fragments after the capacity calculation of the cDNA library. Results The comparison of the two cultivation methods indicated that the combined digestion of collagenase XI and dispase I was more effective than the tissue cultivation. The cat IECs system of continuous culture was established and the cat IECs with high purity were harvested for constructing the yeast two-hybrid cDNA library. The library contained 1.1×10 6 independent clones. The titer was 2.8×10 9 cfu/ml. The size of inserted fragments was among 0.5-2.0 kb. Conclusion The yeast two-hybrid cDNA library of cat IECs meets the requirements of further screen research, and this study lays the foundation of screening the Toxoplasma gondii virulence interaction factors among the cDNA libraries of its final hosts.
The Essential Genome of Escherichia coli K-12
2018-01-01
ABSTRACT Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry. PMID:29463657
Zhang, Zeng-yan; Ji, Te; Zhu, Zhi-yong; Zhao, Hong-wei; Chen, Min; Xiao, Ti-qiao; Guo, Zhi
2015-01-01
Terahertz radiation is an electromagnetic radiation in the range between millimeter waves and far infrared. Due to its low energy and non-ionizing characters, THz pulse imaging emerges as a novel tool in many fields, such as material, chemical, biological medicine, and food safety. Limited spatial resolution is a significant restricting factor of terahertz imaging technology. Near field imaging method was proposed to improve the spatial resolution of terahertz system. Submillimeter scale's spauial resolution can be achieved if the income source size is smaller than the wawelength of the incoming source and the source is very close to the sample. But many changes were needed to the traditional terahertz time domain spectroscopy system, and it's very complex to analyze sample's physical parameters through the terahertz signal. A method of inserting a pinhole upstream to the sample was first proposed in this article to improve the spatial resolution of traditional terahertz time domain spectroscopy system. The measured spatial resolution of terahertz time domain spectroscopy system by knife edge method can achieve spatial resolution curves. The moving stage distance between 10 % and 90 Yo of the maximum signals respectively was defined as the, spatial resolution of the system. Imaging spatial resolution of traditional terahertz time domain spectroscopy system was improved dramatically after inserted a pinhole with diameter 0. 5 mm, 2 mm upstream to the sample. Experimental results show that the spatial resolution has been improved from 1. 276 mm to 0. 774 mm, with the increment about 39 %. Though this simple method, the spatial resolution of traditional terahertz time domain spectroscopy system was increased from millimeter scale to submillimeter scale. A pinhole with diameter 1 mm on a polyethylene plate was taken as sample, to terahertz imaging study. The traditional terahertz time domain spectroscopy system and pinhole inserted terahertz time domain spectroscopy system were applied in the imaging experiment respectively. The relative THz-power loss imaging of samples were use in this article. This method generally delivers the best signal to noise ratio in loss images, dispersion effects are cancelled. Terahertz imaging results show that the sample's boundary was more distinct after inserting the pinhole in front of, sample. The results also conform that inserting pinhole in front of sample can improve the imaging spatial resolution effectively. The theoretical analyses of the method which improve the spatial resolution by inserting a pinhole in front of sample were given in this article. The analyses also indicate that the smaller the pinhole size, the longer spatial coherence length of the system, the better spatial resolution of the system. At the same time the terahertz signal will be reduced accordingly. All the experimental results and theoretical analyses indicate that the method of inserting a pinhole in front of sample can improve the spatial resolution of traditional terahertz time domain spectroscopy system effectively, and it will further expand the application of terahertz imaging technology.
Interkinase domain of kit contains the binding site for phosphatidylinositol 3' kinase.
Lev, S; Givol, D; Yarden, Y
1992-01-01
Our previous analysis of the signal transduction pathway used by the c-kit-encoded receptor for the stem cell factor (SCF) indicated efficient coupling to the type I phosphatidylinositol 3' kinase (PI3K). In an attempt to localize the receptor's site of interaction with PI3K, we separately deleted either the noncatalytic 68-amino-acid-long interkinase domain or the carboxyl-terminal portion distal to the catalytic sequences. Loss of ligand-induced association of PI3K with the former deletion mutant and retention of the PI3K association by the carboxyl-terminally deleted receptor implied interactions of PI3K with the kinase insert. This was further supported by partial inhibition of the association by an anti-peptide antibody directed against the kinase insert and lack of effect of an antibody directed to the carboxyl tail of the SCF receptor. A bacterially expressed kinase insert domain was used as a fusion protein to directly test its presumed function as a PI3K association site. This protein bound PI3K from cell lysate as demonstrated by PI3K activity and by an associated phosphoprotein of 85 kDa. The association was dependent on phosphorylation of the tyrosine residues on the expressed kinase insert. On the basis of these observations, we conclude that the kinase insert domain of the SCF receptor selectively interacts with the p85 regulatory subunit of PI3K and that this association requires phosphorylation of tyrosine residues in the kinase insert region, with apparently no involvement of the bulk cytoplasmic structure or tyrosine kinase function of the receptor. Images PMID:1370584
2012-01-01
Background Hidden Markov Models (HMMs) are a powerful tool for protein domain identification. The Pfam database notably provides a large collection of HMMs which are widely used for the annotation of proteins in new sequenced organisms. In Pfam, each domain family is represented by a curated multiple sequence alignment from which a profile HMM is built. In spite of their high specificity, HMMs may lack sensitivity when searching for domains in divergent organisms. This is particularly the case for species with a biased amino-acid composition, such as P. falciparum, the main causal agent of human malaria. In this context, fitting HMMs to the specificities of the target proteome can help identify additional domains. Results Using P. falciparum as an example, we compare approaches that have been proposed for this problem, and present two alternative methods. Because previous attempts strongly rely on known domain occurrences in the target species or its close relatives, they mainly improve the detection of domains which belong to already identified families. Our methods learn global correction rules that adjust amino-acid distributions associated with the match states of HMMs. These rules are applied to all match states of the whole HMM library, thus enabling the detection of domains from previously absent families. Additionally, we propose a procedure to estimate the proportion of false positives among the newly discovered domains. Starting with the Pfam standard library, we build several new libraries with the different HMM-fitting approaches. These libraries are first used to detect new domain occurrences with low E-values. Second, by applying the Co-Occurrence Domain Discovery (CODD) procedure we have recently proposed, the libraries are further used to identify likely occurrences among potential domains with higher E-values. Conclusion We show that the new approaches allow identification of several domain families previously absent in the P. falciparum proteome and the Apicomplexa phylum, and identify many domains that are not detected by previous approaches. In terms of the number of new discovered domains, the new approaches outperform the previous ones when no close species are available or when they are used to identify likely occurrences among potential domains with high E-values. All predictions on P. falciparum have been integrated into a dedicated website which pools all known/new annotations of protein domains and functions for this organism. A software implementing the two proposed approaches is available at the same address: http://www.lirmm.fr/∼terrapon/HMMfit/ PMID:22548871
Terrapon, Nicolas; Gascuel, Olivier; Maréchal, Eric; Bréhélin, Laurent
2012-05-01
Hidden Markov Models (HMMs) are a powerful tool for protein domain identification. The Pfam database notably provides a large collection of HMMs which are widely used for the annotation of proteins in new sequenced organisms. In Pfam, each domain family is represented by a curated multiple sequence alignment from which a profile HMM is built. In spite of their high specificity, HMMs may lack sensitivity when searching for domains in divergent organisms. This is particularly the case for species with a biased amino-acid composition, such as P. falciparum, the main causal agent of human malaria. In this context, fitting HMMs to the specificities of the target proteome can help identify additional domains. Using P. falciparum as an example, we compare approaches that have been proposed for this problem, and present two alternative methods. Because previous attempts strongly rely on known domain occurrences in the target species or its close relatives, they mainly improve the detection of domains which belong to already identified families. Our methods learn global correction rules that adjust amino-acid distributions associated with the match states of HMMs. These rules are applied to all match states of the whole HMM library, thus enabling the detection of domains from previously absent families. Additionally, we propose a procedure to estimate the proportion of false positives among the newly discovered domains. Starting with the Pfam standard library, we build several new libraries with the different HMM-fitting approaches. These libraries are first used to detect new domain occurrences with low E-values. Second, by applying the Co-Occurrence Domain Discovery (CODD) procedure we have recently proposed, the libraries are further used to identify likely occurrences among potential domains with higher E-values. We show that the new approaches allow identification of several domain families previously absent in the P. falciparum proteome and the Apicomplexa phylum, and identify many domains that are not detected by previous approaches. In terms of the number of new discovered domains, the new approaches outperform the previous ones when no close species are available or when they are used to identify likely occurrences among potential domains with high E-values. All predictions on P. falciparum have been integrated into a dedicated website which pools all known/new annotations of protein domains and functions for this organism. A software implementing the two proposed approaches is available at the same address: http://www.lirmm.fr/~terrapon/HMMfit/
Modular protein switches derived from antibody mimetic proteins.
Nicholes, N; Date, A; Beaujean, P; Hauk, P; Kanwar, M; Ostermeier, M
2016-02-01
Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Xiaokuang; Davis, F.C.; Ingram, L.O.
1997-02-01
Genomic libraries from nine cellobiose-metabolizing bacteria were screened for cellobiose utilization. Positive clones were recovered from six libraries, all of which encode phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) proteins. Clones from Bacillus subtilis, Butyrivibrio fibrisolvens, and Klebsiella oxytoca allowed the growth of recombinant Escherichia coli in cellobiose-M9 minimal medium. The K. oxytoca clone, pLOI1906, exhibited an unusually broad substrate range (cellobiose, arbutin, salicin, and methylumbelliferyl derivatives of glucose, cellobiose, mannose, and xylose) and was sequenced. The insert in this plasmid encoded the carboxy-terminal region of a putative regulatory protein, cellobiose permease (single polypeptide), and phospho-{beta}-glucosidase, which appear to form an operon (casRAB).more » Subclones allowed both casA and casB to be expressed independently, as evidenced by in vitro complementation. An analysis of the translated sequences from the EIIC domains of cellobiose, aryl-{beta}-glucoside, and other disaccharide permeases allowed the identification of a 50-amino-acid conserved region. A disaccharide consensus sequence is proposed for the most conserved segment (13 amino acids), which may represent part of the EIIC active site for binding and phosphorylation. 63 refs., 4 figs., 4 tabs.« less
Bashir, Ali; Bansal, Vikas; Bafna, Vineet
2010-06-18
Massively parallel DNA sequencing technologies have enabled the sequencing of several individual human genomes. These technologies are also being used in novel ways for mRNA expression profiling, genome-wide discovery of transcription-factor binding sites, small RNA discovery, etc. The multitude of sequencing platforms, each with their unique characteristics, pose a number of design challenges, regarding the technology to be used and the depth of sequencing required for a particular sequencing application. Here we describe a number of analytical and empirical results to address design questions for two applications: detection of structural variations from paired-end sequencing and estimating mRNA transcript abundance. For structural variation, our results provide explicit trade-offs between the detection and resolution of rearrangement breakpoints, and the optimal mix of paired-read insert lengths. Specifically, we prove that optimal detection and resolution of breakpoints is achieved using a mix of exactly two insert library lengths. Furthermore, we derive explicit formulae to determine these insert length combinations, enabling a 15% improvement in breakpoint detection at the same experimental cost. On empirical short read data, these predictions show good concordance with Illumina 200 bp and 2 Kbp insert length libraries. For transcriptome sequencing, we determine the sequencing depth needed to detect rare transcripts from a small pilot study. With only 1 Million reads, we derive corrections that enable almost perfect prediction of the underlying expression probability distribution, and use this to predict the sequencing depth required to detect low expressed genes with greater than 95% probability. Together, our results form a generic framework for many design considerations related to high-throughput sequencing. We provide software tools http://bix.ucsd.edu/projects/NGS-DesignTools to derive platform independent guidelines for designing sequencing experiments (amount of sequencing, choice of insert length, mix of libraries) for novel applications of next generation sequencing.
Validation of a Projection-domain Insertion of Liver Lesions into CT Images
Chen, Baiyu; Ma, Chi; Leng, Shuai; Fidler, Jeff L.; Sheedy, Shannon P.; McCollough, Cynthia H.; Fletcher, Joel G.; Yu, Lifeng
2016-01-01
Rationale and Objectives The aim of this study was to validate a projection-domain lesion-insertion method with observer studies. Materials and Methods A total of 51 proven liver lesions were segmented from computed tomography images, forward projected, and inserted into patient projection data. The images containing inserted and real lesions were then reconstructed and examined in consensus by two radiologists. First, 102 lesions (51 original, 51 inserted) were viewed in a randomized, blinded fashion and scored from 1 (absolutely inserted) to 10 (absolutely real). Statistical tests were performed to compare the scores for inserted and real lesions. Subsequently, a two-alternative-forced-choice test was conducted, with lesions viewed in pairs (real vs. inserted) in a blinded fashion. The radiologists selected the inserted lesion and provided a confidence level of 1 (no confidence) to 5 (completely certain). The number of lesion pairs that were incorrectly classified was calculated. Results The scores for inserted and proven lesions had the same median (8) and similar interquartile ranges (inserted, 5.5–8; real, 6.5–8). The means scores were not significantly different between real and inserted lesions (P value = 0.17). The receiver operating characteristic curve was nearly diagonal, with an area under the curve of 0.58 ± 0.06. For the two-alternative-forced-choice study, the inserted lesions were incorrectly identified in 49% (25 out of 51) of pairs; radiologists were incorrect in 38% (3 out of 8) of pairs even when they felt very confident in identifying the inserted lesion (confidence level ≥4). Conclusions Radiologists could not distinguish between inserted and real lesions, thereby validating the lesion-insertion technique, which may be useful for conducting virtual clinical trials to optimize image quality and radiation dose. PMID:27432267
Construction of a scFv Library with Synthetic, Non-combinatorial CDR Diversity.
Bai, Xuelian; Shim, Hyunbo
2017-01-01
Many large synthetic antibody libraries have been designed, constructed, and successfully generated high-quality antibodies suitable for various demanding applications. While synthetic antibody libraries have many advantages such as optimized framework sequences and a broader sequence landscape than natural antibodies, their sequence diversities typically are generated by random combinatorial synthetic processes which cause the incorporation of many undesired CDR sequences. Here, we describe the construction of a synthetic scFv library using oligonucleotide mixtures that contain predefined, non-combinatorially synthesized CDR sequences. Each CDR is first inserted to a master scFv framework sequence and the resulting single-CDR libraries are subjected to a round of proofread panning. The proofread CDR sequences are assembled to produce the final scFv library with six diversified CDRs.
Santamaría-Hernando, Saray; Krell, Tino; Ramos-González, María-Isabel
2012-01-01
Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca(2+) coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+) binding with a K(D) of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.
Miersch, Shane; Maruthachalam, Bharathikumar Vellalore; Geyer, C Ronald; Sidhu, Sachdev S
2017-05-19
We tested whether grafting an interaction domain into the hypervariable loop of a combinatorial antibody library could promote targeting to a specific epitope. Formation of the epidermal growth factor receptor (EGFR) signaling heterodimer involves extensive contacts mediated by a "dimerization loop." We grafted the dimerization loop into the third hypervariable loop of a synthetic antigen-binding fragment (Fab) library and diversified other loops using a tailored diversity strategy. This structure-directed Fab library and a naı̈ve synthetic Fab library were used to select Fabs against EGFR. Both libraries yielded high affinity Fabs that bound to overlapping epitopes on cell-surface EGFR, inhibited receptor activation, and targeted epitopes distinct from those of cetuximab and panitumumab. Epitope mapping experiments revealed complex sites of interaction, comprised of domains I and II but not exclusively localized to the receptor dimerization loop. These results validate the grafting approach for designing Fab libraries and also underscore the versatility of naı̈ve synthetic libraries.
Novel transcripts of the estrogen receptor α gene in channel catfish
Patino, Reynaldo; Xia, Zhenfang; Gale, William L.; Wu, Chunfa; Maule, Alec G.; Chang, Xiaotian
2000-01-01
Complementary DNA libraries from liver and ovary of an immature female channel catfish were screened with a homologous ERα cDNA probe. The hepatic library yielded two new channel catfish ER cDNAs that encode N-terminal ERα variants of different sizes. Relative to the catfish ERα (medium size; 581 residues) previously reported, these new cDNAs encode Long-ERα (36 residues longer) and Short-ERα (389 residues shorter). The 5′-end of Long-ERα cDNA is identical to that of Medium-ERα but has an additional 503-bp segment with an upstream, in-frame translation-start codon. Recombinant Long-ERα binds estrogen with high affinity (Kd = 3.4 nM), similar to that previously reported for Medium-ERα but lower than reported for catfish ERβ. Short-ERα cDNA encodes a protein that lacks most of the receptor protein and does not bind estrogen. Northern hybridization confirmed the existence of multiple hepatic ERα RNAs that include the size range of the ERα cDNAs obtained from the libraries as well as additional sizes. Using primers for RT-PCR that target locations internal to the protein-coding sequence, we also established the presence of several ERα cDNA variants with in-frame insertions in the ligand-binding and DNA-binding domains and in-frame or out-of-frame deletions in the ligand-binding domain. These internal variants showed patterns of expression that differed between the ovary and liver. Further, the ovarian library yielded a full-length, ERα antisense cDNA containing a poly(A) signal and tail. A limited survey of histological preparations from juvenile catfish by in situ hybridization using directionally synthesized cRNA probes also suggested the expression of ERα antisense RNA in a tissue-specific manner. In conclusion, channel catfish seemingly have three broad classes of ERα mRNA variants: those encoding N-terminal truncated variants, those encoding internal variants (including C-terminal truncated variants), and antisense mRNA. The sense variants may encode functional ERα or related proteins that modulate ERα or ERβ activity. The existence of ER antisense mRNA is reported in this study for the first time. Its role may be to participate in the regulation of ER gene expression.
Lai, Alex L; Moorthy, Anna Eswara; Li, Yinling; Tamm, Lukas K
2012-04-20
The human immunodeficiency virus (HIV) gp41 fusion domain plays a critical role in membrane fusion during viral entry. A thorough understanding of the relationship between the structure and the activity of the fusion domain in different lipid environments helps to formulate mechanistic models on how it might function in mediating membrane fusion. The secondary structure of the fusion domain in small liposomes composed of different lipid mixtures was investigated by circular dichroism spectroscopy. The fusion domain formed an α-helix in membranes containing less than 30 mol% cholesterol and formed β-sheet secondary structure in membranes containing ≥30 mol% cholesterol. EPR spectra of spin-labeled fusion domains also indicated different conformations in membranes with and without cholesterol. Power saturation EPR data were further used to determine the orientation and depth of α-helical fusion domains in lipid bilayers. Fusion and membrane perturbation activities of the gp41 fusion domain were measured by lipid mixing and contents leakage. The fusion domain fused membranes in both its helical form and its β-sheet form. High cholesterol, which induced β-sheets, promoted fusion; however, acidic lipids, which promoted relatively deep membrane insertion as an α-helix, also induced fusion. The results indicate that the structure of the HIV gp41 fusion domain is plastic and depends critically on the lipid environment. Provided that their membrane insertion is deep, α-helical and β-sheet conformations contribute to membrane fusion. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zillmann, M; Limauro, S E; Goodchild, J
1997-01-01
By truncating helix II to two base pairs in a hammerhead ribozyme having long flanking sequences (greater than 30 bases), the rate of cleavage in 1 mM magnesium can be increased roughly 100-fold. Replacing most of the nucleotides in a typical stem-loop II with 1-4 randomized nucleotides gave an RNA library that, even before selection, was more active in 1 mM magnesium than the parent ribozyme, but considerably less active than the truncated stem-loop II ribozyme. A novel, multiround selection for intermolecular cleavage was exploited to optimize this library for cleavage in low concentrations of magnesium. After three rounds of selection at sequentially lower concentrations of magnesium, the library cleaved substrate RNA 20-fold faster than the initial pool and was cloned. This pool was heavily enriched for one particular sequence (5'-CGUG-3') that represented 16 of 52 isolates (the next most common sequence was represented only six times). This sequence also represented the most active sequence, exceeding the activity of the short helix II variant under the conditions of the selection, thereby demonstrating the effectiveness of the selection technique. Analysis of the cleavage rates of RNAs made from eight isolates having different four-base insert sequences allowed assignment of highly preferred bases at each position in the insert. Analysis of pool clones having insert of differing lengths showed that, in general, activity decreased as the length of the insert decreased from 4 to 1. This supports the suggested role of stem-loop II in stabilizing the non-Watson-Crick interactions between the conserved bases of the catalytic core. PMID:9214657
Genetic Control of Plant Root Colonization by the Biocontrol agent, Pseudomonas fluorescens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Benjamin J.; Fletcher, Meghan; Waters, Jordan
Plant growth promoting rhizobacteria (PGPR) are a critical component of plant root ecosystems. PGPR promote plant growth by solubilizing inaccessible minerals, suppressing pathogenic microorganisms in the soil, and directly stimulating growth through hormone synthesis. Pseudomonas fluorescens is a well-established PGPR isolated from wheat roots that can also colonize the root system of the model plant, Arabidopsis thaliana. We have created barcoded transposon insertion mutant libraries suitable for genome-wide transposon-mediated mutagenesis followed by sequencing (TnSeq). These libraries consist of over 105 independent insertions, collectively providing loss-of-function mutants for nearly all genes in the P.fluorescens genome. Each insertion mutant can be unambiguouslymore » identified by a randomized 20 nucleotide sequence (barcode) engineered into the transposon sequence. We used these libraries in a gnotobiotic assay to examine the colonization ability of P.fluorescens on A.thaliana roots. Taking advantage of the ability to distinguish individual colonization events using barcode sequences, we assessed the timing and microbial concentration dependence of colonization of the rhizoplane niche. These data provide direct insight into the dynamics of plant root colonization in an in vivo system and define baseline parameters for the systematic identification of the bacterial genes and molecular pathways using TnSeq assays. Having determined parameters that facilitate potential colonization of roots by thousands of independent insertion mutants in a single assay, we are currently establishing a genome-wide functional map of genes required for root colonization in P.fluorescens. Importantly, the approach developed and optimized here for P.fluorescens>A.thaliana colonization will be applicable to a wide range of plant-microbe interactions, including biofuel feedstock plants and microbes known or hypothesized to impact on biofuel-relevant traits including biomass productivity and pathogen resistance.« less
M13 procoat protein insertion into YidC and SecYEG proteoliposomes and liposomes.
Stiegler, Natalie; Dalbey, Ross E; Kuhn, Andreas
2011-02-25
M13 procoat protein was one of the first model proteins used to study bacterial membrane protein insertion. It contains a signal peptide of 23 amino acid residues and is not membrane targeted by the signal recognition particle. The translocation of its periplasmic domain is independent of the preprotein translocase (SecAYEG) but requires electrochemical membrane potential and the membrane insertase YidC of Escherichia coli. We show here that YidC is sufficient for efficient membrane insertion of the purified M13 procoat protein into energized YidC proteoliposomes. When no membrane potential is applied, the insertion is substantially reduced. Only in the presence of YidC, membrane insertion occurs if bilayer integrity is preserved and membrane potential is stable for more than 20 min. A mutant of the M13 procoat protein, H5EE, with two additional negatively charged residues in the periplasmic domain inserted into YidC proteoliposomes and SecYEG proteoliposomes with equal efficiencies. We conclude that the protein can use both the YidC-only pathway and the Sec pathway. This poses the questions of how procoat H5EE is inserted in vivo and how insertion pathways are selected in the cell. Copyright © 2011 Elsevier Ltd. All rights reserved.
Construction of a filamentous phage display peptide library.
Fagerlund, Annette; Myrset, Astrid Hilde; Kulseth, Mari Ann
2014-01-01
The concept of phage display is based on insertion of random oligonucleotides at an appropriate location within a structural gene of a bacteriophage. The resulting phage will constitute a library of random peptides displayed on the surface of the bacteriophages, with the encoding genotype packaged within each phage particle. Using a phagemid/helper phage system, the random peptides are interspersed between wild-type coat proteins. Libraries of phage-expressed peptides may be used to search for novel peptide ligands to target proteins. The success of finding a peptide with a desired property in a given library is highly dependent on the diversity and quality of the library. The protocols in this chapter describe the construction of a high-diversity library of phagemid vector encoding fusions of the phage coat protein pVIII with random peptides, from which a phage library displaying random peptides can be prepared.
The protein structure prediction problem could be solved using the current PDB library
Zhang, Yang; Skolnick, Jeffrey
2005-01-01
For single-domain proteins, we examine the completeness of the structures in the current Protein Data Bank (PDB) library for use in full-length model construction of unknown sequences. To address this issue, we employ a comprehensive benchmark set of 1,489 medium-size proteins that cover the PDB at the level of 35% sequence identity and identify templates by structure alignment. With homologous proteins excluded, we can always find similar folds to native with an average rms deviation (RMSD) from native of 2.5 Å with ≈82% alignment coverage. These template structures often contain a significant number of insertions/deletions. The tasser algorithm was applied to build full-length models, where continuous fragments are excised from the top-scoring templates and reassembled under the guide of an optimized force field, which includes consensus restraints taken from the templates and knowledge-based statistical potentials. For almost all targets (except for 2/1,489), the resultant full-length models have an RMSD to native below 6 Å (97% of them below 4 Å). On average, the RMSD of full-length models is 2.25 Å, with aligned regions improved from 2.5 Å to 1.88 Å, comparable with the accuracy of low-resolution experimental structures. Furthermore, starting from state-of-the-art structural alignments, we demonstrate a methodology that can consistently bring template-based alignments closer to native. These results are highly suggestive that the protein-folding problem can in principle be solved based on the current PDB library by developing efficient fold recognition algorithms that can recover such initial alignments. PMID:15653774
Mu, Yi; Cai, Pengfei; Hu, Siqi; Ma, Sucan; Gao, Youhe
2014-01-01
Protein-protein interactions (PPIs) are essential events to play important roles in a series of biological processes. There are probably more ways of PPIs than we currently realized. Structural and functional investigations of weak PPIs have lagged behind those of strong PPIs due to technical difficulties. Weak PPIs are often short-lived, which may result in more dynamic signals with important biological roles within and/or between cells. For example, the characteristics of PSD-95/Dlg/ZO-1 (PDZ) domain binding to internal sequences, which are primarily weak interactions, have not yet been systematically explored. In the present study, we constructed a nearly random octapeptide yeast two-hybrid library. A total of 24 PDZ domains were used as baits for screening the library. Fourteen of these domains were able to bind internal PDZ-domain binding motifs (PBMs), and PBMs screened for nine PDZ domains exhibited strong preferences. Among 11 PDZ domains that have not been reported their internal PBM binding ability, six were confirmed to bind internal PBMs. The first PDZ domain of LNX2, which has not been reported to bind C-terminal PBMs, was found to bind internal PBMs. These results suggest that the internal PBMs binding ability of PDZ domains may have been underestimated. The data provided diverse internal binding properties for several PDZ domains that may help identify their novel binding partners.
Surfactant bilayers maintain transmembrane protein activity.
Rayan, Gamal; Adrien, Vladimir; Reffay, Myriam; Picard, Martin; Ducruix, Arnaud; Schmutz, Marc; Urbach, Wladimir; Taulier, Nicolas
2014-09-02
In vitro studies of membrane proteins are of interest only if their structure and function are significantly preserved. One approach is to insert them into the lipid bilayers of highly viscous cubic phases rendering the insertion and manipulation of proteins difficult. Less viscous lipid sponge phases are sometimes used, but their relatively narrow domain of existence can be easily disrupted by protein insertion. We present here a sponge phase consisting of nonionic surfactant bilayers. Its extended domain of existence and its low viscosity allow easy insertion and manipulation of membrane proteins. We show for the first time, to our knowledge, that transmembrane proteins, such as bacteriorhodopsin, sarcoplasmic reticulum Ca(2+)ATPase (SERCA1a), and its associated enzymes, are fully active in a surfactant phase. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Seong, Ki Moon; Park, Hweon; Kim, Seong Jung; Ha, Hyo Nam; Lee, Jae Yung; Kim, Joon
2007-06-01
A yeast transcriptional activator, Gcn4p, induces the expression of genes that are involved in amino acid and purine biosynthetic pathways under amino acid starvation. Gcn4p has an acidic activation domain in the central region and a bZIP domain in the C-terminus that is divided into the DNA-binding motif and dimerization leucine zipper motif. In order to identify amino acids in the DNA-binding motif of Gcn4p which are involved in transcriptional activation, we constructed mutant libraries in the DNA-binding motif through an innovative application of random mutagenesis. Mutant library made by oligonucleotides which were mutated randomly using the Poisson distribution showed that the actual mutation frequency was in good agreement with expected values. This method could save the time and effort to create a mutant library with a predictable mutation frequency. Based on the studies using the mutant libraries constructed by the new method, the specific residues of the DNA-binding domain in Gcn4p appear to be involved in the transcriptional activities on a conserved binding site.
Dhir, Somdutta; Pacurar, Mircea; Franklin, Dino; Gáspári, Zoltán; Kertész-Farkas, Attila; Kocsor, András; Eisenhaber, Frank; Pongor, Sándor
2010-11-01
SBASE is a project initiated to detect known domain types and predicting domain architectures using sequence similarity searching (Simon et al., Protein Seq Data Anal, 5: 39-42, 1992, Pongor et al, Nucl. Acids. Res. 21:3111-3115, 1992). The current approach uses a curated collection of domain sequences - the SBASE domain library - and standard similarity search algorithms, followed by postprocessing which is based on a simple statistics of the domain similarity network (http://hydra.icgeb.trieste.it/sbase/). It is especially useful in detecting rare, atypical examples of known domain types which are sometimes missed even by more sophisticated methodologies. This approach does not require multiple alignment or machine learning techniques, and can be a useful complement to other domain detection methodologies. This article gives an overview of the project history as well as of the concepts and principles developed within this the project.
Unlocking Short Read Sequencing for Metagenomics
Rodrigue, Sébastien; Materna, Arne C.; Timberlake, Sonia C.; ...
2010-07-28
We describe an experimental and computational pipeline yielding millions of reads that can exceed 200 bp with quality scores approaching that of traditional Sanger sequencing. The method combines an automatable gel-less library construction step with paired-end sequencing on a short-read instrument. With appropriately sized library inserts, mate-pair sequences can overlap, and we describe the SHERA software package that joins them to form a longer composite read.
Chen, Guiqian; Qiu, Yuan; Zhuang, Qingye; Wang, Suchun; Wang, Tong; Chen, Jiming; Wang, Kaicheng
2018-05-09
Next generation sequencing (NGS) is a powerful tool for the characterization, discovery, and molecular identification of RNA viruses. There were multiple NGS library preparation methods published for strand-specific RNA-seq, but some methods are not suitable for identifying and characterizing RNA viruses. In this study, we report a NGS library preparation method to identify RNA viruses using the Ion Torrent PGM platform. The NGS sequencing adapters were directly inserted into the sequencing library through reverse transcription and polymerase chain reaction, without fragmentation and ligation of nucleic acids. The results show that this method is simple to perform, able to identify multiple species of RNA viruses in clinical samples.
NASA Astrophysics Data System (ADS)
Chen, Juan; Zhu, Tianjiao; Li, Dehai; Cui, Chengbin; Fang, Yuchun; Liu, Hongbing; Liu, Peipei; Gu, Qianqun; Zhu, Weiming
2006-04-01
To study the bioactive metabolites produced by sponge-derived uncultured symbionts, a metagenomic DNA library of the symbionts of sponge Gelliodes gracilis was constructed. The average size of DNA inserts in the library was 20 kb. This library was screened for antibiotic activity using paper dise assaying. Two clones displayed the antibacterial activity against Micrococcus tetragenus. The metabolites of these two clones were analyzed through HPLC. The result showed that their metabolites were quite different from those of the host E. coli DH5α and the host containing vector pHZ132. This study may present a new approach to exploring bioactive metabolites of sponge symbionts.
Pershad, Kritika; Wypisniak, Karolina; Kay, Brian K.
2012-01-01
While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious and time consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities from a library of variants of a phosphopeptide-binding domain. To explore this strategy, we attempted to display on the surface of bacteriophage M13, the N-terminal Forkhead-associated domain (FHA1) of yeast Rad53p, which is a naturally occurring phosphothreonine (pT)-binding domain, and found it to be non-functional due to misfolding in the bacterial periplasm. To overcome this limitation, a library of FHA1 variants was constructed by mutagenic PCR and functional variants were isolated after three rounds of affinity selection with its pT peptide ligand. A hydrophobic residue at position 34 in the β1-strand was discovered to be essential for phage-display of a functional FHA1 domain. Additionally, by heating the phage library to 50°C prior to affinity selection with its cognate pT peptide, we identified a variant (G2) that was ~8°C more thermal stable than the wild-type domain. Using G2 as a scaffold, we constructed phage-displayed libraries of FHA1 variants and affinity selected for variants that bound selectively to five pT peptides. These reagents are renewable and have high protein yields (~20–25 mg/L), when expressed in Escherichia coli. Thus, we have changed the specificity of the FHA1 domain and demonstrated that engineering phosphopeptide-binding domains is an attractive avenue for generating new anti-phosphopeptide binding specificities in vitro by phage-display. PMID:22985966
Pershad, Kritika; Wypisniak, Karolina; Kay, Brian K
2012-11-23
While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious, and time-consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities from a library of variants of a phosphopeptide-binding domain. To explore this strategy, we attempted to display on the surface of bacteriophage M13 the N-terminal Forkhead-associated (FHA1) domain of yeast Rad53p, which is a naturally occurring phosphothreonine (pT)-binding domain, and found it to be nonfunctional due to misfolding in the bacterial periplasm. To overcome this limitation, we constructed a library of FHA1 variants by mutagenic PCR and isolated functional variants after three rounds of affinity selection with its pT peptide ligand. A hydrophobic residue at position 34 in the β1 strand was discovered to be essential for phage display of a functional FHA1 domain. Additionally, by heating the phage library to 50°C prior to affinity selection with its cognate pT peptide, we identified a variant (G2) that was ~8°C more thermally stable than the wild-type domain. Using G2 as a scaffold, we constructed phage-displayed libraries of FHA1 variants and affinity selected for variants that bound selectively to five pT peptides. These reagents are renewable and have high protein yields (~20-25mg/L), when expressed in Escherichia coli. Thus, we have changed the specificity of the FHA1 domain and demonstrated that engineering phosphopeptide-binding domains is an attractive avenue for generating new anti-phosphopeptide binding specificities in vitro by phage display. Copyright © 2012 Elsevier Ltd. All rights reserved.
De Moura, Dref C; Bryksa, Brian C; Yada, Rickey Y
2014-01-01
The plant-specific insert is an approximately 100-residue domain found exclusively within the C-terminal lobe of some plant aspartic proteases. Structurally, this domain is a member of the saposin-like protein family, and is involved in plant pathogen defense as well as vacuolar targeting of the parent protease molecule. Similar to other members of the saposin-like protein family, most notably saposins A and C, the recently resolved crystal structure of potato (Solanum tuberosum) plant-specific insert has been shown to exist in a substrate-bound open conformation in which the plant-specific insert oligomerizes to form homodimers. In addition to the open structure, a closed conformation also exists having the classic saposin fold of the saposin-like protein family as observed in the crystal structure of barley (Hordeum vulgare L.) plant-specific insert. In the present study, the mechanisms of tertiary and quaternary conformation changes of potato plant-specific insert were investigated in silico as a function of pH. Umbrella sampling and determination of the free energy change of dissociation of the plant-specific insert homodimer revealed that increasing the pH of the system to near physiological levels reduced the free energy barrier to dissociation. Furthermore, principal component analysis was used to characterize conformational changes at both acidic and neutral pH. The results indicated that the plant-specific insert may adopt a tertiary structure similar to the characteristic saposin fold and suggest a potential new structural motif among saposin-like proteins. To our knowledge, this acidified PSI structure presents the first example of an alternative saposin-fold motif for any member of the large and diverse SAPLIP family.
De Moura, Dref C.; Bryksa, Brian C.; Yada, Rickey Y.
2014-01-01
The plant-specific insert is an approximately 100-residue domain found exclusively within the C-terminal lobe of some plant aspartic proteases. Structurally, this domain is a member of the saposin-like protein family, and is involved in plant pathogen defense as well as vacuolar targeting of the parent protease molecule. Similar to other members of the saposin-like protein family, most notably saposins A and C, the recently resolved crystal structure of potato (Solanum tuberosum) plant-specific insert has been shown to exist in a substrate-bound open conformation in which the plant-specific insert oligomerizes to form homodimers. In addition to the open structure, a closed conformation also exists having the classic saposin fold of the saposin-like protein family as observed in the crystal structure of barley (Hordeum vulgare L.) plant-specific insert. In the present study, the mechanisms of tertiary and quaternary conformation changes of potato plant-specific insert were investigated in silico as a function of pH. Umbrella sampling and determination of the free energy change of dissociation of the plant-specific insert homodimer revealed that increasing the pH of the system to near physiological levels reduced the free energy barrier to dissociation. Furthermore, principal component analysis was used to characterize conformational changes at both acidic and neutral pH. The results indicated that the plant-specific insert may adopt a tertiary structure similar to the characteristic saposin fold and suggest a potential new structural motif among saposin-like proteins. To our knowledge, this acidified PSI structure presents the first example of an alternative saposin-fold motif for any member of the large and diverse SAPLIP family. PMID:25188221
Secretion of the Intimin Passenger Domain Is Driven by Protein Folding*
Leo, Jack C.; Oberhettinger, Philipp; Yoshimoto, Shogo; Udatha, D. B. R. K. Gupta; Morth, J. Preben; Schütz, Monika; Hori, Katsutoshi
2016-01-01
Intimin is an essential adhesin of attaching and effacing organisms such as entropathogenic Escherichia coli. It is also the prototype of type Ve secretion or inverse autotransport, where the extracellular C-terminal region or passenger is exported with the help of an N-terminal transmembrane β-barrel domain. We recently reported a stalled secretion intermediate of intimin, where the passenger is located in the periplasm but the β-barrel is already inserted into the membrane. Stalling of this mutant is due to the insertion of an epitope tag at the very N terminus of the passenger. Here, we examined how this insertion disrupts autotransport and found that it causes misfolding of the N-terminal immunoglobulin (Ig)-like domain D00. We could also stall the secretion by making an internal deletion in D00, and introducing the epitope tag into the second Ig-like domain, D0, also resulted in reduced passenger secretion. In contrast to many classical autotransporters, where a proximal folding core in the passenger is required for secretion, the D00 domain is dispensable, as the passenger of an intimin mutant lacking D00 entirely is efficiently exported. Furthermore, the D00 domain is slightly less stable than the D0 and D1 domains, unfolding at ∼200 piconewtons (pN) compared with ∼250 pN for D0 and D1 domains as measured by atomic force microscopy. Our results support a model where the secretion of the passenger is driven by sequential folding of the extracellular Ig-like domains, leading to vectorial transport of the passenger domain across the outer membrane in an N to C direction. PMID:27466361
A novel sodium bicarbonate cotransporter-like gene in an ancient duplicated region: SLC4A9 at 5q31
Lipovich, Leonard; Lynch, Eric D; Lee, Ming K; King, Mary-Claire
2001-01-01
Background: Sodium bicarbonate cotransporter (NBC) genes encode proteins that execute coupled Na+ and HCO3- transport across epithelial cell membranes. We report the discovery, characterization, and genomic context of a novel human NBC-like gene, SLC4A9, on chromosome 5q31. Results: SLC4A9 was initially discovered by genomic sequence annotation and further characterized by sequencing of long-insert cDNA library clones. The predicted protein of 990 amino acids has 12 transmembrane domains and high sequence similarity to other NBCs. The 23-exon gene has 14 known mRNA isoforms. In three regions, mRNA sequence variation is generated by the inclusion or exclusion of portions of an exon. Noncoding SLC4A9 cDNAs were recovered multiple times from different libraries. The 3' untranslated region is fragmented into six alternatively spliced exons and contains expressed Alu, LINE and MER repeats. SLC4A9 has two alternative stop codons and six polyadenylation sites. Its expression is largely restricted to the kidney. In silico approaches were used to characterize two additional novel SLC4A genes and to place SLC4A9 within the context of multiple paralogous gene clusters containing members of the epidermal growth factor (EGF), ankyrin (ANK) and fibroblast growth factor (FGF) families. Seven human EGF-SLC4A-ANK-FGF clusters were found. Conclusion: The novel sodium bicarbonate cotransporter-like gene SLC4A9 demonstrates abundant alternative mRNA processing. It belongs to a growing class of functionally diverse genes characterized by inefficient highly variable splicing. The evolutionary history of the EGF-SLC4A-ANK-FGF gene clusters involves multiple rounds of duplication, apparently followed by large insertions and deletions at paralogous loci and genome-wide gene shuffling. PMID:11305939
ERIC Educational Resources Information Center
Martins, Jorge Tiago; Martins, Rosa Maria
2012-01-01
This paper reports the implementation results of the Portuguese School Libraries Evaluation Model, more specifically the results of primary schools self-evaluation of their libraries' reading promotion and information literacy development activities. School libraries that rated their performance as either "Excellent" or "Poor"…
Sathe, Nila A; Lee, Patricia; Giuse, Nunzia Bettinsoli
2004-10-01
Observation and immersion in the user community are critical factors in designing and implementing informatics solutions; such practices ensure relevant interventions and promote user acceptance. Libraries can adapt these strategies to developing instruction and outreach. While needs assessment is typically a core facet of library instruction, sustained, iterative assessment underlying the development of user-centered instruction is key to integrating resource use into the workflow. This paper describes the Eskind Biomedical Library's (EBL's) recent work with the Tennessee public health community to articulate a training model centered around developing power information users (PIUs). PIUs are community-based individuals with an advanced understanding of information seeking and resource use and are committed to championing information integration. As model development was informed by observation of PIU workflow and information needs, it also allowed for informal testing of the applicability of assessment via domain immersion in library outreach. Though the number of PIUs involved in the project was small, evaluation indicated that the model was useful for promoting information use in PIU workgroups and that the concept of domain immersion was relevant to library-related projects. Moreover, EBL continues to employ principles of domain understanding inherent in the PIU model to develop further interventions for the public health community and library users.
Wang, Chao; Shi, Xue; Liu, Lin; Li, Haiyan; Ammiraju, Jetty S S; Kudrna, David A; Xiong, Wentao; Wang, Hao; Dai, Zhaozhao; Zheng, Yonglian; Lai, Jinsheng; Jin, Weiwei; Messing, Joachim; Bennetzen, Jeffrey L; Wing, Rod A; Luo, Meizhong
2013-11-01
Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.
Jiang, Likun; You, Weiwei; Zhang, Xiaojun; Xu, Jian; Jiang, Yanliang; Wang, Kai; Zhao, Zixia; Chen, Baohua; Zhao, Yunfeng; Mahboob, Shahid; Al-Ghanim, Khalid A; Ke, Caihuan; Xu, Peng
2016-02-01
The small abalone (Haliotis diversicolor) is one of the most important aquaculture species in East Asia. To facilitate gene cloning and characterization, genome analysis, and genetic breeding of it, we constructed a large-insert bacterial artificial chromosome (BAC) library, which is an important genetic tool for advanced genetics and genomics research. The small abalone BAC library includes 92,610 clones with an average insert size of 120 Kb, equivalent to approximately 7.6× of the small abalone genome. We set up three-dimensional pools and super pools of 18,432 BAC clones for target gene screening using PCR method. To assess the approach, we screened 12 target genes in these 18,432 BAC clones and identified 16 positive BAC clones. Eight positive BAC clones were then sequenced and assembled with the next generation sequencing platform. The assembled contigs representing these 8 BAC clones spanned 928 Kb of the small abalone genome, providing the first batch of genome sequences for genome evaluation and characterization. The average GC content of small abalone genome was estimated as 40.33%. A total of 21 protein-coding genes, including 7 target genes, were annotated into the 8 BACs, which proved the feasibility of PCR screening approach with three-dimensional pools in small abalone BAC library. One hundred fifty microsatellite loci were also identified from the sequences for marker development in the future. The BAC library and clone pools provided valuable resources and tools for genetic breeding and conservation of H. diversicolor.
Siamer, Sabrina; Gaubert, Stéphane; Boureau, Tristan; Brisset, Marie-Noëlle; Barny, Marie-Anne
2013-05-01
The bacterium Erwinia amylovora causes fire blight, an invasive disease that threatens apple trees, pear trees and other plants of the Rosaceae family. Erwinia amylovora pathogenicity relies on a type III secretion system and on a single effector DspA/E. This effector belongs to the widespread AvrE family of effectors whose biological function is unknown. In this manuscript, we performed a bioinformatic analysis of DspA/E- and AvrE-related effectors. Motif search identified nuclear localization signals, peroxisome targeting signals, endoplasmic reticulum membrane retention signals and leucine zipper motifs, but none of these motifs were present in all the AvrE-related effectors analysed. Protein threading analysis, however, predicted a conserved double β-propeller domain in the N-terminal part of all the analysed effector sequences. We then performed a random pentapeptide mutagenesis of DspA/E, which led to the characterization of 13 new altered proteins with a five amino acids insertion. Eight harboured the insertion inside the predicted β-propeller domain and six of these eight insertions impaired DspA/E stability or function. Conversely, the two remaining insertions generated proteins that were functional and abundantly secreted in the supernatant suggesting that these two insertions stabilized the protein. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Ribeiro, Lucas Ferreira; Tullman, Jennifer; Nicholes, Nathan; Silva, Sérgio Ruschi Bergamachi; Vieira, Davi Serradella; Ostermeier, Marc; Ward, Richard John
2016-01-01
Saccharification of lignocellulosic material by xylanases and other glycoside hydrolases is generally conducted at high concentrations of the final reaction products, which frequently inhibit the enzymes used in the saccharification process. Using a random nonhomologous recombination strategy, we have fused the GH11 xylanase from Bacillus subtilis (XynA) with the xylose binding protein from Escherichia coli (XBP) to produce an enzyme that is allosterically stimulated by xylose. The pT7T3GFP_XBP plasmid containing the XBP coding sequence was randomly linearized with DNase I, and ligated with the XynA coding sequence to create a random XynA-XBP insertion library, which was used to transform E. coli strain JW3538-1 lacking the XBP gene. Screening for active XBP was based on the expression of GFP from the pT7T3GFP_XBP plasmid under the control of a xylose inducible promoter. In the presence of xylose, cells harboring a functional XBP domain in the fusion protein (XBP+) showed increased GFP fluorescence and were selected using FACS. The XBP+ cells were further screened for xylanase activity by halo formation around xylanase producing colonies (XynA+) on LB-agar-xylan media after staining with Congo red. The xylanase activity ratio with xylose/without xylose in supernatants from the XBP+/XynA+ clones was measured against remazol brilliant blue xylan. A clone showing an activity ratio higher than 1.3 was selected where the XynA was inserted after the asparagine 271 in the XBP, and this chimera was denominated as XynA-XBP271. The XynA-XBP271 was more stable than XynA at 55 °C, and in the presence of xylose the catalytic efficiency was ~3-fold greater than the parental xylanase. Molecular dynamics simulations predicted the formation of an extended protein-protein interface with coupled movements between the XynA and XBP domains. In the XynA-XBP271 with xylose bound to the XBP domain, the mobility of a β-loop in the XynA domain results in an increased access to the active site, and may explain the observed allosteric activation. The approach presented here provides an important advance for the engineering enzymes that are stimulated by the final product.
Spontaneous insertion of GPI anchors into cholesterol-rich membrane domains
NASA Astrophysics Data System (ADS)
Li, Jing; Liu, Xiuhua; Tian, Falin; Yue, Tongtao; Zhang, Xianren; Cao, Dapeng
2018-05-01
GPI-Anchored proteins (GPI-APs) can be exogenously transferred onto bilayer membranes both in vivo and in vitro, while the mechanism by which this transfer process occurs is unknown. In this work, we used atomistic molecular dynamics simulations and free energy calculations to characterize the essential influence of cholesterol on insertion of the GPI anchors into plasma membranes. We demonstrate, both dynamically and energetically, that in the presence of cholesterol, the tails of GPI anchors are able to penetrate inside the core of the lipid membrane spontaneously with a three-step mechanism, while in the absence of cholesterol no spontaneous insertion was observed. We ascribe the failure of insertion to the strong thermal fluctuation of lipid molecules in cholesterol-free bilayer, which generates a repulsive force in entropic origin. In the presence of cholesterol, however, the fluctuation of lipids is strongly reduced, thus decreasing the barrier for the anchor insertion. Based on this observation, we propose a hypothesis that addition of cholesterol creates vertical creases in membranes for the insertion of acyl chains. Moreover, we find that the GPI anchor could also spontaneously inserted into the boundary between cholesterol-rich and cholesterol-depleted domains. Our results shed light on the mechanism of cholesterol-mediated interaction between membrane proteins with acyl chain and plasma membranes in living cells.
NASA Astrophysics Data System (ADS)
Qiu, Liming; Vaughn, Mark; Cheng, Kelvin
2013-03-01
Beta-amyloid (Abeta) interactions with neurons are linked to Alzheimer's. Using a multiscale MD simulation strategy that combines the high efficiency of phase space sampling of coarse-grained MD (CGD) and the high spatial resolution of Atomistic MD (AMD) simulations, we studied the Abeta insertion dynamics in cholesterol-enriched and -depleted lipid bilayers that mimic the neuronal membranes domains. Forward (AMD-CGD) and reverse (CGD-AMD) mappings were used. At the atomistic level, cholesterol promoted insertion of Abeta with high (folded) or low (unfolded) helical contents of the lipid insertion domain (Lys28-Ala42), and the insertions were stabilized by the Lys28 snorkeling and Ala42-anchoring to the polar lipid groups of the bilayer up to 200ns. After the forward mapping, the folded inserted state switched to a new extended inserted state with the Lys28 descended to the middle of the bilayer while the unfolded inserted state migrated to the membrane surface up to 4000ns. The two new states remained stable for 200ns at the atomistic scale after the reverse mapping. Our results suggested that different Abeta membrane-orientation states separated by free energy barriers can be explored by the multiscale MD more effectively than by Atomistic MD simulations alone. NIH RC1-GM090897-02
Jangprasert, Panchalee; Rojnuckarin, Ponlapat
2014-03-01
Snake venom metalloproteinases (SVMPs) can damage vessel wall, degrade clotting factors, inhibit integrins and block platelet functions. Studying them not only gives us deeper insights in pathogenesis of snakebites, but also potentially yields novel therapeutic agents. Here, we discovered a clone of an RGD-containing SVMP from the green pit viper (Cryptelytrops albolabris) venom gland cDNA library. Sequence analysis revealed that it belonged to the P-IIa subclass of SVMP comprising signal peptide, prodomain, metalloproteinase and disintegrin. Compared with other P-II SVMPs, it contained 2 additional conserved cysteines that were predicted to prevent the release of disintegrin from the metalloproteinase domain in the mature protein. The N-terminal histidine-tagged construct of metalloproteinase and disintegrin domains of albolamin was inserted into the pPICZαA vector and expressed in Pichia pastoris. The recombinant protein molecular weight was approximately 35 kDa on Western blot probed with anti-polyhistidine antibody. The recombinant albolamin could digest human type IV collagen starting within 15 min after incubation. In addition, it dose-dependently inhibited collagen-induced platelet aggregation with the IC50 of 1.8 μM. However, there was no effect on ADP-induced platelet aggregation. Therefore, the inhibition mechanism is probably through blocking collagen receptor(s). Albolamin activities probably contributed to pathology of green pit viper bites. Its disintegrin domain deserves further studies for the potential to be a useful agent affecting platelet functions. Copyright © 2013 Elsevier Ltd. All rights reserved.
BamA POTRA Domain Interacts with a Native Lipid Membrane Surface.
Fleming, Patrick J; Patel, Dhilon S; Wu, Emilia L; Qi, Yifei; Yeom, Min Sun; Sousa, Marcelo Carlos; Fleming, Karen G; Im, Wonpil
2016-06-21
The outer membrane of Gram-negative bacteria is an asymmetric membrane with lipopolysaccharides on the external leaflet and phospholipids on the periplasmic leaflet. This outer membrane contains mainly β-barrel transmembrane proteins and lipidated periplasmic proteins (lipoproteins). The multisubunit protein β-barrel assembly machine (BAM) catalyzes the insertion and folding of the β-barrel proteins into this membrane. In Escherichia coli, the BAM complex consists of five subunits, a core transmembrane β-barrel with a long periplasmic domain (BamA) and four lipoproteins (BamB/C/D/E). The BamA periplasmic domain is composed of five globular subdomains in tandem called POTRA motifs that are key to BAM complex formation and interaction with the substrate β-barrel proteins. The BAM complex is believed to undergo conformational cycling while facilitating insertion of client proteins into the outer membrane. Reports describing variable conformations and dynamics of the periplasmic POTRA domain have been published. Therefore, elucidation of the conformational dynamics of the POTRA domain in full-length BamA is important to understand the function of this molecular complex. Using molecular dynamics simulations, we present evidence that the conformational flexibility of the POTRA domain is modulated by binding to the periplasmic surface of a native lipid membrane. Furthermore, membrane binding of the POTRA domain is compatible with both BamB and BamD binding, suggesting that conformational selection of different POTRA domain conformations may be involved in the mechanism of BAM-facilitated insertion of outer membrane β-barrel proteins. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Babar, Prasad H; Dey, Vishakha; Jaiswar, Praveen; Patankar, Swati
Many Plasmodium falciparum proteins do not share homology with, and are generally longer than their respective orthologs. This, to some extent, can be attributed to insertions. Here, we studied a P. falciparum RNA hypermethylase, trimethylguanosine synthase (PfTGS1) that harbors a 76 amino acid insertion in its methyltransferase domain. Bioinformatics analysis revealed that this insertion was present in TGS1 orthologs from other Plasmodium species as well. Interestingly, a classical nuclear localization signal (NLS) was predicted in the insertions of primate parasite TGS1 proteins. To check whether these predicted NLS are functional, we developed an in vivo heterologous system using S. cerevisiae. The predicted NLS when fused to dimeric GFP were able to localize the fusion protein to the nucleus in yeast indicating that it is indeed recognized by the yeast nuclear import machinery. We further showed that the PfTGS1 NLS binds to P. falciparum importin-α in vitro, confirming that the NLS is also recognized by the P. falciparum classical nuclear import machinery. Thus, in this study we report a novel function of the insertion in PfTGS1. Copyright © 2016 Elsevier B.V. All rights reserved.
Sensing Membrane Stresses by Protein Insertions
Campelo, Felix; Kozlov, Michael M.
