Science.gov

Sample records for domain interaction partners

  1. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules

    PubMed Central

    Sangith, Nikhil; Srinivasaraghavan, Kannan; Sahu, Indrajit; Desai, Ankita; Medipally, Spandana; Somavarappu, Arun Kumar; Verma, Chandra; Venkatraman, Prasanna

    2014-01-01

    PSMD9 (Proteasome Macropain non-ATPase subunit 9), a proteasomal assembly chaperone, harbors an uncharacterized PDZ-like domain. Here we report the identification of five novel interacting partners of PSMD9 and provide the first glimpse at the structure of the PDZ-domain, including the molecular details of the interaction. We based our strategy on two propositions: (a) proteins with conserved C-termini may share common functions and (b) PDZ domains interact with C-terminal residues of proteins. Screening of C-terminal peptides followed by interactions using full-length recombinant proteins, we discovered hnRNPA1 (an RNA binding protein), S14 (a ribosomal protein), CSH1 (a growth hormone), E12 (a transcription factor) and IL6 receptor as novel PSMD9-interacting partners. Through multiple techniques and structural insights, we clearly demonstrate for the first time that human PDZ domain interacts with the predicted Short Linear Sequence Motif (SLIM) at the C-termini of the client proteins. These interactions are also recapitulated in mammalian cells. Together, these results are suggestive of the role of PSMD9 in transcriptional regulation, mRNA processing and editing, hormone and receptor activity and protein translation. Our proof-of-principle experiments endorse a novel and quick method for the identification of putative interacting partners of similar PDZ-domain proteins from the proteome and for discovering novel functions. PMID:25009770

  2. Microtubule-Actin Cross-Linking Factor 1: Domains, Interaction Partners, and Tissue-Specific Functions.

    PubMed

    Goryunov, Dmitry; Liem, Ronald K H

    2016-01-01

    The cytoskeleton of most eukaryotic cells is composed of three principal filamentous components: actin filaments, microtubules (MTs), and intermediate filaments. It is a highly dynamic system that plays crucial roles in a wide range of cellular processes, including migration, adhesion, cytokinesis, morphogenesis, intracellular traffic and signaling, and structural flexibility. Among the large number of cytoskeleton-associated proteins characterized to date, microtubule-actin cross-linking factor 1 (MACF1) is arguably the most versatile integrator and modulator of cytoskeleton-related processes. MACF1 belongs to the plakin family of proteins, and within it, to the spectraplakin subfamily. These proteins are characterized by the ability to bridge MT and actin cytoskeletal networks in a dynamic fashion, which underlies their involvement in the regulation of cell migration, axonal extension, and vesicular traffic. Studying MACF1 functions has provided insights not only into the regulation of the cytoskeleton but also into molecular mechanisms of both normal cellular physiology and cellular pathology. Multiple MACF1 isoforms exist, composed of a large variety of alternatively spliced domains. Each of these domains mediates a specific set of interactions and functions. These functions are manifested in tissue and cell-specific phenotypes observed in conditional MACF1 knockout mice. The conditional models described to date reveal critical roles of MACF1 in mammalian skin, nervous system, heart muscle, and intestinal epithelia. Complete elimination of MACF1 is early embryonic lethal, indicating an essential role for MACF1 in early development. Further studies of MACF1 domains and their interactions will likely reveal multiple new roles of this protein in various tissues.

  3. Transcriptional repressor domain of MBD1 is intrinsically disordered and interacts with its binding partners in a selective manner.

    PubMed

    Hameed, Umar Farook Shahul; Lim, Jackwee; Zhang, Qian; Wasik, Mariusz A; Yang, Daiwen; Swaminathan, Kunchithapadam

    2014-05-09

    Methylation of DNA CpG sites is a major mechanism of epigenetic gene silencing and plays important roles in cell division, development and carcinogenesis. One of its regulators is the 64-residue C-terminal Transcriptional Repressor Domain (the TRD) of MBD1, which recruits several repressor proteins such as MCAF1, HDAC3 and MPG that are essential for the gene silencing. Using NMR spectroscopy, we have characterized the solution structure of the C-terminus of MBD1 (MBD1-c, residues D507 to Q605), which included the TRD (A529 to P592). Surprisingly, the MBD1-c is intrinsically disordered. Despite its lack of a tertiary folding, MBD1-c could still bind to different partner proteins in a selective manner. MPG and MCAF1Δ8 showed binding to both the N-terminal and C-terminal residues of MBD1-c but HDAC3 preferably bound to the C-terminal region. This study reveals how MBD1-c discriminates different binding partners, and thus, expands our understanding of the mechanisms of gene regulation by MBD1.

  4. The SAM domain of ANKS6 has different interacting partners and mutations can induce different cystic phenotypes.

    PubMed

    Bakey, Zeineb; Bihoreau, Marie-Thérèse; Piedagnel, Rémi; Delestré, Laure; Arnould, Catherine; de Villiers, Alexandre d'Hotman; Devuyst, Olivier; Hoffmann, Sigrid; Ronco, Pierre; Gauguier, Dominique; Lelongt, Brigitte

    2015-08-01

    The ankyrin repeat and sterile α motif (SAM) domain-containing six gene (Anks6) is a candidate for polycystic kidney disease (PKD). Originally identified in the PKD/Mhm(cy/+) rat model of PKD, the disease is caused by a mutation (R823W) in the SAM domain of the encoded protein. Recent studies support the etiological role of the ANKS6 SAM domain in human cystic diseases, but its function in kidney remains unknown. To investigate the role of ANKS6 in cyst formation, we screened an archive of N-ethyl-N-nitrosourea-treated mice and derived a strain carrying a missense mutation (I747N) within the SAM domain of ANKS6. This mutation is only six amino acids away from the PKD-causing mutation (R823W) in cy/+ rats. Evidence of renal cysts in these mice confirmed the crucial role of the SAM domain of ANKS6 in kidney function. Comparative phenotype analysis in cy/+ rats and our Anks6(I747N) mice further showed that the two models display noticeably different PKD phenotypes and that there is a defective interaction between ANKS6 with ANKS3 in the rat and between ANKS6 and BICC1 (bicaudal C homolog 1) in the mouse. Thus, our data demonstrate the importance of ANKS6 for kidney structure integrity and the essential mediating role of its SAM domain in the formation of protein complexes.

  5. Activity of a Bacterial Cell Envelope Stress Response Is Controlled by the Interaction of a Protein Binding Domain with Different Partners*

    PubMed Central

    Flores-Kim, Josué; Darwin, Andrew J.

    2015-01-01

    The bacterial phage shock protein (Psp) system is a highly conserved cell envelope stress response required for virulence in Yersinia enterocolitica and Salmonella enterica. In non-inducing conditions the transcription factor PspF is inhibited by an interaction with PspA. In contrast, PspA associates with the cytoplasmic membrane proteins PspBC during inducing conditions. This has led to the proposal that PspBC exists in an OFF state, which cannot recruit PspA, or an ON state, which can. However, nothing was known about the difference between these two states. Here, we provide evidence that it is the C-terminal domain of Y. enterocolitica PspC (PspCCT) that interacts directly with PspA, both in vivo and in vitro. Site-specific photocross-linking revealed that this interaction occurred only during Psp-inducing conditions in vivo. Importantly, we have also discovered that PspCCT can interact with the C-terminal domain of PspB (PspCCT·PspBCT). However, the PspCCT·PspBCT and PspCCT·PspA interactions were mutually exclusive in vitro. Furthermore, in vivo, PspCCT contacted PspBCT in the OFF state, whereas it contacted PspA in the ON state. These findings provide the first description of the previously proposed PspBC OFF and ON states and reveal that the regulatory switch is centered on a PspCCT partner-switching mechanism. PMID:25802329

  6. Sterile α Motif Domain Containing 9 Is a Novel Cellular Interacting Partner to Low-Risk Type Human Papillomavirus E6 Proteins

    PubMed Central

    Wang, Jia; Dupuis, Crystal; Tyring, Stephen K.; Underbrink, Michael P.

    2016-01-01

    Low-risk type human papillomavirus (HPV) 6 and 11 infection causes recurrent respiratory papillomatosis (RRP) and genital warts. RRP is the most common benign tumor of the larynx in children with frequent relapses. Repeated surgeries are often needed to improve vocal function and prevent life-threatening respiratory obstruction. Currently, there are no effective treatments available to completely eliminate these diseases, largely due to limited knowledge regarding their viral molecular pathogenesis. HPV E6 proteins contribute to cell immortalization by interacting with a variety of cellular proteins, which have been well studied for the high-risk type HPVs related to cancer progression. However, the functions of low-risk HPV E6 proteins are largely unknown. In this study, we report GST-pulldown coupled mass spectrometry analysis with low-risk HPV E6 proteins that identified sterile alpha motif domain containing 9 (SAMD9) as a novel interacting partner. We then confirmed the interaction between HPV-E6 and SAMD9 using co-immunoprecipitation, proximity ligation assay, and confocal immunofluorescence staining. The SAMD9 gene is down-regulated in a variety of neoplasms and deleteriously mutated in normophosphatemic familial tumoral calcinosis. Interestingly, SAMD9 also has antiviral functions against poxvirus. Our study adds to the limited knowledge of the molecular properties of low-risk HPVs and describes new potential functions for the low-risk HPV E6 protein. PMID:26901061

  7. Interaction of a Partially Disordered Antisigma Factor with Its Partner, the Signaling Domain of the TonB-Dependent Transporter HasR

    PubMed Central

    Malki, Idir; Simenel, Catherine; Wojtowicz, Halina; Cardoso de Amorim, Gisele; Prochnicka-Chalufour, Ada; Hoos, Sylviane; Raynal, Bertrand; England, Patrick; Chaffotte, Alain; Delepierre, Muriel; Delepelaire, Philippe; Izadi-Pruneyre, Nadia

    2014-01-01

    Bacteria use diverse signaling pathways to control gene expression in response to external stimuli. In Gram-negative bacteria, the binding of a nutrient is sensed by an outer membrane transporter. This signal is then transmitted to an antisigma factor and subsequently to the cytoplasm where an ECF sigma factor induces expression of genes related to the acquisition of this nutrient. The molecular interactions involved in this transmembrane signaling are poorly understood and structural data on this family of antisigma factor are rare. Here, we present the first structural study of the periplasmic domain of an antisigma factor and its interaction with the transporter. The study concerns the signaling in the heme acquisition system (Has) of Serratia marcescens. Our data support unprecedented partially disordered periplasmic domain of an anti-sigma factor HasS in contact with a membrane-mimicking environment. We solved the 3D structure of the signaling domain of HasR transporter and identified the residues at the HasS−HasR interface. Their conservation in several bacteria suggests wider significance of the proposed model for the understanding of bacterial transmembrane signaling. PMID:24727671

  8. Human Hand1 basic helix-loop-helix (bHLH) protein: extra-embryonic expression pattern, interaction partners and identification of its transcriptional repressor domains.

    PubMed

    Knöfler, Martin; Meinhardt, Gudrun; Bauer, Sandra; Loregger, Thomas; Vasicek, Richard; Bloor, Debra J; Kimber, Susan J; Husslein, Peter

    2002-02-01

    The basic helix-loop-helix (bHLH) transcription factor, Hand1, plays an important role in the development of the murine extra-embryonic trophoblast cell lineage. In the present study, we have analysed the expression of Hand1 in human extra-embryonic cell types and determined its binding specificity and transcriptional activity upon interaction with different class A bHLH factors. Northern blotting and in situ hybridization showed that Hand1 mRNA is specifically expressed in amnion cells at different stages of gestation. Accordingly, we demonstrate that the protein is exclusively produced in the amniotic epithelium in vivo and in purified amnion cells in vitro using a novel polyclonal Hand1 antiserum. Reverse transcriptase-PCR and immunohistochemical staining of blastocysts revealed the production of Hand1 mRNA and polypeptide in the trophectodermal cell layer. In the presence of E12/E47, Hand1 stimulated the transcription of luciferase reporters harbouring degenerate E-boxes, suggesting that E-proteins are potential dimerization partners in trophoblastic tumour and amnion cells. In contrast, Hand1 diminished E12/E47-dependent transcription of reporters containing perfect E-boxes by inhibiting the interaction of Hand1/E-protein heterodimers with the palindromic cognate sequence. Furthermore, we show that Hand1 down-regulated GAL-E12-dependent reporter expression, indicating that the protein can also act directly as a transcriptional repressor. Mutational analyses of GAL-Hand1 suggested that two protein regions located within its N-terminal portion mainly confer the repressing activity. In conclusion, human Hand1 may play an important role in the differentiation of the amniotic membrane and the pre-implanting trophoblast. Furthermore, the data suggest that Hand1 can act as a repressor by two independent mechanisms; sequestration of class A bHLH factors from E-boxes and inhibition of their transcriptional activity.

  9. The active Zot domain (aa 288–293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation

    PubMed Central

    Goldblum, Simeon E.; Rai, Usha; Tripathi, Amit; Thakar, Manjusha; De Leo, Luigina; Di Toro, Nicola; Not, Tarcisio; Ramachandran, Rithwik; Puche, Adam C.; Hollenberg, Morley D.; Fasano, Alessio

    2011-01-01

    Vibrio cholerae-derived zonula occludins toxin (Zot) is a multifunctional protein that reversibly disassembles intestinal tight junctions (tjs). Zot structure-function analysis has mapped this activity to aa 288–293, named AT1002. AT1002 reduced transepithelial electrical resistance across rat small intestine, ex vivo, as did Zot and its processed mature form, ΔG. AT1002 increased in vivo permeability to sugar tracers, whereas scrambled control peptides did not. Binding and barrier assays in proteinase activated receptor (PAR)2-expressing and PAR2-null cells established AT1002 activity to be PAR2 dependent. Coincident with the increased intestinal permeability, confocal microscopy of AT1002-exposed rat intestinal IEC6 cells revealed displacement of ZO-1 and occludin from intercellular boundaries. In coimmunoprecipitation assays, AT1002 decreased ZO-1-occludin and ZO-1-claudin 1 interactions coincident with PKCα-dependent ZO-1 serine/threonine phosphorylation. Further, AT1002 increased serine phosphorylation of myosin 1C and, at the same time, transiently diminished its association with ZO-1. The COOH-terminal domain of ZO-1 was required for its association with myosin 1C. These data indicate that the NH2-terminal portion of active Zot contains a PAR2-activating motif, FCIGRL, that increases PKCα-dependent ZO-1 and myosin 1C serine/threonine phosphorylation. These modifications provoke selective disengagement of ZO-1 from its binding partners, occludin, claudin 1, and myosin 1C, coincident with opening of tjs.—Goldblum, S. E., Rai, U., Tripathi, A., Thakar, M., De Leo, L., Di Toro, N., Not, T., Ramachandran, R., Puche, A. C., Hollenberg, M. D., Fasano, A. The active Zot domain (aa 288–293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. PMID:20852064

  10. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein

    SciTech Connect

    Zencir, Sevil; Ovee, Mohiuddin; Dobson, Melanie J.; Banerjee, Monimoy; Topcu, Zeki; Mohanty, Smita

    2011-08-12

    Highlights: {yields} Brain-specific angiogenesis inhibitor 2 (BAI2) is a new partner protein for GIP. {yields} BAI2 interaction with GIP was revealed by yeast two-hybrid assay. {yields} Binding of BAI2 to GIP was characterized by NMR, CD and fluorescence. {yields} BAI2 and GIP binding was mediated through the C-terminus of BAI2. -- Abstract: The vast majority of physiological processes in living cells are mediated by protein-protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80-100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase L, {beta}-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.

  11. Proteomics Analysis Reveals Novel RASSF2 Interaction Partners

    PubMed Central

    Barnoud, Thibaut; Wilkey, Daniel W.; Merchant, Michael L.; Clark, Jennifer A.; Donninger, Howard

    2016-01-01

    RASSF2 is a tumor suppressor that shares homology with other Ras-association domain (RASSF) family members. It is a powerful pro-apoptotic K-Ras effector that is frequently inactivated in many human tumors. The exact mechanism by which RASSF2 functions is not clearly defined, but it likely acts as a scaffolding protein, modulating the activity of other pro-apoptotic effectors, thereby regulating and integrating tumor suppressor pathways. However, only a limited number of RASSF2 interacting partners have been identified to date. We used a proteomics based approach to identify additional RASSF2 interactions, and thereby gain a better insight into the mechanism of action of RASSF2. We identified several proteins, including C1QBP, Vimentin, Protein phosphatase 1G and Ribonuclease inhibitor that function in diverse biological processes, including protein post-translational modifications, epithelial-mesenchymal transition, cell migration and redox homeostasis, which have not previously been reported to interact with RASSF2. We independently validated two of these novel interactions, C1QBP and Vimentin and found that the interaction with C1QBP was enhanced by K-Ras whereas, interestingly, the Vimentin interaction was reduced by K-Ras. Additionally, RASSF2/K-Ras regulated the acetylation of Vimentin. Our data thus reveal novel mechanisms by which RASSF2 may exert its functions, several of which may be Ras-regulated. PMID:26999212

  12. TOX4 and NOVA1 Proteins Are Partners of the LEDGF PWWP Domain and Affect HIV-1 Replication

    PubMed Central

    Morchikh, Mehdi; Xavier, Johan; Charneau, Pierre; Jacob, Yves; Lavigne, Marc

    2013-01-01

    PWWP domains are involved in the chromatin attachment of several proteins. They bind to both DNA and proteins and their interaction with specific histone methylation marks define them as a new class of histone code readers. The lens epithelium derived growth factor (LEDGF/p75) contains an N-terminal PWWP domain necessary for its interaction with chromatin but also a C-terminal domain which interacts with several proteins, such as lentiviral integrases. These two domains confer a chromatin-tethering function to LEDGF/p75 and in the case of lentiviral integrases, this tethering participates in the efficiency and site selectivity of integration. Although proteins interacting with LEDGF/p75 C-terminal domain have been extensively studied, no data exist about partners of its PWWP domain regulating its interaction with chromatin. In this study, we report the identification by yeast-two-hybrid of thirteen potential partners of the LEDGF PWWP domain. Five of these interactions were confirmed in mammalian cells, using both a protein complementation assay and co-immunoprecipitation approaches. Three of these partners interact with full length LEDGF/p75, they are specific for PWWP domains of the HDGF family and they require PWWP amino acids essential for the interaction with chromatin. Among them, the transcription activator TOX4 and the splicing cofactor NOVA1 were selected for a more extensive study. These two proteins or their PWWP interacting regions (PIR) colocalize with LEDGF/p75 in Hela cells and interact in vitro in the presence of DNA. Finally, single round VSV-G pseudotyped HIV-1 but not MLV infection is inhibited in cells overexpressing these two PIRs. The observed inhibition of infection can be attributed to a defect in the integration step. Our data suggest that a regulation of LEDGF interaction with chromatin by cellular partners of its PWWP domain could be involved in several processes linked to LEDGF tethering properties, such as lentiviral integration, DNA

  13. Clustering of OB-fold domains of the partner protease complexed with trimeric stomatin from Thermococcales.

    PubMed

    Yokoyama, Hideshi; Matsui, Eriko; Hiramoto, Kana; Forterre, Patrick; Matsui, Ikuo

    2013-07-01

    The C-terminal soluble domain of stomatin operon partner protein (STOPP) of the hyperthermophilic archaeon Pyrococcus horikoshii has an oligonucleotide binding-fold (OB-fold). STOPP lacks the conserved surface residues necessary for binding to DNA/RNA. A tryptophan (W) residue is conserved instead at the molecular surface. Solvent-accessible W residues are often found at interfaces of protein-protein complexes, which suggested the possibility of self-assembling of STOPP. Protein-protein interactions among the C-terminal soluble domains of STOPP PH1510 (1510-C) were then analyzed by chemical linking and blue native polyacrylamide gel electrophoresis (BN-PAGE) methods. These results suggest that the soluble domains of STOPP could assemble into homo-oligomers. Since hexameric subcomplex I from archaeal proteasome consists of coiled-coil segments and OB-fold domains, molecular modeling of 1510-C was performed using hexameric subcomplex I as a template. Although 1510-C is a comparatively small polypeptide consisting of approximately 60 residues, numerous salt bridges and hydrophobic interactions were observed in the predicted hexamer of 1510-C, suggesting the stability of the homo-oligomeric structure. This oligomeric property of STOPP may be favorable for triplicate proteolysis of the trimer of prokaryotic stomatin. PMID:23587725

  14. Molecular basis for histone acetyltransferase regulation by binding partners, associated domains, and autoacetylation

    PubMed Central

    McCullough, Cheryl E.; Marmorstein, Ronen

    2016-01-01

    Acetylation is a post-translational modification (PTM) that regulates chromatin dynamics and function. Dysregulation of acetylation or acetyltransferase activity has been correlated with several human diseases. Many, if not all histone acetyltransferases (HATs) are regulated in part through tethered domains, association with binding partners or post-translational modification, including predominantly acetylation. This review focuses on what is currently understood at the molecular level of HAT regulation as it occurs via binding partners, associated domains, and autoacetylation. PMID:26555232

  15. Identification of new interacting partners of the shuttling protein ubinuclein (Ubn-1).

    PubMed

    Lupo, Julien; Conti, Audrey; Sueur, Charlotte; Coly, Pierre-Alain; Couté, Yohann; Hunziker, Walter; Burmeister, Wim P; Germi, Raphaelle; Manet, Evelyne; Gruffat, Henri; Morand, Patrice; Boyer, Véronique

    2012-03-10

    We have previously characterized ubinuclein (Ubn-1) as a NACos (Nuclear and Adherent junction Complex components) protein which interacts with viral or cellular transcription factors and the tight junction (TJ) protein ZO-1. The purpose of the present study was to get more insights on the binding partners of Ubn-1, notably those present in the epithelial junctions. Using an in vivo assay of fluorescent protein-complementation assay (PCA), we demonstrated that the N-terminal domains of the Ubn-1 and ZO-1 proteins triggered a functional interaction inside the cell. Indeed, expression of both complementary fragments of venus fused to the N-terminal parts of Ubn-1 and ZO-1 was able to reconstitute a fluorescent venus protein. Furthermore, nuclear expression of the chimeric Ubn-1 triggered nuclear localization of the chimeric ZO-1. We could localize this interaction to the PDZ2 domain of ZO-1 using an in vitro pull-down assay. More precisely, a 184-amino acid region (from amino acids 39 to 223) at the N-terminal region of Ubn-1 was responsible for the interaction with the PDZ2 domain of ZO-1. Co-imunoprecipitation and confocal microscopy experiments also revealed the tight junction protein cingulin as a new interacting partner of Ubn-1. A proteomic approach based on mass spectrometry analysis (MS) was then undertaken to identify further binding partners of GST-Ubn-1 fusion protein in different subcellular fractions of human epithelial HT29 cells. LYRIC (Lysine-rich CEACAM1-associated protein) and RACK-1 (receptor for activated C-kinase) proteins were validated as bona fide interacting partners of Ubn-1. Altogether, these results suggest that Ubn-1 is a scaffold protein influencing protein subcellular localization and is involved in several processes such as cell-cell contact signalling or modulation of gene activity. PMID:22245583

  16. Identification of new interacting partners of the shuttling protein ubinuclein (Ubn-1)

    SciTech Connect

    Lupo, Julien; Conti, Audrey; Sueur, Charlotte; Coly, Pierre-Alain; Coute, Yohann; Hunziker, Walter; Burmeister, Wim P.; Germi, Raphaelle; Manet, Evelyne; Gruffat, Henri; and others

    2012-03-10

    We have previously characterized ubinuclein (Ubn-1) as a NACos (Nuclear and Adherent junction Complex components) protein which interacts with viral or cellular transcription factors and the tight junction (TJ) protein ZO-1. The purpose of the present study was to get more insights on the binding partners of Ubn-1, notably those present in the epithelial junctions. Using an in vivo assay of fluorescent protein-complementation assay (PCA), we demonstrated that the N-terminal domains of the Ubn-1 and ZO-1 proteins triggered a functional interaction inside the cell. Indeed, expression of both complementary fragments of venus fused to the N-terminal parts of Ubn-1 and ZO-1 was able to reconstitute a fluorescent venus protein. Furthermore, nuclear expression of the chimeric Ubn-1 triggered nuclear localization of the chimeric ZO-1. We could localize this interaction to the PDZ2 domain of ZO-1 using an in vitro pull-down assay. More precisely, a 184-amino acid region (from amino acids 39 to 223) at the N-terminal region of Ubn-1 was responsible for the interaction with the PDZ2 domain of ZO-1. Co-imunoprecipitation and confocal microscopy experiments also revealed the tight junction protein cingulin as a new interacting partner of Ubn-1. A proteomic approach based on mass spectrometry analysis (MS) was then undertaken to identify further binding partners of GST-Ubn-1 fusion protein in different subcellular fractions of human epithelial HT29 cells. LYRIC (Lysine-rich CEACAM1-associated protein) and RACK-1 (receptor for activated C-kinase) proteins were validated as bona fide interacting partners of Ubn-1. Altogether, these results suggest that Ubn-1 is a scaffold protein influencing protein subcellular localization and is involved in several processes such as cell-cell contact signalling or modulation of gene activity.

  17. Identification of new interacting partners of the shuttling protein ubinuclein (Ubn-1).

    PubMed

    Lupo, Julien; Conti, Audrey; Sueur, Charlotte; Coly, Pierre-Alain; Couté, Yohann; Hunziker, Walter; Burmeister, Wim P; Germi, Raphaelle; Manet, Evelyne; Gruffat, Henri; Morand, Patrice; Boyer, Véronique

    2012-03-10

    We have previously characterized ubinuclein (Ubn-1) as a NACos (Nuclear and Adherent junction Complex components) protein which interacts with viral or cellular transcription factors and the tight junction (TJ) protein ZO-1. The purpose of the present study was to get more insights on the binding partners of Ubn-1, notably those present in the epithelial junctions. Using an in vivo assay of fluorescent protein-complementation assay (PCA), we demonstrated that the N-terminal domains of the Ubn-1 and ZO-1 proteins triggered a functional interaction inside the cell. Indeed, expression of both complementary fragments of venus fused to the N-terminal parts of Ubn-1 and ZO-1 was able to reconstitute a fluorescent venus protein. Furthermore, nuclear expression of the chimeric Ubn-1 triggered nuclear localization of the chimeric ZO-1. We could localize this interaction to the PDZ2 domain of ZO-1 using an in vitro pull-down assay. More precisely, a 184-amino acid region (from amino acids 39 to 223) at the N-terminal region of Ubn-1 was responsible for the interaction with the PDZ2 domain of ZO-1. Co-imunoprecipitation and confocal microscopy experiments also revealed the tight junction protein cingulin as a new interacting partner of Ubn-1. A proteomic approach based on mass spectrometry analysis (MS) was then undertaken to identify further binding partners of GST-Ubn-1 fusion protein in different subcellular fractions of human epithelial HT29 cells. LYRIC (Lysine-rich CEACAM1-associated protein) and RACK-1 (receptor for activated C-kinase) proteins were validated as bona fide interacting partners of Ubn-1. Altogether, these results suggest that Ubn-1 is a scaffold protein influencing protein subcellular localization and is involved in several processes such as cell-cell contact signalling or modulation of gene activity.

  18. Virtual Partner Interaction (VPI): Exploring Novel Behaviors via Coordination Dynamics

    PubMed Central

    Kelso, J. A. Scott; de Guzman, Gonzalo C.; Reveley, Colin; Tognoli, Emmanuelle

    2009-01-01

    Inspired by the dynamic clamp of cellular neuroscience, this paper introduces VPI—Virtual Partner Interaction—a coupled dynamical system for studying real time interaction between a human and a machine. In this proof of concept study, human subjects coordinate hand movements with a virtual partner, an avatar of a hand whose movements are driven by a computerized version of the Haken-Kelso-Bunz (HKB) equations that have been shown to govern basic forms of human coordination. As a surrogate system for human social coordination, VPI allows one to examine regions of the parameter space not typically explored during live interactions. A number of novel behaviors never previously observed are uncovered and accounted for. Having its basis in an empirically derived theory of human coordination, VPI offers a principled approach to human-machine interaction and opens up new ways to understand how humans interact with human-like machines including identification of underlying neural mechanisms. PMID:19492044

  19. Polycomb group targeting through different binding partners of RING1B C-terminal domain.

    PubMed

    Wang, Renjing; Taylor, Alexander B; Leal, Belinda Z; Chadwell, Linda V; Ilangovan, Udayar; Robinson, Angela K; Schirf, Virgil; Hart, P John; Lafer, Eileen M; Demeler, Borries; Hinck, Andrew P; McEwen, Donald G; Kim, Chongwoo A

    2010-08-11

    RING1B, a Polycomb Group (PcG) protein, binds methylated chromatin through its association with another PcG protein called Polycomb (Pc). However, RING1B can associate with nonmethylated chromatin suggesting an alternate mechanism for RING1B interaction with chromatin. Here, we demonstrate that two proteins with little sequence identity between them, the Pc cbox domain and RYBP, bind the same surface on the C-terminal domain of RING1B (C-RING1B). Pc cbox and RYBP each fold into a nearly identical, intermolecular beta sheet with C-RING1B and a loop structure which are completely different in the two proteins. Both the beta sheet and loop are required for stable binding and transcription repression. Further, a mutation engineered to disrupt binding on the Drosophila dRING1 protein prevents chromatin association and PcG function in vivo. These results suggest that PcG targeting to different chromatin locations relies, in part, on binding partners of C-RING1B that are diverse in sequence and structure.

  20. GPCR & company: databases and servers for GPCRs and interacting partners.

    PubMed

    Kowalsman, Noga; Niv, Masha Y

    2014-01-01

    G-protein-coupled receptors (GPCRs) are a large superfamily of membrane receptors that are involved in a wide range of signaling pathways. To fulfill their tasks, GPCRs interact with a variety of partners, including small molecules, lipids and proteins. They are accompanied by different proteins during all phases of their life cycle. Therefore, GPCR interactions with their partners are of great interest in basic cell-signaling research and in drug discovery.Due to the rapid development of computers and internet communication, knowledge and data can be easily shared within the worldwide research community via freely available databases and servers. These provide an abundance of biological, chemical and pharmacological information.This chapter describes the available web resources for investigating GPCR interactions. We review about 40 freely available databases and servers, and provide a few sentences about the essence and the data they supply. For simplification, the databases and servers were grouped under the following topics: general GPCR-ligand interactions; particular families of GPCRs and their ligands; GPCR oligomerization; GPCR interactions with intracellular partners; and structural information on GPCRs. In conclusion, a multitude of useful tools are currently available. Summary tables are provided to ease navigation between the numerous and partially overlapping resources. Suggestions for future enhancements of the online tools include the addition of links from general to specialized databases and enabling usage of user-supplied template for GPCR structural modeling. PMID:24158806

  1. GPCR & company: databases and servers for GPCRs and interacting partners.

    PubMed

    Kowalsman, Noga; Niv, Masha Y

    2014-01-01

    G-protein-coupled receptors (GPCRs) are a large superfamily of membrane receptors that are involved in a wide range of signaling pathways. To fulfill their tasks, GPCRs interact with a variety of partners, including small molecules, lipids and proteins. They are accompanied by different proteins during all phases of their life cycle. Therefore, GPCR interactions with their partners are of great interest in basic cell-signaling research and in drug discovery.Due to the rapid development of computers and internet communication, knowledge and data can be easily shared within the worldwide research community via freely available databases and servers. These provide an abundance of biological, chemical and pharmacological information.This chapter describes the available web resources for investigating GPCR interactions. We review about 40 freely available databases and servers, and provide a few sentences about the essence and the data they supply. For simplification, the databases and servers were grouped under the following topics: general GPCR-ligand interactions; particular families of GPCRs and their ligands; GPCR oligomerization; GPCR interactions with intracellular partners; and structural information on GPCRs. In conclusion, a multitude of useful tools are currently available. Summary tables are provided to ease navigation between the numerous and partially overlapping resources. Suggestions for future enhancements of the online tools include the addition of links from general to specialized databases and enabling usage of user-supplied template for GPCR structural modeling.

  2. Discovering interacting domains and motifs in protein-protein interactions.

    PubMed

    Hugo, Willy; Sung, Wing-Kin; Ng, See-Kiong

    2013-01-01

    Many important biological processes, such as the signaling pathways, require protein-protein interactions (PPIs) that are designed for fast response to stimuli. These interactions are usually transient, easily formed, and disrupted, yet specific. Many of these transient interactions involve the binding of a protein domain to a short stretch (3-10) of amino acid residues, which can be characterized by a sequence pattern, i.e., a short linear motif (SLiM). We call these interacting domains and motifs domain-SLiM interactions. Existing methods have focused on discovering SLiMs in the interacting proteins' sequence data. With the recent increase in protein structures, we have a new opportunity to detect SLiMs directly from the proteins' 3D structures instead of their linear sequences. In this chapter, we describe a computational method called SLiMDIet to directly detect SLiMs on domain interfaces extracted from 3D structures of PPIs. SLiMDIet comprises two steps: (1) interaction interfaces belonging to the same domain are extracted and grouped together using structural clustering and (2) the extracted interaction interfaces in each cluster are structurally aligned to extract the corresponding SLiM. Using SLiMDIet, de novo SLiMs interacting with protein domains can be computationally detected from structurally clustered domain-SLiM interactions for PFAM domains which have available 3D structures in the PDB database.

  3. The SH2 domain interaction landscape

    PubMed Central

    Tinti, Michele; Kiemer, Lars; Costa, Stefano; Miller, Martin; Sacco, Francesca; Olsen, Jesper V.; Carducci, Martina; Paoluzi, Serena; Langone, Francesca; Workman, Christopher T.; Blom, Nikolaj; Machida, Kazuya; Thompson, Christopher M.; Schutkowski, Mike; Brunak, Søren; Mann, Matthias; Mayer, Bruce J.; Castagnoli, Luisa; Cesareni, Gianni

    2014-01-01

    Summary Members of the SH2 domain family modulate signal transduction by binding to short peptides containing phosphorylated tyrosines. Each domain displays a distinct preference for the sequence context of the phosphorylated residue. We have developed a new high-density peptide chip technology that allows probing the affinity of most SH2 domains for a large fraction of the entire complement of tyrosine phosphopeptides in the human proteome. Using this technique we have experimentally identified thousands of putative SH2- peptide interactions for more than 70 different SH2 domains. By integrating this rich data set with orthogonal context-specific information, we have assembled an SH2 mediated probabilistic interaction network, which we make available as a community resource in the PepSpotDB database. A new predicted dynamic interaction between the SH2 domains of the tyrosine phosphatase SHP2 and the phosphorylated tyrosine in the ERK activation loop was validated by experiments in living cells. PMID:23545499

  4. The SH2 domain interaction landscape.

    PubMed

    Tinti, Michele; Kiemer, Lars; Costa, Stefano; Miller, Martin L; Sacco, Francesca; Olsen, Jesper V; Carducci, Martina; Paoluzi, Serena; Langone, Francesca; Workman, Christopher T; Blom, Nikolaj; Machida, Kazuya; Thompson, Christopher M; Schutkowski, Mike; Brunak, Søren; Mann, Matthias; Mayer, Bruce J; Castagnoli, Luisa; Cesareni, Gianni

    2013-04-25

    Members of the SH2 domain family modulate signal transduction by binding to short peptides containing phosphorylated tyrosines. Each domain displays a distinct preference for the sequence context of the phosphorylated residue. We have developed a high-density peptide chip technology that allows for probing of the affinity of most SH2 domains for a large fraction of the entire complement of tyrosine phosphopeptides in the human proteome. Using this technique, we have experimentally identified thousands of putative SH2-peptide interactions for more than 70 different SH2 domains. By integrating this rich data set with orthogonal context-specific information, we have assembled an SH2-mediated probabilistic interaction network, which we make available as a community resource in the PepspotDB database. A predicted dynamic interaction between the SH2 domains of the tyrosine phosphatase SHP2 and the phosphorylated tyrosine in the extracellular signal-regulated kinase activation loop was validated by experiments in living cells.

  5. Morphology and interaction between lipid domains

    PubMed Central

    Ursell, Tristan S.; Klug, William S.; Phillips, Rob

    2009-01-01

    Cellular membranes are a heterogeneous mix of lipids, proteins and small molecules. Special groupings enriched in saturated lipids and cholesterol form liquid-ordered domains, known as “lipid rafts,” thought to serve as platforms for signaling, trafficking and material transport throughout the secretory pathway. Questions remain as to how the cell maintains small fluid lipid domains, through time, on a length scale consistent with the fact that no large-scale phase separation is observed. Motivated by these examples, we have utilized a combination of mechanical modeling and in vitro experiments to show that membrane morphology plays a key role in maintaining small domain sizes and organizing domains in a model membrane. We demonstrate that lipid domains can adopt a flat or dimpled morphology, where the latter facilitates a repulsive interaction that slows coalescence and helps regulate domain size and tends to laterally organize domains in the membrane. PMID:19620730

  6. Huntingtin's WW domain partners in Huntington's disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington's disease pathogenesis.

    PubMed

    Passani, L A; Bedford, M T; Faber, P W; McGinnis, K M; Sharp, A H; Gusella, J F; Vonsattel, J P; MacDonald, M E

    2000-09-01

    An elongated glutamine tract in mutant huntingtin initiates Huntington's disease (HD) pathogenesis via a novel structural property that displays neuronal selectivity, glutamine progressivity and dominance over the normal protein based on genetic criteria. As this mechanism is likely to involve a deleterious protein interaction, we have assessed the major class of huntingtin interactors comprising three WW domain proteins. These are revealed to be related spliceosome proteins (HYPA/FBP-11 and HYPC) and a transcription factor (HYPB) that implicate huntingtin in mRNA biogenesis. In HD post-mortem brain, specific antibody reagents detect each partner in HD target neurons, in association with disease-related N-terminal morphologic deposits but not with filter trapped insoluble-aggregate. Glutathione S:-transferase partner 'pull-down' assays reveal soluble, aberrantly migrating, forms of full-length mutant huntingtin specific to HD target tissue. Importantly, these novel mutant species exhibit exaggerated WW domain binding that abrogates partner association with other huntingtin isoforms. Thus, each WW domain partner's association with huntingtin fulfills HD genetic criteria, supporting a direct role in pathogenesis. Our findings indicate that modification of mutant huntingtin in target neurons may promote an abnormal interaction with one, or all, of huntingtin's WW domain partners, perhaps altering ribonucleoprotein function with toxic consequences.

  7. Choice of partners: sexual cell interactions in Dictyostelium discoideum.

    PubMed

    Urushihara, H

    1996-08-01

    Recognition of mating partners is of central importance in the sexual processes. In consideration that the most important function of sexuality is to shuffle genetic materials to generate wider variation of characters, mating among different genetic backgrounds is preferable. Wild isolates of cellular slime mold Dictyostelium discoideum are predominantly heterothallic, but homothallic ones also exist. In addition, there are bi-sexual strains which are compatible with either mating type of heterothallic strains but are self-incompatible. How cells of these organisms choose proper mating partners may include the essential mechanisms for sexual cell recognition in general. This minireview addresses studies on sexual cell interactions of D. discoideum with special attention to cell recognition and evolution of the mating system. PMID:8906358

  8. Identification of Novel Interacting Partners of Sirtuin6

    PubMed Central

    Polyakova, Oxana; Borman, Satty; Grimley, Rachel; Vamathevan, Jessica; Hayes, Brian; Solari, Roberto

    2012-01-01

    SIRT6 is a member of the Sirtuin family of histone deacetylases that has been implicated in inflammatory, aging and metabolic pathways. Some of its actions have been suggested to be via physical interaction with NFκB and HIF1α and transcriptional regulation through its histone deacetylase activity. Our previous studies have investigated the histone deacetylase activity of SIRT6 and explored its ability to regulate the transcriptional responses to an inflammatory stimulus such as TNFα. In order to develop a greater understanding of SIRT6 function we have sought to identify SIRT6 interacting proteins by both yeast-2-hybrid and co-immunoprecipitation studies. We report a number of interacting partners which strengthen previous findings that SIRT6 functions in base excision repair (BER), and novel interactors which suggest a role in nucleosome and chromatin remodeling, the cell cycle and NFκB biology. PMID:23240041

  9. New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners.

    PubMed

    Zhang, Wei; Liu, Yi; Yan, Jinyong; Cao, Shaona; Bai, Fali; Yang, Ying; Huang, Shaohua; Yao, Lishan; Anzai, Yojiro; Kato, Fumio; Podust, Larissa M; Sherman, David H; Li, Shengying

    2014-03-01

    Cytochrome P450 enzymes are capable of catalyzing a great variety of synthetically useful reactions such as selective C-H functionalization. Surrogate redox partners are widely used for reconstitution of P450 activity based on the assumption that the choice of these auxiliary proteins or their mode of action does not affect the type and selectivity of reactions catalyzed by P450s. Herein, we present an exceptional example to challenge this postulate. MycG, a multifunctional biosynthetic P450 monooxygenase responsible for hydroxylation and epoxidation of 16-membered ring macrolide mycinamicins, is shown to catalyze the unnatural N-demethylation(s) of a range of mycinamicin substrates when partnered with the free Rhodococcus reductase domain RhFRED or the engineered Rhodococcus-spinach hybrid reductase RhFRED-Fdx. By contrast, MycG fused with the RhFRED or RhFRED-Fdx reductase domain mediates only physiological oxidations. This finding highlights the larger potential role of variant redox partner protein-protein interactions in modulating the catalytic activity of P450 enzymes.