2014-01-01
Protein domains shallowly inserting into the membrane matrix are ubiquitous in peripheral membrane proteins involved in various processes of intracellular membrane shaping and remodeling. It has been suggested that these domains sense membrane curvature through their preferable binding to strongly curved membranes, the binding mechanism being mediated by lipid packing defects. Here we make an alternative statement that shallow protein insertions are universal sensors of the intra-membrane stresses existing in the region of the insertion embedding rather than sensors of the curvature per se. We substantiate this proposal computationally by considering different independent ways of the membrane stress generation among which some include changes of the membrane curvature whereas others do not alter the membrane shape. Our computations show that the membrane-binding coefficient of shallow protein insertions is determined by the resultant stress independently of the way this stress has been produced. By contrast, consideration of the correlation between the insertion binding and the membrane curvature demonstrates that the binding coefficient either increases or decreases with curvature depending on the factors leading to the curvature generation. To validate our computational model, we treat quantitatively the experimental results on membrane binding by ALPS1 and ALPS2 motifs of ArfGAP1. PMID:24722359
Helping Students Use Virtual Libraries Effectively.
ERIC Educational Resources Information Center
Fitzgerald, Mary Ann; Galloway, Chad
2001-01-01
Describes a study in which online behavior of high school and undergraduate students using GALILEO (Georgia Library Learning Online), a virtual library, were observed. Topics include cognitive demands; technology literacy; domain knowledge; search strategies; relevance; evaluation of information; information literacy standards; and suggestions to…
In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library
Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul
2005-01-01
The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead to the identification of genes with vestibular-specific functions. Continued analysis of the rat vestibular periphery transcriptome should provide new insights into vestibular function and generate new hypotheses. Physiological studies are necessary to further elucidate the roles of the identified genes and novel sequences in vestibular function. PMID:16103642
A High-Throughput Arabidopsis Reverse Genetics System
Sessions, Allen; Burke, Ellen; Presting, Gernot; Aux, George; McElver, John; Patton, David; Dietrich, Bob; Ho, Patrick; Bacwaden, Johana; Ko, Cynthia; Clarke, Joseph D.; Cotton, David; Bullis, David; Snell, Jennifer; Miguel, Trini; Hutchison, Don; Kimmerly, Bill; Mitzel, Theresa; Katagiri, Fumiaki; Glazebrook, Jane; Law, Marc; Goff, Stephen A.
2002-01-01
A collection of Arabidopsis lines with T-DNA insertions in known sites was generated to increase the efficiency of functional genomics. A high-throughput modified thermal asymetric interlaced (TAIL)-PCR protocol was developed and used to amplify DNA fragments flanking the T-DNA left borders from ∼100,000 transformed lines. A total of 85,108 TAIL-PCR products from 52,964 T-DNA lines were sequenced and compared with the Arabidopsis genome to determine the positions of T-DNAs in each line. Predicted T-DNA insertion sites, when mapped, showed a bias against predicted coding sequences. Predicted insertion mutations in genes of interest can be identified using Arabidopsis Gene Index name searches or by BLAST (Basic Local Alignment Search Tool) search. Insertions can be confirmed by simple PCR assays on individual lines. Predicted insertions were confirmed in 257 of 340 lines tested (76%). This resource has been named SAIL (Syngenta Arabidopsis Insertion Library) and is available to the scientific community at www.tmri.org. PMID:12468722
Henry, Kevin A.; Kim, Dae Young; Kandalaft, Hiba; Lowden, Michael J.; Yang, Qingling; Schrag, Joseph D.; Hussack, Greg; MacKenzie, C. Roger; Tanha, Jamshid
2017-01-01
Human autonomous VH/VL single-domain antibodies (sdAbs) are attractive therapeutic molecules, but often suffer from suboptimal stability, solubility and affinity for cognate antigens. Most commonly, human sdAbs have been isolated from in vitro display libraries constructed via synthetic randomization of rearranged VH/VL domains. Here, we describe the design and characterization of three novel human VH/VL sdAb libraries through a process of: (i) exhaustive biophysical characterization of 20 potential VH/VL sdAb library scaffolds, including assessment of expression yield, aggregation resistance, thermostability and tolerance to complementarity-determining region (CDR) substitutions; (ii) in vitro randomization of the CDRs of three VH/VL sdAb scaffolds, with tailored amino acid representation designed to promote solubility and expressibility; and (iii) systematic benchmarking of the three VH/VL libraries by panning against five model antigens. We isolated ≥1 antigen-specific human sdAb against four of five targets (13 VHs and 7 VLs in total); these were predominantly monomeric, had antigen-binding affinities ranging from 5 nM to 12 µM (average: 2–3 µM), but had highly variable expression yields (range: 0.1–19 mg/L). Despite our efforts to identify the most stable VH/VL scaffolds, selection of antigen-specific binders from these libraries was unpredictable (overall success rate for all library-target screens: ~53%) with a high attrition rate of sdAbs exhibiting false positive binding by ELISA. By analyzing VH/VL sdAb library sequence composition following selection for monomeric antibody expression (binding to protein A/L followed by amplification in bacterial cells), we found that some VH/VL sdAbs had marked growth advantages over others, and that the amino acid composition of the CDRs of this set of sdAbs was dramatically restricted (bias toward Asp and His and away from aromatic and hydrophobic residues). Thus, CDR sequence clearly dramatically impacts the stability of human autonomous VH/VL immunoglobulin domain folds, and sequence-stability tradeoffs must be taken into account during the design of such libraries. PMID:29375542
Luo, Meizhong; Kim, Hyeran; Kudrna, Dave; Sisneros, Nicholas B; Lee, So-Jeong; Mueller, Christopher; Collura, Kristi; Zuccolo, Andrea; Buckingham, E Bryan; Grim, Suzanne M; Yanagiya, Kazuyo; Inoko, Hidetoshi; Shiina, Takashi; Flajnik, Martin F; Wing, Rod A; Ohta, Yuko
2006-05-03
Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC) library for the nurse shark, Ginglymostoma cirratum. The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 x 1010 bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6-28 primary positive clones per probe of which 50-90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome.
Niescierowicz, Katarzyna; Caro, Lydia; Cherezov, Vadim; Vivaudou, Michel; Moreau, Christophe J
2014-01-07
Structural studies of G protein-coupled receptors (GPCRs) extensively use the insertion of globular soluble protein domains to facilitate their crystallization. However, when inserted in the third intracellular loop (i3 loop), the soluble protein domain disrupts their coupling to G proteins and impedes the GPCRs functional characterization by standard G protein-based assays. Therefore, activity tests of crystallization-optimized GPCRs are essentially limited to their ligand binding properties using radioligand binding assays. Functional characterization of additional thermostabilizing mutations requires the insertion of similar mutations in the wild-type receptor to allow G protein-activation tests. We demonstrate that ion channel-coupled receptor technology is a complementary approach for a comprehensive functional characterization of crystallization-optimized GPCRs and potentially of any engineered GPCR. Ligand-induced conformational changes of the GPCRs are translated into electrical signal and detected by simple current recordings, even though binding of G proteins is sterically blocked by the added soluble protein domain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gallagher, John R.; Atanasiu, Doina; Saw, Wan Ting; Paradisgarten, Matthew J.; Whitbeck, J. Charles; Eisenberg, Roselyn J.; Cohen, Gary H.
2014-01-01
Entry of herpes simplex virus (HSV) into a target cell requires complex interactions and conformational changes by viral glycoproteins gD, gH/gL, and gB. During viral entry, gB transitions from a prefusion to a postfusion conformation, driving fusion of the viral envelope with the host cell membrane. While the structure of postfusion gB is known, the prefusion conformation of gB remains elusive. As the prefusion conformation of gB is a critical target for neutralizing antibodies, we set out to describe its structure by making genetic insertions of fluorescent proteins (FP) throughout the gB ectodomain. We created gB constructs with FP insertions in each of the three globular domains of gB. Among 21 FP insertion constructs, we found 8 that allowed gB to remain membrane fusion competent. Due to the size of an FP, regions in gB that tolerate FP insertion must be solvent exposed. Two FP insertion mutants were cell-surface expressed but non-functional, while FP insertions located in the crown were not surface expressed. This is the first report of placing a fluorescent protein insertion within a structural domain of a functional viral fusion protein, and our results are consistent with a model of prefusion HSV gB constructed from the prefusion VSV G crystal structure. Additionally, we found that functional FP insertions from two different structural domains could be combined to create a functional form of gB labeled with both CFP and YFP. FRET was measured with this construct, and we found that when co-expressed with gH/gL, the FRET signal from gB was significantly different from the construct containing CFP alone, as well as gB found in syncytia, indicating that this construct and others of similar design are likely to be powerful tools to monitor the conformation of gB in any model system accessible to light microscopy. PMID:25233449
Versatile P(acman) BAC Libraries for Transgenesis Studies in Drosophila melanogaster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venken, Koen J.T.; Carlson, Joseph W.; Schulze, Karen L.
2009-04-21
We constructed Drosophila melanogaster BAC libraries with 21-kb and 83-kb inserts in the P(acman) system. Clones representing 12-fold coverage and encompassing more than 95percent of annotated genes were mapped onto the reference genome. These clones can be integrated into predetermined attP sites in the genome using Phi C31 integrase to rescue mutations. They can be modified through recombineering, for example to incorporate protein tags and assess expression patterns.
Amin, Shivani; Rastogi, Rajesh P; Sonani, Ravi R; Ray, Arabinda; Sharma, Rakesh; Madamwar, Datta
2018-04-15
To explore the potential genes from the industrially polluted Amlakhadi canal, located in Ankleshwar, Gujarat, India, its community genome was extracted and cloned into E. coli EPI300™-T1 R using a fosmid vector (pCC2 FOS™) generating a library of 3,92,000 clones with average size of 40kb of DNA-insert. From this library, the clone DM1 producing brown colored melanin-like pigment was isolated and characterized. For over expression of the pigment, further sub-cloning of the clone DM1 was done. Sub-clone containing 10kb of the insert was sequenced for gene identification. The amino acids sequence of a protein 4-Hydroxyphenylpyruvate dioxygenase (HPPD), which is know to be involved in melanin biosynthesis was obtained from the gene sequence. The sequence-homology based 3D structure model of HPPD was constructed and analyzed. The physico-chemical nature of pigment was further analysed using 1 H and 13 C NMR, LC-MS, FTIR and UV-visible spectroscopy. The pigment was readily soluble in DMSO with an absorption maximum around 290nm. Based on the genetic and chemical characterization, the compound was confirmed as melanin-like pigment. The present results indicate that the metagenomic library from industrially polluted environment generated a microbial tool for the production of melanin-like pigment. Copyright © 2018 Elsevier B.V. All rights reserved.
Bartels, Daniela; Kespohl, Sebastian; Albaum, Stefan; Drüke, Tanja; Goesmann, Alexander; Herold, Julia; Kaiser, Olaf; Pühler, Alfred; Pfeiffer, Friedhelm; Raddatz, Günter; Stoye, Jens; Meyer, Folker; Schuster, Stephan C
2005-04-01
We provide the graphical tool BACCardI for the construction of virtual clone maps from standard assembler output files or BLAST based sequence comparisons. This new tool has been applied to numerous genome projects to solve various problems including (a) validation of whole genome shotgun assemblies, (b) support for contig ordering in the finishing phase of a genome project, and (c) intergenome comparison between related strains when only one of the strains has been sequenced and a large insert library is available for the other. The BACCardI software can seamlessly interact with various sequence assembly packages. Genomic assemblies generated from sequence information need to be validated by independent methods such as physical maps. The time-consuming task of building physical maps can be circumvented by virtual clone maps derived from read pair information of large insert libraries.
Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Campbell, Megan E.; ...
2015-03-31
Here, we document a collection of ~7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstratemore » reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates.« less
Construction and Screening of Marine Metagenomic Large Insert Libraries.
Weiland-Bräuer, Nancy; Langfeldt, Daniela; Schmitz, Ruth A
2017-01-01
The marine environment covers more than 70 % of the world's surface. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. In the past, marine microbes, mostly bacteria of microbial consortia attached to marine tissues of multicellular organisms, have proven to be a rich source of highly potent bioactive compounds, which represent a considerable number of drug candidates. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. This chapter describes sampling in the marine environment, construction of metagenomic large insert libraries from marine habitats, and exemplarily one function based screen of metagenomic clones for identification of quorum quenching activities.
Alvarez-Buylla, Elena R; García-Ponce, Berenice; Garay-Arroyo, Adriana
2006-01-01
APETALA1 (AP1) and CAULIFLOWER (CAL) are closely related MADS box genes that are partially redundant during Arabidopsis thaliana floral meristem determination. AP1 is able to fully substitute for CAL functions, but not vice versa, and AP1 has unique sepal and petal identity specification functions. In this study, the unique and redundant functions of these two genes has been mapped to the four protein domains that characterize type-II MADS-domain proteins by expressing all 15 chimeric combinations of AP1 and CAL cDNA regions under control of the AP1 promoter in ap1-1 loss-of-function plants. The "in vivo" function of these chimeric genes was analysed in Arabidopsis plants by expressing the chimeras. Rescue of flower meristem and sepal/petal identities was scored in single and multiple insert homozygous transgenic lines. Using these chimeric lines, it was found that distinct residues of the AP1 K domain not shared by the same CAL domain are necessary and sufficient for complete recovery of floral meristem identity, in the context of the CAL protein sequence, while both AP1 COOH and K domains are indispensable for complete rescue of sepal identity. By contrast, either one of these two AP1 domains is necessary and sufficient for complete petal identity recovery. It was also found that there were positive and negative synergies among protein domains and their combinations, and that multiple-insert lines showed relatively better rescue than equivalent single-insert lines. Finally, several lines had flowers with extra sepals and petals suggesting that chimeric proteins yield abnormal transcriptional complexes that may alter the expression or regulation of genes that control floral organ number under normal conditions.
Construction of a large-scale Burkholderia cenocepacia J2315 transposon mutant library
NASA Astrophysics Data System (ADS)
Wong, Yee-Chin; Pain, Arnab; Nathan, Sheila
2014-09-01
Burkholderia cenocepacia, a pathogenic member of the Burkholderia cepacia complex (Bcc), has emerged as a significant threat towards cystic fibrosis patients, where infection often leads to the fatal clinical manifestation known as cepacia syndrome. Many studies have investigated the pathogenicity of B. cenocepacia as well as its ability to become highly resistant towards many of the antibiotics currently in use. In addition, studies have also been undertaken to understand the pathogen's capacity to adapt and survive in a broad range of environments. Transposon based mutagenesis has been widely used in creating insertional knock-out mutants and coupled with recent advances in sequencing technology, robust tools to study gene function in a genome-wide manner have been developed based on the assembly of saturated transposon mutant libraries. In this study, we describe the construction of a large-scale library of B. cenocepacia transposon mutants. To create transposon mutants of B. cenocepacia strain J2315, electrocompetent bacteria were electrotransformed with the EZ-Tn5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodi, D. J.; Soares, A. S.; Makowski, L.
Novel statistical methods have been developed and used to quantitate and annotate the sequence diversity within combinatorial peptide libraries on the basis of small numbers (1-200) of sequences selected at random from commercially available M13 p3-based phage display libraries. These libraries behave statistically as though they correspond to populations containing roughly 4.0{+-}1.6% of the random dodecapeptides and 7.9{+-}2.6% of the random constrained heptapeptides that are theoretically possible within the phage populations. Analysis of amino acid residue occurrence patterns shows no demonstrable influence on sequence censorship by Escherichia coli tRNA isoacceptor profiles or either overall codon or Class II codon usagemore » patterns, suggesting no metabolic constraints on recombinant p3 synthesis. There is an overall depression in the occurrence of cysteine, arginine and glycine residues and an overabundance of proline, threonine and histidine residues. The majority of position-dependent amino acid sequence bias is clustered at three positions within the inserted peptides of the dodecapeptide library, +1, +3 and +12 downstream from the signal peptidase cleavage site. Conformational tendency measures of the peptides indicate a significant preference for inserts favoring a {beta}-turn conformation. The observed protein sequence limitations can primarily be attributed to genetic codon degeneracy and signal peptidase cleavage preferences. These data suggest that for applications in which maximal sequence diversity is essential, such as epitope mapping or novel receptor identification, combinatorial peptide libraries should be constructed using codon-corrected trinucleotide cassettes within vector-host systems designed to minimize morphogenesis-related censorship.« less
Körbelin, J; Hunger, A; Alawi, M; Sieber, T; Binder, M; Trepel, M
2017-08-01
Libraries displaying random peptides on the surface of adeno-associated virus (AAV) are powerful tools for the generation of target-specific gene therapy vectors. However, for unknown reasons the success rate of AAV library screenings is variable and the influence of the production procedure has not been thoroughly evaluated. During library screenings, the capsid variants with the most favorable tropism are enriched over several selection rounds on a target of choice and identified by subsequent sequencing of the encapsidated viral genomes encoding the library capsids with targeting peptide insertions. Thus, a high capsid-genome correlation is crucial to obtain the correct information about the selected capsid variants. Producing AAV libraries by a two-step protocol with pseudotyped library transfer shuttles has been proposed as one way to ensure such a correlation. Here we show that AAV2 libraries produced by such a protocol via transfer shuttles display an unexpected additional bias in the amino-acid composition which confers increased heparin affinity and thus similarity to wildtype AAV2 tropism. This bias may fundamentally impair the intended use of AAV libraries, discouraging the use of transfer shuttles for the production of AAV libraries in the future.
Munteanu, Shannon E; Landorf, Karl B; McClelland, Jodie A; Roddy, Edward; Cicuttini, Flavia M; Shiell, Alan; Auhl, Maria; Allan, Jamie J; Buldt, Andrew K; Menz, Hylton B
2017-04-27
This article describes the design of a parallel-group, participant- and assessor-blinded randomised controlled trial comparing the effectiveness of shoe-stiffening inserts versus sham shoe insert(s) for reducing pain associated with first metatarsophalangeal joint (MTPJ) osteoarthritis (OA). Ninety participants with first MTPJ OA will be randomised to receive full-length shoe-stiffening insert(s) (Carbon Fibre Spring Plate, Paris Orthotics, Vancouver, BC, Canada) plus rehabilitation therapy or sham shoe insert(s) plus rehabilitation therapy. Outcome measures will be obtained at baseline, 4, 12, 24 and 52 weeks; the primary endpoint for assessing effectiveness being 12 weeks. The primary outcome measure will be the foot pain domain of the Foot Health Status Questionnaire (FHSQ). Secondary outcome measures will include the function domain of the FHSQ, severity of first MTPJ pain (using a 100-mm Visual Analogue Scale), global change in symptoms (using a 15-point Likert scale), health status (using the Short-Form-12® Version 2.0 and EuroQol (EQ-5D-5L™) questionnaires), use of rescue medication and co-interventions, self-reported adverse events and physical activity levels (using the Incidental and Planned Activity Questionnaire). Data will be analysed using the intention-to-treat principle. Economic analysis (cost-effectiveness and cost-utility) will also be performed. In addition, the kinematic effects of the interventions will be examined at 1 week using a three-dimensional motion analysis system and multisegment foot model. This study will determine whether shoe-stiffening inserts are a cost-effective intervention for relieving pain associated with first MTPJ OA. The biomechanical analysis will provide useful insights into the mechanism of action of the shoe-stiffening inserts. Australian New Zealand Clinical Trials Registry, identifier: ACTRN12616000552482 . Registered on 28 April 2016.
Namouchi, Amine; Mardassi, Helmi
2006-11-01
Evidence suggests that insertion of the IS6110 element is not without consequence to the biology of Mycobacterium tuberculosis complex strains. Thus, mapping of multiple IS6110 insertion sites in the genome of biomedically relevant clinical isolates would result in a better understanding of the role of this mobile element, particularly with regard to transmission, adaptability and virulence. In the present paper, we describe a versatile strategy, referred to as GL-PCR, that amplifies IS6110-flanking sequences based on the construction of a genomic library. M. tuberculosis chromosomal DNA is fully digested with HincII and then ligated into a plasmid vector between T7 and T3 promoter sequences. The ligation reaction product is transformed into Escherichia coli and selective PCR amplification targeting both 5' and 3' IS6110-flanking sequences are performed on the plasmid library DNA. For this purpose, four separate PCR reactions are performed, each combining an outward primer specific for one IS6110 end with either T7 or T3 primer. Determination of the nucleotide sequence of the PCR products generated from a single ligation reaction allowed mapping of 21 out of the 24 IS6110 copies of two 12 banded M. tuberculosis strains, yielding an overall sensitivity of 87,5%. Furthermore, by simply comparing the migration pattern of GL-PCR-generated products, the strategy proved to be as valuable as IS6110 RFLP for molecular typing of M. tuberculosis complex strains. Importantly, GL-PCR was able to discriminate between strains differing by a single IS6110 band.
Topology optimization of two-dimensional elastic wave barriers
NASA Astrophysics Data System (ADS)
Van hoorickx, C.; Sigmund, O.; Schevenels, M.; Lazarov, B. S.; Lombaert, G.
2016-08-01
Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is inserted into a design domain situated between the source and the receiver to minimize wave transmission. At low frequencies, the stiffened material reflects and guides waves away from the surface. At high frequencies, destructive interference is obtained that leads to high values of the insertion loss. To handle harmonic sources at a frequency in a given range, a uniform reduction of the response over a frequency range is pursued. The minimal insertion loss over the frequency range of interest is maximized. The resulting design contains features at depth leading to a reduction of the insertion loss at the lowest frequencies and features close to the surface leading to a reduction at the highest frequencies. For broadband sources, the average insertion loss in a frequency range is optimized. This leads to designs that especially reduce the response at high frequencies. The designs optimized for the frequency averaged insertion loss are found to be sensitive to geometric imperfections. In order to obtain a robust design, a worst case approach is followed.
Spin Hall driven domain wall motion in magnetic bilayers coupled by a magnetic oxide interlayer
NASA Astrophysics Data System (ADS)
Liu, Yang; Furuta, Masaki; Zhu, Jian-Gang Jimmy
2018-05-01
mCell, previously proposed by our group, is a four-terminal magnetoresistive device with isolated write- and read-paths for all-spin logic and memory applications. A mCell requires an electric-insulating magnetic layer to couple the spin Hall driven write-path to the magnetic free layer of the read-path. Both paths are magnetic layers with perpendicular anisotropy and their perpendicularly oriented magnetization needs to be maintained with this insertion layer. We have developed a magnetic oxide (FeOx) insertion layer to serve for these purposes. We show that the FeOx insertion layer provides sufficient magnetic coupling between adjacent perpendicular magnetic layers. Resistance measurement shows that this magnetic oxide layer can act as an electric-insulating layer. In addition, spin Hall driven domain wall motion in magnetic bi-layers coupled by the FeOx insertion layer is significantly enhanced compared to that in magnetic single layer; it also requires low voltage threshold that poses possibility for power-efficient device applications.
Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily
Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael
2015-01-01
The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702
Molecular scaffold analysis of natural products databases in the public domain.
Yongye, Austin B; Waddell, Jacob; Medina-Franco, José L
2012-11-01
Natural products represent important sources of bioactive compounds in drug discovery efforts. In this work, we compiled five natural products databases available in the public domain and performed a comprehensive chemoinformatic analysis focused on the content and diversity of the scaffolds with an overview of the diversity based on molecular fingerprints. The natural products databases were compared with each other and with a set of molecules obtained from in-house combinatorial libraries, and with a general screening commercial library. It was found that publicly available natural products databases have different scaffold diversity. In contrast to the common concept that larger libraries have the largest scaffold diversity, the largest natural products collection analyzed in this work was not the most diverse. The general screening library showed, overall, the highest scaffold diversity. However, considering the most frequent scaffolds, the general reference library was the least diverse. In general, natural products databases in the public domain showed low molecule overlap. In addition to benzene and acyclic compounds, flavones, coumarins, and flavanones were identified as the most frequent molecular scaffolds across the different natural products collections. The results of this work have direct implications in the computational and experimental screening of natural product databases for drug discovery. © 2012 John Wiley & Sons A/S.
Airmet, K. W.; Hinckley, J. D.; Tree, L. T.; Moss, M.; Blumell, S.; Ulicny, K.; Gustafson, A. K.; Weed, M.; Theodosis, R.; Lehnardt, M.; Genho, J.; Stevens, M. R.; Kooyman, D. L.
2012-01-01
The Ilama is an important agricultural livestock in much of South America. The llama is increasing in popularity in the United States as a companion animal. Little work has been done to improve llama production using modern technology. A paucity of information is available regarding the llama genome. We report the construction of a llama bacterial artificial chromosome (BAC) library of about 196,224 clones in the vector pECBAC1. Using flow cytometry and bovine, human, mouse, and chicken as controls, we determined the llama genome size to be 2.4 × 109 bp. The average insert size of the library is 137.8 kb corresponding to approximately 9-fold genome coverage. Further studies are needed to further characterize the library and llama genome. We anticipate that this new library will help facilitate future genomic studies in the llama. PMID:22811594
Croll, Tristan I; Smith, Brian J; Margetts, Mai B; Whittaker, Jonathan; Weiss, Michael A; Ward, Colin W; Lawrence, Michael C
2016-03-01
Insulin receptor (IR) signaling is critical to controlling nutrient uptake and metabolism. However, only a low-resolution (3.8 Å) structure currently exists for the IR ectodomain, with some segments ill-defined or unmodeled due to disorder. Here, we revise this structure using new diffraction data to 3.3 Å resolution that allow improved modeling of the N-linked glycans, the first and third fibronectin type III domains, and the insert domain. A novel haptic interactive molecular dynamics strategy was used to aid fitting to low-resolution electron density maps. The resulting model provides a foundation for investigation of structural transitions in IR upon ligand binding. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Herdiansyah, Herdis; Satriya Utama, Andre; Safruddin; Hidayat, Heri; Gema Zuliana Irawan, Angga; Immanuel Tjandra Muliawan, R.; Mutia Pratiwi, Diana
2017-10-01
One of the factor that influenced the development of science is the existence of the library, which in this case is the college libraries. Library, which is located in the college environment, aims to supply collections of literatures to support research activities as well as educational for students of the college. Conceptually, every library now starts to practice environmental principles. For example, “X” library as a central library claims to be an environmental friendly library for practicing environmental friendly management, but the X library has not inserted the satisfaction and service aspect to the users, including whether it is true that environmental friendly process is perceived by library users. Satisfaction can be seen from the comparison between expectations and reality of library users. This paper analyzes the level of library user satisfaction with library services in the campus area and the gap between expectations and reality felt by the library users. The result of the research shows that there is a disparity between the hope of library management, which is sustainable and environmentally friendly with the reality in the management of the library, so that it has not given satisfaction to the users yet. The gap value of satisfaction that has the biggest difference is in the library collection with the value of 1.57; while for the smallest gap value is in the same service to all students with a value of 0.67.
Digital Preservation in Open-Source Digital Library Software
ERIC Educational Resources Information Center
Madalli, Devika P.; Barve, Sunita; Amin, Saiful
2012-01-01
Digital archives and digital library projects are being initiated all over the world for materials of different formats and domains. To organize, store, and retrieve digital content, many libraries as well as archiving centers are using either proprietary or open-source software. While it is accepted that print media can survive for centuries with…
How Relevant Are Library and Information Science Curricula outside Their Geographic Domain?
ERIC Educational Resources Information Center
Tam, Lawrence Wai-hong; Harvey, Ross; Mills, John
2007-01-01
Australian library and information science (LIS) courses are popular outside Australia, and Australia is a popular study destination for students in the region. This paper takes a comparative approach to attempt to determine whether ALIA (the Australian Library and Information Association)'s core curriculum for LIS education is appropriate outside…
Digital Libraries and Repositories in India: An Evaluative Study
ERIC Educational Resources Information Center
Mittal, Rekha; Mahesh, G.
2008-01-01
Purpose: The purpose of this research is to identify and evaluate the collections within digital libraries and repositories in India available in the public domain. Design/methodology/approach: The digital libraries and repositories were identified through a study of the literature, as well as internet searching and browsing. The resulting digital…
Conformational transition of membrane-associated terminally-acylated HIV-1 Nef
Akgun, Bulent; Satija, Sushil; Nanda, Hirsh; Pirrone, Gregory F.; Shi, Xiaomeng; Engen, John R.; Kent, Michael S.
2013-01-01
Many proteins are post-translationally modified by acylation targetting them to lipid membranes. While methods such as X-ray crystallography and NMR are available to determine the structure of folded proteins in solution, the precise position of folded domains relative to a membrane remains largely unknown. We used neutron and X-ray reflection methods to measure the displacement of the core domain of HIV Nef from lipid membranes upon insertion of the N-terminal myristate group. Nef is one of several HIV-1 accessory proteins and an essential factor in AIDS progression. Upon insertion of the myristate and residues from the N-terminal arm, Nef transitions from a closed to open conformation that positions the core domain 70 Å from the lipid headgroups. This work rules out speculation that the Nef core remains closely associated with the membrane to optimize interactions with the cytoplasmic domain of MHC-1. PMID:24035710
Henry, Kevin A; Kim, Dae Young; Kandalaft, Hiba; Lowden, Michael J; Yang, Qingling; Schrag, Joseph D; Hussack, Greg; MacKenzie, C Roger; Tanha, Jamshid
2017-01-01
Human autonomous V H /V L single-domain antibodies (sdAbs) are attractive therapeutic molecules, but often suffer from suboptimal stability, solubility and affinity for cognate antigens. Most commonly, human sdAbs have been isolated from in vitro display libraries constructed via synthetic randomization of rearranged V H /V L domains. Here, we describe the design and characterization of three novel human V H /V L sdAb libraries through a process of: (i) exhaustive biophysical characterization of 20 potential V H /V L sdAb library scaffolds, including assessment of expression yield, aggregation resistance, thermostability and tolerance to complementarity-determining region (CDR) substitutions; (ii) in vitro randomization of the CDRs of three V H /V L sdAb scaffolds, with tailored amino acid representation designed to promote solubility and expressibility; and (iii) systematic benchmarking of the three V H /V L libraries by panning against five model antigens. We isolated ≥1 antigen-specific human sdAb against four of five targets (13 V H s and 7 V L s in total); these were predominantly monomeric, had antigen-binding affinities ranging from 5 nM to 12 µM (average: 2-3 µM), but had highly variable expression yields (range: 0.1-19 mg/L). Despite our efforts to identify the most stable V H /V L scaffolds, selection of antigen-specific binders from these libraries was unpredictable (overall success rate for all library-target screens: ~53%) with a high attrition rate of sdAbs exhibiting false positive binding by ELISA. By analyzing V H /V L sdAb library sequence composition following selection for monomeric antibody expression (binding to protein A/L followed by amplification in bacterial cells), we found that some V H /V L sdAbs had marked growth advantages over others, and that the amino acid composition of the CDRs of this set of sdAbs was dramatically restricted (bias toward Asp and His and away from aromatic and hydrophobic residues). Thus, CDR sequence clearly dramatically impacts the stability of human autonomous V H /V L immunoglobulin domain folds, and sequence-stability tradeoffs must be taken into account during the design of such libraries.
A Novel Assay for the Identification of NOTCH1 PEST Domain Mutations in Chronic Lymphocytic Leukemia
Petroni, Roberta Cardoso; Muto, Nair Hideko; Sitnik, Roberta; de Carvalho, Flavia Pereira; Bacal, Nydia Strachman; Velloso, Elvira Deolinda Rodrigues Pereira; Oliveira, Gislaine Borba; Pinho, João Renato Rebello; Torres, Davi Coe; Mansur, Marcela Braga; Hassan, Rocio; Lorand-Metze, Irene Gyongyvér Heidemarie; Chiattone, Carlos Sérgio; Hamerschlak, Nelson; Mangueira, Cristovão Luis Pitangueira
2016-01-01
Aims. To develop a fast and robust DNA-based assay to detect insertions and deletions mutations in exon 34 that encodes the PEST domain of NOTCH1 in order to evaluate patients with chronic lymphocytic leukemia (CLL). Methods. We designed a multiplexed allele-specific polymerase chain reaction (PCR) combined with a fragment analysis assay to detect specifically the mutation c.7544_7545delCT and possibly other insertions and deletions in exon 34 of NOTCH1. Results. We evaluated our assay in peripheral blood samples from two cohorts of patients with CLL. The frequency of NOTCH1 mutations was 8.4% in the first cohort of 71 unselected CLL patients. We then evaluated a second cohort of 26 CLL patients with known cytogenetic abnormalities that were enriched for patients with trisomy 12. NOTCH1 mutations were detected in 43.7% of the patients with trisomy 12. Conclusions. We have developed a fast and robust assay combining allele-specific PCR and fragment analysis able to detect NOTCH1 PEST domain insertions and deletions. PMID:28074183
Botulinum Neurotoxins and Botulism: A Novel Therapeutic Approach
Thanongsaksrikul, Jeeraphong; Chaicumpa, Wanpen
2011-01-01
Specific treatment is not available for human botulism. Current remedial mainstay is the passive administration of polyclonal antibody to botulinum neurotoxin (BoNT) derived from heterologous species (immunized animal or mouse hybridoma) together with supportive and symptomatic management. The antibody works extracellularly, probably by blocking the binding of receptor binding (R) domain to the neuronal receptors; thus inhibiting cellular entry of the holo-BoNT. The antibody cannot neutralize the intracellular toxin. Moreover, a conventional antibody with relatively large molecular size (150 kDa) is not accessible to the enzymatic groove and, thus, cannot directly inhibit the BoNT zinc metalloprotease activity. Recently, a 15–20 kDa single domain antibody (VHH) that binds specifically to light chain of BoNT serotype A was produced from a humanized-camel VH/VHH phage display library. The VHH has high sequence homology (>80%) to the human VH and could block the enzymatic activity of the BoNT. Molecular docking revealed not only the interface binding between the VHH and the toxin but also an insertion of the VHH CDR3 into the toxin enzymatic pocket. It is envisaged that, by molecular linking the VHH to a cell penetrating peptide (CPP), the CPP-VHH fusion protein would be able to traverse the hydrophobic cell membrane into the cytoplasm and inhibit the intracellular BoNT. This presents a novel and safe immunotherapeutic strategy for botulism by using a cell penetrating, humanized-single domain antibody that inhibits the BoNT by means of a direct blockade of the groove of the menace enzyme. PMID:22069720
In vivo insertion pool sequencing identifies virulence factors in a complex fungal–host interaction
Uhse, Simon; Pflug, Florian G.; Stirnberg, Alexandra; Ehrlinger, Klaus; von Haeseler, Arndt
2018-01-01
Large-scale insertional mutagenesis screens can be powerful genome-wide tools if they are streamlined with efficient downstream analysis, which is a serious bottleneck in complex biological systems. A major impediment to the success of next-generation sequencing (NGS)-based screens for virulence factors is that the genetic material of pathogens is often underrepresented within the eukaryotic host, making detection extremely challenging. We therefore established insertion Pool-Sequencing (iPool-Seq) on maize infected with the biotrophic fungus U. maydis. iPool-Seq features tagmentation, unique molecular barcodes, and affinity purification of pathogen insertion mutant DNA from in vivo-infected tissues. In a proof of concept using iPool-Seq, we identified 28 virulence factors, including 23 that were previously uncharacterized, from an initial pool of 195 candidate effector mutants. Because of its sensitivity and quantitative nature, iPool-Seq can be applied to any insertional mutagenesis library and is especially suitable for genetically complex setups like pooled infections of eukaryotic hosts. PMID:29684023
Revisions to Conventional Clock Domain Crossing Methodologies in Triple Modular Redundant Circuits
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; LaBel, Kenneth A.
2018-01-01
We present updates to the conventional methodology of triple modular redundancy (TMR) insertion as it pertains to clock domain crossings (CDCs). Three types of TMR schemes and their suggested corresponding CDC revisions are discussed.
Nuttall, S D; Krishnan, U V; Hattarki, M; De Gori, R; Irving, R A; Hudson, P J
2001-08-01
The new antigen receptor (NAR) from nurse sharks consists of an immunoglobulin variable domain attached to five constant domains, and is hypothesised to function as an antigen-binding antibody-like molecule. To determine whether the NAR is present in other species we have isolated a number of new antigen receptor variable domains from the spotted wobbegong shark (Orectolobus maculatus) and compared their structure to that of the nurse shark protein. To determine whether these wNARs can function as antigen-binding proteins, we have used them as scaffolds for the construction of protein libraries in which the CDR3 loop was randomised, and displayed the resulting recombinant domains on the surface of fd bacteriophages. On selection against several protein antigens, the highest affinity wNAR proteins were generated against the Gingipain K protease from Porphyromonas gingivalis. One wNAR protein bound Gingipain K specifically by ELISA and BIAcore analysis and, when expressed in E. coli and purified by affinity chromatography, eluted from an FPLC column as a single peak consistent with folding into a monomeric protein. Naturally occurring nurse shark and wobbegong NAR variable domains exhibit conserved cysteine residues within the CDR1 and CDR3 loops which potentially form disulphide linkages and enhance protein stability; proteins isolated from the in vitro NAR wobbegong library showed similar selection for such paired cysteine residues. Thus, the New Antigen Receptor represents a protein scaffold with possible stability advantages over conventional antibodies when used in in vitro molecular libraries.
Sholder, Gabriel; Creech, Amanda; Loechler, Edward L
2015-11-01
To bypass DNA damage, cells have Y-Family DNA polymerases (DNAPs). One Y-Family-class includes DNAP κ and DNAP IV, which accurately insert dCTP opposite N(2)-dG adducts, including from the carcinogen benzo[a]pyrene (BP). Another class includes DNAP η and DNAP V, which insert accurately opposite UV-damage, but inaccurately opposite BP-N(2)-dG. To investigate structural differences between Y-Family-classes, regions are swapped between DNAP IV (a κ/IV-class-member) and Dpo4 (a η/V-class-member); the kinetic consequences are evaluated via primer-extension studies with a BP-N(2)-dG-containing template. Four key structural elements are revealed. (1) Y-Family DNAPs have discreet non-covalent contacts between their little finger-domain (LF-Domain) and their catalytic core-domain (CC-Domain), which we call "non-covalent bridges" (NCBs). Arg37 and Arg38 in DNAP IV's CC-Domain near the active site form a non-covalent bridge (AS-NCB) by interacting with Glu251 and Asp252, respectively, in DNAP IV's LF-Domain. Without these interactions dATP/dGTP/dTTP misinsertions increase. DNAP IV's AS-NCB suppresses misinsertions better than Dpo4's equivalent AS-NCB. (2) DNAP IV also suppresses dATP/dGTP/dTTP misinsertions via a second non-covalent bridge, which is ∼8Å from the active site (Distal-NCB). Dpo4 has no Distal-NCB, rendering it inferior at dATP/dGTP/dTTP suppression. (3) dCTP insertion is facilitated by the larger minor groove opening near the active site in DNAP IV versus Dpo4, which is sensible given that Watson/Crick-like [dCTP:BP-N(2)-dG] pairing requires the BP-moiety to be in the minor groove. (4) Compared to Dpo4, DNAP IV has a smaller major groove opening, which suppresses dGTP misinsertion, implying BP-N(2)-dG bulk in the major groove during Hoogsteen syn-adduct-dG:dGTP pairing. In summary, DNAP IV has a large minor groove opening to enhance dCTP insertion, a plugged major groove opening to suppress dGTP misinsertion, and two non-covalent bridges (near and distal to the active site) to suppress dATP/dGTP/dTTP misinsertions; collectively these four structural features enhance DNAP IV's dNTP insertion fidelity opposite a BP-N(2)-dG adduct compared to Dpo4. Copyright © 2015 Elsevier B.V. All rights reserved.
Expert Systems for Libraries at SCIL [Small Computers in Libraries]'88.
ERIC Educational Resources Information Center
Kochtanek, Thomas R.; And Others
1988-01-01
Six brief papers on expert systems for libraries cover (1) a knowledge-based approach to database design; (2) getting started in expert systems; (3) using public domain software to develop a business reference system; (4) a music cataloging inquiry system; (5) linguistic analysis of reference transactions; and (6) a model of a reference librarian.…
A Study of How We Study: Methodologies of School Library Research 2007 through July 2015
ERIC Educational Resources Information Center
Morris, Rebecca J.; Cahill, Maria
2017-01-01
In this study we investigated the research designs employed to study the interdisciplinary profession of school librarianship during a time period of notable changes across both the Pre-K-12 and school library domains. To conduct this work, we analyzed all 217 articles published in "School Library Research" (SLR) and "School…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ying-Tai Wang; Zhao-Cai Wang; Bajalica, S.
We present the first case of direct and inverted reciprocal chromosome insertions between human chromosomes 7 and 14, ascertained because of repeated spontaneous abortions. Prometaphase GTG banding analysis showed the karyotype to be 46, XX, inv ins (7;14)(7pter {yields} 7q11.23::14q32.2 {yields} 14q22::7q21.2 {yields} 7qter), dir ins(14;7)(14pter {yields} 14q22::7q11.23 {yields} 7q21.2::14q32.2 {yields} 14qter). Origins of the insertion have been confirmed by chromosome painting with libraries specific for chromosomes 7 and 14 using fluorescence in situ hybridization. 5 refs., 3 figs.
Wu, Yiming; Hu, Xiaomin; Ge, Yong; Zheng, Dasheng; Yuan, Zhiming
2012-05-01
Bacillus sphaericus has been used with great success in mosquito control programs worldwide. Under conditions of nutrient limitation, it undergoes sporulation via a series of well defined morphological stages. However, only a small number of genes involved in sporulation have been identified. To identify genes associated with sporulation, and to understand the relationship between sporulation and crystal protein synthesis, a random mariner-based transposon insertion mutant library of B. sphaericus strain 2297 was constructed and seven sporulation-defective mutants were selected. Sequencing of the DNA flanking of the transposon insertion identified several genes involved in sporulation. The morphologies of mutants were determined by electron microscopy and synthesis of crystal proteins was analyzed by SDS-PAGE and Western blot. Four mutants blocked at early stages of sporulation failed to produce crystal proteins and had lower larvicidal activity. However, the other three mutants were blocked at later stages and were able to form crystal proteins, and the larvicidal activity was similar to wild type. These results indicated that crystal protein synthesis in B. sphaericus is dependent on sporulation initiation. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Jones, Alicia M; Atkinson, Joshua T; Silberg, Jonathan J
2017-01-01
Rearrangements that alter the order of a protein's sequence are used in the lab to study protein folding, improve activity, and build molecular switches. One of the simplest ways to rearrange a protein sequence is through random circular permutation, where native protein termini are linked together and new termini are created elsewhere through random backbone fission. Transposase mutagenesis has emerged as a simple way to generate libraries encoding different circularly permuted variants of proteins. With this approach, a synthetic transposon (called a permuteposon) is randomly inserted throughout a circularized gene to generate vectors that express different permuted variants of a protein. In this chapter, we outline the protocol for constructing combinatorial libraries of circularly permuted proteins using transposase mutagenesis, and we describe the different permuteposons that have been developed to facilitate library construction.
Using llama derived single domain antibodies to target botulinum neurotoxins
NASA Astrophysics Data System (ADS)
Swain, Marla D.; Anderson, George P.; Bernstein, Rachael D.; Liu, Jinny L.; Goldman, Ellen R.
2010-04-01
Llama serum contains both conventional IgG as well as unique forms of antibody that contain only heavy chains where antigen binding is mediated through a single variable domain. These variable domains can be expressed recombinantly and are referred to as single domain antibodies (sdAb). SdAb are among the smallest known naturally derived antigen binding fragments, possess good solubility, thermal stability, and can refold after heat and chemical denaturation. Llamas were immunized with either BoNT A or B toxoid and phage display libraries prepared. Single domain antibodies (sdAb) that were able to detect botulinum neurotoxin (BoNT) serotypes A and B were selected from their respective libraries. Here, the binders obtained by panning the BoNT B library on either BoNT B toxoid or BoNT B complex toxoid coated plates or BoNT B toxin coupled microspheres are described. Using these panning methods, we selected for binders that showed specificity for BoNT B. Phage displayed binders were screened, moved to a protein expression vector and soluble sdAb was produced. Using a Luminex flow cytometer binders were evaluated in direct binding assays. We have exploited the unique properties of sdAb and used them as biological recognition elements in immuno-based sensors that can detect BoNT B.
Liu, Jinny L; Anderson, George P; Goldman, Ellen R
2007-11-19
Shark heavy chain antibody, also called new antigen receptor (NAR), consists of one single Variable domain (VH), containing only two complementarity-determining regions (CDRs). The antigen binding affinity and specificity are mainly determined by these two CDRs. The good solubility, excellent thermal stability and complex sequence variation of small single domain antibodies (sdAbs) make them attractive alternatives to conventional antibodies. In this report, we construct and characterize a diversity enhanced semi-synthetic NAR V display library based on naturally occurring NAR V sequences. A semi-synthetic shark sdAb display library with a complexity close to 1e9 was constructed. This was achieved by introducing size and sequence variations in CDR3 using randomized CDR3 primers of three different lengths. Binders against three toxins, staphylococcal enterotoxin B (SEB), ricin, and botulinum toxin A (BoNT/A) complex toxoid, were isolated from panning the display library. Soluble sdAbs from selected binders were purified and evaluated using direct binding and thermal stability assays on the Luminex 100. In addition, sandwich assays using sdAb as the reporter element were developed to demonstrate their utility for future sensor applications. We demonstrated the utility of a newly created hyper diversified shark NAR displayed library to serve as a source of thermal stable sdAbs against a variety of toxins.
Liu, Jinny L; Anderson, George P; Goldman, Ellen R
2007-01-01
Background Shark heavy chain antibody, also called new antigen receptor (NAR), consists of one single Variable domain (VH), containing only two complementarity-determining regions (CDRs). The antigen binding affinity and specificity are mainly determined by these two CDRs. The good solubility, excellent thermal stability and complex sequence variation of small single domain antibodies (sdAbs) make them attractive alternatives to conventional antibodies. In this report, we construct and characterize a diversity enhanced semi-synthetic NAR V display library based on naturally occurring NAR V sequences. Results A semi-synthetic shark sdAb display library with a complexity close to 1e9 was constructed. This was achieved by introducing size and sequence variations in CDR3 using randomized CDR3 primers of three different lengths. Binders against three toxins, staphylococcal enterotoxin B (SEB), ricin, and botulinum toxin A (BoNT/A) complex toxoid, were isolated from panning the display library. Soluble sdAbs from selected binders were purified and evaluated using direct binding and thermal stability assays on the Luminex 100. In addition, sandwich assays using sdAb as the reporter element were developed to demonstrate their utility for future sensor applications. Conclusion We demonstrated the utility of a newly created hyper diversified shark NAR displayed library to serve as a source of thermal stable sdAbs against a variety of toxins. PMID:18021450
Hara, Yuichiro; Tatsumi, Kaori; Yoshida, Michio; Kajikawa, Eriko; Kiyonari, Hiroshi; Kuraku, Shigehiro
2015-11-18
RNA-seq enables gene expression profiling in selected spatiotemporal windows and yields massive sequence information with relatively low cost and time investment, even for non-model species. However, there remains a large room for optimizing its workflow, in order to take full advantage of continuously developing sequencing capacity. Transcriptome sequencing for three embryonic stages of Madagascar ground gecko (Paroedura picta) was performed with the Illumina platform. The output reads were assembled de novo for reconstructing transcript sequences. In order to evaluate the completeness of transcriptome assemblies, we prepared a reference gene set consisting of vertebrate one-to-one orthologs. To take advantage of increased read length of >150 nt, we demonstrated shortened RNA fragmentation time, which resulted in a dramatic shift of insert size distribution. To evaluate products of multiple de novo assembly runs incorporating reads with different RNA sources, read lengths, and insert sizes, we introduce a new reference gene set, core vertebrate genes (CVG), consisting of 233 genes that are shared as one-to-one orthologs by all vertebrate genomes examined (29 species)., The completeness assessment performed by the computational pipelines CEGMA and BUSCO referring to CVG, demonstrated higher accuracy and resolution than with the gene set previously established for this purpose. As a result of the assessment with CVG, we have derived the most comprehensive transcript sequence set of the Madagascar ground gecko by means of assembling individual libraries followed by clustering the assembled sequences based on their overall similarities. Our results provide several insights into optimizing de novo RNA-seq workflow, including the coordination between library insert size and read length, which manifested in improved connectivity of assemblies. The approach and assembly assessment with CVG demonstrated here would be applicable to transcriptome analysis of other species as well as whole genome analyses.
Beitlich, Thorsten; Lorenz, Thorsten; Reinstein, Jochen
2013-01-01
The globular 25 kDa protein cytosine monophosphate kinase (CMPK, EC ID: 2.7.4.14) from E. coli belongs to the family of nucleoside monophosphate (NMP) kinases (NMPK). Many proteins of this family share medium to high sequence and high structure similarity including the frequently found α/β topology. A unique feature of CMPK in the family of NMPKs is the positioning of a single cis-proline residue in the CORE-domain (cis-Pro124) in conjunction with a large insert in the NMP binding domain. This insert is not found in other well studied NMPKs such as AMPK or UMP/CMPK. We have analyzed the folding pathway of CMPK using time resolved tryptophan and FRET fluorescence as well as CD. Our results indicate that unfolding at high urea concentrations is governed by a single process, whereas refolding in low urea concentrations follows at least a three step process which we interpret as follows: Pro124 in the CORE-domain is in cis in the native state (Nc) and equilibrates with its trans-isomer in the unfolded state (Uc - Ut). Under refolding conditions, at least the Ut species and possibly also the Uc species undergo a fast initial collapse to form intermediates with significant amount of secondary structure, from which the trans-Pro124 fraction folds to the native state with a 100-fold lower rate constant than the cis-Pro124 species. CMPK thus differs from homologous NMP kinases like UMP/CMP kinase or AMP kinase, where folding intermediates show much lower content of secondary structure. Importantly also unfolding is up to 100-fold faster compared to CMPK. We therefore propose that the stabilizing effect of the long NMP-domain insert in conjunction with a subtle twist in the positioning of a single cis-Pro residue allows for substantial stabilization compared to other NMP kinases with α/β topology. PMID:24205218
Structural and Histone Binding Ability Characterizations of Human PWWP Domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hong; Zeng, Hong; Lam, Robert
2013-09-25
The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members,more » implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.« less
Begin at the beginning: A BAC-end view of the passion fruit (Passiflora) genome.
Santos, Anselmo Azevedo; Penha, Helen Alves; Bellec, Arnaud; Munhoz, Carla de Freitas; Pedrosa-Harand, Andrea; Bergès, Hélène; Vieira, Maria Lucia Carneiro
2014-09-26
The passion fruit (Passiflora edulis) is a tropical crop of economic importance both for juice production and consumption as fresh fruit. The juice is also used in concentrate blends that are consumed worldwide. However, very little is known about the genome of the species. Therefore, improving our understanding of passion fruit genomics is essential and to some degree a pre-requisite if its genetic resources are to be used more efficiently. In this study, we have constructed a large-insert BAC library and provided the first view on the structure and content of the passion fruit genome, using BAC-end sequence (BES) data as a major resource. The library consisted of 82,944 clones and its levels of organellar DNA were very low. The library represents six haploid genome equivalents, and the average insert size was 108 kb. To check its utility for gene isolation, successful macroarray screening experiments were carried out with probes complementary to eight Passiflora gene sequences available in public databases. BACs harbouring those genes were used in fluorescent in situ hybridizations and unique signals were detected for four BACs in three chromosomes (n=9). Then, we explored 10,000 BES and we identified reads likely to contain repetitive mobile elements (19.6% of all BES), simple sequence repeats and putative proteins, and to estimate the GC content (~42%) of the reads. Around 9.6% of all BES were found to have high levels of similarity to plant genes and ontological terms were assigned to more than half of the sequences analysed (940). The vast majority of the top-hits made by our sequences were to Populus trichocarpa (24.8% of the total occurrences), Theobroma cacao (21.6%), Ricinus communis (14.3%), Vitis vinifera (6.5%) and Prunus persica (3.8%). We generated the first large-insert library for a member of Passifloraceae. This BAC library provides a new resource for genetic and genomic studies, as well as it represents a valuable tool for future whole genome study. Remarkably, a number of BAC-end pair sequences could be mapped to intervals of the sequenced Arabidopsis thaliana, V. vinifera and P. trichocarpa chromosomes, and putative collinear microsyntenic regions were identified.
ERIC Educational Resources Information Center
Galewsky, Samuel
2000-01-01
Introduces a series of molecular genetics laboratories where students pick a single colony from a Drosophila melanogester embryo cDNA library and purify the plasmid, then analyze the insert through restriction digests and gel electrophoresis. (Author/YDS)
Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic.
Santiago, Marina; Lee, Wonsik; Fayad, Antoine Abou; Coe, Kathryn A; Rajagopal, Mithila; Do, Truc; Hennessen, Fabienne; Srisuknimit, Veerasak; Müller, Rolf; Meredith, Timothy C; Walker, Suzanne
2018-06-01
Identifying targets of antibacterial compounds remains a challenging step in the development of antibiotics. We have developed a two-pronged functional genomics approach to predict mechanism of action that uses mutant fitness data from antibiotic-treated transposon libraries containing both upregulation and inactivation mutants. We treated a Staphylococcus aureus transposon library containing 690,000 unique insertions with 32 antibiotics. Upregulation signatures identified from directional biases in insertions revealed known molecular targets and resistance mechanisms for the majority of these. Because single-gene upregulation does not always confer resistance, we used a complementary machine-learning approach to predict the mechanism from inactivation mutant fitness profiles. This approach suggested the cell wall precursor Lipid II as the molecular target of the lysocins, a mechanism we have confirmed. We conclude that docking to membrane-anchored Lipid II precedes the selective bacteriolysis that distinguishes these lytic natural products, showing the utility of our approach for nominating the antibiotic mechanism of action.
Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Campbell, Megan E; Chen, Kuchuan; Anguiano-Zarate, Stephanie; Cantu Gutierrez, Manuel; Busby, Theodore; Lin, Wen-Wen; He, Yuchun; Schulze, Karen L; Booth, Benjamin W; Evans-Holm, Martha; Venken, Koen JT; Levis, Robert W; Spradling, Allan C; Hoskins, Roger A; Bellen, Hugo J
2015-01-01
Here, we document a collection of ∼7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstrate reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates. DOI: http://dx.doi.org/10.7554/eLife.05338.001 PMID:25824290
Gourlay, Louise J; Peano, Clelia; Deantonio, Cecilia; Perletti, Lucia; Pietrelli, Alessandro; Villa, Riccardo; Matterazzo, Elena; Lassaux, Patricia; Santoro, Claudio; Puccio, Simone; Sblattero, Daniele; Bolognesi, Martino
2015-11-01
The 1.8 Å resolution crystal structure of a conserved domain of the potential Burkholderia pseudomallei antigen and trimeric autotransporter BPSL2063 is presented as a structural vaccinology target for melioidosis vaccine development. Since BPSL2063 (1090 amino acids) hosts only one conserved domain, and the expression/purification of the full-length protein proved to be problematic, a domain-filtering library was generated using β-lactamase as a reporter gene to select further BPSL2063 domains. As a result, two domains (D1 and D2) were identified and produced in soluble form in Escherichia coli. Furthermore, as a general tool, a genomic open reading frame-filtering library from the B. pseudomallei genome was also constructed to facilitate the selection of domain boundaries from the entire ORFeome. Such an approach allowed the selection of three potential protein antigens that were also produced in soluble form. The results imply the further development of ORF-filtering methods as a tool in protein-based research to improve the selection and production of soluble proteins or domains for downstream applications such as X-ray crystallography.
ERIC Educational Resources Information Center
Moeller, Babette
2010-01-01
The goal of the User-Centered Digital Library Project, conducted by the National Center for Accessible Media (NCAM) at WGBH, was to adapt the Teachers' Domain online digital library to enable teachers and students with disabilities to more readily use the resources in science classrooms. NCAM added accessibility features such as captions and audio…
Constructing high complexity synthetic libraries of long ORFs using in vitro selection
NASA Technical Reports Server (NTRS)
Cho, G.; Keefe, A. D.; Liu, R.; Wilson, D. S.; Szostak, J. W.
2000-01-01
We present a method that can significantly increase the complexity of protein libraries used for in vitro or in vivo protein selection experiments. Protein libraries are often encoded by chemically synthesized DNA, in which part of the open reading frame is randomized. There are, however, major obstacles associated with the chemical synthesis of long open reading frames, especially those containing random segments. Insertions and deletions that occur during chemical synthesis cause frameshifts, and stop codons in the random region will cause premature termination. These problems can together greatly reduce the number of full-length synthetic genes in the library. We describe a strategy in which smaller segments of the synthetic open reading frame are selected in vitro using mRNA display for the absence of frameshifts and stop codons. These smaller segments are then ligated together to form combinatorial libraries of long uninterrupted open reading frames. This process can increase the number of full-length open reading frames in libraries by up to two orders of magnitude, resulting in protein libraries with complexities of greater than 10(13). We have used this methodology to generate three types of displayed protein library: a completely random sequence library, a library of concatemerized oligopeptide cassettes with a propensity for forming amphipathic alpha-helical or beta-strand structures, and a library based on one of the most common enzymatic scaffolds, the alpha/beta (TIM) barrel. Copyright 2000 Academic Press.
Interaction Analysis through Proteomic Phage Display
2014-01-01
Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance. PMID:25295249
Zhang, Fang; Marcus, Warren D.; Goyal, Nimita H.; Selvaraj, Periasamy; Springer, Timothy A.; Zhu, Cheng
2006-01-01
The leukocyte integrin αLβ2 mediates cell adhesion and migration during inflammatory and immune responses. Ligand binding of αLβ2 is regulated by or induces conformational changes in the inserted (I) domain. By using a micropipette, we measured the conformational regulation of two-dimensional (2D) binding affinity and the kinetics of cell-bound intercellular adhesion molecule-1 interacting with αLβ2 or isolated I domain expressed on K562 cells. Locking the I domain into open and intermediate conformations with a disulfide bond increased the affinities by ~8000- and ~30-fold, respectively, from the locked closed conformation, which has similar affinity as the wild-type I domain. Most surprisingly, the 2D affinity increases were due mostly to the 2D on-rate increases, as the 2D off-rates only decreased by severalfold. The wild-type αLβ2, but not its I domain in isolation, could be up-regulated by Mn2+ or Mg2+ to have high affinities and on-rates. Locking the I domain in any of the three conformations abolished the ability of divalent cations to regulate 2D affinity. These results indicate that a downward displacement of the I domain C-terminal helix, induced by conformational changes of other domains of the αLβ2, is required for affinity and on-rate up-regulation. PMID:16234238
Increasing Prion Propensity by Hydrophobic Insertion
Petri, Michelina; Flores, Noe; Rogge, Ryan A.; Cascarina, Sean M.; Ross, Eric D.
2014-01-01
Prion formation involves the conversion of proteins from a soluble form into an infectious amyloid form. Most yeast prion proteins contain glutamine/asparagine-rich regions that are responsible for prion aggregation. Prion formation by these domains is driven primarily by amino acid composition, not primary sequence, yet there is a surprising disconnect between the amino acids thought to have the highest aggregation propensity and those that are actually found in yeast prion domains. Specifically, a recent mutagenic screen suggested that both aromatic and non-aromatic hydrophobic residues strongly promote prion formation. However, while aromatic residues are common in yeast prion domains, non-aromatic hydrophobic residues are strongly under-represented. Here, we directly test the effects of hydrophobic and aromatic residues on prion formation. Remarkably, we found that insertion of as few as two hydrophobic residues resulted in a multiple orders-of-magnitude increase in prion formation, and significant acceleration of in vitro amyloid formation. Thus, insertion or deletion of hydrophobic residues provides a simple tool to control the prion activity of a protein. These data, combined with bioinformatics analysis, suggest a limit on the number of strongly prion-promoting residues tolerated in glutamine/asparagine-rich domains. This limit may explain the under-representation of non-aromatic hydrophobic residues in yeast prion domains. Prion activity requires not only that a protein be able to form prion fibers, but also that these fibers be cleaved to generate new independently-segregating aggregates to offset dilution by cell division. Recent studies suggest that aromatic residues, but not non-aromatic hydrophobic residues, support the fiber cleavage step. Therefore, we propose that while both aromatic and non-aromatic hydrophobic residues promote prion formation, aromatic residues are favored in yeast prion domains because they serve a dual function, promoting both prion formation and chaperone-dependent prion propagation. PMID:24586661
The core domain as the force sensor of the yeast mechanosensitive TRP channel.
Su, Zhenwei; Anishkin, Andriy; Kung, Ching; Saimi, Yoshiro
2011-12-01
Stretch-activated conductances are commonly encountered in careful electric recordings. Those of known proteins (TRP, MscL, MscS, K(2p), Kv, etc.) all share a core, which houses the ion pathway and the gate, but no recognizable force-sensing domain. Like animal TRPs, the yeast TRPY1 is polymodal, activated by stretch force, Ca(2+), etc. To test whether its S5-S6 core senses the stretch force, we tried to uncouple it from the peripheral domains by strategic peptide insertions to block the covalent core-periphery interactions. Insertion of long unstructured peptides should distort, if not disrupt, protein structures that transmit force. Such insertions between S6 and the C-terminal tail largely removed Ca(2+) activation, showing their effectiveness. However, such insertions as well as those between S5 and the N-terminal region, which includes S1-S4, did not significantly alter mechanosensitivity. Even insertions at both locations flanking the S5-S6 core did not much alter mechanosensitivity. Tryptophan scanning mutations in S5 were also constructed to perturb possible noncovalent core-periphery contacts. The testable tryptophan mutations also have little or no effects on mechanosensitivity. Boltzmann fits of the wild-type force-response curves agree with a structural homology model for a stretch-induced core expansion of ~2 nm(2) upon opening. We hypothesize that membrane tension pulls on S5-S6, expanding the core and opening the TRPY1 gate. The core being the major force sensor offers the simplest, though not the only, explanation of why so many channels of disparate designs are mechanically sensitive. Compared with the bacterial MscL, TRPY1 is much less sensitive to force, befitting a polymodal channel that relies on multiple stimuli.
Coiled-coil length: Size does matter.
Surkont, Jaroslaw; Diekmann, Yoan; Ryder, Pearl V; Pereira-Leal, Jose B
2015-12-01
Protein evolution is governed by processes that alter primary sequence but also the length of proteins. Protein length may change in different ways, but insertions, deletions and duplications are the most common. An optimal protein size is a trade-off between sequence extension, which may change protein stability or lead to acquisition of a new function, and shrinkage that decreases metabolic cost of protein synthesis. Despite the general tendency for length conservation across orthologous proteins, the propensity to accept insertions and deletions is heterogeneous along the sequence. For example, protein regions rich in repetitive peptide motifs are well known to extensively vary their length across species. Here, we analyze length conservation of coiled-coils, domains formed by an ubiquitous, repetitive peptide motif present in all domains of life, that frequently plays a structural role in the cell. We observed that, despite the repetitive nature, the length of coiled-coil domains is generally highly conserved throughout the tree of life, even when the remaining parts of the protein change, including globular domains. Length conservation is independent of primary amino acid sequence variation, and represents a conservation of domain physical size. This suggests that the conservation of domain size is due to functional constraints. © 2015 Wiley Periodicals, Inc.
Ivarsson, Ylva; Arnold, Roland; McLaughlin, Megan; Nim, Satra; Joshi, Rakesh; Ray, Debashish; Liu, Bernard; Teyra, Joan; Pawson, Tony; Moffat, Jason; Li, Shawn Shun-Cheng; Sidhu, Sachdev S; Kim, Philip M
2014-02-18
The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain-SLiM interactions. Specifically, we generated phage libraries containing all human and viral C-terminal peptides using custom oligonucleotide microarrays. With these libraries we screened the nine PSD-95/Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble, and Disks large homolog 1 for peptide ligands. We identified several known and putative interactions potentially relevant to cellular signaling pathways and confirmed interactions between full-length Scribble and the target proteins β-PIX, plakophilin-4, and guanylate cyclase soluble subunit α-2 using colocalization and coimmunoprecipitation experiments. The affinities of recombinant Scribble PDZ domains and the synthetic peptides representing the C termini of these proteins were in the 1- to 40-μM range. Furthermore, we identified several well-established host-virus protein-protein interactions, and confirmed that PDZ domains of Scribble interact with the C terminus of Tax-1 of human T-cell leukemia virus with micromolar affinity. Previously unknown putative viral protein ligands for the PDZ domains of Scribble and Erbin were also identified. Thus, we demonstrate that our ProP-PD libraries are useful tools for probing PDZ domain interactions. The method can be extended to interrogate all potential eukaryotic, bacterial, and viral SLiMs and we suggest it will be a highly valuable approach for studying cellular and pathogen-host protein-protein interactions.
Xu, De-Quan; Zhang, Yi-Bing; Xiong, Yuan-Zhu; Gui, Jian-Fang; Jiang, Si-Wen; Su, Yu-Hong
2003-07-01
Using suppression subtractive hybridization (SSH) technique, forward and reverse subtracted cDNA libraries were constructed between Longissimus muscles from Meishan and Landrace pigs. A housekeeping gene, G3PDH, was used to estimate the efficiency of subtractive cDNA. In two cDNA libraries, G3PDH was subtracted very efficiently at appropriate 2(10) and 2(5) folds, respectively, indicating that some differentially expressed genes were also enriched at the same folds and the two subtractive cDNA libraries were very successful. A total of 709 and 673 positive clones were isolated from forward and reverse subtracted cDNA libraries, respectively. Analysis of PCR showed that most of all plasmids in the clones contained 150-750 bp inserts. The construction of subtractive cDNA libraries between muscle tissue from different pig breeds laid solid foundations for isolating and identifying the genes determining muscle growth and meat quality, which will be important to understand the mechanism of muscle growth, determination of meat quality and practice of molecular breeding.
Kokkos: Enabling manycore performance portability through polymorphic memory access patterns
Carter Edwards, H.; Trott, Christian R.; Sunderland, Daniel
2014-07-22
The manycore revolution can be characterized by increasing thread counts, decreasing memory per thread, and diversity of continually evolving manycore architectures. High performance computing (HPC) applications and libraries must exploit increasingly finer levels of parallelism within their codes to sustain scalability on these devices. We found that a major obstacle to performance portability is the diverse and conflicting set of constraints on memory access patterns across devices. Contemporary portable programming models address manycore parallelism (e.g., OpenMP, OpenACC, OpenCL) but fail to address memory access patterns. The Kokkos C++ library enables applications and domain libraries to achieve performance portability on diversemore » manycore architectures by unifying abstractions for both fine-grain data parallelism and memory access patterns. In this paper we describe Kokkos’ abstractions, summarize its application programmer interface (API), present performance results for unit-test kernels and mini-applications, and outline an incremental strategy for migrating legacy C++ codes to Kokkos. Furthermore, the Kokkos library is under active research and development to incorporate capabilities from new generations of manycore architectures, and to address a growing list of applications and domain libraries.« less
Moutel, Sandrine; Bery, Nicolas; Bernard, Virginie; Keller, Laura; Lemesre, Emilie; de Marco, Ario; Ligat, Laetitia; Rain, Jean-Christophe; Favre, Gilles; Olichon, Aurélien; Perez, Franck
2016-01-01
In vitro selection of antibodies allows to obtain highly functional binders, rapidly and at lower cost. Here, we describe the first fully synthetic phage display library of humanized llama single domain antibody (NaLi-H1: Nanobody Library Humanized 1). Based on a humanized synthetic single domain antibody (hs2dAb) scaffold optimized for intracellular stability, the highly diverse library provides high affinity binders without animal immunization. NaLi-H1 was screened following several selection schemes against various targets (Fluorescent proteins, actin, tubulin, p53, HP1). Conformation antibodies against active RHO GTPase were also obtained. Selected hs2dAb were used in various immunoassays and were often found to be functional intrabodies, enabling tracking or inhibition of endogenous targets. Functionalization of intrabodies allowed specific protein knockdown in living cells. Finally, direct selection against the surface of tumor cells produced hs2dAb directed against tumor-specific antigens further highlighting the potential use of this library for therapeutic applications. DOI: http://dx.doi.org/10.7554/eLife.16228.001 PMID:27434673
Competitive Intelligence and Social Advantage.
ERIC Educational Resources Information Center
Davenport, Elisabeth; Cronin, Blaise
1994-01-01
Presents an overview of issues concerning civilian competitive intelligence (CI). Topics discussed include competitive advantage in academic and research environments; public domain information and libraries; covert and overt competitive intelligence; data diversity; use of the Internet; cooperative intelligence; and implications for library and…
Survey of microsatellite DNA in pine
C. S. Echt; P. May-Marquardt
1997-01-01
A large insert genomic library from eastern white pine (Pinus strobus) was probed for the microsatellite motifs (AC)n and (AG)n, all 10 trinucleotide motifs, and 22 of the 33 possible tetranucleotide motifs. For comparison with a species from a different subgenus, a loblolly pine (Pinus taeda...
Survey of microsatellite DNA in pine
Craig S. Echt; P. May-Marquardt
1997-01-01
A large insert genomic library from eastern white pine (Pinus strobus) was probed for the microsatellite motifs (AC)n and (AG)n, all 10 trinucleotide motifs, and 22 of the 33 possible tetranucleotide motifs. For comparison with a species from a different subgenus, a loblolly pine (Pinus taeda) genomic...
Crystal Structure of the Extracellular Cholinesterase-Like Domain from Neuroligin-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehnke,J.; Jin, X.; Budreck, E.
Neuroligins (NLs) are catalytically inactive members of a family of cholinesterase-like transmembrane proteins that mediate cell adhesion at neuronal synapses. Postsynaptic neuroligins engage in Ca2+-dependent transsynaptic interactions via their extracellular cholinesterase domain with presynaptic neurexins (NRXs). These interactions may be regulated by two short splice insertions (termed A and B) in the NL cholinesterase domain. Here, we present the 3.3- Angstroms crystal structure of the ectodomain from NL2 containing splice insertion A (NL2A). The overall structure of NL2A resembles that of cholinesterases, but several structural features are unique to the NL proteins. First, structural elements surrounding the esterase active-site regionmore » differ significantly between active esterases and NL2A. On the opposite surface of the NL2A molecule, the positions of the A and B splice insertions identify a candidate NRX interaction site of the NL protein. Finally, sequence comparisons of NL isoforms allow for mapping the location of residues of previously identified mutations in NL3 and NL4 found in patients with autism spectrum disorders. Overall, the NL2 structure promises to provide a valuable model for dissecting NL isoform- and synapse-specific functions.« less
Crystal structure of the extracellular cholinesterase-like domain from neuroligin-2
Koehnke, Jesko; Jin, Xiangshu; Budreck, Elaine C.; Posy, Shoshana; Scheiffele, Peter; Honig, Barry; Shapiro, Lawrence
2008-01-01
Neuroligins (NLs) are catalytically inactive members of a family of cholinesterase-like transmembrane proteins that mediate cell adhesion at neuronal synapses. Postsynaptic neuroligins engage in Ca2+-dependent transsynaptic interactions via their extracellular cholinesterase domain with presynaptic neurexins (NRXs). These interactions may be regulated by two short splice insertions (termed A and B) in the NL cholinesterase domain. Here, we present the 3.3-Å crystal structure of the ectodomain from NL2 containing splice insertion A (NL2A). The overall structure of NL2A resembles that of cholinesterases, but several structural features are unique to the NL proteins. First, structural elements surrounding the esterase active-site region differ significantly between active esterases and NL2A. On the opposite surface of the NL2A molecule, the positions of the A and B splice insertions identify a candidate NRX interaction site of the NL protein. Finally, sequence comparisons of NL isoforms allow for mapping the location of residues of previously identified mutations in NL3 and NL4 found in patients with autism spectrum disorders. Overall, the NL2 structure promises to provide a valuable model for dissecting NL isoform- and synapse-specific functions. PMID:18250328
Tanaka, Shiho; Miyamoto, Kazuhisa; Noda, Hiroaki; Endo, Haruka; Kikuta, Shingo; Sato, Ryoichi
2016-04-01
In a previous report, seven Cry1Ab-resistant strains were identified in the silkworm, Bombyx mori; these strains were shown to have a tyrosine insertion at position 234 in extracellular loop 2 of the ABC transporter C2 (BmABCC2). This insertion was confirmed to destroy the receptor function of BmABCC2 and confer the strains resistance against Cry1Ab and Cry1Ac. However, these strains were susceptible to Cry1Aa. In this report, we examined the mechanisms of the loss of receptor function of the transporter by expressing mutations in Sf9 cells. After replacement of one or two of the five amino acid residues in loop 2 of the susceptible BmABCC2 gene [BmABCC2_S] with alanine, cells still showed susceptibility, retaining the receptor function. Five mutants with single amino acid insertions at position 234 in BmABCC2 were also generated, resulting in loop 2 having six amino acids, which corresponds to replacing the tyrosine insertion in the resistant BmABCC2 gene [BmABCC2_R(+(234)Y)] with another amino acid. All five mutants exhibited loss of function against Cry1Ab and Cry1Ac. These results suggest that the amino acid sequence in loop 2 is less important than the loop size (five vs. six amino acids) or loop structure for Cry1Ab and Cry1Ac activity. Several domain-swapped mutant toxins were then generated among Cry1Aa, Cry1Ab, and Cry1Ac, which are composed of three domains. Swapped mutants containing domain II of Cry1Ab or Cry1Ac did not kill Sf9 cells expressing BmABCC2_R(+(234)Y), suggesting that domain II of the Cry toxin is related to the interaction with the receptor function of BmABCC2. This also suggests that different reactions against Bt-toxins in some B. mori strains, that is, Cry1Ab resistance or Cry1Aa susceptibility, are attributable to structural differences in domain II of Cry1A toxins. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Baudette, Maxime; Castro, Marcelo; Rabuzin, Tin; Lavenius, Jan; Bogodorova, Tetiana; Vanfretti, Luigi
2018-01-01
This paper presents the latest improvements implemented in the Open-Instance Power System Library (OpenIPSL). The OpenIPSL is a fork from the original iTesla Power Systems Library (iPSL) by some of the original developers of the iPSL. This fork's motivation comes from the will of the authors to further develop the library with additional features tailored to research and teaching purposes. The enhancements include improvements to existing models, the addition of a new package of three phase models, and the implementation of automated tests through continuous integration.
Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation
Goult, Benjamin T; Bouaouina, Mohamed; Elliott, Paul R; Bate, Neil; Patel, Bipin; Gingras, Alexandre R; Grossmann, J Günter; Roberts, Gordon C K; Calderwood, David A; Critchley, David R; Barsukov, Igor L
2010-01-01
Talin is a 270-kDa protein that activates integrins and couples them to cytoskeletal actin. Talin contains an N-terminal FERM domain comprised of F1, F2 and F3 domains, but it is atypical in that F1 contains a large insert and is preceded by an extra domain F0. Although F3 contains the binding site for β-integrin tails, F0 and F1 are also required for activation of β1-integrins. Here, we report the solution structures of F0, F1 and of the F0F1 double domain. Both F0 and F1 have ubiquitin-like folds joined in a novel fixed orientation by an extensive charged interface. The F1 insert forms a loop with helical propensity, and basic residues predicted to reside on one surface of the helix are required for binding to acidic phospholipids and for talin-mediated activation of β1-integrins. This and the fact that basic residues on F2 and F3 are also essential for integrin activation suggest that extensive interactions between the talin FERM domain and acidic membrane phospholipids are required to orientate the FERM domain such that it can activate integrins. PMID:20150896
Sanchez-Luque, Francisco J; Richardson, Sandra R; Faulkner, Geoffrey J
2016-01-01
Mobile genetic elements (MGEs) are of critical importance in genomics and developmental biology. Polymorphic and somatic MGE insertions have the potential to impact the phenotype of an individual, depending on their genomic locations and functional consequences. However, the identification of polymorphic and somatic insertions among the plethora of copies residing in the genome presents a formidable technical challenge. Whole genome sequencing has the potential to address this problem; however, its efficacy depends on the abundance of cells carrying the new insertion. Robust detection of somatic insertions present in only a subset of cells within a given sample can also be prohibitively expensive due to a requirement for high sequencing depth. Here, we describe retrotransposon capture sequencing (RC-seq), a sequence capture approach in which Illumina libraries are enriched for fragments containing the 5' and 3' termini of specific MGEs. RC-seq allows the detection of known polymorphic insertions present in an individual, as well as the identification of rare or private germline insertions not previously described. Furthermore, RC-seq can be used to detect and characterize somatic insertions, providing a valuable tool to elucidate the extent and characteristics of MGE activity in healthy tissues and in various disease states.
Changing Your Domain Name in 25 Nail-Biting Steps
ERIC Educational Resources Information Center
Hassler, Carol
2012-01-01
When staff at the Wisconsin State Law Library began compiling a wish list for a new website, the topic of a new domain name came up almost immediately. Their old website was located at http://wsll.state.wi.us. Spelling that relatively complex domain over the phone day after day provided the impetus to explore other options. Whatever domain name…
Identifying protein domains by global analysis of soluble fragment data.
Bulloch, Esther M M; Kingston, Richard L
2014-11-15
The production and analysis of individual structural domains is a common strategy for studying large or complex proteins, which may be experimentally intractable in their full-length form. However, identifying domain boundaries is challenging if there is little structural information concerning the protein target. One experimental procedure for mapping domains is to screen a library of random protein fragments for solubility, since truncation of a domain will typically expose hydrophobic groups, leading to poor fragment solubility. We have coupled fragment solubility screening with global data analysis to develop an effective method for identifying structural domains within a protein. A gene fragment library is generated using mechanical shearing, or by uracil doping of the gene and a uracil-specific enzymatic digest. A split green fluorescent protein (GFP) assay is used to screen the corresponding protein fragments for solubility when expressed in Escherichia coli. The soluble fragment data are then analyzed using two complementary approaches. Fragmentation "hotspots" indicate possible interdomain regions. Clustering algorithms are used to group related fragments, and concomitantly predict domain location. The effectiveness of this Domain Seeking procedure is demonstrated by application to the well-characterized human protein p85α. Copyright © 2014 Elsevier Inc. All rights reserved.
Schwartz, Linda Matula; Iobst, Barbara
2008-01-01
Integrating knowledge-based resources at the point of care is an important opportunity for hospital library involvement. In the progression of an IAIMS planning grant, the digital library is recognized as pivotal to the success of information domain integration throughout the institution. The planning process, data collection, and evolution of the planning project are discussed.
Predicting detection performance with model observers: Fourier domain or spatial domain?
Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia
2016-02-27
The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images.
Predicting detection performance with model observers: Fourier domain or spatial domain?
Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia
2016-01-01
The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images. PMID:27239086
Viswanathan, Gopinath; Yadav, Sangya
2017-01-01
ABSTRACT In a Mycobacterium smegmatis mutant library screen, transposon mutants with insertions in fhaA, dprE2, rpsT, and parA displayed hypersusceptibility to antibiotics, including the β-lactams meropenem, ampicillin, amoxicillin, and cefotaxime. Sub-MIC levels of octoclothepin, a psychotic drug inhibiting ParA, phenocopied the parA insertion and enhanced the bactericidal activity of meropenem against Mycobacterium tuberculosis in combination with clavulanate. Our study identifies novel factors associated with antibiotic resistance, with implications in repurposing β-lactams for tuberculosis treatment. PMID:28438925
Particle-based and meshless methods with Aboria
NASA Astrophysics Data System (ADS)
Robinson, Martin; Bruna, Maria
Aboria is a powerful and flexible C++ library for the implementation of particle-based numerical methods. The particles in such methods can represent actual particles (e.g. Molecular Dynamics) or abstract particles used to discretise a continuous function over a domain (e.g. Radial Basis Functions). Aboria provides a particle container, compatible with the Standard Template Library, spatial search data structures, and a Domain Specific Language to specify non-linear operators on the particle set. This paper gives an overview of Aboria's design, an example of use, and a performance benchmark.
PDDL4J: a planning domain description library for java
NASA Astrophysics Data System (ADS)
Pellier, D.; Fiorino, H.
2018-01-01
PDDL4J (Planning Domain Description Library for Java) is an open source toolkit for Java cross-platform developers meant (1) to provide state-of-the-art planners based on the Pddl language, and (2) to facilitate research works on new planners. In this article, we present an overview of the Automated Planning concepts and languages. We present some planning systems and their most significant applications. Then, we detail the Pddl4j toolkit with an emphasis on the available informative structures, heuristics and search algorithms.
Könning, Doreen; Zielonka, Stefan; Sellmann, Carolin; Schröter, Christian; Grzeschik, Julius; Becker, Stefan; Kolmar, Harald
2016-04-01
In recent years, engineering of pH-sensitivity into antibodies as well as antibody-derived fragments has become more and more attractive for biomedical and biotechnological applications. Herein, we report the isolation of the first pH-sensitive IgNAR variable domain (vNAR), which was isolated from a yeast-displayed, semi-synthetic master library. This strategy enables the direct identification of pH-dependent binders from a histidine-enriched CDR3 library. Displayed vNAR variants contained two histidine substitutions on average at random positions in their 12-residue CDR3 loop. Upon screening of seven rounds against the proof-of-concept target EpCAM (selection for binding at pH 7.4 and decreased binding at pH 6.0), a single clone was obtained that showed specific and pH-dependent binding as characterized by yeast surface display and biolayer interferometry. Potential applications for such pH-dependent vNAR domains include their employment in tailored affinity chromatography, enabling mild elution protocols. Moreover, utilizing a master library for the isolation of pH-sensitive vNAR variants may be a generic strategy to obtain binding entities with prescribed characteristics for applications in biotechnology, diagnostics, and therapy.
Reaching High Bookshelves From a Wheelchair
NASA Technical Reports Server (NTRS)
Walch, A. J.
1982-01-01
"Book retriever" allows people confined to wheelchairs to remove or replace books from upper shelves of library stacks. Retriever is mechanical device composed of aluminum tube approximately 5 feet long with two jaws at upper end. Jaws securely clamp selected book; they are thin enough to be inserted between adjacent books.
USDA-ARS?s Scientific Manuscript database
Premise of the study: Develop microsatellites from Fothergilla ×intermedia to establish loci capable of distinguishing species and cultivars, and assess genetic diversity for use by ornamental breeders, and for transfer within Hamamelidaceae. Methods and Results: A small insert genomic library enric...
Identification of genes differentially expressed in association with acquired cisplatin resistance
Johnsson, A; Zeelenberg, I; Min, Y; Hilinski, J; Berry, C; Howell, S B; Los, G
2000-01-01
The goal of this study was to identify genes whose mRNA levels are differentially expressed in human cells with acquired cisplatin (cDDP) resistance. Using the parental UMSCC10b head and neck carcinoma cell line and the 5.9-fold cDDP-resistant subline, UMSCC10b/Pt-S15, two suppressive subtraction hybridization (SSH) cDNA libraries were prepared. One library represented mRNAs whose levels were increased in the cDDP resistant variant (the UP library), the other one represented mRNAs whose levels were decreased in the resistant cells (the DOWN library). Arrays constructed with inserts recovered from these libraries were hybridized with SSH products to identify truly differentially expressed elements. A total of 51 cDNA fragments present in the UP library and 16 in the DOWN library met the criteria established for differential expression. The sequences of 87% of these cDNA fragments were identified in Genbank. Among the mRNAs in the UP library that were frequently isolated and that showed high levels of differential expression were cytochrome oxidase I, ribosomal protein 28S, elongation factor 1α, α-enolase, stathmin, and HSP70. The approach taken in this study permitted identification of many genes never before linked to the cDDP-resistant phenotype. © 2000 Cancer Research Campaign PMID:10993653
Dooley, Helen; Flajnik, Martin F; Porter, Andrew J
2003-09-01
The novel immunoglobulin isotype novel antigen receptor (IgNAR) is found in cartilaginous fish and is composed of a heavy-chain homodimer that does not associate with light chains. The variable regions of IgNAR function as independent domains similar to those found in the heavy-chain immunoglobulins of Camelids. Here, we describe the successful cloning and generation of a phage-displayed, single-domain library based upon the variable domain of IgNAR. Selection of such a library generated from nurse sharks (Ginglymostoma cirratum) immunized with the model antigen hen egg-white lysozyme (HEL) enabled the successful isolation of intact antigen-specific binders matured in vivo. The selected variable domains were shown to be functionally expressed in Escherichia coli, extremely stable, and bind to antigen specifically with an affinity in the nanomolar range. This approach can therefore be considered as an alternative route for the isolation of minimal antigen-binding fragments with favorable characteristics.
Chen, Chao; Zhao, Xinqing; Jin, Yingyu; Zhao, Zongbao Kent; Suh, Joo-Won
2014-11-01
Bacterial artificial chromosomal (BAC) vectors are increasingly being used in cloning large DNA fragments containing complex biosynthetic pathways to facilitate heterologous production of microbial metabolites for drug development. To express inserted genes using Streptomyces species as the production hosts, an integration expression cassette is required to be inserted into the BAC vector, which includes genetic elements encoding a phage-specific attachment site, an integrase, an origin of transfer, a selection marker and a promoter. Due to the large sizes of DNA inserted into the BAC vectors, it is normally inefficient and time-consuming to assemble these fragments by routine PCR amplifications and restriction-ligations. Here we present a rapid method to insert fragments to construct BAC-based expression vectors. A DNA fragment of about 130 bp was designed, which contains upstream and downstream homologous sequences of both BAC vector and pIB139 plasmid carrying the whole integration expression cassette. In-Fusion cloning was performed using the designer DNA fragment to modify pIB139, followed by λ-RED-mediated recombination to obtain the BAC-based expression vector. We demonstrated the effectiveness of this method by rapid construction of a BAC-based expression vector with an insert of about 120 kb that contains the entire gene cluster for biosynthesis of immunosuppressant FK506. The empty BAC-based expression vector constructed in this study can be conveniently used for construction of BAC libraries using either microbial pure culture or environmental DNA, and the selected BAC clones can be directly used for heterologous expression. Alternatively, if a BAC library has already been constructed using a commercial BAC vector, the selected BAC vectors can be manipulated using the method described here to get the BAC-based expression vectors with desired gene clusters for heterologous expression. The rapid construction of a BAC-based expression vector facilitates heterologous expression of large gene clusters for drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.
Digital Library Collaboration: A Service-Oriented Perspective
ERIC Educational Resources Information Center
Buchanan, Steven; Gibb, Forbes; Simmons, Susan; McMenemy, David
2012-01-01
Collaboration in the digital domain offers an opportunity to provide enhanced digital services and extended reach to the community. This article adopts a service-oriented perspective through which it considers environmental drivers for digital library collaboration; discusses emergent collaborative partnerships across UK educational institutions,…
Reprogramming cell fate with a genome-scale library of artificial transcription factors.
Eguchi, Asuka; Wleklinski, Matthew J; Spurgat, Mackenzie C; Heiderscheit, Evan A; Kropornicka, Anna S; Vu, Catherine K; Bhimsaria, Devesh; Swanson, Scott A; Stewart, Ron; Ramanathan, Parameswaran; Kamp, Timothy J; Slukvin, Igor; Thomson, James A; Dutton, James R; Ansari, Aseem Z
2016-12-20
Artificial transcription factors (ATFs) are precision-tailored molecules designed to bind DNA and regulate transcription in a preprogrammed manner. Libraries of ATFs enable the high-throughput screening of gene networks that trigger cell fate decisions or phenotypic changes. We developed a genome-scale library of ATFs that display an engineered interaction domain (ID) to enable cooperative assembly and synergistic gene expression at targeted sites. We used this ATF library to screen for key regulators of the pluripotency network and discovered three combinations of ATFs capable of inducing pluripotency without exogenous expression of Oct4 (POU domain, class 5, TF 1). Cognate site identification, global transcriptional profiling, and identification of ATF binding sites reveal that the ATFs do not directly target Oct4; instead, they target distinct nodes that converge to stimulate the endogenous pluripotency network. This forward genetic approach enables cell type conversions without a priori knowledge of potential key regulators and reveals unanticipated gene network dynamics that drive cell fate choices.
Reprogramming cell fate with a genome-scale library of artificial transcription factors
Eguchi, Asuka; Wleklinski, Matthew J.; Spurgat, Mackenzie C.; Heiderscheit, Evan A.; Kropornicka, Anna S.; Vu, Catherine K.; Bhimsaria, Devesh; Swanson, Scott A.; Stewart, Ron; Ramanathan, Parameswaran; Kamp, Timothy J.; Slukvin, Igor; Thomson, James A.; Dutton, James R.; Ansari, Aseem Z.
2016-01-01
Artificial transcription factors (ATFs) are precision-tailored molecules designed to bind DNA and regulate transcription in a preprogrammed manner. Libraries of ATFs enable the high-throughput screening of gene networks that trigger cell fate decisions or phenotypic changes. We developed a genome-scale library of ATFs that display an engineered interaction domain (ID) to enable cooperative assembly and synergistic gene expression at targeted sites. We used this ATF library to screen for key regulators of the pluripotency network and discovered three combinations of ATFs capable of inducing pluripotency without exogenous expression of Oct4 (POU domain, class 5, TF 1). Cognate site identification, global transcriptional profiling, and identification of ATF binding sites reveal that the ATFs do not directly target Oct4; instead, they target distinct nodes that converge to stimulate the endogenous pluripotency network. This forward genetic approach enables cell type conversions without a priori knowledge of potential key regulators and reveals unanticipated gene network dynamics that drive cell fate choices. PMID:27930301
Liu, Changqing; Bai, Chunyu; Guo, Yu; Liu, Dan; Lu, Taofeng; Li, Xiangchen; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun
2014-01-01
Bacterial artificial chromosome (BAC) libraries are extremely valuable for the genome-wide genetic dissection of complex organisms. The Siberian tiger, one of the most well-known wild primitive carnivores in China, is an endangered animal. In order to promote research on its genome, a high-redundancy BAC library of the Siberian tiger was constructed and characterized. The library is divided into two sub-libraries prepared from blood cells and two sub-libraries prepared from fibroblasts. This BAC library contains 153,600 individually archived clones; for PCR-based screening of the library, BACs were placed into 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 116.5 kb, representing approximately 6.46 genome equivalents of the haploid genome and affording a 98.86% statistical probability of obtaining at least one clone containing a unique DNA sequence. Screening the library with 19 microsatellite markers and a SRY sequence revealed that each of these markers were present in the library; the average number of positive clones per marker was 6.74 (range 2 to 12), consistent with 6.46 coverage of the tiger genome. Additionally, we identified 72 microsatellite markers that could potentially be used as genetic markers. This BAC library will serve as a valuable resource for physical mapping, comparative genomic study and large-scale genome sequencing in the tiger. PMID:24608928
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Martinez, Cristina; Grueso, Esther; Carroll, Miles
The unordered N-termini of parvovirus capsid proteins (Nt) are translocated through a channel at the icosahedral five-fold axis to serve for virus traffick. Heterologous peptides were genetically inserted at the Nt of MVM to study their functional tolerance to manipulations. Insertion of a 5T4-single-chain antibody at VP2-Nt (2Nt) yielded chimeric capsid subunits failing to enter the nucleus. The VEGFR2-binding peptide (V1) inserted at both 2Nt and VP1-Nt efficiently assembled in virions, but V1 disrupted VP1 and VP2 entry functions. The VP2 defect correlated with restricted externalization of V1-2Nt out of the coat. The specific infectivity of MVM and wtVP-pseudotyped mosaicmore » MVM-V1 virions, upon heating and/or partial 2Nt cleavage, demonstrated that some 2Nt domains become intracellularly translocated out of the virus shell and cleaved to initiate entry. The V1 insertion defines a VP2-driven endosomal enlargement of the channel as an essential structural rearrangement performed by the MVM virion to infect.« less
Hooks, David O; Rehm, Bernd H A
2015-10-01
The polyhydroxyalkanoate (PHA) synthase catalyzes the synthesis of PHA and remains attached to the hydrophobic PHA inclusions it creates. Although this feature is actively exploited to generate functionalized biobeads via protein engineering, little is known about the structure of the PHA synthase. Here, the surface topology of Ralstonia eutropha PHA synthase was probed to inform rational protein engineering toward the production of functionalized PHA beads. Surface-exposed residues were detected by conjugating biotin to inclusion-bound PHA synthase and identifying the biotin-conjugated lysine and cysteine residues using peptide fingerprinting analysis. The identified sites (K77, K90, K139, C382, C459, and K518) were investigated as insertion sites for the generation of new protein fusions. Insertions of FLAG epitopes into exposed sites K77, K90, K139, and K518 were tolerated, retaining >65 % of in vivo activity. Sites K90, K139, and K518 were also tested by insertion of the immunoglobulin G (IgG)-binding domain (ZZ), successfully producing PHA inclusions able to bind human IgG in vitro. Although simultaneous insertions of the ZZ domain into two sites was permissive, insertion at all three lysine sites inactivated the synthase. The K90/K139 double ZZ insertion had the optimum IgG-binding capacity of 16 mg IgG/g wet PHA beads and could selectively purify the IgG fraction from human serum. Overall, this study identified surface-exposed flexible regions of the PHA synthase which either tolerate protein/peptide insertions or are critical for protein function. This further elucidates the structure and function of PHA synthase and provides new opportunities for generating functionalized PHA biobeads.
Elazar, Assaf; Weinstein, Jonathan; Biran, Ido; Fridman, Yearit; Bibi, Eitan; Fleishman, Sarel Jacob
2016-01-29
Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.
SAR by Oxime-Containing Peptide Libraries: Application to Tsg101 Ligand Optimization
Liu, Fa; Stephen, Andrew G.; Waheed, Abdul A.; Aman, M. Javad; Freed, Eric O.; Fisher, Robert J.; Burke, Terrence R.
2008-01-01
HIV-1 viral assembly requires a direct interaction between a Pro-Thr-Ala-Pro (“PTAP”) motif in the viral protein Gag-p6 and the cellular endosomal sorting factor Tsg101. In an effort to develop competitive inhibitors of this interaction, an SAR study was conducted based on the application of post solid-phase oxime formation involving the sequential insertion of aminooxy-containing residues within a nonamer parent peptide followed by reaction with libraries of aldehydes. Approximately 15–20-fold enhancement in binding affinity was achieved by this approach. PMID:18655064
Library of electrocatalytic sites in nano-structured domains: electrocatalysis of hydrogen peroxide.
Pandey, Prem C; Singh, Bhupendra
2008-12-01
Electrochemical detection of hydrogen peroxide at eight types of ormosil-modified electrodes, referred as hexacyanoferrate-system; Prussian blue systems (PB-1, PB-2, and PB-3), palladium (Pd-) system, graphite (Gr-) system, gold nanoparticle (AuNPs) system and palladium-gold nanoparticle (Pd-AuNPs) system were studied. The results on electrochemical detection suggested that hydrogen peroxide does not undergo homogeneous electrochemical mediation; however, the presence of redox mediator within nano-structured domains facilitates the electro-analysis of the same via redox electrocatalysis. Four approaches causing manipulation in nano-structured domains are described: (a) increase in the molecular size of the components generating nano-structured domains; (b) modulation via chemical reactivity; (c) modulation by non-reactive moieties and known nanoparticles; and (d) modulation by mixed approaches (a-c), all leading to decrease in a nano-structured domains. The results demonstrated that an increase in the size of nano-structured domains or decrease in micro-porous geometry increases the efficiency of electrocatalysis. The basic reaction protocol adopted in generating nano-structured domains, followed by manipulation protocols, supported the introduction of a library for creating electrocatalytic sites with varying electrocatalytic efficiency within the same basic nano-structured platform.
NASA Astrophysics Data System (ADS)
Nam, Chunghee; Cho, Beong-Ki
2011-11-01
The effect of the local Oersted field on a pinned domain wall (DW) was investigated in a magnetic spin-valve nanowire. The Oersted field is produced by a low current, which is confined under a nano-oxide layer (NOL) inserted into the NiFe layer in sub/NiFe/Cu/NiFe/NOL/NiFe. It was found that the depinning field of the pinned DW decreases linearly as the magnitude of current (or equivalently Oersted field) increases. The Oersted field was believed to change the internal magnetic structure of DW, such that the DW pinning energy was lowered, resulting in the reduction of the depinning field.
Authenticity in a Digital Environment.
ERIC Educational Resources Information Center
Cullen, Charles T.; Hirtle, Peter B.; Levy, David; Lynch, Clifford A.; Rothenberg, Jeff
On January 24, 2000, the Council on Library and Information Resources (CLIR) convened a group of experts from different domains of the information resources community to address the question, "What is an authentic digital object?" Five writers--an archivist, a digital library expert, a documentary editor and special collections…
Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control
Bravo, Alejandra; Gill, Sarjeet S.; Soberón, Mario
2007-01-01
Bacillus thuringiensis Cry and Cyt protein families are a diverse group of proteins with activity against insects of different orders - Lepidoptera, Coleoptera, Diptera and also against other invertebrates such as nematodes. Their primary action is to lyse midgut epithelial cells by inserting into the target membrane and forming pores. Among this group of proteins, members of the 3-Domain Cry family are used worldwide for insect control, and their mode of action has been characterized in some detail. Phylogenetic analyses established that the diversity of the 3-Domain Cry family evolved by the independent evolution of the three domains and by swapping of domain III among toxins. Like other pore-forming toxins (PFT) that affect mammals, Cry toxins interact with specific receptors located on the host cell surface and are activated by host proteases following receptor binding resulting in the formation of a pre-pore oligomeric structure that is insertion competent. In contrast, Cyt toxins directly interact with membrane lipids and insert into the membrane. Recent evidence suggests that Cyt synergize or overcome resistance to mosquitocidal-Cry proteins by functioning as a Cry-membrane bound receptor. In this review we summarize recent findings on the mode of action of Cry and Cyt toxins, and compare them to the mode of action of other bacterial PFT. Also, we discuss their use in the control of agricultural insect pests and insect vectors of human diseases. PMID:17198720
Molecular Characterization of Caveolin-induced Membrane Curvature*
Ariotti, Nicholas; Rae, James; Leneva, Natalya; Ferguson, Charles; Loo, Dorothy; Okano, Satomi; Hill, Michelle M.; Walser, Piers; Collins, Brett M.; Parton, Robert G.
2015-01-01
The generation of caveolae involves insertion of the cholesterol-binding integral membrane protein caveolin-1 (Cav1) into the membrane, however, the precise molecular mechanisms are as yet unknown. We have speculated that insertion of the caveolin scaffolding domain (CSD), a conserved amphipathic region implicated in interactions with signaling proteins, is crucial for caveola formation. We now define the core membrane-juxtaposed region of Cav1 and show that the oligomerization domain and CSD are protected by tight association with the membrane in both mature mammalian caveolae and a model prokaryotic system for caveola biogenesis. Cryoelectron tomography reveals the core membrane-juxtaposed domain to be sufficient to maintain oligomerization as defined by polyhedral distortion of the caveolar membrane. Through mutagenesis we demonstrate the importance of the membrane association of the oligomerization domain/CSD for defined caveola biogenesis and furthermore, highlight the functional significance of the intramembrane domain and the CSD for defined caveolin-induced membrane deformation. Finally, we define the core structural domain of Cav1, constituting only 66 amino acids and of great potential to nanoengineering applications, which is required for caveolin-induced vesicle formation in a bacterial system. These results have significant implications for understanding the role of Cav1 in caveola formation and in regulating cellular signaling events. PMID:26304117
Molecular Characterization of Caveolin-induced Membrane Curvature.
Ariotti, Nicholas; Rae, James; Leneva, Natalya; Ferguson, Charles; Loo, Dorothy; Okano, Satomi; Hill, Michelle M; Walser, Piers; Collins, Brett M; Parton, Robert G
2015-10-09
The generation of caveolae involves insertion of the cholesterol-binding integral membrane protein caveolin-1 (Cav1) into the membrane, however, the precise molecular mechanisms are as yet unknown. We have speculated that insertion of the caveolin scaffolding domain (CSD), a conserved amphipathic region implicated in interactions with signaling proteins, is crucial for caveola formation. We now define the core membrane-juxtaposed region of Cav1 and show that the oligomerization domain and CSD are protected by tight association with the membrane in both mature mammalian caveolae and a model prokaryotic system for caveola biogenesis. Cryoelectron tomography reveals the core membrane-juxtaposed domain to be sufficient to maintain oligomerization as defined by polyhedral distortion of the caveolar membrane. Through mutagenesis we demonstrate the importance of the membrane association of the oligomerization domain/CSD for defined caveola biogenesis and furthermore, highlight the functional significance of the intramembrane domain and the CSD for defined caveolin-induced membrane deformation. Finally, we define the core structural domain of Cav1, constituting only 66 amino acids and of great potential to nanoengineering applications, which is required for caveolin-induced vesicle formation in a bacterial system. These results have significant implications for understanding the role of Cav1 in caveola formation and in regulating cellular signaling events. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
A communication library for the parallelization of air quality models on structured grids
NASA Astrophysics Data System (ADS)
Miehe, Philipp; Sandu, Adrian; Carmichael, Gregory R.; Tang, Youhua; Dăescu, Dacian
PAQMSG is an MPI-based, Fortran 90 communication library for the parallelization of air quality models (AQMs) on structured grids. It consists of distribution, gathering and repartitioning routines for different domain decompositions implementing a master-worker strategy. The library is architecture and application independent and includes optimization strategies for different architectures. This paper presents the library from a user perspective. Results are shown from the parallelization of STEM-III on Beowulf clusters. The PAQMSG library is available on the web. The communication routines are easy to use, and should allow for an immediate parallelization of existing AQMs. PAQMSG can also be used for constructing new models.
Ren, Maozhi; Qiu, Shuqing; Venglat, Prakash; Xiang, Daoquan; Feng, Li; Selvaraj, Gopalan; Datla, Raju
2011-01-01
Target of rapamycin (TOR) is a central regulator of cell growth, cell death, nutrition, starvation, hormone, and stress responses in diverse eukaryotes. However, very little is known about TOR signaling and the associated functional domains in plants. We have taken a genetic approach to dissect TOR functions in Arabidopsis (Arabidopsis thaliana) and report here that the kinase domain is essential for the role of TOR in embryogenesis and 45S rRNA expression. Twelve new T-DNA insertion mutants, spanning 14.2 kb of TOR-encoding genomic region, have been characterized. Nine of these share expression of defective kinase domain and embryo arrest at 16 to 32 cell stage. However, three T-DNA insertion lines affecting FATC domain displayed normal embryo development, indicating that FATC domain was dispensable in Arabidopsis. Genetic complementation showed that the TOR kinase domain alone in tor-10/tor-10 mutant background can rescue early embryo lethality and restore normal development. Overexpression of full-length TOR or kinase domain in Arabidopsis displayed developmental abnormalities in meristem, leaf, root, stem, flowering time, and senescence. We further show that TOR, especially the kinase domain, plays a role in ribosome biogenesis by activating 45S rRNA production. Of the six putative nuclear localization sequences in the kinase domain, nuclear localization sequence 6 was identified to confer TOR nuclear targeting in transient expression assays. Chromatin immunoprecipitation studies revealed that the HEAT repeat domain binds to 45S rRNA promoter and the 5′ external transcribed spacer elements motif. Together, these results show that TOR controls the embryogenesis, postembryonic development, and 45S rRNA production through its kinase domain in Arabidopsis. PMID:21266656
Selection of cholera toxin specific IgNAR single-domain antibodies from a naïve shark library.
Liu, Jinny L; Anderson, George P; Delehanty, James B; Baumann, Richard; Hayhurst, Andrew; Goldman, Ellen R
2007-03-01
Shark immunoglobulin new antigen receptor (IgNAR, also referred to as NAR) variable domains (Vs) are single-domain antibody (sdAb) fragments containing only two hypervariable loop structures forming 3D topologies for a wide range of antigen recognition and binding. Their small size ( approximately 12kDa) and high solubility, thermostability and binding specificity make IgNARs an exceptional alternative source of engineered antibodies for sensor applications. Here, two new shark NAR V display libraries containing >10(7) unique clones from non-immunized (naïve) adult spiny dogfish (Squalus acanthias) and smooth dogfish (Mustelus canis) sharks were constructed. The most conserved consensus sequences derived from random clone sequence were compared with published nurse shark (Ginglymostoma cirratum) sequences. Cholera toxin (CT) was chosen for panning one of the naïve display libraries due to its severe pathogenicity and commercial availability. Three very similar CT binders were selected and purified soluble monomeric anti-CT sdAbs were characterized using Luminex(100) and traditional ELISA assays. These novel anti-CT sdAbs selected from our newly constructed shark NAR V sdAb library specifically bound to soluble antigen, without cross reacting with other irrelevant antigens. They also showed superior heat stability, exhibiting slow loss of activity over the course of one hour at high temperature (95 degrees C), while conventional antibodies lost all activity in the first 5-10min. The successful isolation of target specific sdAbs from one of our non-biased NAR libraries, demonstrate their ability to provide binders against an unacquainted antigen of interest.
A verification library for multibody simulation software
NASA Technical Reports Server (NTRS)
Kim, Sung-Soo; Haug, Edward J.; Frisch, Harold P.
1989-01-01
A multibody dynamics verification library, that maintains and manages test and validation data is proposed, based on RRC Robot arm and CASE backhoe validation and a comparitive study of DADS, DISCOS, and CONTOPS that are existing public domain and commercial multibody dynamic simulation programs. Using simple representative problems, simulation results from each program are cross checked, and the validation results are presented. Functionalities of the verification library are defined, in order to automate validation procedure.
Designing using manufacturing features
NASA Astrophysics Data System (ADS)
Szecsi, T.; Hoque, A. S. M.
2012-04-01
This paper presents a design system that enables the composition of a part using manufacturing features. Features are selected from feature libraries. Upon insertion, the system ensures that the feature does not contradict the design-for-manufacture rules. This helps eliminating costly manufacturing problems. The system is developed as an extension to a commercial CAD/CAM system Pro/Engineer.
USDA-ARS?s Scientific Manuscript database
Simple sequence repeats (SSR) markers were developed from a small insert genomic library for Bipolaris sorokiniana, a mitosporic fungal pathogen that causes spot blotch and root rot in switchgrass. About 59% of sequenced clones (n=384) harbored various SSR motifs. After eliminating the redundant seq...
Johnson, Jeremiah G.; Livny, Jonathan
2014-01-01
Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture. PMID:24633877
Johnson, Jeremiah G; Livny, Jonathan; Dirita, Victor J
2014-06-01
Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture.
C2 Domain Ontology within Our Lifetime
2009-06-01
25] Masolo, C., et al: The WonderWeb Library of Foundational Ontologies Prelimary Report, WonderWeb Deliverable D17, ISTC -CNR, May 2003. [26...www.ifomis.org/bfo/BFO [25] Masolo, C., et al: The WonderWeb Library of Foundational Ontologies Prelimary Report, WonderWeb Deliverable D17, ISTC -CNR
Data from: Solving the Robot-World Hand-Eye(s) Calibration Problem with
Iterative Methods | National Agricultural Library Skip to main content Home National Agricultural Library United States Department of Agriculture Ag Data Commons Beta Toggle navigation Datasets . License U.S. Public Domain Funding Source(s) National Science Foundation IOS-1339211 Agricultural Research
ERIC Educational Resources Information Center
Gourlay, Lesley; Lanclos, Donna M.; Oliver, Martin
2015-01-01
Work on students' study practices posits the digital and material as separate domains, with the "digital" assumed to be disembodied, decontextualised and free-floating, and spaces in the material campus positioned as prototypically "traditional" and analogue. Libraries in particular are often characterised as symbolic of…
High-throughput and reliable protocols for animal microRNA library cloning.
Xiao, Caide
2011-01-01
MicroRNAs are short single-stranded RNA molecules (18-25 nucleotides). Because of their ability to silence gene expressions, they can be used to diagnose and treat tumors. Experimental construction of microRNA libraries was the most important step to identify microRNAs from animal tissues. Although there are many commercial kits with special protocols to construct microRNA libraries, this chapter provides the most reliable, high-throughput, and affordable protocols for microRNA library construction. The high-throughput capability of our protocols came from a double concentration (3 and 15%, thickness 1.5 mm) polyacrylamide gel electrophoresis (PAGE), which could directly extract microRNA-size RNAs from up to 400 μg total RNA (enough for two microRNA libraries). The reliability of our protocols was assured by a third PAGE, which selected PCR products of microRNA-size RNAs ligated with 5' and 3' linkers by a miRCat™ kit. Also, a MathCAD program was provided to automatically search short RNAs inserted between 5' and 3' linkers from thousands of sequencing text files.
A transposase strategy for creating libraries of circularly permuted proteins.
Mehta, Manan M; Liu, Shirley; Silberg, Jonathan J
2012-05-01
A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions.
A transposase strategy for creating libraries of circularly permuted proteins
Mehta, Manan M.; Liu, Shirley; Silberg, Jonathan J.
2012-01-01
A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions. PMID:22319214
NASA Technical Reports Server (NTRS)
Agrawal, Gagan; Sussman, Alan; Saltz, Joel
1993-01-01
Scientific and engineering applications often involve structured meshes. These meshes may be nested (for multigrid codes) and/or irregularly coupled (called multiblock or irregularly coupled regular mesh problems). A combined runtime and compile-time approach for parallelizing these applications on distributed memory parallel machines in an efficient and machine-independent fashion was described. A runtime library which can be used to port these applications on distributed memory machines was designed and implemented. The library is currently implemented on several different systems. To further ease the task of application programmers, methods were developed for integrating this runtime library with compilers for HPK-like parallel programming languages. How this runtime library was integrated with the Fortran 90D compiler being developed at Syracuse University is discussed. Experimental results to demonstrate the efficacy of our approach are presented. A multiblock Navier-Stokes solver template and a multigrid code were experimented with. Our experimental results show that our primitives have low runtime communication overheads. Further, the compiler parallelized codes perform within 20 percent of the code parallelized by manually inserting calls to the runtime library.
ISC, a Novel Group of Bacterial and Archaeal DNA Transposons That Encode Cas9 Homologs
Kapitonov, Vladimir V.; Makarova, Kira S.