  10. Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains

    PubMed Central

    Sundlov, Jesse A.; Shi, Ce; Wilson, Daniel J.; Aldrich, Courtney C.; Gulick, Andrew M.

    2012-01-01

    Summary Non-ribosomal peptide synthetases (NRPSs) are modular proteins that produce peptide antibiotics and siderophores. These enzymes act as catalytic assembly lines where substrates, covalently bound to integrated carrier domains, are delivered to adjacent catalytic domains. The carrier domains are initially loaded by adenylation domains, which use two distinct conformations to catalyze sequentially the adenylation of the substrate and the thioesterification of the pantetheine cofactor. We have used a mechanism-based inhibitor to determine the crystal structure of an engineered adenylation-carrier domain protein illustrating the intermolecular interaction between the adenylation and carrier domains. This structure enabled directed mutations to improve the interaction between non-native partner proteins. Comparison with prior NRPS adenylation domain structures provides insights into the assembly line dynamics of these modular enzymes. PMID:22365602

  11. The Different Roles of Aggrecan Interaction Domains

    PubMed Central

    2012-01-01

    The aggregating proteoglycans of the lectican family are important components of extracellular matrices. Aggrecan is the most well studied of these and is central to cartilage biomechanical properties and skeletal development. Key to its biological function is the fixed charge of the many glycosaminoglycan chains, that provide the basis for the viscoelastic properties necessary for load distribution over the articular surface. This review is focused on the globular domains of aggrecan and their role in anchoring the proteoglycans to other extracellular matrix components. The N-terminal G1 domain is vital in that it binds the proteoglycan to hyaluronan in ternary complex with link protein, retaining the proteoglycan in the tissue. The importance of the C-terminal G3 domain interactions has recently been emphasized by two different human hereditary disorders: autosomal recessive aggrecan-type spondyloepimetaphyseal dysplasia and autosomal dominant familial osteochondritis dissecans. In these two conditions, different missense mutations in the aggrecan C-type lectin repeat have been described. The resulting amino acid replacements affect the ligand interactions of the G3 domain, albeit with widely different phenotypic outcomes. PMID:23019016

  12. Identification of protein interacting partners using tandem affinity purification.

    PubMed

    Bailey, Dalan; Urena, Luis; Thorne, Lucy; Goodfellow, Ian

    2012-01-01

    A critical and often limiting step in understanding the function of host and viral proteins is the identification of interacting cellular or viral protein partners. There are many approaches that allow the identification of interacting partners, including the yeast two hybrid system, as well as pull down assays using recombinant proteins and immunoprecipitation of endogenous proteins followed by mass spectrometry identification(1). Recent studies have highlighted the utility of double-affinity tag mediated purification, coupled with two specific elution steps in the identification of interacting proteins. This approach, termed Tandem Affinity Purification (TAP), was initially used in yeast(2,3) but more recently has been adapted to use in mammalian cells(4-8). As proof-of-concept we have established a tandem affinity purification (TAP) method using the well-characterized eukaryotic translation initiation factor eIF4E(9,10).The cellular translation factor eIF4E is a critical component of the cellular eIF4F complex involved in cap-dependent translation initiation(10). The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence(8). To forgo the need for the generation of clonal cell lines, we developed a rapid system that relies on the expression of the TAP-tagged bait protein from an episomally maintained plasmid based on pMEP4 (Invitrogen). Expression of tagged murine eIF4E from this plasmid was controlled using the cadmium chloride inducible metallothionein promoter. Lysis of the expressing cells and subsequent affinity purification via binding to rabbit IgG agarose, TEV protease cleavage, binding to streptavidin linked agarose and subsequent biotin elution identified numerous

  13. A sequence-based computational approach to predicting PDZ domain-peptide interactions.

    PubMed

    Nakariyakul, Songyot; Liu, Zhi-Ping; Chen, Luonan

    2014-01-01

    The PDZ domain is one of the most ubiquitous protein domains that is involved in coordinating signaling complex formation and protein networking by reversibly interacting with multiple binding partners. It has been linked to many devastating diseases such as avian influenza, Fraser syndrome, Usher syndrome and Dejerine-Sottas neuropathy. Understanding the selectivity of PDZ domains can help elucidate how defects in PDZ proteins and their binding partners lead to human diseases. Since experimental methods to determine the interaction specificity of the PDZ domains are expensive and labor intensive, an accurate computational method is thus needed. Our developed support vector machine-based predictor using dipeptide composition is shown to qualitatively predict PDZ domain-peptide interaction with a high accuracy rate. Furthermore, since most of the dipeptide compositions are redundant and irrelevant, we propose a new hybrid feature selection technique to select only a subset of these compositions for interaction prediction. The experimental results show that only approximately 25% of dipeptide features are needed and that our method improves the prediction results significantly. The selected dipeptide features are also analyzed and shown to play important roles in specificity patterns of PDZ domains. Our method is based only on primary sequence information, and it can be used for the research of drug target and drug design in identifying PDZ domain-ligand interactions. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai. PMID:23608946

  14. In Situ Detection of Interactions Between Nuclear Envelope Proteins and Partners.

    PubMed

    Barateau, Alice; Buendia, Brigitte

    2016-01-01

    Proximity ligation assay (PLA) appears as a quick and easy technique to visualize within fixed cells the occurrence and in situ distribution of protein complexes. PLA has been validated to detect protein-protein interactions within the nuclear compartment. Here, we describe a protocol which allows the detection of interactions between A-type nuclear lamins and either LEM-domain proteins (such as emerin, integrated within the inner nuclear membrane, and LAP2α which accumulates within the nucleoplasm) or gene regulatory factors (e.g., the transcription factor SREBP1). The distinct amounts and patterns of PLA signals obtained for various complexes highlight the pertinence of using PLA to reveal in situ where and to which extent nuclear envelope proteins bind specific partners. PMID:27147040

  15. Navigation domain representation for interactive multiview imaging.

    PubMed

    Maugey, Thomas; Daribo, Ismael; Cheung, Gene; Frossard, Pascal

    2013-09-01

    Enabling users to interactively navigate through different viewpoints of a static scene is a new interesting functionality in 3D streaming systems. While it opens exciting perspectives toward rich multimedia applications, it requires the design of novel representations and coding techniques to solve the new challenges imposed by the interactive navigation. In particular, the encoder must prepare a priori a compressed media stream that is flexible enough to enable the free selection of multiview navigation paths by different streaming media clients. Interactivity clearly brings new design constraints: the encoder is unaware of the exact decoding process, while the decoder has to reconstruct information from incomplete subsets of data since the server generally cannot transmit images for all possible viewpoints due to resource constrains. In this paper, we propose a novel multiview data representation that permits us to satisfy bandwidth and storage constraints in an interactive multiview streaming system. In particular, we partition the multiview navigation domain into segments, each of which is described by a reference image (color and depth data) and some auxiliary information. The auxiliary information enables the client to recreate any viewpoint in the navigation segment via view synthesis. The decoder is then able to navigate freely in the segment without further data request to the server; it requests additional data only when it moves to a different segment. We discuss the benefits of this novel representation in interactive navigation systems and further propose a method to optimize the partitioning of the navigation domain into independent segments, under bandwidth and storage constraints. Experimental results confirm the potential of the proposed representation; namely, our system leads to similar compression performance as classical inter-view coding, while it provides the high level of flexibility that is required for interactive streaming. Because of

  16. Coevolution between positive reciprocity, punishment, and partner switching in repeated interactions.

    PubMed

    Wubs, Matthias; Bshary, Redouan; Lehmann, Laurent

    2016-06-15

    Cooperation based on mutual investments can occur between unrelated individuals when they are engaged in repeated interactions. Individuals then need to use a conditional strategy to deter their interaction partners from defecting. Responding to defection such that the future payoff of a defector is reduced relative to cooperating with it is called a partner control mechanism. Three main partner control mechanisms are (i) to switch from cooperation to defection when being defected ('positive reciprocity'), (ii) to actively reduce the payoff of a defecting partner ('punishment'), or (iii) to stop interacting and switch partner ('partner switching'). However, such mechanisms to stabilize cooperation are often studied in isolation from each other. In order to better understand the conditions under which each partner control mechanism tends to be favoured by selection, we here analyse by way of individual-based simulations the coevolution between positive reciprocity, punishment, and partner switching. We show that random interactions in an unstructured population and a high number of rounds increase the likelihood that selection favours partner switching. In contrast, interactions localized in small groups (without genetic structure) increase the likelihood that selection favours punishment and/or positive reciprocity. This study thus highlights the importance of comparing different control mechanisms for cooperation under different conditions. PMID:27306050

  17. Institutional, Individual, and Socio-Cultural Domains of Partnerships: A Typology of USDA Forest Service Recreation Partners

    NASA Astrophysics Data System (ADS)

    Seekamp, Erin; Cerveny, Lee K.; McCreary, Allie

    2011-09-01

    Federal land management agencies, such as the USDA Forest Service, have expanded the role of recreation partners reflecting constrained growth in appropriations and broader societal trends towards civic environmental governance. Partnerships with individual volunteers, service groups, commercial outfitters, and other government agencies provide the USDA Forest Service with the resources necessary to complete projects and meet goals under fiscal constraints. Existing partnership typologies typically focus on collaborative or strategic alliances and highlight organizational dimensions (e.g., structure and process) defined by researchers. This paper presents a partner typology constructed from USDA Forest Service partnership practitioners' conceptualizations of 35 common partner types. Multidimensional scaling of data from unconstrained pile sorts identified 3 distinct cultural dimensions of recreation partners—specifically, partnership character, partner impact, and partner motivations—that represent institutional, individual, and socio-cultural cognitive domains. A hierarchical agglomerative cluster analysis provides further insight into the various domains of agency personnel's conceptualizations. While three dimensions with high reliability (RSQ = 0.83) and corresponding hierarchical clusters illustrate commonality between agency personnel's partnership suppositions, this study also reveals variance in personnel's familiarity and affinity for specific partnership types. This real-world perspective on partner types highlights that agency practitioners not only make strategic choices when selecting and cultivating partnerships to accomplish critical task, but also elect to work with partners for the primary purpose of providing public service and fostering land stewardship.

  18. Computational protein design suggests that human PCNA-partner interactions are not optimized for affinity.

    PubMed

    Fridman, Yearit; Gur, Eyal; Fleishman, Sarel J; Aharoni, Amir

    2013-02-01

    Increasing the affinity of binding proteins is invaluable for basic and applied biological research. Currently, directed protein evolution experiments are the main approach for generating such proteins through the construction and screening of large mutant libraries. Proliferating cell nuclear antigen (PCNA) is an essential hub protein that interacts with many different partners to tightly regulate DNA replication and repair in all eukaryotes. Here, we used computational design to generate human PCNA mutants with enhanced affinity for several different partners. We identified double mutations in PCNA, outside the main partner binding site, that were predicted to increase PCNA-partner binding affinities compared to the wild-type protein by forming additional hydrophobic interactions with conserved residues in the PCNA partners. Affinity increases were experimentally validated with four different PCNA partners, demonstrating that computational design can reveal unexpected regions where affinity enhancements in natural systems are possible. The designed PCNA mutants can be used as a valuable tool for further examination of the regulation of PCNA-partner interactions during DNA replication and repair both in vitro and in vivo. More broadly, the ability to engineer affinity increases toward several PCNA partners suggests that interaction affinity is not an evolutionarily optimized trait of this system. PMID:23011891

  19. Nac1 interacts with the POZ-domain transcription factor, Miz1.

    PubMed

    Stead, Mark A; Wright, Stephanie C

    2014-06-05

    Nac1 (nucleus accumbens 1) is a POZ (poxvirus and zinc finger)-domain transcriptional repressor that is expressed at high levels in ovarian serous carcinoma. Here we identify Nac1 as a novel interacting partner of the POZ-domain transcriptional activator, Miz1 (Myc-interacting zinc-finger protein 1), and using chemical crosslinking we show that this association is mediated by a heterodimeric interaction of the Nac1 and Miz1 POZ domains. Nac1 is found in discrete bodies within the nucleus of mammalian cells, and we demonstrate the relocalization of Miz1 to these structures in transfected HeLa cells. We show that siRNA (small interfering RNA)-mediated knockdown of Nac1 in ovarian cancer cells results in increased levels of the Miz1 target gene product, p21Cip1. The interaction of Nac1 with Miz1 may thus be relevant to its mechanism of tumourigenesis in ovarian cancer.

  20. DIMA 2.0--predicted and known domain interactions.

    PubMed

    Pagel, Philipp; Oesterheld, Matthias; Tovstukhina, Oksana; Strack, Norman; Stümpflen, Volker; Frishman, Dmitrij

    2008-01-01

    DIMA-the domain interaction map has evolved from a simple web server for domain phylogenetic profiling into an integrative prediction resource combining both experimental data on domain-domain interactions and predictions from two different algorithms. With this update, DIMA obtains greatly improved coverage at the level of genomes and domains as well as with respect to available prediction approaches. The domain phylogenetic profiling method now uses SIMAP as its backend for exhaustive domain hit coverage: 7038 Pfam domains were profiled over 460 completely sequenced genomes. Domain pair exclusion predictions were produced from 83 969 distinct protein-protein interactions obtained from IntAct resulting in 21 513 domain pairs with significant domain pair exclusion algorithm scores. Additional predictions applying the same algorithm to predicted protein interactions from STRING yielded 2378 high-confidence pairs. Experimental data comes from iPfam (3074) and 3did (3034 pairs), two databases identifying domain contacts in solved protein structures. Taken together, these two resources yielded 3653 distinct interacting domain pairs. DIMA is available at http://mips.gsf.de/genre/proj/dima.

  1. The Good, the Bad, and the Rare: Memory for Partners in Social Interactions

    PubMed Central

    Volstorf, Jenny; Rieskamp, Jörg; Stevens, Jeffrey R.

    2011-01-01

    For cooperation to evolve via direct reciprocity, individuals must track their partners' behavior to avoid exploitation. With increasing size of the interaction group, however, memory becomes error prone. To decrease memory effort, people could categorize partners into types, distinguishing cooperators and cheaters. We explored two ways in which people might preferentially track one partner type: remember cheaters or remember the rare type in the population. We assigned participants to one of three interaction groups which differed in the proportion of computer partners' types (defectors rare, equal proportion, or cooperators rare). We extended research on both hypotheses in two ways. First, participants experienced their partners repeatedly by interacting in Prisoner's Dilemma games. Second, we tested categorization of partners as cooperators or defectors in memory tests after a short and long retention interval (10 min and 1 week). Participants remembered rare partner types better than they remembered common ones at both retention intervals. We propose that the flexibility of responding to the environment suggests an ecologically rational memory strategy in social interactions. PMID:21559490

  2. FF domains of CA150 bind transcription and splicing factors through multiple weak interactions.

    PubMed

    Smith, Matthew J; Kulkarni, Sarang; Pawson, Tony

    2004-11-01

    The human transcription factor CA150 modulates human immunodeficiency virus type 1 gene transcription and contains numerous signaling elements, including six FF domains. Repeated FF domains are present in several transcription and splicing factors and can recognize phosphoserine motifs in the C-terminal domain (CTD) of RNA polymerase II (RNAPII). Using mass spectrometry, we identify a number of nuclear binding partners for the CA150 FF domains and demonstrate a direct interaction between CA150 and Tat-SF1, a protein involved in the coupling of splicing and transcription. CA150 FF domains recognize multiple sites within the Tat-SF1 protein conforming to the consensus motif (D/E)(2/5)-F/W/Y-(D/E)(2/5). Individual FF domains are capable of interacting with Tat-SF1 peptide ligands in an equivalent and noncooperative manner, with affinities ranging from 150 to 500 microM. Repeated FF domains therefore appear to bind their targets through multiple weak interactions with motifs comprised of negatively charged residues flanking aromatic amino acids. The RNAPII CTD represents a consensus FF domain-binding site, contingent on generation of the requisite negative charges by phosphorylation of serines 2 and 5. We propose that CA150, through the dual recognition of acidic motifs in proteins such as Tat-SF1 and the phosphorylated CTD, could mediate the recruitment of transcription and splicing factors to actively transcribing RNAPII.

  3. Protein-Protein Interactions Inferred from Domain-Domain Interactions in Genogroup II Genotype 4 Norovirus Sequences

    PubMed Central

    Huang, Chuan-Ching

    2013-01-01

    Severe gastroenteritis and foodborne illness caused by Noroviruses (NoVs) during the winter are a worldwide phenomenon. Vulnerable populations including young children and elderly and immunocompromised people often require hospitalization and may die. However, no efficient vaccine for NoVs exists because of their variable genome sequences. This study investigates the infection processes in protein-protein interactions between hosts and NoVs. Protein-protein interactions were collected from related Pfam NoV domains. The related Pfam domains were accumulated incrementally from the protein domain interaction database. To examine the influence of domain intimacy, the 7 NoV domains were grouped by depth. The number of domain-domain interactions increased exponentially as the depth increased. Many protein-protein interactions were relevant; therefore, cloud techniques were used to analyze data because of their computational capacity. The infection relationship between hosts and NoVs should be used in clinical applications and drug design. PMID:23738320

  4. FTIR studies of the redox partner interaction in cytochrome P450: the Pdx-P450cam couple.

    PubMed

    Karyakin, Andrey; Motiejunas, Domantas; Wade, Rebecca C; Jung, Christiane

    2007-03-01

    Recently we have developed a new approach to study protein-protein interactions using Fourier transform infrared spectroscopy in combination with titration experiments and principal component analysis (FTIR-TPCA). In the present paper we review the FTIR-TPCA results obtained for the interaction between cytochrome P450 and the redox partner protein in two P450 systems, the Pseudomonas putida P450cam (CYP101) with putidaredoxin (P450cam-Pdx), and the Bacillus megaterium P450BM-3 (CYP102) heme domain with the FMN domain (P450BMP-FMND). Both P450 systems reveal similarities in the structural changes that occur upon redox partner complex formation. These involve an increase in beta-sheets and alpha-helix content, a decrease in the population of random coil/3(10)-helix structure, a redistribution of turn structures within the interacting proteins and changes in the protonation states or hydrogen-bonding of amino acid carboxylic side chains. We discuss in detail the P450cam-Pdx interaction in comparison with literature data and conclusions drawn from experiments obtained by other spectroscopic techniques. The results are also interpreted in the context of a 3D structural model of the Pdx-P450cam complex.

  5. When Humanoid Robots Become Human-Like Interaction Partners: Corepresentation of Robotic Actions

    ERIC Educational Resources Information Center

    Stenzel, Anna; Chinellato, Eris; Bou, Maria A. Tirado; del Pobil, Angel P.; Lappe, Markus; Liepelt, Roman

    2012-01-01

    In human-human interactions, corepresenting a partner's actions is crucial to successfully adjust and coordinate actions with others. Current research suggests that action corepresentation is restricted to interactions between human agents facilitating social interaction with conspecifics. In this study, we investigated whether action…

  6. Domain specificity in social interactions, social thought, and social development.

    PubMed

    Turiel, Elliot

    2010-01-01

    J. E. Grusec and M. Davidov (this issue) have taken good steps in formulating a domain-specific view of parent-child interactions. This commentary supports the introduction of domain specificity to analyses of parenting. Their formulation is an advance over formulations that characterized parental practices globally. This commentary calls for inclusion of definitions of the classification system of domain-specific interactions and criteria for each domain. It is also maintained that Grusec and Davidov's domains of social interaction imply that processes of development are involved, along with socialization; that bidirectionality in parent-child relations needs to be extended to include mutual influences and the construction of domains of social thought; and that conflicts and opposition within families coexist with compliance and social harmony.

  7. Domain Differences in Early Social Interactions

    ERIC Educational Resources Information Center

    Dahl, Audun; Campos, Joseph J.

    2013-01-01

    Different social experiences help children develop distinctions between domains of norms. This study investigated whether mothers respond differently to moral, prudential, and pragmatic norms during the 2nd year, a period that precedes the time when children are able to make explicit distinctions between these norms. Sixty mothers of infants…

  8. Thermodynamics of heme-induced conformational changes in hemopexin: role of domain-domain interactions.

    PubMed Central

    Wu, M. L.; Morgan, W. T.

    1995-01-01

    Hemopexin is a serum glycoprotein that binds heme with high affinity and delivers heme to the liver cells via receptor-mediated endocytosis. A hinge region connects the two non-disulfide-linked domains of hemopexin, a 35-kDa N-terminal domain (domain I) that binds heme, and a 25-kDa C-terminal domain (domain II). Although domain II does not bind heme, it assumes one structural state in apo-hemopexin and another in heme-hemopexin, and this change is important in facilitating the association of heme-hemopexin with its receptor. In order to elucidate the structure and function of hemopexin, it is important to understand how structural information is transmitted to domain II when domain I binds heme. Here we report a study of the protein-protein interactions between domain I and domain II using analytical ultracentrifugation and isothermal titration calorimetry. Sedimentation equilibrium analysis showed that domain I associates with domain II both in the presence and absence of heme with Kd values of 0.8 microM and 55 microM, respectively. The interaction between heme-domain I and domain II has a calorimetric enthalpy of +11 kcal/mol, a heat capacity (delta Cp) of -720 cal/mol.K, and a calculated entropy of +65 cal/mol.K. By varying the temperature of the centrifugation equilibrium runs, a van't Hoff plot with an apparent change in enthalpy (delta H) of -3.6 kcal/mol and change in entropy (delta S) of +8.1 cal/mol.K for the association of apo-domain I with domain II was obtained.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7773173

  9. A new and unexpected domain-domain interaction in the AraC protein.

    PubMed

    Cole, Stephanie Dirla; Schleif, Robert

    2012-05-01

    An interaction between the dimerization domains and DNA binding domains of the dimeric AraC protein has previously been shown to facilitate repression of the Escherichia coli araBAD operon by AraC in the absence of arabinose. A new interaction between the domains of AraC in the presence of arabinose is reported here, the regulatory consequences of which are unknown. Evidence for the interaction is the following: the dissociation rate of arabinose-bound AraC from half-site DNA is considerably faster than that of free DNA binding domain, and the affinity of the dimerization domains for arabinose is increased when half-site DNA is bound. In addition, an increase in the fluorescence intensity of tryptophan residues located in the arabinose-bound dimerization domain is observed upon binding of half-site DNA to the DNA binding domains. Direct physical evidence of the new domain-domain interaction is demonstrated by chemical crosslinking and NMR experiments. PMID:22383259

  10. Novel interaction partners of the TPR/MET tyrosine kinase.

    PubMed

    Schaaf, Christian P; Benzing, Jörg; Schmitt, Thomas; Erz, Dorothee H R; Tewes, Magdalena; Bartram, Claus R; Janssen, Johannes W G

    2005-02-01

    A large variety of biological processes is mediated by stimulation of the receptor tyrosine kinase MET. Screening a mouse embryo cDNA library, we were able to identify several novel, putative intracellular TPR/MET-substrates: SNAPIN, DCOHM, VAV-1, Sorting nexin 2, Death associated protein kinase 3, SMC-1, Centromeric protein C, and hTID-1. Interactions as identified by yeast two-hybrid analysis were validated in vitro and in vivo by mammalian two-hybrid studies, a far-western assay and coimmunoprecipitation. Participation in apoptosis-regulating mechanisms through interaction with DAPK-3 and cell cycle control via binding to nuclear proteins such as CENPC and SMC-1 are possible new aspects of intracellular MET signaling.

  11. Interactions between domain walls and spin currents

    NASA Astrophysics Data System (ADS)

    Klaui, M.; Laufenberg, M.; Backes, D.; Buhrer, W.; Rudiger, U.; Vila, L.; Vouille, C.; Faini, G.

    2006-03-01

    A promising novel approach for switching magnetic nanostructures is current-induced domain wall propagation (CIDP), where due to a spin torque effect, electrons transfer angular momentum to a head-to-head domain wall and thereby push it in the direction of the electron flow without any externally applied fields. This effect has been observed with a variety of techniques including MFM [1] and spin polarized scanning electron microscopy [2] to directly observe current-induced domain wall propagation in ferromagnetic nanostructures and magnetoresistance measurements to systematically probe the critical current densities as a function of the geometry [3]. The observed wall velocities and critical current densities, where wall motion sets in at room temperature, do not agree well with theoretical 0K calculations [4]. We have therefore measured the critical current densities as a function of the sample temperature. We find that the spin torque effect becomes more efficient at low temperatures, which could account for some of the observed discrepancies between the 300K experiment and the 0K simulation. [1] A. Yamaguchi et al., Phys. Rev. Lett. 92, 77205 (2004); [2] M. Klaui et al., PRL 95, 26601 (2005); [3] M. Klaui et al., PRL 94, 106601 (2005); [4] A. Thiaville et al., EPL 69, 990 (2005); G. Tatara et al., APL 86, 252509 (2005);

  12. Membrane-mediated interactions measured using membrane domains.

    PubMed

    Semrau, Stefan; Idema, Timon; Schmidt, Thomas; Storm, Cornelis

    2009-06-17

    Cell membrane organization is the result of the collective effect of many driving forces. Several of these, such as electrostatic and van der Waals forces, have been identified and studied in detail. In this article, we investigate and quantify another force, the interaction between inclusions via deformations of the membrane shape. For electrically neutral systems, this interaction is the dominant organizing force. As a model system to study membrane-mediated interactions, we use phase-separated biomimetic vesicles that exhibit coexistence of liquid-ordered and liquid-disordered lipid domains. The membrane-mediated interactions between these domains lead to a rich variety of effects, including the creation of long-range order and the setting of a preferred domain size. Our findings also apply to the interaction of membrane protein patches, which induce similar membrane shape deformations and hence experience similar interactions.

  13. Identification of Peroxiredoxin 1 as a novel interaction partner for the lifespan regulator protein p66Shc.

    PubMed

    Gertz, Melanie; Fischer, Frank; Leipelt, Martina; Wolters, Dirk; Steegborn, Clemens

    2009-02-01

    Damage caused by reactive oxygen species (ROS) contributes to many aging processes and accompanying diseases. ROS are toxic side products of cellular respiration, but also function as signal, e.g. in the mitochondrial apoptosis pathway. The protein p66Shc, which has been implicated in life-span regulation and aging-related diseases, is a central player in stress-induced apoptosis and the associated ROS burst. Stress signals, such as UV radiation or ROS themselves, activate p66Shc, which was proposed to stimulate its H(2)O(2) forming activity, ultimately triggering mitochondrial disintegration. However, mechanistic details of H(2)O(2) formation and apoptosis induction by p66Shc and regulation of these activities remain to be revealed. Here, we describe the effects of Ser36 phosphorylation and Pin1 binding on p66Shc activity, and the identification of Peroxiredoxin 1 (Prx1) as a novel interaction partner for the unique p66Shc N-terminal domain. Prx1 was identified in affinity experiments as dominant interaction partner. Complex formation leads to disassembly of Prx1 decamers, which is known to increase its peroxidase activity. The interaction leads to reduction of the p66CH2CB tetramer, which reduces its ability to induce mitochondrial rupture. Our results indicate that p66CH2CB and Prx1 form a stress-sensing complex that keeps p66Shc inactive at moderate stress levels. PMID:20157513

  14. Putative Domain-Domain Interactions in the Vesicular Stomatitis Virus L Polymerase Protein Appendage Region

    PubMed Central

    Ruedas, John B.

    2014-01-01

    ABSTRACT The multidomain polymerase protein (L) of nonsegmented negative-strand (NNS) RNA viruses catalyzes transcription and replication of the virus genome. The N-terminal half of the protein forms a ring-like polymerase structure, while the C-terminal half encoding viral mRNA transcript modifications consists of a flexible appendage with three distinct globular domains. To gain insight into putative transient interactions between L domains during viral RNA synthesis, we exchanged each of the four distinct regions encompassing the appendage region of vesicular stomatitis virus (VSV) Indiana serotype L protein with their counterparts from VSV New Jersey and analyzed effects on virus polymerase activity in a minigenome system. The methyltransferase domain exchange yielded a fully active polymerase protein, which functioned as well as wild-type L in the context of a recombinant virus. Exchange of the downstream C-terminal nonconserved region abolished activity, but coexchanging it with the methyltransferase domain generated a polymerase favoring replicase over transcriptase activity, providing strong evidence of interaction between these two regions. Exchange of the capping enzyme domain or the adjacent nonconserved region thought to function as an “unstructured” linker also abrogated polymerase activity even when either domain was coexchanged with other appendage domains. Further probing of the putative linker segment using in-frame enhanced green fluorescent protein (EGFP) insertions similarly abrogated activity. We discuss the implications of these findings with regard to L protein appendage domain structure and putative domain-domain interactions required for polymerase function. IMPORTANCE NNS viruses include many well-known human pathogens (e.g., rabies, measles, and Ebola viruses), as well as emerging viral threats (e.g., Nipah and Hendra viruses). These viruses all encode a large L polymerase protein similarly organized into multiple domains that work in

  15. Effects of MyTeachingPartner-Math/Science on Teacher-Child Interactions in Prekindergarten Classrooms

    ERIC Educational Resources Information Center

    Whittaker, Jessica Vick; Kinzie, Mable B.; Williford, Amanda; DeCoster, Jamie

    2016-01-01

    Research Findings: This study examined the impact of MyTeachingPartner-Math/Science, a system of math and science curricula and professional development, on the quality of teachers' interactions with children in their classrooms. Schools were randomly assigned to 1 of 2 intervention conditions (Basic: curricula providing within-activity, embedded…

  16. PTEN-PDZ domain interactions: binding of PTEN to PDZ domains of PTPN13.

    PubMed

    Sotelo, Natalia S; Schepens, Jan T G; Valiente, Miguel; Hendriks, Wiljan J A J; Pulido, Rafael

    2015-05-01

    Protein modular interactions mediated by PDZ domains are essential for the establishment of functional protein networks controlling diverse cellular functions. The tumor suppressor PTEN possesses a C-terminal PDZ-binding motif (PDZ-BM) that is recognized by a specific set of PDZ domains from scaffolding and regulatory proteins. Here, we review the current knowledge on PTEN-PDZ domain interactions and tumor suppressor networks, describe methodology suitable to analyze these interactions, and report the binding of PTEN and the PDZ domain-containing protein tyrosine phosphatase PTPN13. Yeast two-hybrid and GST pull-down analyses showed that PTEN binds to PDZ2/PTPN13 domain in a manner that depends on the specific PTPN13 PDZ domain arrangement involving the interdomain region between PDZ1 and PDZ2. Furthermore, a specific binding profile of PTEN to PDZ2/PTPN13 domain was observed by mutational analysis of the PTEN PDZ-BM. Our results disclose a PDZ-mediated physical interaction of PTEN and PTPN13 with potential relevance in tumor suppression and cell homeostasis.

  17. Characterization of the SAM domain of the PKD-related protein ANKS6 and its interaction with ANKS3

    PubMed Central

    2014-01-01

    Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder leading to end-stage renal failure in humans. In the PKD/Mhm(cy/+) rat model of ADPKD, the point mutation R823W in the sterile alpha motif (SAM) domain of the protein ANKS6 is responsible for disease. SAM domains are known protein-protein interaction domains, capable of binding each other to form polymers and heterodimers. Despite its physiological importance, little is known about the function of ANKS6 and how the R823W point mutation leads to PKD. Recent work has revealed that ANKS6 interacts with a related protein called ANKS3. Both ANKS6 and ANKS3 have a similar domain structure, with ankyrin repeats at the N-terminus and a SAM domain at the C-terminus. Results The SAM domain of ANKS3 is identified as a direct binding partner of the ANKS6 SAM domain. We find that ANKS3-SAM polymerizes and ANKS6-SAM can bind to one end of the polymer. We present crystal structures of both the ANKS3-SAM polymer and the ANKS3-SAM/ANKS6-SAM complex, revealing the molecular details of their association. We also learn how the R823W mutation disrupts ANKS6 function by dramatically destabilizing the SAM domain such that the interaction with ANKS3-SAM is lost. Conclusions ANKS3 is a direct interacting partner of ANKS6. By structurally and biochemically characterizing the interaction between the ANKS3 and ANKS6 SAM domains, our work provides a basis for future investigation of how the interaction between these proteins mediates kidney function. PMID:24998259

  18. Differential effects of intranasal oxytocin on sexual experiences and partner interactions in couples.

    PubMed

    Behnia, Behnoush; Heinrichs, Markus; Bergmann, Wiebke; Jung, Stefanie; Germann, Janine; Schedlowski, Manfred; Hartmann, Uwe; Kruger, Tillmann H C

    2014-03-01

    Knowledge about the effects of the neuropeptide oxytocin (OXT) on human sexual behaviors and partner interactions remains limited. Based on our previous studies, we hypothesize that OXT should be able to positively influence parameters of sexual function and couple interactions. Employing a naturalistic setting involving 29 healthy heterosexual couples (n=58 participants), we analyzed the acute effects of intranasally administered OXT (24IU) on sexual drive, arousal, orgasm and refractory aspects of sexual behavior together with partner interactions. Data were assessed by psychometric instruments (Acute Sexual Experiences Scale, Arizona Sexual Experience Scale) as well as biomarkers, such as cortisol, α-amylase and heart rate. Intranasal OXT administration did not alter "classical" parameters of sexual function, such as sexual drive, arousal or penile erection and lubrication. However, analysis of variance and a hierarchical linear model (HLM) revealed specific effects related to the orgasmic/post-orgasmic interval as well as parameters of partner interactions. According to HLM analysis, OXT increased the intensity of orgasm, contentment after sexual intercourse and the effect of study participation. According to ANOVA analysis, these effects were more pronounced in men. Men additionally indicated higher levels of sexual satiety after sexual intercourse with OXT administration. Women felt more relaxed and subgroups indicated better abilities to share sexual desires or to empathize with their partners. The effect sizes were small to moderate. Biomarkers indicated moderate psychophysiological activation but were not affected by OXT, gender or method of contraception. Using a naturalistic setting, intranasal OXT administration in couples exerted differential effects on parameters of sexual function and partner interactions. These results warrant further investigations, including subjects with sexual and relationship problems.

  19. The Pitx2c N-terminal domain is a critical interaction domain required for asymmetric morphogenesis

    PubMed Central

    Simard, Annie; Di Giorgio, Luciano; Amen, Melanie; Westwood, Ashley; Amendt, Brad A.; Ryan, Aimee K.

    2010-01-01

    The paired-like homeodomain transcription factor Pitx2c has an essential role in patterning the left-right axis. However, neither its transcriptional targets nor the molecular mechanisms through which it exerts its patterning function are known. Here we provide evidence that the N-terminal domain of Pitx2c is important for this activity. Overexpression of the Pitx2c N-terminus in ovo randomizes the direction of heart looping, the first morphological asymmetry conserved in vertebrate embryos. In addition, the Pitx2c N-terminal domain blocks the ability of Pitx2c to synergize with Nkx2.5 to transactivate the procollagen lysyl hydroxylase (Plod-1) promoter in transient transfection assays. A five amino acid region containing leucine-41 is required for both of these effects. Our data suggest that the Pitx2c N-terminal domain competes with endogenous Pitx2c for binding to a protein interaction partner that is required for the activation of genes that direct asymmetric morphogenesis along the left-right axis. PMID:19681163

  20. The Intrinsically Disordered Regions of the Drosophila melanogaster Hox Protein Ultrabithorax Select Interacting Proteins Based on Partner Topology

    PubMed Central

    Hsiao, Hao-Ching; Gonzalez, Kim L.; Catanese, Daniel J.; Jordy, Kristopher E.; Matthews, Kathleen S.; Bondos, Sarah E.

    2014-01-01

    Interactions between structured proteins require a complementary topology and surface chemistry to form sufficient contacts for stable binding. However, approximately one third of protein interactions are estimated to involve intrinsically disordered regions of proteins. The dynamic nature of disordered regions before and, in some cases, after binding calls into question the role of partner topology in forming protein interactions. To understand how intrinsically disordered proteins identify the correct interacting partner proteins, we evaluated interactions formed by the Drosophila melanogaster Hox transcription factor Ultrabithorax (Ubx), which contains both structured and disordered regions. Ubx binding proteins are enriched in specific folds: 23 of its 39 partners include one of 7 folds, out of the 1195 folds recognized by SCOP. For the proteins harboring the two most populated folds, DNA-RNA binding 3-helical bundles and α-α superhelices, the regions of the partner proteins that exhibit these preferred folds are sufficient for Ubx binding. Three disorder-containing regions in Ubx are required to bind these partners. These regions are either alternatively spliced or multiply phosphorylated, providing a mechanism for cellular processes to regulate Ubx-partner interactions. Indeed, partner topology correlates with the ability of individual partner proteins to bind Ubx spliceoforms. Partners bind different disordered regions within Ubx to varying extents, creating the potential for competition between partners and cooperative binding by partners. The ability of partners to bind regions of Ubx that activate transcription and regulate DNA binding provides a mechanism for partners to modulate transcription regulation by Ubx, and suggests that one role of disorder in Ubx is to coordinate multiple molecular functions in response to tissue-specific cues. PMID:25286318

  1. Candidate Cell and Matrix Interaction Domains on the Collagen Fibril, the Predominant Protein of Vertebrates

    SciTech Connect

    Sweeney, Shawn M.; Orgel, Joseph P.; Fertala, Andrzej; McAuliffe, Jon D.; Turner, Kevin R.; Di Lullo, Gloria A.; Chen, Steven; Antipova, Olga; Perumal, Shiamalee; Ala-Kokko, Leena; Forlinoi, Antonella; Cabral, Wayne A.; Barnes, Aileen M.; Marini, Joan C.; San Antonio, James D.

    2008-07-18

    Type I collagen, the predominant protein of vertebrates, polymerizes with type III and V collagens and non-collagenous molecules into large cable-like fibrils, yet how the fibril interacts with cells and other binding partners remains poorly understood. To help reveal insights into the collagen structure-function relationship, a data base was assembled including hundreds of type I collagen ligand binding sites and mutations on a two-dimensional model of the fibril. Visual examination of the distribution of functional sites, and statistical analysis of mutation distributions on the fibril suggest it is organized into two domains. The 'cell interaction domain' is proposed to regulate dynamic aspects of collagen biology, including integrin-mediated cell interactions and fibril remodeling. The 'matrix interaction domain' may assume a structural role, mediating collagen cross-linking, proteoglycan interactions, and tissue mineralization. Molecular modeling was used to superimpose the positions of functional sites and mutations from the two-dimensional fibril map onto a three-dimensional x-ray diffraction structure of the collagen microfibril in situ, indicating the existence of domains in the native fibril. Sequence searches revealed that major fibril domain elements are conserved in type I collagens through evolution and in the type II/XI collagen fibril predominant in cartilage. Moreover, the fibril domain model provides potential insights into the genotype-phenotype relationship for several classes of human connective tissue diseases, mechanisms of integrin clustering by fibrils, the polarity of fibril assembly, heterotypic fibril function, and connective tissue pathology in diabetes and aging.

  2. In vivo analysis of human nucleoporin repeat domain interactions

    PubMed Central

    Xu, Songli; Powers, Maureen A.

    2013-01-01

    The nuclear pore complex (NPC), assembled from ∼30 proteins termed nucleoporins (Nups), mediates selective nucleocytoplasmic trafficking. A subset of nucleoporins bear a domain with multiple phenylalanine–glycine (FG) motifs. As binding sites for transport receptors, FG Nups are critical in translocation through the NPC. Certain FG Nups are believed to associate via low-affinity, cohesive interactions to form the permeability barrier of the pore, although the form and composition of this functional barrier are debated. We used green fluorescent protein–Nup98/HoxA9 constructs with various numbers of repeats and also substituted FG domains from other nucleoporins for the Nup98 domain to directly compare cohesive interactions in live cells by fluorescence recovery after photobleaching (FRAP). We find that cohesion is a function of both number and type of FG repeats. Glycine–leucine–FG (GLFG) repeat domains are the most cohesive. FG domains from several human nucleoporins showed no interactions in this assay; however, Nup214, with numerous VFG motifs, displayed measurable cohesion by FRAP. The cohesive nature of a human nucleoporin did not necessarily correlate with that of its yeast orthologue. The Nup98 GLFG domain also functions in pore targeting through binding to Nup93, positioning the GLFG domain in the center of the NPC and supporting a role for this nucleoporin in the permeability barrier. PMID:23427268

  3. The role of cytochrome b5 structural domains in interaction with cytochromes P450.

    PubMed

    Sergeev, G V; Gilep, A A; Usanov, S A

    2014-05-01

    To understand the role of the structural elements of cytochrome b5 in its interaction with cytochrome P450 and the catalysis performed by this heme protein, we carried out comparative structural and functional analysis of the two major mammalian forms of membrane-bound cytochrome b5 - microsomal and mitochondrial, designed chimeric forms of the heme proteins in which the hydrophilic domain of one heme protein is replaced by the hydrophilic domain of another one, and investigated the effect of the highly purified native and chimeric heme proteins on the enzymatic activity of recombinant cytochromes P4503A4 and P45017A1 (CYP3A4 and CYP17A1). We show that the presence of a hydrophobic domain in the structure of cytochrome b5 is necessary for its effective interaction with its redox partners, while the nature of the hydrophobic domain has no significant effect on the ability of cytochrome b5 to stimulate the activity of cytochrome P450-catalyzed reactions. Thus, the functional properties of cytochrome b5 are mainly determined by the structure of the heme-binding domain.

  4. Saccharomyces cerevisiae Rbg1 Protein and Its Binding Partner Gir2 Interact on Polyribosomes with Gcn1▿

    PubMed Central

    Wout, P. K.; Sattlegger, E.; Sullivan, S. M.; Maddock, J. R.

    2009-01-01

    Rbg1 is a previously uncharacterized protein of Saccharomyces cerevisiae belonging to the Obg/CgtA subfamily of GTP-binding proteins whose members are involved in ribosome function in both prokaryotes and eukaryotes. We show here that Rbg1 specifically associates with translating ribosomes. In addition, in this study proteins were identified that interact with Rbg1 by yeast two-hybrid screening and include Tma46, Ygr250c, Yap1, and Gir2. Gir2 contains a GI (Gcn2 and Impact) domain similar to that of Gcn2, an essential factor of the general amino acid control pathway required for overcoming amino acid shortage. Interestingly, we found that Gir2, like Gcn2, interacts with Gcn1 through its GI domain, and overexpression of Gir2, under conditions mimicking amino acid starvation, resulted in inhibition of growth that could be reversed by Gcn2 co-overexpression. Moreover, we found that Gir2 also cofractionated with polyribosomes, and this fractionation pattern was partially dependent on the presence of Gcn1. Based on these findings, we conclude that Rbg1 and its interacting partner Gir2 associate with ribosomes, and their possible biological roles are discussed. PMID:19448108

  5. Novel Endogenous, Insulin-Stimulated Akt2 Protein Interaction Partners in L6 Myoblasts

    PubMed Central

    Caruso, Michael; Zhang, Xiangmin; Ma, Danjun; Yang, Zhao; Qi, Yue; Yi, Zhengping

    2015-01-01

    Insulin resistance and Type 2 diabetes are marked by an aberrant response in the insulin signaling network. The phosphoinositide-dependent serine/threonine kinase, Akt2, plays a key role in insulin signaling and glucose uptake, most notably within skeletal muscle. Protein-protein interaction regulates the functional consequence of Akt2 and in turn, Akt2’s role in glucose uptake. However, only few insulin-responsive Akt2 interaction partners have been identified in skeletal muscle cells. In the present work, rat L6 myoblasts, a widely used insulin sensitive skeletal muscle cell line, were used to examine endogenous, insulin-stimulated Akt2 protein interaction partners. Akt2 co-immunoprecipitation was coupled with 1D-SDS-PAGE and fractions were analyzed by HPLC-ESI-MS/MS to reveal Akt2 protein-protein interactions. The pull-down assay displayed specificity for the Akt2 isoform; Akt1 and Akt3 unique peptides were not detected. A total of 49 were detected with a significantly increased (47) or decreased (2) association with Akt2 following insulin administration (n = 4; p<0.05). Multiple pathways were identified for the novel Akt2 interaction partners, such as the EIF2 and ubiquitination pathways. These data suggest that multiple new endogenous proteins may associate with Akt2 under basal as well as insulin-stimulated conditions, providing further insight into the insulin signaling network. Data are available via ProteomeXchange with identifier PXD002557. PMID:26465754

  6. Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners

    PubMed Central

    Kim, Jun Hoe; Hong, Seung Beom; Lee, Jae Keun; Han, Sisu; Roh, Kyung-Hye; Lee, Kyung-Eun; Kim, Yoon Ki; Choi, Eui-Ju; Song, Hyun Kyu

    2014-01-01

    Autophagy is a bulky catabolic process that responds to nutrient homeostasis and extracellular stress signals and is a conserved mechanism in all eukaryotes. When autophagy is induced, cellular components are sequestered within an autophagosome and finally degraded by subsequent fusion with a lysosome. During this process, the ATG12–ATG5 conjugate requires 2 different binding partners, ATG16L1 for autophagosome elongation and TECPR1 for lysosomal fusion. In our current study, we describe the crystal structures of human ATG5 in complex with an N-terminal domain of ATG16L1 as well as an internal AIR domain of TECPR1. Both binding partners exhibit a similar α-helical structure containing a conserved binding motif termed AFIM. Furthermore, we characterize the critical role of the C-terminal unstructured region of the AIR domain of TECPR1. These findings are further confirmed by biochemical and cell biological analyses. These results provide new insights into the molecular details of the autophagosome maturation process, from its elongation to its fusion with a lysosome. PMID:25951193

  7. The phosphoCTD-interacting domain of Topoisomerase I

    SciTech Connect

    Wu, Jianhong; Phatnani, Hemali P.; Hsieh, Tao-Shih; Greenleaf, Arno L.

    2010-06-18

    The N-terminal domain (NTD) of Drosophila melanogaster (Dm) Topoisomerase I has been shown to bind to RNA polymerase II, but the domain of RNAPII with which it interacts is not known. Using bacterially-expressed fusion proteins carrying all or half of the NTDs of Dm and human (Homo sapiens, Hs) Topo I, we demonstrate that the N-terminal half of each NTD binds directly to the hyperphosphorylated C-terminal repeat domain (phosphoCTD) of the largest RNAPII subunit, Rpb1. Thus, the amino terminal segment of metazoan Topo I (1-157 for Dm and 1-114 for Hs) contains a novel phosphoCTD-interacting domain that we designate the Topo I-Rpb1 interacting (TRI) domain. The long-known in vivo association of Topo I with active genes presumably can be attributed, wholly or in part, to the TRI domain-mediated binding of Topo I to the phosphoCTD of transcribing RNAPII.

  8. Electroweak Interactions in the Nuclear Domain.

    NASA Astrophysics Data System (ADS)

    Pollock, Steven James

    1988-12-01

    We consider a variety of electroweak interactions with nucleons and nuclei as a means to yield tests of the Standard Model, to provide measurements of hadronic structure, and to serve as a guide to experimental efforts. In Part I, we study single nucleon elastic electroweak processes. The general formalism is outlined, and we present formulae for cross section for e^- and upsilon neutral current processes, upsilon charge-changing events, and parity violation. We have found means to extract both vector and axial form factors from experiment, at arbitrary q ^2. We present numerical predictions for these processes, assuming a set of phenomenological form factors. Low energy structure in charge-changing reactions would provide tests of CVC and a measurement of the pseudoscalar form factor. We present relations between the processes which yield tests of the Standard Model and provide an experimental means to determine the effects of intrinsic parity violation, isospin breaking, and heavy quark content. We discuss parity violation as a means to measure sin ^2theta_{W} in the low energy quark-lepton sector, and to measure the weak form factors of the nucleon. We consider sources of uncertainty, including poorly known electromagnetic neutron form factors, and axial weak form factors. We provide a means to detect anomalous effective axial isoscalar currents, and discuss the bounds on extra heavy neutral Z bosons a CEBAF parity experiment would provide. In Part II, we study coincidence cross sections. The formalism for electroweak single-particle coincidence experiments is outlined. We derive the general angular distribution for single-nucleon coincidence measurements on a deuterium (spin 1) target. We derive a general expression for single pion electroproduction on the nucleon, including the asymmetry in the inclusive cross section. We present numerical predictions in the region of the Delta(1232) in the hopes of providing another measurement of sin ^2theta_{W}. We derive

  9. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions

    PubMed Central

    Yokogawa, Mariko; Tsushima, Takashi; Noda, Nobuo N.; Kumeta, Hiroyuki; Enokizono, Yoshiaki; Yamashita, Kazuo; Standley, Daron M.; Takeuchi, Osamu; Akira, Shizuo; Inagaki, Fuyuhiko

    2016-01-01

    Regnase-1 is an RNase that directly cleaves mRNAs of inflammatory genes such as IL-6 and IL-12p40, and negatively regulates cellular inflammatory responses. Here, we report the structures of four domains of Regnase-1 from Mus musculus—the N-terminal domain (NTD), PilT N-terminus like (PIN) domain, zinc finger (ZF) domain and C-terminal domain (CTD). The PIN domain harbors the RNase catalytic center; however, it is insufficient for enzymatic activity. We found that the NTD associates with the PIN domain and significantly enhances its RNase activity. The PIN domain forms a head-to-tail oligomer and the dimer interface overlaps with the NTD binding site. Interestingly, mutations blocking PIN oligomerization had no RNase activity, indicating that both oligomerization and NTD binding are crucial for RNase activity in vitro. These results suggest that Regnase-1 RNase activity is tightly controlled by both intramolecular (NTD-PIN) and intermolecular (PIN-PIN) interactions. PMID:26927947

  10. Apical localisation of crumbs in the boundary cells of the Drosophila hindgut is independent of its canonical interaction partner stardust.

    PubMed

    Kumichel, Alexandra; Knust, Elisabeth

    2014-01-01

    The transmembrane protein Crumbs/Crb is a key regulator of apico-basal epithelial cell polarity, both in Drosophila and in vertebrates. In most cases studied so far, the apical localisation of Drosophila Crumbs depends on the interaction of its C-terminal amino acids with the scaffolding protein Stardust. Consequently, embryos lacking either Crumbs or Stardust develop a very similar phenotype, characterised by the loss of epithelial tissue integrity and cell polarity in many epithelia. An exception is the hindgut, which is not affected by the loss of either gene. The hindgut is a single layered epithelial tube composed of two cell populations, the boundary cells and the principal cells. Here we show that Crumbs localisation in the principal cells depends on Stardust, similarly to other embryonic epithelia. In contrast, localisation of Crumbs in the boundary cells does not require Stardust and is independent of its PDZ domain- and FERM-domain binding motifs. In line with this, the considerable upregulation of Crumbs in boundary cells is not followed by a corresponding upregulation of its canonical binding partners. Our data are the first to suggest a mechanism controlling apical Crumbs localisation, which is independent of its conserved FERM- and PDZ-domain binding motifs.

  11. PI3King the right partner: unique interactions and signaling by p110β

    PubMed Central

    Dbouk, Hashem A.

    2015-01-01

    Phosphoinositide 3-kinases (PI3Ks) are central regulators of cellular responses to extracellular stimuli, and are involved in growth, proliferation, migration, and metabolism. The Class I PI3Ks are activated by Receptor Tyrosine Kinases (RTKs) or G Protein-Coupled Receptors (GPCRs), and their signaling is commonly deregulated in disease conditions. Among the class I PI3Ks, the p110β isoform is unique in being activated by both RTKs and GPCRs, and its ability to bind Rho-GTPases and Rab5. Recent studies have characterized these p110β interacting partners, defining the binding mechanisms and regulation, and thus provide insight into the function of this kinase in physiology and disease. This review summarizes the developments in p110β research, focusing on the interacting partners and their role in p110β-mediated signaling. PMID:26140278

  12. Identification of dynein light chain road block-1 as a novel interaction partner with the human reduced folate carrier.

    PubMed

    Ashokkumar, Balasubramaniem; Nabokina, Svetlana M; Ma, Thomas Y; Said, Hamid M

    2009-09-01

    The reduced folate carrier (RFC) is a major folate transport system in mammalian cells. RFC is highly expressed in the intestine and believed to play a role in folate absorption. Studies from our laboratory and others have characterized different aspects of the intestinal folate absorption process, but little is known about possible existence of accessory protein(s) that interacts with RFC and influences its physiology and/or cell biology. We investigated this issue by employing a bacterial two-hybrid system to screen a BacterioMatch II human intestinal cDNA library using the large intracellular loop between transmembrane domains 6 and 7 of the human RFC (hRFC) as bait. Our screening has resulted in the identification of dynein light chain road block-1 (DYNLRB1) as an interacting partner with hRFC. Existence of a direct protein-protein interaction between hRFC and DYNLRB1 was confirmed by in vitro pull-down assay and in vivo mammalian two-hybrid luciferase assay and coimmunoprecipitation analysis. Furthermore, confocal imaging of live human intestinal epithelial HuTu-80 cells demonstrated colocalization of DYNLRB1 with hRFC. Coexpression of DYNLRB1 with hRFC led to a significant (P < 0.05) increase in folate uptake. On the other hand, inhibiting the endogenous DYNLRB1 with gene-specific small interfering RNA or pharmacologically with a specific inhibitor (vanadate) led to a significant (P < 0.05) decrease in folate uptake. This study demonstrates for the first time the identification of DYNLRB1 as an interacting protein partner with hRFC. Furthermore, DYNLRB1 appears to influence the function and cell biology of hRFC.

  13. Structure and Regulatory Interactions of the Cytoplasmic Terminal Domains of Serotonin Transporter

    PubMed Central

    2014-01-01

    Uptake of neurotransmitters by sodium-coupled monoamine transporters of the NSS family is required for termination of synaptic transmission. Transport is tightly regulated by protein–protein interactions involving the small cytoplasmic segments at the amino- and carboxy-terminal ends of the transporter. Although structures of homologues provide information about the transmembrane regions of these transporters, the structural arrangement of the terminal domains remains largely unknown. Here, we combined molecular modeling, biochemical, and biophysical approaches in an iterative manner to investigate the structure of the 82-residue N-terminal and 30-residue C-terminal domains of human serotonin transporter (SERT). Several secondary structures were predicted in these domains, and structural models were built using the Rosetta fragment-based methodology. One-dimensional 1H nuclear magnetic resonance and circular dichroism spectroscopy supported the presence of helical elements in the isolated SERT N-terminal domain. Moreover, introducing helix-breaking residues within those elements altered the fluorescence resonance energy transfer signal between terminal cyan fluorescent protein and yellow fluorescent protein tags attached to full-length SERT, consistent with the notion that the fold of the terminal domains is relatively well-defined. Full-length models of SERT that are consistent with these and published experimental data were generated. The resultant models predict confined loci for the terminal domains and predict that they move apart during the transport-related conformational cycle, as predicted by structures of homologues and by the “rocking bundle” hypothesis, which is consistent with spectroscopic measurements. The models also suggest the nature of binding to regulatory interaction partners. This study provides a structural context for functional and regulatory mechanisms involving SERT terminal domains. PMID:25093911

  14. Analysis of Phosphorylation-dependent Protein Interactions of Adhesion and Degranulation Promoting Adaptor Protein (ADAP) Reveals Novel Interaction Partners Required for Chemokine-directed T cell Migration.

    PubMed

    Kuropka, Benno; Witte, Amelie; Sticht, Jana; Waldt, Natalie; Majkut, Paul; Hackenberger, Christian P R; Schraven, Burkhart; Krause, Eberhard; Kliche, Stefanie; Freund, Christian

    2015-11-01

    Stimulation of T cells leads to distinct changes of their adhesive and migratory properties. Signal propagation from activated receptors to integrins depends on scaffolding proteins such as the adhesion and degranulation promoting adaptor protein (ADAP)(1). Here we have comprehensively investigated the phosphotyrosine interactome of ADAP in T cells and define known and novel interaction partners of functional relevance. While most phosphosites reside in unstructured regions of the protein, thereby defining classical SH2 domain interaction sites for master regulators of T cell signaling such as SLP76, Fyn-kinase, and NCK, other binding events depend on structural context. Interaction proteomics using different ADAP constructs comprising most of the known phosphotyrosine motifs as well as the structured domains confirm that a distinct set of proteins is attracted by pY571 of ADAP, including the ζ-chain-associated protein kinase of 70 kDa (ZAP70). The interaction of ADAP and ZAP70 is inducible upon stimulation either of the T cell receptor (TCR) or by chemokine. NMR spectroscopy reveals that the N-terminal SH2 domains within a ZAP70-tandem-SH2 construct is the major site of interaction with phosphorylated ADAP-hSH3(N) and microscale thermophoresis (MST) indicates an intermediate binding affinity (Kd = 2.3 μm). Interestingly, although T cell receptor dependent events such as T cell/antigen presenting cell (APC) conjugate formation and adhesion are not affected by mutation of Y571, migration of T cells along a chemokine gradient is compromised. Thus, although most phospho-sites in ADAP are linked to T cell receptor related functions we have identified a unique phosphotyrosine that is solely required for chemokine induced T cell behavior.

  15. Evaluation by Expert Dancers of a Robot That Performs Partnered Stepping via Haptic Interaction

    PubMed Central

    Chen, Tiffany L.; Bhattacharjee, Tapomayukh; McKay, J. Lucas; Borinski, Jacquelyn E.; Hackney, Madeleine E.; Ting, Lena H.; Kemp, Charles C.

    2015-01-01

    Our long-term goal is to enable a robot to engage in partner dance for use in rehabilitation therapy, assessment, diagnosis, and scientific investigations of two-person whole-body motor coordination. Partner dance has been shown to improve balance and gait in people with Parkinson's disease and in older adults, which motivates our work. During partner dance, dance couples rely heavily on haptic interaction to convey motor intent such as speed and direction. In this paper, we investigate the potential for a wheeled mobile robot with a human-like upper-body to perform partnered stepping with people based on the forces applied to its end effectors. Blindfolded expert dancers (N=10) performed a forward/backward walking step to a recorded drum beat while holding the robot's end effectors. We varied the admittance gain of the robot's mobile base controller and the stiffness of the robot's arms. The robot followed the participants with low lag (M=224, SD=194 ms) across all trials. High admittance gain and high arm stiffness conditions resulted in significantly improved performance with respect to subjective and objective measures. Biomechanical measures such as the human hand to human sternum distance, center-of-mass of leader to center-of-mass of follower (CoM-CoM) distance, and interaction forces correlated with the expert dancers' subjective ratings of their interactions with the robot, which were internally consistent (Cronbach's α=0.92). In response to a final questionnaire, 1/10 expert dancers strongly agreed, 5/10 agreed, and 1/10 disagreed with the statement "The robot was a good follower." 2/10 strongly agreed, 3/10 agreed, and 2/10 disagreed with the statement "The robot was fun to dance with." The remaining participants were neutral with respect to these two questions. PMID:25993099

  16. Evaluation by Expert Dancers of a Robot That Performs Partnered Stepping via Haptic Interaction.

    PubMed

    Chen, Tiffany L; Bhattacharjee, Tapomayukh; McKay, J Lucas; Borinski, Jacquelyn E; Hackney, Madeleine E; Ting, Lena H; Kemp, Charles C

    2015-01-01

    Our long-term goal is to enable a robot to engage in partner dance for use in rehabilitation therapy, assessment, diagnosis, and scientific investigations of two-person whole-body motor coordination. Partner dance has been shown to improve balance and gait in people with Parkinson's disease and in older adults, which motivates our work. During partner dance, dance couples rely heavily on haptic interaction to convey motor intent such as speed and direction. In this paper, we investigate the potential for a wheeled mobile robot with a human-like upper-body to perform partnered stepping with people based on the forces applied to its end effectors. Blindfolded expert dancers (N=10) performed a forward/backward walking step to a recorded drum beat while holding the robot's end effectors. We varied the admittance gain of the robot's mobile base controller and the stiffness of the robot's arms. The robot followed the participants with low lag (M=224, SD=194 ms) across all trials. High admittance gain and high arm stiffness conditions resulted in significantly improved performance with respect to subjective and objective measures. Biomechanical measures such as the human hand to human sternum distance, center-of-mass of leader to center-of-mass of follower (CoM-CoM) distance, and interaction forces correlated with the expert dancers' subjective ratings of their interactions with the robot, which were internally consistent (Cronbach's α=0.92). In response to a final questionnaire, 1/10 expert dancers strongly agreed, 5/10 agreed, and 1/10 disagreed with the statement "The robot was a good follower." 2/10 strongly agreed, 3/10 agreed, and 2/10 disagreed with the statement "The robot was fun to dance with." The remaining participants were neutral with respect to these two questions. PMID:25993099

  17. Evaluation by Expert Dancers of a Robot That Performs Partnered Stepping via Haptic Interaction.

    PubMed

    Chen, Tiffany L; Bhattacharjee, Tapomayukh; McKay, J Lucas; Borinski, Jacquelyn E; Hackney, Madeleine E; Ting, Lena H; Kemp, Charles C

    2015-01-01

    Our long-term goal is to enable a robot to engage in partner dance for use in rehabilitation therapy, assessment, diagnosis, and scientific investigations of two-person whole-body motor coordination. Partner dance has been shown to improve balance and gait in people with Parkinson's disease and in older adults, which motivates our work. During partner dance, dance couples rely heavily on haptic interaction to convey motor intent such as speed and direction. In this paper, we investigate the potential for a wheeled mobile robot with a human-like upper-body to perform partnered stepping with people based on the forces applied to its end effectors. Blindfolded expert dancers (N=10) performed a forward/backward walking step to a recorded drum beat while holding the robot's end effectors. We varied the admittance gain of the robot's mobile base controller and the stiffness of the robot's arms. The robot followed the participants with low lag (M=224, SD=194 ms) across all trials. High admittance gain and high arm stiffness conditions resulted in significantly improved performance with respect to subjective and objective measures. Biomechanical measures such as the human hand to human sternum distance, center-of-mass of leader to center-of-mass of follower (CoM-CoM) distance, and interaction forces correlated with the expert dancers' subjective ratings of their interactions with the robot, which were internally consistent (Cronbach's α=0.92). In response to a final questionnaire, 1/10 expert dancers strongly agreed, 5/10 agreed, and 1/10 disagreed with the statement "The robot was a good follower." 2/10 strongly agreed, 3/10 agreed, and 2/10 disagreed with the statement "The robot was fun to dance with." The remaining participants were neutral with respect to these two questions.

  18. Secretory production of antimicrobial peptides in Escherichia coli using the catalytic domain of a cellulase as fusion partner.

    PubMed

    Yu, Huili; Li, Haoran; Gao, Dongfang; Gao, Cuijuan; Qi, Qingsheng

    2015-11-20

    Antimicrobial peptides (AMPs) are small molecules which serve as essential components of the innate immune system in various organisms. AMPs possess a broad spectrum of antimicrobial activities. However, the scaled production of such peptides in Escherichia coli faces many difficulties because of their small size and toxicity to the host. Here, we described a new fusion strategy to extracellularly produce significant amounts of these antimicrobial peptides in recombinant E. coli at significant amount. Employing the catalytic domain of a cellulase (Cel-CD) from Bacillus subtilis KSM-64 as the fusion partner, five recombinant antimicrobial peptides were confirmed to accumulate in the culture medium at concentrations ranging from 184 mg/L to 297 mg/L. The radical diffusion experiment demonstrated that the released model antimicrobial peptide, bombinin, had antibacterial activities against both E. coli and Staphylococcus aureus. This strategy will be suitable for the production of antimicrobial peptides and other toxicity proteins.

  19. Structural Determinants of the Interaction between the TpsA and TpsB Proteins in the Haemophilus influenzae HMW1 Two-Partner Secretion System

    PubMed Central

    Grass, Susan; Rempe, Katherine A.

    2015-01-01

    ABSTRACT The two-partner secretion (TPS) pathway in Gram-negative bacteria consists of a TpsA exoprotein and a cognate TpsB outer membrane pore-forming translocator protein. Previous work has demonstrated that the TpsA protein contains an N-terminal TPS domain that plays an important role in targeting the TpsB protein and is required for secretion. The nontypeable Haemophilus influenzae HMW1 and HMW2 adhesins are homologous proteins that are prototype TpsA proteins and are secreted by the HMW1B and HMW2B TpsB proteins. In the present study, we sought to define the structural determinants of HMW1 interaction with HMW1B during the transport process and while anchored to the bacterial surface. Modeling of HMW1B revealed an N-terminal periplasmic region that contains two polypeptide transport-associated (POTRA) domains and a C-terminal membrane-localized region that forms a pore. Biochemical studies demonstrated that HMW1 engages HMW1B via interaction between the HMW1 TPS domain and the HMW1B periplasmic region, specifically, the predicted POTRA1 and POTRA2 domains. Subsequently, HMW1 is shuttled to the HMW1B pore, facilitated by the N-terminal region, the middle region, and the NPNG motif in the HMW1 TPS domain. Additional analysis revealed that the interaction between HMW1 and HMW1B is highly specific and is dependent upon the POTRA domains and the pore-forming domain of HMW1B. Further studies established that tethering of HMW1 to the surface-exposed region of HMW1B is dependent upon the external loops of HMW1B formed by residues 267 to 283 and residues 324 to 330. These observations may have broad relevance to proteins secreted by the TPS pathway. IMPORTANCE Secretion of HMW1 involves a recognition event between the extended form of the HMW1 propiece and the HMW1B POTRA domains. Our results identify specific interactions between the HMW1 propiece and the periplasmic HMW1B POTRA domains. The results also suggest that the process of HMW1 translocation involves at

  20. Functional interaction of the bovine papillomavirus E2 transactivation domain with TFIIB.

    PubMed

    Yao, J M; Breiding, D E; Androphy, E J

    1998-02-01

    Induction of gene expression by the papillomavirus E2 protein requires its approximately 220-amino-acid amino-terminal transactivation domain (TAD) to interact with cellular factors that lead to formation of an activated RNA polymerase complex. These interaction partners have yet to be identified and characterized. The E2 protein localizes the transcription complex to the target promoter through its carboxy-terminal sequence-specific DNA binding domain. This domain has been reported to bind the basal transcription factors TATA-binding protein and TFIIB. We present evidence establishing a direct interaction between amino acids 74 to 134 of the E2 TAD and TFIIB. Within this region, the E2 point mutant N127Y was partially defective and W99C was completely defective for TFIIB binding in vitro, and these mutants displayed reduced or no transcriptional activity, respectively, upon transfection into C33A cells. Overexpression of TFIIB specifically restored transactivation by N127Y to close to wild-type levels, while W99C remained inactive. To further demonstrate the functional interaction of TFIIB with the wild-type E2 TAD, this region was fused to a bacterial DNA binding domain (LexA:E2:1-216). Upon transfection with increasing amounts of LexA:E2:1-216, there was reduction of its transcriptional activity, a phenomenon thought to result from titration of limiting factors, or squelching. Squelching of LexA:E2:1-216, or the wild-type E2 activator, was partially relieved by overexpression of TFIIB. We conclude that a specific region of the E2 TAD functionally interacts with TFIIB.

  1. Asymmetric interaction and indeterminate fitness correlation between cooperative partners in the fig-fig wasp mutualism.

    PubMed

    Wang, Rui-Wu; Sun, Bao-Fa; Zheng, Qi; Shi, Lei; Zhu, Lixing

    2011-10-01

    Empirical observations have shown that cooperative partners can compete for common resources, but what factors determine whether partners cooperate or compete remain unclear. Using the reciprocal fig-fig wasp mutualism, we show that nonlinear amplification of interference competition between fig wasps-which limits the fig wasps' ability to use a common resource (i.e. female flowers)-keeps the common resource unsaturated, making cooperation locally stable. When interference competition was manually prevented, the fitness correlation between figs and fig wasps went from positive to negative. This indicates that genetic relatedness or reciprocal exchange between cooperative players, which could create spatial heterogeneity or self-restraint, was not sufficient to maintain stable cooperation. Moreover, our analysis of field-collected data shows that the fitness correlation between cooperative partners varies stochastically, and that the mainly positive fitness correlation observed during the warm season shifts to a negative correlation during the cold season owing to an increase in the initial oviposition efficiency of each fig wasp. This implies that the discriminative sanction of less-cooperative wasps (i.e. by decreasing the egg deposition efficiency per fig wasp) but reward to cooperative wasps by fig, a control of the initial value, will facilitate a stable mutualism. Our finding that asymmetric interaction leading to an indeterminate fitness interaction between symbiont (i.e. cooperative actors) and host (i.e. recipient) has the potential to explain why conflict has been empirically observed in both well-documented intraspecific and interspecific cooperation systems.

  2. Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins

    PubMed Central

    Anang, Saumya; Subramani, Chandru; Nair, Vidya P.; Kaul, Sheetal; Kaushik, Nidhi; Sharma, Chandresh; Tiwari, Ashutosh; Ranjith-Kumar, CT; Surjit, Milan

    2016-01-01

    Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66th,67th isoleucine and 101st,102nd leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV. PMID:27113483

  3. Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins.

    PubMed

    Anang, Saumya; Subramani, Chandru; Nair, Vidya P; Kaul, Sheetal; Kaushik, Nidhi; Sharma, Chandresh; Tiwari, Ashutosh; Ranjith-Kumar, C T; Surjit, Milan

    2016-04-26

    Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66(th),67(th) isoleucine and 101(st),102(nd) leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV.

  4. Soluble protein expression in E. coli cells using IgG-binding domain of protein A as a solubilizing partner in the cold induced system.

    PubMed

    Inouye, Satoshi; Sahara, Yuiko

    2008-11-21

    We constructed a cold induced expression vector in Escherichia coli cells that consists of a histidine tag sequence for nickel chelate affinity purification, IgG-binding domain of protein A (ZZ-domain) and the multiple cloning sites. The role of ZZ-domain as a solubilizing partner at 15 degrees C was demonstrated by expressing the imidazopyrazinone-type luciferases of Renilla, Oplophorus, Gaussia, and Vargula (Cypridina) as well as the calcium-binding photoproteins and firefly luciferase. The fused protein with ZZ-domain was expressed efficiently as a soluble form in the cytoplasm of E. coli cells at low temperature.

  5. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription

    PubMed Central

    Tuand, Krizia; Stijnen, Pieter; Volders, Karolien; Declercq, Jeroen; Nuytens, Kim; Meulemans, Sandra; Creemers, John

    2016-01-01

    Background Neurobeachin (NBEA) is an autism spectrum disorders (ASD) candidate gene. NBEA deficiency affects regulated secretion, receptor trafficking, synaptic architecture and protein kinase A (PKA)-mediated phosphorylation. NBEA is a large multidomain scaffolding protein. From N- to C-terminus, NBEA has a concanavalin A-like lectin domain flanked by armadillo repeats (ACA), an A-kinase anchoring protein domain that can bind to PKA, a domain of unknown function (DUF1088) and a BEACH domain, preceded by a pleckstrin homology-like domain and followed by WD40 repeats (PBW). Although most of these domains mediate protein-protein interactions, no interaction screen has yet been performed. Methods Yeast two-hybrid screens with the ACA and PBW domain modules of NBEA gave a list of interaction partners, which were analyzed for Gene Ontology (GO) enrichment. Neuro-2a cells were used for confocal microscopy and nuclear extraction analysis. NOTCH-mediated transcription was studied with luciferase reporter assays and qRT-PCR, combined with NBEA knockdown or overexpression. Results Both domain modules showed a GO enrichment for the nucleus. PBW almost exclusively interacted with transcription regulators, while ACA interacted with a number of PKA substrates. NBEA was partially localized in the nucleus of Neuro-2a cells, albeit much less than in the cytoplasm. A nuclear localization signal was found in the DUF1088 domain, which was shown to contribute to the nuclear localization of an EGFP-DPBW fusion protein. Yeast two-hybrid identified the Notch1 intracellular domain as a physical interactor of the PBW domain and a role for NBEA as a negative regulator in Notch-mediated transcription was demonstrated. Conclusion Defining novel interaction partners of conserved NBEA domain modules identified a role for NBEA as transcriptional regulator in the nucleus. The physical interaction of NBEA with NOTCH1 is most relevant for ASD pathogenesis because NOTCH signaling is essential for

  6. Kelch Domain of Gigaxonin Interacts with Intermediate Filament Proteins Affected in Giant Axonal Neuropathy

    PubMed Central

    Johnson-Kerner, Bethany L.; Garcia Diaz, Alejandro; Ekins, Sean; Wichterle, Hynek

    2015-01-01

    Patients with giant axonal neuropathy (GAN) show progressive loss of motor and sensory function starting in childhood and typically live for less than 30 years. GAN is caused by autosomal recessive mutations leading to low levels of gigaxonin (GIG), a ubiquitously-expressed BTB/Kelch cytoplasmic protein believed to be an E3 ligase substrate adaptor. GAN pathology is characterized by aggregates of intermediate filaments (IFs) in multiple tissues. To delineate the molecular pathway between GIG deficiency and IF pathology, we undertook a proteomic screen to identify the normal binding partners of GIG. Prominent among them were several classes of IFs, including the neurofilament subunits whose accumulation leads to the axonal swellings for which GAN is named. We showed these interactions were dependent on the Kelch domain of GIG. Furthermore, we identified the E3 ligase MYCBP2 and the heat shock proteins HSP90AA1/AB1 as interactors with the BTB domain that may result in the ubiquitination and subsequent degradation of intermediate filaments. Our open-ended proteomic screen provides support to GIG’s role as an adaptor protein, linking IF proteins through its Kelch domain to the ubiquitin pathway proteins via its BTB domain, and points to future approaches for reversing the phenotype in human patients. PMID:26460568

  7. Interaction matters: A perceived social partner alters the neural processing of human speech.

    PubMed

    Rice, Katherine; Redcay, Elizabeth

    2016-04-01

    Mounting evidence suggests that social interaction changes how communicative behaviors (e.g., spoken language, gaze) are processed, but the precise neural bases by which social-interactive context may alter communication remain unknown. Various perspectives suggest that live interactions are more rewarding, more attention-grabbing, or require increased mentalizing-thinking about the thoughts of others. Dissociating between these possibilities is difficult because most extant neuroimaging paradigms examining social interaction have not directly compared live paradigms to conventional "offline" (or recorded) paradigms. We developed a novel fMRI paradigm to assess whether and how an interactive context changes the processing of speech matched in content and vocal characteristics. Participants listened to short vignettes--which contained no reference to people or mental states--believing that some vignettes were prerecorded and that others were presented over a real-time audio-feed by a live social partner. In actuality, all speech was prerecorded. Simply believing that speech was live increased activation in each participant's own mentalizing regions, defined using a functional localizer. Contrasting live to recorded speech did not reveal significant differences in attention or reward regions. Further, higher levels of autistic-like traits were associated with altered neural specialization for live interaction. These results suggest that humans engage in ongoing mentalizing about social partners, even when such mentalizing is not explicitly required, illustrating how social context shapes social cognition. Understanding communication in social context has important implications for typical and atypical social processing, especially for disorders like autism where social difficulties are more acute in live interaction.

  8. The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis.

    PubMed

    Moreau, Fanny; Thévenon, Emmanuel; Blanvillain, Robert; Lopez-Vidriero, Irene; Franco-Zorrilla, Jose Manuel; Dumas, Renaud; Parcy, François; Morel, Patrice; Trehin, Christophe; Carles, Cristel C

    2016-04-01

    Higher plants continuously and iteratively produce new above-ground organs in the form of leaves, stems and flowers. These organs arise from shoot apical meristems whose homeostasis depends on coordination between self-renewal of stem cells and their differentiation into organ founder cells. This coordination is stringently controlled by the central transcription factor WUSCHEL (WUS), which is both necessary and sufficient for stem cell specification in Arabidopsis thaliana ULTRAPETALA1 (ULT1) was previously identified as a plant-specific, negative regulator of WUS expression. However, molecular mechanisms underlying this regulation remain unknown. ULT1 protein contains a SAND putative DNA-binding domain and a B-box, previously proposed as a protein interaction domain in eukaryotes. Here, we characterise a novel partner of ULT1, named ULT1 INTERACTING FACTOR 1 (UIF1), which contains a Myb domain and an EAR motif. UIF1 and ULT1 function in the same pathway for regulation of organ number in the flower. Moreover, UIF1 displays DNA-binding activity and specifically binds to WUS regulatory elements. We thus provide genetic and molecular evidence that UIF1 and ULT1 work together in floral meristem homeostasis, probably by direct repression of WUS expression. PMID:26903506

  9. The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis.

    PubMed

    Moreau, Fanny; Thévenon, Emmanuel; Blanvillain, Robert; Lopez-Vidriero, Irene; Franco-Zorrilla, Jose Manuel; Dumas, Renaud; Parcy, François; Morel, Patrice; Trehin, Christophe; Carles, Cristel C

    2016-04-01

    Higher plants continuously and iteratively produce new above-ground organs in the form of leaves, stems and flowers. These organs arise from shoot apical meristems whose homeostasis depends on coordination between self-renewal of stem cells and their differentiation into organ founder cells. This coordination is stringently controlled by the central transcription factor WUSCHEL (WUS), which is both necessary and sufficient for stem cell specification in Arabidopsis thaliana ULTRAPETALA1 (ULT1) was previously identified as a plant-specific, negative regulator of WUS expression. However, molecular mechanisms underlying this regulation remain unknown. ULT1 protein contains a SAND putative DNA-binding domain and a B-box, previously proposed as a protein interaction domain in eukaryotes. Here, we characterise a novel partner of ULT1, named ULT1 INTERACTING FACTOR 1 (UIF1), which contains a Myb domain and an EAR motif. UIF1 and ULT1 function in the same pathway for regulation of organ number in the flower. Moreover, UIF1 displays DNA-binding activity and specifically binds to WUS regulatory elements. We thus provide genetic and molecular evidence that UIF1 and ULT1 work together in floral meristem homeostasis, probably by direct repression of WUS expression.

  10. Assessing the co-occurrence of intimate partner violence domains across the life-course: relating typologies to mental health

    PubMed Central

    Armour, Cherie; Sleath, Emma

    2014-01-01

    Background The inter-generational transmission of violence (ITV) hypothesis and polyvictimisation have been studied extensively. The extant evidence suggests that individuals from violent families are at increased risk of subsequent intimate partner violence (IPV) and that a proportion of individuals experience victimisation across multiple rather than single IPV domains. Both ITV and polyvictimisation are shown to increase the risk of psychiatric morbidity, alcohol use, and anger expression. Objective The current study aimed to 1) ascertain if underlying typologies of victimisation across the life-course and over multiple victimisation domains were present and 2) ascertain if groupings differed on mean scores of posttraumatic stress disorder (PTSD), depression, alcohol use, and anger expression. Method University students (N=318) were queried in relation to victimisation experiences and psychological well-being. Responses across multiple domains of IPV spanning the life-course were used in a latent profile analysis. ANOVA was subsequently used to determine if profiles differed in their mean scores on PTSD, depression, alcohol use, and anger expression. Results Three distinct profiles were identified; one of which comprised individuals who experienced “life-course polyvictimisation,” another showing individuals who experienced “witnessing parental victimisation,” and one which experienced “psychological victimisation only.” Life-course polyvictims scored the highest across most assessed measures. Conclusion Witnessing severe physical aggression and injury in parental relationships as a child has an interesting impact on the ITV into adolescence and adulthood. Life-course polyvictims are shown to experience increased levels of psychiatric morbidity and issues with alcohol misuse and anger expression. PMID:25279106

  11. Copy Number Variations in DISC1 and DISC1-Interacting Partners in Major Mental Illness

    PubMed Central

    Johnstone, Mandy; MacLean, Alan; Heyrman, Lien; Lenaerts, An-Sofie; Nordin, Annelie; Nilsson, Lars-Göran; De Rijk, Peter; Goossens, Dirk; Adolfsson, Rolf; Clair, David M. St.; Hall, Jeremy; Lawrie, Stephen M.; McIntosh, Andrew M.; Del-Favero, Jurgen; Blackwood, Douglas H.R.; Pickard, Benjamin S.