2015-01-01
ABSTRACT Bacterial genomes encode numerous homologs of Cas9, the effector protein of the type II CRISPR-Cas systems. The homology region includes the arginine-rich helix and the HNH nuclease domain that is inserted into the RuvC-like nuclease domain. These genes, however, are not linked to cas genes or CRISPR. Here, we show that Cas9 homologs represent a distinct group of nonautonomous transposons, which we denote ISC (insertion sequences Cas9-like). We identify many diverse families of full-length ISC transposons and demonstrate that their terminal sequences (particularly 3′ termini) are similar to those of IS605 superfamily transposons that are mobilized by the Y1 tyrosine transposase encoded by the TnpA gene and often also encode the TnpB protein containing the RuvC-like endonuclease domain. The terminal regions of the ISC and IS605 transposons contain palindromic structures that are likely recognized by the Y1 transposase. The transposons from these two groups are inserted either exactly in the middle or upstream of specific 4-bp target sites, without target site duplication. We also identify autonomous ISC transposons that encode TnpA-like Y1 transposases. Thus, the nonautonomous ISC transposons could be mobilized in trans either by Y1 transposases of other, autonomous ISC transposons or by Y1 transposases of the more abundant IS605 transposons. These findings imply an evolutionary scenario in which the ISC transposons evolved from IS605 family transposons, possibly via insertion of a mobile group II intron encoding the HNH domain, and Cas9 subsequently evolved via immobilization of an ISC transposon. IMPORTANCE Cas9 endonucleases, the effectors of type II CRISPR-Cas systems, represent the new generation of genome-engineering tools. Here, we describe in detail a novel family of transposable elements that encode the likely ancestors of Cas9 and outline the evolutionary scenario connecting different varieties of these transposons and Cas9. PMID:26712934
libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations
NASA Astrophysics Data System (ADS)
Jaruga, A.; Arabas, S.; Jarecka, D.; Pawlowska, H.; Smolarkiewicz, P. K.; Waruszewski, M.
2015-04-01
This paper accompanies the first release of libmpdata++, a C++ library implementing the multi-dimensional positive-definite advection transport algorithm (MPDATA) on regular structured grid. The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitative representations of simulation results. Examples of applications include homogeneous transport in one, two and three dimensions in Cartesian and spherical domains; a shallow-water system compared with analytical solution (originally derived for a 2-D case); and a buoyant convection problem in an incompressible Boussinesq fluid with interfacial instability. All the examples are implemented out of the library tree. Regardless of the differences in the problem dimensionality, right-hand-side terms, boundary conditions and parallelisation approach, all the examples use the same unmodified library, which is a key goal of libmpdata++ design. The design, based on the principle of separation of concerns, prioritises the user and developer productivity. The libmpdata++ library is implemented in C++, making use of the Blitz++ multi-dimensional array containers, and is released as free/libre and open-source software.
libmpdata++ 0.1: a library of parallel MPDATA solvers for systems of generalised transport equations
NASA Astrophysics Data System (ADS)
Jaruga, A.; Arabas, S.; Jarecka, D.; Pawlowska, H.; Smolarkiewicz, P. K.; Waruszewski, M.
2014-11-01
This paper accompanies first release of libmpdata++, a C++ library implementing the Multidimensional Positive-Definite Advection Transport Algorithm (MPDATA). The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitative representations of simulation results. Examples of applications include: homogeneous transport in one, two and three dimensions in Cartesian and spherical domains; shallow-water system compared with analytical solution (originally derived for a 2-D case); and a buoyant convection problem in an incompressible Boussinesq fluid with interfacial instability. All the examples are implemented out of the library tree. Regardless of the differences in the problem dimensionality, right-hand-side terms, boundary conditions and parallelisation approach, all the examples use the same unmodified library, which is a key goal of libmpdata++ design. The design, based on the principle of separation of concerns, prioritises the user and developer productivity. The libmpdata++ library is implemented in C++, making use of the Blitz++ multi-dimensional array containers, and is released as free/libre and open-source software.
Transposon tagging of genes for cell-cell interactions in Myxococcus xanthus.
Kalos, M; Zissler, J
1990-01-01
The prokaryote Myxococcus xanthus is a model for cell interactions important in multicellular behavior. We used the transposon TnphoA to specifically identify genes for cell-surface factors involved in cell interactions. From a library of 10,700 insertions of TnphoA, we isolated 36 that produced alkaline phosphatase activity. Three TnphoA insertions tagged cell motility genes, called cgl, which control the adventurous movement of cells. The products of the tagged cgl genes could function in trans upon other cells and were localized primarily in the cell envelope and extracellular space, consistent with TnphoA tagging genes for extracellular factors controlling motility. Images PMID:2172982
Rosconi, Federico; de Vries, Stefan P. W.; Baig, Abiyad; Fabiano, Elena
2016-01-01
ABSTRACT The interior of plants contains microorganisms (referred to as endophytes) that are distinct from those present at the root surface or in the surrounding soil. Herbaspirillum seropedicae strain SmR1, belonging to the betaproteobacteria, is an endophyte that colonizes crops, including rice, maize, sugarcane, and sorghum. Different approaches have revealed genes and pathways regulated during the interactions of H. seropedicae with its plant hosts. However, functional genomic analysis of transposon (Tn) mutants has been hampered by the lack of genetic tools. Here we successfully employed a combination of in vivo high-density mariner Tn mutagenesis and targeted Tn insertion site sequencing (Tn-seq) in H. seropedicae SmR1. The analysis of multiple gene-saturating Tn libraries revealed that 395 genes are essential for the growth of H. seropedicae SmR1 in tryptone-yeast extract medium. A comparative analysis with the Database of Essential Genes (DEG) showed that 25 genes are uniquely essential in H. seropedicae SmR1. The Tn mutagenesis protocol developed and the gene-saturating Tn libraries generated will facilitate elucidation of the genetic mechanisms of the H. seropedicae endophytic lifestyle. IMPORTANCE A focal point in the study of endophytes is the development of effective biofertilizers that could help to reduce the input of agrochemicals in croplands. Besides the ability to promote plant growth, a good biofertilizer should be successful in colonizing its host and competing against the native microbiota. By using a systematic Tn-based gene-inactivation strategy and massively parallel sequencing of Tn insertion sites (Tn-seq), it is possible to study the fitness of thousands of Tn mutants in a single experiment. We have applied the combination of these techniques to the plant-growth-promoting endophyte Herbaspirillum seropedicae SmR1. The Tn mutant libraries generated will enable studies into the genetic mechanisms of H. seropedicae-plant interactions. The approach that we have taken is applicable to other plant-interacting bacteria. PMID:27590816
Validation of an improved abnormality insertion method for medical image perception investigations
NASA Astrophysics Data System (ADS)
Madsen, Mark T.; Durst, Gregory R.; Caldwell, Robert T.; Schartz, Kevin M.; Thompson, Brad H.; Berbaum, Kevin S.
2009-02-01
The ability to insert abnormalities in clinical tomographic images makes image perception studies with medical images practical. We describe a new insertion technique and its experimental validation that uses complementary image masks to select an abnormality from a library and place it at a desired location. The method was validated using a 4-alternative forced-choice experiment. For each case, four quadrants were simultaneously displayed consisting of 5 consecutive frames of a chest CT with a pulmonary nodule. One quadrant was unaltered, while the other 3 had the nodule from the unaltered quadrant artificially inserted. 26 different sets were generated and repeated with order scrambling for a total of 52 cases. The cases were viewed by radiology staff and residents who ranked each quadrant by realistic appearance. On average, the observers were able to correctly identify the unaltered quadrant in 42% of cases, and identify the unaltered quadrant both times it appeared in 25% of cases. Consensus, defined by a majority of readers, correctly identified the unaltered quadrant in only 29% of 52 cases. For repeats, the consensus observer successfully identified the unaltered quadrant only once. We conclude that the insertion method can be used to reliably place abnormalities in perception experiments.
Katzif, Samuel; Danavall, Damien; Bowers, Samera; Balthazar, Jacqueline T.; Shafer, William M.
2003-01-01
A Tn551 insertional library of Staphylococcus aureus strain ISP479 was challenged with an antimicrobial peptide (CG 117-136) derived from human neutrophil cathepsin G (CG). After repeated selection and screening of surviving colonies, a mutant was identified that expressed increased resistance to CG 117-136. Southern hybridization analysis revealed that the Tn551 insert in this mutant (SK1) was carried on a 10.6-kb EcoRI chromosomal DNA fragment. Subsequent physical mapping of this Tn551 insert revealed that it was positioned between a putative promoter sequence and the translational start codon of the cspA gene, which encodes a protein (CspA) highly similar to the major cold shock proteins CspA and CspB of Escherichia coli and Bacillus subtilis, respectively. This Tn551 insertion as well as a separate deletion-insertion mutation in cspA decreased the capacity of S. aureus to respond to the stress of cold shock and increased resistance to CG 117-136. The results indicate for the first time that a physiologic link exists between bacterial susceptibility to an antimicrobial peptide and a stress response system. PMID:12874306
Katzif, Samuel; Danavall, Damien; Bowers, Samera; Balthazar, Jacqueline T; Shafer, William M
2003-08-01
A Tn551 insertional library of Staphylococcus aureus strain ISP479 was challenged with an antimicrobial peptide (CG 117-136) derived from human neutrophil cathepsin G (CG). After repeated selection and screening of surviving colonies, a mutant was identified that expressed increased resistance to CG 117-136. Southern hybridization analysis revealed that the Tn551 insert in this mutant (SK1) was carried on a 10.6-kb EcoRI chromosomal DNA fragment. Subsequent physical mapping of this Tn551 insert revealed that it was positioned between a putative promoter sequence and the translational start codon of the cspA gene, which encodes a protein (CspA) highly similar to the major cold shock proteins CspA and CspB of Escherichia coli and Bacillus subtilis, respectively. This Tn551 insertion as well as a separate deletion-insertion mutation in cspA decreased the capacity of S. aureus to respond to the stress of cold shock and increased resistance to CG 117-136. The results indicate for the first time that a physiologic link exists between bacterial susceptibility to an antimicrobial peptide and a stress response system.
Mobley, E M; Pan, T
1999-01-01
Substrate recognition and cleavage by the bacterial RNase P RNA requires two domains, a specificity domain, or S-domain, and a catalytic domain, or C-domain. The S-domain binds the T stem-loop region in a pre-tRNA substrate to confer specificity for tRNA substrates. In this work, the entire S-domain of the Bacillus subtilis RNase P RNA is replaced with an artificial substrate binding module. New RNA substrates are isolated by in vitro selection using two libraries containing random regions of 60 nt. At the end of the selection, the cleavage rates of the substrate library are approximately 0.7 min(-1)in 10 mM MgCl(2)at 37 degrees C, approximately 4-fold better than the cleavage of a pre-tRNA substrate by the wild-type RNase P RNA under the same conditions. The contribution of the S-domain replacement to the catalytic efficiency is from 6- to 22 000-fold. Chemical and nuclease mapping of two ribozyme-product complexes shows that this contribution correlates with direct interactions between the S-domain replacement and the selected substrate. These results demonstrate the feasibility of design and isolation of RNase P-based, matching ribozyme-substrate pairs without prior knowledge of the sequence or structure of the interactive modules in the ribozyme or substrate. PMID:10518624
A Blumeria graminisf.sp. hordei BAC library--contig building and microsynteny studies.
Pedersen, Carsten; Wu, Boqian; Giese, Henriette
2002-11-01
A bacterial artificial chromosome (BAC) library of Blumeria graminis f.sp. hordei, containing 12,000 clones with an average insert size of 41 kb, was constructed. The library represents about three genome equivalents and BAC-end sequencing showed a high content of repetitive sequences, making contig-building difficult. To identify overlapping clones, several strategies were used: colony hybridisation, PCR screening, fingerprinting techniques and the use of single-copy expressed sequence tags. The latter proved to be the most efficient method for identification of overlapping clones. Two contigs, at or close to avirulence loci, were constructed. Single nucleotide polymorphism (SNP) markers were developed from BAC-end sequences to link the contigs to the genetic maps. Two other BAC contigs were used to study microsynteny between B. graminis and two other ascomycetes, Neurospora crassa and Aspergillus fumigatus. The library provides an invaluable tool for the isolation of avirulence genes from B. graminis and for the study of gene synteny between this fungus and other fungi.
Lin, Jinke; Kudrna, Dave; Wing, Rod A.
2011-01-01
We describe the construction and characterization of a publicly available BAC library for the tea plant, Camellia sinensis. Using modified methods, the library was constructed with the aim of developing public molecular resources to advance tea plant genomics research. The library consists of a total of 401,280 clones with an average insert size of 135 kb, providing an approximate coverage of 13.5 haploid genome equivalents. No empty vector clones were observed in a random sampling of 576 BAC clones. Further analysis of 182 BAC-end sequences from randomly selected clones revealed a GC content of 40.35% and low chloroplast and mitochondrial contamination. Repetitive sequence analyses indicated that LTR retrotransposons were the most predominant sequence class (86.93%–87.24%), followed by DNA retrotransposons (11.16%–11.69%). Additionally, we found 25 simple sequence repeats (SSRs) that could potentially be used as genetic markers. PMID:21234344
Assembling short reads from jumping libraries with large insert sizes.
Vasilinetc, Irina; Prjibelski, Andrey D; Gurevich, Alexey; Korobeynikov, Anton; Pevzner, Pavel A
2015-10-15
Advances in Next-Generation Sequencing technologies and sample preparation recently enabled generation of high-quality jumping libraries that have a potential to significantly improve short read assemblies. However, assembly algorithms have to catch up with experimental innovations to benefit from them and to produce high-quality assemblies. We present a new algorithm that extends recently described exSPAnder universal repeat resolution approach to enable its applications to several challenging data types, including jumping libraries generated by the recently developed Illumina Nextera Mate Pair protocol. We demonstrate that, with these improvements, bacterial genomes often can be assembled in a few contigs using only a single Nextera Mate Pair library of short reads. Described algorithms are implemented in C++ as a part of SPAdes genome assembler, which is freely available at bioinf.spbau.ru/en/spades. ap@bioinf.spbau.ru Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
[Construction of fetal mesenchymal stem cell cDNA subtractive library].
Yang, Li; Wang, Dong-Mei; Li, Liang; Bai, Ci-Xian; Cao, Hua; Li, Ting-Yu; Pei, Xue-Tao
2002-04-01
To identify differentially expressed genes between fetal mesenchymal stem cell (MSC) and adult MSC, especially specified genes expressed in fetal MSC, a cDNA subtractive library of fetal MSC was constructed using suppression subtractive hybridization (SSH) technique. At first, total RNA was isolated from fetal and adult MSC. Using SMART PCR synthesis method, single-strand and double-strand cDNAs were synthesized. After Rsa I digestion, fetal MSC cDNAs were divided into two groups and ligated to adaptor 1 and adaptor 2 respectively. Results showed that the amplified library contains 890 clones. Analysis of 890 clones with PCR demonstrated that 768 clones were positive. The positive rate is 86.3%. The size of inserted fragments in these positive clones was between 0.2 - 1 kb, with an average of 400 - 600 bp. SSH is a convenient and effective method for screening differentially expressed genes. The constructed cDNA subtractive library of fetal MSC cDNA lays solid foundation for screening and cloning new and specific function related genes of fetal MSC.
Nuttall, Stewart D; Krishnan, Usha V; Doughty, Larissa; Pearson, Kylie; Ryan, Michael T; Hoogenraad, Nicholas J; Hattarki, Meghan; Carmichael, Jennifer A; Irving, Robert A; Hudson, Peter J
2003-09-01
The new antigen receptor (IgNAR) from sharks is a disulphide bonded dimer of two protein chains, each containing one variable and five constant domains, and functions as an antibody. In order to assess the antigen-binding capabilities of isolated IgNAR variable domains (VNAR), we have constructed an in vitro library incorporating synthetic CDR3 regions of 15-18 residues in length. Screening of this library against the 60 kDa cytosolic domain of the 70 kDa outer membrane translocase receptor from human mitochondria (Tom70) resulted in one dominant antigen-specific clone (VNAR 12F-11) after four rounds of in vitro selection. VNAR 12F-11 was expressed into the Escherichia coli periplasm and purified by anti-FLAG affinity chromatography at yields of 3 mg x L(-1). Purified protein eluted from gel filtration columns as a single monomeric protein and CD spectrum analysis indicated correct folding into the expected beta-sheet conformation. Specific binding to Tom70 was demonstrated by ELISA and BIAcore (Kd = 2.2 +/- 0.31 x 10(-9) m-1) indicating that these VNAR domains can be efficiently displayed as bacteriophage libraries, and selected against target antigens with an affinity and stability equivalent to that obtained for other single domain antibodies. As an initial step in producing 'intrabody' variants of 12F-11, the impact of modifying or removing the conserved immunoglobulin intradomain disulphide bond was assessed. High affinity binding was only retained in the wild-type protein, which combined with our inability to affinity mature 12F-11, suggests that this particular VNAR is critically dependent upon precise CDR loop conformations for its binding affinity.
Characterization of full-length sequenced cDNA inserts (FLIcs) from Atlantic salmon (Salmo salar)
Andreassen, Rune; Lunner, Sigbjørn; Høyheim, Bjørn
2009-01-01
Background Sequencing of the Atlantic salmon genome is now being planned by an international research consortium. Full-length sequenced inserts from cDNAs (FLIcs) are an important tool for correct annotation and clustering of the genomic sequence in any species. The large amount of highly similar duplicate sequences caused by the relatively recent genome duplication in the salmonid ancestor represents a particular challenge for the genome project. FLIcs will therefore be an extremely useful resource for the Atlantic salmon sequencing project. In addition to be helpful in order to distinguish between duplicate genome regions and in determining correct gene structures, FLIcs are an important resource for functional genomic studies and for investigation of regulatory elements controlling gene expression. In contrast to the large number of ESTs available, including the ESTs from 23 developmental and tissue specific cDNA libraries contributed by the Salmon Genome Project (SGP), the number of sequences where the full-length of the cDNA insert has been determined has been small. Results High quality full-length insert sequences from 560 pre-smolt white muscle tissue specific cDNAs were generated, accession numbers [GenBank: BT043497 - BT044056]. Five hundred and ten (91%) of the transcripts were annotated using Gene Ontology (GO) terms and 440 of the FLIcs are likely to contain a complete coding sequence (cCDS). The sequence information was used to identify putative paralogs, characterize salmon Kozak motifs, polyadenylation signal variation and to identify motifs likely to be involved in the regulation of particular genes. Finally, conserved 7-mers in the 3'UTRs were identified, of which some were identical to miRNA target sequences. Conclusion This paper describes the first Atlantic salmon FLIcs from a tissue and developmental stage specific cDNA library. We have demonstrated that many FLIcs contained a complete coding sequence (cCDS). This suggests that the remaining cDNA libraries generated by SGP represent a valuable cCDS FLIc source. The conservation of 7-mers in 3'UTRs indicates that these motifs are functionally important. Identity between some of these 7-mers and miRNA target sequences suggests that they are miRNA targets in Salmo salar transcripts as well. PMID:19878547
Scientific Digital Libraries, Interoperability, and Ontologies
NASA Technical Reports Server (NTRS)
Hughes, J. Steven; Crichton, Daniel J.; Mattmann, Chris A.
2009-01-01
Scientific digital libraries serve complex and evolving research communities. Justifications for the development of scientific digital libraries include the desire to preserve science data and the promises of information interconnectedness, correlative science, and system interoperability. Shared ontologies are fundamental to fulfilling these promises. We present a tool framework, some informal principles, and several case studies where shared ontologies are used to guide the implementation of scientific digital libraries. The tool framework, based on an ontology modeling tool, was configured to develop, manage, and keep shared ontologies relevant within changing domains and to promote the interoperability, interconnectedness, and correlation desired by scientists.
Problem-Solving Examples as Interactive Learning Objects for Educational Digital Libraries
ERIC Educational Resources Information Center
Brusilovsky, Peter; Yudelson, Michael; Hsiao, I-Han
2009-01-01
The paper analyzes three major problems encountered by our team as we endeavored to turn problem solving examples in the domain of programming into highly reusable educational activities, which could be included as first class objects in various educational digital libraries. It also suggests three specific approaches to resolving these problems,…
Public Libraries in an Age of Financial Complexity: Toward Enhancing Community Financial Literacy
ERIC Educational Resources Information Center
Smith, Catherine Arnott; Eschenfelder, Kristin
2013-01-01
This report describes several linked empirical studies that examine the activities of public libraries in increasing the financial literacy of their service population. A qualitative field study examines librarians' perceptions of the challenges in offering information and services in this domain; a second set of interviews centers on the…
A main path domain map as digital library interface
NASA Astrophysics Data System (ADS)
Demaine, Jeffrey
2009-01-01
The shift to electronic publishing of scientific journals is an opportunity for the digital library to provide non-traditional ways of accessing the literature. One method is to use citation metadata drawn from a collection of electronic journals to generate maps of science. These maps visualize the communication patterns in the collection, giving the user an easy-tograsp view of the semantic structure underlying the scientific literature. For this visualization to be understandable the complexity of the citation network must be reduced through an algorithm. This paper describes the Citation Pathfinder application and its integration into a prototype digital library. This application generates small-scale citation networks that expand upon the search results of the digital library. These domain maps are linked to the collection, creating an interface that is based on the communication patterns in science. The Main Path Analysis technique is employed to simplify these networks into linear, sequential structures. By identifying patterns that characterize the evolution of the research field, Citation Pathfinder uses citations to give users a deeper understanding of the scientific literature.
Sánchez-Martínez, Cristina; Grueso, Esther; Carroll, Miles; Rommelaere, Jean; Almendral, José M
2012-10-10
The unordered N-termini of parvovirus capsid proteins (Nt) are translocated through a channel at the icosahedral five-fold axis to serve for virus traffick. Heterologous peptides were genetically inserted at the Nt of MVM to study their functional tolerance to manipulations. Insertion of a 5T4-single-chain antibody at VP2-Nt (2Nt) yielded chimeric capsid subunits failing to enter the nucleus. The VEGFR2-binding peptide (V1) inserted at both 2Nt and VP1-Nt efficiently assembled in virions, but V1 disrupted VP1 and VP2 entry functions. The VP2 defect correlated with restricted externalization of V1-2Nt out of the coat. The specific infectivity of MVM and wtVP-pseudotyped mosaic MVM-V1 virions, upon heating and/or partial 2Nt cleavage, demonstrated that some 2Nt domains become intracellularly translocated out of the virus shell and cleaved to initiate entry. The V1 insertion defines a VP2-driven endosomal enlargement of the channel as an essential structural rearrangement performed by the MVM virion to infect. Copyright © 2012 Elsevier Inc. All rights reserved.
Random mutagenesis of BoNT/E Hc nanobody to construct a secondary phage-display library.
Shahi, B; Mousavi Gargari, S L; Rasooli, I; Rajabi Bazl, M; Hoseinpoor, R
2014-08-01
To construct secondary mutant phage-display library of recombinant single variable domain (VHH) against botulinum neurotoxin E by error-prone PCR. The gene coding for specific VHH derived from the camel immunized with binding domain of botulinum neurotoxin E (BoNT/E) was amplified by error-prone PCR. Several biopanning rounds were used to screen the phage-displaying BoNT/E Hc nanobodies. The final nanobody, SHMR4, with increased affinity recognized BoNT/E toxin with no cross-reactivity with other antigens especially with related BoNT toxins. The constructed nanobody could be a suitable candidate for VHH-based biosensor production to detect the Clostridium botulinum type E. Diagnosis and treatment of botulinum neurotoxins are important. Generation of high-affinity antibodies based on the construction of secondary libraries using affinity maturation step leads to the development of reagents for precise diagnosis and therapy. © 2014 The Society for Applied Microbiology.
Tada, Hiroshi; Suzuki, Tomohiko
2010-08-01
The arginine kinase (AK) from the sea anemone Anthopleura japonicus has an unusual two-domain structure (contiguous dimer; denoted by D1-D2). In a previous report, we suggested cooperativity in the contiguous dimer, which may be a result of domain-domain interactions, using MBP-fused enzymes. To further understand this observation, we inserted six-Lys residues into the linker region of the two-domain AK (D1-K6-D2 mutant) using His-tagged enzyme. The dissociation constants, K(a) and K(ia), of the mutant were similar to those of the wild-type enzyme but the catalytic constant, k(cat), was decreased to 28% that of the wild-type, indicating that some of the domain-domain interactions are lost due to the six-Lys insertion. Y68 plays a major role in arginine binding in the catalytic pocket in Limulus AK, and introduction of mutation at the Y68 position virtually abolishes catalytic activity. Thus, the constructed D1(Y68G)-D2 and D1-D2(Y68G) mutants mimic the D1(inactive)-D2(active) and D1(active)-D2(inactive) enzymes, respectively. The k(cat) values of both Y68 mutants were decreased to 13-18% that of the wild-type enzyme, which is much less than the 50% level of the two-domain enzyme. Thus, it is clear that substrate-binding to both domains is necessary for full expression of activity. In other words, substrate-binding appears to act as the trigger of the functional cooperativity in two-domain AK. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren
1997-01-01
The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions
Engineer’s Handbook. Central Archive for Reusable Defense Software (CARDS)
1994-02-28
benefit frc- this reuse effort? Reuse should be done for a domain rather than just for a program. " Identify relationships between domains to facilitate... benefits to the government and its contractors. " Help provide guidelines to enable domain managers to do a trade-off study on requirements, e.g., does...libraries, if desired or required. This can only occur where the government domain growth matches, or can benefit from, the inclusion or incorporation of the
Han, Guomin; Shao, Qian; Li, Cuiping; Zhao, Kai; Jiang, Li; Fan, Jun; Jiang, Haiyang; Tao, Fang
2018-05-01
Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ∼ 60 positive transformants per 10 6 conidia using our protocol. A small-scale insertional mutant library (∼ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.
Integrity of Helix 2-Helix 3 Domain of the PrP Protein Is Not Mandatory for Prion Replication*
Salamat, Khalid; Moudjou, Mohammed; Chapuis, Jérôme; Herzog, Laetitia; Jaumain, Emilie; Béringue, Vincent; Rezaei, Human; Pastore, Annalisa; Laude, Hubert; Dron, Michel
2012-01-01
The process of prion conversion is not yet well understood at the molecular level. The regions critical for the conformational change of PrP remain mostly debated and the extent of sequence change acceptable for prion conversion is poorly documented. To achieve progress on these issues, we applied a reverse genetic approach using the Rov cell system. This allowed us to test the susceptibility of a number of insertion mutants to conversion into prion in the absence of wild-type PrP molecules. We were able to propagate several prions with 8 to 16 extra amino acids, including a polyglycine stretch and His or FLAG tags, inserted in the middle of the protease-resistant fragment. These results demonstrate the possibility to increase the length of the loop between helices H2 and H3 up to 4-fold, without preventing prion replication. They also indicate that this loop probably remains unstructured in PrPSc. We also showed that bona fide prions can be produced following insertion of octapeptides in the two C-terminal turns of H2. These insertions do not interfere with the overall fold of the H2-H3 domain indicating that the highly conserved sequence of the terminal part of H2 is not critical for the conversion. Altogether these data showed that the amplitude of modifications acceptable for prion conversion in the core of the globular domain of PrP is much greater than one might have assumed. These observations should help to refine structural models of PrPSc and elucidate the conformational changes underlying prions generation. PMID:22511770
Integrity of helix 2-helix 3 domain of the PrP protein is not mandatory for prion replication.
Salamat, Khalid; Moudjou, Mohammed; Chapuis, Jérôme; Herzog, Laetitia; Jaumain, Emilie; Béringue, Vincent; Rezaei, Human; Pastore, Annalisa; Laude, Hubert; Dron, Michel
2012-06-01
The process of prion conversion is not yet well understood at the molecular level. The regions critical for the conformational change of PrP remain mostly debated and the extent of sequence change acceptable for prion conversion is poorly documented. To achieve progress on these issues, we applied a reverse genetic approach using the Rov cell system. This allowed us to test the susceptibility of a number of insertion mutants to conversion into prion in the absence of wild-type PrP molecules. We were able to propagate several prions with 8 to 16 extra amino acids, including a polyglycine stretch and His or FLAG tags, inserted in the middle of the protease-resistant fragment. These results demonstrate the possibility to increase the length of the loop between helices H2 and H3 up to 4-fold, without preventing prion replication. They also indicate that this loop probably remains unstructured in PrP(Sc). We also showed that bona fide prions can be produced following insertion of octapeptides in the two C-terminal turns of H2. These insertions do not interfere with the overall fold of the H2-H3 domain indicating that the highly conserved sequence of the terminal part of H2 is not critical for the conversion. Altogether these data showed that the amplitude of modifications acceptable for prion conversion in the core of the globular domain of PrP is much greater than one might have assumed. These observations should help to refine structural models of PrP(Sc) and elucidate the conformational changes underlying prions generation.
Molecular Cloning of Drebrin: Progress and Perspectives.
Kojima, Nobuhiko
2017-01-01
Chicken drebrin isoforms were first identified in the optic tectum of developing brain. Although the time course of protein expression was different in each drebrin isoform, the similarity between their protein structures was suggested by biochemical analysis of purified protein. To determine their protein structures, the cloning of drebrin cDNAs was conducted. Comparison between the cDNA sequences shows that all drebrin cDNAs are identical except that the internal insertion sequences are present or absent in their sequences. Chicken drebrin are now classified into three isoforms, namely, drebrins E1, E2, and A. Genomic cloning demonstrated that the three isoforms are generated by an alternative splicing of individual exons encoding the insertion sequences from single drebrin gene. The mechanism should be precisely regulated in cell-type-specific and developmental stage-specific fashion. Drebrin protein, which is well conserved in various vertebrate species, although mammalian drebrin has only two isoforms, namely, drebrin E and drebrin A, is different from chicken drebrin that has three isoforms. Drebrin belongs to an actin-depolymerizing factor homology (ADF-H) domain protein family. Besides the ADF-H domain, drebrin has other domains, including the actin-binding domain and Homer-binding motifs. Diversity of protein isoform and multiple domains of drebrin could interact differentially with the actin cytoskeleton and other intracellular proteins and regulate diverse cellular processes.
Earth science photographs from the U.S. Geological Survey Library
McGregor, Joseph K.; Abston, Carl C.
1995-01-01
This CD-ROM set contains 1,500 scanned photographs from the U.S. Geological Survey Library for use as a photographic glossary of elementary geologic terms. Scholars are encouraged to copy these public domain images into their reports or databases to enhance their presentations. High-quality prints and (or) slides are available upon request from the library. This CD-ROM was produced in accordance with the ISO 9660 standard; however, it is intended for use on DOS-based computer systems only.
iTesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations
NASA Astrophysics Data System (ADS)
Vanfretti, L.; Rabuzin, T.; Baudette, M.; Murad, M.
The iTesla Power Systems Library (iPSL) is a Modelica package providing a set of power system components for phasor time-domain modeling and simulation. The Modelica language provides a systematic approach to develop models using a formal mathematical description, that uniquely specifies the physical behavior of a component or the entire system. Furthermore, the standardized specification of the Modelica language (Modelica Association [1]) enables unambiguous model exchange by allowing any Modelica-compliant tool to utilize the models for simulation and their analyses without the need of a specific model transformation tool. As the Modelica language is being developed with open specifications, any tool that implements these requirements can be utilized. This gives users the freedom of choosing an Integrated Development Environment (IDE) of their choice. Furthermore, any integration solver can be implemented within a Modelica tool to simulate Modelica models. Additionally, Modelica is an object-oriented language, enabling code factorization and model re-use to improve the readability of a library by structuring it with object-oriented hierarchy. The developed library is released under an open source license to enable a wider distribution and let the user customize it to their specific needs. This paper describes the iPSL and provides illustrative application examples.
Biasin, Mara; Sironi, Manuela; Saulle, Irma; Pontremoli, Chiara; Garziano, Micaela; Cagliani, Rachele; Trabattoni, Daria; Lo Caputo, Sergio; Vichi, Francesca; Mazzotta, Francesco; Forni, Diego; Riva, Stefania; Aguilar-Jimenez, Wbeimar; Cedeño, Samandhy; Sanchez, Jorge; Brander, Christian; Zapata, Wildeman; Rugeles, Maria Teresa; Clerici, Mario
2017-01-01
We investigated whether a 6-amino acid insertion/deletion polymorphism in the mucin domain of TIM-1 (T-cell immunoglobulin and mucin domain 1), modulates susceptibility to HIV-1 infection. The polymorphism was genotyped in three case/control cohorts of HIV-1 exposed seronegative individuals (HESN) and HIV-1 infected subjects from Italy, Peru, and Colombia; data from a Thai population were retrieved from the literature. Across all cohorts, homozygosity for the short TIM-1 allele was more common in HESNs than in HIV-1 infected subjects. A meta-analysis of the four association analyses yielded a p value of 0.005. In vitro infection assays of CD4+ T lymphocytes indicated that homozygosity for the short allele is associated with lower rate of HIV-1 replication. These results suggest that the deletion allele protects from HIV-1 infection with a recessive effect. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
[Isolation and function of genes regulating aphB expression in Vibrio cholerae].
Chen, Haili; Zhu, Zhaoqin; Zhong, Zengtao; Zhu, Jun; Kan, Biao
2012-02-04
We identified genes that regulate the expression of aphB, the gene encoding a key virulence regulator in Vibrio cholerae O1 E1 Tor C6706(-). We constructed a transposon library in V. cholerae C6706 strain containing a P(aphB)-luxCDABE and P(aphB)-lacZ transcriptional reporter plasmids. Using a chemiluminescence imager system, we rapidly detected aphB promoter expression level at a large scale. We then sequenced the transposon insertion sites by arbitrary PCR and sequencing analysis. We obtained two candidate mutants T1 and T2 which displayed reduced aphB expression from approximately 40,000 transposon insertion mutants. Sequencing analysis shows that Tn inserted in vc1585 reading frame in the T1 mutant and Tn inserted in the end of coding sequence of vc1602 in the T2 mutant. By using a genetic screen, we identified two potential genes that may involve in regulation of the expression of the key virulence regulator AphB. This study sheds light on our further investigation to fully understand V. cholerae virulence gene regulatory cascades.
Library Development Handbook. Central Archive for Reusable Defense Software (CARDS)
1993-10-29
features. This feature benefits the individual not versed in the terminology of the domain. When class requirements become part of the domain criteria, they... franchisee - Group to whom a franchise is granted. generic architecture - A collection of high-level paradigms and constraints that characterize the
ERIC Educational Resources Information Center
Walker, Thomas D.
1997-01-01
Places the "Journal of Documentary Reproduction", published by the American Library Association, in an historical context and defines its domain in terms of the characteristics of its contributors. Authorship characteristics include occupation, institutional affiliation, geographic distribution, and gender. (Author/LRW)
Viejo-Borbolla, A; Pizzato, M; Blair, E D; Schulz, T F
2005-03-01
Several groups have inserted targeting domains into the envelope glycoprotein (Env) of Moloney murine leukemia virus (MoMLV) in an attempt to produce targeted retroviral vectors for human gene therapy. While binding of these modified Envs to the target molecule expressed on the surface of human cells was observed, specific high-titer infection of human cells expressing the target molecule was not achieved. Here we investigate the initial steps in the entry process of targeted MoMLV vectors both in murine and human cells expressing the MoMLV receptor, the mouse cationic amino acid transporter-1 (mCAT-1). We show that insertion of a small ligand targeted to E-selectin and of a single chain antibody (scFv) targeted to folate-binding protein (FBP) into the N-terminus of MoMLV Env results in the reduction of the infectivity and the kinetics of entry of the MoMLV vectors. The use of soluble receptor-binding domain (sRBD), bafilomycin A1 (BafA1) and methyl-beta-cyclodextrin (MbetaC) increase the infectivity of the MoMLV vectors targeted to FBP (MoMLV-FBP) suggesting that the scFv targeted to FBP increases the threshold for fusion and might re-route entry of the targeted MoMLV-FBP vector towards an endocytic, non-productive pathway.
van den Boom, Frank; Düssmann, Heiko; Uhlenbrock, Katharina; Abouhamed, Marouan
2007-01-01
Myosin IXb (Myo9b) is a single-headed processive myosin that exhibits Rho GTPase-activating protein (RhoGAP) activity in its tail region. Using live cell imaging, we determined that Myo9b is recruited to extending lamellipodia, ruffles, and filopodia, the regions of active actin polymerization. A functional motor domain was both necessary and sufficient for targeting Myo9b to these regions. The head domains of class IX myosins comprise a large insertion in loop2. Deletion of the large Myo9b head loop 2 insertion abrogated the enrichment in extending lamellipodia and ruffles, but enhanced significantly the enrichment at the tips of filopodia and retraction fibers. The enrichment in the tips of filopodia and retraction fibers depended on four lysine residues C-terminal to the loop 2 insertion and the tail region. Fluorescence recovery after photobleaching and photoactivation experiments in lamellipodia revealed that the dynamics of Myo9b was comparable to that of actin. The exchange rates depended on the Myo9b motor region and motor activity, and they were also dependent on the turnover of F-actin. These results demonstrate that Myo9b functions as a motorized RhoGAP molecule in regions of actin polymerization and identify Myo9b head sequences important for in vivo motor properties. PMID:17314409
Woldring, Daniel R.; Holec, Patrick V.; Zhou, Hong; Hackel, Benjamin J.
2015-01-01
Discovering new binding function via a combinatorial library in small protein scaffolds requires balance between appropriate mutations to introduce favorable intermolecular interactions while maintaining intramolecular integrity. Sitewise constraints exist in a non-spatial gradient from diverse to conserved in evolved antibody repertoires; yet non-antibody scaffolds generally do not implement this strategy in combinatorial libraries. Despite the fact that biased amino acid distributions, typically elevated in tyrosine, serine, and glycine, have gained wider use in synthetic scaffolds, these distributions are still predominantly applied uniformly to diversified sites. While select sites in fibronectin domains and DARPins have shown benefit from sitewise designs, they have not been deeply evaluated. Inspired by this disparity between diversity distributions in natural libraries and synthetic scaffold libraries, we hypothesized that binders resulting from discovery and evolution would exhibit a non-spatial, sitewise gradient of amino acid diversity. To identify sitewise diversities consistent with efficient evolution in the context of a hydrophilic fibronectin domain, >105 binders to six targets were evolved and sequenced. Evolutionarily favorable amino acid distributions at 25 sites reveal Shannon entropies (range: 0.3–3.9; median: 2.1; standard deviation: 1.1) supporting the diversity gradient hypothesis. Sitewise constraints in evolved sequences are consistent with complementarity, stability, and consensus biases. Implementation of sitewise constrained diversity enables direct selection of nanomolar affinity binders validating an efficient strategy to balance inter- and intra-molecular interaction demands at each site. PMID:26383268
Rondon, Michelle R.; Raffel, Sandra J.; Goodman, Robert M.; Handelsman, Jo
1999-01-01
As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes. PMID:10339608
Park, Tae-Ho; Park, Beom-Seok; Kim, Jin-A; Hong, Joon Ki; Jin, Mina; Seol, Young-Joo; Mun, Jeong-Hwan
2011-01-01
As a part of the Multinational Genome Sequencing Project of Brassica rapa, linkage group R9 and R3 were sequenced using a bacterial artificial chromosome (BAC) by BAC strategy. The current physical contigs are expected to cover approximately 90% euchromatins of both chromosomes. As the project progresses, BAC selection for sequence extension becomes more limited because BAC libraries are restriction enzyme-specific. To support the project, a random sheared fosmid library was constructed. The library consists of 97536 clones with average insert size of approximately 40 kb corresponding to seven genome equivalents, assuming a Chinese cabbage genome size of 550 Mb. The library was screened with primers designed at the end of sequences of nine points of scaffold gaps where BAC clones cannot be selected to extend the physical contigs. The selected positive clones were end-sequenced to check the overlap between the fosmid clones and the adjacent BAC clones. Nine fosmid clones were selected and fully sequenced. The sequences revealed two completed gap filling and seven sequence extensions, which can be used for further selection of BAC clones confirming that the fosmid library will facilitate the sequence completion of B. rapa. Copyright © 2011. Published by Elsevier Ltd.
Construction of cDNA library and preliminary analysis of expressed sequence tags from Siberian tiger
Liu, Chang-Qing; Lu, Tao-Feng; Feng, Bao-Gang; Liu, Dan; Guan, Wei-Jun; Ma, Yue-Hui
2010-01-01
In this study we successfully constructed a full-length cDNA library from Siberian tiger, Panthera tigris altaica, the most well-known wild Animal. Total RNA was extracted from cultured Siberian tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.30×106 pfu/ml and 1.62×109 pfu/ml respectively. The proportion of recombinants from unamplified library was 90.5% and average length of exogenous inserts was 1.13 kb. A total of 282 individual ESTs with sizes ranging from 328 to 1,142bps were then analyzed the BLASTX score revealed that 53.9% of the sequences were classified as strong match, 38.6% as nominal and 7.4% as weak match. 28.0% of them were found to be related to enzyme/catalytic protein, 20.9% ESTs to metabolism, 13.1% ESTs to transport, 12.1% ESTs to signal transducer/cell communication, 9.9% ESTs to structure protein, 3.9% ESTs to immunity protein/defense metabolism, 3.2% ESTs to cell cycle, and 8.9 ESTs classified as novel genes. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genomic research of Siberian tigers. PMID:20941376
Mass-flow-rate-controlled fluid flow in nanochannels by particle insertion and deletion.
Barclay, Paul L; Lukes, Jennifer R
2016-12-01
A nonequilibrium molecular dynamics method to induce fluid flow in nanochannels, the insertion-deletion method (IDM), is introduced. IDM inserts and deletes particles within distinct regions in the domain, creating locally high and low pressures. The benefits of IDM are that it directly controls a physically meaningful quantity, the mass flow rate, allows for pressure and density gradients to develop in the direction of flow, and permits treatment of complex aperiodic geometries. Validation of IDM is performed, yielding good agreement with the analytical solution of Poiseuille flow in a planar channel. Comparison of IDM to existing methods indicates that it is best suited for gases, both because it intrinsically accounts for compressibility effects on the flow and because the computational cost of particle insertion is lowest for low-density fluids.
In vivo blunt-end cloning through CRISPR/Cas9-facilitated non-homologous end-joining
Geisinger, Jonathan M.; Turan, Sören; Hernandez, Sophia; Spector, Laura P.; Calos, Michele P.
2016-01-01
The CRISPR/Cas9 system facilitates precise DNA modifications by generating RNA-guided blunt-ended double-strand breaks. We demonstrate that guide RNA pairs generate deletions that are repaired with a high level of precision by non-homologous end-joining in mammalian cells. We present a method called knock-in blunt ligation for exploiting these breaks to insert exogenous PCR-generated sequences in a homology-independent manner without loss of additional nucleotides. This method is useful for making precise additions to the genome such as insertions of marker gene cassettes or functional elements, without the need for homology arms. We successfully utilized this method in human and mouse cells to insert fluorescent protein cassettes into various loci, with efficiencies up to 36% in HEK293 cells without selection. We also created versions of Cas9 fused to the FKBP12-L106P destabilization domain in an effort to improve Cas9 performance. Our in vivo blunt-end cloning method and destabilization-domain-fused Cas9 variant increase the repertoire of precision genome engineering approaches. PMID:26762978
2015-01-01
The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen–deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our “standard condition” (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W+-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8–9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8–9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain. PMID:25290210
Li, Jing; Rodnin, Mykola V; Ladokhin, Alexey S; Gross, Michael L
2014-11-04
The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our "standard condition" (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W(+)-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8-9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8-9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain.
Magneto-optic garnet and liquid crystal optical switches
NASA Technical Reports Server (NTRS)
Krawczak, J. A.; Torok, E. J.; Harvey, W. A.; Hewitt, F. G.; Nelson, G. L.
1984-01-01
Magnetic stripe domain and liquid crystal devices are being developed and evaluated as fiber optic switches that can be utilized for nonblocking type nxm optical matrix switches in networking and optical processing. Liquid crystal switches are characterized by very low insertion loss and crosstalk, while stripe domain switches commutate in less than one microsecond. Both switches operate on multimode, randomly polarized fiber light with potentially large values for (n,m). The applications of these magnetic stripe domain and liquid crystal devices are discussed.
A Public Domain Software Library for Reading and Language Arts.
ERIC Educational Resources Information Center
Balajthy, Ernest
A three-year project carried out by the Microcomputers and Reading Committee of the New Jersey Reading Association involved the collection, improvement, and distribution of free microcomputer software (public domain programs) designed to deal with reading and writing skills. Acknowledging that this free software is not without limitations (poor…
Saving the Information Commons.
ERIC Educational Resources Information Center
Bollier, David
2003-01-01
Discusses the control of digital content and the stakes for libraries and our democratic culture. Highlights include copyright term extension, the Digital Millennium Copyright Act, use of contract law to limit the public domain, database legislation, trademarks versus the public domain, the void in our cultural vocabulary, and the concept of the…
From the ORFeome concept to highly comprehensive, full-genome screening libraries.
Rid, Raphaela; Abdel-Hadi, Omar; Maier, Richard; Wagner, Martin; Hundsberger, Harald; Hintner, Helmut; Bauer, Johann; Onder, Kamil
2013-02-01
Recombination-based cloning techniques have in recent times facilitated the establishment of genome-scale single-gene ORFeome repositories. Their further handling and downstream application in systematic fashion is, however, practically impeded because of logistical plus economic challenges. At this juncture, simultaneously transferring entire gene collections in compiled pool format could represent an advanced compromise between systematic ORFeome (an organism's entire set of protein-encoding open reading frames) projects and traditional random library approaches, but has not yet been considered in great detail. In our endeavor to merge the comprehensiveness of ORFeomes with a basically simple, streamlined, and easily executable single-tube design, we have here produced five different pooled screening-ready libraries for both Staphylococcus aureus and Homo sapiens. By evaluating the parallel transfer efficiencies of differentially sized genes from initial polymerase chain reaction (PCR) product amplification to entry and final destination library construction via quantitative real-time PCR, we found that the complexity of the gene population is fairly stably maintained once an entry resource has been successfully established, and that no apparent size-selection bias loss of large inserts takes place. Recombinational transfer processes are hence robust enough for straightforwardly achieving such pooled screening libraries.
Genomic clones for human cholinesterase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kott, M.; Venta, P.J.; Larsen, J.
1987-05-01
A human genomic library was prepared from peripheral white blood cells from a single donor by inserting an MboI partial digest into BamHI poly-linker sites of EMBL3. This library was screened using an oligolabeled human cholinesterase cDNA probe over 700 bp long. The latter probe was obtained from a human basal ganglia cDNA library. Of approximately 2 million clones screened with high stringency conditions several positive clones were identified; two have been plaque purified. One of these clones has been partially mapped using restriction enzymes known to cut within the coded region of the cDNA for human serum cholinesterase. Hybridizationmore » of the fragments and their sizes are as expected if the genomic clone is cholinesterase. Sequencing of the DNA fragments in M13 is in progress to verify the identify of the clone and the location of introns.« less
USDA-ARS?s Scientific Manuscript database
Verticillium dahliae is the primary causal agent for Verticillium wilt disease on a diverse array of economically important crops, including cotton. In previous research, we screened a T-DNA insertional mutant library of the highly virulent isolate Vd080 derived from cotton. In this study, the targ...
[Construction and characterization of a cDNA library from human liver tissue of cirrhosis].
Chen, Xiao-hong; Chen, Zhi; Chen, Feng; Zhu, Hai-hong; Zhou, Hong-juan; Yao, Hang-ping
2005-03-01
To construct a cDNA library from human liver tissue of cirrhosis. The total RNA from human liver tissue of cirrhosis was extracted using Trizol method, and the mRNA was purified using mRNA purification kit. SMART technique and CDSIII/3' primer were used for first-strand cDNA synthesis. Long distance PCR was then used to synthesize the double-strand cDNA that was then digested by proteinase K and Sfi I, and was fractionated by CHOMA SPIN-400 column. The cDNA fragments longer than 0.4 kb were collected and ligated to lambdaTripl Ex2 vector. Then lambda-phage packaging reaction and library amplification were performed. The qualities of both unamplified and amplified cDNA libraries was strictly checked by conventional titer determination. Eleven plaques were randomly picked and tested using PCR with universal primers derived from the sequence flanking the vector. The titers of unamplifed and amplified libraries were 1.03 x 10(6) pfu/ml and 1.36 x 10(9) pfu/ml respectively. The percentages of recombinants from both libraries were 97.24 % in unamplified library and 99.02 % in amplified library. The lengths of the inserts were 1.02 kb in average (36.36 % 1 approximately equals 2 kb and 63.64 % 0.5 approximately equals 1.0 kb). A high quality cDNA library from human liver tissue of cirrhosis was constructed successfully, which can be used for screening and cloning new special genes associated with the occurrence of cirrhosis.
FragIdent--automatic identification and characterisation of cDNA-fragments.
Seelow, Dominik; Goehler, Heike; Hoffmann, Katrin
2009-03-02
Many genetic studies and functional assays are based on cDNA fragments. After the generation of cDNA fragments from an mRNA sample, their content is at first unknown and must be assigned by sequencing reactions or hybridisation experiments. Even in characterised libraries, a considerable number of clones are wrongly annotated. Furthermore, mix-ups can happen in the laboratory. It is therefore essential to the relevance of experimental results to confirm or determine the identity of the employed cDNA fragments. However, the manual approach for the characterisation of these fragments using BLAST web interfaces is not suited for larger number of sequences and so far, no user-friendly software is publicly available. Here we present the development of FragIdent, an application for the automatic identification of open reading frames (ORFs) within cDNA-fragments. The software performs BLAST analyses to identify the genes represented by the sequences and suggests primers to complete the sequencing of the whole insert. Gene-specific information as well as the protein domains encoded by the cDNA fragment are retrieved from Internet-based databases and included in the output. The application features an intuitive graphical interface and is designed for researchers without any bioinformatics skills. It is suited for projects comprising up to several hundred different clones. We used FragIdent to identify 84 cDNA clones from a yeast two-hybrid experiment. Furthermore, we identified 131 protein domains within our analysed clones. The source code is freely available from our homepage at http://compbio.charite.de/genetik/FragIdent/.
Trott, Maria; Weiß, Svenja; Antoni, Sascha; Koch, Joachim; von Briesen, Hagen; Hust, Michael; Dietrich, Ursula
2014-01-01
HIV neutralizing antibodies (nAbs) represent an important tool in view of prophylactic and therapeutic applications for HIV-1 infection. Patients chronically infected by HIV-1 represent a valuable source for nAbs. HIV controllers, including long-term non-progressors (LTNP) and elite controllers (EC), represent an interesting subgroup in this regard, as here nAbs can develop over time in a rather healthy immune system and in the absence of any therapeutic selection pressure. In this study, we characterized two particular antibodies that were selected as scFv antibody fragments from a phage immune library generated from an LTNP with HIV neutralizing antibodies in his plasma. The phage library was screened on recombinant soluble gp140 envelope (Env) proteins. Sequencing the selected peptide inserts revealed two major classes of antibody sequences. Binding analysis of the corresponding scFv-Fc derivatives to various trimeric and monomeric Env constructs as well as to peptide arrays showed that one class, represented by monoclonal antibody (mAb) A2, specifically recognizes an epitope localized in the pocket binding domain of the C heptad repeat (CHR) in the ectodomain of gp41, but only in the trimeric context. Thus, this antibody represents an interesting tool for trimer identification. MAb A7, representing the second class, binds to structural elements of the third variable loop V3 and neutralizes tier 1 and tier 2 HIV-1 isolates of different subtypes with matching critical amino acids in the linear epitope sequence. In conclusion, HIV controllers are a valuable source for the selection of functionally interesting antibodies that can be selected on soluble gp140 proteins with properties from the native envelope spike. PMID:24828352
ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology.
Richard, Ann M; Judson, Richard S; Houck, Keith A; Grulke, Christopher M; Volarath, Patra; Thillainadarajah, Inthirany; Yang, Chihae; Rathman, James; Martin, Matthew T; Wambaugh, John F; Knudsen, Thomas B; Kancherla, Jayaram; Mansouri, Kamel; Patlewicz, Grace; Williams, Antony J; Little, Stephen B; Crofton, Kevin M; Thomas, Russell S
2016-08-15
The U.S. Environmental Protection Agency's (EPA) ToxCast program is testing a large library of Agency-relevant chemicals using in vitro high-throughput screening (HTS) approaches to support the development of improved toxicity prediction models. Launched in 2007, Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay end points. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in the public release of screening data at the end of 2013. Subsequent expansion in Phase III has resulted in more than 3800 chemicals actively undergoing ToxCast screening, 96% of which are also being screened in the multi-Agency Tox21 project. The chemical library unpinning these efforts plays a central role in defining the scope and potential application of ToxCast HTS results. The history of the phased construction of EPA's ToxCast library is reviewed, followed by a survey of the library contents from several different vantage points. CAS Registry Numbers are used to assess ToxCast library coverage of important toxicity, regulatory, and exposure inventories. Structure-based representations of ToxCast chemicals are then used to compute physicochemical properties, substructural features, and structural alerts for toxicity and biotransformation. Cheminformatics approaches using these varied representations are applied to defining the boundaries of HTS testability, evaluating chemical diversity, and comparing the ToxCast library to potential target application inventories, such as used in EPA's Endocrine Disruption Screening Program (EDSP). Through several examples, the ToxCast chemical library is demonstrated to provide comprehensive coverage of the knowledge domains and target inventories of potential interest to EPA. Furthermore, the varied representations and approaches presented here define local chemistry domains potentially worthy of further investigation (e.g., not currently covered in the testing library or defined by toxicity "alerts") to strategically support data mining and predictive toxicology modeling moving forward.
NASA Astrophysics Data System (ADS)
Cetkin, Erdal; Oliani, Alessandro
2015-07-01
Here, we show that the peak temperature on a non-uniformly heated domain can be decreased by embedding a high-conductivity insert in it. The trunk of the high-conductivity insert is in contact with a heat sink. The heat is generated non-uniformly throughout the domain or concentrated in a square spot of length scale 0.1 L0, where L0 is the length scale of the non-uniformly heated domain. Peak and average temperatures are affected by the volume fraction of the high-conductivity material and by the shape of the high-conductivity pathways. This paper uncovers how varying the shape of the symmetric and asymmetric high-conductivity trees affects the overall thermal conductance of the heat generating domain. The tree-shaped high-conductivity inserts tend to grow toward where the heat generation is concentrated in order to minimize the peak temperature, i.e., in order to minimize the resistances to the heat flow. This behaviour of high-conductivity trees is alike with the root growth of the plants and trees. They also tend to grow towards sunlight, and their roots tend to grow towards water and nutrients. This paper uncovers the similarity between biological trees and high-conductivity trees, which is that trees should grow asymmetrically when the boundary conditions are non-uniform. We show here even though all the trees have the same objectives (minimum flow resistance), their shape should not be the same because of the variation in boundary conditions. To sum up, this paper shows that there is a high-conductivity tree design corresponding to minimum peak temperature with fixed constraints and conditions. This result is in accord with the constructal law which states that there should be an optimal design for a given set of conditions and constraints, and this design should be morphed in order to ensure minimum flow resistances as conditions and constraints change.