    2015-01-01

    Robust statistical, genetic and functional evidence supports a role for DISC1 in the aetiology of major mental illness. Furthermore, many of its protein-binding partners show evidence for involvement in the pathophysiology of a range of neurodevelopmental and psychiatric disorders. Copy number variants (CNVs) are suspected to play an important causal role in these disorders. In this study, CNV analysis of DISC1 and its binding partners PAFAH1B1, NDE1, NDEL1, FEZ1, MAP1A, CIT and PDE4B in Scottish and Northern Swedish population-based samples was carried out using multiplex amplicon quantification. Here, we report the finding of rare CNVs in DISC1, NDE1 (together with adjacent genes within the 16p13.11 duplication), NDEL1 (including the overlapping MYH10 gene) and CIT. Our findings provide further evidence for involvement of DISC1 and its interaction partners in neuropsychiatric disorders and also for a role of structural variants in the aetiology of these devastating diseases. PMID:27239468

  12. Identification of Cell Cycle Dependent Interaction Partners of the Septins by Quantitative Mass Spectrometry

    PubMed Central

    Renz, Christian; Oeljeklaus, Silke; Grinhagens, Sören; Warscheid, Bettina; Johnsson, Nils; Gronemeyer, Thomas

    2016-01-01

    The septins are a conserved family of GTP-binding proteins that, in the baker's yeast, assemble into a highly ordered array of filaments at the mother bud neck. These filaments undergo significant structural rearrangements during the cell cycle. We aimed at identifying key components that are involved in or regulate the transitions of the septins. By combining cell synchronization and quantitative affinity-purification mass-spectrometry, we performed a screen for specific interaction partners of the septins at three distinct stages of the cell cycle. A total of 83 interaction partners of the septins were assigned. Surprisingly, we detected DNA-interacting/nuclear proteins and proteins involved in ribosome biogenesis and protein synthesis predominantly present in alpha-factor arrested that do not display an assembled septin structure. Furthermore, two distinct sets of regulatory proteins that are specific for cells at S-phase with a stable septin collar or at mitosis with split septin rings were identified. Complementary methods like SPLIFF and immunoprecipitation allowed us to more exactly define the spatial and temporal characteristics of selected hits of the AP-MS screen. PMID:26871441

  13. Identification of Cell Cycle Dependent Interaction Partners of the Septins by Quantitative Mass Spectrometry.

    PubMed

    Renz, Christian; Oeljeklaus, Silke; Grinhagens, Sören; Warscheid, Bettina; Johnsson, Nils; Gronemeyer, Thomas

    2016-01-01

    The septins are a conserved family of GTP-binding proteins that, in the baker's yeast, assemble into a highly ordered array of filaments at the mother bud neck. These filaments undergo significant structural rearrangements during the cell cycle. We aimed at identifying key components that are involved in or regulate the transitions of the septins. By combining cell synchronization and quantitative affinity-purification mass-spectrometry, we performed a screen for specific interaction partners of the septins at three distinct stages of the cell cycle. A total of 83 interaction partners of the septins were assigned. Surprisingly, we detected DNA-interacting/nuclear proteins and proteins involved in ribosome biogenesis and protein synthesis predominantly present in alpha-factor arrested that do not display an assembled septin structure. Furthermore, two distinct sets of regulatory proteins that are specific for cells at S-phase with a stable septin collar or at mitosis with split septin rings were identified. Complementary methods like SPLIFF and immunoprecipitation allowed us to more exactly define the spatial and temporal characteristics of selected hits of the AP-MS screen. PMID:26871441

  14. Solubility Partner IF2 Domain I Enables High Yield Synthesis of Transducible Transcription Factors in E. coli

    PubMed Central

    Yang, William C.; Welsh, John P.; Lee, Jieun; Cooke, John P.; Swartz, James

    2011-01-01

    Since the discovery that somatic cells could be reprogrammed back to a pluripotent state through the viral expression of a certain set of transcription factors, there has been great interest in reprogramming using a safer and more clinically relevant protein-based approach. However, the search for an efficient reprogramming approach utilizing the transcription factors in protein form requires a significant amount of protein material. Milligram quantities of transcription factors are challenging to obtain due to low yields and poor solubility. In this work, we describe enhanced production of the pluripotency transcription factors Oct4, Sox2, Klf4, Nanog, and Lin28 after fusing them to a solubility partner, IF2 Domain I (IF2D1). We expressed and purified milligram quantities of the fusion proteins. Though the transcription factor passenger proteins became insoluble after removal of the IF2D1, the un-cleaved Oct4, Sox2, Klf4, Nanog fusion proteins exhibited specific binding to their consensus DNA sequences. However, when we administered the un-cleaved IF2D1-Oct4-R9 and IF2D1-Sox2-R9 to fibroblasts and measured their ability to influence transcriptional activity, we found that they were not fully bioactive; IF2D1-Oct4-R9 and IF2D1-Sox2-R9 influenced only a subset of their downstream gene targets. Thus, while the IF2D1 solubility partner enabled soluble production of the fusion protein at high levels, it did not yield fully bioactive transcription factors. PMID:21757009

  15. SARAH Domain-Mediated MST2-RASSF Dimeric Interactions

    PubMed Central

    Matallanas, David; Romano, David; Nguyen, Lan K.; Kholodenko, Boris N.; Rosta, Edina; Kolch, Walter

    2016-01-01

    RASSF enzymes act as key apoptosis activators and tumor suppressors, being downregulated in many human cancers, although their exact regulatory roles remain unknown. A key downstream event in the RASSF pathway is the regulation of MST kinases, which are main effectors of RASSF-induced apoptosis. The regulation of MST1/2 includes both homo- and heterodimerization, mediated by helical SARAH domains, though the underlying molecular interaction mechanism is unclear. Here, we study the interactions between RASSF1A, RASSF5, and MST2 SARAH domains by using both atomistic molecular simulation techniques and experiments. We construct and study models of MST2 homodimers and MST2-RASSF SARAH heterodimers, and we identify the factors that control their high molecular stability. In addition, we also analyze both computationally and experimentally the interactions of MST2 SARAH domains with a series of synthetic peptides particularly designed to bind to it, and hope that our approach can be used to address some of the challenging problems in designing new anti-cancer drugs. PMID:27716844

  16. Role of GxxxG Motifs in Transmembrane Domain Interactions.

    PubMed

    Teese, Mark G; Langosch, Dieter

    2015-08-25

    Transmembrane (TM) helices of integral membrane proteins can facilitate strong and specific noncovalent protein-protein interactions. Mutagenesis and structural analyses have revealed numerous examples in which the interaction between TM helices of single-pass membrane proteins is dependent on a GxxxG or (small)xxx(small) motif. It is therefore tempting to use the presence of these simple motifs as an indicator of TM helix interactions. In this Current Topic review, we point out that these motifs are quite common, with more than 50% of single-pass TM domains containing a (small)xxx(small) motif. However, the actual interaction strength of motif-containing helices depends strongly on sequence context and membrane properties. In addition, recent studies have revealed several GxxxG-containing TM domains that interact via alternative interfaces involving hydrophobic, polar, aromatic, or even ionizable residues that do not form recognizable motifs. In multipass membrane proteins, GxxxG motifs can be important for protein folding, and not just oligomerization. Our current knowledge thus suggests that the presence of a GxxxG motif alone is a weak predictor of protein dimerization in the membrane. PMID:26244771

  17. Using support vector machine for improving protein-protein interaction prediction utilizing domain interactions

    SciTech Connect

    Singhal, Mudita; Shah, Anuj R.; Brown, Roslyn N.; Adkins, Joshua N.

    2010-10-02

    Understanding protein interactions is essential to gain insights into the biological processes at the whole cell level. The high-throughput experimental techniques for determining protein-protein interactions (PPI) are error prone and expensive with low overlap amongst them. Although several computational methods have been proposed for predicting protein interactions there is definite room for improvement. Here we present DomainSVM, a predictive method for PPI that uses computationally inferred domain-domain interaction values in a Support Vector Machine framework to predict protein interactions. DomainSVM method utilizes evidence of multiple interacting domains to predict a protein interaction. It outperforms existing methods of PPI prediction by achieving very high explanation ratios, precision, specificity, sensitivity and F-measure values in a 10 fold cross-validation study conducted on the positive and negative PPIs in yeast. A Functional comparison study using GO annotations on the positive and the negative test sets is presented in addition to discussing novel PPI predictions in Salmonella Typhimurium.

  18. The Interactive Effects of Emotion Regulation and Alcohol Intoxication on Lab-Based Intimate Partner Aggression

    PubMed Central

    Watkins, Laura E.; DiLillo, David; Maldonado, Rosalita C.

    2015-01-01

    This study draws on Finkel and Eckhardt’s (2013) I3 framework to examine the interactive effects of two emotion regulation strategies, anger rumination (an impellance factor) and reappraisal (an inhibition factor), and alcohol intoxication (a disinhibition factor), on intimate partner aggression (IPA) perpetration as measured with an analogue aggression task. Participants were 69 couples recruited from a large Midwestern university (total N = 138). Participants’ trait rumination and reappraisal were measured by self-report. Participants were randomized individually to an alcohol or placebo condition, then recalled an anger event while employing one of three randomly assigned emotion regulation conditions (rumination, reappraisal, or uninstructed). Following this, participants completed an analogue aggression task involving ostensibly assigning white noise blasts to their partner. Participants in the alcohol condition displayed greater IPA than participants in the placebo condition for provoked IPA, but not unprovoked IPA. Results also revealed interactions such that for those in the alcohol and rumination group, higher trait reappraisal was related to lower unprovoked IPA. For provoked IPA, higher trait rumination was related to greater IPA among those in the alcohol and rumination condition and those in the placebo and uninstructed condition. In general, results were consistent with I3 theory, suggesting that alcohol disinhibits, rumination impels, and trait reappraisal inhibits IPA. The theoretical and clinical implications of these findings are discussed in the context of current knowledge about the influence of alcohol intoxication and emotion regulation strategies on IPA perpetration. PMID:25844831

  19. The interactive effects of emotion regulation and alcohol intoxication on lab-based intimate partner aggression.

    PubMed

    Watkins, Laura E; DiLillo, David; Maldonado, Rosalita C

    2015-09-01

    This study draws on Finkel and Eckhardt's (2013) I³ framework to examine the interactive effects of 2 emotion regulation strategies-anger rumination (an impellance factor) and reappraisal (an inhibition factor), and alcohol intoxication (a disinhibition factor)-on intimate partner aggression (IPA) perpetration as measured with an analogue aggression task. Participants were 69 couples recruited from a large Midwestern university (total N = 138). Participants' trait rumination and reappraisal were measured by self-report. Participants were randomized individually to an alcohol or placebo condition, then recalled an anger event while using 1 of 3 randomly assigned emotion regulation conditions (rumination, reappraisal, or uninstructed). Following this, participants completed an analogue aggression task involving ostensibly assigning white noise blasts to their partner. Participants in the alcohol condition displayed greater IPA than participants in the placebo condition for provoked IPA, but not unprovoked IPA. Results also revealed interactions such that for those in the alcohol and rumination group, higher trait reappraisal was related to lower unprovoked IPA. For provoked IPA, higher trait rumination was related to greater IPA among those in the alcohol and rumination condition and those in the placebo and uninstructed condition. In general, results were consistent with I³ theory, suggesting that alcohol disinhibits, rumination impels, and trait reappraisal inhibits IPA. The theoretical and clinical implications of these findings are discussed in the context of current knowledge about the influence of alcohol intoxication and emotion regulation strategies on IPA perpetration. PMID:25844831

  20. Great interactions: How binding incorrect partners can teach us about protein recognition and function.

    PubMed

    Vamparys, Lydie; Laurent, Benoist; Carbone, Alessandra; Sacquin-Mora, Sophie

    2016-10-01

    Protein-protein interactions play a key part in most biological processes and understanding their mechanism is a fundamental problem leading to numerous practical applications. The prediction of protein binding sites in particular is of paramount importance since proteins now represent a major class of therapeutic targets. Amongst others methods, docking simulations between two proteins known to interact can be a useful tool for the prediction of likely binding patches on a protein surface. From the analysis of the protein interfaces generated by a massive cross-docking experiment using the 168 proteins of the Docking Benchmark 2.0, where all possible protein pairs, and not only experimental ones, have been docked together, we show that it is also possible to predict a protein's binding residues without having any prior knowledge regarding its potential interaction partners. Evaluating the performance of cross-docking predictions using the area under the specificity-sensitivity ROC curve (AUC) leads to an AUC value of 0.77 for the complete benchmark (compared to the 0.5 AUC value obtained for random predictions). Furthermore, a new clustering analysis performed on the binding patches that are scattered on the protein surface show that their distribution and growth will depend on the protein's functional group. Finally, in several cases, the binding-site predictions resulting from the cross-docking simulations will lead to the identification of an alternate interface, which corresponds to the interaction with a biomolecular partner that is not included in the original benchmark. Proteins 2016; 84:1408-1421. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  1. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain.

    PubMed Central

    Scheiffele, P; Roth, M G; Simons, K

    1997-01-01

    Sphingolipid-cholesterol rafts are microdomains in biological membranes with liquid-ordered phase properties which are implicated in membrane traffic and signalling events. We have used influenza virus haemagglutinin (HA) as a model protein to analyse the interaction of transmembrane proteins with these microdomains. Here we demonstrate that raft association is an intrinsic property encoded in the protein. Mutant HA molecules with foreign transmembrane domain (TMD) sequences lose their ability to associate with the lipid microdomains, and mutations in the HA TMD reveal a requirement for hydrophobic residues in contact with the exoplasmic leaflet of the membrane. We also provide experimental evidence that cholesterol is critically required for association of proteins with lipid rafts. Our data suggest that the binding to specific membrane domains can be encoded in transmembrane proteins and that this information will be used for polarized sorting and signal transduction processes. PMID:9312009

  2. Ubiquitin-Activated Interaction Traps (UBAITs) identify E3 ligase binding partners.

    PubMed

    O'Connor, Hazel F; Lyon, Nancy; Leung, Justin W; Agarwal, Poonam; Swaim, Caleb D; Miller, Kyle M; Huibregtse, Jon M

    2015-12-01

    We describe a new class of reagents for identifying substrates, adaptors, and regulators of HECT and RING E3s. UBAITs (Ubiquitin-Activated Interaction Traps) are E3-ubiquitin fusion proteins and, in an E1- and E2-dependent manner, the C-terminal ubiquitin moiety forms an amide linkage to proteins that interact with the E3, enabling covalent co-purification of the E3 with partner proteins. We designed UBAITs for both HECT (Rsp5, Itch) and RING (Psh1, RNF126, RNF168) E3s. For HECT E3s, trapping of interacting proteins occurred in vitro either through an E3 thioester-linked lariat intermediate or through an E2 thioester intermediate, and both WT and active-site mutant UBAITs trapped known interacting proteins in yeast and human cells. Yeast Psh1 and human RNF126 and RNF168 UBAITs also trapped known interacting proteins when expressed in cells. Human RNF168 is a key mediator of ubiquitin signaling that promotes DNA double-strand break repair. Using the RNF168 UBAIT, we identify H2AZ--a histone protein involved in DNA repair--as a new target of this E3 ligase. These results demonstrate that UBAITs represent powerful tools for profiling a wide range of ubiquitin ligases.

  3. The SH3 domain of UNC-89 (obscurin) interacts with paramyosin, a coiled-coil protein, in Caenorhabditis elegans muscle

    PubMed Central

    Qadota, Hiroshi; Mayans, Olga; Matsunaga, Yohei; McMurry, Jonathan L.; Wilson, Kristy J.; Kwon, Grace E.; Stanford, Rachel; Deehan, Kevin; Tinley, Tina L.; Ngwa, Verra M.; Benian, Guy M.

    2016-01-01

    UNC-89 is a giant polypeptide located at the sarcomeric M-line of Caenorhabditis elegans muscle. The human homologue is obscurin. To understand how UNC-89 is localized and functions, we have been identifying its binding partners. Screening a yeast two-hybrid library revealed that UNC-89 interacts with paramyosin. Paramyosin is an invertebrate-specific coiled-coil dimer protein that is homologous to the rod portion of myosin heavy chains and resides in thick filament cores. Minimally, this interaction requires UNC-89’s SH3 domain and residues 294–376 of paramyosin and has a KD of ∼1.1 μM. In unc-89 loss-of-function mutants that lack the SH3 domain, paramyosin is found in accumulations. When the SH3 domain is overexpressed, paramyosin is mislocalized. SH3 domains usually interact with a proline-rich consensus sequence, but the region of paramyosin that interacts with UNC-89’s SH3 is α-helical and lacks prolines. Homology modeling of UNC-89’s SH3 suggests structural features that might be responsible for this interaction. The SH3-binding region of paramyosin contains a “skip residue,” which is likely to locally unwind the coiled-coil and perhaps contributes to the binding specificity. PMID:27009202

  4. Say Anything: A Demonstration of Open Domain Interactive Digital Storytelling

    NASA Astrophysics Data System (ADS)

    Swanson, Reid; Gordon, Andrew S.

    Say Anything is a text-based interactive digital storytelling application that differs from other systems in its emphasis on the ability of users to create a narrative in any domain that they wish. The user and computer take turns in writing sentences in an emerging fictional narrative where sentences contributed by the computer are selected from a collection of millions of personal stories extracted from Internet weblogs. In this demonstration, we will present the latest version of the Say Anything application and allow conference participants to author their own original stories using the system.

  5. When humanoid robots become human-like interaction partners: corepresentation of robotic actions.

    PubMed

    Stenzel, Anna; Chinellato, Eris; Bou, Maria A Tirado; del Pobil, Ángel P; Lappe, Markus; Liepelt, Roman

    2012-10-01

    In human-human interactions, corepresenting a partner's actions is crucial to successfully adjust and coordinate actions with others. Current research suggests that action corepresentation is restricted to interactions between human agents facilitating social interaction with conspecifics. In this study, we investigated whether action corepresentation, as measured by the social Simon effect (SSE), is present when we share a task with a real humanoid robot. Further, we tested whether the believed humanness of the robot's functional principle modulates the extent to which robotic actions are corepresented. We described the robot to participants either as functioning in a biologically inspired human-like way or in a purely deterministic machine-like manner. The SSE was present in the human-like but not in the machine-like robot condition. These findings suggest that humans corepresent the actions of nonbiological robotic agents when they start to attribute human-like cognitive processes to the robot. Our findings provide novel evidence for top-down modulation effects on action corepresentation in human-robot interaction situations.

  6. A simple contact mapping algorithm for identifying potential peptide mimetics in protein–protein interaction partners

    PubMed Central

    Krall, Alex; Brunn, Jonathan; Kankanala, Spandana; Peters, Michael H

    2014-01-01

    A simple, static contact mapping algorithm has been developed as a first step at identifying potential peptide biomimetics from protein interaction partner structure files. This rapid and simple mapping algorithm, “OpenContact” provides screened or parsed protein interaction files based on specified criteria for interatomic separation distances and interatomic potential interactions. The algorithm, which uses all-atom Amber03 force field models, was blindly tested on several unrelated cases from the literature where potential peptide mimetics have been experimentally developed to varying degrees of success. In all cases, the screening algorithm efficiently predicted proposed or potential peptide biomimetics, or close variations thereof, and provided complete atom-atom interaction data necessary for further detailed analysis and drug development. In addition, we used the static parsing/mapping method to develop a peptide mimetic to the cancer protein target, epidermal growth factor receptor. In this case, secondary, loop structure for the peptide was indicated from the intra-protein mapping, and the peptide was subsequently synthesized and shown to exhibit successful binding to the target protein. The case studies, which all involved experimental peptide drug advancement, illustrate many of the challenges associated with the development of peptide biomimetics, in general. Proteins 2014; 82:2253–2262. © 2014 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:24756879

  7. Myelin basic protein domains involved in the interaction with actin.

    PubMed

    Roth, G A; Gonzalez, M D; Monferran, C G; De Santis, M L; Cumar, F A

    1993-11-01

    A fluorescence assay was used to measure the interaction of myelin basic protein (MBP) with monomeric actin labeled with a fluorescent compound (IAEDANS). The complex actin-IAEDANS increase the fluorescence in presence of MBP. The enhancement of the fluorescence has a sigmoidal dependence on the concentration of MBP and the fluorescence maximum is reached at a MBP:actin molar ratio of 1:20. The fluorescence maximum in absence of Ca2+ and ATP is 4 times lower than that in their presence although it is reached at the same MBP:actin molar ratio. Similar behavior is observed when synapsin replaces MBP, while acetylated MBP and bovine serum albumin fail to induce any fluorescence change. To define possible interacting domains on MBP involved in the actin-MBP interaction, experiments were performed using MBP-derived peptides obtained under controlled proteolysis of the whole molecule. The fluorescence changes induced by the different peptides depend on their location in the native protein and can not be explained simply by a difference in the net charge of the peptides. The results suggest that two sites are involved in the interaction. A Ca2+/ATP-dependent site located in the amino-terminal region (peptide 1-44) and a Ca2+/ATP-independent one near the carboxyl terminus of the MBP molecule. The actin-MBP interaction was also observed using immunoblot and ELISA techniques.

  8. The PDZ3 domain of the cellular scaffolding protein MAGI-1 interacts with the Coxsackievirus and adenovirus receptor (CAR)

    PubMed Central

    Yan, Ran; Sharma, Priyanka; Kolawole, Abimbola O.; Martin, Sterling C. T.; Readler, James M.; Kotha, Poornima L.N.; Hostetler, Heather A.; Excoffon, Katherine J.D.A.

    2015-01-01

    The Coxsackievirus and adenovirus receptor (CAR) is an essential cellular protein that is involved in cell-cell adhesion, protein trafficking, and viral infection. The major isoform of CAR is selectively sorted to the basolateral membrane of polarized epithelial cells where it co-localizes with the cellular scaffolding protein membrane-associated guanylate kinase with inverted domain structure-1 (MAGI-1). Previously, we demonstrated CAR interacts with MAGI-1 through a PDZ–domain dependent interaction. Here, we show that the PDZ3 domain of MAGI-1 is exclusively responsible for the high affinity interaction between the seven exon isoform of CAR and MAGI-1 using yeast-two-hybrid analysis and confirming this interaction biochemically and in cellular lysates by in vitro pull down assay and co-immunoprecipitation. The high affinity interaction between the PDZ3 domain and CAR C-terminus was measured by fluorescence resonance energy transfer. Further, we investigated the biological relevance of this high affinity interaction between CAR and the PDZ3 domain of MAGI-1 and found that it does not alter CAR-mediated adenovirus infection. By contrast, interruption of this high affinity interaction altered the localization of MAGI-1 indicating that CAR is able to traffic MAGI-1 to cell junctions. These data deepen the molecular understanding of the interaction between CAR and MAGI-1 and indicate that although CAR plays a role in trafficking PDZ-based scaffolding proteins to cellular junctions, association with a high affinity intracellular binding partner does not significantly alter adenovirus binding and entry via CAR. PMID:25622559

  9. Conformational instability of the MARK3 UBA domain compromises ubiquitin recognition and promotes interaction with the adjacent kinase domain

    SciTech Connect

    Murphy, James M.; Korzhnev, Dmitry M.; Ceccarelli, Derek F.; Briant, Douglas J.; Zarrine-Afsar, Arash; Sicheri, Frank; Kay, Lewis E.; Pawson, Tony

    2012-10-23

    The Par-1/MARK protein kinases play a pivotal role in establishing cellular polarity. This family of kinases contains a unique domain architecture, in which a ubiquitin-associated (UBA) domain is located C-terminal to the kinase domain. We have used a combination of x-ray crystallography and NMR dynamics experiments to understand the interaction of the human (h) MARK3 UBA domain with the adjacent kinase domain as compared with ubiquitin. The x-ray crystal structure of the linked hMARK3 kinase and UBA domains establishes that the UBA domain forms a stable intramolecular interaction with the N-terminal lobe of the kinase domain. However, solution-state NMR studies of the isolated UBA domain indicate that it is highly dynamic, undergoing conformational transitions that can be explained by a folding-unfolding equilibrium. NMR titration experiments indicated that the hMARK3 UBA domain has a detectable but extremely weak affinity for mono ubiquitin, which suggests that conformational instability of the isolated hMARK3 UBA domain attenuates binding to ubiquitin despite the presence of residues typically involved in ubiquitin recognition. Our data identify a molecular mechanism through which the hMARK3 UBA domain has evolved to bind the kinase domain, in a fashion that stabilizes an open conformation of the N- and C-terminal lobes, at the expense of its capacity to engage ubiquitin. These results may be relevant more generally to the 30% of UBA domains that lack significant ubiquitin-binding activity, and they suggest a unique mechanism by which interaction domains may evolve new binding properties.

  10. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions

    PubMed Central

    Thompson, Janelle R.; Rivera, Hanny E.; Closek, Collin J.; Medina, Mónica

    2015-01-01

    In the last two decades, genetic and genomic studies have revealed the astonishing diversity and ubiquity of microorganisms. Emergence and expansion of the human microbiome project has reshaped our thinking about how microbes control host health—not only as pathogens, but also as symbionts. In coral reef environments, scientists have begun to examine the role that microorganisms play in coral life history. Herein, we review the current literature on coral-microbe interactions within the context of their role in evolution, development, and ecology. We ask the following questions, first posed by McFall-Ngai et al. (2013) in their review of animal evolution, with specific attention to how coral-microbial interactions may be affected under future environmental conditions: (1) How do corals and their microbiome affect each other's genomes? (2) How does coral development depend on microbial partners? (3) How is homeostasis maintained between corals and their microbial symbionts? (4) How can ecological approaches deepen our understanding of the multiple levels of coral-microbial interactions? Elucidating the role that microorganisms play in the structure and function of the holobiont is essential for understanding how corals maintain homeostasis and acclimate to changing environmental conditions. PMID:25621279

  11. Tropomyosin is an interaction partner of the Drosophila coiled coil protein yuri gagarin.

    PubMed

    Texada, Michael J; Simonette, Rebecca A; Deery, William J; Beckingham, Kathleen M

    2011-02-15

    The Drosophila gene yuri gagarin is a complex locus encoding three protein isoform classes that are ubiquitously expressed in the organism. Mutations to the gene affect processes as diverse as gravitactic behavior and spermatogenesis. The larger Yuri isoforms contain extensive coiled-coil regions. Our previous studies indicate that one of the large isoform classes (Yuri-65) is required for formation of specialized F-actin-containing structures generated during spermatogenesis, including the so-called actin "cones" that mediate spermatid individualization. We used the tandem affinity purification of a tagged version of Yuri-65 (the TAP-tagging technique) to identify proteins associated with Yuri-65 in the intact organism. Tropomyosin, primarily as the 284-residue isoform derived from the ubiquitously expressed Tropomyosin 1 gene was thus identified as a major Yuri interaction partner. Co-immunoprecipitation experiments confirmed this interaction. We have established that the stable F-actin cones of spermatogenesis contain Tropomyosin 1 (Tm1) and that in mutant yuri(F64), failure of F-actin cone formation is associated with failure of Tm1 to accumulate at the cone initiation sites. In investigating possible interactions of Tm1 and Yuri in other tissues, we discovered that Tm1 and Yuri frequently colocalize with the endoplasmic reticulum. Tropomyosin has been implicated in actin-mediated membrane trafficking activity in other systems. Our findings suggest that Yuri-Tm1 complexes participate in related functions. PMID:21126519

  12. TROPOMYOSIN IS AN INTERACTION PARTNER OF THE DROSOPHILA COILED COIL PROTEIN YURI GAGARIN

    PubMed Central

    Texada, Michael J.; Simonette, Rebecca A.; Deery, William J.; Beckingham, Kathleen M.

    2011-01-01

    The Drosophila gene yuri gagarin is a complex locus encoding three protein isoform classes that are ubiquitously expressed in the organism. Mutations to the gene affect processes as diverse as gravitactic behavior and spermatogenesis. The larger Yuri isoforms contain extensive coiled-coil regions. Our previous studies indicate that one of the large isoform classes (Yuri-65) is required for formation of specialized F-actin-containing structures generated during spermatogenesis, including the so-called actin “cones” that mediate spermatid individualization. We used tandem affinity purification of a tagged version of Yuri-65 (the TAP-tagging technique) to identify proteins associated with Yuri-65 in the intact organism. Tropomyosin, primarily as the 284-residue isoform derived from the ubiquitously expressed Tropomyosin 1 gene was thus identified as a major Yuri interaction partner. Co-immunoprecipitation experiments confirmed this interaction. We have established that the stable F-actin cones of spermatogenesis contain Tropomyosin 1 (Tm1) and that in mutant yuriF64, failure of F-actin cone formation is associated with failure of Tm1 to accumulate at the cone initiation sites. In investigating possible interactions of Tm1 and Yuri in other tissues, we discovered that Tm1 and Yuri frequently colocalize with the endoplasmic reticulum. Tropomyosin has been implicated in actin-mediated membrane trafficking activity in other systems. Our findings suggest that Yuri-Tm1 complexes participate in related functions. PMID:21126519

  13. PAIRpred: partner-specific prediction of interacting residues from sequence and structure.

    PubMed

    Minhas, Fayyaz ul Amir Afsar; Geiss, Brian J; Ben-Hur, Asa

    2014-07-01

    We present a novel partner-specific protein-protein interaction site prediction method called PAIRpred. Unlike most existing machine learning binding site prediction methods, PAIRpred uses information from both proteins in a protein complex to predict pairs of interacting residues from the two proteins. PAIRpred captures sequence and structure information about residue pairs through pairwise kernels that are used for training a support vector machine classifier. As a result, PAIRpred presents a more detailed model of protein binding, and offers state of the art accuracy in predicting binding sites at the protein level as well as inter-protein residue contacts at the complex level. We demonstrate PAIRpred's performance on Docking Benchmark 4.0 and recent CAPRI targets. We present a detailed performance analysis outlining the contribution of different sequence and structure features, together with a comparison to a variety of existing interface prediction techniques. We have also studied the impact of binding-associated conformational change on prediction accuracy and found PAIRpred to be more robust to such structural changes than existing schemes. As an illustration of the potential applications of PAIRpred, we provide a case study in which PAIRpred is used to analyze the nature and specificity of the interface in the interaction of human ISG15 protein with NS1 protein from influenza A virus. Python code for PAIRpred is available at http://combi.cs.colostate.edu/supplements/pairpred/. PMID:24243399

  14. Identification of a cytoplasmic interaction partner of the large regulatory proteins Rep78/Rep68 of adeno-associated virus type 2 (AAV-2)

    SciTech Connect

    Weger, Stefan . E-mail: stefan.weger@charite.de; Hammer, Eva; Goetz, Anne; Heilbronn, Regine

    2007-05-25

    Through yeast two-hybrid analysis and coimmunoprecipitation studies, we have identified a novel cellular AAV-2 Rep78/Rep68 interaction partner located predominantly in the cytoplasm. In public databases, it has been assigned as KCTD5, because of a region of high similarity to the cytoplasmic tetramerization domain of voltage-gated potassium channels. Whereas Rep/KCTD5 interaction relied on the region surrounding the Rep nuclear localization signal, nuclear accumulation of Rep was not required. Wildtype Rep78/Rep68 proteins induced the translocation of large portions of KCTD5 into the nucleus pointing to functional interactions both in the cytoplasm and the nucleus. In line with an anticipated functional interference in the cytoplasm, KCTD5 overexpression completely abrogated Rep68-mediated posttranscriptional activation of a HIV-LTR driven luciferase reporter gene. Our study expands the panel of already identified nuclear Rep interaction partners to a cytoplasmic protein, which raises the awareness that important steps in the AAV life cycle may be regulated in this compartment.

  15. Structure of the Brd4 ET domain bound to a C-terminal motif from γ-retroviral integrases reveals a conserved mechanism of interaction

    PubMed Central

    Crowe, Brandon L.; Larue, Ross C.; Yuan, Chunhua; Hess, Sonja; Kvaratskhelia, Mamuka; Foster, Mark P.

    2016-01-01

    The bromodomain and extraterminal domain (BET) protein family are promising therapeutic targets for a range of diseases linked to transcriptional activation, cancer, viral latency, and viral integration. Tandem bromodomains selectively tether BET proteins to chromatin by engaging cognate acetylated histone marks, and the extraterminal (ET) domain is the focal point for recruiting a range of cellular and viral proteins. BET proteins guide γ-retroviral integration to transcription start sites and enhancers through bimodal interaction with chromatin and the γ-retroviral integrase (IN). We report the NMR-derived solution structure of the Brd4 ET domain bound to a conserved peptide sequence from the C terminus of murine leukemia virus (MLV) IN. The complex reveals a protein–protein interaction governed by the binding-coupled folding of disordered regions in both interacting partners to form a well-structured intermolecular three-stranded β sheet. In addition, we show that a peptide comprising the ET binding motif (EBM) of MLV IN can disrupt the cognate interaction of Brd4 with NSD3, and that substitutions of Brd4 ET residues essential for binding MLV IN also impair interaction of Brd4 with a number of cellular partners involved in transcriptional regulation and chromatin remodeling. This suggests that γ-retroviruses have evolved the EBM to mimic a cognate interaction motif to achieve effective integration in host chromatin. Collectively, our findings identify key structural features of the ET domain of Brd4 that allow for interactions with both cellular and viral proteins. PMID:26858406

  16. Structure of the Brd4 ET domain bound to a C-terminal motif from γ-retroviral integrases reveals a conserved mechanism of interaction.

    PubMed

    Crowe, Brandon L; Larue, Ross C; Yuan, Chunhua; Hess, Sonja; Kvaratskhelia, Mamuka; Foster, Mark P

    2016-02-23

    The bromodomain and extraterminal domain (BET) protein family are promising therapeutic targets for a range of diseases linked to transcriptional activation, cancer, viral latency, and viral integration. Tandem bromodomains selectively tether BET proteins to chromatin by engaging cognate acetylated histone marks, and the extraterminal (ET) domain is the focal point for recruiting a range of cellular and viral proteins. BET proteins guide γ-retroviral integration to transcription start sites and enhancers through bimodal interaction with chromatin and the γ-retroviral integrase (IN). We report the NMR-derived solution structure of the Brd4 ET domain bound to a conserved peptide sequence from the C terminus of murine leukemia virus (MLV) IN. The complex reveals a protein-protein interaction governed by the binding-coupled folding of disordered regions in both interacting partners to form a well-structured intermolecular three-stranded β sheet. In addition, we show that a peptide comprising the ET binding motif (EBM) of MLV IN can disrupt the cognate interaction of Brd4 with NSD3, and that substitutions of Brd4 ET residues essential for binding MLV IN also impair interaction of Brd4 with a number of cellular partners involved in transcriptional regulation and chromatin remodeling. This suggests that γ-retroviruses have evolved the EBM to mimic a cognate interaction motif to achieve effective integration in host chromatin. Collectively, our findings identify key structural features of the ET domain of Brd4 that allow for interactions with both cellular and viral proteins.

  17. Designing Interaction as a Learning Process: Supporting Users' Domain Knowledge Development in Interaction

    ERIC Educational Resources Information Center

    Choi, Jung-Min

    2010-01-01

    The primary concern in current interaction design is focused on how to help users solve problems and achieve goals more easily and efficiently. While users' sufficient knowledge acquisition of operating a product or system is considered important, their acquisition of problem-solving knowledge in the task domain has largely been disregarded. As a…

  18. Genetic exploration of interactive domains in RNA polymerase II subunits.

    PubMed Central

    Martin, C; Okamura, S; Young, R

    1990-01-01

    The two large subunits of RNA polymerase II, RPB1 and RPB2, contain regions of extensive homology to the two large subunits of Escherichia coli RNA polymerase. These homologous regions may represent separate protein domains with unique functions. We investigated whether suppressor genetics could provide evidence for interactions between specific segments of RPB1 and RPB2 in Saccharomyces cerevisiae. A plasmid shuffle method was used to screen thoroughly for mutations in RPB2 that suppress a temperature-sensitive mutation, rpb1-1, which is located in region H of RPB1. All six RPB2 mutations that suppress rpb1-1 were clustered in region I of RPB2. The location of these mutations and the observation that they were allele specific for suppression of rpb1-1 suggests an interaction between region H of RPB1 and region I of RPB2. A similar experiment was done to isolate and map mutations in RPB1 that suppress a temperature-sensitive mutation, rpb2-2, which occurs in region I of RPB2. These suppressor mutations were not clustered in a particular region. Thus, fine structure suppressor genetics can provide evidence for interactions between specific segments of two proteins, but the results of this type of analysis can depend on the conditional mutation to be suppressed. Images PMID:2183012

  19. Adaptive multigrid domain decomposition solutions for viscous interacting flows

    NASA Technical Reports Server (NTRS)

    Rubin, Stanley G.; Srinivasan, Kumar

    1992-01-01

    Several viscous incompressible flows with strong pressure interaction and/or axial flow reversal are considered with an adaptive multigrid domain decomposition procedure. Specific examples include the triple deck structure surrounding the trailing edge of a flat plate, the flow recirculation in a trough geometry, and the flow in a rearward facing step channel. For the latter case, there are multiple recirculation zones, of different character, for laminar and turbulent flow conditions. A pressure-based form of flux-vector splitting is applied to the Navier-Stokes equations, which are represented by an implicit lowest-order reduced Navier-Stokes (RNS) system and a purely diffusive, higher-order, deferred-corrector. A trapezoidal or box-like form of discretization insures that all mass conservation properties are satisfied at interfacial and outflow boundaries, even for this primitive-variable, non-staggered grid computation.

  20. Thermodynamic assessment of domain-domain interactions and in vitro activities of mesophilic and thermophilic ribosome recycling factors.

    PubMed

    Uchiyama, Susumu; Ohshima, Atsushi; Yoshida, Takuya; Ohkubo, Tadayasu; Kobayashi, Yuji

    2013-07-01

    Ribosome recycling factor (RRF) is essential for bacterial growth. Structural studies revealed that RRF consists of two domains connected by two short polypeptides at the hinge region. Here, we evaluated the intrinsic stabilities (ΔG*s) of the two domains and the free energy of the domain-domain interactions (ΔG(int)) for mesophilic RRF (RRF from Escherichia coli, EcRRF) and thermophilic RRF (RRF from Thermus thermophilus, TtRRF) by using differential scanning calorimetry and circular dichroic spectroscopy. Despite single endothermic peaks, a higher than unity value for the ratio of calorimetric enthalpy to van't Hoff enthalpy of the unfolding indicated the presence of unfolding intermediates for both RRFs. Deconvolution analysis based on statistical thermodynamics employing multiple states of the unfolding process with domain-domain interactions allowed us to determine ΔG*s of each domain and ΔG(int). The results indicated that domain I has a higher unfolding temperature than domain II and that it stabilizes domain II through ΔG(int), giving rise to an apparent single peak of unfolding. Interestingly, the estimated ΔG(int) values of 6.28 kJ/mol for EcRRF and 26.28 kJ/mol for TtRRF reflect the observation that only EcRRF has recycling activity at ambient temperature. Our present study suggests the importance of a moderate ΔG(int) for biological activity of multidomain proteins.

  1. Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry

    SciTech Connect

    Sundlov, Jesse A.; Gulick, Andrew M.

    2013-08-01

    The structure of the functional interaction of NRPS adenylation and carrier protein domains, trapped with a mechanism-based inhibitor, is described. Crystals exhibit translational non-crystallographic symmetry, which challenged structure determination and refinement. The nonribosomal peptide synthetases (NRPSs) are a family of modular proteins that contain multiple catalytic domains joined in a single protein. Together, these domains work to produce chemically diverse peptides, including compounds with antibiotic activity or that play a role in iron acquisition. Understanding the structural mechanisms that govern the domain interactions has been a long-standing goal. During NRPS synthesis, amino-acid substrates are loaded onto integrated carrier protein domains through the activity of NRPS adenylation domains. The structures of two adenylation domain–carrier protein domain complexes have recently been determined in an effort that required the use of a mechanism-based inhibitor to trap the domain interaction. Here, the continued analysis of these proteins is presented, including a higher resolution structure of an engineered di-domain protein containing the EntE adenylation domain fused with the carrier protein domain of its partner EntB. The protein crystallized in a novel space group in which molecular replacement and refinement were challenged by noncrystallographic pseudo-translational symmetry. The structure determination and how the molecular packing impacted the diffraction intensities are reported. Importantly, the structure illustrates that in this new crystal form the functional interface between the adenylation domain and the carrier protein domain remains the same as that observed previously. At a resolution that allows inclusion of water molecules, additional interactions are observed between the two protein domains and between the protein and its ligands. In particular, a highly solvated region that surrounds the carrier protein cofactor is described.

  2. Lens epithelium-derived growth factor/p75 interacts with the transposase-derived DDE domain of PogZ.

    PubMed

    Bartholomeeusen, Koen; Christ, Frauke; Hendrix, Jelle; Rain, Jean-Christophe; Emiliani, Stéphane; Benarous, Richard; Debyser, Zeger; Gijsbers, Rik; De Rijck, Jan

    2009-04-24

    Lens epithelium-derived growth factor/p75 (LEDGF/p75) is a prominent cellular interaction partner of human immunodeficiency virus-1 (HIV-1) integrase, tethering the preintegration complex to the host chromosome. In light of the development of LEDGF/p75-integrase interaction inhibitors, it is essential to understand the cell biology of LEDGF/p75. We identified pogZ as new cellular interaction partner of LEDGF/p75. Analogous to lentiviral integrase, pogZ, a domesticated transposase, carries a DDE domain, the major determinant for LEDGF/p75 interaction. Using different in vitro and in vivo approaches, we corroborated the interaction between the C terminus of LEDGF/p75 and the DDE domain of pogZ, revealing an overlap in the binding of pogZ and HIV-1 integrase. Competition experiments showed that integrase is efficient in displacing pogZ from LEDGF/p75. Moreover, pogZ does not seem to play a role as a restriction factor of HIV. The finding that LEDGF/p75 is capable of interacting with a DDE domain protein that is not a lentiviral integrase points to a profound role of LEDGF/p75 in DDE domain protein function.

  3. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats.

    PubMed

    Pelassa, Ilaria; Fiumara, Ferdinando

    2015-01-01

    Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as "junk" sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in shaping

  4. 3did: a catalog of domain-based interactions of known three-dimensional structure.

    PubMed

    Mosca, Roberto; Céol, Arnaud; Stein, Amelie; Olivella, Roger; Aloy, Patrick

    2014-01-01

    The database of 3D interacting domains (3did, available online for browsing and bulk download at http://3did.irbbarcelona.org) is a catalog of protein-protein interactions for which a high-resolution 3D structure is known. 3did collects and classifies all structural templates of domain-domain interactions in the Protein Data Bank, providing molecular details for such interactions. The current version also includes a pipeline for the discovery and annotation of novel domain-motif interactions. For every interaction, 3did identifies and groups different binding modes by clustering similar interfaces into 'interaction topologies'. By maintaining a constantly updated collection of domain-based structural interaction templates, 3did is a reference source of information for the structural characterization of protein interaction networks. 3did is updated every 6 months.

  5. Domains relating to the everyday impact of hearing loss, as reported by patients or their communication partner(s): protocol for a systematic review

    PubMed Central

    Vas, Venessa; Akeroyd, Michael A; Hall, Deborah A

    2016-01-01

    Introduction Hearing loss is a highly prevalent condition that affects around 1 in 6 people in the UK alone. This number is predicted to rise by the year 2031 to a staggering 14.5 million people due to the ageing population of the UK. Currently, the most common intervention for hearing loss is amplification with hearing aid(s) which serve to address the issue of audibility due to hearing loss, but cannot reverse its effects. The consequences of hearing loss are multifaceted, as it is a complex condition that can detrimentally affect various aspects of an individual's life, including communication and personal relationships. The scope of these reported issues is so broad that it calls on the need for patient-centred management plans that are tailored to each patient as well as appropriate measures to assess intervention benefit. It is unclear whether current outcome instruments adequately match what patients report as the most important problems for them. Methods and analysis The systematic review aims to capture existing knowledge about patients and their communication partner's perspective on the everyday impact of hearing loss. Methods are defined according to the Preferred Reporting Items for Systematic reviews and Meta-analyses for Protocols (PRISMA-P) 2015. Ethics and dissemination No ethical issues are foreseen. Findings will be reported in student's thesis as well as at national and international ENT/audiology conferences and in a peer-reviewed journal. Systematic review registration number PROSPERO CRD42015024914. PMID:27645555

  6. Design and synthesis of cyclic and linear peptide-agarose tools for baiting interacting protein partners of GPCRs.

    PubMed

    Granier, Sébastien; Jean-Alphonse, Frédéric; Déméné, Hélène; Guillon, Gilles; Pascal, Robert; Mendre, Christiane

    2006-02-01

    A ligation strategy for the synthesis of cyclic and linear peptides covalently linked to agarose beads designed as baits to identify new interacting partners of intracellular loops of the V2 vasopressin receptor, a member of the G-protein-coupled receptor family, is reported. The peptide-resin conjugates were subsequently shown to interact specifically with a fraction of proteins present in cellular lysates.

  7. Intrapolypeptide Interactions between the GTPase Effector Domain (GED) and the GTPase Domain Form the Bundle Signaling Element in Dynamin Dimers

    PubMed Central

    2015-01-01

    Biochemical and structural studies of dynamin have shown that the C-terminus of the GTPase effector domain (GED) folds back and docks onto a platform created by the N- and C-terminal α-helices of the GTPase domain to form a three-helix bundle. While cross-linking studies suggested that insect cell-expressed dynamin existed as a domain-swapped dimer, X-ray structures of protein expressed in Escherichia coli failed to detect evidence of this domain swap. Here, by cross-linking several cysteine pair replacements and analyzing cross-linked species by matrix-assisted laser desorption ionization Mega time of flight, we conclude that dynamin is not domain-swapped and that GED–GTPase domain interactions occur in cis. PMID:25171143

  8. Interaction Training for Conversational Partners of Children with Cerebral Palsy: A Systematic Review

    ERIC Educational Resources Information Center

    Pennington, Lindsay; Goldbart, Juliet; Marshall, Julie

    2004-01-01

    Background: Research has shown that children with cerebral palsy have difficulties acquiring communication skills and that conversation with familiar partners follows restricted patterns, which are characterized by high levels of partner control and children's responsivity. Speech and language therapy often includes training for conversational…

  9. Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry.

    PubMed

    Sundlov, Jesse A; Gulick, Andrew M

    2013-08-01

    The nonribosomal peptide synthetases (NRPSs) are a family of modular proteins that contain multiple catalytic domains joined in a single protein. Together, these domains work to produce chemically diverse peptides, including compounds with antibiotic activity or that play a role in iron acquisition. Understanding the structural mechanisms that govern the domain interactions has been a long-standing goal. During NRPS synthesis, amino-acid substrates are loaded onto integrated carrier protein domains through the activity of NRPS adenylation domains. The structures of two adenylation domain-carrier protein domain complexes have recently been determined in an effort that required the use of a mechanism-based inhibitor to trap the domain interaction. Here, the continued analysis of these proteins is presented, including a higher resolution structure of an engineered di-domain protein containing the EntE adenylation domain fused with the carrier protein domain of its partner EntB. The protein crystallized in a novel space group in which molecular replacement and refinement were challenged by noncrystallographic pseudo-translational symmetry. The structure determination and how the molecular packing impacted the diffraction intensities are reported. Importantly, the structure illustrates that in this new crystal form the functional interface between the adenylation domain and the carrier protein domain remains the same as that observed previously. At a resolution that allows inclusion of water molecules, additional interactions are observed between the two protein domains and between the protein and its ligands. In particular, a highly solvated region that surrounds the carrier protein cofactor is described.

  10. Proteins and Their Interacting Partners: An Introduction to Protein–Ligand Binding Site Prediction Methods

    PubMed Central

    Roche, Daniel Barry; Brackenridge, Danielle Allison; McGuffin, Liam James

    2015-01-01

    Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein–ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein–ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein–ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems. PMID:26694353

  11. Tryptophan fluorescence reveals induced folding of Vibrio harveyi acyl carrier protein upon interaction with partner enzymes.

    PubMed

    Gong, Huansheng; Murphy, Peter W; Langille, Gavin M; Minielly, Sarah J; Murphy, Anne; McMaster, Christopher R; Byers, David M

    2008-11-01

    We have introduced tryptophan as a local fluorescent probe to monitor the conformation of Vibrio harveyi acyl carrier protein (ACP), a small flexible protein that is unfolded at neutral pH but must undergo reversible conformational change during the synthesis and delivery of bacterial fatty acids. Consistent with known 3D structures of ACP, steady-state fluorescence and quenching experiments indicated that Trp at positions 46, 50, and 72 are buried in the hydrophobic core upon Mg(2+)-induced ACP folding, whereas residues 25 and 45 remain in a hydrophilic environment on the protein surface. Attachment of fatty acids to the phosphopantetheine prosthetic group progressively stabilized the folded conformation of all Trp-substituted ACPs, but longer chains (14:0) were less effective than medium chains (8:0) in shielding Trp from acrylamide quenching in the L46W protein. Interaction with ACP-dependent enzymes LpxA and holo-ACP synthase also caused folding of L46W; fluorescence quenching indicated proximity of Trp-45 in helix II of ACP in LpxA binding. Our results suggest that divalent cations and fatty acylation produce differing environments in the ACP core and also reveal enzyme partner-induced folding of ACP, a key feature of "natively unfolded" proteins.

  12. Proteins and Their Interacting Partners: An Introduction to Protein-Ligand Binding Site Prediction Methods.

    PubMed

    Roche, Daniel Barry; Brackenridge, Danielle Allison; McGuffin, Liam James

    2015-12-15

    Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein-ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein-ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein-ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.

  13. Structures of a key interaction protein from the Trypanosoma brucei editosome in complex with single domain antibodies.

    PubMed

    Wu, Meiting; Park, Young-Jun; Pardon, Els; Turley, Stewart; Hayhurst, Andrew; Deng, Junpeng; Steyaert, Jan; Hol, Wim G J

    2011-04-01

    Several major global diseases are caused by single-cell parasites called trypanosomatids. These organisms exhibit many unusual features including a unique and essential U-insertion/deletion RNA editing process in their single mitochondrion. Many key RNA editing steps occur in ∼20S editosomes, which have a core of 12 proteins. Among these, the "interaction protein" KREPA6 performs a central role in maintaining the integrity of the editosome core and also binds to ssRNA. The use of llama single domain antibodies (VHH domains) accelerated crystal growth of KREPA6 from Trypanosoma brucei dramatically. All three structures obtained are heterotetramers with a KREPA6 dimer in the center, and one VHH domain bound to each KREPA6 subunit. Two of the resultant heterotetramers use complementarity determining region 2 (CDR2) and framework residues to form a parallel pair of beta strands with KREPA6 - a mode of interaction not seen before in VHH domain-protein antigen complexes. The third type of VHH domain binds in a totally different manner to KREPA6. Intriguingly, while KREPA6 forms tetramers in solution adding either one of the three VHH domains results in the formation of a heterotetramer in solution, in perfect agreement with the crystal structures. Biochemical solution studies indicate that the C-terminal tail of KREPA6 is involved in the dimerization of KREPA6 dimers to form tetramers. The implications of these crystallographic and solution studies for possible modes of interaction of KREPA6 with its many binding partners in the editosome are discussed.

  14. Strategic Sexual Signals: Women's Display versus Avoidance of the Color Red Depends on the Attractiveness of an Anticipated Interaction Partner

    PubMed Central

    Maner, Jon K.

    2016-01-01

    The color red has special meaning in mating-relevant contexts. Wearing red can enhance perceptions of women’s attractiveness and desirability as a potential romantic partner. Building on recent findings, the present study examined whether women’s (N = 74) choice to display the color red is influenced by the attractiveness of an expected opposite-sex interaction partner. Results indicated that female participants who expected to interact with an attractive man displayed red (on clothing, accessories, and/or makeup) more often than a baseline consisting of women in a natural environment with no induced expectation. In contrast, when women expected to interact with an unattractive man, they eschewed red, displaying it less often than in the baseline condition. Findings are discussed with respect to evolutionary and cultural perspectives on mate evaluation and selection. PMID:26960135

  15. Strategic Sexual Signals: Women's Display versus Avoidance of the Color Red Depends on the Attractiveness of an Anticipated Interaction Partner.

    PubMed

    Niesta Kayser, Daniela; Agthe, Maria; Maner, Jon K

    2016-01-01

    The color red has special meaning in mating-relevant contexts. Wearing red can enhance perceptions of women's attractiveness and desirability as a potential romantic partner. Building on recent findings, the present study examined whether women's (N = 74) choice to display the color red is influenced by the attractiveness of an expected opposite-sex interaction partner. Results indicated that female participants who expected to interact with an attractive man displayed red (on clothing, accessories, and/or makeup) more often than a baseline consisting of women in a natural environment with no induced expectation. In contrast, when women expected to interact with an unattractive man, they eschewed red, displaying it less often than in the baseline condition. Findings are discussed with respect to evolutionary and cultural perspectives on mate evaluation and selection.

  16. Structure of the SPRY domain of the human RNA helicase DDX1, a putative interaction platform within a DEAD-box protein

    SciTech Connect

    Kellner, Julian N.; Meinhart, Anton

    2015-08-25

    The structure of the SPRY domain of the human RNA helicase DDX1 was determined at 2.0 Å resolution. The SPRY domain provides a putative protein–protein interaction platform within DDX1 that differs from other SPRY domains in its structure and conserved regions. The human RNA helicase DDX1 in the DEAD-box family plays an important role in RNA processing and has been associated with HIV-1 replication and tumour progression. Whereas previously described DEAD-box proteins have a structurally conserved core, DDX1 shows a unique structural feature: a large SPRY-domain insertion in its RecA-like consensus fold. SPRY domains are known to function as protein–protein interaction platforms. Here, the crystal structure of the SPRY domain of human DDX1 (hDSPRY) is reported at 2.0 Å resolution. The structure reveals two layers of concave, antiparallel β-sheets that stack onto each other and a third β-sheet beneath the β-sandwich. A comparison with SPRY-domain structures from other eukaryotic proteins showed that the general β-sandwich fold is conserved; however, differences were detected in the loop regions, which were identified in other SPRY domains to be essential for interaction with cognate partners. In contrast, in hDSPRY these loop regions are not strictly conserved across species. Interestingly, though, a conserved patch of positive surface charge is found that may replace the connecting loops as a protein–protein interaction surface. The data presented here comprise the first structural information on DDX1 and provide insights into the unique domain architecture of this DEAD-box protein. By providing the structure of a putative interaction domain of DDX1, this work will serve as a basis for further studies of the interaction network within the hetero-oligomeric complexes of DDX1 and of its recruitment to the HIV-1 Rev protein as a viral replication factor.

  17. Signal Activation and Inactivation by the Gα Helical Domain: A Long-Neglected Partner in G Protein Signaling

    PubMed Central

    Dohlman, Henrik G.; Jones, Janice C.

    2013-01-01

    Heterotrimeric guanine nucleotide–binding proteins (G proteins) are positioned at the top of many signal transduction pathways. The G protein α subunit is composed of two domains, one that resembles Ras and another that is composed entirely of α helices. Historically, most attention has focused on the Ras-like domain, but emerging evidence reveals that the helical domain is an active participant in G protein signaling. PMID:22649098

  18. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    PubMed Central

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702

  19. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    PubMed

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  20. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    PubMed

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702

  1. Tubulin-G protein interactions involve microtubule polymerization domains

    SciTech Connect

    Nan Wang; Rasenick, M.M. )

    1991-11-12

    It has been suggested that elements of the cytoskeleton contribute to the signal transduction process and that they do so in association with one or more members of the signal-transducing G protein family. Relatively high-affinity binding between dimeric tubulin and the {alpha} subunits of G{sub s} and G{sub i1} has also been reported. Tubulin molecules, which exist in solution as {alpha}{beta} dimers, have binding domains for microtubule-associated proteins as well as for other tubulin dimers. This study represents an attempt to ascertain whether the association between G proteins and tubulin occurs at one of these sites. Removal of the binding site for MAP2 and tau from tubulin by subtilisin proteolysis did not influence the association of tubulin with G protein, as demonstrated in overlay studies with ({sup 125}I)tubulin. However, ring structures formed from subtilisin-treated tubulin were incapable of effecting such inhibition. Stable G protein-tubulin complexes were formed, and these were separated from free tubulin by Octyl-Sepharose chromatography. Using this methodology, it was demonstrated that assembled microtubules bound G protein quite weakly compared with tubulin dimers. The {alpha} subunit of G{sub i1} and, to a lesser extent, that of G{sub o} were demonstrated to inhibit microtubule polymerization. In aggregate, these data suggest that dimeric tubulin binds to the {alpha} subunits of G protein at the sites where it binds to other tubulin dimers during microtubule polymerization. Interaction with signal-transducing G proteins, thus, might represent a role for tubulin dimers which is independent of microtubule formation.

  2. Rab3A is a new interacting partner of synaptotagmin I and may modulate synaptic membrane fusion through a competitive mechanism

    SciTech Connect

    Xie, Chunliang; Li, Jianglin; Guo, Tianyao; Yan, Yizhong; Tang, Cheng; Wang, Ying; Chen, Ping; Wang, Xianchun; Liang, Songping

    2014-02-21

    Highlights: • Rab3A has been found to be a novel interacting protein of synaptotagmin I. • Rab3A binds to synaptotagmin I in a Ca{sup 2+}-independent manner. • KKKK motif in C2B domain of synaptotagmin I is a key site for Rab3A binding. • Rab3A competitively inhibits the binding of C2B in synaptotagmin I to syntaxin 1B. • Rab3A may regulate synaptic membrane fusion and exocytosis in a competitive manner. - Abstract: Rab3 and synaptotagmin have been reported to be the key proteins that have opposite actions but cooperatively play critical regulatory roles in selecting and limiting the number of vesicles released at central synapses. However, the exact mechanism has not been fully understood. In this study, Rab3A and synaptotagmin I, the most abundant isoforms of Rab3 and synaptotagmin, respectively, in brain were for the first time demonstrated to directly interact with each other in a Ca{sup 2+}-independent manner, and the KKKK motif in the C2B domain of synaptotagmin I was a key site for the Rab3A binding, which was further confirmed by the competitive inhibition of inositol hexakisphosphate. Further studies demonstrated that Rab3A competitively affected the synaptotagmin I interaction with syntaxin 1B that was involved in membrane fusion during the synaptic vesicle exocytosis. These data indicate that Rab3A is a new synaptotagmin I interacting partner and may participate in the regulation of synaptic membrane fusion and thus the vesicle exocytosis by competitively modulating the interaction of synaptotagmin with syntaxin of the t-SNARE complex in presynaptic membranes.

  3. A frequent kinase domain mutation that changes the interaction between PI3K[alpha] and the membrane

    SciTech Connect

    Mandelker, Diana; Gabelli, Sandra B.; Schmidt-Kittler, Oleg; Zhu, Jiuxiang; Cheong, Ian; Huang, Chuan-Hsiang; Kinzler, Kenneth W.; Vogelstein, Bert; Amzel, L. Mario

    2009-12-01

    Mutations in oncogenes often promote tumorigenesis by changing the conformation of the encoded proteins, thereby altering enzymatic activity. The PIK3CA oncogene, which encodes p110{alpha}, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3K{alpha}), is one of the two most frequently mutated oncogenes in human cancers. We report the structure of the most common mutant of p110{alpha} in complex with two interacting domains of its regulatory partner (p85{alpha}), both free and bound to an inhibitor (wortmannin). The N-terminal SH2 (nSH2) domain of p85{alpha} is shown to form a scaffold for the entire enzyme complex, strategically positioned to communicate extrinsic signals from phosphopeptides to three distinct regions of p110{alpha}. Moreover, we found that Arg-1047 points toward the cell membrane, perpendicular to the orientation of His-1047 in the WT enzyme. Surprisingly, two loops of the kinase domain that contact the cell membrane shift conformation in the oncogenic mutant. Biochemical assays revealed that the enzymatic activity of the p110{alpha} His1047Arg mutant is differentially regulated by lipid membrane composition. These structural and biochemical data suggest a previously undescribed mechanism for mutational activation of a kinase that involves perturbation of its interaction with the cellular membrane.

  4. Experimental observation of the interaction of propagating spin waves with Néel domain walls in a Landau domain structure

    SciTech Connect

    Pirro, P.; Sebastian, T.; Leven, B.; Hillebrands, B.; Koyama, T.; Brächer, T.

    2015-06-08

    The interaction of propagating dipolar spin waves with magnetic domain walls is investigated in square-shaped microstructures patterned from the Heusler compound Co{sub 2}Mn{sub 0.6}Fe{sub 0.4}Si. Using magnetic force microscopy, the reversible preparation of a Landau state with four magnetic domains separated by Néel domain walls is confirmed. A local spin-wave excitation using a microstructured antenna is realized in one of the domains. It is shown by Brillouin light scattering microscopy that the domain structure in the remanence state has a strong influence on the spin-wave excitation and propagation. The domain walls strongly reflect the spin waves and can be used as spin-wave reflectors. A comparison with micromagnetic simulations shows that the strong reflection is due to the long-range dipolar interaction which has important implications for the use of these spin waves for exerting an all-magnonic spin-transfer torque.

  5. Neuronal cell-surface protein neurexin 1 interaction with multi-PDZ domain protein MUPP1.

    PubMed

    Jang, Won Hee; Choi, Sun Hee; Jeong, Joo Young; Park, Jung-Hwa; Kim, Sang-Jin; Seog, Dae-Hyun

    2014-01-01

    Location of membrane proteins is often stabilized by PDZ domain-containing scaffolding proteins. Using the yeast two-hybrid screening, we found that neurexin 1 interacted with multi-PDZ domain protein 1 (MUPP1) through PDZ domain. Neurexin 2 and 3 also interacted with MUPP1. MUPP1 and neurexin 1 were co-localized in cultured cells. These results suggest a novel mechanism for localizing neurexin 1 to synaptic sites.

  6. Identification of FUSE-binding proteins as interacting partners of TIA proteins

    SciTech Connect

    Rothe, Francoise; Gueydan, Cyril; Bellefroid, Eric; Huez, Georges; Kruys, Veronique . E-mail: vkruys@ulb.ac.be

    2006-04-28

    TIA-1 and TIAR are closely related RNA-binding proteins involved in several mechanisms of RNA metabolism, including alternative hnRNA splicing and mRNA translation regulation. In particular, TIA-1 represses tumor necrosis factor (TNF) mRNA translation by binding to the AU-rich element (ARE) present in the mRNA 3' untranslated region. Here, we demonstrate that TIA proteins interact with FUSE-binding proteins (FBPs) and that fbp genes are co-expressed with tia genes during Xenopus embryogenesis. FBPs participate in various steps of RNA processing and degradation. In Cos cells, FBPs co-localize with TIA proteins in the nucleus and migrate into TIA-enriched cytoplasmic granules upon oxidative stress. Overexpression of FBP2-KH3 RNA-binding domain fused to EGFP induces the specific sequestration of TIA proteins in cytoplasmic foci, thereby precluding their nuclear accumulation. In cytosolic RAW 264.7 macrophage extracts, FBPs are found associated in EMSA to the TIA-1/TNF-ARE complex. Together, our results indicate that TIA and FBP proteins may thus be relevant biological involved in common events of RNA metabolism occurring both in the nucleus and the cytoplasm.

  7. Intramolecular interaction in the tail of Acanthamoeba myosin IC between the SH3 domain and a putative pleckstrin homology domain

    PubMed Central

    Hwang, Kae-Jung; Mahmoodian, Fatemeh; Ferretti, James A.; Korn, Edward D.; Gruschus, James M.

    2007-01-01

    The 466-aa tail of the heavy chain of Acanthamoeba myosin IC (AMIC) comprises an N-terminal 220-residue basic region (BR) followed by a 56-residue Gly/Pro/Ala-rich region (GPA1), a 55-residue Src homology 3 (SH3) domain, and a C-terminal 135-residue Gly/Pro/Ala-rich region (GPA2). Cryo-electron microscopy of AMIC had shown previously that the AMIC tail is folded back on itself, suggesting the possibility of interactions between its N- and C-terminal regions. We now show specific differences between the NMR spectrum of bacterially expressed full-length tail and the sum of the spectra of individually expressed BR and GPA1-SH3-GPA2 (GSG) regions. These results are indicative of interactions between the two subdomains in the full-length tail. From the NMR data, we could assign many of the residues in BR and GSG that are involved in these interactions. By combining homology modeling with the NMR data, we identify a putative pleckstrin homology (PH) domain within BR, and show that the PH domain interacts with the SH3 domain. PMID:17215368

  8. WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ.

    PubMed

    Chan, S W; Lim, C J; Huang, C; Chong, Y F; Gunaratne, H J; Hogue, K A; Blackstock, W P; Harvey, K F; Hong, W

    2011-02-01

    The transcriptional co-activators YAP and TAZ are downstream targets inhibited by the Hippo tumor suppressor pathway. YAP and TAZ both possess WW domains, which are important protein-protein interaction modules that mediate interaction with proline-rich motifs, most commonly PPXY. The WW domains of YAP have complex regulatory roles as exemplified by recent reports showing that they can positively or negatively influence YAP activity in a cell and context-specific manner. In this study, we show that the WW domain of TAZ is important for it to transform both MCF10A and NIH3T3 cells and to activate transcription of ITGB2 but not CTGF, as introducing point mutations into the WW domain of TAZ (WWm) abolished its transforming and transcription-promoting ability. Using a proteomic approach, we discovered potential regulatory proteins that interact with TAZ WW domain and identified Wbp2. The interaction of Wbp2 with TAZ is dependent on the WW domain of TAZ and the PPXY-containing C-terminal region of Wbp2. Knockdown of endogenous Wbp2 suppresses, whereas overexpression of Wbp2 enhances, TAZ-driven transformation. Forced interaction of WWm with Wbp2 by direct C-terminal fusion of full-length Wbp2 or its TAZ-interacting C-terminal domain restored the transforming and transcription-promoting ability of TAZ. These results suggest that the WW domain-mediated interaction with Wbp2 promotes the transforming ability of TAZ.

  9. An Interactional Perspective on the Relationship of Immigration to Intimate Partner Violence in a Representative Sample of Help-Seeking Women

    ERIC Educational Resources Information Center

    Bo Vatnar, Solveig Karin; Bjorkly, Stal

    2010-01-01

    This article reports a study of the possible impact of immigration on interactional aspects of intimate partner violence (IPV) among help-seeking women. Are there differences concerning (a) IPV categories, (b) IPV severity, frequency, duration, regularity, and predictability, (c) guilt and shame, (d) partners' ethnicity, and (e) children being…

  10. Mammalian splicing factor SF1 interacts with SURP domains of U2 snRNP-associated proteins.

    PubMed

    Crisci, Angela; Raleff, Flore; Bagdiul, Ivona; Raabe, Monika; Urlaub, Henning; Rain, Jean-Christophe; Krämer, Angela

    2015-12-01

    Splicing factor 1 (SF1) recognizes the branch point sequence (BPS) at the 3' splice site during the formation of early complex E, thereby pre-bulging the BPS adenosine, thought to facilitate subsequent base-pairing of the U2 snRNA with the BPS. The 65-kDa subunit of U2 snRNP auxiliary factor (U2AF65) interacts with SF1 and was shown to recruit the U2 snRNP to the spliceosome. Co-immunoprecipitation experiments of SF1-interacting proteins from HeLa cell extracts shown here are consistent with the presence of SF1 in early splicing complexes. Surprisingly almost all U2 snRNP proteins were found associated with SF1. Yeast two-hybrid screens identified two SURP domain-containing U2 snRNP proteins as partners of SF1. A short, evolutionarily conserved region of SF1 interacts with the SURP domains, stressing their role in protein-protein interactions. A reduction of A complex formation in SF1-depleted extracts could be rescued with recombinant SF1 containing the SURP-interaction domain, but only partial rescue was observed with SF1 lacking this sequence. Thus, SF1 can initially recruit the U2 snRNP to the spliceosome during E complex formation, whereas U2AF65 may stabilize the association of the U2 snRNP with the spliceosome at later times. In addition, these findings may have implications for alternative splicing decisions. PMID:26420826

  11. Mammalian splicing factor SF1 interacts with SURP domains of U2 snRNP-associated proteins.

    PubMed

    Crisci, Angela; Raleff, Flore; Bagdiul, Ivona; Raabe, Monika; Urlaub, Henning; Rain, Jean-Christophe; Krämer, Angela

    2015-12-01

    Splicing factor 1 (SF1) recognizes the branch point sequence (BPS) at the 3' splice site during the formation of early complex E, thereby pre-bulging the BPS adenosine, thought to facilitate subsequent base-pairing of the U2 snRNA with the BPS. The 65-kDa subunit of U2 snRNP auxiliary factor (U2AF65) interacts with SF1 and was shown to recruit the U2 snRNP to the spliceosome. Co-immunoprecipitation experiments of SF1-interacting proteins from HeLa cell extracts shown here are consistent with the presence of SF1 in early splicing complexes. Surprisingly almost all U2 snRNP proteins were found associated with SF1. Yeast two-hybrid screens identified two SURP domain-containing U2 snRNP proteins as partners of SF1. A short, evolutionarily conserved region of SF1 interacts with the SURP domains, stressing their role in protein-protein interactions. A reduction of A complex formation in SF1-depleted extracts could be rescued with recombinant SF1 containing the SURP-interaction domain, but only partial rescue was observed with SF1 lacking this sequence. Thus, SF1 can initially recruit the U2 snRNP to the spliceosome during E complex formation, whereas U2AF65 may stabilize the association of the U2 snRNP with the spliceosome at later times. In addition, these findings may have implications for alternative splicing decisions.

  12. Faculty and Staff Partnering with Student Activists: Unexplored Terrains of Interaction and Development

    ERIC Educational Resources Information Center

    Kezar, Adrianna

    2010-01-01

    In this study, we build on two recent works (Gaston-Gayles, Wolf-Wendel; Tuttle, Twombley, and Ward, 2004; Slocum & Rhoads, 2008) that examine faculty and staff work with student activists, but expand the scope to include new questions such as why and how they partner with students, the impact of institutional context, and what role it might play…

  13. Binding partners of the kinase domains in Drosophila obscurin and their effect on the structure of the flight muscle.

    PubMed

    Katzemich, Anja; West, Ryan J H; Fukuzawa, Atsushi; Sweeney, Sean T; Gautel, Mathias; Sparrow, John; Bullard, Belinda

    2015-09-15

    Drosophila obscurin (Unc-89) is a titin-like protein in the M-line of the muscle sarcomere. Obscurin has two kinase domains near the C-terminus, both of which are predicted to be inactive. We have identified proteins binding to the kinase domains. Kinase domain 1 bound Bällchen (Ball, an active kinase), and both kinase domains 1 and 2 bound MASK (a 400-kDa protein with ankyrin repeats). Ball was present in the Z-disc and M-line of the indirect flight muscle (IFM) and was diffusely distributed in the sarcomere. MASK was present in both the M-line and the Z-disc. Reducing expression of Ball or MASK by siRNA resulted in abnormalities in the IFM, including missing M-lines and multiple Z-discs. Obscurin was still present, suggesting that the kinase domains act as a scaffold binding Ball and MASK. Unlike obscurin in vertebrate skeletal muscle, Drosophila obscurin is necessary for the correct assembly of the IFM sarcomere. We show that Ball and MASK act downstream of obscurin, and both are needed for development of a well defined M-line and Z-disc. The proteins have not previously been identified in Drosophila muscle.

  14. Remarriage Beliefs as Predictors of Marital Quality and Positive Interaction in Stepcouples: An Actor-Partner Interdependence Model.

    PubMed

    Garneau, Chelsea L; Higginbotham, Brian; Adler-Baeder, Francesca

    2015-12-01

    Using an Actor-Partner Interdependence Model, we examined remarriage beliefs as predictors of marital quality and positive interaction in a sample of 179 stepcouples. Three beliefs were measured using subscales from the Remarriage Belief Inventory (RMBI) including success is slim, children are the priority, and finances should be pooled. Several significant actor and partner effects were found for both wives' and husbands' beliefs. Wives' marital quality was positively associated with their own beliefs that finances should be pooled and negatively associated with their own beliefs that success is slim. Wives' reports of their own and spouses' positive interaction were both positively associated with their beliefs that finances should be pooled. Their reports of spouses' positive interaction were also negatively associated with husbands' beliefs that success is slim. Husbands' marital quality was positively associated with wives' beliefs that children are the priority, positively associated with their own beliefs that finances should be pooled, and negatively with success is slim. Positive interaction for husbands was positively associated with wives' beliefs that finances should be pooled and negatively associated with their own beliefs that success is slim. Finally, husbands' reports of positive interaction for their spouses were positively associated with wives' beliefs that finances should be pooled. Implications for future research utilizing dyadic data analysis with stepcouples are addressed.

  15. Domain interactions control complex formation and polymerase specificity in the biosynthesis of the Escherichia coli O9a antigen.

    PubMed

    Liston, Sean D; Clarke, Bradley R; Greenfield, Laura K; Richards, Michele R; Lowary, Todd L; Whitfield, Chris

    2015-01-01

    The Escherichia coli O9a O-polysaccharide (O-PS) is a prototype for bacterial glycan synthesis and export by an ATP-binding cassette transporter-dependent pathway. The O9a O-PS possesses a tetrasaccharide repeat unit comprising two α-(1→2)- and two α-(1→3)-linked mannose residues and is extended on a polyisoprenoid lipid carrier by the action of a polymerase (WbdA) containing two glycosyltransferase active sites. The N-terminal domain of WbdA possesses α-(1→2)-mannosyltransferase activity, and we demonstrate in this study that the C-terminal domain is an α-(1→3)-mannosyltransferase. Previous studies established that the size of the O9a polysaccharide is determined by the chain-terminating dual kinase/methyltransferase (WbdD) that is tethered to the membrane and recruits WbdA into an active enzyme complex by protein-protein interactions. Here, we used bacterial two-hybrid analysis to identify a surface-exposed α-helix in the C-terminal mannosyltransferase domain of WbdA as the site of interaction with WbdD. However, the C-terminal domain was unable to interact with WbdD in the absence of its N-terminal partner. Through deletion analysis, we demonstrated that the α-(1→2)-mannosyltransferase activity of the N-terminal domain is regulated by the activity of the C-terminal α-(1→3)-mannosyltransferase. In mutants where the C-terminal catalytic site was deleted but the WbdD-interaction site remained, the N-terminal mannosyltransferase became an unrestricted polymerase, creating a novel polymer comprising only α-(1→2)-linked mannose residues. The WbdD protein therefore orchestrates critical localization and coordination of activities involved in chain extension and termination. Complex domain interactions are needed to position the polymerase components appropriately for assembly into a functional complex located at the cytoplasmic membrane. PMID:25422321

  16. OsSRO1a Interacts with RNA Binding Domain-Containing Protein (OsRBD1) and Functions in Abiotic Stress Tolerance in Yeast

    PubMed Central

    Sharma, Shweta; Kaur, Charanpreet; Singla-Pareek, Sneh L.; Sopory, Sudhir K.

    2016-01-01

    SRO1 is an important regulator of stress and hormonal response in plants and functions by interacting with transcription factors and several other proteins involved in abiotic stress response. In the present study, we report OsRBD1, an RNA binding domain 1- containing protein as a novel interacting partner of OsSRO1a from rice. The interaction of OsSRO1a with OsRBD1 was shown in yeast as well as in planta. Domain–domain interaction study revealed that C-terminal RST domain of OsSRO1a interacts with the N-terminal RRM1 domain of OsRBD1 protein. Both the proteins were found to co-localize in nucleus. Transcript profiling under different stress conditions revealed co-regulation of OsSRO1a and OsRBD1 expression under some abiotic stress conditions. Further, co-transformation of both OsSRO1a and OsRBD1 in yeast conferred enhanced tolerance toward salinity, osmotic, and methylglyoxal treatments. Our study suggests that the interaction of OsSRO1a with OsRBD1 confers enhanced stress tolerance in yeast and may play an important role under abiotic stress responses in plants. PMID:26870074

  17. Evolutionarily conserved paired immunoglobulin-like receptor α (PILRα) domain mediates its interaction with diverse sialylated ligands.

    PubMed

    Sun, Yonglian; Senger, Kate; Baginski, Tomasz K; Mazloom, Anita; Chinn, Yvonne; Pantua, Homer; Hamidzadeh, Kajal; Ramani, Sree Ranjani; Luis, Elizabeth; Tom, Irene; Sebrell, Andrew; Quinones, Gabriel; Ma, Yan; Mukhyala, Kiran; Sai, Tao; Ding, Jiabing; Haley, Benjamin; Shadnia, Hooman; Kapadia, Sharookh B; Gonzalez, Lino C; Hass, Philip E; Zarrin, Ali A

    2012-05-01

    Paired immunoglobulin-like receptor (PILR) α is an inhibitory receptor that recognizes several ligands, including mouse CD99, PILR-associating neural protein, and Herpes simplex virus-1 glycoprotein B. The physiological function(s) of interactions between PILRα and its cellular ligands are not well understood, as are the molecular determinants of PILRα/ligand interactions. To address these uncertainties, we sought to identify additional PILRα ligands and further define the molecular basis for PILRα/ligand interactions. Here, we identify two novel PILRα binding partners, neuronal differentiation and proliferation factor-1 (NPDC1), and collectin-12 (COLEC12). We find that sialylated O-glycans on these novel PILRα ligands, and on known PILRα ligands, are compulsory for PILRα binding. Sialylation-dependent ligand recognition is also a property of SIGLEC1, a member of the sialic acid-binding Ig-like lectins. SIGLEC1 Ig domain shares ∼22% sequence identity with PILRα, an identity that includes a conserved arginine localized to position 97 in mouse and human SIGLEC1, position 133 in mouse PILRα and position 126 in human PILRα. We observe that PILRα/ligand interactions require conserved PILRα Arg-133 (mouse) and Arg-126 (human), in correspondence with a previously reported requirement for SIGLEC1 Arg-197 in SIGLEC1/ligand interactions. Homology modeling identifies striking similarities between PILRα and SIGLEC1 ligand binding pockets as well as at least one set of distinctive interactions in the galactoxyl-binding site. Binding studies suggest that PILRα recognizes a complex ligand domain involving both sialic acid and protein motif(s). Thus, PILRα is evolved to engage multiple ligands with common molecular determinants to modulate myeloid cell functions in anatomical settings where PILRα ligands are expressed. PMID:22396535

  18. Evolutionarily Conserved Paired Immunoglobulin-like Receptor α (PILRα) Domain Mediates Its Interaction with Diverse Sialylated Ligands

    PubMed Central

    Sun, Yonglian; Senger, Kate; Baginski, Tomasz K.; Mazloom, Anita; Chinn, Yvonne; Pantua, Homer; Hamidzadeh, Kajal; Ramani, Sree Ranjani; Luis, Elizabeth; Tom, Irene; Sebrell, Andrew; Quinones, Gabriel; Ma, Yan; Mukhyala, Kiran; Sai, Tao; Ding, Jiabing; Haley, Benjamin; Shadnia, Hooman; Kapadia, Sharookh B.; Gonzalez, Lino C.; Hass, Philip E.; Zarrin, Ali A.

    2012-01-01

    Paired immunoglobulin-like receptor (PILR) α is an inhibitory receptor that recognizes several ligands, including mouse CD99, PILR-associating neural protein, and Herpes simplex virus-1 glycoprotein B. The physiological function(s) of interactions between PILRα and its cellular ligands are not well understood, as are the molecular determinants of PILRα/ligand interactions. To address these uncertainties, we sought to identify additional PILRα ligands and further define the molecular basis for PILRα/ligand interactions. Here, we identify two novel PILRα binding partners, neuronal differentiation and proliferation factor-1 (NPDC1), and collectin-12 (COLEC12). We find that sialylated O-glycans on these novel PILRα ligands, and on known PILRα ligands, are compulsory for PILRα binding. Sialylation-dependent ligand recognition is also a property of SIGLEC1, a member of the sialic acid-binding Ig-like lectins. SIGLEC1 Ig domain shares ∼22% sequence identity with PILRα, an identity that includes a conserved arginine localized to position 97 in mouse and human SIGLEC1, position 133 in mouse PILRα and position 126 in human PILRα. We observe that PILRα/ligand interactions require conserved PILRα Arg-133 (mouse) and Arg-126 (human), in correspondence with a previously reported requirement for SIGLEC1 Arg-197 in SIGLEC1/ligand interactions. Homology modeling identifies striking similarities between PILRα and SIGLEC1 ligand binding pockets as well as at least one set of distinctive interactions in the galactoxyl-binding site. Binding studies suggest that PILRα recognizes a complex ligand domain involving both sialic acid and protein motif(s). Thus, PILRα is evolved to engage multiple ligands with common molecular determinants to modulate myeloid cell functions in anatomical settings where PILRα ligands are expressed. PMID:22396535

  19. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato.

    PubMed

    Hage-Ahmed, Karin; Krammer, Johannes; Steinkellner, Siegrid

    2013-10-01

    Arbuscular mycorrhizal fungi (AMF) and their bioprotective aspects are of great interest in the context of sustainable agriculture. Combining the benefits of AMF with the utilisation of plant species diversity shows great promise for the management of plant diseases in environmentally compatible agriculture. In the present study, AMF were tested against Fusarium oxysporum f. sp. lycopersici with tomato intercropped with either leek, cucumber, basil, fennel or tomato itself. Arbuscular mycorrhizal (AM) root colonisation of tomato was clearly affected by its intercropping partners. Tomato intercropped with leek showed even a 20 % higher AM colonisation rate than tomato intercropped with tomato. Positive effects of AMF expressed as an increase of tomato biomass compared to the untreated control treatment could be observed in root as well as in shoot weights. A compensation of negative effects of F. oxysporum f. sp. lycopersici on tomato biomass by AMF was observed in the tomato/leek combination. The intercropping partners leek, cucumber, basil and tomato had no effect on F. oxysporum f. sp. lycopersici disease incidence or disease severity indicating no allelopathic suppression; however, tomato co-cultivated with tomato clearly showed a negative effect on one plant/pot with regard to biomass and disease severity of F. oxysporum f. sp. lycopersici. Nonetheless, bioprotective effects of AMF resulting in the decrease of F. oxysporum f. sp. lycopersici disease severity were evident in treatments with AMF and F. oxysporum f. sp. lycopersici co-inoculation. However, these bioprotective effects depended on the intercropping partner since these effects were only observed in the tomato/leek and tomato/basil combination and for the better developed plant of tomato/tomato. In conclusion, the effects of the intercropping partner on AMF colonisation of tomato are of great interest for crop plant communities and for the influences on each other. The outcome of the bioprotective

  20. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato.

    PubMed

    Hage-Ahmed, Karin; Krammer, Johannes; Steinkellner, Siegrid

    2013-10-01

    Arbuscular mycorrhizal fungi (AMF) and their bioprotective aspects are of great interest in the context of sustainable agriculture. Combining the benefits of AMF with the utilisation of plant species diversity shows great promise for the management of plant diseases in environmentally compatible agriculture. In the present study, AMF were tested against Fusarium oxysporum f. sp. lycopersici with tomato intercropped with either leek, cucumber, basil, fennel or tomato itself. Arbuscular mycorrhizal (AM) root colonisation of tomato was clearly affected by its intercropping partners. Tomato intercropped with leek showed even a 20 % higher AM colonisation rate than tomato intercropped with tomato. Positive effects of AMF expressed as an increase of tomato biomass compared to the untreated control treatment could be observed in root as well as in shoot weights. A compensation of negative effects of F. oxysporum f. sp. lycopersici on tomato biomass by AMF was observed in the tomato/leek combination. The intercropping partners leek, cucumber, basil and tomato had no effect on F. oxysporum f. sp. lycopersici disease incidence or disease severity indicating no allelopathic suppression; however, tomato co-cultivated with tomato clearly showed a negative effect on one plant/pot with regard to biomass and disease severity of F. oxysporum f. sp. lycopersici. Nonetheless, bioprotective effects of AMF resulting in the decrease of F. oxysporum f. sp. lycopersici disease severity were evident in treatments with AMF and F. oxysporum f. sp. lycopersici co-inoculation. However, these bioprotective effects depended on the intercropping partner since these effects were only observed in the tomato/leek and tomato/basil combination and for the better developed plant of tomato/tomato. In conclusion, the effects of the intercropping partner on AMF colonisation of tomato are of great interest for crop plant communities and for the influences on each other. The outcome of the bioprotective

  1. Carbon-13 NMR study of switch variant anti-dansyl antibodies: Antigen binding and domain-domain interactions

    SciTech Connect

    Kato, Koichi; Matsunaga, Chigusa; Odaka, Asano; Yamato, Sumie; Takaha, Wakana; Shimada, Ichio; Arata, Yoji )

    1991-07-02

    A {sup 13}C NMR study is reported of switch variant anti-dansyl antibodies, which possess the identical V{sub H}, V{sub L}, and C{sub L} domains in conjunction with highly homologous but not identical heavy-chain constant regions. Each of the antibodies has been selectively labeled with {sup 13}C at the carbonyl carbon of Trp, Tyr, His, or Cys residue by growing hybridoma cells in serum-free medium. Spectral assignments have been made by folowing the procedure described previously for the switch variant antibodies labeled with (1-{sup 13}C)Met. On the basis of the spectral data collected for the antibodies and their proteolytic fragments, the authors discuss how {sup 13}C NMR spectroscopy can be used for the structural analyses of antigen binding and also of domain-domain interactions in the antibody molecule.