Automated software development workstation
NASA Technical Reports Server (NTRS)
Prouty, Dale A.; Klahr, Philip
1988-01-01
A workstation is being developed that provides a computational environment for all NASA engineers across application boundaries, which automates reuse of existing NASA software and designs, and efficiently and effectively allows new programs and/or designs to be developed, catalogued, and reused. The generic workstation is made domain specific by specialization of the user interface, capturing engineering design expertise for the domain, and by constructing/using a library of pertinent information. The incorporation of software reusability principles and expert system technology into this workstation provide the obvious benefits of increased productivity, improved software use and design reliability, and enhanced engineering quality by bringing engineering to higher levels of abstraction based on a well tested and classified library.
Lee, Susan D.; Surtees, Jennifer A.; Alani, Eric
2007-01-01
In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. In this study we showed that the msh2Δ1 mutation, containing a complete deletion of the conserved mismatch recognition Domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Δ1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of Domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that Domain I in MSH2 contributed a non-specific DNA binding activity while Domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA-binding. These observations reveal distinct requirements for the MSH2 DNA binding Domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding. PMID:17157869
Lee, Susan D; Surtees, Jennifer A; Alani, Eric
2007-02-09
In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. Here, we show that the msh2Delta1 mutation, containing a complete deletion of the conserved mismatch recognition domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Delta1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that domain I in MSH2 contributed a non-specific DNA binding activity while domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA binding. These observations reveal distinct requirements for the MSH2 DNA binding domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding.
Reedijk, M; Liu, X; van der Geer, P; Letwin, K; Waterfield, M D; Hunter, T; Pawson, T
1992-01-01
Efficient binding of active phosphatidylinositol (PI) 3'-kinase to the autophosphorylated macrophage colony stimulating factor receptor (CSF-1R) requires the noncatalytic kinase insert (KI) region of the receptor. To test whether this region could function independently to bind PI 3'-kinase, the isolated CSF-1R KI was expressed in Escherichia coli, and was inducibly phosphorylated on tyrosine. The tyrosine phosphorylated form of the CSF-1R KI bound PI 3'-kinase in vitro, whereas the unphosphorylated form had no binding activity. The p85 alpha subunit of PI 3'-kinase contains two Src homology (SH)2 domains, which are implicated in the interactions of signalling proteins with activated receptors. Bacterially expressed p85 alpha SH2 domains complexed in vitro with the tyrosine phosphorylated CSF-1R KI. Binding of the CSF-1R KI to PI 3'-kinase activity, and to the p85 alpha SH2 domains, required phosphorylation of Tyr721 within the KI domain, but was independent of phosphorylation at Tyr697 and Tyr706. Tyr721 was also critical for the association of activated CSF-1R with PI 3'-kinase in mammalian cells. Complex formation between the CSF-1R and PI 3'-kinase can therefore be reconstructed in vitro in a specific interaction involving the phosphorylated receptor KI and the SH2 domains of p85 alpha. Images PMID:1314163
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, B.; Swaminathan, S.; Agarwal, R.
2010-07-19
Botulinum neurotoxins (BoNTs) undergo low pH-triggered membrane insertion, resulting in the translocation of their light (catalytic) chains into the cytoplasm. The T (translocation) domain of the BoNT heavy chain is believed to carry out translocation. Here, the behavior of isolated T domain from BoNT type A has been characterized, both in solution and when associated with model membranes. When BoNT T domain prepared in the detergent dodecylmaltoside was diluted into aqueous solution, it exhibited a low pH-dependent conformational change below pH 6. At low pH the T domain associated with, and formed pores within, model membrane vesicles composed of 30more » mol% dioleoylphosphatidylglycerol/70 mol% dioleoylphosphatidylcholine. Although T domain interacted with vesicles at low (50 mM) and high (400 mM) NaCl concentrations, the interaction required much less lipid at low salt. However, even at high lipid concentrations pore formation was much more pronounced at low NaCl concentrations than at high NaCl concentration. Increasing salt concentration after insertion in the presence of 50 mM NaCl did not decrease pore formation. A similar effect of NaCl concentration upon pore formation was observed in vesicles composed solely of dioleoylphosphatidylcholine, showing that the effect of NaCl did not solely involve modulation of electrostatic interactions between protein and anionic lipids. These results indicate that some feature of membrane-bound T domain tertiary structure critical for pore formation is highly dependent upon salt concentration.« less
Cunha, A C; da Veiga, A M A; Masterson, D; Mattos, C T; Nojima, L I; Nojima, M C G; Maia, L C
2017-12-01
The aim of this systematic review and meta-analysis was to investigate how parameters related to geometry influence the clinical performance of orthodontic mini-implants (MIs). Systematic searches were performed in electronic databases including MEDLINE, Scopus, Web of Science, Virtual Health Library, and Cochrane Library and reference lists up to March 2016. Eligibility criteria comprised clinical studies involving patients who received MIs for orthodontic anchorage, with data for categories of MI dimension, shape, and thread design and insertion site, and evaluated by assessment of primary and secondary stability. Study selection, data extraction, quality assessment, and a meta-analysis were carried out. Twenty-seven studies were included in the qualitative synthesis: five randomized, eight prospective, and 14 retrospective clinical studies. One study with a serious risk of bias was later excluded. Medium and short MIs (1.4-1.9mm diameter and 5-8mm length) presented the highest success rates (0.87, 95% CI 0.80-0.92). A maximum insertion torque of 13.28Ncm (standard error 0.34) was observed for tapered self-drilling MIs in the mandible, whereas cylindrical MIs in the maxilla presented a maximum removal torque of 10.01Ncm (standard error 0.17). Moderate evidence indicates that the clinical performance of MIs is influenced by implant geometry parameters and is also related to properties of the insertion site. However, further research is necessary to support these associations. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Comprehensive identification of Vibrio vulnificus genes required for growth in human serum.
Carda-Diéguez, M; Silva-Hernández, F X; Hubbard, T P; Chao, M C; Waldor, M K; Amaro, C
2018-12-31
Vibrio vulnificus can be a highly invasive pathogen capable of spreading from an infection site to the bloodstream, causing sepsis and death. To survive and proliferate in blood, the pathogen requires mechanisms to overcome the innate immune defenses and metabolic limitations of this host niche. We created a high-density transposon mutant library in YJ016, a strain representative of the most virulent V. vulnificus lineage (or phylogroup) and used transposon insertion sequencing (TIS) screens to identify loci that enable the pathogen to survive and proliferate in human serum. Initially, genes underrepresented for insertions were used to estimate the V. vulnificus essential gene set; comparisons of these genes with similar TIS-based classification of underrepresented genes in other vibrios enabled the compilation of a common Vibrio essential gene set. Analysis of the relative abundance of insertion mutants in the library after exposure to serum suggested that genes involved in capsule biogenesis are critical for YJ016 complement resistance. Notably, homologues of two genes required for YJ016 serum-resistance and capsule biogenesis were not previously linked to capsule biogenesis and are largely absent from other V. vulnificus strains. The relative abundance of mutants after exposure to heat inactivated serum was compared with the findings from the serum screen. These comparisons suggest that in both conditions the pathogen relies on its Na + transporting NADH-ubiquinone reductase (NQR) complex and type II secretion system to survive/proliferate within the metabolic constraints of serum. Collectively, our findings reveal the potency of comparative TIS screens to provide knowledge of how a pathogen overcomes the diverse limitations to growth imposed by serum.
Oumeraci, Tonio; Jensen, Vanessa; Talbot, Steven R; Hofmann, Winfried; Kostrzewa, Markus; Schlegelberger, Brigitte; von Neuhoff, Nils; Häussler, Susanne
2015-01-01
Pseudomonas aeruginosa is a gram-negative bacterium that is ubiquitously present in the aerobic biosphere. As an antibiotic-resistant facultative pathogen, it is a major cause of hospital-acquired infections. Its rapid and accurate identification is crucial in clinical and therapeutic environments. In a large-scale MALDI-TOF mass spectrometry-based screen of the Harvard transposon insertion mutant library of P. aeruginosa strain PA14, intact-cell proteome profile spectra of 5547 PA14 transposon mutants exhibiting a plethora of different phenotypes were acquired and analyzed. Of all P. aeruginosa PA14 mutant profiles 99.7% were correctly identified as P. aeruginosa with the Biotyper software on the species level. On the strain level, 99.99% of the profiles were mapped to five different individual P. aeruginosa Biotyper database entries. A principal component analysis-based approach was used to determine the most important discriminatory mass features between these Biotyper groups. Although technical replicas were consistently categorized to specific Biotyper groups in 94.2% of the mutant profiles, biological replicas were not, indicating that the distinct proteotypes are affected by growth conditions. The PA14 mutant profile collection presented here constitutes the largest coherent P. aeruginosa MALDI-TOF spectral dataset publicly available today. Transposon insertions in thousands of different P. aeruginosa genes did not affect species identification from MALDI-TOF mass spectra, clearly demonstrating the robustness of the approach. However, the assignment of the individual spectra to sub-groups proved to be non-consistent in biological replicas, indicating that the differentiation between biotyper groups in this nosocomial pathogen is unassured.
User Interface Technology Transfer to NASA's Virtual Wind Tunnel System
NASA Technical Reports Server (NTRS)
vanDam, Andries
1998-01-01
Funded by NASA grants for four years, the Brown Computer Graphics Group has developed novel 3D user interfaces for desktop and immersive scientific visualization applications. This past grant period supported the design and development of a software library, the 3D Widget Library, which supports the construction and run-time management of 3D widgets. The 3D Widget Library is a mechanism for transferring user interface technology from the Brown Graphics Group to the Virtual Wind Tunnel system at NASA Ames as well as the public domain.
The Essential Genome of Escherichia coli K-12.
Goodall, Emily C A; Robinson, Ashley; Johnston, Iain G; Jabbari, Sara; Turner, Keith A; Cunningham, Adam F; Lund, Peter A; Cole, Jeffrey A; Henderson, Ian R
2018-02-20
Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry. IMPORTANCE Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in Escherichia coli , we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the E. coli model laboratory organism. This paper is important because it provides a better understanding of the essential genes of E. coli , reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data. Copyright © 2018 Goodall et al.
Sequence-based screening for self-sufficient P450 monooxygenase from a metagenome library.
Kim, B S; Kim, S Y; Park, J; Park, W; Hwang, K Y; Yoon, Y J; Oh, W K; Kim, B Y; Ahn, J S
2007-05-01
Cytochrome P450 monooxygenases (CYPs) are useful catalysts for oxidation reactions. Self-sufficient CYPs harbour a reductive domain covalently connected to a P450 domain and are known for their robust catalytic activity with great potential as biocatalysts. In an effort to expand genetic sources of self-sufficient CYPs, we devised a sequence-based screening system to identify them in a soil metagenome. We constructed a soil metagenome library and performed sequence-based screening for self-sufficient CYP genes. A new CYP gene, syk181, was identified from the metagenome library. Phylogenetic analysis revealed that SYK181 formed a distinct phylogenic line with 46% amino-acid-sequence identity to CYP102A1 which has been extensively studied as a fatty acid hydroxylase. The heterologously expressed SYK181 showed significant hydroxylase activity towards naphthalene and phenanthrene as well as towards fatty acids. Sequence-based screening of metagenome libraries is expected to be a useful approach for searching self-sufficient CYP genes. The translated product of syk181 shows self-sufficient hydroxylase activity towards fatty acids and aromatic compounds. SYK181 is the first self-sufficient CYP obtained directly from a metagenome library. The genetic and biochemical information on SYK181 are expected to be helpful for engineering self-sufficient CYPs with broader catalytic activities towards various substrates, which would be useful for bioconversion of natural products and biodegradation of organic chemicals.
Kyrychenko, Alexander; Rodnin, Mykola V.; Vargas-Uribe, Mauricio; Sharma, Shivaji K.; Durand, Grégory; Pucci, Bernard; Popot, Jean-Luc; Ladokhin, Alexey S.
2011-01-01
Solubilizing membrane proteins for functional, structural and thermodynamic studies is usually achieved with the help of detergents, which tend to destabilize them, however. Several classes of non-detergent surfactants have been designed as milder substitutes for detergents, most prominently amphipathic polymers called 'amphipols' and fluorinated surfactants. Here we test the potential usefulness of these compounds for thermodynamic studies by examining their effect on conformational transitions of the diphtheria toxin T-domain. The advantage of the T-domain as a model system is that it exists as a soluble globular protein at neutral pH yet is converted into a membrane-competent form by acidification and inserts into the lipid bilayer as part of its physiological action. We have examined the effects of various surfactants on two conformational transitions of the T-domain, thermal unfolding and pH-induced transition to a membrane-competent form. All tested detergent and non-detergent surfactants lowered the cooperativity of the thermal unfolding of the T-domain. The dependence of enthalpy of unfolding on surfactant concentration was found to be least for fluorinated surfactants, thus making them useful candidates for thermodynamic studies. Circular dichroism measurements demonstrate that non-ionic homo-polymeric amphipols (NAhPols), unlike any other surfactants, can actively cause a conformational change of the T-domain. NAhPol-induced structural rearrangements are different from those observed during thermal denaturation and are suggested to be related to the formation of the membrane-competent form of the T-domain. Measurements of vesicle content leakage indicate that interaction with NAhPols not only does not prevent the T-domain from inserting into the bilayer, but it can make bilayer permeabilization even more efficient, whereas the pH-dependence of membrane permeabilization becomes more cooperative. PMID:21945883
Structure-function analysis of the auxilin J-domain reveals an extended Hsc70 interaction interface.
Jiang, Jianwen; Taylor, Alexander B; Prasad, Kondury; Ishikawa-Brush, Yumiko; Hart, P John; Lafer, Eileen M; Sousa, Rui
2003-05-20
J-domains are widespread protein interaction modules involved in recruiting and stimulating the activity of Hsp70 family chaperones. We have determined the crystal structure of the J-domain of auxilin, a protein which is involved in uncoating clathrin-coated vesicles. Comparison to the known structures of J-domains from four other proteins reveals that the auxilin J-domain is the most divergent of all J-domain structures described to date. In addition to the canonical J-domain features described previously, the auxilin J-domain contains an extra N-terminal helix and a long loop inserted between helices I and II. The latter loop extends the positively charged surface which forms the Hsc70 binding site, and is shown by directed mutagenesis and surface plasmon resonance to contain side chains important for binding to Hsc70.
A lanthipeptide library used to identify a protein-protein interaction inhibitor.
Yang, Xiao; Lennard, Katherine R; He, Chang; Walker, Mark C; Ball, Andrew T; Doigneaux, Cyrielle; Tavassoli, Ali; van der Donk, Wilfred A
2018-04-01
In this article we describe the production and screening of a genetically encoded library of 10 6 lanthipeptides in Escherichia coli using the substrate-tolerant lanthipeptide synthetase ProcM. This plasmid-encoded library was combined with a bacterial reverse two-hybrid system for the interaction of the HIV p6 protein with the UEV domain of the human TSG101 protein, which is a critical protein-protein interaction for HIV budding from infected cells. Using this approach, we identified an inhibitor of this interaction from the lanthipeptide library, whose activity was verified in vitro and in cell-based virus-like particle-budding assays. Given the variety of lanthipeptide backbone scaffolds that may be produced with ProcM, this method may be used for the generation of genetically encoded libraries of natural product-like lanthipeptides containing substantial structural diversity. Such libraries may be combined with any cell-based assay to identify lanthipeptides with new biological activities.
Williamson, Lynn L; Borlee, Bradley R; Schloss, Patrick D; Guan, Changhui; Allen, Heather K; Handelsman, Jo
2005-10-01
The goal of this study was to design and evaluate a rapid screen to identify metagenomic clones that produce biologically active small molecules. We built metagenomic libraries with DNA from soil on the floodplain of the Tanana River in Alaska. We extracted DNA directly from the soil and cloned it into fosmid and bacterial artificial chromosome vectors, constructing eight metagenomic libraries that contain 53,000 clones with inserts ranging from 1 to 190 kb. To identify clones of interest, we designed a high throughput "intracellular" screen, designated METREX, in which metagenomic DNA is in a host cell containing a biosensor for compounds that induce bacterial quorum sensing. If the metagenomic clone produces a quorum-sensing inducer, the cell produces green fluorescent protein (GFP) and can be identified by fluorescence microscopy or captured by fluorescence-activated cell sorting. Our initial screen identified 11 clones that induce and two that inhibit expression of GFP. The intracellular screen detected quorum-sensing inducers among metagenomic clones that a traditional overlay screen would not. One inducing clone carries a LuxI homologue that directs the synthesis of an N-acyl homoserine lactone quorum-sensing signal molecule. The LuxI homologue has 62% amino acid sequence identity to its closest match in GenBank, AmfI from Pseudomonas fluorescens, and is on a 78-kb insert that contains 67 open reading frames. Another inducing clone carries a gene with homology to homocitrate synthase. Our results demonstrate the power of an intracellular screen to identify functionally active clones and biologically active small molecules in metagenomic libraries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, A.J.; Burgess, D.L.; Kohrman, D.
1994-09-01
The Twirler mutation (Tw) causing cleft palate {plus_minus} cleft lip, vestibular defects and obesity is located within 0.5 cM of an ataxia locus (ax) on mouse chromosome 18. We identified a transgene-induced insertional mutation with vestibular and craniofacial defects that appears to be a new allele of Twirler. Mouse DNA flanking the transgene insertion site was isolated from a cosmid library. An evolutionarily conserved, zoo blot positive cosmid subclone was used to probe a human {lambda} genomic library. From the sequence of a highly homologous human {lambda} clone, we designed STS primers and screened a human P1 library. DNA frommore » two positive P1 clones was hybridized with simple sequence probes, and a (CTAT){sub 12} repeat was detected. Analysis of 62 CEPH parents with primers flanking the repeat identified six alleles containing 9 to 14 copies of the repeat, at frequencies of 0.17, 0.17, 0.17, 0.27, 0.15 and 0.07, respectively. The observed heterozygosity was 49/62 with a calculated PIC value of 0.76. This polymorphic microsatellite marker, designated Umi3, was mapped to the predicted conserved human linkage group by analysis of somatic cell hybrid panels. The anticipated short distance between Umi3 and the disease genes will facilitate detection of linkage in small families. We would like to type appropriate human pedigrees with Umi3 in order to identify patients with inherited disorders homologous to the mouse mutations Twirler and ataxia.« less
Lobanov, Alexey V.; Delgado, Cesar; Rahlfs, Stefan; Novoselov, Sergey V.; Kryukov, Gregory V.; Gromer, Stephan; Hatfield, Dolph L.; Becker, Katja; Gladyshev, Vadim N.
2006-01-01
The use of selenocysteine (Sec) as the 21st amino acid in the genetic code has been described in all three major domains of life. However, within eukaryotes, selenoproteins are only known in animals and algae. In this study, we characterized selenoproteomes and Sec insertion systems in protozoan Apicomplexa parasites. We found that among these organisms, Plasmodium and Toxoplasma utilized Sec, whereas Cryptosporidium did not. However, Plasmodium had no homologs of known selenoproteins. By searching computationally for evolutionarily conserved selenocysteine insertion sequence (SECIS) elements, which are RNA structures involved in Sec insertion, we identified four unique Plasmodium falciparum selenoprotein genes. These selenoproteins were incorrectly annotated in PlasmoDB, were conserved in other Plasmodia and had no detectable homologs in other species. We provide evidence that two Plasmodium SECIS elements supported Sec insertion into parasite and endogenous selenoproteins when they were expressed in mammalian cells, demonstrating that the Plasmodium SECIS elements are functional and indicating conservation of Sec insertion between Apicomplexa and animals. Dependence of the plasmodial parasites on selenium suggests possible strategies for antimalarial drug development. PMID:16428245
NASA Astrophysics Data System (ADS)
Das, Anshuman; Patel, S. K.; Sateesh Kumar, Ch.; Biswal, B. B.
2018-03-01
The newer technological developments are exerting immense pressure on domain of production. These fabrication industries are busy finding solutions to reduce the costs of cutting materials, enhance the machined parts quality and testing different materials, which can be made versatile for cutting materials, which are difficult for machining. High-speed machining has been the domain of paramount importance for mechanical engineering. In this study, the variation of surface integrity parameters of hardened AISI 4340 alloy steel was analyzed. The surface integrity parameters like surface roughness, micro hardness, machined surface morphology and white layer of hardened AISI 4340 alloy steel were compared using coated and uncoated cermet inserts under dry cutting condition. From the results, it was deduced that coated insert outperformed uncoated one in terms of different surface integrity characteristics.
Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Swaminathan, S.; Zhou, R.
2011-02-18
Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. Themore » structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.« less
Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Z Zhang; R Zhou; J Sauder
2011-12-31
Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. Themore » structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.« less
Data publishing - visions of the future
NASA Astrophysics Data System (ADS)
Schäfer, Leonie; Klump, Jens; Bertelmann, Roland; Klar, Jochen; Enke, Harry; Rathmann, Torsten; Koudela, Daniela; Köhler, Klaus; Müller-Pfefferkorn, Ralph; van Uytvanck, Dieter; Strathmann, Stefan; Engelhardt, Claudia
2013-04-01
This poster describes future scenarios of information infrastructures in science and other fields of research. The scenarios presented are based on practical experience resulting from interaction with research data in a research center and its library, and further enriched by the results of a baseline study of existing data repositories and data infrastructures. The baseline study was conducted as part of the project "Requirements for a multi-disciplinary research data infrastructure (Radieschen)", which is funded by the German Research Foundation (DFG). Current changes in information infrastructures pose new challenges to libraries and scientific journals, which both act as information service providers, facilitating access to digital media, support publications of research data and enable their long-term archiving. Digital media and research data open new aspects in the field of activity of libraries and scientific journals. What will a library of the future look like? Will a library purely serve as interface to data centres? Will libraries and data centres merge into a new service unit? Will a future library be the interface to academic cloud services? Scientific journals already converted from mostly print editions to print and e-journals. What type of journals will emerge in the future? Is there a role for data-centred journals? Will there be journals to publish software code to make this type of research result citable and a part of the record of science? Just as users evolve from being consumers of information into producers, the role of information service providers, such as libraries, changes from a purely supporting to a contributing role. Furthermore, the role of the library changes from a central point of access for the search of publications to an important link in the value-adding chain from author to publication. Journals for software publication might be another vision for the future in data publishing. Software forms the missing link between big data collected by experiments, monitoring or simulation. In order to verify the results presented, a paper should also report on the process of data analysis applied to the data sets stored at data centers. In this case data, software, and interpretation supplement each other as a trustworthy, reproducible presentation of research results. Another approach is suggested by researchers of the EU-funded project "Liquid Publications" (1). Instead of traditional publications the researchers propose liquid journals as evolving collections of links and material, and recommend new methods in reviewing and assessing publications. Another point of interest are workflows in data publication. The commonly used model to depict the data life cycle might look appealing but does not necessarily represent reality. The model proposed by Treloar et. al. (2) offers a better approach to depict transition of research data between different domains of use, e.g. from the group domain to the public domain. However, several questions need to be addressed, such as how to avoid the loss of contextual information during transitions between domains, and the influence of the size of the data on the workflow process. This poster aims to present different scenarios of the future - from the point of view of researchers, libraries and scientific journals and will invite for further discussion. (1) LiquidPub Green Paper, https://dev.liquidpub.org/svn/liquidpub/papers/deliverables/LPGreenPaper.pdf (2) Treloar, A., Harboe-Ree, C. (2008). Data management and the curation continuum: how the Monash experience is informing repository relationships. In VALA2008, Melbourne, Australia. Retrieved from http://www.valaconf.org.au/vala2008/papers2008/111_Treloar_Final.pdf
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
... Mississippi. \\2\\ A ``pig'' is a tool that is inserted into and moves through the pipeline, and is used for... Web site ( www.ferc.gov ) using the eLibrary link. A limited number of copies of the EA are available... using the eComment feature on the Commission's Web site ( www.ferc.gov ) under the link to Documents and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
... using the link called ``eLibrary'' or from the Commission's Public Reference Room, 888 First Street, NE... transportation service of 27,000 dekatherms per day of natural gas. \\2\\ A ``pig'' is a tool that is inserted into... all those receiving this notice in the mail and are available at http://www.ferc.gov using the link...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-06
.../receivers; \\2\\ \\2\\ A ``pig'' is a tool that is inserted into and moves through the pipeline, and is used for...://www.ferc.gov using the link called ``eLibrary'' or from the Commission's Public Reference Room, 888... feature, which is located at http://www.ferc.gov under the link called ``Documents and Filings''. A Quick...
USDA-ARS?s Scientific Manuscript database
Previously, twelve protease-deficient mutants of Xanthomonas oryzae pv. oryzicola (Xoc) RS105 strain were recovered from a Tn5-tagged mutant library. In the current study, the Tn5 insertion site in each mutant was mapped. Mutations in genes encoding components of the type II secretion apparatus, cAM...
Rosconi, Federico; de Vries, Stefan P W; Baig, Abiyad; Fabiano, Elena; Grant, Andrew J
2016-11-15
The interior of plants contains microorganisms (referred to as endophytes) that are distinct from those present at the root surface or in the surrounding soil. Herbaspirillum seropedicae strain SmR1, belonging to the betaproteobacteria, is an endophyte that colonizes crops, including rice, maize, sugarcane, and sorghum. Different approaches have revealed genes and pathways regulated during the interactions of H. seropedicae with its plant hosts. However, functional genomic analysis of transposon (Tn) mutants has been hampered by the lack of genetic tools. Here we successfully employed a combination of in vivo high-density mariner Tn mutagenesis and targeted Tn insertion site sequencing (Tn-seq) in H. seropedicae SmR1. The analysis of multiple gene-saturating Tn libraries revealed that 395 genes are essential for the growth of H. seropedicae SmR1 in tryptone-yeast extract medium. A comparative analysis with the Database of Essential Genes (DEG) showed that 25 genes are uniquely essential in H. seropedicae SmR1. The Tn mutagenesis protocol developed and the gene-saturating Tn libraries generated will facilitate elucidation of the genetic mechanisms of the H. seropedicae endophytic lifestyle. A focal point in the study of endophytes is the development of effective biofertilizers that could help to reduce the input of agrochemicals in croplands. Besides the ability to promote plant growth, a good biofertilizer should be successful in colonizing its host and competing against the native microbiota. By using a systematic Tn-based gene-inactivation strategy and massively parallel sequencing of Tn insertion sites (Tn-seq), it is possible to study the fitness of thousands of Tn mutants in a single experiment. We have applied the combination of these techniques to the plant-growth-promoting endophyte Herbaspirillum seropedicae SmR1. The Tn mutant libraries generated will enable studies into the genetic mechanisms of H. seropedicae-plant interactions. The approach that we have taken is applicable to other plant-interacting bacteria. Copyright © 2016 Rosconi et al.
Design and pitch scaling for affordable node transition and EUV insertion scenario
NASA Astrophysics Data System (ADS)
Kim, Ryoung-han; Ryckaert, Julien; Raghavan, Praveen; Sherazi, Yasser; Debacker, Peter; Trivkovic, Darko; Gillijns, Werner; Tan, Ling Ee; Drissi, Youssef; Blanco, Victor; Bekaert, Joost; Mao, Ming; Larivière, Stephane; McIntyre, Greg
2017-04-01
imec's DTCO and EUV achievement toward imec 7nm (iN7) technology node which is industry 5nm node equivalent is reported with a focus on cost and scaling. Patterning-aware design methodology supports both iArF multiple patterning and EUV under one compliant design rule. FinFET device with contacted poly pitch of 42nm and metal pitch of 32nm with 7.5-track, 6.5-track, and 6-track standard cell library are explored. Scaling boosters are used to provide additional scaling and die cost benefit while lessening pitch shrink burden, and it makes EUV insertion more affordable. EUV pattern fidelity is optimized through OPC, SMO, M3D, mask sizing and SRAF. Processed wafers were characterized and edge-placement-error (EPE) variability is validated for EUV insertion. Scale-ability and cost of ownership of EUV patterning in aligned with iN7 standard cell design, integration and patterning specification are discussed.
Castrejon, I; Carmona, L; Agrinier, N; Andres, M; Briot, K; Caron, M; Christensen, R; Consolaro, A; Curbelo, R; Ferrer, Montserrat; Foltz, Violaine; Gonzalez, C; Guillemin, F; Machado, P M; Prodinger, Birgit; Ravelli, A; Scholte-Voshaar, M; Uhlig, T; van Tuyl, L H D; Zink, A; Gossec, L
2015-01-01
Patient reported outcomes (PROs) are relevant in rheumatology. Variable accessibility and validity of commonly used PROs are obstacles to homogeneity in evidence synthesis. The objective of this project was to provide a comprehensive library of "validated PROs". A launch meeting with rheumatologists, PROs methodological experts, and patients, was held to define the library's aims and scope, and basic requirements. To feed the library we performed systematic reviews on selected diseases and domains. Relevant information on PROs was collected using standardised data collection forms based on the COSMIN checklist. The EULAR Outcomes Measures Library (OML), whose aims are to provide and to advise on PROs on a user-friendly manner albeit based on scientific grounds, has been launched and made accessible to all. PROs currently included cover any domain and, are generic or specifically target to the following diseases: rheumatoid arthritis, osteoarthritis, spondyloarthritis, low back pain, systemic lupus erythematosus, gout, osteoporosis, juvenile idiopathic arthritis, and fibromyalgia. Up to 236 instruments (106 generic and 130 specific) have been identified, evaluated, and included. The systematic review for SLE, which yielded 10 specific instruments, is presented here as an example. The OML website includes, for each PRO, information on the construct being measured and the extent of validation, recommendations for use, and available versions; it also contains a glossary on common validation terms. The OML is an in progress library led by rheumatologists, related professionals and patients, that will help to better understand and apply PROs in rheumatic and musculoskeletal diseases.
Clément, D; Lanaud, C; Sabau, X; Fouet, O; Le Cunff, L; Ruiz, E; Risterucci, A M; Glaszmann, J C; Piffanelli, P
2004-05-01
We have constructed and validated the first cocoa ( Theobroma cacao L.) BAC library, with the aim of developing molecular resources to study the structure and evolution of the genome of this perennial crop. This library contains 36,864 clones with an average insert size of 120 kb, representing approximately ten haploid genome equivalents. It was constructed from the genotype Scavina-6 (Sca-6), a Forastero clone highly resistant to cocoa pathogens and a parent of existing mapping populations. Validation of the BAC library was carried out with a set of 13 genetically-anchored single copy and one duplicated markers. An average of nine BAC clones per probe was identified, giving an initial experimental estimation of the genome coverage represented in the library. Screening of the library with a set of resistance gene analogues (RGAs), previously mapped in cocoa and co-localizing with QTL for resistance to Phytophthora traits, confirmed at the physical level the tight clustering of RGAs in the cocoa genome and provided the first insights into the relationships between genetic and physical distances in the cocoa genome. This library represents an available BAC resource for structural genomic studies or map-based cloning of genes corresponding to important QTLs for agronomic traits such as resistance genes to major cocoa pathogens like Phytophthora spp ( palmivora and megakarya), Crinipellis perniciosa and Moniliophthora roreri.
High performance geospatial and climate data visualization using GeoJS
NASA Astrophysics Data System (ADS)
Chaudhary, A.; Beezley, J. D.
2015-12-01
GeoJS (https://github.com/OpenGeoscience/geojs) is an open-source library developed to support interactive scientific and geospatial visualization of climate and earth science datasets in a web environment. GeoJS has a convenient application programming interface (API) that enables users to harness the fast performance of WebGL and Canvas 2D APIs with sophisticated Scalable Vector Graphics (SVG) features in a consistent and convenient manner. We started the project in response to the need for an open-source JavaScript library that can combine traditional geographic information systems (GIS) and scientific visualization on the web. Many libraries, some of which are open source, support mapping or other GIS capabilities, but lack the features required to visualize scientific and other geospatial datasets. For instance, such libraries are not be capable of rendering climate plots from NetCDF files, and some libraries are limited in regards to geoinformatics (infovis in a geospatial environment). While libraries such as d3.js are extremely powerful for these kinds of plots, in order to integrate them into other GIS libraries, the construction of geoinformatics visualizations must be completed manually and separately, or the code must somehow be mixed in an unintuitive way.We developed GeoJS with the following motivations:• To create an open-source geovisualization and GIS library that combines scientific visualization with GIS and informatics• To develop an extensible library that can combine data from multiple sources and render them using multiple backends• To build a library that works well with existing scientific visualizations tools such as VTKWe have successfully deployed GeoJS-based applications for multiple domains across various projects. The ClimatePipes project funded by the Department of Energy, for example, used GeoJS to visualize NetCDF datasets from climate data archives. Other projects built visualizations using GeoJS for interactively exploring data and analysis regarding 1) the human trafficking domain, 2) New York City taxi drop-offs and pick-ups, and 3) the Ebola outbreak. GeoJS supports advanced visualization features such as picking and selecting, as well as clustering. It also supports 2D contour plots, vector plots, heat maps, and geospatial graphs.
Bowers, Robert M.; Clum, Alicia; Tice, Hope; ...
2015-10-24
Background: The rapid development of sequencing technologies has provided access to environments that were either once thought inhospitable to life altogether or that contain too few cells to be analyzed using genomics approaches. While 16S rRNA gene microbial community sequencing has revolutionized our understanding of community composi tion and diversity over time and space, it only provides a crude estimate of microbial functional and metabolic potential. Alternatively, shotgun metagenomics allows comprehensive sampling of all genetic material in an environment, without any underlying primer biases. Until recently, one of the major bottlenecks of shotgun metagenomics has been the requirement for largemore » initial DNA template quantities during library preparation. Results: Here, we investigate the effects of varying template concentrations across three low biomass library preparation protocols on their ability to accurately reconstruct a mock microbial community of known composition. We analyze the effects of input DNA quantity and library preparation method on library insert size, GC content, community composition, assembly quality and metagenomic binning. We found that library preparation method and the amount of starting material had significant impacts on the mock community metagenomes. In particular, GC content shifted towards more GC rich sequences at the lower input quantities regardless of library prep method, the number of low quality reads that could not be mapped to the reference genomes increased with decreasing input quantities, and the different library preparation methods had an impact on overall metagenomic community composition. Conclusions: This benchmark study provides recommendations for library creation of representative and minimally biased metagenome shotgun sequencing, enabling insights into functional attributes of low biomass ecosystem microbial communities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Robert M.; Clum, Alicia; Tice, Hope
Background: The rapid development of sequencing technologies has provided access to environments that were either once thought inhospitable to life altogether or that contain too few cells to be analyzed using genomics approaches. While 16S rRNA gene microbial community sequencing has revolutionized our understanding of community composi tion and diversity over time and space, it only provides a crude estimate of microbial functional and metabolic potential. Alternatively, shotgun metagenomics allows comprehensive sampling of all genetic material in an environment, without any underlying primer biases. Until recently, one of the major bottlenecks of shotgun metagenomics has been the requirement for largemore » initial DNA template quantities during library preparation. Results: Here, we investigate the effects of varying template concentrations across three low biomass library preparation protocols on their ability to accurately reconstruct a mock microbial community of known composition. We analyze the effects of input DNA quantity and library preparation method on library insert size, GC content, community composition, assembly quality and metagenomic binning. We found that library preparation method and the amount of starting material had significant impacts on the mock community metagenomes. In particular, GC content shifted towards more GC rich sequences at the lower input quantities regardless of library prep method, the number of low quality reads that could not be mapped to the reference genomes increased with decreasing input quantities, and the different library preparation methods had an impact on overall metagenomic community composition. Conclusions: This benchmark study provides recommendations for library creation of representative and minimally biased metagenome shotgun sequencing, enabling insights into functional attributes of low biomass ecosystem microbial communities.« less
2010-06-01
1 identifies five fundamental IW operations as they relate to the maritime environment and domain. Maritime IrregularWarfare Activities...they relate to MIW. Figure 2 identifies five fundamental IW operations as they relate to the maritime environment and domain. Maritime...meter RHIB is designed for the insertion and extraction of SEAL Team personnel. It is a twin- turbocharged diesel engine, waterjet-propelled personnel
Separating the Wheat from the Chaff: Identifying Key Elements in the NLA .AU Domain Harvest
ERIC Educational Resources Information Center
Fellows, Geoff; Harvey, Ross; Lloyd, Annemaree; Pymm, Bob; Wallis, Jake
2008-01-01
In 2005 and 2006 the National Library of Australia (NLA) carried out two whole-domain web harvests which complement the selective web archiving approach taken by PANDORA. Web harvests of this size pose significant challenges to their use. Despite these challenges, such harvests present fascinating research opportunities. The NLA has provided…
Srivatsan, Anjana; Bowen, Nikki; Kolodner, Richard D.
2014-01-01
DNA mismatch repair is initiated by either the Msh2-Msh6 or the Msh2-Msh3 mispair recognition heterodimer. Here we optimized the expression and purification of Saccharomyces cerevisiae Msh2-Msh3 and performed a comparative study of Msh2-Msh3 and Msh2-Msh6 for mispair binding, sliding clamp formation, and Mlh1-Pms1 recruitment. Msh2-Msh3 formed sliding clamps and recruited Mlh1-Pms1 on +1, +2, +3, and +4 insertion/deletions and CC, AA, and possibly GG mispairs, whereas Msh2-Msh6 formed mispair-dependent sliding clamps and recruited Mlh1-Pms1 on 7 of the 8 possible base:base mispairs, the +1 insertion/deletion mispair, and to a low level on the +2 but not the +3 or +4 insertion/deletion mispairs and not on the CC mispair. The mispair specificity of sliding clamp formation and Mlh1-Pms1 recruitment but not mispair binding alone correlated best with genetic data on the mispair specificity of Msh2-Msh3- and Msh2-Msh6-dependent mismatch repair in vivo. Analysis of an Msh2-Msh6/Msh3 chimeric protein and mutant Msh2-Msh3 complexes showed that the nucleotide binding domain and communicating regions but not the mispair binding domain of Msh2-Msh3 are responsible for the extremely rapid dissociation of Msh2-Msh3 sliding clamps from DNA relative to that seen for Msh2-Msh6, and that amino acid residues predicted to stabilize Msh2-Msh3 interactions with bent, strand-separated mispair-containing DNA are more critical for the recognition of small +1 insertion/deletions than larger +4 insertion/deletions. PMID:24550389
Srivatsan, Anjana; Bowen, Nikki; Kolodner, Richard D
2014-03-28
DNA mismatch repair is initiated by either the Msh2-Msh6 or the Msh2-Msh3 mispair recognition heterodimer. Here we optimized the expression and purification of Saccharomyces cerevisiae Msh2-Msh3 and performed a comparative study of Msh2-Msh3 and Msh2-Msh6 for mispair binding, sliding clamp formation, and Mlh1-Pms1 recruitment. Msh2-Msh3 formed sliding clamps and recruited Mlh1-Pms1 on +1, +2, +3, and +4 insertion/deletions and CC, AA, and possibly GG mispairs, whereas Msh2-Msh6 formed mispair-dependent sliding clamps and recruited Mlh1-Pms1 on 7 of the 8 possible base:base mispairs, the +1 insertion/deletion mispair, and to a low level on the +2 but not the +3 or +4 insertion/deletion mispairs and not on the CC mispair. The mispair specificity of sliding clamp formation and Mlh1-Pms1 recruitment but not mispair binding alone correlated best with genetic data on the mispair specificity of Msh2-Msh3- and Msh2-Msh6-dependent mismatch repair in vivo. Analysis of an Msh2-Msh6/Msh3 chimeric protein and mutant Msh2-Msh3 complexes showed that the nucleotide binding domain and communicating regions but not the mispair binding domain of Msh2-Msh3 are responsible for the extremely rapid dissociation of Msh2-Msh3 sliding clamps from DNA relative to that seen for Msh2-Msh6, and that amino acid residues predicted to stabilize Msh2-Msh3 interactions with bent, strand-separated mispair-containing DNA are more critical for the recognition of small +1 insertion/deletions than larger +4 insertion/deletions.
Sunamura, Ei-Ichiro; Konno, Hiroki; Imashimizu, Mari; Mochimaru, Mari; Hisabori, Toru
2012-01-01
The central shaft of the catalytic core of ATP synthase, the γ subunit consists of a coiled-coil structure of N- and C-terminal α-helices, and a globular domain. The γ subunit of cyanobacterial and chloroplast ATP synthase has a unique 30–40-amino acid insertion within the globular domain. We recently prepared the insertion-removed α3β3γ complex of cyanobacterial ATP synthase (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855–865). Although the insertion is thought to be located in the periphery of the complex and far from catalytic sites, the mutant complex shows a remarkable increase in ATP hydrolysis activity due to a reduced tendency to lapse into ADP inhibition. We postulated that removal of the insertion affects the activity via a conformational change of two central α-helices in γ. To examine this hypothesis, we prepared a mutant complex that can lock the relative position of two central α-helices to each other by way of a disulfide bond formation. The mutant obtained showed a significant change in ATP hydrolysis activity caused by this restriction. The highly active locked complex was insensitive to N-dimethyldodecylamine-N-oxide, suggesting that the complex is resistant to ADP inhibition. In addition, the lock affected ϵ inhibition. In contrast, the change in activity caused by removal of the γ insertion was independent from the conformational restriction of the central axis component. These results imply that the global conformational change of the γ subunit indirectly regulates complex activity by changing both ADP inhibition and ϵ inhibition. PMID:23012354
Determinants of FIV and HIV Vif sensitivity of feline APOBEC3 restriction factors.
Zhang, Zeli; Gu, Qinyong; Jaguva Vasudevan, Ananda Ayyappan; Hain, Anika; Kloke, Björn-Philipp; Hasheminasab, Sascha; Mulnaes, Daniel; Sato, Kei; Cichutek, Klaus; Häussinger, Dieter; Bravo, Ignacio G; Smits, Sander H J; Gohlke, Holger; Münk, Carsten
2016-07-01
Feline immunodeficiency virus (FIV) is a global pathogen of Felidae species and a model system for Human immunodeficiency virus (HIV)-induced AIDS. In felids such as the domestic cat (Felis catus), APOBEC3 (A3) genes encode for single-domain A3Z2s, A3Z3 and double-domain A3Z2Z3 anti-viral cytidine deaminases. The feline A3Z2Z3 is expressed following read-through transcription and alternative splicing, introducing a previously untranslated exon in frame, encoding a domain insertion called linker. Only A3Z3 and A3Z2Z3 inhibit Vif-deficient FIV. Feline A3s also are restriction factors for HIV and Simian immunodeficiency viruses (SIV). Surprisingly, HIV-2/SIV Vifs can counteract feline A3Z2Z3. To identify residues in feline A3s that Vifs need for interaction and degradation, chimeric human-feline A3s were tested. Here we describe the molecular direct interaction of feline A3s with Vif proteins from cat FIV and present the first structural A3 model locating these interaction regions. In the Z3 domain we have identified residues involved in binding of FIV Vif, and their mutation blocked Vif-induced A3Z3 degradation. We further identified additional essential residues for FIV Vif interaction in the A3Z2 domain, allowing the generation of FIV Vif resistant A3Z2Z3. Mutated feline A3s also showed resistance to the Vif of a lion-specific FIV, indicating an evolutionary conserved Vif-A3 binding. Comparative modelling of feline A3Z2Z3 suggests that the residues interacting with FIV Vif have, unlike Vif-interacting residues in human A3s, a unique location at the domain interface of Z2 and Z3 and that the linker forms a homeobox-like domain protruding of the Z2Z3 core. HIV-2/SIV Vifs efficiently degrade feline A3Z2Z3 by possible targeting the linker stretch connecting both Z-domains. Here we identified in feline A3s residues important for binding of FIV Vif and a unique protein domain insertion (linker). To understand Vif evolution, a structural model of the feline A3 was developed. Our results show that HIV Vif binds human A3s differently than FIV Vif feline A3s. The linker insertion is suggested to form a homeo-box domain, which is unique to A3s of cats and related species, and not found in human and mouse A3s. Together, these findings indicate a specific and different A3 evolution in cats and human.
A Predictive Model of Intein Insertion Site for Use in the Engineering of Molecular Switches
Apgar, James; Ross, Mary; Zuo, Xiao; Dohle, Sarah; Sturtevant, Derek; Shen, Binzhang; de la Vega, Humberto; Lessard, Philip; Lazar, Gabor; Raab, R. Michael
2012-01-01
Inteins are intervening protein domains with self-splicing ability that can be used as molecular switches to control activity of their host protein. Successfully engineering an intein into a host protein requires identifying an insertion site that permits intein insertion and splicing while allowing for proper folding of the mature protein post-splicing. By analyzing sequence and structure based properties of native intein insertion sites we have identified four features that showed significant correlation with the location of the intein insertion sites, and therefore may be useful in predicting insertion sites in other proteins that provide native-like intein function. Three of these properties, the distance to the active site and dimer interface site, the SVM score of the splice site cassette, and the sequence conservation of the site showed statistically significant correlation and strong predictive power, with area under the curve (AUC) values of 0.79, 0.76, and 0.73 respectively, while the distance to secondary structure/loop junction showed significance but with less predictive power (AUC of 0.54). In a case study of 20 insertion sites in the XynB xylanase, two features of native insertion sites showed correlation with the splice sites and demonstrated predictive value in selecting non-native splice sites. Structural modeling of intein insertions at two sites highlighted the role that the insertion site location could play on the ability of the intein to modulate activity of the host protein. These findings can be used to enrich the selection of insertion sites capable of supporting intein splicing and hosting an intein switch. PMID:22649521
Hu, Jia; Chen, Xiang; Zhang, Xuhua; Yuan, Xiaopeng; Yang, Mingjuan; Dai, Hui; Yang, Wei; Zhou, Qinghua; Wen, Weihong; Wang, Qirui; Qin, Weijun; Zhao, Aizhi
2018-05-01
A single chain Fv fragment (scFv) is a fusion of the variable regions of heavy (V H ) and light (V L ) chains of immunoglobulins. They are important elements of chimeric antigen receptors for cancer therapy. We sought to produce a panel of 16 extracellular protein domains of tumor markers for use in scFv yeast library screenings. A series of vectors comprising various combinations of expression elements was made, but expression was unpredictable and more than half of the protein domains could not be produced using any of the constructs. Here we describe a novel fusion expression system based on mouse TEM7 (tumor endothelial marker 7), which could facilitate protein expression. With this approach we could produce all but one of the tumor marker domains that could not otherwise be expressed. In addition, we demonstrated that the tumor associated antigen hFZD10 produced as a fusion protein with mTEM7 could be used to enrich scFv antibodies from a yeast display library. Collectively our study demonstrates the potential of specific fusion proteins based on mTEM7 in enabling mammalian cell production of tumor targeting protein domains for therapeutic development. © 2018 The Protein Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tok, J B
2004-11-11
Several peptide libraries containing up to 2 million unique peptide ligands have been synthesized. The peptides are attached onto a 80 micron resin and the length of these peptide ligands ranges from 5 to 9 amino acid residues. Using a novel calorimetric assay, the libraries were screened for binding to the ganglioside-binding domain of Clostridium Tetanus Toxin, a structural similar analog of the Clostridium Botulinum toxin. Several binding peptide sequences were identified, in which the detailed binding kinetics are currently underway using the Surface Plasmon Resonance (SPR) technique.
2012-01-01
Background The ovine Major Histocompatibility Complex (MHC) harbors genes involved in overall resistance/susceptibility of the host to infectious diseases. Compared to human and mouse, the ovine MHC is interrupted by a large piece of autosome insertion via a hypothetical chromosome inversion that constitutes ~25% of ovine chromosome 20. The evolutionary consequence of such an inversion and an insertion (inversion/insertion) in relation to MHC function remains unknown. We previously constructed a BAC clone physical map for the ovine MHC exclusive of the insertion region. Here we report the construction of a high-density physical map covering the autosome insertion in order to address the question of what the inversion/insertion had to do with ruminants during the MHC evolution. Results A total of 119 pairs of comparative bovine oligo primers were utilized to screen an ovine BAC library for positive clones and the orders and overlapping relationships of the identified clones were determined by DNA fingerprinting, BAC-end sequencing, and sequence-specific PCR. A total of 368 positive BAC clones were identified and 108 of the effective clones were ordered into an overlapping BAC contig to cover the consensus region between ovine MHC class IIa and IIb. Therefore, a continuous physical map covering the entire ovine autosome inversion/insertion region was successfully constructed. The map confirmed the bovine sequence assembly for the same homologous region. The DNA sequences of 185 BAC-ends have been deposited into NCBI database with the access numbers HR309252 through HR309068, corresponding to dbGSS ID 30164010 through 30163826. Conclusions We have constructed a high-density BAC clone physical map for the ovine autosome inversion/insertion between the MHC class IIa and IIb. The entire ovine MHC region is now fully covered by a continuous BAC clone contig. The physical map we generated will facilitate MHC functional studies in the ovine, as well as the comparative MHC evolution in ruminants. PMID:22897909
LenVarDB: database of length-variant protein domains.
Mutt, Eshita; Mathew, Oommen K; Sowdhamini, Ramanathan
2014-01-01
Protein domains are functionally and structurally independent modules, which add to the functional variety of proteins. This array of functional diversity has been enabled by evolutionary changes, such as amino acid substitutions or insertions or deletions, occurring in these protein domains. Length variations (indels) can introduce changes at structural, functional and interaction levels. LenVarDB (freely available at http://caps.ncbs.res.in/lenvardb/) traces these length variations, starting from structure-based sequence alignments in our Protein Alignments organized as Structural Superfamilies (PASS2) database, across 731 structural classification of proteins (SCOP)-based protein domain superfamilies connected to 2 730 625 sequence homologues. Alignment of sequence homologues corresponding to a structural domain is available, starting from a structure-based sequence alignment of the superfamily. Orientation of the length-variant (indel) regions in protein domains can be visualized by mapping them on the structure and on the alignment. Knowledge about location of length variations within protein domains and their visual representation will be useful in predicting changes within structurally or functionally relevant sites, which may ultimately regulate protein function. Non-technical summary: Evolutionary changes bring about natural changes to proteins that may be found in many organisms. Such changes could be reflected as amino acid substitutions or insertions-deletions (indels) in protein sequences. LenVarDB is a database that provides an early overview of observed length variations that were set among 731 protein families and after examining >2 million sequences. Indels are followed up to observe if they are close to the active site such that they can affect the activity of proteins. Inclusion of such information can aid the design of bioengineering experiments.
Leliveld, S Rutger; Stitz, Lothar; Korth, Carsten
2008-06-10
A misfolded conformation of the prion protein (PrP), PrP (Sc), is the essential component of prions, the infectious agents that cause transmissible neurodegenerative diseases. Insertional mutations that lead to an increase in the number of octarepeats (ORs) in PrP are linked to familial human prion disease. In this study, we investigated how expansion of the OR domain causes PrP to favor a prion-like conformation. Therefore, we compared the conformational and aggregation modulating properties of wild-type versus expanded OR domains, either as a fusion construct with the protein G B1 domain (GB1-OR) or as an integral part of full-length mouse PrP (MoPrP). Using circular dichroism spectroscopy, we first demonstrated that ORs are not unfolded but exist as an ensemble of three distinct conformers: polyproline helix-like, beta-turn, and "Trp-related". Domain expansion had little effect on the conformation of GB1-OR fusion proteins. When part of MoPrP however, OR domain expansion changed PrP's folding landscape, not by hampering the production of native alpha-helical monomers but by greatly reducing the propensity to form amyloid and by altering the assembly of misfolded, beta-rich aggregates. These features may relate to subtle pH-dependent conformational differences between wild-type and mutant monomers. In conclusion, we propose that PrP insertional mutations are pathogenic because they enhance specific misfolding pathways of PrP rather than by undermining native folding. This idea was supported by a trial bioassay in transgenic mice overexpressing wild-type MoPrP, where intracerebral injection of recombinant MoPrP with an expanded OR domain but not wild-type MoPrP caused prion disease.
Construction and screening of marine metagenomic libraries.
Weiland, Nancy; Löscher, Carolin; Metzger, Rebekka; Schmitz, Ruth
2010-01-01
Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.
Xu, Qifang; Dunbrack, Roland L
2012-11-01
Automating the assignment of existing domain and protein family classifications to new sets of sequences is an important task. Current methods often miss assignments because remote relationships fail to achieve statistical significance. Some assignments are not as long as the actual domain definitions because local alignment methods often cut alignments short. Long insertions in query sequences often erroneously result in two copies of the domain assigned to the query. Divergent repeat sequences in proteins are often missed. We have developed a multilevel procedure to produce nearly complete assignments of protein families of an existing classification system to a large set of sequences. We apply this to the task of assigning Pfam domains to sequences and structures in the Protein Data Bank (PDB). We found that HHsearch alignments frequently scored more remotely related Pfams in Pfam clans higher than closely related Pfams, thus, leading to erroneous assignment at the Pfam family level. A greedy algorithm allowing for partial overlaps was, thus, applied first to sequence/HMM alignments, then HMM-HMM alignments and then structure alignments, taking care to join partial alignments split by large insertions into single-domain assignments. Additional assignment of repeat Pfams with weaker E-values was allowed after stronger assignments of the repeat HMM. Our database of assignments, presented in a database called PDBfam, contains Pfams for 99.4% of chains >50 residues. The Pfam assignment data in PDBfam are available at http://dunbrack2.fccc.edu/ProtCid/PDBfam, which can be searched by PDB codes and Pfam identifiers. They will be updated regularly.
Hrle, Ajla; Maier, Lisa-Katharina; Sharma, Kundan; Ebert, Judith; Basquin, Claire; Urlaub, Henning; Marchfelder, Anita; Conti, Elena
2014-01-01
Upon pathogen invasion, bacteria and archaea activate an RNA-interference-like mechanism termed CRISPR (clustered regularly interspaced short palindromic repeats). A large family of Cas (CRISPR-associated) proteins mediates the different stages of this sophisticated immune response. Bioinformatic studies have classified the Cas proteins into families, according to their sequences and respective functions. These range from the insertion of the foreign genetic elements into the host genome to the activation of the interference machinery as well as target degradation upon attack. Cas7 family proteins are central to the type I and type III interference machineries as they constitute the backbone of the large interference complexes. Here we report the crystal structure of Thermofilum pendens Csc2, a Cas7 family protein of type I-D. We found that Csc2 forms a core RRM-like domain, flanked by three peripheral insertion domains: a lid domain, a Zinc-binding domain and a helical domain. Comparison with other Cas7 family proteins reveals a set of similar structural features both in the core and in the peripheral domains, despite the absence of significant sequence similarity. T. pendens Csc2 binds single-stranded RNA in vitro in a sequence-independent manner. Using a crosslinking - mass-spectrometry approach, we mapped the RNA-binding surface to a positively charged surface patch on T. pendens Csc2. Thus our analysis of the key structural and functional features of T. pendens Csc2 highlights recurring themes and evolutionary relationships in type I and type III Cas proteins.