  2. Transmembrane domain interactions control biological functions of neuropilin-1.

    PubMed

    Roth, Lise; Nasarre, Cécile; Dirrig-Grosch, Sylvie; Aunis, Dominique; Crémel, Gérard; Hubert, Pierre; Bagnard, Dominique

    2008-02-01

    Neuropilin-1 (NRP1) is a transmembrane receptor playing a pivotal role in the control of semaphorins and VEGF signaling pathways. The exact mechanism controlling semaphorin receptor complex formation is unknown. A structural analysis and modeling of NRP1 revealed a putative dimerization GxxxG motif potentially important for NRP1 dimerization and oligomerization. Our data show that this motif mediates the dimerization of the transmembrane domain of NRP1 as demonstrated by a dimerization assay (ToxLuc assay) performed in natural membrane and FRET analysis. A synthetic peptide derived from the transmembrane segment of NRP1 abolished the inhibitory effect of Sema3A. This effect depends on the capacity of the peptide to interfere with NRP1 dimerization and the formation of oligomeric complexes. Mutation of the GxxxG dimerization motif in the transmembrane domain of NRP1 confirmed its biological importance for Sema3A signaling. Overall, our results shed light on an essential step required for semaphorin signaling and provide novel evidence for the crucial role of transmembrane domain of bitopic protein containing GxxxG motif in the formation of receptor complexes that are a prerequisite for cell signaling.

  3. Fine-tuning function: correlation of hinge domain interactions with functional distinctions between LacI and PurR.

    PubMed

    Swint-Kruse, Liskin; Larson, Christopher; Pettitt, B Montgomery; Matthews, Kathleen Shive

    2002-04-01

    LacI and PurR are highly homologous proteins. Their functional units are homodimers, with an N-terminal DNA binding domain that comprises the helix-turn-helix (HTH), N-linker, and hinge regions from both monomers. Hinge structural changes are known to occur upon DNA dissociation but are difficult to monitor experimentally. The initial steps of hinge unfolding were therefore examined using molecular dynamics simulations, utilizing a truncated, chimeric protein comprising the LacI HTH/N-linker and PurR hinge. A terminal Gly-Cys-Gly was added to allow "dimerization" through disulfide bond formation. Simulations indicate that differences in LacI and PurR hinge primary sequence affect the quaternary structure of the hinge x hinge' interface. However, these alternate hinge orientations would be sterically restricted by the core domain. These results prompted detailed comparison of recently available DNA-bound structures for LacI and truncated LacI(1-62) with the PurR structure. Examination revealed that different N-linker and hinge contacts to the core domain of the partner monomer (which binds effector molecule) affect the juxtapositions of the HTH, N-linker, and hinge regions in the DNA binding domain. In addition, the two full-length repressors exhibit significant differences in the interactions between the core and the C-linker connection to the DNA binding domain. Both linkers and the hinge have been implicated in the allosteric response of these repressors. Intriguingly, one functional difference between these two proteins is that they exhibit opposite allosteric response to effector. Simulations and observed structural distinctions are correlated with mutational analysis and sequence information from the LacI/GalR family to formulate a mechanism for fine-tuning individual repressor function.

  4. Structural Insights into a Wildtype Domain of the Oncoprotein E6 and Its Interaction with a PDZ Domain

    PubMed Central

    Mischo, André; Ohlenschläger, Oliver; Hortschansky, Peter; Ramachandran, Ramadurai; Görlach, Matthias

    2013-01-01

    The high-risk human papilloma virus (HPV) oncoproteins E6 and E7 interact with key cellular regulators and are etiological agents for tumorigenesis and tumor maintenance in cervical cancer and other malignant conditions. E6 induces degradation of the tumor suppressor p53, activates telomerase and deregulates cell polarity. Analysis of E6 derived from a number of high risk HPV finally yielded the first structure of a wild-type HPV E6 domain (PDB 2M3L) representing the second zinc-binding domain of HPV 51 E6 (termed 51Z2) determined by NMR spectroscopy. The 51Z2 structure provides clues about HPV-type specific structural differences between E6 proteins. The observed temperature sensitivity of the well-folded wild-type E6 domain implies a significant malleability of the oncoprotein in vivo. Hence, the structural differences between individual E6 and their malleability appear, together with HPV type-specific surface exposed side-chains, to provide the structural basis for the different interaction networks reported for individual E6 proteins. Furthermore, the interaction of 51Z2 with a PDZ domain of hDlg was analyzed. Human Dlg constitutes a prototypic representative of the large family of PDZ proteins regulating cell polarity, which are common targets of high-risk HPV E6. Nine C-terminal residues of 51Z2 interact with the second PDZ domain of hDlg2. Surface plasmon resonance in conjunction with the NMR spectroscopy derived complex structure (PDB 2M3M) indicate that E6 residues N-terminal to the canonical PDZ-BM of E6 significantly contribute to this interaction and increase affinity. The structure of the complex reveals how residues outside of the classical PDZ-BM enhance the affinity of E6 towards PDZ domains. Such mechanism facilitates successful competition of E6 with cellular PDZ-binding proteins and may apply to PDZ-binding proteins of other viruses as well. PMID:23638119

  5. Structure and Function of Interacting IcmR-IcmQ Domains from a Type IVb Secretion System in Legionella pneumophila

    SciTech Connect

    Raychaudhury, S.; Farelli, J; Montminy, T; Matthews, M; Menetret, J; Dumenil, G; Roy, C; Head, J; Isberg, R; Akey, C

    2009-01-01

    During infection, Legionella pneumophila creates a replication vacuole within eukaryotic cells and this requires a Type IVb secretion system (T4bSS). IcmQ plays a critical role in the translocase and associates with IcmR. In this paper, we show that the N-terminal domain of IcmQ (Qn) mediates self-dimerization, whereas the C-terminal domain with a basic linker promotes membrane association. In addition, the binding of IcmR to IcmQ prevents self-dimerization and also blocks membrane permeabilization. However, IcmR does not completely block membrane binding by IcmQ. We then determined crystal structures of Qn with the interacting region of IcmR. In this complex, each protein forms an ?-helical hairpin within a parallel four-helix bundle. The amphipathic nature of helices in Qn suggests two possible models for membrane permeabilization by IcmQ. The Rm-Qn structure also suggests how IcmR-like proteins in other L. pneumophila species may interact with their IcmQ partners.

  6. Effect of interlayer interaction on domain structure of CoPt stacked films with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Kawamura, H.; Hayakawa, K.; Nomiya, N.; Sugita, R.

    2015-05-01

    The effect of interlayer magnetostatic interaction on the domain structure of CoPt (3 nm)/Pt (δPt nm)/CoPt (10 nm) stacked films having perpendicular anisotropy is investigated. The domain structure of the demagnetized CoPt stacked films is observed using magnetic force microscope. The Co80Pt20 stacked films with Pt interlayer thickness δPt less than about 20 nm have the maze domain similar to that of the film with δPt of 0 nm. This is because the top and bottom layers are connected by the magnetostatic interaction and the magnetization distribution of both layers is integrated. The domain structure of the films with δPt around 25 nm is mixture of the maze and irregular domains. For the films with δPt over about 30 nm, because the interaction between the top and bottom layers decreases, the irregular domain which is observed in the 3 nm thick CoPt single layer film appears. In the region where the domain structure changes from the maze domain to the irregular one, domain size steeply increases with increase of δPt.

  7. Structure of the SPRY domain of the human RNA helicase DDX1, a putative interaction platform within a DEAD-box protein.

    PubMed

    Kellner, Julian N; Meinhart, Anton

    2015-09-01

    The human RNA helicase DDX1 in the DEAD-box family plays an important role in RNA processing and has been associated with HIV-1 replication and tumour progression. Whereas previously described DEAD-box proteins have a structurally conserved core, DDX1 shows a unique structural feature: a large SPRY-domain insertion in its RecA-like consensus fold. SPRY domains are known to function as protein-protein interaction platforms. Here, the crystal structure of the SPRY domain of human DDX1 (hDSPRY) is reported at 2.0 Å resolution. The structure reveals two layers of concave, antiparallel β-sheets that stack onto each other and a third β-sheet beneath the β-sandwich. A comparison with SPRY-domain structures from other eukaryotic proteins showed that the general β-sandwich fold is conserved; however, differences were detected in the loop regions, which were identified in other SPRY domains to be essential for interaction with cognate partners. In contrast, in hDSPRY these loop regions are not strictly conserved across species. Interestingly, though, a conserved patch of positive surface charge is found that may replace the connecting loops as a protein-protein interaction surface. The data presented here comprise the first structural information on DDX1 and provide insights into the unique domain architecture of this DEAD-box protein. By providing the structure of a putative interaction domain of DDX1, this work will serve as a basis for further studies of the interaction network within the hetero-oligomeric complexes of DDX1 and of its recruitment to the HIV-1 Rev protein as a viral replication factor.

  8. Structure of the SPRY domain of the human RNA helicase DDX1, a putative interaction platform within a DEAD-box protein

    PubMed Central

    Kellner, Julian N.; Meinhart, Anton

    2015-01-01

    The human RNA helicase DDX1 in the DEAD-box family plays an important role in RNA processing and has been associated with HIV-1 replication and tumour progression. Whereas previously described DEAD-box proteins have a structurally conserved core, DDX1 shows a unique structural feature: a large SPRY-domain insertion in its RecA-like consensus fold. SPRY domains are known to function as protein–protein interaction platforms. Here, the crystal structure of the SPRY domain of human DDX1 (hDSPRY) is reported at 2.0 Å resolution. The structure reveals two layers of concave, antiparallel β-sheets that stack onto each other and a third β-sheet beneath the β-sandwich. A comparison with SPRY-domain structures from other eukaryotic proteins showed that the general β-sandwich fold is conserved; however, differences were detected in the loop regions, which were identified in other SPRY domains to be essential for interaction with cognate partners. In contrast, in hDSPRY these loop regions are not strictly conserved across species. Interestingly, though, a conserved patch of positive surface charge is found that may replace the connecting loops as a protein–protein interaction surface. The data presented here comprise the first structural information on DDX1 and provide insights into the unique domain architecture of this DEAD-box protein. By providing the structure of a putative interaction domain of DDX1, this work will serve as a basis for further studies of the interaction network within the hetero-oligomeric complexes of DDX1 and of its recruitment to the HIV-1 Rev protein as a viral replication factor. PMID:26323305

  9. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    NASA Astrophysics Data System (ADS)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  10. A Time Domain Analysis of Gust-Cascade Interaction Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Hixon, R.; Sawyer, S. D.; Dyson, R. W.

    2003-01-01

    The gust response of a 2 D cascade is studied by solving the full nonlinear Euler equations employing higher order accurate spatial differencing and time stepping techniques. The solutions exhibit the exponential decay of the two circumferential mode orders of the cutoff blade passing frequency (BPF) tone and propagation of one circumferential mode order at 2BPF, as would be expected for the flow configuration considered. Two frequency excitations indicate that the interaction between the frequencies and the self interaction contribute to the amplitude of the propagating mode.

  11. Biochemical Large-Scale Interaction Analysis of Murine Olfactory Receptors and Associated Signaling Proteins with Post-Synaptic Density 95, Drosophila Discs Large, Zona-Occludens 1 (PDZ) Domains*

    PubMed Central

    Jansen, Fabian; Kalbe, Benjamin; Scholz, Paul; Fränzel, Benjamin; Osterloh, Markus; Wolters, Dirk; Hatt, Hanns; Neuhaus, Eva Maria; Osterloh, Sabrina

    2015-01-01

    G protein-coupled receptors (GPCRs) constitute the largest family among mammalian membrane proteins and are capable of initiating numerous essential signaling cascades. Various GPCR-mediated pathways are organized into protein microdomains that can be orchestrated and regulated through scaffolding proteins, such as PSD-95/discs-large/ZO1 (PDZ) domain proteins. However, detailed binding characteristics of PDZ–GPCR interactions remain elusive because these interactions seem to be more complex than previously thought. To address this issue, we analyzed binding modalities using our established model system. This system includes the 13 individual PDZ domains of the multiple PDZ domain protein 1 (MUPP1; the largest PDZ protein), a broad range of murine olfactory receptors (a multifaceted gene cluster within the family of GPCRs), and associated olfactory signaling proteins. These proteins were analyzed in a large-scale peptide microarray approach and continuative interaction studies. As a result, we demonstrate that canonical binding motifs were not overrepresented among the interaction partners of MUPP1. Furthermore, C-terminal phosphorylation and distinct amino acid replacements abolished PDZ binding promiscuity. In addition to the described in vitro experiments, we identified new interaction partners within the murine olfactory epithelium using pull-down-based interactomics and could verify the partners through co-immunoprecipitation. In summary, the present study provides important insight into the complexity of the binding characteristics of PDZ–GPCR interactions based on olfactory signaling proteins, which could identify novel clinical targets for GPCR-associated diseases in the future. PMID:25979994

  12. Interaction between categorical knowledge and episodic memory across domains

    PubMed Central

    Hemmer, Pernille; Persaud, Kimele

    2014-01-01

    Categorical knowledge and episodic memory have traditionally been viewed as separate lines of inquiry. Here, we present a perspective on the interrelatedness of categorical knowledge and reconstruction from memory. We address three underlying questions: what knowledge do people bring to the task of remembering? How do people integrate that knowledge with episodic memory? Is this the optimal way for the memory system to work? In the review of five studies spanning four category domains (discrete, continuous, temporal, and linguistic), we evaluate the relative contribution and the structure of influence of categorical knowledge on long-term episodic memory. These studies suggest a robustness of peoples’ knowledge of the statistical regularities of the environment, and provide converging evidence of the quality and influence of category knowledge on reconstructive memory. Lastly, we argue that combining categorical knowledge and episodic memory is an efficient strategy of the memory system. PMID:24966848

  13. Bilingualism interacts with domain in a working memory task: evidence from aging.

    PubMed

    Luo, Lin; Craik, Fergus I M; Moreno, Sylvain; Bialystok, Ellen

    2013-03-01

    Younger and older adults who were either monolingual or bilingual were tested with verbal and spatial working memory (WM) span tasks. Aging was associated with a greater decline in spatial WM than in verbal WM, but the age-related declines were equivalent in both language groups. The bilingual participants outperformed the monolinguals in spatial WM, but achieved lower levels of performance than monolinguals in verbal WM. This interaction between bilingualism and WM domain was also consistent across the adult life span. These results are discussed in terms of the interactions between a domain-general executive processing advantage for bilinguals and the domain-specific content of particular WM tasks.

  14. CC chemokine receptor 10 cell surface presentation in melanocytes is regulated by the novel interaction partner S100A10

    PubMed Central

    Hessner, F.; Dlugos, C. P.; Chehab, T.; Schaefer, C.; Homey, B.; Gerke, V.; Weide, T.; Pavenstädt, H.; Rescher, U.

    2016-01-01

    The superfamily of G-protein-coupled receptors (GPCR) conveys signals in response to various endogenous and exogenous stimuli. Consequently, GPCRs are the most important drug targets. CCR10, the receptor for the chemokines CCL27/CTACK and CCL28/MEC, belongs to the chemokine receptor subfamily of GPCRs and is thought to function in immune responses and tumour progression. However, there is only limited information on the intracellular regulation of CCR10. We find that S100A10, a member of the S100 family of Ca2+ binding proteins, binds directly to the C-terminal cytoplasmic tail of CCR10 and that this interaction regulates the CCR10 cell surface presentation. This identifies S100A10 as a novel interaction partner and regulator of CCR10 that might serve as a target for therapeutic intervention. PMID:26941067

  15. Energetics of Src homology domain interactions in receptor tyrosine kinase-mediated signaling.

    PubMed

    Ladbury, John E; Arold, Stefan T

    2011-01-01

    Intracellular signaling from receptor tyrosine kinases (RTK) on extracellular stimulation is fundamental to all cellular processes. The protein-protein interactions which form the basis of this signaling are mediated through a limited number of polypeptide domains. For signal transduction without corruption, based on a model where signaling pathways are considered as linear bimolecular relays, these interactions have to be highly specific. This is particularly the case when one considers that any cell may have copies of similar binding domains found in numerous proteins. In this work, an overview of the thermodynamics of binding of two of the most common of these domains (SH2 and SH3 domains) is given. This, coupled with insight from high-resolution structural detail, provides a comprehensive survey of how recognition of cognate binding sites for these domains occurs. Based on the data presented, we conclude that specificity offered by these interactions of SH2 and SH3 domains is limited and not sufficient to enforce mutual exclusivity in RTK-mediated signaling. This may explain the current lack of success in pharmaceutical intervention to inhibit the interactions of these domains when they are responsible for aberrant signaling and the resulting disease states such as cancer.

  16. A Brownian dynamics study of the effects of cytochrome f structure and deletion of its small domain in interactions with cytochrome c6 and plastocyanin in Chlamydomonas reinhardtii.

    PubMed

    Haddadian, Esmael J; Gross, Elizabeth L

    2006-01-15

    The availability of seven different structures of cytochrome f (cyt f) from Chlamydomonas reinhardtii allowed us, using Brownian dynamics simulations, to model interactions between these molecules and their redox partners, plastocyanin (PC) and cytochrome c6 (cyt c6) in the same species to study the effect of cyt f structure on its function. Our results showed that different cyt f structures, which are very similar, produced different reaction rates in interactions with PC and cyt c6. We were able to attribute this to structural differences among these molecules, particularly to a small flexible loop between A-184 and G-191 (which has some of the highest crystallographic temperature factors in all of the cyt f structures) on the cyt f small domain. We also showed that deletion of the cyt f small domain affected cyt c6 more than PC, due to their different binding positions on cyt f. One function of the small domain in cyt f may be to guide PC or cyt c6 to a uniform dock with cyt f, especially due to electrostatic interactions with K-188 and K-189 on this domain. Our results could serve as a good guide for future experimental work on these proteins to understand better the electron transfer process between them. Also, these results demonstrated the sensitivity and the power of the Brownian dynamics simulations in the study of molecular interactions. PMID:16239335

  17. Neuroimmune interactions and psychologycal stress induced by cohabitation with a sick partner: a review.

    PubMed

    Palermo-Neto, Joao; Alves, Glaucie Jussilane

    2014-01-01

    This study reviews the neuroimmunological consequences elicited in mice from long-term cohabitation with tumor-bearing conspecifics. Two types of experiments were performed; one used Swiss female mice and Ehrlich tumor cells, and the other used C57Bl/6 female mice and B16F10 melanoma cells. The female Swiss mice and the C57Bl/6 mice were divided into two groups, i.e., control and experimental. One mouse in each control pair was treated with control solutions (1.0 mL/kg); the other was kept undisturbed and called the 'companion of health partner' (CHP). One mouse in each experimental pair was inoculated with 5 x 10(6) Ehrlich tumor cells or with 10(6) murine B16-F10 melanoma cells; the other mouse, which was the subject of the performed studies, was left undisturbed and called the 'companion of sick partner' (CSP). Although we used two different strains of mice and two different tumor types, the CSP mice presented, in relation to the CHP mice, an increased locomotion in the open field and plus maze apparatuses and no changes in the corticosterone serum levels before and after the immobilization-stress challenge. The Swiss CSP mice showed a reduced level and an increased turnover rate of hypothalamic noradrenaline (NE), as well as increased plasmatic levels of adrenaline and NE. Changes in the immune cell phenotype and activity were also observed in the Swiss and C57Bl/6 CSP mice. The study found that odor cues left by the Ehrlich tumor-injected Swiss mice are aversive and may therefore be responsible for the neuroimmune changes reported in the CSP mice. It is proposed that the final neural link between the neuroimmunological changes observed in the CSP mice involves psychogenic stress imposed by the housing condition and the activation of the brain catecholaminergic pathways and the sympathetic nervous systems.

  18. Inositol Pentakisphosphate Isomers Bind PH Domains with Varying Specificity and Inhibit Phosphoinositide Interactions

    SciTech Connect

    S Jackson; S Al-Saigh; C Schultz; M Junop

    2011-12-31

    PH domains represent one of the most common domains in the human proteome. These domains are recognized as important mediators of protein-phosphoinositide and protein-protein interactions. Phosphoinositides are lipid components of the membrane that function as signaling molecules by targeting proteins to their sites of action. Phosphoinositide based signaling pathways govern a diverse range of important cellular processes including membrane remodeling, differentiation, proliferation and survival. Myo-Inositol phosphates are soluble signaling molecules that are structurally similar to the head groups of phosphoinositides. These molecules have been proposed to function, at least in part, by regulating PH domain-phosphoinositide interactions. Given the structural similarity of inositol phosphates we were interested in examining the specificity of PH domains towards the family of myo-inositol pentakisphosphate isomers. In work reported here we demonstrate that the C-terminal PH domain of pleckstrin possesses the specificity required to discriminate between different myo-inositol pentakisphosphate isomers. The structural basis for this specificity was determined using high-resolution crystal structures. Moreover, we show that while the PH domain of Grp1 does not possess this high degree of specificity, the PH domain of protein kinase B does. These results demonstrate that some PH domains possess enough specificity to discriminate between myo-inositol pentakisphosphate isomers allowing for these molecules to differentially regulate interactions with phosphoinositides. Furthermore, this work contributes to the growing body of evidence supporting myo-inositol phosphates as regulators of important PH domain-phosphoinositide interactions. Finally, in addition to expanding our knowledge of cellular signaling, these results provide a basis for developing tools to probe biological pathway.

  19. Interaction dynamics of multiple autonomous mobile robots in bounded spatial domains

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1989-01-01

    A general navigation strategy for multiple autonomous robots in a bounded domain is developed analytically. Each robot is modeled as a spherical particle (i.e., an effective spatial domain about the center of mass); its interactions with other robots or with obstacles and domain boundaries are described in terms of the classical many-body problem; and a collision-avoidance strategy is derived and combined with homing, robot-robot, and robot-obstacle collision-avoidance strategies. Results from homing simulations involving (1) a single robot in a circular domain, (2) two robots in a circular domain, and (3) one robot in a domain with an obstacle are presented in graphs and briefly characterized.

  20. Inter-domain interactions of TDP-43 as decoded by NMR.

    PubMed

    Wei, Yuanyuan; Lim, Liangzhong; Wang, Lu; Song, Jianxing

    2016-04-29

    TDP-43 inclusions have been found in ∼97% ALS as well as an increasing spectrum of other neurodegenerative diseases including Alzheimer's. TDP-43 contains an ubiquitin-like fold, two RRMs and a prion-like domain, but whether they interact with each other remains unknown due to being intrinsically aggregation-prone. Nevertheless, this knowledge is pivotal to understanding physiological functions and pathological roles of TDP-43. Here as facilitated by our previous discovery which allowed NMR characterization of TDP-43 and its five dissected fragments, we successfully decoded that TDP-43 does have dynamic inter-domain interactions, which are coordinated by the intrinsically-disordered prion-like domain. Thus, TDP-43 appears to undergo conformational exchanges between "closed" and "open" states which are needed for its functions. Our study thus offers a mechanism by which cellular processes might control TDP-43 physiology and proteinopathy by mediating its inter-domain interactions. PMID:27040765

  1. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    PubMed Central

    2014-01-01

    Background MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. Results We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. Conclusions Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins. PMID:24468197

  2. Intramolecular interaction between the DEP domain of RGS7 and the Gbeta5 subunit.

    PubMed

    Narayanan, Vijaya; Sandiford, Simone L; Wang, Qiang; Keren-Raifman, Tal; Levay, Konstantin; Slepak, Vladlen Z

    2007-06-12

    The R7 family of RGS proteins (RGS6, -7, -9, -11) is characterized by the presence of three domains: DEP, GGL, and RGS. The RGS domain interacts with Galpha subunits and exhibits GAP activity. The GGL domain permanently associates with Gbeta5. The DEP domain interacts with the membrane anchoring protein, R7BP. Here we provide evidence for a novel interaction within this complex: between the DEP domain and Gbeta5. GST fusion of the RGS7 DEP domain (GST-R7DEP) binds to both native and recombinant Gbeta5-RGS7, recombinant Gbetagamma complexes, and monomeric Gbeta5 and Gbeta1 subunits. Co-immunoprecipitation and FRET assays supported the GST pull-down experiments. GST-R7DEP reduced FRET between CFP-Gbeta5 and YFP-RGS7, indicating that the DEP-Gbeta5 interaction is dynamic. In transfected cells, R7BP had no effect on the Gbeta5/RGS7 pull down by GST-R7DEP. The DEP domain of RGS9 did not bind to Gbeta5. Substitution of RGS7 Glu-73 and Asp-74 for the corresponding Ser and Gly residues (ED/SG mutation) of RGS9 diminished the DEP-Gbeta5 interaction. In the absence of R7BP both the wild-type RGS7 and the ED/SG mutant attenuated muscarinic M3 receptor-mediated Ca2+ mobilization. In the presence of R7BP, wild-type RGS7 lost this inhibitory activity, whereas the ED/SG mutant remained active. Taken together, our results are consistent with the following model. The Gbeta5-RGS7 molecule can exist in two conformations: "closed" and "open", when the DEP domain and Gbeta5 subunit either do or do not interact. The closed conformation appears to be less active with respect to its effect on Gq-mediated signaling than the open conformation.

  3. Domain Structures and Inter-Domain Interactions Defining the Holoenzyme Architecture of Archaeal D-Family DNA Polymerase

    PubMed Central

    Matsui, Ikuo; Matsui, Eriko; Yamasaki, Kazuhiko; Yokoyama, Hideshi

    2013-01-01

    Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information. PMID:25369811

  4. Predicting physiologically relevant SH3 domain mediated protein–protein interactions in yeast

    PubMed Central

    Jain, Shobhit; Bader, Gary D.

    2016-01-01

    Motivation: Many intracellular signaling processes are mediated by interactions involving peptide recognition modules such as SH3 domains. These domains bind to small, linear protein sequence motifs which can be identified using high-throughput experimental screens such as phage display. Binding motif patterns can then be used to computationally predict protein interactions mediated by these domains. While many protein–protein interaction prediction methods exist, most do not work with peptide recognition module mediated interactions or do not consider many of the known constraints governing physiologically relevant interactions between two proteins. Results: A novel method for predicting physiologically relevant SH3 domain-peptide mediated protein–protein interactions in S. cerevisae using phage display data is presented. Like some previous similar methods, this method uses position weight matrix models of protein linear motif preference for individual SH3 domains to scan the proteome for potential hits and then filters these hits using a range of evidence sources related to sequence-based and cellular constraints on protein interactions. The novelty of this approach is the large number of evidence sources used and the method of combination of sequence based and protein pair based evidence sources. By combining different peptide and protein features using multiple Bayesian models we are able to predict high confidence interactions with an overall accuracy of 0.97. Availability and implementation: Domain-Motif Mediated Interaction Prediction (DoMo-Pred) command line tool and all relevant datasets are available under GNU LGPL license for download from http://www.baderlab.org/Software/DoMo-Pred. The DoMo-Pred command line tool is implemented using Python 2.7 and C ++. Contact: gary.bader@utoronto.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26861823

  5. A protein interaction node at the neurotransmitter release site: domains of Aczonin/Piccolo, Bassoon, CAST, and rim converge on the N-terminal domain of Munc13-1.

    PubMed

    Wang, Xiaolu; Hu, Bin; Zieba, Agata; Neumann, Nicole G; Kasper-Sonnenberg, Monika; Honsbein, Annegret; Hultqvist, Greta; Conze, Tim; Witt, Wolfgang; Limbach, Christoph; Geitmann, Matthis; Danielson, Helena; Kolarow, Richard; Niemann, Gesa; Lessmann, Volkmar; Kilimann, Manfred W

    2009-10-01

    Multidomain scaffolding proteins organize the molecular machinery of neurotransmitter vesicle dynamics during synaptogenesis and synaptic activity. We find that domains of five active zone proteins converge on an interaction node that centers on the N-terminal region of Munc13-1 and includes the zinc-finger domain of Rim1, the C-terminal region of Bassoon, a segment of CAST1/ELKS2, and the third coiled-coil domain (CC3) of either Aczonin/Piccolo or Bassoon. This multidomain complex may constitute a center for the physical and functional integration of the protein machinery at the active zone. An additional connection between Aczonin and Bassoon is mediated by the second coiled-coil domain of Aczonin. Recombinant Aczonin-CC3, expressed in cultured neurons as a green fluorescent protein fusion protein, is targeted to synapses and suppresses vesicle turnover, suggesting involvements in synaptic assembly as well as activity. Our findings show that Aczonin, Bassoon, CAST1, Munc13, and Rim are closely and multiply interconnected, they indicate that Aczonin-CC3 can actively participate in neurotransmitter vesicle dynamics, and they highlight the N-terminal region of Munc13-1 as a hub of protein interactions by adding three new binding partners to its mechanistic potential in the control of synaptic vesicle priming.

  6. Interacting domain-specific languages with biological problem solving environments

    NASA Astrophysics Data System (ADS)

    Cickovski, Trevor M.

    Iteratively developing a biological model and verifying results with lab observations has become standard practice in computational biology. This process is currently facilitated by biological Problem Solving Environments (PSEs), multi-tiered and modular software frameworks which traditionally consist of two layers: a computational layer written in a high level language using design patterns, and a user interface layer which hides its details. Although PSEs have proven effective, they still enforce some communication overhead between biologists refining their models through repeated comparison with experimental observations in vitro or in vivo, and programmers actually implementing model extensions and modifications within the computational layer. I illustrate the use of biological Domain-Specific Languages (DSLs) as a middle-level PSE tier to ameliorate this problem by providing experimentalists with the ability to iteratively test and develop their models using a higher degree of expressive power compared to a graphical interface, while saving the requirement of general purpose programming knowledge. I develop two radically different biological DSLs: XML-based BIOLOGO will model biological morphogenesis using a cell-centered stochastic cellular automaton and translate into C++ modules for an object-oriented PSE C OMPUCELL3D, and MDLab will provide a set of high-level Python libraries for running molecular dynamics simulations, using wrapped functionality from the C++ PSE PROTOMOL. I describe each language in detail, including its its roles within the larger PSE and its expressibility in terms of representable phenomena, and a discussion of observations from users of the languages. Moreover I will use these studies to draw general conclusions about biological DSL development, including dependencies upon the goals of the corresponding PSE, strategies, and tradeoffs.

  7. Pinning induced by inter-domain wall interactions in planar magnetic nanowires

    SciTech Connect

    Hayward, T.J.; Bryan, M.T.; Fry, P.W.; Fundi, P.M.; Gibbs, M.R.J.; Allwood, D.A.; Im, M.-Y.; Fischer, P.

    2009-10-30

    We have investigated pinning potentials created by inter-domain wall magnetostatic interactions in planar magnetic nanowires. We show that these potentials can take the form of an energy barrier or an energy well depending on the walls' relative monopole moments, and that the applied magnetic fields required to overcome these potentials are significant. Both transverse and vortex wall pairs are investigated and it is found that transverse walls interact more strongly due to dipolar coupling between their magnetization structures. Simple analytical models which allow the effects of inter-domain wall interactions to be estimated are also presented.

  8. Structural Evidence for Direct Interactions Between the BRCT Domains of Human BRCA1 and a Phospho-Peptide from Human ACC1

    SciTech Connect

    Shen,Y.; Tong, L.

    2008-01-01

    The tandem BRCA1 C-terminal (BRCT) domains are phospho-serine/threonine recognition modules essential for the function of BRCA1. Recent studies suggest that acetyl-CoA carboxylase 1 (ACC1), an enzyme with crucial roles in de novo fatty acid biosynthesis and lipogenesis and essential for cancer cell survival, may be a novel binding partner for BRCA1, through interactions with its BRCT domains. We report here the crystal structure at 3.2 Angstroms resolution of human BRCA1 BRCT domains in complex with a phospho-peptide from human ACC1 (p-ACC1 peptide, with the sequence 1258-DSPPQ-pS-PTFPEAGH-1271), which provides molecular evidence for direct interactions between BRCA1 and ACC1. The p-ACC1 peptide is bound in an extended conformation, located in a groove between the tandem BRCT domains. There are recognizable and significant structural differences to the binding modes of two other phospho-peptides to these domains, from BACH1 and CtIP, even though they share a conserved pSer-Pro-(Thr/Val)-Phe motif. Our studies establish a framework for understanding the regulation of lipid biosynthesis by BRCA1 through its inhibition of ACC1 activity, which could be a novel tumor suppressor function of BRCA1.

  9. Membrane interaction of the factor VIIIa discoidin domains in atomistic detail

    PubMed Central

    Madsen, Jesper J.; Ohkubo, Y. Zenmei; Peters, Günther H.; Faber, Johan H.; Tajkhorshid, Emad; Olsen, Ole H.

    2016-01-01

    A recently developed membrane-mimetic model was applied to study membrane interaction and binding of the two anchoring C2-like discoidin domains of human coagulation factor (F)VIIIa, the C1 and C2 domains. Both individual domains, FVIII C1 and FVIII C2, were observed to bind the phospholipid membrane by partial or full insertion of their extruding loops (the spikes). However, the two domains adopted different molecular orientations in their membrane-bound states; FVIII C2 roughly positioned normal to the membrane plane, while FVIII C1 displayed a multitude of tilted orientations. The results indicate that FVIII C1 may be important in modulating the orientation of the FVIIIa molecule to optimize the interaction with FIXa, which is anchored to the membrane via its γ-carboxyglutamic acid-rich (Gla)-domain. Additionally, a structural change was observed in FVIII C1 in the coiled main chain leading the first spike. A tight interaction with one lipid per domain, similar to what has been suggested for the homologous FVa C2, is characterized. Finally, we rationalize known FVIII antibody epitopes and the scarcity of documented hemophilic missense mutations related to improper membrane binding of FVIIIa, based on the prevalent non-specificity of ionic interactions in the simulated membrane-bound states of FVIII C1 and FVIII C2. PMID:26346528

  10. Does It Make Any Difference if She Is a Mother? An Interactional Perspective on Intimate Partner Violence with a Focus on Motherhood and Pregnancy

    ERIC Educational Resources Information Center

    Vatnar, Solveig Karin Bo; Bjorkly, Stal

    2010-01-01

    The authors report on the impact of motherhood and pregnancy on interactional aspects of intimate partner violence (IPV) among help-seeking women. Is having children a protective or a risk factor for IPV severity, injury, duration, frequency, and mortal danger, controlling for sociodemographics? Regarding interactional aspects of IPV, do survivors…

  11. Hepatocyte nuclear factor 4 alpha ligand binding and F domains mediate interaction and transcriptional synergy with the pancreatic islet LIM HD transcription factor Isl1.

    PubMed

    Eeckhoute, J; Briche, I; Kurowska, M; Formstecher, P; Laine, B

    2006-12-01

    The orphan nuclear receptor HNF4alpha and the LIM homeodomain factor Isl1 are co-expressed in pancreatic beta-cells and are required for the differentiation and function of these endocrine cells. HNF4alpha activates numerous genes and mutations in its gene are associated with maturity onset diabetes of the young. Cofactors and transcription factors that interact with HNF4alpha are crucial to modulate its transcriptional activity, since the latter is not regulated by conventional ligands. These transcriptional partners interact mainly through the HNF4alpha AF-1 module and the ligand binding domain, which contains the AF-2 module. Here, we showed that Isl1 could enhance the HNF4alpha-mediated activation of transcription of the HNF1alpha, PPARalpha and insulin I promoters. Isl1 interacted with the HNF4alpha AF-2 but also required the HNF4alpha carboxy-terminal F domain for optimal interaction and transcriptional synergy. More specifically, we found that naturally occurring HNF4alpha isoforms, differing only in their F domain, exhibited different abilities to interact and synergize with Isl1, extending the crucial transcriptional modulatory role of the HNF4alpha F domain. HNF4alpha interacted with both the homeodomain and the first LIM domain of Isl1. We found that the transcriptional synergy between HNF4alpha and Isl1 involved an increase in HNF4alpha loading on promoter. The effect was more pronounced on the rat insulin I promoter containing binding sites for both HNF4alpha and Isl1 than on the human HNF1alpha promoter lacking an Isl1 binding site. Moreover, Isl1 could mediate the recruitment of the cofactor CLIM2 resulting in a further transcriptional enhancement of the HNF1alpha promoter activity.

  12. Structural interactions between lipids, water and S1-S4 voltage-sensing domains.

    PubMed

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J

    2012-11-01

    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage.

  13. bHLH05 Is an Interaction Partner of MYB51 and a Novel Regulator of Glucosinolate Biosynthesis in Arabidopsis1[W][OPEN

    PubMed Central

    Gigolashvili, Tamara

    2014-01-01

    By means of yeast (Saccharomyces cerevisiae) two-hybrid screening, we identified basic helix-loop-helix transcription factor05 (bHLH05) as an interacting partner of MYB51, the key regulator of indolic glucosinolates (GSLs) in Arabidopsis (Arabidopsis thaliana). Furthermore, we show that bHLH04, bHLH05, and bHLH06/MYC2 also interact with other R2R3-MYBs regulating GSL biosynthesis. Analysis of bhlh loss-of-function mutants revealed that the single bhlh mutants retained GSL levels that were similar to those in wild-type plants, whereas the triple bhlh04/05/06 mutant was depleted in the production of GSL. Unlike bhlh04/06 and bhlh05/06 mutants, the double bhlh04/05 mutant was strongly affected in the production of GSL, pointing to a special role of bHLH04 and bHLH05 in the control of GSL levels in the absence of jasmonic acid. The combination of two specific gain-of-function alleles of MYB and bHLH proteins had an additive effect on GSL levels, as demonstrated by the analysis of the double MYB34-1D bHLH05D94N mutant, which produces 20-fold more indolic GSLs than bHLH05D94N and ecotype Columbia-0 of Arabidopsis. The amino acid substitution D94N in bHLH05D94N negatively affects the interaction with JASMONATE-ZIM DOMAIN protein, thereby resulting in constitutive activation of bHLH05 and mimicking jasmonic acid treatment. Our study revealed the bHLH04, bHLH05, and bHLH06/MYC2 factors as novel regulators of GSL biosynthesis in Arabidopsis. PMID:25049362

  14. The Pilus Usher Controls Protein Interactions via Domain Masking and is Functional as an Oligomer

    PubMed Central

    Werneburg, Glenn T.; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Li, Huilin; Thanassi, David G.

    2015-01-01

    The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria. PMID:26052892

  15. Structures of and Interactions Between Domains of Trigger Factor from Thermotoga maritima

    SciTech Connect

    Martinez-Hackert,E.; Hendrickson, W.

    2007-01-01

    Trigger factor (TF) is a eubacterial chaperone that associates with ribosomes at the peptide-exit tunnel and also occurs in excess free in the cytosol. TF is a three-domain protein that appears to exist in a dynamic equilibrium of oligomerization states and interdomain conformations. X-ray crystallography and chemical cross-linking were used to study the roles of the N- and C-terminal domains of Thermotoga maritima TF in TF oligomerization and chaperone activity. The structural conservation of both the N- and C-terminal TF domains was unambiguously established. The biochemical and crystallographic data reveal a tendency for these domains to partake in diverse and apparently nonspecific protein-protein interactions. It is found that the T. maritima and Escherichia coli TF surfaces lack evident exposed hydrophobic patches. Taken together, these data suggest that TF chaperones could interact with nascent proteins via hydrophilic surfaces.

  16. Integrating natural language processing and web GIS for interactive knowledge domain visualization

    NASA Astrophysics Data System (ADS)

    Du, Fangming

    Recent years have seen a powerful shift towards data-rich environments throughout society. This has extended to a change in how the artifacts and products of scientific knowledge production can be analyzed and understood. Bottom-up approaches are on the rise that combine access to huge amounts of academic publications with advanced computer graphics and data processing tools, including natural language processing. Knowledge domain visualization is one of those multi-technology approaches, with its aim of turning domain-specific human knowledge into highly visual representations in order to better understand the structure and evolution of domain knowledge. For example, network visualizations built from co-author relations contained in academic publications can provide insight on how scholars collaborate with each other in one or multiple domains, and visualizations built from the text content of articles can help us understand the topical structure of knowledge domains. These knowledge domain visualizations need to support interactive viewing and exploration by users. Such spatialization efforts are increasingly looking to geography and GIS as a source of metaphors and practical technology solutions, even when non-georeferenced information is managed, analyzed, and visualized. When it comes to deploying spatialized representations online, web mapping and web GIS can provide practical technology solutions for interactive viewing of knowledge domain visualizations, from panning and zooming to the overlay of additional information. This thesis presents a novel combination of advanced natural language processing - in the form of topic modeling - with dimensionality reduction through self-organizing maps and the deployment of web mapping/GIS technology towards intuitive, GIS-like, exploration of a knowledge domain visualization. A complete workflow is proposed and implemented that processes any corpus of input text documents into a map form and leverages a web

  17. Multiple interaction partners for Cockayne syndrome proteins: implications for genome and transcriptome maintenance

    PubMed Central

    Aamann, Maria D.; Muftuoglu, Meltem; Bohr, Vilhelm A.; Stevnsner, Tinna

    2013-01-01

    Cockayne syndrome (CS) is characterized by progressive multisystem degeneration and is classified as a segmental premature aging syndrome. The majority of CS cases are caused by defects in the CS complementation group B (CSB) protein and the rest are mainly caused by defects in the CS complementation group A (CSA) protein. Cells from CS patients are sensitive to UV light and a number of other DNA damaging agents including various types of oxidative stress. The cells also display transcription deficiencies, abnormal apoptotic response to DNA damage, and DNA repair deficiencies. Herein we have critically reviewed the current knowledge about known protein interactions of the CS proteins. The review focuses on the participation of the CSB and CSA proteins in many different protein interactions and complexes, and how these interactions inform us about pathways that are defective in the disease. PMID:23583689

  18. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions

    PubMed Central

    Delaforge, Elise; Milles, Sigrid; Huang, Jie-rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J.; Blackledge, Martin

    2016-01-01

    Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales. PMID:27679800

  19. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions.

    PubMed

    Delaforge, Elise; Milles, Sigrid; Huang, Jie-Rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J; Blackledge, Martin

    2016-01-01

    Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales. PMID:27679800

  20. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions

    PubMed Central

    Delaforge, Elise; Milles, Sigrid; Huang, Jie-rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J.; Blackledge, Martin

    2016-01-01

    Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.

  1. Comparing domain interactions within antibody Fabs with kappa and lambda light chains

    PubMed Central

    Toughiri, Raheleh; Wu, Xiufeng; Ruiz, Diana; Huang, Flora; Crissman, John W.; Dickey, Mark; Froning, Karen; Conner, Elaine M.; Cujec, Thomas P.; Demarest, Stephen J.

    2016-01-01

    ABSTRACT IgG antibodies are multi-domain proteins with complex inter-domain interactions. Human IgG heavy chains (HCs) associate with light chains (LCs) of the κ or λ isotype to form mature antibodies capable of binding antigen. The HC/LC interaction involves 4 domains: VH and CH1 from the HC and VL and CL from the LC. Human Fabs with κ LCs have been well characterized for their unfolding behaviors and demonstrate a significant level of cooperativity and stabilization when all 4 domains are intact. Very little is known regarding the thermodynamic properties of human Fabs with λ LCs. Here, we dissect the domain contributions to Fab stability for both κ and λ LC-containing Fabs. We find the cooperativity of unfolding between the constant domains, CH1/Cλ, and variable domains, VH/Vλ, within λ LC-containing Fabs is significantly weaker than that of κ LC-containing Fabs. The data suggests there may not be an evolutionary necessity for strong variable/constant domain cooperativity within λ LC-containing Fabs. After investigating the biophysical properties of Fabs with mismatched variable and constant domain subunits (e.g., VH/Vκ paired with CH1/Cλ or T cell receptor Cα/Cβ), the major role of the constant domains for both κ- and λ-containing Fabs may be to reduce the hydrophobic exposure at the VH/VL interface. Even though Fabs with these non-native pairings were thermodynamically less stable, they secreted well from mammalian cells as well behaved monodisperse proteins, which was in contrast to what was observed with the VH/Vκ and VH/Vλ scFvs that secreted as a mixture of monomer and aggregates. PMID:27454112

  2. NMR investigation of the interaction of the inhibitor protein Im9 with its partner DNase.

    PubMed Central

    Boetzel, R.; Czisch, M.; Kaptein, R.; Hemmings, A. M.; James, R.; Kleanthous, C.; Moore, G. R.

    2000-01-01

    The bacterial toxin colicin E9 is secreted by producing Escherichia coli cells with its 9.5 kDa inhibitor protein Im9 bound tightly to its 14.5 kDa C-terminal DNase domain. Double- and triple-resonance NMR spectra of the 24 kDa complex of uniformly 13C and 15N labeled Im9 bound to the unlabeled DNase domain have provided sufficient constraints for the solution structure of the bound Im9 to be determined. For the final ensemble of 20 structures, pairwise RMSDs for residues 3-84 were 0.76 +/- 0.14 A for the backbone atoms and 1.36 +/- 0.15 A for the heavy atoms. Representative solution structures of the free and bound Im9 are highly similar, with backbone and heavy atom RMSDs of 1.63 and 2.44 A, respectively, for residues 4-83, suggesting that binding does not cause a major conformational change in Im9. The NMR studies have also allowed the DNase contact surface on Im9 to be investigated through changes in backbone chemical shifts and NOEs between the two proteins determined from comparisons of 1H-1H-13C NOESY-HSQC spectra with and without 13C decoupling. The NMR-defined interface agrees well with that determined in a recent X-ray structure analysis with the major difference being that a surface loop of Im9, which is at the interface, has a different conformation in the solution and crystal structures. Tyr54, a key residue on the interface, is shown to exhibit NMR characteristics indicative of slow rotational flipping. A mechanistic description of the influence binding of Im9 has on the dynamic behavior of E9 DNase, which is known to exist in two slowly interchanging conformers in solution, is proposed. PMID:11045617

  3. Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein.

    PubMed

    Hurst, Kelley R; Koetzner, Cheri A; Masters, Paul S

    2009-07-01

    The coronavirus nucleocapsid protein (N), together with the large, positive-strand RNA viral genome, forms a helically symmetric nucleocapsid. This ribonucleoprotein structure becomes packaged into virions through association with the carboxy-terminal endodomain of the membrane protein (M), which is the principal constituent of the virion envelope. Previous work with the prototype coronavirus mouse hepatitis virus (MHV) has shown that a major determinant of the N-M interaction maps to the carboxy-terminal domain 3 of the N protein. To explore other domain interactions of the MHV N protein, we expressed a series of segments of the MHV N protein as fusions with green fluorescent protein (GFP) during the course of viral infection. We found that two of these GFP-N-domain fusion proteins were selectively packaged into virions as the result of tight binding to the N protein in the viral nucleocapsid, in a manner that did not involve association with either M protein or RNA. The nature of each type of binding was further explored through genetic analysis. Our results defined two strongly interacting regions of the N protein. One is the same domain 3 that is critical for M protein recognition during assembly. The other is domain N1b, which corresponds to the N-terminal domain that has been structurally characterized in detail for two other coronaviruses, infectious bronchitis virus and the severe acute respiratory syndrome coronavirus.

  4. The measles virus phosphoprotein interacts with the linker domain of STAT1

    SciTech Connect

    Devaux, Patricia Priniski, Lauren; Cattaneo, Roberto

    2013-09-15

    The measles virus (MV) phosphoprotein (P) and V proteins block the interferon (IFN) response by impeding phosphorylation of the signal transducer and activator of transcription 1 (STAT1) by the Janus kinase 1 (JAK1). We characterized how STAT1 mutants interact with P and JAK1 phosphorylation. Certain mutants of the linker, the Src-homology 2 domain (SH2), or the transactivation domain had reduced or abolished phosphorylation through JAK1 after IFN treatment. Other mutants, mainly localized in the linker, failed to interact with P as documented by the lack of interference with nuclear translocation. Thus the functional footprint of P on STAT1 localizes mainly to the linker domain; there is also some overlap with the STAT1 phosphorylation functional footprint on the SH2 domain. Based on these observations, we discuss how the MV-P might operate to inhibit the JAK/STAT pathway. - Highlights: • Residue in the linker and SH2 domains of STAT1 are important for MV-P interaction. • Residue in the linker and SH2 domains of STAT1 are important for STAT1 phosphorylation. • Residues interferring with both functions have similar location on STAT1. • The viral P and V proteins may operate in concert to inhibit the JAK/STAT pathway.

  5. Establishment of a Protein Frequency Library and Its Application in the Reliable Identification of Specific Protein Interaction Partners*

    PubMed Central

    Boulon, Séverine; Ahmad, Yasmeen; Trinkle-Mulcahy, Laura; Verheggen, Céline; Cobley, Andy; Gregor, Peter; Bertrand, Edouard; Whitehorn, Mark; Lamond, Angus I.

    2010-01-01

    The reliable identification of protein interaction partners and how such interactions change in response to physiological or pathological perturbations is a key goal in most areas of cell biology. Stable isotope labeling with amino acids in cell culture (SILAC)-based mass spectrometry has been shown to provide a powerful strategy for characterizing protein complexes and identifying specific interactions. Here, we show how SILAC can be combined with computational methods drawn from the business intelligence field for multidimensional data analysis to improve the discrimination between specific and nonspecific protein associations and to analyze dynamic protein complexes. A strategy is shown for developing a protein frequency library (PFL) that improves on previous use of static “bead proteomes.” The PFL annotates the frequency of detection in co-immunoprecipitation and pulldown experiments for all proteins in the human proteome. It can provide a flexible and objective filter for discriminating between contaminants and specifically bound proteins and can be used to normalize data values and facilitate comparisons between data obtained in separate experiments. The PFL is a dynamic tool that can be filtered for specific experimental parameters to generate a customized library. It will be continuously updated as data from each new experiment are added to the library, thereby progressively enhancing its utility. The application of the PFL to pulldown experiments is especially helpful in identifying either lower abundance or less tightly bound specific components of protein complexes that are otherwise lost among the large, nonspecific background. PMID:20023298

  6. Laminin receptor is an interacting partner for viral outer capsid protein VP5 in grass carp reovirus infection.

    PubMed

    Wang, Hao; Yu, Fei; Li, Jiale; Lu, Liqun

    2016-03-01

    Grass carp reovirus (GCRV) is responsible for viral hemorrhagic disease in cultured grass carp Ctenopharyngon idellus. Through yeast two-hybrid screen, laminin receptor (LamR) was identified as a potential interacting partner for the outer capsid protein VP5 of GCRV. We cloned and sequenced the gene encoding grass carp LamR. Viral attachment assay demonstrated the involvement of membrane-associated LamR in GCRV infection. Solid-phase overlay assays demonstrated that GCRV interacted with GST-tagged LamR in vitro. In contrast to VP7, GST-tagged VP5 was shown to associate with LamR in both pull-down and solid-phase blot overlay assays. With the reduction of LamR expression in CIK cells achieved by RNAi, remarkably reduced infection efficiency of GCRV was observed. CIK cells pretreated with polyclonal antibody against LamR resulted in dose-dependent inhibition of GCRV infection. These results collectively indicated that grass carp LamR was involved in GCRV infection by interacting with viral outer capsid protein VP5.

  7. Identification of Targets and Interaction Partners of Arginyl-tRNA Protein Transferase in the Moss Physcomitrella patens.

    PubMed

    Hoernstein, Sebastian N W; Mueller, Stefanie J; Fiedler, Kathrin; Schuelke, Marc; Vanselow, Jens T; Schuessele, Christian; Lang, Daniel; Nitschke, Roland; Igloi, Gabor L; Schlosser, Andreas; Reski, Ralf

    2016-06-01

    Protein arginylation is a posttranslational modification of both N-terminal amino acids of proteins and sidechain carboxylates and can be crucial for viability and physiology in higher eukaryotes. The lack of arginylation causes severe developmental defects in moss, affects the low oxygen response in Arabidopsis thaliana and is embryo lethal in Drosophila and in mice. Although several studies investigated impact and function of the responsible enzyme, the arginyl-tRNA protein transferase (ATE) in plants, identification of arginylated proteins by mass spectrometry was not hitherto achieved. In the present study, we report the identification of targets and interaction partners of ATE in the model plant Physcomitrella patens by mass spectrometry, employing two different immuno-affinity strategies and a recently established transgenic ATE:GUS reporter line (Schuessele et al., 2016 New Phytol. , DOI: 10.1111/nph.13656). Here we use a commercially available antibody against the fused reporter protein (β-glucuronidase) to pull down ATE and its interacting proteins and validate its in vivo interaction with a class I small heatshock protein via Förster resonance energy transfer (FRET). Additionally, we apply and modify a method that already successfully identified arginylated proteins from mouse proteomes by using custom-made antibodies specific for N-terminal arginine. As a result, we identify four arginylated proteins from Physcomitrella patens with high confidence.Data are available via ProteomeXchange with identifier PXD003228 and PXD003232.

  8. Identification of Targets and Interaction Partners of Arginyl-tRNA Protein Transferase in the Moss Physcomitrella patens.

    PubMed

    Hoernstein, Sebastian N W; Mueller, Stefanie J; Fiedler, Kathrin; Schuelke, Marc; Vanselow, Jens T; Schuessele, Christian; Lang, Daniel; Nitschke, Roland; Igloi, Gabor L; Schlosser, Andreas; Reski, Ralf

    2016-06-01

    Protein arginylation is a posttranslational modification of both N-terminal amino acids of proteins and sidechain carboxylates and can be crucial for viability and physiology in higher eukaryotes. The lack of arginylation causes severe developmental defects in moss, affects the low oxygen response in Arabidopsis thaliana and is embryo lethal in Drosophila and in mice. Although several studies investigated impact and function of the responsible enzyme, the arginyl-tRNA protein transferase (ATE) in plants, identification of arginylated proteins by mass spectrometry was not hitherto achieved. In the present study, we report the identification of targets and interaction partners of ATE in the model plant Physcomitrella patens by mass spectrometry, employing two different immuno-affinity strategies and a recently established transgenic ATE:GUS reporter line (Schuessele et al., 2016 New Phytol. , DOI: 10.1111/nph.13656). Here we use a commercially available antibody against the fused reporter protein (β-glucuronidase) to pull down ATE and its interacting proteins and validate its in vivo interaction with a class I small heatshock protein via Förster resonance energy transfer (FRET). Additionally, we apply and modify a method that already successfully identified arginylated proteins from mouse proteomes by using custom-made antibodies specific for N-terminal arginine. As a result, we identify four arginylated proteins from Physcomitrella patens with high confidence.Data are available via ProteomeXchange with identifier PXD003228 and PXD003232. PMID:27067052

  9. Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides* #

    PubMed Central

    Yu, Hua; Wang, Mao-Jun; Xuan, Nan-Xia; Shang, Zhi-Cai; Wu, Jun

    2015-01-01

    Objective: To provide essential information for peptide inhibitor design, the interactions of Eps15 homology domain of Eps15 homology domain-containing protein 1 (EHD1 EH domain) with three peptides containing NPF (asparagine-proline-phenylalanine), DPF (aspartic acid-proline-phenylalanine), and GPF (glycine-proline-phenylalanine) motifs were deciphered at the atomic level. The binding affinities and the underlying structure basis were investigated. Methods: Molecular dynamics (MD) simulations were performed on EHD1 EH domain/peptide complexes for 60 ns using the GROMACS package. The binding free energies were calculated and decomposed by molecular mechanics/generalized Born surface area (MM/GBSA) method using the AMBER package. The alanine scanning was performed to evaluate the binding hot spot residues using FoldX software. Results: The different binding affinities for the three peptides were affected dominantly by van der Waals interactions. Intermolecular hydrogen bonds provide the structural basis of contributions of van der Waals interactions of the flanking residues to the binding. Conclusions: van der Waals interactions should be the main consideration when we design peptide inhibitors of EHD1 EH domain with high affinities. The ability to form intermolecular hydrogen bonds with protein residues can be used as the factor for choosing the flanking residues. PMID:26465136

  10. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions

    SciTech Connect

    Eibl, Clarissa; Hessenberger, Manuel; Wenger, Julia; Brandstetter, Hans

    2014-07-01

    Pyrin domains (PYDs) recruit downstream effector molecules in NLR signalling. A specific charge-relay system suggests a the formation of a signalling complex involving a PYD dimer. The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain superfamily except for pyrin domains. Here, crystal structures of human NLRP14 pyrin-domain variants are reported. The wild-type protein as well as the clinical D86V mutant reveal an unexpected rearrangement of the C-terminal helix α6, resulting in an extended α5/6 stem-helix. This reordering mediates a novel symmetric pyrin-domain dimerization mode. The conformational switching is controlled by a charge-relay system with a drastic impact on protein stability. How the identified charge relay allows classification of NLRP receptors with respect to distinct recruitment mechanisms is discussed.

  11. Two cell-cycle regulated SET-domain proteins interact with proliferating cell nuclear antigen (PCNA) in Arabidopsis.

    PubMed

    Raynaud, Cécile; Sozzani, Rosangela; Glab, Nathalie; Domenichini, Séverine; Perennes, Claudette; Cella, Rino; Kondorosi, Eva; Bergounioux, Catherine

    2006-08-01

    The proliferating cell nuclear antigen (PCNA) functions as a sliding clamp for DNA polymerase, and is thus a key actor in DNA replication. It is also involved in DNA repair, maintenance of heterochromatic regions throughout replication, cell cycle regulation and programmed cell death. Identification of PCNA partners is therefore necessary for understanding these processes. Here we identify two Arabidopsis SET-domain proteins that interact with PCNA: ATXR5 and ATXR6. A truncated ATXR5Deltaex2, incapable of interacting with PCNA, also occurs in planta. ATXR6, upregulated during the S phase, is upregulated by AtE2F transcription factors, suggesting that it is required for S-phase progression. The two proteins differ in their subcellular localization: ATXR5 has a dual localization in plastids and in the nucleus, whereas ATXR6 is solely nuclear. This indicates that the two proteins may play different roles in plant cells. However, overexpression of either ATXR5 or ATXR6 causes male sterility because of the degeneration of defined cell types. Taken together, our results suggest that both proteins may play a role in the cell cycle or DNA replication, and that the activity of ATXR5 may be regulated via its subcellular localization.

  12. Systematic Analysis of Bacterial Effector-Postsynaptic Density 95/Disc Large/Zonula Occludens-1 (PDZ) Domain Interactions Demonstrates Shigella OspE Protein Promotes Protein Kinase C Activation via PDLIM Proteins*

    PubMed Central

    Yi, Chae-ryun; Allen, John E.; Russo, Brian; Lee, Soo Young; Heindl, Jason E.; Baxt, Leigh A.; Herrera, Bobby Brooke; Kahoud, Emily; MacBeath, Gavin; Goldberg, Marcia B.

    2014-01-01

    Diseases caused by many Gram-negative bacterial pathogens depend on the activities of bacterial effector proteins that are delivered into eukaryotic cells via specialized secretion systems. Effector protein function largely depends on specific subcellular targeting and specific interactions with cellular ligands. PDZ domains are common domains that serve to provide specificity in protein-protein interactions in eukaryotic systems. We show that putative PDZ-binding motifs are significantly enriched among effector proteins delivered into mammalian cells by certain bacterial pathogens. We use PDZ domain microarrays to identify candidate interaction partners of the Shigella flexneri effector proteins OspE1 and OspE2, which contain putative PDZ-binding motifs. We demonstrate in vitro and in cells that OspE proteins interact with PDLIM7, a member of the PDLIM family of proteins, which contain a PDZ domain and one or more LIM domains, protein interaction domains that participate in a wide variety of functions, including activation of isoforms of protein kinase C (PKC). We demonstrate that activation of PKC during S. flexneri infection is attenuated in the absence of PDLIM7 or OspE proteins and that the OspE PDZ-binding motif is required for wild-type levels of PKC activation. These results are consistent with a model in which binding of OspE to PDLIM7 during infection regulates the activity of PKC isoforms that bind to the PDLIM7 LIM domain. PMID:25124035

  13. Systematic analysis of bacterial effector-postsynaptic density 95/disc large/zonula occludens-1 (PDZ) domain interactions demonstrates Shigella OspE protein promotes protein kinase C activation via PDLIM proteins.

    PubMed

    Yi, Chae-ryun; Allen, John E; Russo, Brian; Lee, Soo Young; Heindl, Jason E; Baxt, Leigh A; Herrera, Bobby Brooke; Kahoud, Emily; MacBeath, Gavin; Goldberg, Marcia B

    2014-10-24

    Diseases caused by many Gram-negative bacterial pathogens depend on the activities of bacterial effector proteins that are delivered into eukaryotic cells via specialized secretion systems. Effector protein function largely depends on specific subcellular targeting and specific interactions with cellular ligands. PDZ domains are common domains that serve to provide specificity in protein-protein interactions in eukaryotic systems. We show that putative PDZ-binding motifs are significantly enriched among effector proteins delivered into mammalian cells by certain bacterial pathogens. We use PDZ domain microarrays to identify candidate interaction partners of the Shigella flexneri effector proteins OspE1 and OspE2, which contain putative PDZ-binding motifs. We demonstrate in vitro and in cells that OspE proteins interact with PDLIM7, a member of the PDLIM family of proteins, which contain a PDZ domain and one or more LIM domains, protein interaction domains that participate in a wide variety of functions, including activation of isoforms of protein kinase C (PKC). We demonstrate that activation of PKC during S. flexneri infection is attenuated in the absence of PDLIM7 or OspE proteins and that the OspE PDZ-binding motif is required for wild-type levels of PKC activation. These results are consistent with a model in which binding of OspE to PDLIM7 during infection regulates the activity of PKC isoforms that bind to the PDLIM7 LIM domain.

  14. A systematic, family-wide investigation reveals that ~30% of mammalian PDZ domains engage in PDZ-PDZ interactions

    PubMed Central

    Chang, Bryan H.; Gujral, Taranjit S.; Karp, Ethan S.; BuKhalid, Raghida; Grantcharova, Viara P.; MacBeath, Gavin

    2012-01-01

    Summary PDZ domains are independently folded modules that typically mediate protein-protein interactions by binding to the C-termini of their target proteins. In a few instances, however, PDZ domains have been reported to dimerize with other PDZ domains. To investigate this noncanonical binding mode further, we used protein microarrays comprising virtually every mouse PDZ domain to systematically query all possible PDZ-PDZ pairs. We then used fluorescence polarization to retest and quantify novel interactions and co-affinity purification to test biophysically validated interactions in the context of their full-length proteins. Overall, we discovered 37 PDZ-PDZ interactions involving 46 PDZ domains (~30% of all PDZ domains tested), revealing that dimerization is a more frequently used binding mode than was previously appreciated. This suggests that many PDZ domains evolved to form multiprotein complexes by simultaneously interacting with more than one ligand. PMID:21944753

  15. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain

    SciTech Connect

    Wilbur, Jeremy D.; Hwang, Peter K.; Brodsky, Frances M.; Fletterick, Robert J.

    2010-03-01

    Variable packing interaction related to the conformational flexibility within the huntingtin-interacting protein 1 coiled coil domain. Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington’s disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.

  16. Intramolecular interactions stabilizing compact conformations of the intrinsically disordered kinase-inhibitor domain of Sic1: a molecular dynamics investigation

    PubMed Central

    Lambrughi, Matteo; Papaleo, Elena; Testa, Lorenzo; Brocca, Stefania; De Gioia, Luca; Grandori, Rita

    2012-01-01

    Cyclin-dependent kinase inhibitors (CKIs) are key regulatory proteins of the eukaryotic cell cycle, which modulate cyclin-dependent kinase (Cdk) activity. CKIs perform their inhibitory effect by the formation of ternary complexes with a target kinase and its cognate cyclin. These regulators generally belong to the class of intrinsically disordered proteins (IDPs), which lack a well-defined and organized three-dimensional (3D) structure in their free state, undergoing folding upon binding to specific partners. Unbound IDPs are not merely random-coil structures, but can present intrinsically folded structural units (IFSUs) and collapsed conformations. These structural features can be relevant to protein function in vivo. The yeast CKI Sic1 is a 284-amino acid IDP that binds to Cdk1 in complex with the Clb5,6 cyclins, preventing phosphorylation of G1 substrates and, therefore, entrance to the S phase. Sic1 degradation, triggered by multiple phosphorylation events, promotes cell-cycle progression. Previous experimental studies pointed out a propensity of Sic1 and its isolated domains to populate both extended and compact conformations. The present contribution provides models for compact conformations of the Sic1 kinase-inhibitory domain (KID) by all-atom molecular dynamics (MD) simulations in explicit solvent and in the absence of interactors. The results are integrated by spectroscopic and spectrometric data. Helical IFSUs are identified, along with networks of intramolecular interactions. The results identify a group of putative hub residues and networks of electrostatic interactions, which are likely to be involved in the stabilization of the globular states. PMID:23189058

  17. Syndecans as Cell Surface Receptors in Cancer Biology. A Focus on their Interaction with PDZ Domain Proteins

    PubMed Central

    Cheng, Bill; Montmasson, Marine; Terradot, Laurent; Rousselle, Patricia

    2016-01-01

    Syndecans are transmembrane receptors with ectodomains that are modified by glycosaminoglycan chains. The ectodomains can interact with a wide variety of molecules, including growth factors, cytokines, proteinases, adhesion receptors, and extracellular matrix (ECM) components. The four syndecans in mammals are expressed in a development-, cell-type-, and tissue-specific manner and can function either as co-receptors with other cell surface receptors or as independent adhesion receptors that mediate cell signaling. They help regulate cell proliferation and migration, angiogenesis, cell/cell and cell/ECM adhesion, and they may participate in several key tumorigenesis processes. In some cancers, syndecan expression regulates tumor cell proliferation, adhesion, motility, and other functions, and may be a prognostic marker for tumor progression and patient survival. The short cytoplasmic tail is likely to be involved in these events through recruitment of signaling partners. In particular, the conserved carboxyl-terminal EFYA tetrapeptide sequence that is present in all syndecans binds to some PDZ domain-containing proteins that may function as scaffold proteins that recruit signaling and cytoskeletal proteins to the plasma membrane. There is growing interest in understanding these interactions at both the structural and biological levels, and recent findings show their high degree of complexity. Parameters that influence the recruitment of PDZ domain proteins by syndecans, such as binding specificity and affinity, are the focus of active investigations and are important for understanding regulatory mechanisms. Recent studies show that binding may be affected by post-translational events that influence regulatory mechanisms, such as phosphorylation within the syndecan cytoplasmic tail. PMID:26869927

  18. The Chloroplastic Protein THF1 Interacts with the Coiled-Coil Domain of the Disease Resistance Protein N′ and Regulates Light-Dependent Cell Death1[OPEN

    PubMed Central

    Sekine, Ken-Taro; Wallon, Thérèse; Sugiwaka, Yuji; Kobayashi, Kappei

    2016-01-01

    One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N′, which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N′ results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N′ is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins. PMID:26951433

  19. Quantitative Fragmentome Mapping Reveals Novel, Domain-specific Partners for the Modular Protein RepoMan (Recruits PP1 Onto Mitotic Chromatin at Anaphase)*

    PubMed Central

    Prévost, Michèle; Chamousset, Delphine; Nasa, Isha; Freele, Emily; Morrice, Nick; Moorhead, Greg; Trinkle-Mulcahy, Laura

    2013-01-01

    RepoMan is a protein phosphatase 1 (PP1) regulatory subunit that targets the phosphatase to key substrates throughout the cell cycle. Most work to date has focused on the mitotic roles of RepoMan/PP1, although equally important interphase role(s) have been demonstrated. Initial mapping of the interactome of nuclear RepoMan, both endogenous and tagged, was complicated by various factors, including antibody cross-reactivity and low sensitivity of the detection of chromatin-associated partners above the high background of proteins that bind nonspecifically to affinity matrices. We therefore adapted the powerful combination of fluorescence imaging with labeling-based quantitative proteomics to map the “fragmentomes” of specific regions of RepoMan. These regions demonstrate distinct localization patterns and turnover dynamics that reflect underlying binding events. The increased sensitivity and signal-to-noise ratio provided by this unique approach facilitated identification of a large number of novel RepoMan interactors, several of which were rigorously validated in follow-up experiments, including the association of RepoMan/PP1 with a specific PP2A-B56γ complex, interaction with ribosomal proteins and import factors involved in their nucleocytoplasmic transport and interaction with proteins involved in the response to DNA damage. This same strategy can be used to investigate the cellular roles of other modular proteins. PMID:23362328

  20. D-SLIMMER: domain-SLiM interaction motifs miner for sequence based protein-protein interaction data.

    PubMed

    Hugo, Willy; Ng, See-Kiong; Sung, Wing-Kin

    2011-12-01

    Many biologically important protein-protein interactions (PPIs) have been found to be mediated by short linear motifs (SLiMs). These interactions are mediated by the binding of a protein domain, often with a nonlinear interaction interface, to a SLiM. We propose a method called D-SLIMMER to mine for SLiMs in PPI data on the basis of the interaction density between a nonlinear motif (i.e., a protein domain) in one protein and a SLiM in the other protein. Our results on a benchmark of 113 experimentally verified reference SLiMs showed that D-SLIMMER outperformed existing methods notably for discovering domain-SLiMs interaction motifs. To illustrate the significance of the SLiMs detected, we highlighted two SLiMs discovered from the PPI data by D-SLIMMER that are variants of the known ELM SLiM, as well as a literature-backed SLiM that is yet to be listed in the reference databases. We also presented a novel SLiM predicted by D-SLIMMER that was strongly supported by existing biological literatures. These examples showed that D-SLIMMER is able to find SLiMs that are biologically relevant.

  1. {pi}- and {rho}-mesons, and their diquark partners, from a contact interaction.

    SciTech Connect

    Roberts, H. L. L.; Bashir, A.; Gutierrez-Guerrero, L. X.; Roberts, C. D.; Wilson, D. J.

    2011-06-22

    We present a unified Dyson-Schwinger equation treatment of static and electromagnetic properties of pseudoscalar and vector mesons, and scalar and axial-vector diquark correlations, based upon a vector-vector contact interaction. A basic motivation for this paper is the need to document a comparison between the electromagnetic form factors of mesons and those diquarks that play a material role in nucleon structure. A notable result, therefore, is the large degree of similarity between related meson and diquark form factors. The simplicity of the interaction enables computation of the form factors at arbitrarily large spacelike Q{sup 2}, which enables us to expose a zero in the {rho}-meson electric form factor at z{sub Q}{sup {rho}} {approx} {radical}6m{sub {rho}}. Notably, r{sub {rho}}z{sub Q}{sup {rho}} {approx} r{sub D}z{sub Q}{sup D}, where r{sub {rho}} and r{sub D} are, respectively, the electric radii of the {rho}-meson and deuteron.

  2. Structure and function of the interacting domains of Spire and Fmn-family formins

    SciTech Connect

    Vizcarra, Christina L.; Kreutz, Barry; Rodal, Avital A.; Toms, Angela V.; Lu, Jun; Zheng, Wei; Quinlan, Margot E.; Eck, Michael J.

    2012-07-11

    Evidence for cooperation between actin nucleators is growing. The WH2-containing nucleator Spire and the formin Cappuccino interact directly, and both are essential for assembly of an actin mesh during Drosophila oogenesis. Their interaction requires the kinase noncatalytic C-lobe domain (KIND) domain of Spire and the C-terminal tail of the formin. Here we describe the crystal structure of the KIND domain of human Spir1 alone and in complex with the tail of Fmn2, a mammalian ortholog of Cappuccino. The KIND domain is structurally similar to the C-lobe of protein kinases. The Fmn2 tail is coordinated in an acidic cleft at the base of the domain that appears to have evolved via deletion of a helix from the canonical kinase fold. Our functional analysis of Cappuccino reveals an unexpected requirement for its tail in actin assembly. In addition, we find that the KIND/tail interaction blocks nucleation by Cappuccino and promotes its displacement from filament barbed ends providing insight into possible modes of cooperation between Spire and Cappuccino.

  3. Bacterial interactomes: Interacting protein partners share similar function and are validated in independent assays more frequently than previously reported.

    DOE PAGESBeta

    Shatsky, Maxim; Allen, Simon; Gold, Barbara; Liu, Nancy L.; Juba, Thomas R.; Elias, Dwayne A; Reveco, Sonia A.; Prathapam, Ramadevi; He, Jennifer; Yang, Wenhong; et al

    2016-05-01

    Numerous affinity purification – mass-spectrometry (AP-MS) and yeast two hybrid (Y2H) screens have each defined thousands of pairwise protein-protein interactions (PPIs), most between functionally unrelated proteins. The accuracy of these networks, however, is under debate. Here we present an AP-MS survey of the bacterium Desulfovibrio vulgaris together with a critical reanalysis of nine published bacterial Y2H and AP-MS screens. We have identified 459 high confidence PPIs from D. vulgaris and 391 from Escherichia coli. Compared to the nine published interactomes, our two networks are smaller; are much less highly connected; have significantly lower false discovery rates; and are much moremore » enriched in protein pairs that are encoded in the same operon, have similar functions, and are reproducibly detected in other physical interaction assays. Lastly, our work establishes more stringent benchmarks for the properties of protein interactomes and suggests that bona fide PPIs much more frequently involve protein partners that are annotated with similar functions or that can be validated in independent assays than earlier studies suggested.« less

  4. Bacterial Interactomes: Interacting Protein Partners Share Similar Function and Are Validated in Independent Assays More Frequently Than Previously Reported.

    PubMed

    Shatsky, Maxim; Allen, Simon; Gold, Barbara L; Liu, Nancy L; Juba, Thomas R; Reveco, Sonia A; Elias, Dwayne A; Prathapam, Ramadevi; He, Jennifer; Yang, Wenhong; Szakal, Evelin D; Liu, Haichuan; Singer, Mary E; Geller, Jil T; Lam, Bonita R; Saini, Avneesh; Trotter, Valentine V; Hall, Steven C; Fisher, Susan J; Brenner, Steven E; Chhabra, Swapnil R; Hazen, Terry C; Wall, Judy D; Witkowska, H Ewa; Biggin, Mark D; Chandonia, John-Marc; Butland, Gareth

    2016-05-01

    Numerous affinity purification-mass spectrometry (AP-MS) and yeast two-hybrid screens have each defined thousands of pairwise protein-protein interactions (PPIs), most of which are between functionally unrelated proteins. The accuracy of these networks, however, is under debate. Here, we present an AP-MS survey of the bacterium Desulfovibrio vulgaris together with a critical reanalysis of nine published bacterial yeast two-hybrid and AP-MS screens. We have identified 459 high confidence PPIs from D. vulgaris and 391 from Escherichia coli Compared with the nine published interactomes, our two networks are smaller, are much less highly connected, and have significantly lower false discovery rates. In addition, our interactomes are much more enriched in protein pairs that are encoded in the same operon, have similar functions, and are reproducibly detected in other physical interaction assays than the pairs reported in prior studies. Our work establishes more stringent benchmarks for the properties of protein interactomes and suggests that bona fide PPIs much more frequently involve protein partners that are annotated with similar functions or that can be validated in independent assays than earlier studies suggested. PMID:26873250

  5. Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation.

    PubMed

    Zhao, Chuntao; Deng, Yaqi; Liu, Lei; Yu, Kun; Zhang, Liguo; Wang, Haibo; He, Xuelian; Wang, Jincheng; Lu, Changqing; Wu, Laiman N; Weng, Qinjie; Mao, Meng; Li, Jianrong; van Es, Johan H; Xin, Mei; Parry, Lee; Goldman, Steven A; Clevers, Hans; Lu, Q Richard

    2016-01-01

    Constitutive activation of Wnt/β-catenin inhibits oligodendrocyte myelination. Tcf7l2/Tcf4, a β-catenin transcriptional partner, is required for oligodendrocyte differentiation. How Tcf7l2 modifies β-catenin signalling and controls myelination remains elusive. Here we define a stage-specific Tcf7l2-regulated transcriptional circuitry in initiating and sustaining oligodendrocyte differentiation. Multistage genome occupancy analyses reveal that Tcf7l2 serially cooperates with distinct co-regulators to control oligodendrocyte lineage progression. At the differentiation onset, Tcf7l2 interacts with a transcriptional co-repressor Kaiso/Zbtb33 to block β-catenin signalling. During oligodendrocyte maturation, Tcf7l2 recruits and cooperates with Sox10 to promote myelination. In that context, Tcf7l2 directly activates cholesterol biosynthesis genes and cholesterol supplementation partially rescues oligodendrocyte differentiation defects in Tcf712 mutants. Together, we identify stage-specific co-regulators Kaiso and Sox10 that sequentially interact with Tcf7l2 to coordinate the switch at the transitions of differentiation initiation and maturation during oligodendrocyte development, and point to a previously unrecognized role of Tcf7l2 in control of cholesterol biosynthesis for CNS myelinogenesis. PMID:26955760

  6. Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation

    PubMed Central

    Zhao, Chuntao; Deng, Yaqi; Liu, Lei; Yu, Kun; Zhang, Liguo; Wang, Haibo; He, Xuelian; Wang, Jincheng; Lu, Changqing; Wu, Laiman N; Weng, Qinjie; Mao, Meng; Li, Jianrong; van Es, Johan H; Xin, Mei; Parry, Lee; Goldman, Steven A; Clevers, Hans; Lu, Q. Richard

    2016-01-01

    Constitutive activation of Wnt/β-catenin inhibits oligodendrocyte myelination. Tcf7l2/Tcf4, a β-catenin transcriptional partner, is required for oligodendrocyte differentiation. How Tcf7l2 modifies β-catenin signalling and controls myelination remains elusive. Here we define a stage-specific Tcf7l2-regulated transcriptional circuitry in initiating and sustaining oligodendrocyte differentiation. Multistage genome occupancy analyses reveal that Tcf7l2 serially cooperates with distinct co-regulators to control oligodendrocyte lineage progression. At the differentiation onset, Tcf7l2 interacts with a transcriptional co-repressor Kaiso/Zbtb33 to block β-catenin signalling. During oligodendrocyte maturation, Tcf7l2 recruits and cooperates with Sox10 to promote myelination. In that context, Tcf7l2 directly activates cholesterol biosynthesis genes and cholesterol supplementation partially rescues oligodendrocyte differentiation defects in Tcf712 mutants. Together, we identify stage-specific co-regulators Kaiso and Sox10 that sequentially interact with Tcf7l2 to coordinate the switch at the transitions of differentiation initiation and maturation during oligodendrocyte development, and point to a previously unrecognized role of Tcf7l2 in control of cholesterol biosynthesis for CNS myelinogenesis. PMID:26955760

  7. Tctex-1, a Novel Interaction Partner of Rab3D, Is Required for Osteoclastic Bone Resorption ▿

    PubMed Central

    Pavlos, Nathan J.; Cheng, Tak Sum; Qin, An; Ng, Pei Ying; Feng, Hao-Tian; Ang, Estabelle S. M.; Carrello, Amerigo; Sung, Ching-Hwa; Jahn, Reinhard; Zheng, Ming-Hao; Xu, Jiake

    2011-01-01

    Vesicular transport along microtubules must be strictly regulated to sustain the unique structural and functional polarization of bone-resorbing osteoclasts. However, the molecular mechanisms bridging these vesicle-microtubule interactions remain largely obscure. Rab3D, a member of the Rab3 subfamily (Rab3A/B/C/D) of small exocytotic GTPases, represents a core component of the osteoclastic vesicle transport machinery. Here, we identify a new Rab3D-interacting partner, Tctex-1, a light chain of the cytoplasmic dynein microtubule motor complex, by a yeast two-hybrid screen. We demonstrate that Tctex-1 binds specifically to Rab3D in a GTP-dependent manner and co-occupies Rab3D-bearing vesicles in bone-resorbing osteoclasts. Furthermore, we provide evidence that Tctex-1 and Rab3D intimately associate with the dynein motor complex and microtubules in osteoclasts. Finally, targeted disruption of Tctex-1 by RNA interference significantly impairs bone resorption capacity and mislocalizes Rab3D vesicles in osteoclasts, attesting to the notion that components of the Rab3D-trafficking pathway contribute to the maintenance of osteoclastic resorptive function. PMID:21262767

  8. REST/NRSF-Interacting LIM Domain Protein, a Putative Nuclear Translocation Receptor

    PubMed Central

    Shimojo, Masahito; Hersh, Louis B.

    2003-01-01

    The transcriptional repressor REST/NRSF (RE-1 silencing transcription factor/neuron-restrictive silencer factor) and the transcriptional regulator REST4 share an N-terminal zinc finger domain structure involved in nuclear targeting. Using this domain as bait in a yeast two-hybrid screen, a novel protein that contains three LIM domains, putative nuclear localization sequences, protein kinase A phosphorylation sites, and a CAAX prenylation motif was isolated. This protein, which is localized around the nucleus, is involved in determining the nuclear localization of REST4 and REST/NRSF. We propose the name RILP, for REST/NRSF-interacting LIM domain protein, to label this novel protein. RILP appears to serve as a nuclear receptor for REST/NRSF, REST4, and possibly other transcription factors. PMID:14645515

  9. Formation of functional cell membrane domains: the interplay of lipid- and protein-mediated interactions.

    PubMed Central

    Harder, Thomas

    2003-01-01

    Numerous cell membrane associated processes, including signal transduction, membrane sorting, protein processing and virus trafficking take place in membrane subdomains. Protein-protein interactions provide the frameworks necessary to generate biologically functional membrane domains. For example, coat proteins define membrane areas destined for sorting processes, viral proteins self-assemble to generate a budding virus, and adapter molecules organize multimolecular signalling assemblies, which catalyse downstream reactions. The concept of raft lipid-based membrane domains provides a different principle for compartmentalization and segregation of membrane constituents. Accordingly, rafts are defined by the physical properties of the lipid bilayer and function by selective partitioning of membrane lipids and proteins into membrane domains of specific phase behaviour and lipid packing. Here, I will discuss the interplay of these independent principles of protein scaffolds and raft lipid microdomains leading to the generation of biologically functional membrane domains. PMID:12803918

  10. Direct imaging of domain wall interactions in Ni80Fe20 planar nanowires

    SciTech Connect

    Hayward, T. J.; Bryan, M. T.; Fry, P. W.; Fundi, P. M.; Gibbs, M. R. J.; Allwood, D. A.; Im, M.-Y.; Fischer, P.

    2010-01-18

    We have investigated magnetostatic interactions between domain walls in Ni{sub 80}Fe{sub 20} planar nanowires using magnetic soft x-ray microscopy and micromagnetic simulations. In addition to significant monopole-like attraction and repulsion effects we observe that there is coupling of the magnetization configurations of the walls. This is explained in terms of an interaction energy that depends not only on the distance between the walls, but also upon their internal magnetization structure.