Quantifying and resolving multiple vector transformants in S. cerevisiae plasmid libraries.
Scanlon, Thomas C; Gray, Elizabeth C; Griswold, Karl E
2009-11-20
In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the most widely used eukaryotic platform for cell surface display, combinatorial protein engineering, and other recombinant library screens. In order to characterize the extent and nature of multiple vector transformants in this important host, plasmid-born gene libraries constructed by yeast homologous recombination were analyzed by DNA sequencing. It was found that up to 90% of clones in yeast homologous recombination libraries may be multiple vector transformants, that on average these clones bear four or more unique mutant genes, and that these multiple vector cells persist as a significant proportion of library populations for greater than 24 hours during liquid outgrowth. Both vector concentration and vector to insert ratio influenced the library proportion of multiple vector transformants, but their population frequency was independent of transformation efficiency. Interestingly, the average number of plasmids born by multiple vector transformants did not vary with their library population proportion. These results highlight the potential for multiple vector transformants to dominate yeast libraries constructed by homologous recombination. The previously unrecognized prevalence and persistence of multiply transformed yeast cells have important implications for yeast library screens. The quantitative information described herein should increase awareness of this issue, and the rapid sequencing approach developed for these studies should be widely useful for identifying multiple vector transformants and avoiding complications associated with cells that have acquired more than one unique plasmid.
Wen, Yangming; Lan, Kaijian; Wang, Junjie; Yu, Jingyi; Qu, Yarong; Zhao, Wei; Zhang, Fuchun; Tan, Wanlong; Cao, Hong; Zhou, Chen
2013-06-01
To construct dengue virus-specific full-length fully human antibody libraries using mammalian cell surface display technique. Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) from convalescent patients with dengue fever. The reservoirs of the light chain and heavy chain variable regions (LCκ and VH) of the antibody genes were amplified by RT-PCR and inserted into the vector pDGB-HC-TM separately to construct the light chain and heavy chain libraries. The library DNAs were transfected into CHO cells and the expression of full-length fully human antibodies on the surface of CHO cells was analyzed by flow cytometry. Using 1.2 µg of the total RNA isolated from the PBMCs as the template, the LCκ and VH were amplified and the full-length fully human antibody mammalian display libraries were constructed. The kappa light chain gene library had a size of 1.45×10(4) and the heavy chain gene library had a size of 1.8×10(5). Sequence analysis showed that 8 out of the 10 light chain clones and 7 out of the 10 heavy chain clones randomly picked up from the constructed libraries contained correct open reading frames. FACS analysis demonstrated that all the 15 clones with correct open reading frames expressed full-length antibodies, which could be detected on CHO cell surfaces. After co-transfection of the heavy chain and light chain gene libraries into CHO cells, the expression of full-length antibodies on CHO cell surfaces could be detected by FACS analysis with an expressible diversity of the antibody library reaching 1.46×10(9) [(1.45×10(4)×80%)×(1.8×10(5)×70%)]. Using 1.2 µg of total RNA as template, the LCκ and VH full-length fully human antibody libraries against dengue virus have been successfully constructed with an expressible diversity of 10(9).
Generalized Support Software: Domain Analysis and Implementation
NASA Technical Reports Server (NTRS)
Stark, Mike; Seidewitz, Ed
1995-01-01
For the past five years, the Flight Dynamics Division (FDD) at NASA's Goddard Space Flight Center has been carrying out a detailed domain analysis effort and is now beginning to implement Generalized Support Software (GSS) based on this analysis. GSS is part of the larger Flight Dynamics Distributed System (FDDS), and is designed to run under the FDDS User Interface / Executive (UIX). The FDD is transitioning from a mainframe based environment to systems running on engineering workstations. The GSS will be a library of highly reusable components that may be configured within the standard FDDS architecture to quickly produce low-cost satellite ground support systems. The estimates for the first release is that this library will contain approximately 200,000 lines of code. The main driver for developing generalized software is development cost and schedule improvement. The goal is to ultimately have at least 80 percent of all software required for a spacecraft mission (within the domain supported by the GSS) to be configured from the generalized components.
Flexible CRISPR library construction using parallel oligonucleotide retrieval
Read, Abigail; Gao, Shaojian; Batchelor, Eric
2017-01-01
Abstract CRISPR/Cas9-based gene knockout libraries have emerged as a powerful tool for functional screens. We present here a set of pre-designed human and mouse sgRNA sequences that are optimized for both high on-target potency and low off-target effect. To maximize the chance of target gene inactivation, sgRNAs were curated to target both 5΄ constitutive exons and exons that encode conserved protein domains. We describe here a robust and cost-effective method to construct multiple small sized CRISPR library from a single oligo pool generated by array synthesis using parallel oligonucleotide retrieval. Together, these resources provide a convenient means for individual labs to generate customized CRISPR libraries of variable size and coverage depth for functional genomics application. PMID:28334828
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
... crossings south of the Buffalo Compressor Station. \\1\\ A ``pig'' is a tool that is inserted into and moves... receiving this notice in the mail and are available at http://www.ferc.gov using the link called ``eLibrary... Commission's Web site at http://www.ferc.gov under the link to Documents and Filings. An eComment is an easy...
Chapter 7. Cloning and analysis of natural product pathways.
Gust, Bertolt
2009-01-01
The identification of gene clusters of natural products has lead to an enormous wealth of information about their biosynthesis and its regulation, and about self-resistance mechanisms. Well-established routine techniques are now available for the cloning and sequencing of gene clusters. The subsequent functional analysis of the complex biosynthetic machinery requires efficient genetic tools for manipulation. Until recently, techniques for the introduction of defined changes into Streptomyces chromosomes were very time-consuming. In particular, manipulation of large DNA fragments has been challenging due to the absence of suitable restriction sites for restriction- and ligation-based techniques. The homologous recombination approach called recombineering (referred to as Red/ET-mediated recombination in this chapter) has greatly facilitated targeted genetic modifications of complex biosynthetic pathways from actinomycetes by eliminating many of the time-consuming and labor-intensive steps. This chapter describes techniques for the cloning and identification of biosynthetic gene clusters, for the generation of gene replacements within such clusters, for the construction of integrative library clones and their expression in heterologous hosts, and for the assembly of entire biosynthetic gene clusters from the inserts of individual library clones. A systematic approach toward insertional mutation of a complete Streptomyces genome is shown by the use of an in vitro transposon mutagenesis procedure.
Ren, Siyuan; Yang, Guang; He, Youyu; Wang, Yiguo; Li, Yixue; Chen, Zhengjun
2008-10-01
Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs). Accurate prediction of SLiMs has been difficult because they are short (often < 10 amino acids) and highly degenerate. In this study, we combined scoring matrixes derived from peptide library and conservation analysis to identify protein classes enriched of functional SLiMs recognized by SH2, SH3, PDZ and S/T kinase domains. Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains.
Ren, Siyuan; Yang, Guang; He, Youyu; Wang, Yiguo; Li, Yixue; Chen, Zhengjun
2008-01-01
Background Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs). Accurate prediction of SLiMs has been difficult because they are short (often < 10 amino acids) and highly degenerate. In this study, we combined scoring matrixes derived from peptide library and conservation analysis to identify protein classes enriched of functional SLiMs recognized by SH2, SH3, PDZ and S/T kinase domains. Results Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. Conclusion The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains. PMID:18828911
Wolffe, E J; Gause, W C; Pelfrey, C M; Holland, S M; Steinberg, A D; August, J T
1990-01-05
We describe the isolation and sequencing of a cDNA encoding mouse Pgp-1. An oligonucleotide probe corresponding to the NH2-terminal sequence of the purified protein was synthesized by the polymerase chain reaction and used to screen a mouse macrophage lambda gt11 library. A cDNA clone with an insert of 1.2 kilobases was selected and sequenced. In Northern blot analysis, only cells expressing Pgp-1 contained mRNA species that hybridized with this Pgp-1 cDNA. The nucleotide sequence of the cDNA has a single open reading frame that yields a protein-coding sequence of 1076 base pairs followed by a 132-base pair 3'-untranslated sequence that includes a putative polyadenylation signal but no poly(A) tail. The translated sequence comprises a 13-amino acid signal peptide followed by a polypeptide core of 345 residues corresponding to an Mr of 37,800. Portions of the deduced amino acid sequence were identical to those obtained by amino acid sequence analysis from the purified glycoprotein, confirming that the cDNA encodes Pgp-1. The predicted structure of Pgp-1 includes an NH2-terminal extracellular domain (residues 14-265), a transmembrane domain (residues 266-286), and a cytoplasmic tail (residues 287-358). Portions of the mouse Pgp-1 sequence are highly similar to that of the human CD44 cell surface glycoprotein implicated in cell adhesion. The protein also shows sequence similarity to the proteoglycan tandem repeat sequences found in cartilage link protein and cartilage proteoglycan core protein which are thought to be involved in binding to hyaluronic acid.
Alvares, Keith; Dixit, Saryu N; Lux, Elizabeth; Veis, Arthur
2009-09-18
Studies of mineralization of embryonic spicules and of the sea urchin genome have identified several putative mineralization-related proteins. These predicted proteins have not been isolated or confirmed in mature mineralized tissues. Mature Lytechinus variegatus teeth were demineralized with 0.6 N HCl after prior removal of non-mineralized constituents with 4.0 M guanidinium HCl. The HCl-extracted proteins were fractionated on ceramic hydroxyapatite and separated into bound and unbound pools. Gel electrophoresis compared the protein distributions. The differentially present bands were purified and digested with trypsin, and the tryptic peptides were separated by high pressure liquid chromatography. NH2-terminal sequences were determined by Edman degradation and compared with the genomic sequence bank data. Two of the putative mineralization-related proteins were found. Their complete amino acid sequences were cloned from our L. variegatus cDNA library. Apatite-binding UTMP16 was found to be present in two isoforms; both isoforms had a signal sequence, a Ser-Asp-rich extracellular matrix domain, and a transmembrane and cytosolic insertion sequence. UTMP19, although rich in Glu and Thr did not bind to apatite. It had neither signal peptide nor transmembrane domain but did have typical nuclear localization and nuclear exit signal sequences. Both proteins were phosphorylated and good substrates for phosphatase. Immunolocalization studies with anti-UTMP16 show it to concentrate at the syncytial membranes in contact with the mineral. On the basis of our TOF-SIMS analyses of magnesium ion and Asp mapping of the mineral phase composition, we speculate that UTMP16 may be important in establishing the high magnesium columns that fuse the calcite plates together to enhance the mechanical strength of the mineralized tooth.
Paal, Jürgen; Henselewski, Heike; Muth, Jost; Meksem, Khalid; Menéndez, Cristina M; Salamini, Francesco; Ballvora, Agim; Gebhardt, Christiane
2004-04-01
The endoparasitic root cyst nematode Globodera rostochiensis causes considerable damage in potato cultivation. In the past, major genes for nematode resistance have been introgressed from related potato species into cultivars. Elucidating the molecular basis of resistance will contribute to the understanding of nematode-plant interactions and assist in breeding nematode-resistant cultivars. The Gro1 resistance locus to G. rostochiensis on potato chromosome VII co-localized with a resistance-gene-like (RGL) DNA marker. This marker was used to isolate from genomic libraries 15 members of a closely related candidate gene family. Analysis of inheritance, linkage mapping, and sequencing reduced the number of candidate genes to three. Complementation analysis by stable potato transformation showed that the gene Gro1-4 conferred resistance to G. rostochiensis pathotype Ro1. Gro1-4 encodes a protein of 1136 amino acids that contains Toll-interleukin 1 receptor (TIR), nucleotide-binding (NB), leucine-rich repeat (LRR) homology domains and a C-terminal domain with unknown function. The deduced Gro1-4 protein differed by 29 amino acid changes from susceptible members of the Gro1 gene family. Sequence characterization of 13 members of the Gro1 gene family revealed putative regulatory elements and a variable microsatellite in the promoter region, insertion of a retrotransposon-like element in the first intron, and a stop codon in the NB coding region of some genes. Sequence analysis of RT-PCR products showed that Gro1-4 is expressed, among other members of the family including putative pseudogenes, in non-infected roots of nematode-resistant plants. RT-PCR also demonstrated that members of the Gro1 gene family are expressed in most potato tissues.
Hulse-Kemp, Amanda M; Maheshwari, Shamoni; Stoffel, Kevin; Hill, Theresa A; Jaffe, David; Williams, Stephen R; Weisenfeld, Neil; Ramakrishnan, Srividya; Kumar, Vijay; Shah, Preyas; Schatz, Michael C; Church, Deanna M; Van Deynze, Allen
2018-01-01
Linked-Read sequencing technology has recently been employed successfully for de novo assembly of human genomes, however, the utility of this technology for complex plant genomes is unproven. We evaluated the technology for this purpose by sequencing the 3.5-gigabase (Gb) diploid pepper ( Capsicum annuum ) genome with a single Linked-Read library. Plant genomes, including pepper, are characterized by long, highly similar repetitive sequences. Accordingly, significant effort is used to ensure that the sequenced plant is highly homozygous and the resulting assembly is a haploid consensus. With a phased assembly approach, we targeted a heterozygous F 1 derived from a wide cross to assess the ability to derive both haplotypes and characterize a pungency gene with a large insertion/deletion. The Supernova software generated a highly ordered, more contiguous sequence assembly than all currently available C. annuum reference genomes. Over 83% of the final assembly was anchored and oriented using four publicly available de novo linkage maps. A comparison of the annotation of conserved eukaryotic genes indicated the completeness of assembly. The validity of the phased assembly is further demonstrated with the complete recovery of both 2.5-Kb insertion/deletion haplotypes of the PUN1 locus in the F 1 sample that represents pungent and nonpungent peppers, as well as nearly full recovery of the BUSCO2 gene set within each of the two haplotypes. The most contiguous pepper genome assembly to date has been generated which demonstrates that Linked-Read library technology provides a tool to de novo assemble complex highly repetitive heterozygous plant genomes. This technology can provide an opportunity to cost-effectively develop high-quality genome assemblies for other complex plants and compare structural and gene differences through accurate haplotype reconstruction.
Knietsch, Anja; Waschkowitz, Tanja; Bowien, Susanne; Henne, Anke; Daniel, Rolf
2003-01-01
Metagenomic DNA libraries from three different soil samples (meadow, sugar beet field, cropland) were constructed. The three unamplified libraries comprised approximately 1267000 independent clones and harbored approximately 4.05 Gbp of environmental DNA. Approximately 300000 recombinant Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from short-chain (C2 to C4) polyols such as 1,2-ethanediol, 2,3-butanediol, and a mixture of glycerol and 1,2-propanediol on indicator agar. Twenty-four positive E. COLI clones were obtained during the initial screen. Fifteen of them contained recombinant plasmids, designated pAK201-215, which conferred a stable carbonyl-forming phenotype on E. coli Sequencing revealed that the inserts of pAK201-215 encoded 26 complete and 14 incomplete predicted protein-encoding genes. Most of these genes were similar to genes with unknown functions from other microorganisms or unrelated to any other known gene. The further analysis was focused on the 7 plasmids (pAK204, pAK206, pAK208, and pAK210-213) recovered from the positive clones, which exhibited an NAD(H)-dependent alcohol oxidoreductase activity with polyols or the correlating carbonyls as substrates in crude extracts. Three genes (ORF6, ORF24, and ORF25) conferring this activity were identified during subcloning of the inserts of pAK204, pAK211, and pAK212. The sequences of the three deduced gene products revealed no significant similarities to known alcohol oxidoreductases, but contained putative glycine-rich regions, which are characteristic for binding of nicotinamide cofactors. Copyright 2003 S. Karger AG, Basel
SCIFIO: an extensible framework to support scientific image formats.
Hiner, Mark C; Rueden, Curtis T; Eliceiri, Kevin W
2016-12-07
No gold standard exists in the world of scientific image acquisition; a proliferation of instruments each with its own proprietary data format has made out-of-the-box sharing of that data nearly impossible. In the field of light microscopy, the Bio-Formats library was designed to translate such proprietary data formats to a common, open-source schema, enabling sharing and reproduction of scientific results. While Bio-Formats has proved successful for microscopy images, the greater scientific community was lacking a domain-independent framework for format translation. SCIFIO (SCientific Image Format Input and Output) is presented as a freely available, open-source library unifying the mechanisms of reading and writing image data. The core of SCIFIO is its modular definition of formats, the design of which clearly outlines the components of image I/O to encourage extensibility, facilitated by the dynamic discovery of the SciJava plugin framework. SCIFIO is structured to support coexistence of multiple domain-specific open exchange formats, such as Bio-Formats' OME-TIFF, within a unified environment. SCIFIO is a freely available software library developed to standardize the process of reading and writing scientific image formats.
Membrane Topology and Insertion of Membrane Proteins: Search for Topogenic Signals
van Geest, Marleen; Lolkema, Juke S.
2000-01-01
Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain structural information about membrane proteins. A critical step in the biosynthetic pathway leading to the folded protein in the membrane is its insertion into the lipid bilayer. Understanding of the fundamentals of the insertion and folding processes will significantly improve the methods used to predict the three-dimensional membrane protein structure from the amino acid sequence. In the first part of this review, biochemical approaches to elucidate membrane protein topology are reviewed and evaluated, and in the second part, the use of similar techniques to study membrane protein insertion is discussed. The latter studies search for signals in the polypeptide chain that direct the insertion process. Knowledge of the topogenic signals in the nascent chain of a membrane protein is essential for the evaluation of membrane topology studies. PMID:10704472
Scaling up the 454 Titanium Library Construction and Pooling of Barcoded Libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phung, Wilson; Hack, Christopher; Shapiro, Harris
2009-03-23
We have been developing a high throughput 454 library construction process at the Joint Genome Institute to meet the needs of de novo sequencing a large number of microbial and eukaryote genomes, EST, and metagenome projects. We have been focusing efforts in three areas: (1) modifying the current process to allow the construction of 454 standard libraries on a 96-well format; (2) developing a robotic platform to perform the 454 library construction; and (3) designing molecular barcodes to allow pooling and sorting of many different samples. In the development of a high throughput process to scale up the number ofmore » libraries by adapting the process to a 96-well plate format, the key process change involves the replacement of gel electrophoresis for size selection with Solid Phase Reversible Immobilization (SPRI) beads. Although the standard deviation of the insert sizes increases, the overall quality sequence and distribution of the reads in the genome has not changed. The manual process of constructing 454 shotgun libraries on 96-well plates is a time-consuming, labor-intensive, and ergonomically hazardous process; we have been experimenting to program a BioMek robot to perform the library construction. This will not only enable library construction to be completed in a single day, but will also minimize any ergonomic risk. In addition, we have implemented a set of molecular barcodes (AKA Multiple Identifiers or MID) and a pooling process that allows us to sequence many targets simultaneously. Here we will present the testing of pooling a set of selected fosmids derived from the endomycorrhizal fungus Glomus intraradices. By combining the robotic library construction process and the use of molecular barcodes, it is now possible to sequence hundreds of fosmids that represent a minimal tiling path of this genome. Here we present the progress and the challenges of developing these scaled-up processes.« less
Structure of the SH3 Domain of Rat Endophilin A2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loll,P.; Swain, E.; Chen, Y.
2008-01-01
The crystal structure of the SH3 domain of rat endophilin A2 has been determined by the multiwavelength anomalous dispersion method and refined at a resolution of 1.70 Angstroms to R and Rfree values of 0.196 and 0.217, respectively. The structure adheres to the canonical SH3-domain fold and is highly similar to those of the corresponding domains of endophilins A1 and A3. An intermolecular packing interaction between two molecules in the lattice exploits features that are commonly observed in SH3-domain ligand recognition, including the insertion of a proline side chain into the ligand-binding groove of the protein and the recognition ofmore » a basic residue by a cluster of acidic side chains on the RT loop.« less
STRAD Wheel: Web-Based Library for Visualizing Temporal Data.
Fernondez-Prieto, Diana; Naranjo-Valero, Carol; Hernandez, Jose Tiberio; Hagen, Hans
2017-01-01
Recent advances in web development, including the introduction of HTML5, have opened a door for visualization researchers and developers to quickly access larger audiences worldwide. Open source libraries for the creation of interactive visualizations are becoming more specialized but also modular, which makes them easy to incorporate in domain-specific applications. In this context, the authors developed STRAD (Spatio-Temporal-Radar) Wheel, a web-based library that focuses on the visualization and interactive query of temporal data in a compact view with multiple temporal granularities. This article includes two application examples in urban planning to help illustrate the proposed visualization's use in practice.
2018-01-01
Natural products are well known for their biological relevance, high degree of three-dimensionality, and access to areas of largely unexplored chemical space. To shape our understanding of the interaction between natural products and protein targets in the postgenomic era, we have used native mass spectrometry to investigate 62 potential protein targets for malaria using a natural-product-based fragment library. We reveal here 96 low-molecular-weight natural products identified as binding partners of 32 of the putative malarial targets. Seventy-nine (79) fragments have direct growth inhibition on Plasmodium falciparum at concentrations that are promising for the development of fragment hits against these protein targets. This adds a fragment library to the published HTS active libraries in the public domain. PMID:29436819
Vu, Hoan; Pedro, Liliana; Mak, Tin; McCormick, Brendan; Rowley, Jessica; Liu, Miaomiao; Di Capua, Angela; Williams-Noonan, Billy; Pham, Ngoc B; Pouwer, Rebecca; Nguyen, Bao; Andrews, Katherine T; Skinner-Adams, Tina; Kim, Jessica; Hol, Wim G J; Hui, Raymond; Crowther, Gregory J; Van Voorhis, Wesley C; Quinn, Ronald J
2018-04-13
Natural products are well known for their biological relevance, high degree of three-dimensionality, and access to areas of largely unexplored chemical space. To shape our understanding of the interaction between natural products and protein targets in the postgenomic era, we have used native mass spectrometry to investigate 62 potential protein targets for malaria using a natural-product-based fragment library. We reveal here 96 low-molecular-weight natural products identified as binding partners of 32 of the putative malarial targets. Seventy-nine (79) fragments have direct growth inhibition on Plasmodium falciparum at concentrations that are promising for the development of fragment hits against these protein targets. This adds a fragment library to the published HTS active libraries in the public domain.
Angsuthanasombat, C; Chungjatupornchai, W; Kertbundit, S; Luxananil, P; Settasatian, C; Wilairat, P; Panyim, S
1987-07-01
Five recombinant E. coli clones exhibiting toxicity to Aedes aegypti larvae were obtained from a library of 800 clones containing XbaI DNA fragments of 110 kb plasmid from B. thuringiensis var. israelensis. All the five clones (pMU 14/258/303/388/679) had the same 3.8-kb insert and encoded a major protein of 130 kDa which was highly toxic to A. aegypti larvae. Three clones (pMU 258/303/388) transcribed the 130 kD a gene in the same direction as that of lac Z promoter of pUC12 vector whereas the transcription of the other two (pMU 14/679) was in the opposite direction. A 1.9-kb fragment of the 3.8 kb insert coded for a protein of 65 kDa. Partial DNA sequence of the 3.8 kb insert, corresponding to the 5'-terminal of the 130 kDa gene, revealed a continuous reading frame, a Shine-Dalgarno sequence and a tentative 5'-regulatory region. These results demonstrated that the 3.8 kb insert is a minimal DNA fragment containing a regulatory region plus the coding sequence of the 130 kDa protein that is highly toxic to mosquito larvae.
Tanaka, Masafumi; Dhanasekaran, Padmaja; Nguyen, David; Ohta, Shinya; Lund-Katz, Sissel; Phillips, Michael C; Saito, Hiroyuki
2006-08-29
The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.
Venkatakrishnan, Sowmya; Mackey, David; Meier, Iris
2013-01-01
We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response. PMID:23451199
Advancements in Theoretical Models of Confined Vortex Flowfields
2007-03-29
blades, curved vanes, vortex generators, twisted tape inserts, triangular winglets , propellers, coiled wires, tangential injectors, and other...Corresponding boundary conditions consist of the no slip at the wall and blending with the composite inner solution in the outer domain. Following similar
A Domain-Specific Language for Discrete Mathematics
NASA Astrophysics Data System (ADS)
Jha, Rohit; Samuel, Alfy; Pawar, Ashmee; Kiruthika, M.
2013-05-01
This paper discusses a Domain Specific Language (DSL) that has been developed to enable implementation of concepts of discrete mathematics. A library of data types and functions provides functionality which is frequently required by users. Covering the areas of Mathematical Logic, Set Theory, Functions, Graph Theory, Number Theory, Linear Algebra and Combinatorics, the language's syntax is close to the actual notation used in the specific fields.
Domain Wall Fermion Inverter on Pentium 4
NASA Astrophysics Data System (ADS)
Pochinsky, Andrew
2005-03-01
A highly optimized domain wall fermion inverter has been developed as part of the SciDAC lattice initiative. By designing the code to minimize memory bus traffic, it achieves high cache reuse and performance in excess of 2 GFlops for out of L2 cache problem sizes on a GigE cluster with 2.66 GHz Xeon processors. The code uses the SciDAC QMP communication library.
A surprisingly large RNase P RNA in Candida glabrata
KACHOURI, RYM; STRIBINSKIS, VILIUS; ZHU, YANGLONG; RAMOS, KENNETH S.; WESTHOF, ERIC; LI, YONG
2005-01-01
We have found an extremely large ribonuclease P (RNase P) RNA (RPR1) in the human pathogen Candida glabrata and verified that this molecule is expressed and present in the active enzyme complex of this hemiascomycete yeast. A structural alignment of the C. glabrata sequence with 36 other hemiascomycete RNase P RNAs (abbreviated as P RNAs) allows us to characterize the types of insertions. In addition, 15 P RNA sequences were newly characterized by searching in the recently sequenced genomes Candida albicans, C. glabrata, Debaryomyces hansenii, Eremothecium gossypii, Kluyveromyces lactis, Kluyveromyces waltii, Naumovia castellii, Saccharomyces kudriavzevii, Saccharomyces mikatae, and Yarrowia lipolytica; and by PCR amplification for other Candida species (Candida guilliermondii, Candida krusei, Candida parapsilosis, Candida stellatoidea, and Candida tropicalis). The phylogenetic comparative analysis identifies a hemiascomycete secondary structure consensus that presents a conserved core in all species with variable insertions or deletions. The most significant variability is found in C. glabrata P RNA in which three insertions exceeding in total 700 nt are present in the Specificity domain. This P RNA is more than twice the length of any other homologous P RNAs known in the three domains of life and is eight times the size of the smallest. RNase P RNA, therefore, represents one of the most diversified noncoding RNAs in terms of size variation and structural diversity. PMID:15987816
Ramey, Jordan D.; Villareal, Valerie A.; Ng, Charles; Ward, Sabrina; Xiong, Jian-Ping; Clubb, Robert T.; Bradley, Kenneth A.
2010-01-01
Anthrax toxin receptor 1 (ANTXR1) / tumor endothelial marker 8 (TEM8) is one of two known proteinaceous cell surface anthrax toxin receptors. A metal ion dependent adhesion site (MIDAS) present in the integrin-like inserted (I) domain of ANTXR1 mediates the binding of the anthrax toxin subunit, protective antigen (PA). Here we provide evidence that single point mutations in the I domain can override regulation of ANTXR1 ligand-binding activity mediated by intracellular signals. A previously reported MIDAS-mutant of ANTXR1 (T118A) was found to retain normal metal ion binding and secondary structure but failed to bind PA, consistent with a locked inactive state. Conversely, mutation of a conserved I domain phenylalanine residue to a tryptophan (F205W) increased the proportion of cell-surface ANTXR1 that bound PA, consistent with a locked active state. Interestingly, the KD and total amount of PA bound by the isolated ANTXR1 I domain was not affected by the F205W mutation, indicating that ANTXR1 is preferentially found in the active state in the absence of inside-out signaling. Circular dichroism (CD) spectroscopy and 1H-15N heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) revealed that structural changes between T118A, F205W and WT I domains were minor despite a greater than 103-fold difference in their abilities to bind toxin. Regulation of toxin binding has important implications for the design of toxin inhibitors and for the targeting of ANTXR1 for anti-tumor therapies. PMID:20690680
Noutoshi, Yoshiteru; Ito, Takuya; Seki, Motoaki; Nakashita, Hideo; Yoshida, Shigeo; Marco, Yves; Shirasu, Ken; Shinozaki, Kazuo
2005-09-01
In this study we characterized the sensitive to low humidity 1 (slh1) mutant of Arabidopsis ecotype No-0 which exhibits normal growth on agar plate medium but which on transfer to soil shows growth arrest and development of necrotic lesions. cDNA microarray hybridization and RNA gel blot analysis revealed that genes associated with activation of disease resistance were upregulated in the slh1 mutants in response to conditions of low humidity. Furthermore, the slh1 mutants accumulate callose, autofluorescent compounds and salicylic acid (SA). We demonstrate that SA is required for the slh1 phenotype but not PAD4 or NPR1. SLH1 was isolated by map-based cloning and it encodes a resistance (R)-like protein consisting of a domain with Toll and interleukin-1 receptor homology (TIR), a nucleotide-binding domain (NB), leucine-rich repeats (LRR) and a carboxy-terminal WRKY domain. SLH1 is identical to the R gene RRS1-R of the Arabidopsis ecotype Nd-1, a gene which confers resistance to the bacterial pathogen Ralstonia solanacearum GMI1000 and also functions as an R gene to this pathogen in No-0. We identified a 3 bp insertion mutation in slh1 that results in the addition of a single amino acid in the WRKY domain; thereby impairing its DNA-binding activity. Our data suggest that SLH1 disease resistance signaling may be negatively regulated by its WRKY domain in the R protein and that the constitutive defense activation conferred by the slh1 mutation is inhibited by conditions of high humidity.
Dunbrack, Roland L.
2012-01-01
Motivation: Automating the assignment of existing domain and protein family classifications to new sets of sequences is an important task. Current methods often miss assignments because remote relationships fail to achieve statistical significance. Some assignments are not as long as the actual domain definitions because local alignment methods often cut alignments short. Long insertions in query sequences often erroneously result in two copies of the domain assigned to the query. Divergent repeat sequences in proteins are often missed. Results: We have developed a multilevel procedure to produce nearly complete assignments of protein families of an existing classification system to a large set of sequences. We apply this to the task of assigning Pfam domains to sequences and structures in the Protein Data Bank (PDB). We found that HHsearch alignments frequently scored more remotely related Pfams in Pfam clans higher than closely related Pfams, thus, leading to erroneous assignment at the Pfam family level. A greedy algorithm allowing for partial overlaps was, thus, applied first to sequence/HMM alignments, then HMM–HMM alignments and then structure alignments, taking care to join partial alignments split by large insertions into single-domain assignments. Additional assignment of repeat Pfams with weaker E-values was allowed after stronger assignments of the repeat HMM. Our database of assignments, presented in a database called PDBfam, contains Pfams for 99.4% of chains >50 residues. Availability: The Pfam assignment data in PDBfam are available at http://dunbrack2.fccc.edu/ProtCid/PDBfam, which can be searched by PDB codes and Pfam identifiers. They will be updated regularly. Contact: Roland.Dunbracks@fccc.edu PMID:22942020
Production of a novel camel single-domain antibody specific for the type III mutant EGFR.
Omidfar, K; Rasaee, M J; Modjtahedi, H; Forouzandeh, M; Taghikhani, M; Golmakani, N
2004-01-01
Camelids have a unique immune system capable of producing single-domain heavy-chain antibodies. The antigen-specific domain of these heavy-chain IgGs (VHH) are the smallest binding units produced by the immune system. In this study, we report the isolation and characterization of several binders against the epidermal growth factor receptor (EGFR) vIII retrieved from immune library of camels (Camelus bactrianus and Camelus dromedarius). The EGFRvIII is a ligand-independent, constitutively active, mutated form of the wild-type EGFR. The expression of EGFRvIII has been demonstrated in a wide range of human malignancies, including gliomas, and breast, prostate, ovarian and lung cancer. Camels were immunized with a synthetic peptide corresponding to a mutated sequence and tissue homogenates. Single-domain antibodies (VHH) were directly selected by panning a phage display library on successively decreasing amounts of synthetic peptide immobilized on magnetic beads. The anti-EGFRvIII camel single-domain antibodies selectively bound to the EGFRvIII peptide and reacted specifically with the immunoaffinity-purified antigen from a non-small cell lung cancer patient. These antibodies with affinities in the nanomolar range recognized the EGFRvIII peptide and affinity-purified mutated receptor. We concluded that using the phage display technique, antigen-specific VHH antibody fragments are readily accessible from the camelids. These antibodies may be good candidates for tumor-diagnostic and therapeutic applications. Copyright 2004 S. Karger AG, Basel.
Schmidt, Nathan W.; Grigoryan, Gevorg
2017-01-01
Abstract Coiled‐coils are essential components of many protein complexes. First discovered in structural proteins such as keratins, they have since been found to figure largely in the assembly and dynamics required for diverse functions, including membrane fusion, signal transduction and motors. Coiled‐coils have a characteristic repeating seven‐residue geometric and sequence motif, which is sometimes interrupted by the insertion of one or more residues. Such insertions are often highly conserved and critical to interdomain communication in signaling proteins such as bacterial histidine kinases. Here we develop the “accommodation index” as a parameter that allows automatic detection and classification of insertions based on the three dimensional structure of a protein. This method allows precise identification of the type of insertion and the “accommodation length” over which the insertion is structurally accommodated. A simple theory is presented that predicts the structural perturbations of 1, 3, 4 residue insertions as a function of the length over which the insertion is accommodated. Analysis of experimental structures is in good agreement with theory, and shows that short accommodation lengths give rise to greater perturbation of helix packing angles, changes in local helical phase, and increased structural asymmetry relative to long accommodation lengths. Cytoplasmic domains of histidine kinases in different signaling states display large changes in their accommodation lengths, which can now be seen to underlie diverse structural transitions including symmetry/asymmetry and local variations in helical phase that accompany signal transduction. PMID:27977891
Genome-Wide Transposon Mutagenesis in Pathogenic Leptospira Species▿ ‡
Murray, Gerald L.; Morel, Viviane; Cerqueira, Gustavo M.; Croda, Julio; Srikram, Amporn; Henry, Rebekah; Ko, Albert I.; Dellagostin, Odir A.; Bulach, Dieter M.; Sermswan, Rasana W.; Adler, Ben; Picardeau, Mathieu
2009-01-01
Leptospira interrogans is the most common cause of leptospirosis in humans and animals. Genetic analysis of L. interrogans has been severely hindered by a lack of tools for genetic manipulation. Recently we developed the mariner-based transposon Himar1 to generate the first defined mutants in L. interrogans. In this study, a total of 929 independent transposon mutants were obtained and the location of insertion determined. Of these mutants, 721 were located in the protein coding regions of 551 different genes. While sequence analysis of transposon insertion sites indicated that transposition occurred in an essentially random fashion in the genome, 25 unique transposon mutants were found to exhibit insertions into genes encoding 16S or 23S rRNAs, suggesting these genes are insertional hot spots in the L. interrogans genome. In contrast, loci containing notionally essential genes involved in lipopolysaccharide and heme biosynthesis showed few transposon insertions. The effect of gene disruption on the virulence of a selected set of defined mutants was investigated using the hamster model of leptospirosis. Two attenuated mutants with disruptions in hypothetical genes were identified, thus validating the use of transposon mutagenesis for the identification of novel virulence factors in L. interrogans. This library provides a valuable resource for the study of gene function in L. interrogans. Combined with the genome sequences of L. interrogans, this provides an opportunity to investigate genes that contribute to pathogenesis and will provide a better understanding of the biology of L. interrogans. PMID:19047402
Genome-wide transposon mutagenesis in pathogenic Leptospira species.
Murray, Gerald L; Morel, Viviane; Cerqueira, Gustavo M; Croda, Julio; Srikram, Amporn; Henry, Rebekah; Ko, Albert I; Dellagostin, Odir A; Bulach, Dieter M; Sermswan, Rasana W; Adler, Ben; Picardeau, Mathieu
2009-02-01
Leptospira interrogans is the most common cause of leptospirosis in humans and animals. Genetic analysis of L. interrogans has been severely hindered by a lack of tools for genetic manipulation. Recently we developed the mariner-based transposon Himar1 to generate the first defined mutants in L. interrogans. In this study, a total of 929 independent transposon mutants were obtained and the location of insertion determined. Of these mutants, 721 were located in the protein coding regions of 551 different genes. While sequence analysis of transposon insertion sites indicated that transposition occurred in an essentially random fashion in the genome, 25 unique transposon mutants were found to exhibit insertions into genes encoding 16S or 23S rRNAs, suggesting these genes are insertional hot spots in the L. interrogans genome. In contrast, loci containing notionally essential genes involved in lipopolysaccharide and heme biosynthesis showed few transposon insertions. The effect of gene disruption on the virulence of a selected set of defined mutants was investigated using the hamster model of leptospirosis. Two attenuated mutants with disruptions in hypothetical genes were identified, thus validating the use of transposon mutagenesis for the identification of novel virulence factors in L. interrogans. This library provides a valuable resource for the study of gene function in L. interrogans. Combined with the genome sequences of L. interrogans, this provides an opportunity to investigate genes that contribute to pathogenesis and will provide a better understanding of the biology of L. interrogans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikatendu, Kumar Singh; Zhang, Xuejun; Kinch, Lisa
The protein encoded by the SA1388 gene from Staphylococcus aureus was chosen for structure determination to elucidate its domain organization and confirm our earlier remote homology based prediction that it housed a nitrogen regulatory PII protein-like domain. SA1388 was predicted to contain a central PII-like domain and two flanking regions, which together belong to the NIF3-like protein family. Proteins like SA1388 remain a poorly studied group and their structural characterization could guide future investigations aimed at understanding their function. The structure of SA1388 has been solved to 2.0{angstrom} resolution by single wavelength anomalous dispersion phasing method using selenium anomalous signals.more » It reveals a canonical NIF3-like fold containing two domains with a PII-like domain inserted in the middle of the polypeptide. The N and C terminal halves of the NIF3-like domains are involved in dimerization, while the PII domain forms trimeric contacts with symmetry related monomers. Overall, the NIF3-like domains of SA1388 are organized as a hexameric toroid similar to its homologs, E. coli ybgI and the hypothetical protein SP1609 from Streptococcus pneumoniae. The openings on either side of the toroid are partially covered by trimeric 'lids' formed by the PII domains. The junction of the two NIF3 domains has two zinc ions bound at what appears to be a histidine rich active site. A well-defined electron density corresponding to an endogenously bound ligand of unknown identity is observed in close proximity to the metal site. SA1388 is the third member of the NIF3-like family of proteins to be structurally characterized, the other two also being hypothetical proteins of unknown function. The structure of SA1388 confirms our earlier prediction that the inserted domain that separates the two NIF3 domains adopts a PII-like fold and reveals an overall capped toroidal arrangement for the protein hexamer. The six PII-like domains form two trimeric 'lids' that cap the central cavity of the toroid on either side and provide only small openings to allow regulated entry of small molecules into the occluded chamber. The presence of the electron density of the bound ligand may provide important clues on the likely function of NIF3-like proteins.« less
2015-12-01
Sherman Kent Center, Central Intelligence Agency 3, no. 2 (October 2004), https://www.cia.gov/ library /kent-center-occasional-papers/vol3no2.htm...Naval Intelligence (Norfolk, VA: Naval Warfare Development Command, 2008), http://www.nwdc.navy.mil/content/ Library /Documents/NDPs/ ndp2/ndp20007.htm...Fathali M. Moghaddam, “ Multiculturalism and Intergroup Relations,” American Psychological Association, November 2011, 95. 114 Matherly, The Red Teaming
Zahid, Maliha; Phillips, Brett E; Albers, Sean M; Giannoukakis, Nick; Watkins, Simon C; Robbins, Paul D
2010-08-17
A peptide able to transduce cardiac tissue specifically, delivering cargoes to the heart, would be of significant therapeutic potential for delivery of small molecules, proteins and nucleic acids. In order to identify peptide(s) able to transduce heart tissue, biopanning was performed in cell culture and in vivo with a M13 phage peptide display library. A cardiomyoblast cell line, H9C2, was incubated with a M13 phage 12 amino acid peptide display library. Internalized phage was recovered, amplified and then subjected to a total of three rounds of in vivo biopanning where infectious phage was isolated from cardiac tissue following intravenous injection. After the third round, 60% of sequenced plaques carried the peptide sequence APWHLSSQYSRT, termed cardiac targeting peptide (CTP). We demonstrate that CTP was able to transduce cardiomyocytes functionally in culture in a concentration and cell-type dependent manner. Mice injected with CTP showed significant transduction of heart tissue with minimal uptake by lung and kidney capillaries, and no uptake in liver, skeletal muscle, spleen or brain. The level of heart transduction by CTP also was greater than with a cationic transduction domain. Biopanning using a peptide phage display library identified a peptide able to transduce heart tissue in vivo efficiently and specifically. CTP could be used to deliver therapeutic peptides, proteins and nucleic acid specifically to the heart.
Ohashi, Nami; Nomura, Wataru; Narumi, Tetsuo; Lewin, Nancy E; Itotani, Kyoko; Blumberg, Peter M; Tamamura, Hirokazu
2011-01-19
Protein kinase C (PKC) is a critical cell signaling pathway involved in many disorders such as cancer and Alzheimer-type dementia. To date, evaluation of PKC ligand binding affinity has been performed by competitive studies against radiolabeled probes that are problematic for high-throughput screening. In the present study, we have developed a fluorescent-based binding assay system for identifying ligands that target the PKC ligand binding domain (C1 domain). An environmentally sensitive fluorescent dye (solvatochromic fluorophore), which has been used in multiple applications to assess protein-binding interactions, was inserted in proximity to the binding pocket of a novel PKCδ C1b domain. These resultant fluorescent-labeled δC1b domain analogues underwent a significant change in fluorescent intensity upon ligand binding, and we further demonstrate that the fluorescent δC1b domain analogues can be used to evaluate ligand binding affinity.
Functional and topological characteristics of mammalian regulatory domains
Symmons, Orsolya; Uslu, Veli Vural; Tsujimura, Taro; Ruf, Sandra; Nassari, Sonya; Schwarzer, Wibke; Ettwiller, Laurence; Spitz, François
2014-01-01
Long-range regulatory interactions play an important role in shaping gene-expression programs. However, the genomic features that organize these activities are still poorly characterized. We conducted a large operational analysis to chart the distribution of gene regulatory activities along the mouse genome, using hundreds of insertions of a regulatory sensor. We found that enhancers distribute their activities along broad regions and not in a gene-centric manner, defining large regulatory domains. Remarkably, these domains correlate strongly with the recently described TADs, which partition the genome into distinct self-interacting blocks. Different features, including specific repeats and CTCF-binding sites, correlate with the transition zones separating regulatory domains, and may help to further organize promiscuously distributed regulatory influences within large domains. These findings support a model of genomic organization where TADs confine regulatory activities to specific but large regulatory domains, contributing to the establishment of specific gene expression profiles. PMID:24398455
Structure of yeast Argonaute with guide RNA
Nakanishi, Kotaro; Weinberg, David E.; Bartel, David P.; Patel, Dinshaw J.
2012-01-01
The RNA-induced silencing complex, comprising Argonaute and guide RNA, mediates RNA interference. Here we report the 3.2 Å crystal structure of Kluyveromyces Argonaute (KpAGO) fortuitously complexed with guide RNA originating from small-RNA duplexes autonomously loaded and processed by recombinant KpAGO. Despite their diverse sequences, guide-RNA nucleotides 1–8 are positioned similarly, with sequence-independent contacts to bases, phosphates and 2′-hydroxyl groups pre-organizing the backbone of nucleotides 2–8 in a near–A-form conformation. Compared with prokaryotic Argonautes, KpAGO has numerous surface-exposed insertion segments, with a cluster of conserved insertions repositioning the N domain to enable full propagation of guide–target pairing. Compared with Argonautes in inactive conformations, KpAGO has a hydrogen-bond network that stabilizes an expanded and repositioned loop, which inserts an invariant glutamate into the catalytic pocket. Mutation analyses and analogies to Ribonuclease H indicate that insertion of this glutamate finger completes a universally conserved catalytic tetrad, thereby activating Argonaute for RNA cleavage. PMID:22722195
Grady, Janet L; Kehrer, Rosemary G; Trusty, Carole E; Entin, Eileen B; Entin, Elliot E; Brunye, Tad T
2008-09-01
Simulation technologies are gaining widespread acceptance across a variety of educational domains and applications. The current research examines whether basic nursing procedure training with high-fidelity versus low-fidelity mannequins results in differential skill acquisition and perceptions of simulator utility. Fifty-two first-year students were taught nasogastric tube and indwelling urinary catheter insertion in one of two ways. The first group learned nasogastric tube and urinary catheter insertion using high-fidelity and low-fidelity mannequins, respectively, and the second group learned nasogastric tube and urinary catheter insertion using low-fidelity and high-fidelity mannequins, respectively. The dependent measures included student performance on nasogastric tube and urinary catheter insertion testing, as measured by observer-based instruments, and self-report questionnaires probing student attitudes about the use of simulation in nursing education. Results demonstrated higher performance with high-fidelity than with low-fidelity mannequin training. In response to a self-report posttraining questionnaire, participants expressed a more positive attitude toward the high-fidelity mannequin, especially regarding its responsiveness and realism.
Gonzalez, P; Barroso, G; Labarère, J
1999-04-01
The complete gene sequence and secondary structure of the mitochondrial LSU rRNA from the cultivated Basidiomycota Agrocybe aegerita was derived by chromosome walking. The A.aegerita LSU rRNA gene (13 526 nt) represents, to date, the longest described, due to the highest number of introns (eight) and the occurrence of six long nucleotidic extensions. Seven introns belong to group I, while the intronic sequence i5 constitutes the first typical group II intron reported in a fungal mitochondrial LSU rDNA. As with most fungal LSU rDNA introns reported to date, four introns (i5-i8) are distributed in domain V associated with the peptidyl-transferase activity. One intron (i1) is located in domain I, and three (i2-i4) in domain II. The introns i2-i8 possess homologies with other fungal, algal or protozoan introns located at the same position in LSU rDNAs. One of them (i6) is located at the same insertion site as most Ascomycota or algae LSU introns, suggesting a possible inheritance from a common ancestor. On the contrary, intron i1 is located at a so-far unreported insertion site. Among the six unusual nucleotide extensions, five are located in domain I and one in domain V. This is the first report of a mitochondrial LSU rRNA gene sequence and secondary structure for the whole Basidiomycota division.
Chao, Michael C.; Pritchard, Justin R.; Zhang, Yanjia J.; Rubin, Eric J.; Livny, Jonathan; Davis, Brigid M.; Waldor, Matthew K.
2013-01-01
The coupling of high-density transposon mutagenesis to high-throughput DNA sequencing (transposon-insertion sequencing) enables simultaneous and genome-wide assessment of the contributions of individual loci to bacterial growth and survival. We have refined analysis of transposon-insertion sequencing data by normalizing for the effect of DNA replication on sequencing output and using a hidden Markov model (HMM)-based filter to exploit heretofore unappreciated information inherent in all transposon-insertion sequencing data sets. The HMM can smooth variations in read abundance and thereby reduce the effects of read noise, as well as permit fine scale mapping that is independent of genomic annotation and enable classification of loci into several functional categories (e.g. essential, domain essential or ‘sick’). We generated a high-resolution map of genomic loci (encompassing both intra- and intergenic sequences) that are required or beneficial for in vitro growth of the cholera pathogen, Vibrio cholerae. This work uncovered new metabolic and physiologic requirements for V. cholerae survival, and by combining transposon-insertion sequencing and transcriptomic data sets, we also identified several novel noncoding RNA species that contribute to V. cholerae growth. Our findings suggest that HMM-based approaches will enhance extraction of biological meaning from transposon-insertion sequencing genomic data. PMID:23901011
Solubilization of a membrane protein by combinatorial supercharging.
Hajduczki, Agnes; Majumdar, Sudipta; Fricke, Marie; Brown, Isola A M; Weiss, Gregory A
2011-04-15
Hydrophobic and aggregation-prone, membrane proteins often prove too insoluble for conventional in vitro biochemical studies. To engineer soluble variants of human caveolin-1, a phage-displayed library of caveolin variants targeted the hydrophobic intramembrane domain with substitutions to charged residues. Anti-selections for insolubility removed hydrophobic variants, and positive selections for binding to the known caveolin ligand HIV gp41 isolated functional, folded variants. Assays with several caveolin binding partners demonstrated the successful folding and functionality by a solubilized, full-length caveolin variant selected from the library. This caveolin variant allowed assay of the direct interaction between caveolin and cavin. Clustered along one face of a putative helix, the solubilizing mutations suggest a structural model for the intramembrane domain of caveolin. The approach provides a potentially general method for solubilization and engineering of membrane-associated proteins by phage display.
Romao, Ema; Morales-Yanez, Francisco; Hu, Yaozhong; Crauwels, Maxine; De Pauw, Pieter; Hassanzadeh, Gholamreza Ghassanzadeh; Devoogdt, Nick; Ackaert, Chloe; Vincke, Cecile; Muyldermans, Serge
2016-01-01
The discovery of functional heavy chain-only antibodies devoid of light chains in sera of camelids and sharks in the early nineties provided access to the generation of minimal-sized, single-domain, in vivo affinity-matured, recombinant antigenbinding fragments, also known as Nanobodies. Recombinant DNA technology and adaptation of phage display vectors form the basis to construct large naïve, synthetic or medium sized immune libraries from where multiple Nanobodies have been retrieved. Alternative selection methods (i.e. bacterial display, bacterial two-hybrid, Cis-display and ribosome display) have also been developed to identify Nanobodies. The antigen affinity, stability, expression yields and structural details of the Nanobodies have been determined by standard technology. Nanobodies were subsequently engineered for higher stability and affinity, to have a sequence closer to that of human immunoglobulin domains, or to add designed effector functions. Antigen specific Nanobodies recognizing with high affinity their cognate antigen were retrieved from various libraries. High expression yields are obtained from microorganisms, even when expressed in the cytoplasm. The purified Nanobodies are shown to possess beneficial biochemical and biophysical properties. The crystal structure of Nanobody::antigen complexes reveal the preference of Nanobodies for cavities on the antigen surface. Thanks to the properties described above, Nanobodies became a highly valued and versatile tool for biomolecular research. Moreover, numerous diagnostic and therapeutic Nanobody-based applications have been developed in the past decade. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
González, Leonardo Galindo; Deyholos, Michael K
2012-11-21
Flax (Linum usitatissimum L.) is an important crop for the production of bioproducts derived from its seed and stem fiber. Transposable elements (TEs) are widespread in plant genomes and are a key component of their evolution. The availability of a genome assembly of flax (Linum usitatissimum) affords new opportunities to explore the diversity of TEs and their relationship to genes and gene expression. Four de novo repeat identification algorithms (PILER, RepeatScout, LTR_finder and LTR_STRUC) were applied to the flax genome assembly. The resulting library of flax repeats was combined with the RepBase Viridiplantae division and used with RepeatMasker to identify TEs coverage in the genome. LTR retrotransposons were the most abundant TEs (17.2% genome coverage), followed by Long Interspersed Nuclear Element (LINE) retrotransposons (2.10%) and Mutator DNA transposons (1.99%). Comparison of putative flax TEs to flax transcript databases indicated that TEs are not highly expressed in flax. However, the presence of recent insertions, defined by 100% intra-element LTR similarity, provided evidence for recent TE activity. Spatial analysis showed TE-rich regions, gene-rich regions as well as regions with similar genes and TE density. Monte Carlo simulations for the 71 largest scaffolds (≥ 1 Mb each) did not show any regional differences in the frequency of TE overlap with gene coding sequences. However, differences between TE superfamilies were found in their proximity to genes. Genes within TE-rich regions also appeared to have lower transcript expression, based on EST abundance. When LTR elements were compared, Copia showed more diversity, recent insertions and conserved domains than the Gypsy, demonstrating their importance in genome evolution. The calculated 23.06% TE coverage of the flax WGS assembly is at the low end of the range of TE coverages reported in other eudicots, although this estimate does not include TEs likely found in unassembled repetitive regions of the genome. Since enrichment for TEs in genomic regions was associated with reduced expression of neighbouring genes, and many members of the Copia LTR superfamily are inserted close to coding regions, we suggest Copia elements have a greater influence on recent flax genome evolution while Gypsy elements have become residual and highly mutated.
2012-01-01
Background Flax (Linum usitatissimum L.) is an important crop for the production of bioproducts derived from its seed and stem fiber. Transposable elements (TEs) are widespread in plant genomes and are a key component of their evolution. The availability of a genome assembly of flax (Linum usitatissimum) affords new opportunities to explore the diversity of TEs and their relationship to genes and gene expression. Results Four de novo repeat identification algorithms (PILER, RepeatScout, LTR_finder and LTR_STRUC) were applied to the flax genome assembly. The resulting library of flax repeats was combined with the RepBase Viridiplantae division and used with RepeatMasker to identify TEs coverage in the genome. LTR retrotransposons were the most abundant TEs (17.2% genome coverage), followed by Long Interspersed Nuclear Element (LINE) retrotransposons (2.10%) and Mutator DNA transposons (1.99%). Comparison of putative flax TEs to flax transcript databases indicated that TEs are not highly expressed in flax. However, the presence of recent insertions, defined by 100% intra-element LTR similarity, provided evidence for recent TE activity. Spatial analysis showed TE-rich regions, gene-rich regions as well as regions with similar genes and TE density. Monte Carlo simulations for the 71 largest scaffolds (≥ 1 Mb each) did not show any regional differences in the frequency of TE overlap with gene coding sequences. However, differences between TE superfamilies were found in their proximity to genes. Genes within TE-rich regions also appeared to have lower transcript expression, based on EST abundance. When LTR elements were compared, Copia showed more diversity, recent insertions and conserved domains than the Gypsy, demonstrating their importance in genome evolution. Conclusions The calculated 23.06% TE coverage of the flax WGS assembly is at the low end of the range of TE coverages reported in other eudicots, although this estimate does not include TEs likely found in unassembled repetitive regions of the genome. Since enrichment for TEs in genomic regions was associated with reduced expression of neighbouring genes, and many members of the Copia LTR superfamily are inserted close to coding regions, we suggest Copia elements have a greater influence on recent flax genome evolution while Gypsy elements have become residual and highly mutated. PMID:23171245
Burall, Laurel S; Laksanalamai, Pongpan; Datta, Atin R
2012-02-01
Listeria monocytogenes can survive and grow in refrigerated temperatures and high-salt environments. In an effort to better understand the associated mechanisms, a library of ∼ 5,200 transposon mutants of LS411, a food isolate from the Jalisco cheese outbreak, were screened for their ability to grow in brain heart infusion (BHI) broth at 5°C or in the presence of 7% NaCl and two mutants with altered growth profiles were identified. The LS522 mutant has a transposon insertion between secA2 and iap and showed a significant reduction in growth in BHI broth at 5°C and in the presence of 7% NaCl. Reverse transcriptase quantitative PCR (RT-qPCR) revealed a substantial reduction in the expression of iap. Additionally, a hypothetical gene (met), containing a putative S-adenosylmethionine-dependent methyltransferase domain, downstream of iap had downregulated expression. In-frame deletion mutants of iap and met were created in LS411. The LS560 (LS411 Δiap) mutant showed reduced growth at 5°C and in the presence of 7% salt, confirming its role in cold and salt growth attenuation. Surprisingly, the LS655 (LS411 Δmet) mutant showed slightly increased growth during refrigeration, though no alteration was seen in salt growth relative to the wild-type strain. The LS527 mutant, containing an insertion 36 bp upstream of the gbu operon, showed reduced expression of the gbu transcript by RT-qPCR and also showed growth reduction at 5°C and in the presence of 7% salt. This attenuation was severely exacerbated when the mutant was grown under the combined stresses. Analysis of the gbu operon deletion mutant showed decreased growth in 7% salt and refrigeration, supporting the previously characterized role for this gene in cold and salt adaptation. These studies indicate the potential for an intricate relationship between environmental stress regulation and virulence in L. monocytogenes.
Burall, Laurel S.; Laksanalamai, Pongpan
2012-01-01
Listeria monocytogenes can survive and grow in refrigerated temperatures and high-salt environments. In an effort to better understand the associated mechanisms, a library of ∼ 5,200 transposon mutants of LS411, a food isolate from the Jalisco cheese outbreak, were screened for their ability to grow in brain heart infusion (BHI) broth at 5°C or in the presence of 7% NaCl and two mutants with altered growth profiles were identified. The LS522 mutant has a transposon insertion between secA2 and iap and showed a significant reduction in growth in BHI broth at 5°C and in the presence of 7% NaCl. Reverse transcriptase quantitative PCR (RT-qPCR) revealed a substantial reduction in the expression of iap. Additionally, a hypothetical gene (met), containing a putative S-adenosylmethionine-dependent methyltransferase domain, downstream of iap had downregulated expression. In-frame deletion mutants of iap and met were created in LS411. The LS560 (LS411 Δiap) mutant showed reduced growth at 5°C and in the presence of 7% salt, confirming its role in cold and salt growth attenuation. Surprisingly, the LS655 (LS411 Δmet) mutant showed slightly increased growth during refrigeration, though no alteration was seen in salt growth relative to the wild-type strain. The LS527 mutant, containing an insertion 36 bp upstream of the gbu operon, showed reduced expression of the gbu transcript by RT-qPCR and also showed growth reduction at 5°C and in the presence of 7% salt. This attenuation was severely exacerbated when the mutant was grown under the combined stresses. Analysis of the gbu operon deletion mutant showed decreased growth in 7% salt and refrigeration, supporting the previously characterized role for this gene in cold and salt adaptation. These studies indicate the potential for an intricate relationship between environmental stress regulation and virulence in L. monocytogenes. PMID:22179239
Surface expression of an immunodominant malaria protein B cell epitope by yellow fever virus.
Bonaldo, Myrna C; Garratt, Richard C; Caufour, Philippe S; Freire, Marcos S; Rodrigues, Mauricio M; Nussenzweig, Ruth S; Galler, Ricardo
2002-01-25
The yellow fever 17D virus (YF17D) has several characteristics that are desirable for the development of new, live attenuated vaccines. We approached its development as a vector for heterologous antigens by studying the expression of a humoral epitope at the surface of the E protein based on the results of modelling its three-dimensional structure. This model indicated that the most promising insertion site is between beta-strands f and g, a site that is exposed at the external surface of the virus. The large deletion of six residues from the fg loop of the E protein from yellow fever virus, compared to tick-born encephalitis virus, leaves space at the dimer interface for a large insertion without creating steric hindrance. We have tested this hypothesis by inserting a model humoral epitope from the circumsporozoite protein of Plasmodium falciparum consisting of triple NANP repeats. Recombinant virus (17D/8) expressing this insertion flanked by two glycine residues at each end, is specifically neutralized by a monoclonal antibody to the model epitope. Furthermore, mouse antibodies raised to the recombinant virus recognize the parasite protein in an ELISA assay. Serial passage analysis confirmed the genetic stability of the insertion made in the viral genome and the resulting 17D/8 virus is significantly more attenuated in mouse neurovirulence tests than the 17DD vaccine. The fg loop belongs to the dimerization domain of the E protein and lies at the interface between monomers. This domain undergoes a low pH transition, which is related to the fusion of the viral envelope to the endosome membrane. It is conceivable that a slower rate of fusion, resulting from the insertion close to the dimer interface, may delay the onset of virus production and thereby lead to a milder infection of the host. This would account for the more attenuated phenotype of the recombinant virus in the mouse model and lower extent of replication in cultured cells. The vectorial capacity of the yellow fever virus is being further explored for the expression and presentation of other epitopes, including those mediating T-cell responses. Copyright 2002 Academic Press.
Cooperative rearrangements leading to long range order in monolayers of supramolecular polymers.
Vonau, F; Aubel, D; Bouteiller, L; Reiter, G; Simon, L
2007-08-24
Using scanning tunneling microscopy (STM), we followed the self-organization process of a supramolecular polymer monolayer deposited on a gold surface. During the growth of ordered domains from small to large scales, the molecule-molecule interactions were found to overrule the coupling to the substrate, causing a reorientation of the monolayer. The flexibility at the molecular level, due to reversible hydrogen bonds, was directly visualized by STM. The supramolecules were able to slide and insert between neighboring molecules, allowing the annihilation of domain boundaries and improving long range order. Large domains were found to cross monoatomic steps on the substrate without perturbation of their order.
Laasik, Eve; Ojarand, Merli; Pajunen, Maria; Savilahti, Harri; Mäe, Andres
2005-02-01
As in Erwinia carotovora subsp. carotovora the regulation details of the main virulence factors, encoding extracellular enzymes that degrade the plant cell wall, is only rudimentally understood, we performed a genetic screen to identify novel candidate genes involved in the process. Initially, we used Mu transpososome-mediated mutagenesis approach to generate a comprehensive transposon insertion mutant library of ca. 10000 clones and screened the clones for the loss of extracellular enzyme production. Extracellular enzymes production was abolished by mutations in the chromosomal helEcc, trkAEcc yheLEcc, glsEcc, igaAEcc and cysQEcc genes. The findings reported here demonstrate that we have isolated six new representatives that belong to the pool of genes modulating the production of virulence factors in E. carotovora.
Construction of naïve camelids VHH repertoire in phage display-based library.
Sabir, Jamal S M; Atef, Ahmed; El-Domyati, Fotouh M; Edris, Sherif; Hajrah, Nahid; Alzohairy, Ahmed M; Bahieldin, Ahmed
2014-04-01
Camelids have unique antibodies, namely HCAbs (VHH) or commercially named Nanobodies(®) (Nb) that are composed only of a heavy-chain homodimer. As libraries based on immunized camelids are time-consuming, costly and likely redundant for certain antigens, we describe the construction of a naïve camelid VHHs library from blood serum of non-immunized camelids with affinity in the subnanomolar range and suitable for standard immune applications. This approach is rapid and recovers VHH repertoire with the advantages of being more diverse, non-specific and devoid of subpopulations of specific antibodies, which allows the identification of binders for any potential antigen (or pathogen). RNAs from a number of camelids from Saudi Arabia were isolated and cDNAs of the diverse vhh gene were amplified; the resulting amplicons were cloned in the phage display pSEX81 vector. The size of the library was found to be within the required range (10(7)) suitable for subsequent applications in disease diagnosis and treatment. Two hundred clones were randomly selected and the inserted gene library was either estimated for redundancy or sequenced and aligned to the reference camelid vhh gene (acc. No. ADE99145). Results indicated complete non-specificity of this small library in which no single event of redundancy was detected. These results indicate the efficacy of following this approach in order to yield a large and diverse enough gene library to secure the presence of the required version encoding the required antibodies for any target antigen. This work is a first step towards the construction of phage display-based biosensors useful in disease (e.g., TB or tuberculosis) diagnosis and treatment. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Thuduppathy, Guruvasuthevan R.; Craig, Jeffrey W.; Schon, Victoria Kholodenko Arne; Hill, R. Blake
2006-01-01
Signals from different cellular networks are integrated at the mitochondria in the regulation of apoptosis. This integration is controlled by the Bcl-2 proteins, many of which change localization fromthe cytosol to the mitochondrial outer membrane in this regulation. For Bcl-xL, this change in localization reflects the ability to undergo a conformational change from a solution to integral membrane conformation. To characterize this conformational change, structural and thermodynamic measurements were performed in the absence and presence of lipid vesicles with Bcl-xL. A pH-dependent model is proposed for the solution to membrane conformational change that consists of three stable conformations: a solution conformation, a conformation similar to the solution conformation but anchored to the membrane by its C-terminal transmembrane domain, and a membrane conformation that is fully associated with the membrane. This model predicts that the solution to membrane conformational change is independent of the C-terminal trans-membrane domain, which is experimentally demonstrated. The conformational change is associated with changes in secondary and, especially, tertiary structure of the protein, as measured by far and near-UV circular dichroism spectroscopy, respectively. Membrane insertion was distinguished from peripheral association with the membrane by quenching of intrinsic tryptophan fluorescence by acrylamide and brominated lipids. For the cytosolic domain, the free energy of insertion ( ΔGox) into lipid vesicles was determined to be −6.5 k cal mol−1 at pH4.9 by vesicle binding experiments. To test whether electrostatic interactions were significant to this process, the salt dependence of this conformational change was measured and analyzed in terms of Gouy–Chapman theory to estimate an electrostatic contribution of ΔGoel ~−2.5 kcal mol−1 and a non-electrostatic contribution of ΔGonel ~−4.0 kcal mol−1 to the free energy of insertion, ΔGox. Calcium, which blocks ion channel activity of Bcl-xL, did not affect the solution to membrane conformational change more than predicted by these electrostatic considerations. The lipid cardiolipin, that is enriched at mitochondrial contact sites and reported to be important for the localization of Bcl-2 proteins, did not affect the solution to membrane conformational change of the cytosolic domain, suggesting that this lipid is not involved in the localization of Bcl-xL in vivo. Collectively, these data suggest the solution to membrane conformational change is controlled by an electrostatic mechanism. Given the distinct biological activities of these conformations, the possibility that this conformational change might be a regulatory checkpoint for apoptosis is discussed. PMID:16650855
Babenko, Vladimir N; Makunin, Igor V; Brusentsova, Irina V; Belyaeva, Elena S; Maksimov, Daniil A; Belyakin, Stepan N; Maroy, Peter; Vasil'eva, Lyubov A; Zhimulev, Igor F
2010-05-21
Eukaryotic genomes are organized in extended domains with distinct features intimately linking genome structure, replication pattern and chromatin state. Recently we identified a set of long late replicating euchromatic regions that are underreplicated in salivary gland polytene chromosomes of D. melanogaster. Here we demonstrate that these underreplicated regions (URs) have a low density of P-element and piggyBac insertions compared to the genome average or neighboring regions. In contrast, Minos-based transposons show no paucity in URs but have a strong bias to testis-specific genes. We estimated the suppression level in 2,852 stocks carrying a single P-element by analysis of eye color determined by the mini-white marker gene and demonstrate that the proportion of suppressed transgenes in URs is more than three times higher than in the flanking regions or the genomic average. The suppressed transgenes reside in intergenic, genic or promoter regions of the annotated genes. We speculate that the low insertion frequency of P-elements and piggyBacs in URs partially results from suppression of transgenes that potentially could prevent identification of transgenes due to complete suppression of the marker gene. In a similar manner, the proportion of suppressed transgenes is higher in loci replicating late or very late in Kc cells and these loci have a lower density of P-elements and piggyBac insertions. In transgenes with two marker genes suppression of mini-white gene in eye coincides with suppression of yellow gene in bristles. Our results suggest that the late replication domains have a high inactivation potential apparently linked to the silenced or closed chromatin state in these regions, and that such inactivation potential is largely maintained in different tissues.
Design of protein switches based on an ensemble model of allostery.
Choi, Jay H; Laurent, Abigail H; Hilser, Vincent J; Ostermeier, Marc
2015-04-22
Switchable proteins that can be regulated through exogenous or endogenous inputs have a broad range of biotechnological and biomedical applications. Here we describe the design of switchable enzymes based on an ensemble allosteric model. First, we insert an enzyme domain into an effector-binding domain such that both domains remain functionally intact. Second, we induce the fusion to behave as a switch through the introduction of conditional conformational flexibility designed to increase the conformational entropy of the enzyme domain in a temperature- or pH-dependent fashion. We confirm the switching behaviour in vitro and in vivo. Structural and thermodynamic studies support the hypothesis that switching result from an increase in conformational entropy of the enzyme domain in the absence of effector. These results support the ensemble model of allostery and embody a strategy for the design of protein switches.
Production and characterization of a high-affinity nanobody against human endoglin.
Ahmadvand, Davoud; Rasaee, Mohammad J; Rahbarizadeh, Fatemeh; Mohammadi, Mohammad
2008-10-01
Abstract Antibodies or antibody fragments are almost exclusively applied in human therapy and diagnosis. The high affinity and specificity of antibodies makes them suitable for these applications. Nanobody, the variable domain of Camelidae heavy chain antibodies, have superior properties compared with conventional antibodies in that they are small, non-immunogenic, very stable, highly soluble, and easy to produce in large quantities. In the present study, we report the isolation and characterization of a high-affinity binder against human endoglin retrieved from camels' nanobody gene library. Endoglin (CD105), an accessory protein of the transforming growth factor beta receptor complex, has become an attractive molecule for the targeting of the tumor vasculature. Upregulation of endoglin on proliferating endothelial cells is associated with tumor neovascularization. Here, we generated two nanobody gene libraries displayed on phage particles. Some single-domain antibody fragments have been isolated that specifically recognize the recombinant extracellular domain of human endoglin. The other selected anti-endoglin nanobody (AR1-86) showed strong binding to human endoglin expressing endothelial cells (HUVECs), while no binding was observed with the endoglin-negative cell line (HEK293). This high-affinity single-domain antibody could be a good candidate for the generation of vascular or tumor targeting agents in cancer therapy.
DOCLIB: a software library for document processing
NASA Astrophysics Data System (ADS)
Jaeger, Stefan; Zhu, Guangyu; Doermann, David; Chen, Kevin; Sampat, Summit
2006-01-01
Most researchers would agree that research in the field of document processing can benefit tremendously from a common software library through which institutions are able to develop and share research-related software and applications across academic, business, and government domains. However, despite several attempts in the past, the research community still lacks a widely-accepted standard software library for document processing. This paper describes a new library called DOCLIB, which tries to overcome the drawbacks of earlier approaches. Many of DOCLIB's features are unique either in themselves or in their combination with others, e.g. the factory concept for support of different image types, the juxtaposition of image data and metadata, or the add-on mechanism. We cherish the hope that DOCLIB serves the needs of researchers better than previous approaches and will readily be accepted by a larger group of scientists.
2010-01-01
genes from strains that have desirable traits. Here, we aim to enlarge the E. coli genome using Lactobacillus plantarum genes to build cells tolerant to...EtOH and BT. L. plantarum is an organism with established high tolerance to alcohols and solvents more broadly. Objective 2: Build a stress...heterologous (here: L. plantarum ; abbreviated as L. pl) DNA into the E. coli chromosome while selecting for insertions that enhance ethanol tolerance (which
Primary structure and mapping of the hupA gene of Salmonella typhimurium.
Higgins, N P; Hillyard, D
1988-01-01
In bacteria, the complex nucleoid structure is folded and maintained by negative superhelical tension and a set of type II DNA-binding proteins, also called histonelike proteins. The most abundant type II DNA-binding protein is HU. Southern blot analysis showed that Salmonella typhimurium contained two HU genes that corresponded to Escherichia coli genes hupA (encoding HU-2 protein) and hupB (encoding HU-1). Salmonella hupA was cloned, and the nucleotide sequence of the gene was determined. Comparison of hupA of E. coli and S. typhimurium revealed that the HU-2 proteins were identical and that there was high conservation of nucleotide sequences outside the coding frames of the genes. A 300-member genomic library of S. typhimurium was constructed by using random transposition of MudP, a specialized chimeric P22-Mu phage that packages chromosomal DNA unidirectionally from its insertion point. Oligonucleotide hybridization against the library identified one MudP insertion that lies within 28 kilobases of hupA; the MudP was 12% linked to purH at 90.5 min on the standard map. Plasmids expressing HU-2 had a surprising phenotype; they caused growth arrest when they were introduced into E. coli strains bearing a himA or hip mutation. These results suggest that IHF and HU have interactive roles in bacteria. Images PMID:3056912
[Screening and identification of anoikis-resistant gene UBCH7 in esophageal cancer cells].
Yang, Yang; Wang, Bo-Shi; Wang, Xiao-Min; Zhang, Yu; Wang, Ming-Rong; Jia, Xue-Mei
2012-02-01
Anoikis is a kind of programmed cell death induced by loss of extracellular matrix (ECM) adhesion, which is one of key factors for homestasis. Resistance to anoikis is required for tumor cell metastasis. We have previously shown several anoikis-resistance genes in esophageal squamous cell carcinoma (ESCC). In order to find novel anoikis-resistant genes in ESCC, we constructed retroviral cDNA library using total RNA from ESCC cell lines. NIH 3T3 cells, which are sensitive to anoikis, were infected with the library constructed. The cells were cultured in soft agar, and the clones which can survive in detached states were selected. The cDNAs inserted into the anoikis-resistant NIH3T3 clones were amplified using retroviral specific primers. Sequencing analysis showed that a cDNA fragment inserted into the anoikis-resistant clone contains full coding sequence (ORF) of human UBCH7/UBE2L3 gene. By infection with retrovirus encoding UBCH7 ORF (pMSCV-UBCH7), forced expression of UBCH7 increased the anoikis-resistance of NIH3T3 cells. More importantly, knockdown of UBCH7 expression by siRNA transfection reduced the anoikis-resistant ability of esophageal cancer MLuC1 cells. The data suggest that UBCH7/UBE2L3 gene would be involved in anoikis-resistance in ESCC.
Meng, Jia; Kanzaki, Gregory; Meas, Diane; Lam, Christopher K.; Crummer, Heather; Tain, Justina; Xu, H. Howard
2013-01-01
Regulated antisense RNA (asRNA) expression has been employed successfully in Gram-positive bacteria for genome-wide essential gene identification and drug target determination. However, there have been no published reports describing the application of asRNA gene silencing for comprehensive analyses of essential genes in Gram-negative bacteria. In this study, we report the first genome-wide identification of asRNA constructs for essential genes in Escherichia coli. We screened 250,000 library transformants for conditional growth-inhibitory recombinant clones from two shot-gun genomic libraries of E. coli using a paired-termini expression vector (pHN678). After sequencing plasmid inserts of 675 confirmed inducer-sensitive cell clones, we identified 152 separate asRNA constructs of which 134 inserts came from essential genes while 18 originated from non-essential genes (but share operons with essential genes). Among the 79 individual essential genes silenced by these asRNA constructs, 61 genes (77%) engage in processes related to protein synthesis. The cell-based assays of an asRNA clone targeting fusA (encoding elongation factor G) showed that the induced cells were sensitized 12 fold to fusidic acid, a known specific inhibitor. Our results demonstrate the utility of the paired-termini expression vector and feasibility of large-scale gene silencing in E. coli using regulated asRNA expression. PMID:22268863
Evaluation of vector-primed cDNA library production from microgram quantities of total RNA.
Kuo, Jonathan; Inman, Jason; Brownstein, Michael; Usdin, Ted B
2004-12-15
cDNA sequences are important for defining the coding region of genes, and full-length cDNA clones have proven to be useful for investigation of the function of gene products. We produced cDNA libraries containing 3.5-5 x 10(5) primary transformants, starting with 5 mug of total RNA prepared from mouse pituitary, adrenal, thymus, and pineal tissue, using a vector-primed cDNA synthesis method. Of approximately 1000 clones sequenced, approximately 20% contained the full open reading frames (ORFs) of known transcripts, based on the presence of the initiating methionine residue codon. The libraries were complex, with 94, 91, 83 and 55% of the clones from the thymus, adrenal, pineal and pituitary libraries, respectively, represented only once. Twenty-five full-length clones, not yet represented in the Mammalian Gene Collection, were identified. Thus, we have produced useful cDNA libraries for the isolation of full-length cDNA clones that are not yet available in the public domain, and demonstrated the utility of a simple method for making high-quality libraries from small amounts of starting material.
Martin, Marjolaine; Vandermies, Marie; Joyeux, Coline; Martin, Renée; Barbeyron, Tristan; Michel, Gurvan; Vandenbol, Micheline
2016-01-01
Alga-associated microorganisms, in the context of their numerous interactions with the host and the complexity of the marine environment, are known to produce diverse hydrolytic enzymes with original biochemistry. We recently isolated several macroalgal-polysaccharide-degrading bacteria from the surface of the brown alga Ascophyllum nodosum. These active isolates belong to two classes: the Flavobacteriia and the Gammaproteobacteria. In the present study, we constructed two "plurigenomic" (with multiple bacterial genomes) libraries with the 5 most interesting isolates (regarding their phylogeny and their enzymatic activities) of each class (Fv and Gm libraries). Both libraries were screened for diverse hydrolytic activities. Five activities, out of the 48 previously identified in the natural polysaccharolytic isolates, were recovered by functional screening: a xylanase (GmXyl7), a beta-glucosidase (GmBg1), an esterase (GmEst7) and two iota-carrageenases (Fvi2.5 and Gmi1.3). We discuss here the potential role of the used host-cell, the average DNA insert-sizes and the used restriction enzymes on the divergent screening yields obtained for both libraries and get deeper inside the "great screen anomaly". Interestingly, the discovered esterase probably stands for a novel family of homoserine o-acetyltransferase-like-esterases, while the two iota-carrageenases represent new members of the poorly known GH82 family (containing only 19 proteins since its description in 2000). These original results demonstrate the efficiency of our uncommon "plurigenomic" library approach and the underexplored potential of alga-associated cultivable microbiota for the identification of novel and algal-specific enzymes. Copyright © 2016 Elsevier GmbH. All rights reserved.
He, Bifang; Tjhung, Katrina F; Bennett, Nicholas J; Chou, Ying; Rau, Andrea; Huang, Jian; Derda, Ratmir
2018-01-19
Understanding the composition of a genetically-encoded (GE) library is instrumental to the success of ligand discovery. In this manuscript, we investigate the bias in GE-libraries of linear, macrocyclic and chemically post-translationally modified (cPTM) tetrapeptides displayed on the M13KE platform, which are produced via trinucleotide cassette synthesis (19 codons) and NNK-randomized codon. Differential enrichment of synthetic DNA {S}, ligated vector {L} (extension and ligation of synthetic DNA into the vector), naïve libraries {N} (transformation of the ligated vector into the bacteria followed by expression of the library for 4.5 hours to yield a "naïve" library), and libraries chemically modified by aldehyde ligation and cysteine macrocyclization {M} characterized by paired-end deep sequencing, detected a significant drop in diversity in {L} → {N}, but only a minor compositional difference in {S} → {L} and {N} → {M}. Libraries expressed at the N-terminus of phage protein pIII censored positively charged amino acids Arg and Lys; libraries expressed between pIII domains N1 and N2 overcame Arg/Lys-censorship but introduced new bias towards Gly and Ser. Interrogation of biases arising from cPTM by aldehyde ligation and cysteine macrocyclization unveiled censorship of sequences with Ser/Phe. Analogous analysis can be used to explore library diversity in new display platforms and optimize cPTM of these libraries.
Production of novel recombinant single-domain antibodies against tandem repeat region of MUC1 mucin.
Rahbarizadeh, F; Rasaee, M J; Forouzandeh Moghadam, M; Allameh, A A; Sadroddiny, E
2004-06-01
Recently, the existence of "heavy-chain" antibody in Camelidae has been described. However, as yet there is no data on the binding of this type of antibody to peptides. In addition, there was not any report of production of single-domain antibodies in two-humped camels (Camelus bactrianus). In the present study, these questions are addressed. We showed the feasibility of immunizing old world camels, cloning the repertoire of the variable domain of their heavy-chain antibodies, panning and selection, leading to the successful identification of minimum-sized antigen binders. Antigen-specific fragments of the heavy-chain IgGs (V(HH)) are of great interest in biotechnology because they are very stable, highly soluble, and react specifically and with high affinity to the antigens. In this study, we immunized two camels (Camelus dromedarius and Camelus bactrianus) with homogenized cancerous tissues, synthetic peptide, and human milk fat globule membrane (HMFG), and generated two V(HH) libraries displayed on phage particles. Some single-domain antibody fragments have been isolated that specifically recognize the tandem repeat region of MUC1. The camels' single-domain V(HH) harbor the original, intact antigen binding site and reacted specifically and with high affinity to the tandem repeat region of MUC1. Indeed soluble, specific antigen binders and good affinities (in the range of 0.2 x 10(9) M(-1) to 0.6 x 10(9) M(-1)) were identified from these libraries. This is the first example of the isolation of camel anti-peptide V(HH) domains.
NASA Astrophysics Data System (ADS)
McKnight, Timothy E.; Melechko, Anatoli V.; Griffin, Guy D.; Guillorn, Michael A.; Merkulov, Vladimir I.; Serna, Francisco; Hensley, Dale K.; Doktycz, Mitchel J.; Lowndes, Douglas H.; Simpson, Michael L.
2003-05-01
We demonstrate the integration of vertically aligned carbon nanofibre (VACNF) elements with the intracellular domains of viable cells for controlled biochemical manipulation. Deterministically synthesized VACNFs were modified with either adsorbed or covalently-linked plasmid DNA and were subsequently inserted into cells. Post insertion viability of the cells was demonstrated by continued proliferation of the interfaced cells and long-term (> 22 day) expression of the introduced plasmid. Adsorbed plasmids were typically desorbed in the intracellular domain and segregated to progeny cells. Covalently bound plasmids remained tethered to nanofibres and were expressed in interfaced cells but were not partitioned into progeny, and gene expression ceased when the nanofibre was no longer retained. This provides a method for achieving a genetic modification that is non-inheritable and whose extent in time can be directly and precisely controlled. These results demonstrate the potential of VACNF arrays as an intracellular interface for monitoring and controlling subcellular and molecular phenomena within viable cells for applications including biosensors, in vivo diagnostics, and in vivo logic devices.
Bezabeh, Binyam; Fleming, Ryan; Fazenbaker, Christine; Zhong, Haihong; Coffman, Karen; Yu, Xiang-Qing; Leow, Ching Ching; Gibson, Nerea; Wilson, Susan; Stover, C Kendall; Wu, Herren; Gao, Changshou; Dimasi, Nazzareno
By simultaneous binding two disease mediators, bispecific antibodies offer the opportunity to broaden the utility of antibody-based therapies. Herein, we describe the design and characterization of Bs4Ab, an innovative and generic bispecific tetravalent antibody platform. The Bs4Ab format comprises a full-length IgG1 monoclonal antibody with a scFv inserted into the hinge domain. The Bs4Ab design demonstrates robust manufacturability as evidenced by MEDI3902, which is currently in clinical development. To further demonstrate the applicability of the Bs4Ab technology, we describe the molecular engineering, biochemical, biophysical, and in vivo characterization of a bispecific tetravalent Bs4Ab that, by simultaneously binding vascular endothelial growth factor and angiopoietin-2, inhibits their function. We also demonstrate that the Bs4Ab platform allows Fc-engineering similar to that achieved with IgG1 antibodies, such as mutations to extend half-life or modulate effector functions.
Fox, Philip D; Haberkorn, Christopher J; Weigel, Aubrey V; Higgins, Jenny L; Akin, Elizabeth J; Kennedy, Matthew J; Krapf, Diego; Tamkun, Michael M
2013-09-01
In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking.
Visualization of chromatin domains created by the gypsy insulator of Drosophila.
Byrd, Keith; Corces, Victor G
2003-08-18
Insulators might regulate gene expression by establishing and maintaining the organization of the chromatin fiber within the nucleus. Biochemical fractionation and in situ high salt extraction of lysed cells show that two known protein components of the gypsy insulator are present in the nuclear matrix. Using FISH with DNA probes located between two endogenous Su(Hw) binding sites, we show that the intervening DNA is arranged in a loop, with the two insulators located at the base. Mutations in insulator proteins, subjecting the cells to a brief heat shock, or destruction of the nuclear matrix lead to disruption of the loop. Insertion of an additional gypsy insulator in the center of the loop results in the formation of paired loops through the attachment of the inserted sequences to the nuclear matrix. These results suggest that the gypsy insulator might establish higher-order domains of chromatin structure and regulate nuclear organization by tethering the DNA to the nuclear matrix and creating chromatin loops.
von Charpuis, Charlotte; Meckel, Tobias; Moroni, Anna; Thiel, Gerhard
2015-07-01
The two small and similar viral K(+) channels Kcv and Kesv are sorted in mammalian cells and yeast to different destinations. Analysis of the sorting pathways shows that Kcv is trafficking via the secretory pathway to the plasma membrane, while Kesv is inserted via the TIM/TOM complex to the inner membrane of mitochondria. Studies with Kesv mutants show that an N-terminal mitochondrial targeting sequence in this channel is neither necessary nor sufficient for sorting of Kesv the mitochondria. Instead the sorting of Kesv can be redirected from the mitochondria to the plasma membrane by an insertion of ≥2 amino acids in a position sensitive manner into the C-terminal transmembrane domain (TMD2) of this channel. The available data advocate the presence of a C-terminal sorting signal in TMD2 of Kesv channel, which is presumably not determined by the length of this domain. Copyright © 2014. Published by Elsevier Ltd.
Fox, Philip D.; Haberkorn, Christopher J.; Weigel, Aubrey V.; Higgins, Jenny L.; Akin, Elizabeth J.; Kennedy, Matthew J.; Krapf, Diego; Tamkun, Michael M.
2013-01-01
In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking. PMID:23864710
Where to Publish and Find Ontologies? A Survey of Ontology Libraries
d'Aquin, Mathieu; Noy, Natalya F.
2011-01-01
One of the key promises of the Semantic Web is its potential to enable and facilitate data interoperability. The ability of data providers and application developers to share and reuse ontologies is a critical component of this data interoperability: if different applications and data sources use the same set of well defined terms for describing their domain and data, it will be much easier for them to “talk” to one another. Ontology libraries are the systems that collect ontologies from different sources and facilitate the tasks of finding, exploring, and using these ontologies. Thus ontology libraries can serve as a link in enabling diverse users and applications to discover, evaluate, use, and publish ontologies. In this paper, we provide a survey of the growing—and surprisingly diverse—landscape of ontology libraries. We highlight how the varying scope and intended use of the libraries a ects their features, content, and potential exploitation in applications. From reviewing eleven ontology libraries, we identify a core set of questions that ontology practitioners and users should consider in choosing an ontology library for finding ontologies or publishing their own. We also discuss the research challenges that emerge from this survey, for the developers of ontology libraries to address. PMID:22408576
Jafari, Majid; Mehrnejad, Faramarz; Aghdami, Raheleh; Chaparzadeh, Nader; Razaghi Moghadam Kashani, Zahra; Doustdar, Farahnoosh
2017-04-24
Antimicrobial peptides (AMPs) are part of the innate host defense system, and they are produced by living organisms to defend themselves against infections. Pardaxin is a cationic AMP with antimicrobial and antitumor activities that has potential to be used as a novel antibiotic or for drug delivery in cancer therapy. This peptide acts on the membrane of target cells and can lead to lysis using different mechanisms of action. Here, we conducted 4.5 μs all-atom molecular dynamics (MD) simulations to determine the critical fragments and residues of Pardaxin for early insertion into different lipid bilayers. Our results revealed that the N-terminal domain of the peptide, particularly the Phe 2 and (/or) Phe 3 residues, has a crucial role in early insertion, independent of the type of lipid bilayers.
Devirgiliis, Chiara; Barile, Simona; Perozzi, Giuditta
2014-01-01
Lactic acid bacteria (LAB) represent the predominant microbiota in fermented foods. Foodborne LAB have received increasing attention as potential reservoir of antibiotic resistance (AR) determinants, which may be horizontally transferred to opportunistic pathogens. We have previously reported isolation of AR LAB from the raw ingredients of a fermented cheese, while AR genes could be detected in the final, marketed product only by PCR amplification, thus pointing at the need for more sensitive microbial isolation techniques. We turned therefore to construction of a metagenomic library containing microbial DNA extracted directly from the food matrix. To maximize yield and purity and to ensure that genomic complexity of the library was representative of the original bacterial population, we defined a suitable protocol for total DNA extraction from cheese which can also be applied to other lipid-rich foods. Functional library screening on different antibiotics allowed recovery of ampicillin and kanamycin resistant clones originating from Streptococcus salivarius subsp. thermophilus and Lactobacillus helveticus genomes. We report molecular characterization of the cloned inserts, which were fully sequenced and shown to confer AR phenotype to recipient bacteria. We also show that metagenomics can be applied to food microbiota to identify underrepresented species carrying specific genes of interest. PMID:25243126
Nguyen, Kieu T H; Adamkiewicz, Marta A; Hebert, Lauren E; Zygiel, Emily M; Boyle, Holly R; Martone, Christina M; Meléndez-Ríos, Carola B; Noren, Karen A; Noren, Christopher J; Hall, Marilena Fitzsimons
2014-10-01
A target-unrelated peptide (TUP) can arise in phage display selection experiments as a result of a propagation advantage exhibited by the phage clone displaying the peptide. We previously characterized HAIYPRH, from the M13-based Ph.D.-7 phage display library, as a propagation-related TUP resulting from a G→A mutation in the Shine-Dalgarno sequence of gene II. This mutant was shown to propagate in Escherichia coli at a dramatically faster rate than phage bearing the wild-type Shine-Dalgarno sequence. We now report 27 additional fast-propagating clones displaying 24 different peptides and carrying 14 unique mutations. Most of these mutations are found either in or upstream of the gene II Shine-Dalgarno sequence, but still within the mRNA transcript of gene II. All 27 clones propagate at significantly higher rates than normal library phage, most within experimental error of wild-type M13 propagation, suggesting that mutations arise to compensate for the reduced virulence caused by the insertion of a lacZα cassette proximal to the replication origin of the phage used to construct the library. We also describe an efficient and convenient assay to diagnose propagation-related TUPS among peptide sequences selected by phage display. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
The effects of variable sample biomass on comparative metagenomics.
Chafee, Meghan; Maignien, Loïs; Simmons, Sheri L
2015-07-01
Longitudinal studies that integrate samples with variable biomass are essential to understand microbial community dynamics across space or time. Shotgun metagenomics is widely used to investigate these communities at the functional level, but little is known about the effects of combining low and high biomass samples on downstream analysis. We investigated the interacting effects of DNA input and library amplification by polymerase chain reaction on comparative metagenomic analysis using dilutions of a single complex template from an Arabidopsis thaliana-associated microbial community. We modified the Illumina Nextera kit to generate high-quality large-insert (680 bp) paired-end libraries using a range of 50 pg to 50 ng of input DNA. Using assembly-based metagenomic analysis, we demonstrate that DNA input level has a significant impact on community structure due to overrepresentation of low-GC genomic regions following library amplification. In our system, these differences were largely superseded by variations between biological replicates, but our results advocate verifying the influence of library amplification on a case-by-case basis. Overall, this study provides recommendations for quality filtering and de-replication prior to analysis, as well as a practical framework to address the issue of low biomass or biomass heterogeneity in longitudinal metagenomic surveys. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
New drug information resources for pharmacists at the National Library of Medicine.
Knoben, James E; Phillips, Steven J
2014-01-01
To provide an overview of selected drug information-related databases of the National Library of Medicine (NLM), with a focus on newer resources that support the professional information needs of pharmacists and other health care providers. NLM, which is the world's largest medical library, provides an array of bibliographic, factual, and evidence-based drug, herbal remedy, and dietary supplement information resources. Five of the more recently introduced online resources include areas of particular importance to pharmacists, including a repository of current product labeling/package inserts, with automated search links to associated information resources; a portal to drug information that allows pharmacists to search multiple databases simultaneously and link to related medication and health care information resources; authoritative information on the effects of medications, herbal remedies, and dietary supplements in nursing infants and their mothers; comprehensive information, including a case registry, on the potential for liver toxicity due to drugs, herbal remedies, and dietary supplements; and a pill identification system with two intuitive search methodologies. NLM provides several clinical-scientific drug information resources that are particularly useful in meeting the professional information needs of pharmacists.
Seo, Hogyu David; Lee, Daeyoup
2018-05-15
Random mutagenesis of a target gene is commonly used to identify mutations that yield the desired phenotype. Of the methods that may be used to achieve random mutagenesis, error-prone PCR is a convenient and efficient strategy for generating a diverse pool of mutants (i.e., a mutant library). Error-prone PCR is the method of choice when a researcher seeks to mutate a pre-defined region, such as the coding region of a gene while leaving other genomic regions unaffected. After the mutant library is amplified by error-prone PCR, it must be cloned into a suitable plasmid. The size of the library generated by error-prone PCR is constrained by the efficiency of the cloning step. However, in the fission yeast, Schizosaccharomyces pombe, the cloning step can be replaced by the use of a highly efficient one-step fusion PCR to generate constructs for transformation. Mutants of desired phenotypes may then be selected using appropriate reporters. Here, we describe this strategy in detail, taking as an example, a reporter inserted at centromeric heterochromatin.
Antibody phage display: overview of a powerful technology that has quickly translated to the clinic.
Kotlan, Beatrix; Glassy, Mark C
2009-01-01
Antibody-based immunologic reagents are useful for identifying, isolating, or eliminating cells with particular characteristics related to different diseases. Phage display is a highly valuable technique for antibody selection related to this purpose. In brief, a diverse group of antibody genes prepared from a patient or generated in vitro are inserted into a phagemid vector or the phage genome so that when the protein is expressed, it becomes anchored on the surface of the phage by fusion to a coat protein. A diverse library of recombinant antibodies is generated in this way and can then be exposed or panned on the antigen of interest, typically, this being a molecule associated with a particular pathological condition. Phage that carry proteins or peptides bind preferentially to the target and can thus be isolated from the library. The viruses that are recovered in this way also carry the gene for the binding moiety facilitating its over-expression or manipulation. Recent reviews highlight key milestones in the development of antibody libraries and their screening by phage display, and the impact of these technologies on drug discovery seems assured.
Hasterok, Robert; Marasek, Agnieszka; Donnison, Iain S.; Armstead, Ian; Thomas, Ann; King, Ian P.; Wolny, Elzbieta; Idziak, Dominika; Draper, John; Jenkins, Glyn
2006-01-01
As part of an initiative to develop Brachypodium distachyon as a genomic “bridge” species between rice and the temperate cereals and grasses, a BAC library has been constructed for the two diploid (2n = 2x = 10) genotypes, ABR1 and ABR5. The library consists of 9100 clones, with an approximate average insert size of 88 kb, representing 2.22 genome equivalents. To validate the usefulness of this species for comparative genomics and gene discovery in its larger genome relatives, the library was screened by PCR using primers designed on previously mapped rice and Poaceae sequences. Screening indicated a degree of synteny between these species and B. distachyon, which was confirmed by fluorescent in situ hybridization of the marker-selected BACs (BAC landing) to the 10 chromosome arms of the karyotype, with most of the BACs hybridizing as single loci on known chromosomes. Contiguous BACs colocalized on individual chromosomes, thereby confirming the conservation of genome synteny and proving that B. distachyon has utility as a temperate grass model species alternative to rice. PMID:16489232
Hasterok, Robert; Marasek, Agnieszka; Donnison, Iain S; Armstead, Ian; Thomas, Ann; King, Ian P; Wolny, Elzbieta; Idziak, Dominika; Draper, John; Jenkins, Glyn
2006-05-01
As part of an initiative to develop Brachypodium distachyon as a genomic "bridge" species between rice and the temperate cereals and grasses, a BAC library has been constructed for the two diploid (2n = 2x = 10) genotypes, ABR1 and ABR5. The library consists of 9100 clones, with an approximate average insert size of 88 kb, representing 2.22 genome equivalents. To validate the usefulness of this species for comparative genomics and gene discovery in its larger genome relatives, the library was screened by PCR using primers designed on previously mapped rice and Poaceae sequences. Screening indicated a degree of synteny between these species and B. distachyon, which was confirmed by fluorescent in situ hybridization of the marker-selected BACs (BAC landing) to the 10 chromosome arms of the karyotype, with most of the BACs hybridizing as single loci on known chromosomes. Contiguous BACs colocalized on individual chromosomes, thereby confirming the conservation of genome synteny and proving that B. distachyon has utility as a temperate grass model species alternative to rice.
Gil, Fulvio R; Zitouni, Nedjma B; Azoulay, Eric; Maghni, Karim; Lauzon, Anne-Marie
2006-11-01
Four smooth muscle myosin heavy chain (SMMHC) isoforms are generated by alternative mRNA splicing of a single gene. Two of these isoforms differ by the presence [(+)insert] or absence [(-)insert] of a 7-amino acid insert in the motor domain. The rate of actin filament propulsion of the (+)insert SMMHC isoform, as measured in the in vitro motility assay, is twofold greater than that of the (-)insert isoform. We hypothesized that a greater expression of the (+)insert SMMHC isoform and greater regulatory light chain (LC(20)) phosphorylation contribute to airway hyperresponsiveness. We measured airway responsiveness to methacholine in Fischer hyperresponsive and Lewis normoresponsive rats and determined SMMHC isoform mRNA and protein expression, as well as essential light chain (LC(17)) isoforms, h-caldesmon, and alpha-actin protein expression in their tracheae. We also measured tracheal muscle strip contractility in response to methacholine and corresponding LC(20) phosphorylation. We found Fischer rats have more (+)insert mRNA (69.4 +/- 2.0%) (mean +/- SE) than Lewis rats (53.0 +/- 2.4%; P < 0.05) and a 44% greater content of (+)insert isoform relative to total myosin protein. No difference was found for LC(17) isoform, h-caldesmon, and alpha-actin expression. The contractility experiments revealed a greater isometric force for Fischer trachealis segments (4.2 +/- 0.8 mN) than Lewis (1.9 +/- 0.4 mN; P < 0.05) and greater LC(20) phosphorylation level in Fischer (55.1 +/- 6.4) than in Lewis (41.4 +/- 6.1; P < 0.05) rats. These results further support the contention that innate airway hyperresponsiveness is a multifactorial disorder in which increased expression of the fast (+)insert SMMHC isoform and greater activation of LC(20) lead to smooth muscle hypercontractility.
Farfán, Pamela; Lee, Jiyeon; Larios, Jorge; Sotelo, Pablo; Bu, Guojun; Marzolo, María-Paz
2013-01-01
Sorting nexin 17 (SNX17) is an adaptor protein present in EEA1-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized MDCK cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE. PMID:23593972
FAST TRACK COMMUNICATION Critical exponents of domain walls in the two-dimensional Potts model
NASA Astrophysics Data System (ADS)
Dubail, Jérôme; Lykke Jacobsen, Jesper; Saleur, Hubert
2010-12-01
We address the geometrical critical behavior of the two-dimensional Q-state Potts model in terms of the spin clusters (i.e. connected domains where the spin takes a constant value). These clusters are different from the usual Fortuin-Kasteleyn clusters, and are separated by domain walls that can cross and branch. We develop a transfer matrix technique enabling the formulation and numerical study of spin clusters even when Q is not an integer. We further identify geometrically the crossing events which give rise to conformal correlation functions. This leads to an infinite series of fundamental critical exponents h_{\\ell _1-\\ell _2,2\\ell _1}, valid for 0 <= Q <= 4, that describe the insertion of ell1 thin and ell2 thick domain walls.
A Computational Framework for Design and Development of Novel Prostate Cancer Therapies
2014-09-01
kinase Inhibitors, Late-stage Prostate Cancer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF...calculate an evolutionary distance matrix(16- 18 ). We used the conserved domains identified from CDD to generate domain specific PSSM library, which were...prostate cancer cells from apoptosis induced by photodynamic therapy or thapsigargin. Oncogene 18 , 3391 (Jun 3, 1999). 7. Y. Qiu, H. J. Kung, Signaling
Academic Research Library as Broker in Addressing Interoperability Challenges for the Geosciences
NASA Astrophysics Data System (ADS)
Smith, P., II
2015-12-01
Data capture is an important process in the research lifecycle. Complete descriptive and representative information of the data or database is necessary during data collection whether in the field or in the research lab. The National Science Foundation's (NSF) Public Access Plan (2015) mandates the need for federally funded projects to make their research data more openly available. Developing, implementing, and integrating metadata workflows into to the research process of the data lifecycle facilitates improved data access while also addressing interoperability challenges for the geosciences such as data description and representation. Lack of metadata or data curation can contribute to (1) semantic, (2) ontology, and (3) data integration issues within and across disciplinary domains and projects. Some researchers of EarthCube funded projects have identified these issues as gaps. These gaps can contribute to interoperability data access, discovery, and integration issues between domain-specific and general data repositories. Academic Research Libraries have expertise in providing long-term discovery and access through the use of metadata standards and provision of access to research data, datasets, and publications via institutional repositories. Metadata crosswalks, open archival information systems (OAIS), trusted-repositories, data seal of approval, persistent URL, linking data, objects, resources, and publications in institutional repositories and digital content management systems are common components in the library discipline. These components contribute to a library perspective on data access and discovery that can benefit the geosciences. The USGS Community for Data Integration (CDI) has developed the Science Support Framework (SSF) for data management and integration within its community of practice for contribution to improved understanding of the Earth's physical and biological systems. The USGS CDI SSF can be used as a reference model to map to EarthCube Funded projects with academic research libraries facilitating the data and information assets components of the USGS CDI SSF via institutional repositories and/or digital content management. This session will explore the USGS CDI SSF for cross-discipline collaboration considerations from a library perspective.
Occurrence of Phlebitis: A Systematic Review and Meta-analysis.
Chang, Wen P; Peng, Yu X
Peripheral venous catheters (PVCs) are commonly used in clinical practice. However, varying degrees of phlebitis often occur in patients receiving intravenous injections. The relevant literature suggests that phlebitis occurrence is highly associated with the catheter gauge, insertion site, and catheterization duration. Nevertheless, no meta-analysis has been performed on the influence of these three factors on the occurrence of phlebitis. The objective of this study was to determine whether any significant differences exist in the occurrence of phlebitis between catheters of 20 gauge or smaller and those larger than 20 gauge, between catheters inserted in the antecubital fossa and those inserted in other locations on the upper limbs, or between catheters inserted for more than 96 hours and those inserted for 96 hours or less. Using a systematic approach, we searched for literature published between 2006 and 2017 in the Cumulative Index to Nursing and Allied Health Literature (CINAHL), PubMed, ProQuest, and Cochrane Library databases. We used Comprehensive Meta-analysis Version 2 to perform our meta-analysis. After the screening and review processes, we identified 17 studies that met our selection conditions. Among these studies, 14 contained complete data for meta-analysis. These studies involved 4,343 patients and 5,846 PVCs. Regarding the overall effect size in the meta-analysis, the results of the forest plot comparing catheters of 20 gauge or smaller and those larger than 20 gauge presented a risk ratio (RR) of 0.88 (95% confidence interval [0.67, 1.17], p = .380), indicating no statistically significant difference in the occurrence of phlebitis between catheters of the aforementioned gauges. The results of the forest plot comparing catheters inserted in the antecubital fossa and those inserted in other locations on the upper limbs presented an RR of 1.05 (95% confidence interval [0.82, 1.34], p = .696), indicating no statistically significant difference in the occurrence of phlebitis between catheters inserted in the aforementioned locations. The results of the forest plot comparing catheters inserted for more than 96 hours and those inserted for 96 hours or less presented an RR of 1.13 (95% confidence interval [0.49, 2.61], p = .779), indicating no statistically significant difference in the occurrence of phlebitis between catheters inserted for the aforementioned durations. The empirical results of this meta-analysis can serve as a reference for hospital management for selecting the PVC gauge, insertion site, and catheterization duration. In addition to the three factors that we analyzed, whether any other factors influence the occurrence of phlebitis in patients with catheter implantation is worth investigating in future research.
MacDonald, James T.; Kabasakal, Burak V.; Godding, David; Kraatz, Sebastian; Henderson, Louie; Barber, James; Freemont, Paul S.; Murray, James W.
2016-01-01
The ability to design and construct structures with atomic level precision is one of the key goals of nanotechnology. Proteins offer an attractive target for atomic design because they can be synthesized chemically or biologically and can self-assemble. However, the generalized protein folding and design problem is unsolved. One approach to simplifying the problem is to use a repetitive protein as a scaffold. Repeat proteins are intrinsically modular, and their folding and structures are better understood than large globular domains. Here, we have developed a class of synthetic repeat proteins based on the pentapeptide repeat family of beta-solenoid proteins. We have constructed length variants of the basic scaffold and computationally designed de novo loops projecting from the scaffold core. The experimentally solved 3.56-Å resolution crystal structure of one designed loop matches closely the designed hairpin structure, showing the computational design of a backbone extension onto a synthetic protein core without the use of backbone fragments from known structures. Two other loop designs were not clearly resolved in the crystal structures, and one loop appeared to be in an incorrect conformation. We have also shown that the repeat unit can accommodate whole-domain insertions by inserting a domain into one of the designed loops. PMID:27573845
Frankel, Matthew B.; Wojcik, Brandon; DeDent, Andrea C.; Missiakas, Dominique M.; Schneewind, Olaf
2012-01-01
Summary The human pathogen Staphyloccocus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harbored transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross walls and in the relative abundance of staphylococci with cross walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. PMID:20923422
Sequence diversity of NanA manifests in distinct enzyme kinetics and inhibitor susceptibility
NASA Astrophysics Data System (ADS)
Xu, Zhongli; von Grafenstein, Susanne; Walther, Elisabeth; Fuchs, Julian E.; Liedl, Klaus R.; Sauerbrei, Andreas; Schmidtke, Michaela
2016-04-01
Streptococcus pneumoniae is the leading pathogen causing bacterial pneumonia and meningitis. Its surface-associated virulence factor neuraminidase A (NanA) promotes the bacterial colonization by removing the terminal sialyl residues from glycoconjugates on eukaryotic cell surface. The predominant role of NanA in the pathogenesis of pneumococci renders it an attractive target for therapeutic intervention. Despite the highly conserved activity of NanA, our alignment of the 11 NanAs revealed the evolutionary diversity of this enzyme. The amino acid substitutions we identified, particularly those in the lectin domain and in the insertion domain next to the catalytic centre triggered our special interest. We synthesised the representative NanAs and the mutagenized derivatives from E. coli for enzyme kinetics study and neuraminidase inhibitor susceptibility test. Via molecular docking we got a deeper insight into the differences between the two major variants of NanA and their influence on the ligand-target interactions. In addition, our molecular dynamics simulations revealed a prominent intrinsic flexibility of the linker between the active site and the insertion domain, which influences the inhibitor binding. Our findings for the first time associated the primary sequence diversity of NanA with the biochemical properties of the enzyme and with the inhibitory efficiency of neuraminidase inhibitors.
Montgomery, H J; Romanov, V; Guillemette, J G
2000-02-18
Neuronal nitric-oxide synthase (NOS) and endothelial NOS are constitutive NOS isoforms that are activated by binding calmodulin in response to elevated intracellular calcium. In contrast, the inducible NOS isoform binds calmodulin at low basal levels of calcium in resting cells. Primary sequence comparisons show that each constitutive NOS isozyme contains a polypeptide segment within its reductase domain, which is absent in the inducible NOS enzyme. To study a possible link between the presence of these additional polypeptide segments in constitutive NOS enzymes and their calcium-dependent calmodulin activation, three deletion mutants were created. The putative inhibitory insert was removed from the FMN binding regions of the neuronal NOS holoenzyme and from two truncated neuronal NOS reductase enzymes in which the calmodulin binding region was either included or deleted. All three mutant enzymes showed reduced incorporation of FMN and required reconstitution with exogenous FMN for activity. The combined removal of both the calmodulin binding domain and the putative inhibitory insert did not result in a calmodulin-independent neuronal NOS reductase. Thus, although the putative inhibitory element has an effect on the calcium-dependent calmodulin activation of neuronal NOS, it does not have the properties of the typical autoinhibitory domain found in calmodulin-activated enzymes.
Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf
2010-10-01
The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. © 2010 Blackwell Publishing Ltd.
Kirouac, Kevin N.; Basu, Ashis K.; Ling, Hong
2013-01-01
Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. PMID:23876706
Kirouac, Kevin N; Basu, Ashis K; Ling, Hong
2013-11-15
Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. © 2013.
MO-FG-204-06: A New Algorithm for Gold Nano-Particle Concentration Identification in Dual Energy CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L; Shen, C; Ng, M
Purpose: Gold nano-particle (GNP) has recently attracted a lot of attentions due to its potential as an imaging contrast agent and radiotherapy sensitiser. Imaging the GNP at its low contraction is a challenging problem. We propose a new algorithm to improve the identification of GNP based on dual energy CT (DECT). Methods: We consider three base materials: water, bone, and gold. Determining three density images from two images in DECT is an under-determined problem. We propose to solve this problem by exploring image domain sparsity via an optimization approach. The objective function contains four terms. A data-fidelity term ensures themore » fidelity between the identified material densities and the DECT images, while the other three terms enforces the sparsity in the gradient domain of the three images corresponding to the density of the base materials by using total variation (TV) regularization. A primal-dual algorithm is applied to solve the proposed optimization problem. We have performed simulation studies to test this model. Results: Our digital phantom in the tests contains water, bone regions and gold inserts of different sizes and densities. The gold inserts contain mixed material consisting of water with 1g/cm3 and gold at a certain density. At a low gold density of 0.0008 g/cm3, the insert is hardly visible in DECT images, especially for those with small sizes. Our algorithm is able to decompose the DECT into three density images. Those gold inserts at a low density can be clearly visualized in the density image. Conclusion: We have developed a new algorithm to decompose DECT images into three different material density images, in particular, to retrieve density of gold. Numerical studies showed promising results.« less
Rizzo, Alessandro A; Suhanovsky, Margaret M; Baker, Matthew L; Fraser, LaTasha C R; Jones, Lisa M; Rempel, Don L; Gross, Michael L; Chiu, Wah; Alexandrescu, Andrei T; Teschke, Carolyn M
2014-06-10
Some capsid proteins built on the ubiquitous HK97-fold have accessory domains imparting specific functions. Bacteriophage P22 coat protein has a unique insertion domain (I-domain). Two prior I-domain models from subnanometer cryoelectron microscopy (cryoEM) reconstructions differed substantially. Therefore, the I-domain's nuclear magnetic resonance structure was determined and also used to improve cryoEM models of coat protein. The I-domain has an antiparallel six-stranded β-barrel fold, not previously observed in HK97-fold accessory domains. The D-loop, which is dynamic in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. The S-loop is important for capsid size determination, likely through intrasubunit interactions. Ten of 18 coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the β-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Preparation and characterization of monoclonal antibodies against Micrococcus luteus Rpf domain].
Fan, Ai-lin; Shi, Chang-hong; Su, Ming-quan; Ma, Jing; Bai, Yin-lan; Cheng, Xiao-dong; Xu, Zhi-kai; Hao, Xiao-ke
2008-05-01
To express Micrococcus luteus Rpf domain in prokaryotic cells and prepare monoclonal antibodies against Rpf domain. The gene encoding Micrococcus luteus Rpf domain was amplified from genome of Micrococcus luteus by polymerase chain reaction(PCR), and inserted into cloning vector pUC-19. After sequenced, Micrococcus luteus Rpf domain gene was subcloned into the expression vector pPro-EXHT and transfected into E.coli DH5alpha. After induced by IPTG, the bacteria controlled by T7 promoter expressed the fused Micrococcus luteus Rpf domain protein with a hexahistidine tail at its N-terminal and the target protein was purified under denaturing conditions. Using this protein as antigen to immunize the BALB/c mice and prepare monoclonal antibodies against Micrococcus luteus Rpf domain. Then specifities and relative affinities of mAbs were identified by ELISA. The fusion protein was purified by metal chelate affinity chromatography under denaturing condition. Three cloned mAbs were prepared from the mice immunized by Rpf domain. All of them could recognize Rpf domain. specifically. The prepared mAbs against Rpf domain have strong specificity with high titers, which provides useful tools for further study of the function of Rpf domain in TB prevention.
Wang, Guodong; Ellendorff, Ursula; Kemp, Ben; Mansfield, John W.; Forsyth, Alec; Mitchell, Kathy; Bastas, Kubilay; Liu, Chun-Ming; Woods-Tör, Alison; Zipfel, Cyril; de Wit, Pierre J.G.M.; Jones, Jonathan D.G.; Tör, Mahmut; Thomma, Bart P.H.J.
2008-01-01
Receptor-like proteins (RLPs) are cell surface receptors that typically consist of an extracellular leucine-rich repeat domain, a transmembrane domain, and a short cytoplasmatic tail. In several plant species, RLPs have been found to play a role in disease resistance, such as the tomato (Solanum lycopersicum) Cf and Ve proteins and the apple (Malus domestica) HcrVf2 protein that mediate resistance against the fungal pathogens Cladosporium fulvum, Verticillium spp., and Venturia inaequalis, respectively. In addition, RLPs play a role in plant development; Arabidopsis (Arabidopsis thaliana) TOO MANY MOUTHS (TMM) regulates stomatal distribution, while Arabidopsis CLAVATA2 (CLV2) and its functional maize (Zea mays) ortholog FASCINATED EAR2 regulate meristem maintenance. In total, 57 RLP genes have been identified in the Arabidopsis genome and a genome-wide collection of T-DNA insertion lines was assembled. This collection was functionally analyzed with respect to plant growth and development and sensitivity to various stress responses, including susceptibility toward pathogens. A number of novel developmental phenotypes were revealed for our CLV2 and TMM insertion mutants. In addition, one AtRLP gene was found to mediate abscisic acid sensitivity and another AtRLP gene was found to influence nonhost resistance toward Pseudomonas syringae pv phaseolicola. This genome-wide collection of Arabidopsis RLP gene T-DNA insertion mutants provides a tool for future investigations into the biological roles of RLPs. PMID:18434605
Musick, Charles R [Castro Valley, CA; Critchlow, Terence [Livermore, CA; Ganesh, Madhaven [San Jose, CA; Slezak, Tom [Livermore, CA; Fidelis, Krzysztof [Brentwood, CA
2006-12-19
A system and method is disclosed for integrating and accessing multiple data sources within a data warehouse architecture. The metadata formed by the present method provide a way to declaratively present domain specific knowledge, obtained by analyzing data sources, in a consistent and useable way. Four types of information are represented by the metadata: abstract concepts, databases, transformations and mappings. A mediator generator automatically generates data management computer code based on the metadata. The resulting code defines a translation library and a mediator class. The translation library provides a data representation for domain specific knowledge represented in a data warehouse, including "get" and "set" methods for attributes that call transformation methods and derive a value of an attribute if it is missing. The mediator class defines methods that take "distinguished" high-level objects as input and traverse their data structures and enter information into the data warehouse.
Parallel Adaptive Mesh Refinement Library
NASA Technical Reports Server (NTRS)
Mac-Neice, Peter; Olson, Kevin
2005-01-01
Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.
Liu, Rui; Zhang, Ping; Su, Yiqi; Lin, Huixing; Zhang, Hui; Yu, Lei; Ma, Zhe; Fan, Hongjie
2016-01-01
The mariner-based Himar1 system has been utilized for creating mutant libraries of many Gram-positive bacteria. Streptococcus suis serotype 2 (SS2) and Streptococcus equi ssp. zooepidemicus (SEZ) are primary pathogens of swine that threaten the swine industry in China. To provide a forward-genetics technology for finding virulent phenotype-related genes in these two pathogens, we constructed a novel temperature-sensitive suicide shuttle plasmid, pMar4s, which contains the Himar1 system transposon, TnYLB-1, and the Himar1 C9 transposase from pMarA and the repTAs temperature-sensitive fragment from pSET4s. The kanamycin (Kan) resistance gene was in the TnYLB-1 transposon. Temperature sensitivity and Kan resistance allowed the selection of mutant strains and construction of the mutant library. The SS2 and SEZ mutant libraries were successfully constructed using the pMar4s plasmid. Inverse-Polymerase Chain Reaction (Inverse-PCR) results revealed large variability in transposon insertion sites and that the library could be used for phenotype alteration screening. The thiamine biosynthesis gene apbE was screened for its influence on SS2 anti-phagocytosis; likewise, the sagF gene was identified to be a hemolytic activity-related gene in SEZ. pMar4s was suitable for mutant library construction, providing more information regarding SS2 and SEZ virulence factors and illustrating the pathogenesis of swine streptococcosis. PMID:27256117
Sharma, Shukriti; Tivendale, Kelly A.; Markham, Philip F.
2015-01-01
ABSTRACT Although the complete genome sequences of three strains of Mycoplasma bovis are available, few studies have examined gene function in this important pathogen. Mycoplasmas lack the biosynthetic machinery for the de novo synthesis of nucleic acid precursors, so nucleases are likely to be essential for them to acquire nucleotide precursors. Three putative membrane nucleases have been annotated in the genome of M. bovis strain PG45, MBOVPG45_0089 and MBOVPG45_0310, both of which have the thermonuclease (TNASE_3) functional domain, and MBOVPG45_0215 (mnuA), which has an exonuclease/endonuclease/phosphatase domain. While previous studies have demonstrated the function of TNASE_3 domain nucleases in several mycoplasmas, quantitative comparisons of the contributions of different nucleases to cellular nuclease activity have been lacking. Mapping of a library of 319 transposon mutants of M. bovis PG45 by direct genome sequencing identified mutants with insertions in MBOVPG45_0310 (the Δ0310 mutant) and MBOVPG45_0215 (the Δ0215 mutant). In this study, the detection of the product of MBOVPG45_0215 in the Triton X-114 fraction of M. bovis cell lysates, its cell surface exposure, and its predicted signal peptide suggested that it is a surface-exposed lipoprotein nuclease. Comparison of a ΔmnuA mutant with wild-type M. bovis on native and denatured DNA gels and in digestion assays using double-stranded phage λ DNA and closed circular plasmid DNA demonstrated that inactivation of this gene abolishes most of the cellular exonuclease and endonuclease activity of M. bovis. This activity could be fully restored by complementation with the wild-type mnuA gene, demonstrating that MnuA is the major cellular nuclease of M. bovis. IMPORTANCE Nucleases are thought to be important contributors to virulence and crucial for the maintenance of a nutritional supply of nucleotides in mycoplasmas that are pathogenic in animals. This study demonstrates for the first time that of the three annotated cell surface nuclease genes in an important pathogenic mycoplasma, the homologue of the thermostable nuclease identified in Gram-positive bacteria is responsible for the majority of the nuclease activity detectable in vitro. PMID:25691526
Genome-Wide Mutagenesis in Borrelia burgdorferi.
Lin, Tao; Gao, Lihui
2018-01-01
Signature-tagged mutagenesis (STM) is a functional genomics approach to identify bacterial virulence determinants and virulence factors by simultaneously screening multiple mutants in a single host animal, and has been utilized extensively for the study of bacterial pathogenesis, host-pathogen interactions, and spirochete and tick biology. The signature-tagged transposon mutagenesis has been developed to investigate virulence determinants and pathogenesis of Borrelia burgdorferi. Mutants in genes important in virulence are identified by negative selection in which the mutants fail to colonize or disseminate in the animal host and tick vector. STM procedure combined with Luminex Flex ® Map™ technology and next-generation sequencing (e.g., Tn-seq) are the powerful high-throughput tools for the determination of Borrelia burgdorferi virulence determinants. The assessment of multiple tissue sites and two DNA resources at two different time points using Luminex Flex ® Map™ technology provides a robust data set. B. burgdorferi transposon mutant screening indicates that a high proportion of genes are the novel virulence determinants that are required for mouse and tick infection. In this protocol, an effective signature-tagged Himar1-based transposon suicide vector was developed and used to generate a sequence-defined library of nearly 4800 mutants in the infectious B. burgdorferi B31 clone. In STM, signature-tagged suicide vectors are constructed by inserting unique DNA sequences (tags) into the transposable elements. The signature-tagged transposon mutants are generated when transposon suicide vectors are transformed into an infectious B. burgdorferi clone, and the transposable element is transposed into the 5'-TA-3' sequence in the B. burgdorferi genome with the signature tag. The transposon library is created and consists of many sub-libraries, each sub-library has several hundreds of mutants with same tags. A group of mice or ticks are infected with a mixed population of mutants with different tags, after recovered from different tissues of infected mice and ticks, mutants from output pool and input pool are detected using high-throughput, semi-quantitative Luminex ® FLEXMAP™ or next-generation sequencing (Tn-seq) technologies. Thus far, we have created a high-density, sequence-defined transposon library of over 6600 STM mutants for the efficient genome-wide investigation of genes and gene products required for wild-type pathogenesis, host-pathogen interactions, in vitro growth, in vivo survival, physiology, morphology, chemotaxis, motility, structure, metabolism, gene regulation, plasmid maintenance and replication, etc. The insertion sites of 4480 transposon mutants have been determined. About 800 predicted protein-encoding genes in the genome were disrupted in the STM transposon library. The infectivity and some functions of 800 mutants in 500 genes have been determined. Analysis of these transposon mutants has yielded valuable information regarding the genes and gene products important in the pathogenesis and biology of B. burgdorferi and its tick vectors.
Dipeptidyl peptidase III is a zinc metallo-exopeptidase. Molecular cloning and expression.
Fukasawa, K; Fukasawa, K M; Kanai, M; Fujii, S; Hirose, J; Harada, M
1998-01-01
We have purified dipeptidyl peptidase III (EC 3.4.14.4) from human placenta. It had a pH optimum of 8.8 and readily hydrolysed Arg-Arg-beta-naphthylamide. Monoamino acid-, Gly-Phe-, Gly-Pro- and Bz-Arg-beta-naphthylamides were not hydrolysed at all. The enzyme was inhibited by p-chloromercuriphenylsulphonic acid, metal chelators and 3,4-dichloroisocoumarin and contained 1 mol of zinc per mol of enzyme. The zinc dissociation constant was 250 fM at pH 7. 4 as determined by the zinc binding study. We isolated, by immunological screening of a Uni-ZAP XR cDNA library constructed from rat liver mRNA species, a cDNA clone with 2633 bp encoding the rat enzyme. The longest open reading frame encodes a 827-residue protein with a theoretical molecular mass of 92790 Da. Escherichia coli SOLR cells were infected with the pBluescript phagemid containing the cloned cDNA and established the overexpression of a protein that hydrolysed Arg-Arg-beta-naphthylamide. The recombinant protein was purified and the amino acid sequence of the protein was confirmed. We presumed that the putative zinc-binding domain involved in catalysis was present in the recombinant enzyme. It was a novel zinc-binding motif in that one amino acid residue was inserted into the conserved HEXXH motif characteristic of the metalloproteinases. PMID:9425109
Combat Identification Systems COMO Integrated Air Defense Model Evaluation (CISE) Study
1989-02-01
use K or IR , whichever one applies) E-6 CAA-SR-89- 3 Subroutine PDECLR 1/21/88 Before label 1000 Insert: IF (IR.GT.10) IR a 10 These changes were made...Internal Distribution: Unclassified Library 2 F-2 CAA-SR-89- 3 GLOSSARY 1. ABBREVIATIONS, ACRONYMS, AND SHORT TERMS ADM2 Air Defense Models Modification...STUDY REPORT ’ , CAA-Sn-89- 3 i , .- CD o COMBAT IDENTIFICATION SYSTEMS N COMO INTEGRATED AIR DEFENSE MODEL EVALUATION (CISE) STUDY FEBRUARY 1989
Koehler Leman, Julia; Bonneau, Richard
2018-04-03
Membrane proteins composed of soluble and membrane domains are often studied one domain at a time. However, to understand the biological function of entire protein systems and their interactions with each other and drugs, knowledge of full-length structures or models is required. Although few computational methods exist that could potentially be used to model full-length constructs of membrane proteins, none of these methods are perfectly suited for the problem at hand. Existing methods require an interface or knowledge of the relative orientations of the domains or are not designed for domain assembly, and none of them are developed for membrane proteins. Here we describe the first domain assembly protocol specifically designed for membrane proteins that assembles intra- and extracellular soluble domains and the transmembrane domain into models of the full-length membrane protein. Our protocol does not require an interface between the domains and samples possible domain orientations based on backbone dihedrals in the flexible linker regions, created via fragment insertion, while keeping the transmembrane domain fixed in the membrane. For five examples tested, our method mp_domain_assembly, implemented in RosettaMP, samples domain orientations close to the known structure and is best used in conjunction with experimental data to reduce the conformational search space.
Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban.
Fujii, J; Ueno, A; Kitano, K; Tanaka, S; Kadoma, M; Tada, M
1987-01-01
Complementary DNA (cDNA) clones specific for phospholamban of sarcoplasmic reticulum membranes have been isolated from a canine cardiac cDNA library. The amino acid sequence deduced from the cDNA sequence indicates that phospholamban consists of 52 amino acid residues and lacks an amino-terminal signal sequence. The protein has an inferred mol wt 6,080 that is in agreement with its apparent monomeric mol wt 6,000, estimated previously by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phospholamban contains two distinct domains, a hydrophilic region at the amino terminus (domain I) and a hydrophobic region at the carboxy terminus (domain II). We propose that domain I is localized at the cytoplasmic surface and offers phosphorylatable sites whereas domain II is anchored into the sarcoplasmic reticulum membrane. PMID:3793929
Nucleation of holin domains and holes optimizes lysis timing of E. coli by phage λ
NASA Astrophysics Data System (ADS)
Ryan, Gillian; Rutenberg, Andrew
2007-03-01
Holin proteins regulate the precise scheduling of Escherichia coli lysis during infection by bacteriophage λ. Inserted into the host bacterium's inner membrane during infection, holins aggregate to form rafts and then holes within those rafts. We present a two-stage nucleation model of holin action, with the nucleation of condensed holin domains followed by the nucleation of holes within these domains. Late nucleation of holin rafts leads to a weak dependence of lysis timing on host cell size, though both nucleation events contribute equally to timing errors. Our simulations recover the accurate scheduling observed experimentally, and also suggest that phage-λ lysis of E.coli is optimized.
Segall-Shapiro, Thomas H; Nguyen, Peter Q; Dos Santos, Edgardo D; Subedi, Saurav; Judd, Justin; Suh, Junghae; Silberg, Jonathan J
2011-02-11
The extent to which thermostability influences the location of protein fragmentation sites that allow retention of function is not known. To evaluate this, we used a novel transposase-based approach to create libraries of vectors that express structurally-related fragments of Bacillus subtilis adenylate kinase (BsAK) and Thermotoga neapolitana adenylate kinase (TnAK) with identical modifications at their termini, and we selected for variants in each library that complement the growth of Escherichia coli with a temperature-sensitive adenylate kinase (AK). Mutants created using the hyperthermophilic TnAK were found to support growth with a higher frequency (44%) than those generated from the mesophilic BsAK (6%), and selected TnAK mutants complemented E. coli growth more strongly than homologous BsAK variants. Sequencing of functional clones from each library also identified a greater dispersion of fragmentation sites within TnAK. Nondisruptive fission sites were observed within the AMP binding and core domains of both AK homologs. However, only TnAK contained sites within the lid domain, which undergoes dynamic fluctuations that are critical for catalysis. These findings implicate the flexible lid domain as having an increased sensitivity to fission events at physiological temperatures. In addition, they provide evidence that comparisons of nondisruptive fission sites in homologous proteins could be useful for finding dynamic regions whose conformational fluctuations are important for function, and they show that the discovery of protein fragments that cooperatively function in mesophiles can be aided by the use of thermophilic enzymes as starting points for protein design. Copyright © 2010 Elsevier Ltd. All rights reserved.
DNAism: exploring genomic datasets on the web with Horizon Charts.
Rio Deiros, David; Gibbs, Richard A; Rogers, Jeffrey
2016-01-27
Computational biologists daily face the need to explore massive amounts of genomic data. New visualization techniques can help researchers navigate and understand these big data. Horizon Charts are a relatively new visualization method that, under the right circumstances, maximizes data density without losing graphical perception. Horizon Charts have been successfully applied to understand multi-metric time series data. We have adapted an existing JavaScript library (Cubism) that implements Horizon Charts for the time series domain so that it works effectively with genomic datasets. We call this new library DNAism. Horizon Charts can be an effective visual tool to explore complex and large genomic datasets. Researchers can use our library to leverage these techniques to extract additional insights from their own datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arion is a library and tool set that enables researchers to holistically define test system models. To define a complex system for testing an algorithm or control requires expertise across multiple domains. Simulating a complex system requires the integration of multiple simulators and test hardware, each with their own specification languages and concepts. This requires extensive set of knowledge and capabilities. Arion was developed to alleviate this challenge. Arion is a library of Java libraries that abstracts the concepts from supported simulators into a cohesive model language that allows someone to build models to their needed level of fidelity andmore » expertise. Arion is also a software tool that translates the users model back into the specification languages of the simulators and test hardware needed for execution.« less
Rizzo, Alessandro A.; Suhanovsky, Margaret M.; Baker, Matthew L.; Fraser, LaTasha C.R.; Jones, Lisa M.; Rempel, Don L.; Gross, Michael L.; Chiu, Wah; Alexandrescu, Andrei T.; Teschke, Carolyn M.
2014-01-01
SUMMARY Some capsid proteins built on the ubiquitous HK97-fold have accessory domains that impart specific functions. Bacteriophage P22 coat protein has a unique inserted I-domain. Two prior I-domain models from sub-nanometer cryoEM reconstructions differed substantially. Therefore, the NMR structure of the I-domain was determined, which also was used to improve cryoEM models of coat protein. The I-domain has an anti-parallel 6-stranded β-barrel fold, previously not observed in HK97-fold accessory domains. The D-loop, which is dynamic both in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. A newly described S-loop is important for capsid size determination, likely through intra-subunit interactions. Ten of eighteen coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the β-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core. PMID:24836025
Facial asymmetry and clinical manifestations in patients with novel insertion of the TCOF1 gene.
Su, P-H; Liu, Y-F; Yu, J-S; Chen, J-Y; Chen, S-J; Lai, Y-J
2012-11-01
This study explored the role of TCOF1 insertion mutations in Taiwanese patients with craniofacial anomalies. Twelve patients with single or multiple, asymmetrical congenital craniofacial anomalies were enrolled. Genomic DNA was prepared from leukocytes; the coding regions of TCOF1 were analyzed by polymerase chain reaction and direct sequencing. Clinical manifestations were correlated to the TCOF1 mutation. Six of 12 patients diagnosed with hemifacial microsomia exhibited a novel insertion mutation 4127 ins G (frameshift) in exon 24 in the TCOF1 gene. All six patients were diagnosed with anomalies on the left side. In addition, four of these six patients had hearing impairment; three had other major anomalies; and two had developmental delay. The insertion caused a frameshift, an early truncation, the loss of two putative nuclear localization signals (residues 1404-1420 and 1424-1440), and the loss of coiled coil domain (1406-1426) in treacle protein. These findings support the existence of two regulators of growth of the mandibular condyles. © 2011 John Wiley & Sons A/S.
Theodorou, Vassiliki; Kimm, Melanie A; Boer, Mandy; Wessels, Lodewyk; Theelen, Wendy; Jonkers, Jos; Hilkens, John
2007-06-01
We performed a high-throughput retroviral insertional mutagenesis screen in mouse mammary tumor virus (MMTV)-induced mammary tumors and identified 33 common insertion sites, of which 17 genes were previously not known to be associated with mammary cancer and 13 had not previously been linked to cancer in general. Although members of the Wnt and fibroblast growth factors (Fgf) families were frequently tagged, our exhaustive screening for MMTV insertion sites uncovered a new repertoire of candidate breast cancer oncogenes. We validated one of these genes, Rspo3, as an oncogene by overexpression in a p53-deficient mammary epithelial cell line. The human orthologs of the candidate oncogenes were frequently deregulated in human breast cancers and associated with several tumor parameters. Computational analysis of all MMTV-tagged genes uncovered specific gene families not previously associated with cancer and showed a significant overrepresentation of protein domains and signaling pathways mainly associated with development and growth factor signaling. Comparison of all tagged genes in MMTV and Moloney murine leukemia virus-induced malignancies showed that both viruses target mostly different genes that act predominantly in distinct pathways.
Douet-Guilbert, Nathalie; Chauveau, Aurelie; Gueganic, Nadia; Guillerm, Gaëlle; Tous, Corine; Le Bris, Marie-Josee; Basinko, Audrey; Morel, Frederic; Ugo, Valerie; De Braekeleer, Marc
2017-09-01
Inv(16)(p13q22) and t(16;16)(p13;q22) are cytogenetic hallmarks of acute myelomonoblastic leukaemia, most of them associated with abnormal bone marrow eosinophils [acute myeloid leukaemia French-American-British classification M4 with eosinophilia (FAB AML-M4Eo)] and a relatively favourable clinical course. They generate a 5'CBFB-3'MYH11 fusion gene. However, in a few cases, although RT-PCR identified a CBFB-MYH11 transcript, normal karyotype and/or fluorescent in situ hybridization (FISH) analyses using commercially available probes are found. We identified a 32-year-old woman with AML-M4Eo and normal karyotype and FISH results. Using two libraries of Bacterial Artificial Chromosome clones on 16p13 and 16q22, FISH analyses identified an insertion of 16q22 material in band 16p13, generating a CBFB-MYH11 type A transcript. Although very rare, insertions should be searched for in patients with discordant cytological and cytogenetic features because of the therapeutic consequences. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Molecular insights into the binding of phosphoinositides to the TH domain region of TIPE proteins.
Antony, Priya; Baby, Bincy; Vijayan, Ranjit
2016-11-01
Phosphatidylinositols and their phosphorylated derivatives, phosphoinositides, play a central role in regulating diverse cellular functions. These phospholipids have been shown to interact with the hydrophobic TH domain of the tumor necrosis factor (TNF)-α-induced protein 8 (TIPE) family of proteins. However, the precise mechanism of interaction of these lipids is unclear. Here we report the binding mode and interactions of these phospholipids in the TH domain, as elucidated using molecular docking and simulations. Results indicate that phosphoinositides bind to the TH domain in a similar way by inserting their lipid tails in the hydrophobic cavity. The exposed head group is stabilized by interactions with critical positively charged residues on the surface of these proteins. Further MD simulations confirmed the dynamic stability of these lipids in the TH domain. This computational analysis thus provides insight into the binding mode of phospholipids in the TH domain of the TIPE family of proteins. Graphical abstract A phosphoinositide (phosphatidylinositol 4-phosphate; PtdIns4P) docked to TIPE2.
Construction of Rabbit Immune Antibody Libraries.
Nguyen, Thi Thu Ha; Lee, Jong Seo; Shim, Hyunbo
2018-01-01
Rabbits have distinct advantages over mice as a source of target-specific antibodies. They produce higher affinity antibodies than mice, and may elicit strong immune response against antigens or epitopes that are poorly immunogenic or tolerated in mice. However, a great majority of currently available monoclonal antibodies are of murine origin because of the wider availability of murine fusion partner cell lines and well-established tools and protocols for fusion and cloning of mouse hybridoma. Phage-display selection of antibody libraries is an alternative method to hybridoma technology for the generation of target-specific monoclonal antibodies. High-affinity monoclonal antibodies from nonmurine species can readily be obtained by constructing immune antibody libraries from B cells of the immunized animal and screening the library by phage display. In this article, we describe the construction of a rabbit immune Fab library for the facile isolation of rabbit monoclonal antibodies. After immunization, B-cell cDNA is obtained from the spleen of the animal, from which antibody variable domain repertoires are amplified and assembled into a Fab repertoire by PCR. The Fab genes are then cloned into a phagemid vector and transformed to E. coli, from which a phage-displayed immune Fab library is rescued. Such a library can be biopanned against the immunization antigen for rapid identification of high-affinity, target-specific rabbit monoclonal antibodies.
Liu, Jinlin; Jia, Zhijuan; Li, Sha; Li, Yan; You, Qiang; Zhang, Chunyan; Zheng, Xiaotong; Xiong, Guomei; Zhao, Jin; Qi, Chao; Yang, Jihong
2016-09-15
The chemical and biological compositions of deep-sea sediments are interesting because of the underexplored diversity when it comes to bioprospecting. The special geographical location and climates make Arctic Ocean a unique ocean area containing an abundance of microbial resources. A metagenomic library was constructed based on the deep-sea sediments of Arctic Ocean. Part of insertion fragments of this library were sequenced. A chitin deacetylase gene, cdaYJ, was identified and characterized. A metagenomic library with 2750 clones was obtained and ten clones were sequenced. Results revealed several interesting genes, including a chitin deacetylase coding sequence, cdaYJ. The CdaYJ is homologous to some known chitin deacetylases and contains conserved chitin deacetylase active sites. CdaYJ protein exhibits a long N-terminal and a relative short C-terminal. Phylogenetic analysis revealed that CdaYJ showed highest homology to CDAs from Alphaproteobacteria. The cdaYJ gene was subcloned into the pET-28a vector and the recombinant CdaYJ (rCdaYJ) was expressed in Escherichia coli BL21 (DE3). rCdaYJ showed a molecular weight of 43kDa, and exhibited deacetylation activity by using p-nitroacetanilide as substrate. The optimal pH and temperature of rCdaYJ were tested as pH7.4 and 28°C, respectively. The construction of metagenomic library of the Arctic deep-sea sediments provides us an opportunity to look into the microbial communities and exploiting valuable gene resources. A chitin deacetylase CdaYJ was identified from the library. It showed highest deacetylation activity under slight alkaline and low temperature conditions. CdaYJ might be a candidate chitin deacetylase that possesses industrial and pharmaceutical potentials. Copyright © 2016 Elsevier B.V. All rights reserved.
Han, Dong-gang; Duan, Xiao-yi; Guo, You-min; Zhou, Qi; Wang, Quan-ying; Yang, Guang-xiao
2010-01-01
To obtain specific anti-epidermal growth factor receptor variant III (EGFRvIII) single chain antibody (ScFv) by phage antibody library display system. The total RNA was extracted from the spleen B cells of BALB/c mice immunized with pep-3-OVA protein, and the first-strand cDNA was synthesized by reverse transcription. Antibody VH and VL gene fragments were amplified and joined to a ScFv gene with the linker. The ScFv gene was ligated into the phagemid vector pCANTAB5E, which was transformed into competent E. coli TG1. The transformed cells were then infected with M13KO7 helper phage to yield the recombinant phage to construct the phage ScFv library. Pep-3-BSA protein was used to screen the phage antibody library and ELISA carried out to characterize the activity of the antibody. The VH and VL gene fragments of the antibody were about 350 bp and 320 bp in length as analyzed by agarose gel electrophoresis. The ScFv gene was 780 bp, consistent with the expected length. The recombinant phagemid with ScFv gene insert was rescued, and an immune phage ScFv library with the content of 5.0x10(6) was constructed. The recombinant ScFv phage had a titer of 3.0x10(4) cfu/ml, and the fourth phage harvest yielded 56 times as much as that of the first one. SDS-PAGE demonstrated a molecular mass of the soluble ScFv of about 28 kD. ELISA results indicated good specificity of the ScFv to bind EGFRvIII. An immune phage ScFv library is successfully constructed, and the ScFv antibody fragment is capable of specific binding to EGFRvIII.
Lysenin Toxin Membrane Insertion Is pH-Dependent but Independent of Neighboring Lysenins.
Munguira, Ignacio L B; Takahashi, Hirohide; Casuso, Ignacio; Scheuring, Simon
2017-11-07
Pore-forming toxins form a family of proteins that act as virulence factors of pathogenic bacteria, but similar proteins are found in all kingdoms of life, including the vertebrate immune system. They are secreted as soluble monomers that oligomerize on target membranes in the so-called prepore state; after activation, they insert into the membrane and adopt the pore state. Lysenin is a pore-forming toxin from the earthworm Eisenida foetida, of which both the soluble and membrane-inserted structures are solved. However, the activation and membrane-insertion mechanisms have remained elusive. Here, we used high-speed atomic force microscopy to directly visualize the membrane-insertion mechanism. Changing the environmental pH from pH 7.5 to below pH 6.0 favored membrane insertion. We detected a short α-helix in the soluble structure that comprised three glutamic acids (Glu92, Glu94, and Glu97) that we hypothesized may represent a pH-sensor (as in similar toxins, e.g., Listeriolysin). Mutant lysenin still can form pores, but mutating these glutamic acids to glutamines rendered the toxin pH-insensitive. On the other hand, toxins in the pore state did not favor insertion of neighboring prepores; indeed, pore insertion breaks the hexagonal ordered domains of prepores and separates from neighboring molecules in the membrane. pH-dependent activation of toxins may represent a common feature of pore-forming toxins. High-speed atomic force microscopy with single-molecule resolution at high temporal resolution and the possibility of exchanging buffers during the experiments presents itself as a unique tool for the study of toxin-state conversion. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Determination of Surface-Exposed, Functional Domains of Gonococcal Transferrin-Binding Protein A
Yost-Daljev, Mary Kate; Cornelissen, Cynthia Nau
2004-01-01
The gonococcal transferrin receptor is composed of two distinct proteins, TbpA and TbpB. TbpA is a member of the TonB-dependent family of integral outer membrane transporters, while TbpB is lipid modified and thought to be peripherally surface exposed. We previously proposed a hypothetical topology model for gonococcal TbpA that was based upon computer predictions and similarity with other TonB-dependent transporters for which crystal structures have been determined. In the present study, the hemagglutinin epitope was inserted into TbpA to probe the surface topology of this protein and secondarily to test the functional impacts of site-specific mutagenesis. Twelve epitope insertion mutants were constructed, five of which allowed us to confirm the surface exposure of loops 2, 3, 5, 7, and 10. In contrast to the predictions set forth by the hypothetical model, insertion into the plug region resulted in an epitope that was surface accessible, while epitope insertions into two putative loops (9 and 11) were not surface accessible. Insertions into putative loop 3 and β strand 9 abolished transferrin binding and utilization, and the plug insertion mutant exhibited decreased transferrin-binding affinity concomitant with an inability to utilize it. Insertion into putative β strand 16 generated a mutant that was able to bind transferrin normally but that was unable to mediate utilization. Mutants with insertions into putative loops 2, 9, and 11 maintained wild-type binding affinity but could utilize only transferrin in the presence of TbpB. This is the first demonstration of the ability of TbpB to compensate for a mutation in TbpA. PMID:14977987
OSCAR4: a flexible architecture for chemical text-mining.
Jessop, David M; Adams, Sam E; Willighagen, Egon L; Hawizy, Lezan; Murray-Rust, Peter
2011-10-14
The Open-Source Chemistry Analysis Routines (OSCAR) software, a toolkit for the recognition of named entities and data in chemistry publications, has been developed since 2002. Recent work has resulted in the separation of the core OSCAR functionality and its release as the OSCAR4 library. This library features a modular API (based on reduction of surface coupling) that permits client programmers to easily incorporate it into external applications. OSCAR4 offers a domain-independent architecture upon which chemistry specific text-mining tools can be built, and its development and usage are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, H.; Wang, L; Huang, H
2010-01-01
The haloalkanoic acid dehalogenase (HAD) enzyme superfamily is the largest family of phosphohydrolases. In HAD members, the structural elements that provide the binding interactions that support substrate specificity are separated from those that orchestrate catalysis. For most HAD phosphatases, a cap domain functions in substrate recognition. However, for the HAD phosphatases that lack a cap domain, an alternate strategy for substrate selection must be operative. One such HAD phosphatase, GmhB of the HisB subfamily, was selected for structure-function analysis. Herein, the X-ray crystallographic structures of Escherichia coli GmhB in the apo form (1.6 {angstrom} resolution), in a complex with Mg{supmore » 2+} and orthophosphate (1.8 {angstrom} resolution), and in a complex with Mg{sup 2+} and D-glycero-D-manno-heptose 1{beta},7-bisphosphate (2.2 {angstrom} resolution) were determined, in addition to the structure of Bordetella bronchiseptica GmhB bound to Mg{sup 2+} and orthophosphate (1.7 {angstrom} resolution). The structures show that in place of a cap domain, the GmhB catalytic site is elaborated by three peptide inserts or loops that pack to form a concave, semicircular surface around the substrate leaving group. Structure-guided kinetic analysis of site-directed mutants was conducted in parallel with a bioinformatics study of sequence diversification within the HisB subfamily to identify loop residues that serve as substrate recognition elements and that distinguish GmhB from its subfamily counterpart, the histidinol-phosphate phosphatase domain of HisB. We show that GmhB and the histidinol-phosphate phosphatase domain use the same design of three substrate recognition loops inserted into the cap domain yet, through selective residue usage on the loops, have achieved unique substrate specificity and thus novel biochemical function.« less
Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.
Roskoski, Robert
2005-11-11
Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of interaction with several enzymes and adaptor proteins.
Building a Better Fragment Library for De Novo Protein Structure Prediction
de Oliveira, Saulo H. P.; Shi, Jiye; Deane, Charlotte M.
2015-01-01
Fragment-based approaches are the current standard for de novo protein structure prediction. These approaches rely on accurate and reliable fragment libraries to generate good structural models. In this work, we describe a novel method for structure fragment library generation and its application in fragment-based de novo protein structure prediction. The importance of correct testing procedures in assessing the quality of fragment libraries is demonstrated. In particular, the exclusion of homologs to the target from the libraries to correctly simulate a de novo protein structure prediction scenario, something which surprisingly is not always done. We demonstrate that fragments presenting different predominant predicted secondary structures should be treated differently during the fragment library generation step and that exhaustive and random search strategies should both be used. This information was used to develop a novel method, Flib. On a validation set of 41 structurally diverse proteins, Flib libraries presents both a higher precision and coverage than two of the state-of-the-art methods, NNMake and HHFrag. Flib also achieves better precision and coverage on the set of 275 protein domains used in the two previous experiments of the the Critical Assessment of Structure Prediction (CASP9 and CASP10). We compared Flib libraries against NNMake libraries in a structure prediction context. Of the 13 cases in which a correct answer was generated, Flib models were more accurate than NNMake models for 10. “Flib is available for download at: http://www.stats.ox.ac.uk/research/proteins/resources”. PMID:25901595
Guérillot, Romain; Siguier, Patricia; Gourbeyre, Edith; Chandler, Michael; Glaser, Philippe
2014-01-01
Transposable elements (TEs) are major components of both prokaryotic and eukaryotic genomes and play a significant role in their evolution. In this study, we have identified new prokaryotic DDE transposase families related to the eukaryotic Mutator-like transposases. These genes were retrieved by cascade PSI-Blast using as initial query the transposase of the streptococcal integrative and conjugative element (ICE) TnGBS2. By combining secondary structure predictions and protein sequence alignments, we predicted the DDE catalytic triad and the DNA-binding domain recognizing the terminal inverted repeats. Furthermore, we systematically characterized the organization and the insertion specificity of the TEs relying on these prokaryotic Mutator-like transposases (p-MULT) for their mobility. Strikingly, two distant TE families target their integration upstream σA dependent promoters. This allowed us to identify a transposase sequence signature associated with this unique insertion specificity and to show that the dissymmetry between the two inverted repeats is responsible for the orientation of the insertion. Surprisingly, while DDE transposases are generally associated with small and simple transposons such as insertion sequences (ISs), p-MULT encoding TEs show an unprecedented diversity with several families of IS, transposons, and ICEs ranging in size from 1.1 to 52 kb. PMID:24418649
Library-based illumination synthesis for critical CMOS patterning.
Yu, Jue-Chin; Yu, Peichen; Chao, Hsueh-Yung
2013-07-01
In optical microlithography, the illumination source for critical complementary metal-oxide-semiconductor layers needs to be determined in the early stage of a technology node with very limited design information, leading to simple binary shapes. Recently, the availability of freeform sources permits us to increase pattern fidelity and relax mask complexities with minimal insertion risks to the current manufacturing flow. However, source optimization across many patterns is often treated as a design-of-experiments problem, which may not fully exploit the benefits of a freeform source. In this paper, a rigorous source-optimization algorithm is presented via linear superposition of optimal sources for pre-selected patterns. We show that analytical solutions are made possible by using Hopkins formulation and quadratic programming. The algorithm allows synthesized illumination to be linked with assorted pattern libraries, which has a direct impact on design rule studies for early planning and design automation for full wafer optimization.
ERIC Educational Resources Information Center
Beiser, Karl
1986-01-01
Describes a product--BiblioFile, Library Corporation's catalog production system--and a service--reproduction of public domain software on CD-ROM for sale to those interested--which revolve around the ultra-high-density storage capacity of CD-ROM discs. Criteria for selecting microcomputers are briefly reviewed. (MBR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cremer, T.; Popp, S.; Emmerich, P.
1990-01-01
Chromosomal in situ suppression (CISS)-hybridization of biotinylated phage DNA-library inserts from sorted human chromosomes was used to decorate chromosomes 1 and 7 specifically from pter to qter and to detect structural aberrations of these chromosomes in irradiated human peripheral lymphocytes. In addition, probe pUC1.77 was used to mark the 1q12 subregion in normal and aberrant chromosomes 1. Low LET radiation (60Co-gamma-rays; 1.17 and 1.33 MeV) of lymphocyte cultures was performed with various doses (D = 0, 2, 4, 8 Gy) 5 h after stimulation with phytohaemagglutinin. Irradiated cells were cultivated for an additional 67 h before Colcemid arrested metaphase spreadsmore » were obtained. Aberrations of the specifically stained chromosomes, such as deletions, dicentrics, and rings, were readily scored after in situ hybridization with either the 1q12 specific probe or DNA-library inserts. By the latter approach, translocations of the specifically stained chromosomes could also be reliably assessed. A linear increase of the percentage of specifically stained aberrant chromosomes was observed when plotted as a function of the square of the dose D. A particular advantage of this new approach is provided by the possibility to delineate numerical and structural chromosome aberrations directly in interphase nuclei. These results indicate that cytogenetic monitoring of ionizing radiation may be considerably facilitated by CISS-hybridization.« less
NASA Astrophysics Data System (ADS)
Lau, Yun-Fai; Kan, Yuet Wai
1983-09-01
We have developed a series of cosmids that can be used as vectors for genomic recombinant DNA library preparations, as expression vectors in mammalian cells for both transient and stable transformations, and as shuttle vectors between bacteria and mammalian cells. These cosmids were constructed by inserting one of the SV2-derived selectable gene markers-SV2-gpt, SV2-DHFR, and SV2-neo-in cosmid pJB8. High efficiency of genomic cloning was obtained with these cosmids and the size of the inserts was 30-42 kilobases. We isolated recombinant cosmids containing the human α -globin gene cluster from these genomic libraries. The simian virus 40 DNA in these selectable gene markers provides the origin of replication and enhancer sequences necessary for replication in permissive cells such as COS 7 cells and thereby allows transient expression of α -globin genes in these cells. These cosmids and their recombinants could also be stably transformed into mammalian cells by using the respective selection systems. Both of the adult α -globin genes were more actively expressed than the embryonic zeta -globin genes in these transformed cell lines. Because of the presence of the cohesive ends of the Charon 4A phage in the cosmids, the transforming DNA sequences could readily be rescued from these stably transformed cells into bacteria by in vitro packaging of total cellular DNA. Thus, these cosmid vectors are potentially useful for direct isolation of structural genes.
Gao, Peng; Pinkston, Kenneth L.; Bourgogne, Agathe; Cruz, Melissa R.; Garsin, Danielle A.; Murray, Barbara E.
2013-01-01
The Enterococcus faecalis cell wall-anchored protein Ace is an important virulence factor involved in cell adhesion and infection. Expression of Ace on the cell surface is affected by many factors, including stage of growth, culture temperature, and environmental components, such as serum, urine, and collagen. However, the mechanisms that regulate or modulate Ace display are not well understood. With interest in identifying genes associated with Ace expression, we utilized a whole-cell enzyme-linked immunosorbent assay (ELISA)-based screening method to identify mutants from a transposon insertion mutant library which exhibited distinct Ace surface expression profiles. We identified a ccpA insertion mutant which showed significantly decreased levels of Ace surface expression at early growth phase versus those of wild-type OG1RF. Confirmation of the observation was achieved through flow cytometry and complementation analysis. Compared to the wild type, the E. faecalis ccpA mutant had an impaired ability to adhere to collagen when grown to early exponential phase, consistent with the lack of Ace expression in the early growth phase. As a key component of carbon catabolite regulation, CcpA has been previously reported to play a critical role in regulating expression of proteins involved in E. faecalis carbohydrate uptake and utilization. Our discovery is the first to associate CcpA with the production of a major E. faecalis virulence factor, providing new insights into the regulation of E. faecalis pathogenesis. PMID:23974022
Meng, Jia; Kanzaki, Gregory; Meas, Diane; Lam, Christopher K; Crummer, Heather; Tain, Justina; Xu, H Howard
2012-04-01
Regulated antisense RNA (asRNA) expression has been employed successfully in Gram-positive bacteria for genome-wide essential gene identification and drug target determination. However, there have been no published reports describing the application of asRNA gene silencing for comprehensive analyses of essential genes in Gram-negative bacteria. In this study, we report the first genome-wide identification of asRNA constructs for essential genes in Escherichia coli. We screened 250 000 library transformants for conditional growth inhibitory recombinant clones from two shotgun genomic libraries of E. coli using a paired-termini expression vector (pHN678). After sequencing plasmid inserts of 675 confirmed inducer sensitive cell clones, we identified 152 separate asRNA constructs of which 134 inserts came from essential genes, while 18 originated from nonessential genes (but share operons with essential genes). Among the 79 individual essential genes silenced by these asRNA constructs, 61 genes (77%) engage in processes related to protein synthesis. The cell-based assays of an asRNA clone targeting fusA (encoding elongation factor G) showed that the induced cells were sensitized 12-fold to fusidic acid, a known specific inhibitor. Our results demonstrate the utility of the paired-termini expression vector and feasibility of large-scale gene silencing in E. coli using regulated asRNA expression. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Ochiai, Hiroshi; Sakamoto, Naoaki; Fujita, Kazumasa; Nishikawa, Masatoshi; Suzuki, Ken-ichi; Matsuura, Shinya; Miyamoto, Tatsuo; Sakuma, Tetsushi; Shibata, Tatsuo; Yamamoto, Takashi
2012-01-01
To understand complex biological systems, such as the development of multicellular organisms, it is important to characterize the gene expression dynamics. However, there is currently no universal technique for targeted insertion of reporter genes and quantitative imaging in multicellular model systems. Recently, genome editing using zinc-finger nucleases (ZFNs) has been reported in several models. ZFNs consist of a zinc-finger DNA-binding array with the nuclease domain of the restriction enzyme FokI and facilitate targeted transgene insertion. In this study, we successfully inserted a GFP reporter cassette into the HpEts1 gene locus of the sea urchin, Hemicentrotus pulcherrimus. We achieved this insertion by injecting eggs with a pair of ZFNs for HpEts1 with a targeting donor construct that contained ∼1-kb homology arms and a 2A-histone H2B–GFP cassette. We increased the efficiency of the ZFN-mediated targeted transgene insertion by in situ linearization of the targeting donor construct and cointroduction of an mRNA for a dominant-negative form of HpLig4, which encodes the H. pulcherrimus homolog of DNA ligase IV required for error-prone nonhomologous end joining. We measured the fluorescence intensity of GFP at the single-cell level in living embryos during development and found that there was variation in HpEts1 expression among the primary mesenchyme cells. These findings demonstrate the feasibility of ZFN-mediated targeted transgene insertion to enable quantification of the expression levels of endogenous genes during development in living sea urchin embryos. PMID:22711830
Market orientation: a concept for health libraries.
Sen, Barbara
2006-03-01
This paper is the result of exploratory research forming part of ongoing study into the value and relevance of market orientation as a strategic option for library managers. The aim of the study is to gain an understanding of the concept of market orientation relative to the health library sector. A focus group was used to gather data from health librarians working at different levels in the sector. The data was coded and categorized by an expert panel and analysed using a taxonomic map developed during the study. Health library professionals define and understand market orientation in the same way as the concept is defined in the management literature. Their understanding of the concept is developing. A greater emphasis is given to some aspects of market orientation than others. There are implications for further research. Methods used to measure market orientation in other domains are likely to be relevant for libraries. Research should be extended to different sectors to explore any cross-sector differences. Fostering an organizational culture that supports market orientation has implications for service management and development.
Wang, Hong; Brautigan, David L
2006-11-01
Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.
Tunable, mixed-resolution modeling using library-based Monte Carlo and graphics processing units
Mamonov, Artem B.; Lettieri, Steven; Ding, Ying; Sarver, Jessica L.; Palli, Rohith; Cunningham, Timothy F.; Saxena, Sunil; Zuckerman, Daniel M.
2012-01-01
Building on our recently introduced library-based Monte Carlo (LBMC) approach, we describe a flexible protocol for mixed coarse-grained (CG)/all-atom (AA) simulation of proteins and ligands. In the present implementation of LBMC, protein side chain configurations are pre-calculated and stored in libraries, while bonded interactions along the backbone are treated explicitly. Because the AA side chain coordinates are maintained at minimal run-time cost, arbitrary sites and interaction terms can be turned on to create mixed-resolution models. For example, an AA region of interest such as a binding site can be coupled to a CG model for the rest of the protein. We have additionally developed a hybrid implementation of the generalized Born/surface area (GBSA) implicit solvent model suitable for mixed-resolution models, which in turn was ported to a graphics processing unit (GPU) for faster calculation. The new software was applied to study two systems: (i) the behavior of spin labels on the B1 domain of protein G (GB1) and (ii) docking of randomly initialized estradiol configurations to the ligand binding domain of the estrogen receptor (ERα). The performance of the GPU version of the code was also benchmarked in a number of additional systems. PMID:23162384
Becker, Matthias M. M.; Lapouge, Karine; Segnitz, Bernd; Wild, Klemens; Sinning, Irmgard
2017-01-01
Co-translational protein targeting and membrane protein insertion is a fundamental process and depends on the signal recognition particle (SRP). In mammals, SRP is composed of the SRP RNA crucial for SRP assembly and function and six proteins. The two largest proteins SRP68 and SRP72 form a heterodimer and bind to a regulatory site of the SRP RNA. Despite their essential roles in the SRP pathway, structural information has been available only for the SRP68 RNA-binding domain (RBD). Here we present the crystal structures of the SRP68 protein-binding domain (PBD) in complex with SRP72-PBD and of the SRP72-RBD bound to the SRP S domain (SRP RNA, SRP19 and SRP68) detailing all interactions of SRP72 within SRP. The SRP72-PBD is a tetratricopeptide repeat, which binds an extended linear motif of SRP68 with high affinity. The SRP72-RBD is a flexible peptide crawling along the 5e- and 5f-loops of SRP RNA. A conserved tryptophan inserts into the 5e-loop forming a novel type of RNA kink-turn stabilized by a potassium ion, which we define as K+-turn. In addition, SRP72-RBD remodels the 5f-loop involved in ribosome binding and visualizes SRP RNA plasticity. Docking of the S domain structure into cryo-electron microscopy density maps reveals multiple contact sites between SRP68/72 and the ribosome, and explains the role of SRP72 in the SRP pathway. PMID:27899666
Farfán, Pamela; Lee, Jiyeon; Larios, Jorge; Sotelo, Pablo; Bu, Guojun; Marzolo, María-Paz
2013-07-01
Sorting nexin 17 (SNX17) is an adaptor protein present in early endosomal antigen 1 (EEA1)-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized Madin-Darby canine kidney cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cell Biology: Narrowing the Great Divide.
Shaw, Sidney L
2017-02-20
Construction of the cell plate during plant cell division requires the precise insertion of materials around the circumferentially growing phragmoplast. New work shows that two kinesin-4 motor proteins act to shorten the domain of overlapping microtubules at the phragmoplast perimeter, limiting the site of material deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Han, Xue; Mihailescu, Mihaela; Hristova, Kalina
2006-01-01
Achondroplasia, the most common form of human dwarfism, is due to a G380R mutation in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) in >97% of the studied cases. While the molecular mechanism of pathology induction is under debate, the structural consequences of the mutation have not been studied. Here we use neutron diffraction to determine the disposition of FGFR3 transmembrane domain in fluid lipid bilayers, and investigate whether the G380R mutation affects the topology of the protein in the bilayer. Our results demonstrate that, in a model system, the G380R mutation induces a shift in the segment that is embedded in the membrane. The center of the hydrocarbon core-embedded segment in the mutant is close to the midpoint between R380 and R397, supporting previous measurements of arginine insertion energetics into the endoplasmic reticulum. The presented results further our knowledge about basic amino-acid insertion into bilayers, and may lead to new insights into the mechanism of pathogenesis in achondroplasia. PMID:16950849
Bergal, Hans Thor; Hopkins, Alex Hunt; Metzner, Sandra Ines; Sousa, Marcelo Carlos
2016-02-02
The β-barrel assembly machine (BAM) mediates folding and insertion of integral β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. Of the five BAM subunits, only BamA and BamD are essential for cell viability. Here we present the crystal structure of a fusion between BamA POTRA4-5 and BamD from Rhodothermus marinus. The POTRA5 domain binds BamD between its tetratricopeptide repeats 3 and 4. The interface structural elements are conserved in the Escherichia coli proteins, which allowed structure validation by mutagenesis and disulfide crosslinking in E. coli. Furthermore, the interface is consistent with previously reported mutations that impair BamA-BamD binding. The structure serves as a linchpin to generate a BAM model where POTRA domains and BamD form an elongated periplasmic ring adjacent to the membrane with a central cavity approximately 30 × 60 Å wide. We propose that nascent OMPs bind this periplasmic ring prior to insertion and folding by BAM. Copyright © 2016 Elsevier Ltd. All rights reserved.
1977-01-10
This report is the third in a series of three that evaluate a technique (frequency-domain Prony) for obtaining the poles of a transfer function. The...main objective was to assess the feasibility of classifying or identifying ship-like targets by using pole sets derived from frequency-domain data. A...predictor-correlator procedure for using spectral data and library pole sets for this purpose was developed. Also studied was an iterative method for
A Language for Specifying Compiler Optimizations for Generic Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willcock, Jeremiah J.
2007-01-01
Compiler optimization is important to software performance, and modern processor architectures make optimization even more critical. However, many modern software applications use libraries providing high levels of abstraction. Such libraries often hinder effective optimization — the libraries are difficult to analyze using current compiler technology. For example, high-level libraries often use dynamic memory allocation and indirectly expressed control structures, such as iteratorbased loops. Programs using these libraries often cannot achieve an optimal level of performance. On the other hand, software libraries have also been recognized as potentially aiding in program optimization. One proposed implementation of library-based optimization is to allowmore » the library author, or a library user, to define custom analyses and optimizations. Only limited systems have been created to take advantage of this potential, however. One problem in creating a framework for defining new optimizations and analyses is how users are to specify them: implementing them by hand inside a compiler is difficult and prone to errors. Thus, a domain-specific language for librarybased compiler optimizations would be beneficial. Many optimization specification languages have appeared in the literature, but they tend to be either limited in power or unnecessarily difficult to use. Therefore, I have designed, implemented, and evaluated the Pavilion language for specifying program analyses and optimizations, designed for library authors and users. These analyses and optimizations can be based on the implementation of a particular library, its use in a specific program, or on the properties of a broad range of types, expressed through concepts. The new system is intended to provide a high level of expressiveness, even though the intended users are unlikely to be compiler experts.« less
Generation of wavy structure on lipid membrane by peripheral proteins: a linear elastic analysis.
Mahata, Paritosh; Das, Sovan Lal
2017-05-01
We carry out a linear elastic analysis to study wavy structure generation on lipid membrane by peripheral membrane proteins. We model the lipid membrane as linearly elastic and anisotropic material. The hydrophobic insertion by proteins into the lipid membrane has been idealized as penetration of rigid rod-like inclusions into the membrane and the electrostatic interaction between protein and membrane has been modeled by a distributed surface traction acting on the membrane surface. With the proposed model we study curvature generation by several binding domains of peripheral membrane proteins containing BAR domains and amphipathic alpha-helices. It is observed that electrostatic interaction is essential for curvature generation by the BAR domains. © 2017 Federation of European Biochemical Societies.
Using peptide array to identify binding motifs and interaction networks for modular domains.
Li, Shawn S-C; Wu, Chenggang
2009-01-01
Specific protein-protein interactions underlie all essential biological processes and form the basis of cellular signal transduction. The recognition of a short, linear peptide sequence in one protein by a modular domain in another represents a common theme of macromolecular recognition in cells, and the importance of this mode of protein-protein interaction is highlighted by the large number of peptide-binding domains encoded by the human genome. This phenomenon also provides a unique opportunity to identify protein-protein binding events using peptide arrays and complementary biochemical assays. Accordingly, high-density peptide array has emerged as a useful tool by which to map domain-mediated protein-protein interaction networks at the proteome level. Using the Src-homology 2 (SH2) and 3 (SH3) domains as examples, we describe the application of oriented peptide array libraries in uncovering specific motifs recognized by an SH2 domain and the use of high-density peptide arrays in identifying interaction networks mediated by the SH3 domain. Methods reviewed here could also be applied to other modular domains, including catalytic domains, that recognize linear peptide sequences.