  11. A novel DFP tripeptide motif interacts with the coagulation factor XI apple 2 domain

    PubMed Central

    Wong, Szu S.; Østergaard, Søren; Hall, Gareth; Li, Chan; Williams, Philip M.; Stennicke, Henning

    2016-01-01

    Factor XI (FXI) is the zymogen of FXIa, which cleaves FIX in the intrinsic pathway of coagulation. FXI is known to exist as a dimer and interacts with multiple proteins via its 4 apple domains in the “saucer section” of the enzyme; however, to date, no complex crystal structure has been described. To investigate protein interactions of FXI, a large random peptide library consisting of 106 to 107 peptides was screened for FXI binding, which identified a series of FXI binding motifs containing the signature Asp-Phe-Pro (DFP) tripeptide. Motifs containing this core tripeptide were found in diverse proteins, including the known ligand high-molecular-weight kininogen (HK), as well as the extracellular matrix proteins laminin and collagen V. To define the binding site on FXI, we determined the crystal structure of FXI in complex with the HK-derived peptide NPISDFPDT. This revealed the location of the DFP peptide bound to the FXI apple 2 domain, and central to the interaction, the DFP phenylalanine side-chain inserts into a major hydrophobic pocket in the apple 2 domain and the isoleucine occupies a flanking minor pocket. Two further structures of FXI in complex with the laminin-derived peptide EFPDFP and a DFP peptide from the random screen demonstrated binding in the same pocket, although in a slightly different conformation, thus revealing some flexibility in the molecular interactions of the FXI apple 2 domain. PMID:27006387

  12. Mapping the interactions between the Alzheimer's Aβ-peptide and human serum albumin beyond domain resolution.

    PubMed

    Algamal, Moustafa; Milojevic, Julijana; Jafari, Naeimeh; Zhang, William; Melacini, Giuseppe

    2013-10-01

    Human serum albumin (HSA) is a potent inhibitor of Aβ self-association and this novel, to our knowledge, function of HSA is of potential therapeutic interest for the treatment of Alzheimer's disease. It is known that HSA interacts with Aβ oligomers through binding sites evenly partitioned across the three albumin domains and with comparable affinities. However, as of this writing, no information is available on the HSA-Aβ interactions beyond domain resolution. Here, we map the HSA-Aβ interactions at subdomain and peptide resolution. We show that each separate subdomain of HSA domain 3 inhibits Aβ self-association. We also show that fatty acids (FAs) compete with Aβ oligomers for binding to domain 3, but the determinant of the HSA/Aβ oligomer interactions are markedly distinct from those of FAs. Although salt bridges with the FA carboxylate determine the FA binding affinities, hydrophobic contacts are pivotal for Aβ oligomer recognition. Specifically, we identified a site of Aβ oligomer recognition that spans the HSA (494-515) region and aligns with the central hydrophobic core of Aβ. The HSA (495-515) segment includes residues affected by FA binding and this segment is prone to self-associate into β-amyloids, suggesting that sites involved in fibrilization may provide a lead to develop inhibitors of Aβ self-association. PMID:24094411

  13. Using siRNA to define functional interactions between melanopsin and multiple G Protein partners.

    PubMed

    Hughes, Steven; Jagannath, Aarti; Hickey, Doron; Gatti, Silvia; Wood, Matthew; Peirson, Stuart N; Foster, Russell G; Hankins, Mark W

    2015-01-01

    Melanopsin expressing photosensitive retinal ganglion cells (pRGCs) represent a third class of ocular photoreceptors and mediate a range of non-image forming responses to light. Melanopsin is a G protein coupled receptor (GPCR) and existing data suggest that it employs a membrane bound signalling cascade involving Gnaq/11 type G proteins. However, to date the precise identity of the Gα subunits involved in melanopsin phototransduction remains poorly defined. Here we show that Gnaq, Gna11 and Gna14 are highly co-expressed in pRGCs of the mouse retina. Furthermore, using RNAi based gene silencing we show that melanopsin can signal via Gnaq, Gna11 or Gna14 in vitro, and demonstrate that multiple members of the Gnaq/11 subfamily, including Gna14 and at least Gnaq or Gna11, can participate in melanopsin phototransduction in vivo and contribute to the pupillary light responses of mice lacking rod and cone photoreceptors. This diversity of G protein interactions suggests additional complexity in the melanopsin phototransduction cascade and may provide a basis for generating the diversity of light responses observed from pRGC subtypes.

  14. Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4.

    PubMed

    Gorbenko, O; Panayotou, G; Zhyvoloup, A; Volkova, D; Gout, I; Filonenko, V

    2010-04-01

    PTEN is a tumor suppressor with dual protein and lipid-phosphatase activity, which is frequently deleted or mutated in many human advanced cancers. Recent studies have also demonstrated that PTEN is a promising target in type II diabetes and obesity treatment. Using C-terminal PTEN sequence in pEG202-NLS as bait, yeast two-hybrid screening on Mouse Embryo, Colon Cancer, and HeLa cDNA libraries was carried out. Isolated positive clones were validated by mating assay and identified through automated DNA sequencing and BLAST database searches. Sequence analysis revealed a number of PTEN-binding proteins linking this phosphatase to a number of different signaling cascades, suggesting that PTEN may perform other functions besides tumor-suppressing activity in different cell types. In particular, the interplay between PTEN function and adipocyte-specific fatty-acid-binding protein FABP4 is of notable interest. The demonstrable tautology of PTEN to FABP4 suggested a role for this phosphatase in the regulation of lipid metabolism and adipocyte differentiation. This interaction was further studied using coimmunoprecipitation and gel-filtration assays. Finally, based on Biacore assay, we have calculated the K(D) of PTEN-FABP4 complex, which is around 2.8 microM.

  15. Cognitive deficits and disruption of neurogenesis in a mouse model of apolipoprotein E4 domain interaction.

    PubMed

    Adeosun, Samuel O; Hou, Xu; Zheng, Baoying; Stockmeier, Craig; Ou, Xiaoming; Paul, Ian; Mosley, Thomas; Weisgraber, Karl; Wang, Jun Ming

    2014-01-31

    Apolipoprotein E4 (apoE4) allele is the major genetic risk factor for sporadic Alzheimer disease (AD) due to the higher prevalence and earlier onset of AD in apoE4 carriers. Accumulating data suggest that the interaction between the N- and the C-terminal domains in the protein may be the main pathologic feature of apoE4. To test this hypothesis, we used Arg-61 mice, a model of apoE4 domain interaction, by introducing the domain interaction feature of human apoE4 into native mouse apoE. We carried out hippocampus-dependent learning and memory tests and related cellular and molecular assays on 12- and 3-month-old Arg-61 and age-matched background C57BL/6J mice. Learning and memory task performance were impaired in Arg-61 mice at both old and young ages compared with C57BL/6J mice. Surprisingly, young Arg-61 mice had more mitotic doublecortin-positive cells in the subgranular zone; mRNA levels of brain-derived neurotrophic factor (BDNF) and TrkB were also higher in 3-month-old Arg-61 hippocampus compared with C57BL/6J mice. These early-age neurotrophic and neurogenic (proliferative) effects in the Arg-61 mouse may be an inadequate compensatory but eventually detrimental attempt by the system to "repair" itself. This is supported by the higher cleaved caspase-3 levels in the young animals that not only persisted, but increased in old age, and the lower levels of doublecortin at old age in the hippocampus of Arg-61 mice. These results are consistent with human apoE4-dependent cognitive and neuro-pathologic changes, supporting the principal role of domain interaction in the pathologic effect of apoE4. Domain interaction is, therefore, a viable therapeutic/prophylactic target for cognitive impairment and AD in apoE4 subjects.

  16. The intracellular domain of Dumbfounded affects myoblast fusion efficiency and interacts with Rolling pebbles and Loner.

    PubMed

    Bulchand, Sarada; Menon, Sree Devi; George, Simi Elizabeth; Chia, William

    2010-02-23

    Drosophila body wall muscles are multinucleated syncytia formed by successive fusions between a founder myoblast and several fusion competent myoblasts. Initial fusion gives rise to a bi/trinucleate precursor followed by more fusion cycles forming a mature muscle. This process requires the functions of various molecules including the transmembrane myoblast attractants Dumbfounded (Duf) and its paralogue Roughest (Rst), a scaffold protein Rolling pebbles (Rols) and a guanine nucleotide exchange factor Loner. Fusion completely fails in a duf, rst mutant, and is blocked at the bi/trinucleate stage in rols and loner single mutants. We analysed the transmembrane and intracellular domains of Duf, by mutating conserved putative signaling sites and serially deleting the intracellular domain. These were tested for their ability to translocate and interact with Rols and Loner and to rescue the fusion defect in duf, rst mutant embryos. Studying combinations of double mutants, further tested the function of Rols, Loner and other fusion molecules. Here we show that serial truncations of the Duf intracellular domain successively compromise its function to translocate and interact with Rols and Loner in addition to affecting myoblast fusion efficiency in embryos. Putative phosphorylation sites function additively while the extreme C terminus including a PDZ binding domain is dispensable for its function. We also show that fusion is completely blocked in a rols, loner double mutant and is compromised in other double mutants. These results suggest an additive function of the intracellular domain of Duf and an early function of Rols and Loner which is independent of Duf.

  17. Improving protein-protein interaction article classification using biological domain knowledge.

    PubMed

    Chen, Yifei; Guo, Hongjian; Liu, Feng; Manderick, Bernard

    2015-01-01

    Interaction Article Classification (IAC) is a specific text classification application in biological domain that tries to find out which articles describe Protein-Protein Interactions (PPIs) to help extract PPIs from biological literature more efficiently. However, the existing text representation and feature weighting schemes commonly used for text classification are not well suited for IAC. We capture and utilise biological domain knowledge, i.e. gene mentions also known as protein or gene names in the articles, to address the problem. We put forward a new gene mention order-based approach that highlights the important role of gene mentions to represent the texts. Furthermore, we also incorporate the information concerning gene mentions into a novel feature weighting scheme called Gene Mention-based Term Frequency (GMTF). By conducting experiments, we show that using the proposed representation and weighting schemes, our Interaction Article Classifier (IACer) performs better than other leading systems for the moment.

  18. Accomodation of the speed distribution of magnetic domain walls to their eddy current interactions

    NASA Astrophysics Data System (ADS)

    Bishop, J. E. L.

    1990-05-01

    The eddy interaction of Pry & Bean type domain walls, distributed randomly across a lamination, is investigated by Monte Carlo simulation supported, for large mean domain width/lamination thickness ratio overlineW/D , by analysis. When all walls are constrained to make equal flux rate contributions, the eddy loss exceeds the "classical" (uniform dB/ dt ) loss Λ c by a factor η R = η O + 1 where η O = 1.628 overlineW/D is the corresponding factor without eddy overlap. This confirms earlier work. Howe ver, when each wall adjusts its rate to balance eddy drag and applied field pressure, a lower ratio η A = η O + Δη A results with 0.7 < Δη A < 1. This is contrary to Bertotti's rule that independent random eddy interactions contribute Λ c while correlated interactions make a higher contribution.

  19. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains.

    PubMed

    Wright, Patrick R; Georg, Jens; Mann, Martin; Sorescu, Dragos A; Richter, Andreas S; Lott, Steffen; Kleinkauf, Robert; Hess, Wolfgang R; Backofen, Rolf

    2014-07-01

    CopraRNA (Comparative prediction algorithm for small RNA targets) is the most recent asset to the Freiburg RNA Tools webserver. It incorporates and extends the functionality of the existing tool IntaRNA (Interacting RNAs) in order to predict targets, interaction domains and consequently the regulatory networks of bacterial small RNA molecules. The CopraRNA prediction results are accompanied by extensive postprocessing methods such as functional enrichment analysis and visualization of interacting regions. Here, we introduce the functionality of the CopraRNA and IntaRNA webservers and give detailed explanations on their postprocessing functionalities. Both tools are freely accessible at http://rna.informatik.uni-freiburg.de. PMID:24838564

  20. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains

    PubMed Central

    Wright, Patrick R.; Georg, Jens; Mann, Martin; Sorescu, Dragos A.; Richter, Andreas S.; Lott, Steffen; Kleinkauf, Robert; Hess, Wolfgang R.; Backofen, Rolf

    2014-01-01

    CopraRNA (Comparative prediction algorithm for small RNA targets) is the most recent asset to the Freiburg RNA Tools webserver. It incorporates and extends the functionality of the existing tool IntaRNA (Interacting RNAs) in order to predict targets, interaction domains and consequently the regulatory networks of bacterial small RNA molecules. The CopraRNA prediction results are accompanied by extensive postprocessing methods such as functional enrichment analysis and visualization of interacting regions. Here, we introduce the functionality of the CopraRNA and IntaRNA webservers and give detailed explanations on their postprocessing functionalities. Both tools are freely accessible at http://rna.informatik.uni-freiburg.de. PMID:24838564

  1. Interactive computer graphic surface modeling of three-dimensional solid domains for boundary element analysis

    NASA Technical Reports Server (NTRS)

    Perucchio, R.; Ingraffea, A. R.

    1984-01-01

    The establishment of the boundary element method (BEM) as a valid tool for solving problems in structural mechanics and in other fields of applied physics is discussed. The development of an integrated interactive computer graphic system for the application of the BEM to three dimensional problems in elastostatics is described. The integration of interactive computer graphic techniques and the BEM takes place at the preprocessing and postprocessing stages of the analysis process, when, respectively, the data base is generated and the results are interpreted. The interactive computer graphic modeling techniques used for generating and discretizing the boundary surfaces of a solid domain are outlined.

  2. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF

    PubMed Central

    García-Cano, Elena; Magori, Shimpei; Sun, Qi; Ding, Zehong; Lazarowitz, Sondra G.; Citovsky, Vitaly

    2015-01-01

    Agrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS) to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins. Here we identify one such interactor, an Arabidopsis trihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. To better understand the potential scope of VFP3 function, we used RNAi to reduce expression of the VFP3 gene. Transcriptome profiling of these VFP3-silenced plants using high-throughput cDNA sequencing (RNA-seq) revealed that VFP3 substantially affected plant gene expression; specifically, 1,118 genes representing approximately 5% of all expressed genes were significantly either up- or down-regulated in the VFP3 RNAi line compared to wild-type Col-0 plants. Among the 507 up-regulated genes were genes implicated in the regulation of transcription, protein degradation, calcium signaling, and hormone metabolism, whereas the 611 down-regulated genes included those involved in redox regulation, light reactions of photosynthesis, and metabolism of lipids, amino acids, and cell wall. Overall, this pattern of changes in gene expression is characteristic of plants under stress. Thus, VFP3 likely plays an important role in controlling plant homeostasis. PMID:26571494

  3. Interactions of ataxin-3 with its molecular partners in the protein machinery that sorts protein aggregates to the aggresome.

    PubMed

    Bonanomi, Marcella; Mazzucchelli, Serena; D'Urzo, Annalisa; Nardini, Marco; Konarev, Petr V; Invernizzi, Gaetano; Svergun, Dmitri I; Vanoni, Marco; Regonesi, Maria Elena; Tortora, Paolo

    2014-06-01

    Ataxin-3 (AT3) is the protein that triggers the inherited neurodegenerative disorder spinocerebellar ataxia type 3 when its polyglutamine (polyQ) stretch close to the C-terminus exceeds a critical length. AT3 consists of the N-terminal globular Josephin domain (JD) and the C-terminal disordered one. It cleaves isopeptide bonds between ubiquitin monomers, an event involved in protein quality control mechanisms. AT3 has been implicated in the pathway that sorts aggregated protein to aggresomes via microtubules, in which dynein and histone deacetylase 6 (HDAC6) also seem to be involved. By taking advantage of small angle X-ray scattering (SAXS) and surface plasmon resonance (SPR), we have investigated the interaction of AT3 with tubulin and HDAC6. Based on SAXS results, the AT3 oligomer, consisting of 6-7 subunits, tightly binds to the tubulin hexameric oligomer in a "parallel" fashion. By SPR analysis we have demonstrated that AT3 binds to tubulin dimer with a 50nM affinity. Binding fits with a Langmuir 1:1 model and involves a single binding interface. Nevertheless, the interaction surface consists of three distinct, discontinuous tubulin-binding regions (TBR), one located in the JD, and the two others in the disordered domain, upstream and downstream of the polyQ stretch. In the absence of any of the three TBRs, the affinity is drastically reduced. By SPR we have also provided the first evidence of direct binding of AT3 to HDAC6, with affinity in the range 0.1-1μM. These results shed light on the interactions among the components of the transport machinery that sorts aggregate protein to the aggresome, and pave the way to in vivo studies aimed at further clarifying their roles.

  4. UAP56 is a novel interacting partner of Bcr in regulating vascular smooth muscle cell DNA synthesis

    SciTech Connect

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey D.

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer UAP56 is an important regulator of DNA synthesis in vascular smooth muscle cells. Black-Right-Pointing-Pointer UAP56 binds to Bcr. Black-Right-Pointing-Pointer Interaction between Bcr and UAP56 is critical for Bcr induced DNA synthesis. -- Abstract: Bcr is a serine/threonine kinase that is a critical regulator of vascular smooth muscle cell inflammation and proliferation. We have previously demonstrated that Bcr acts in part via phosphorylation and inhibition of PPAR{gamma}. We have identified the RNA helicase UAP56 as another substrate of Bcr. In this report we demonstrate that knockdown of UAP56 blocks Bcr induced DNA synthesis in vascular smooth muscle cells (VSMC). We also found that over expression of Bcr increased the expression of cyclin E and decreased the expression of p27. Knockdown of UAP56 reversed the effect of Bcr on cyclin E and p27 expression. Furthermore, we found that Bcr binds to UAP56 and demonstrate that binding of UAP56 to Bcr is critical for Bcr induced DNA synthesis in VSMC. Our data identify UAP56 as an important binding partner of Bcr and a novel target for inhibiting vascular smooth muscle cell proliferation.

  5. Protein-protein interaction domains of Bacillus subtilis DivIVA.

    PubMed

    van Baarle, Suey; Celik, Ilkay Nazli; Kaval, Karan Gautam; Bramkamp, Marc; Hamoen, Leendert W; Halbedel, Sven

    2013-03-01

    DivIVA proteins are curvature-sensitive membrane binding proteins that recruit other proteins to the poles and the division septum. They consist of a conserved N-terminal lipid binding domain fused to a less conserved C-terminal domain. DivIVA homologues interact with different proteins involved in cell division, chromosome segregation, genetic competence, or cell wall synthesis. It is unknown how DivIVA interacts with these proteins, and we used the interaction of Bacillus subtilis DivIVA with MinJ and RacA to investigate this. MinJ is a transmembrane protein controlling division site selection, and the DNA-binding protein RacA is crucial for chromosome segregation during sporulation. Initial bacterial two-hybrid experiments revealed that the C terminus of DivIVA appears to be important for recruiting both proteins. However, the interpretation of these results is limited since it appeared that C-terminal truncations also interfere with DivIVA oligomerization. Therefore, a chimera approach was followed, making use of the fact that Listeria monocytogenes DivIVA shows normal polar localization but is not biologically active when expressed in B. subtilis. Complementation experiments with different chimeras of B. subtilis and L. monocytogenes DivIVA suggest that MinJ and RacA bind to separate DivIVA domains. Fluorescence microscopy of green fluorescent protein-tagged RacA and MinJ corroborated this conclusion and suggests that MinJ recruitment operates via the N-terminal lipid binding domain, whereas RacA interacts with the C-terminal domain. We speculate that this difference is related to the cellular compartments in which MinJ and RacA are active: the cell membrane and the cytoplasm, respectively.

  6. Protein-Protein Interaction Domains of Bacillus subtilis DivIVA

    PubMed Central

    van Baarle, Suey; Celik, Ilkay Nazli; Kaval, Karan Gautam; Bramkamp, Marc

    2013-01-01

    DivIVA proteins are curvature-sensitive membrane binding proteins that recruit other proteins to the poles and the division septum. They consist of a conserved N-terminal lipid binding domain fused to a less conserved C-terminal domain. DivIVA homologues interact with different proteins involved in cell division, chromosome segregation, genetic competence, or cell wall synthesis. It is unknown how DivIVA interacts with these proteins, and we used the interaction of Bacillus subtilis DivIVA with MinJ and RacA to investigate this. MinJ is a transmembrane protein controlling division site selection, and the DNA-binding protein RacA is crucial for chromosome segregation during sporulation. Initial bacterial two-hybrid experiments revealed that the C terminus of DivIVA appears to be important for recruiting both proteins. However, the interpretation of these results is limited since it appeared that C-terminal truncations also interfere with DivIVA oligomerization. Therefore, a chimera approach was followed, making use of the fact that Listeria monocytogenes DivIVA shows normal polar localization but is not biologically active when expressed in B. subtilis. Complementation experiments with different chimeras of B. subtilis and L. monocytogenes DivIVA suggest that MinJ and RacA bind to separate DivIVA domains. Fluorescence microscopy of green fluorescent protein-tagged RacA and MinJ corroborated this conclusion and suggests that MinJ recruitment operates via the N-terminal lipid binding domain, whereas RacA interacts with the C-terminal domain. We speculate that this difference is related to the cellular compartments in which MinJ and RacA are active: the cell membrane and the cytoplasm, respectively. PMID:23264578

  7. Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton

    PubMed Central

    1992-01-01

    Interaction with extracellular matrix can trigger a variety of responses by cells including changes in specific gene expression and cell differentiation. The mechanism by which cell surface events are coupled to the transcriptional machinery is not understood, however, proteins localized at sites of cell-substratum contact are likely to function as signal transducers. We have recently purified and characterized a low abundance adhesion plaque protein called zyxin (Crawford, A. W., and M. C. Beckerle. 1991. J. Biol. Chem. 266:5847- 5853; Crawford, A. W., J. W. Michelsen, and M. C. Beckerle. 1992. J. Cell Biol. 116:1381-1393). We have now isolated and sequenced zyxin cDNA and we report here that zyxin exhibits an unusual proline-rich NH2- terminus followed by three tandemly arrayed LIM domains. LIM domains have previously been identified in proteins that play important roles in transcriptional regulation and cellular differentiation. LIM domains have been proposed to coordinate metal ions and we have demonstrated by atomic absorption spectroscopy that purified zyxin binds zinc, a result consistent with the idea that zyxin has zinc fingers. In addition, we have discovered that zyxin interacts in vitro with a 23-kD protein that also exhibits LIM domains. Microsequence analysis has revealed that the 23-kD protein (or cCRP) is the chicken homologue of the human cysteine- rich protein (hCRP). By double-label indirect immunofluorescence, we found that zyxin and cCRP are extensively colocalized in chicken embryo fibroblasts, consistent with the idea that they interact in vivo. We conclude that LIM domains are zinc-binding sequences that may be involved in protein-protein interactions. The demonstration that two cytoskeletal proteins, zyxin and cCRP, share a sequence motif with proteins important for transcriptional regulation raises the possibility that zyxin and cCRP are components of a signal transduction pathway that mediates adhesion-stimulated changes in gene

  8. DEF- and GLO-like proteins may have lost most of their interaction partners during angiosperm evolution

    PubMed Central

    Melzer, Rainer; Härter, Andrea; Rümpler, Florian; Kim, Sangtae; Soltis, Pamela S.; Soltis, Douglas E.; Theißen, Günter

    2014-01-01

    flexibility of DEF- and GLO-like protein interactions in early-diverging angiosperms may be one reason for the highly diverse flower morphologies observed in these species. The results strengthen the hypothesis that a reduction in the number of interaction partners of DEF- and GLO-like proteins, with DEF–GLO heterodimers remaining the only DNA-binding dimers in core eudicots, contributed to developmental robustness, canalization of flower development and the diversification of angiosperms. PMID:24902716

  9. Specific interactions of the wing domains of FOXA1 transcription factor with DNA.

    PubMed

    Cirillo, Lisa A; Zaret, Kenneth S

    2007-02-23

    FOX (forkhead box) transcription factors have diverse regulatory roles in development, signaling, and longevity, as well as being able to bind stably to target sites in silent chromatin. Crystal structure analysis showed that the FOXA DNA binding domain folds into a helix-turn-helix (HTH) motif flanked on either side by "wings" of polypeptide chain. The wings have the potential to interact with the DNA minor groove along the long axis of the DNA helix, flanking the HTH interactions with the major groove. Diverse FOX family homologs exist, and structural studies with certain DNA target sites suggest that neither of the wing regions are well ordered or provide a stable contribution to DNA target site binding. However, FOXA1 binds certain DNA target sites with high affinity, and as a monomer. To determine whether the wing domains contribute to stable DNA binding, we assessed complexes of FOXA with high and lower affinity DNA target sites by hydroxyl radical footprinting and site-directed mutagenesis. The data revealed clear protections predicted for wing interactions at the high affinity target, but less so at the lower affinity target, indicating that the wing domains stably interact with high affinity DNA sites for FOXA proteins.

  10. The multivalent PDZ domain-containing protein CIPP is a partner of acid-sensing ion channel 3 in sensory neurons.

    PubMed

    Anzai, Naohiko; Deval, Emmanuel; Schaefer, Lionel; Friend, Valerie; Lazdunski, Michel; Lingueglia, Eric

    2002-05-10

    Acid-sensing ion channels (ASICs) are cationic channels activated by extracellular pH. They are present in the brain, where they are thought to participate in signal transduction associated with local pH variations, and in sensory neurons, where they have been involved in pain perception associated with tissue acidosis and in mechanoperception. The ASIC3 subunit is mainly expressed in dorsal root ganglion neurons. Its expression is associated with a rapidly inactivating current followed by a slowly activating sustained current thought to be required for the tonic sensation of pain caused by acids. We report here the interaction of this channel subunit with the multivalent PDZ (PSD-95 Drosophila discs-large protein, Zonula occludens protein 1) domain-containing protein CIPP. This interaction requires the C-terminal region of ASIC3 and the fourth PDZ domain of CIPP. Co-expression of CIPP and ASIC3 in COS cells increases the maximal ASIC3 peak current density by a factor of 5 and slightly shifts the pH(0.5) for activation from pH 6.2 to pH 6.4. CIPP mRNA is found at a significant level in the same dorsal root ganglion neuronal cell population that expresses the ASIC3 subunit, i.e. mainly in the small nociceptive neurons. CIPP is thus a scaffolding protein that could both enhance the surface expression of ASIC3 and bring together ASIC3 and functionally related proteins in the membrane of sensory neurons.

  11. 3DIANA: 3D Domain Interaction Analysis: A Toolbox for Quaternary Structure Modeling.

    PubMed

    Segura, Joan; Sanchez-Garcia, Ruben; Tabas-Madrid, Daniel; Cuenca-Alba, Jesus; Sorzano, Carlos Oscar S; Carazo, Jose Maria

    2016-02-23

    Electron microscopy (EM) is experiencing a revolution with the advent of a new generation of Direct Electron Detectors, enabling a broad range of large and flexible structures to be resolved well below 1 nm resolution. Although EM techniques are evolving to the point of directly obtaining structural data at near-atomic resolution, for many molecules the attainable resolution might not be enough to propose high-resolution structural models. However, accessing information on atomic coordinates is a necessary step toward a deeper understanding of the molecular mechanisms that allow proteins to perform specific tasks. For that reason, methods for the integration of EM three-dimensional maps with x-ray and NMR structural data are being developed, a modeling task that is normally referred to as fitting, resulting in the so called hybrid models. In this work, we present a novel application-3DIANA-specially targeted to those cases in which the EM map resolution is medium or low and additional experimental structural information is scarce or even lacking. In this way, 3DIANA statistically evaluates proposed/potential contacts between protein domains, presents a complete catalog of both structurally resolved and predicted interacting regions involving these domains and, finally, suggests structural templates to model the interaction between them. The evaluation of the proposed interactions is computed with DIMERO, a new method that scores physical binding sites based on the topology of protein interaction networks, which has recently shown the capability to increase by 200% the number of domain-domain interactions predicted in interactomes as compared to previous approaches. The new application displays the information at a sequence and structural level and is accessible through a web browser or as a Chimera plugin at http://3diana.cnb.csic.es.

  12. [Interacting insulators from the Drosophila melanogaster bithorax complex can form independent expression domains].

    PubMed

    Kyrchanova, O V; Ivleva, T A; Georgiev, P G

    2011-12-01

    Regulatory region of three bithorax complex genes, Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-B (Abd-B) can be divided into nine iab domains, capable of directing expression of one of the genes in certain abdominal parasegment of Drosophila. In the Abd-B regulatory region, three insulators were identified, including Fab-7 and Fab-8, which flanked the iab-7domain, and Mcp, which separated the Abd-B and abd-A regulatory regions. It was suggested that boundary insulators formed a barrier between active and repressed chromatin. In the present study, using the yellow and white reporter genes and different combinations of known insulators, Mcp, Fab-7, and Fab-8, it was demonstrated that only specific interaction of two insulators was capable of isolation of active and repressed chromatin, i.e., the formation of independent expression domains.

  13. The pilus usher controls protein interactions via domain masking and is functional as an oligomer

    DOE PAGESBeta

    Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Thanassi, David G.

    2015-06-08

    The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstratemore » that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.« less

  14. The pilus usher controls protein interactions via domain masking and is functional as an oligomer

    SciTech Connect

    Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Thanassi, David G.

    2015-06-08

    The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.

  15. Dipolar interactions between domains in lipid monolayers at the air-water interface.

    PubMed

    Rufeil-Fiori, Elena; Wilke, Natalia; Banchio, Adolfo J

    2016-05-25

    A great variety of biologically relevant monolayers present phase coexistence characterized by domains formed by lipids in an ordered phase state dispersed in a continuous, disordered phase. From the difference in surface densities between these phases, inter-domain dipolar interactions arise. These interactions are relevant for the determination of the spacial distribution of domains as well as their dynamics. In this work, we propose a novel way of estimating the dipolar repulsion using a passive method that involves the analysis of images of the monolayer with phase coexistence. This method is based on the comparison of the pair correlation function obtained from experiments with that obtained from Brownian dynamics simulations of a model system. As an example, we determined the difference in dipolar density of a binary monolayer of DSPC/DMPC at the air-water interface from the analysis of the radial distribution of domains, and the results are compared with those obtained by surface potential determinations. A systematic analysis for the experimentally relevant parameter range is given, which may be used as a working curve for obtaining the dipolar repulsion in different systems. PMID:27139819

  16. Pellino Proteins Contain a Cryptic FHA Domain that Mediates Interaction with Phosphorylated IRAK1

    SciTech Connect

    Lin, Chun-Chi; Huoh, Yu-San; Schmitz, Karl R.; Jensen, Liselotte E.; Ferguson, Kathryn M.

    2009-03-23

    Pellino proteins are RING E3 ubiquitin ligases involved in signaling events downstream of the Toll and interleukin-1 (IL-1) receptors, key initiators of innate immune and inflammatory responses. Pellino proteins associate with and ubiquitinate proteins in these pathways, including the interleukin-1 receptor associated kinase-1 (IRAK1). We determined the X-ray crystal structure of a Pellino2 fragment lacking only the RING domain. This structure reveals that the IRAK1-binding region of Pellino proteins consists largely of a previously unidentified forkhead-associated (FHA) domain. FHA domains are well-characterized phosphothreonine-binding modules, and this cryptic example in Pellino2 can drive interaction of this protein with phosphorylated IRAK1. The Pellino FHA domain is decorated with an unusual appendage or wing composed of two long inserts that lie within the FHA homology region. Delineating how this E3 ligase associates with substrates, and how these interactions are regulated by phosphorylation, is crucial for a complete understanding of Toll/IL-1 receptor signaling.

  17. Dipolar interactions between domains in lipid monolayers at the air-water interface.

    PubMed

    Rufeil-Fiori, Elena; Wilke, Natalia; Banchio, Adolfo J

    2016-05-25

    A great variety of biologically relevant monolayers present phase coexistence characterized by domains formed by lipids in an ordered phase state dispersed in a continuous, disordered phase. From the difference in surface densities between these phases, inter-domain dipolar interactions arise. These interactions are relevant for the determination of the spacial distribution of domains as well as their dynamics. In this work, we propose a novel way of estimating the dipolar repulsion using a passive method that involves the analysis of images of the monolayer with phase coexistence. This method is based on the comparison of the pair correlation function obtained from experiments with that obtained from Brownian dynamics simulations of a model system. As an example, we determined the difference in dipolar density of a binary monolayer of DSPC/DMPC at the air-water interface from the analysis of the radial distribution of domains, and the results are compared with those obtained by surface potential determinations. A systematic analysis for the experimentally relevant parameter range is given, which may be used as a working curve for obtaining the dipolar repulsion in different systems.

  18. Crystallization of an engineered RUN domain of Rab6-interacting protein 1/DENND5

    SciTech Connect

    Fernandes, Humberto; Franklin, Edward; Khan, Amir R.

    2011-08-29

    Effectors of the Rab small GTPases are large multi-domain proteins which have proved difficult to express in soluble form in Escherichia coli. Generally, effectors are recruited to a distinct subcellular compartment by active (GTP-bound) Rabs, which are linked to membranes by one or two prenylated Cys residues at their C-termini. Following recruitment via their Rab-binding domain (RBD), effectors carry out various aspects of vesicle formation, transport, tethering and fusion through their other domains. Previously, successful purification of the RUN-PLAT tandem domains (residues 683-1061) of the 1263-residue Rab6-interacting protein 1 (R6IP1) required co-expression with Rab6, as attempts to solubly express the effector alone were unsuccessful. R6IP1 is also known as DENN domain-containing protein 5 (DENND5) and is expressed as two isoforms, R6IP1A/B (DENND5A/B), which differ by 24 amino acids at the N-terminus. Here, a deletion in R6IP1 was engineered to enable soluble expression and to improve the quality of the crystals grown in complex with Rab6. A large 23-residue loop linking two -helices in the RUN1 domain was removed and replaced with a short linker. This loop resides on the opposite face to the Rab6-binding site and is not conserved in the RUN-domain family. In contrast to wild-type R6IP1-Rab6 crystals, which took several weeks to grow to full size, the engineered R6IP1 (RPdel)-Rab6 crystals could be grown in a matter of days.

  19. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies

    PubMed Central

    Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P

    2016-01-01

    The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior – a key element for the transport selectivity of the NPC – was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface. DOI: http://dx.doi.org/10.7554/eLife.14119.001 PMID:27058170

  20. Domain wall interactions due to vacuum Dirac field fluctuations in 2 +1 dimensions

    NASA Astrophysics Data System (ADS)

    Fosco, C. D.; Mazzitelli, F. D.

    2016-07-01

    We evaluate quantum effects due to a two-component Dirac field in 2 +1 spacetime dimensions, coupled to domain-wall-like defects with a smooth shape. We show that these effects induce nontrivial contributions to the (shape-dependent) energy of the domain walls. For a single defect, we study the divergences in the corresponding self-energy, and also consider the role of the massless zero mode—corresponding to the Callan-Harvey mechanism—by coupling the Dirac field to an external gauge field. For two defects, we show that the Dirac field induces a nontrivial, Casimir-like effect between them, and we provide an exact expression for that interaction in the case of two straight-line parallel defects. As is the case for the Casimir interaction energy, the result is finite and unambiguous.

  1. 3D model for Cancerous Inhibitor of Protein Phosphatase 2A armadillo domain unveils highly conserved protein-protein interaction characteristics.

    PubMed

    Dahlström, Käthe M; Salminen, Tiina A

    2015-12-01

    Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is a human oncoprotein, which exerts its cancer-promoting function through interaction with other proteins, for example Protein Phosphatase 2A (PP2A) and MYC. The lack of structural information for CIP2A significantly prevents the design of anti-cancer therapeutics targeting this protein. In an attempt to counteract this fact, we modeled the three-dimensional structure of the N-terminal domain (CIP2A-ArmRP), analyzed key areas and amino acids, and coupled the results to the existing literature. The model reliably shows a stable armadillo repeat fold with a positively charged groove. The fact that this conserved groove highly likely binds peptides is corroborated by the presence of a conserved polar ladder, which is essential for the proper peptide-binding mode of armadillo repeat proteins and, according to our results, several known CIP2A interaction partners appropriately possess an ArmRP-binding consensus motif. Moreover, we show that Arg229Gln, which has been linked to the development of cancer, causes a significant change in charge and surface properties of CIP2A-ArmRP. In conclusion, our results reveal that CIP2A-ArmRP shares the typical fold, protein-protein interaction site and interaction patterns with other natural armadillo proteins and that, presumably, several interaction partners bind into the central groove of the modeled CIP2A-ArmRP. By providing essential structural characteristics of CIP2A, the present study significantly increases our knowledge on how CIP2A interacts with other proteins in cancer progression and how to develop new therapeutics targeting CIP2A. PMID:26393783

  2. Infants' expressive behaviors to mothers and unfamiliar partners during face-to-face interactions from 4 to 10 months.

    PubMed

    Lin, Hung-Chu; Green, James A

    2009-06-01

    Changes in the organization of infant looking, facial expressions, and vocalizations were examined over age (4, 7, and 10 months) and with different social partners. Although infants at all ages accompanied smiling with looking at both mothers and unfamiliar partners, 7- and 10-month infants accompanied vocalization with looking only when they were with mothers. Seven- and 10-month-olds vocalized with unfamiliar partners only when they were smiling at the same time. When mothers stopped talking, infants reduced smiling significantly at all ages, yet vocalized more at 10 months. In the second half of the first year, there are fundamental changes in the coordination of infant expressive behaviors that reveal a keen attunement to variations in maternal behavior and the familiarity of social partners.

  3. Modeling the performance of the human (pilot) interaction in a synthetic flight domain: Information theoretic approach

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.

    1992-01-01

    Current advances in computing technology are devoid of formal methods that describe the theories of how information is shared between humans and machines. Specifically, in the domain of human-machine interaction, a common mathematical foundation is lacking. The aim of this paper is to propose a formal method of human-machine (H-M) interaction paradigm from the information view point. The methods presented are interpretation- and context-free and can be used both in experimental analysis as well as in modeling problems.

  4. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO.

    PubMed

    Cleasby, Anne; Yon, Jeff; Day, Philip J; Richardson, Caroline; Tickle, Ian J; Williams, Pamela A; Callahan, James F; Carr, Robin; Concha, Nestor; Kerns, Jeffrey K; Qi, Hongwei; Sweitzer, Thomas; Ward, Paris; Davies, Thomas G

    2014-01-01

    The protein Keap1 is central to the regulation of the Nrf2-mediated cytoprotective response, and is increasingly recognized as an important target for therapeutic intervention in a range of diseases involving excessive oxidative stress and inflammation. The BTB domain of Keap1 plays key roles in sensing environmental electrophiles and in mediating interactions with the Cul3/Rbx1 E3 ubiquitin ligase system, and is believed to be the target for several small molecule covalent activators of the Nrf2 pathway. However, despite structural information being available for several BTB domains from related proteins, there have been no reported crystal structures of Keap1 BTB, and this has precluded a detailed understanding of its mechanism of action and interaction with antagonists. We report here the first structure of the BTB domain of Keap1, which is thought to contain the key cysteine residue responsible for interaction with electrophiles, as well as structures of the covalent complex with the antagonist CDDO/bardoxolone, and of the constitutively inactive C151W BTB mutant. In addition to providing the first structural confirmation of antagonist binding to Keap1 BTB, we also present biochemical evidence that adduction of Cys 151 by CDDO is capable of inhibiting the binding of Cul3 to Keap1, and discuss how this class of compound might exert Nrf2 activation through disruption of the BTB-Cul3 interface.

  5. Structure of the BTB Domain of Keap1 and Its Interaction with the Triterpenoid Antagonist CDDO

    PubMed Central

    Cleasby, Anne; Yon, Jeff; Day, Philip J.; Richardson, Caroline; Tickle, Ian J.; Williams, Pamela A.; Callahan, James F.; Carr, Robin; Concha, Nestor; Kerns, Jeffrey K.; Qi, Hongwei; Sweitzer, Thomas; Ward, Paris; Davies, Thomas G.

    2014-01-01

    The protein Keap1 is central to the regulation of the Nrf2-mediated cytoprotective response, and is increasingly recognized as an important target for therapeutic intervention in a range of diseases involving excessive oxidative stress and inflammation. The BTB domain of Keap1 plays key roles in sensing environmental electrophiles and in mediating interactions with the Cul3/Rbx1 E3 ubiquitin ligase system, and is believed to be the target for several small molecule covalent activators of the Nrf2 pathway. However, despite structural information being available for several BTB domains from related proteins, there have been no reported crystal structures of Keap1 BTB, and this has precluded a detailed understanding of its mechanism of action and interaction with antagonists. We report here the first structure of the BTB domain of Keap1, which is thought to contain the key cysteine residue responsible for interaction with electrophiles, as well as structures of the covalent complex with the antagonist CDDO/bardoxolone, and of the constitutively inactive C151W BTB mutant. In addition to providing the first structural confirmation of antagonist binding to Keap1 BTB, we also present biochemical evidence that adduction of Cys 151 by CDDO is capable of inhibiting the binding of Cul3 to Keap1, and discuss how this class of compound might exert Nrf2 activation through disruption of the BTB-Cul3 interface. PMID:24896564

  6. Small molecule, NSC95397, inhibits the CtBP1-protein partner interaction and CtBP1-mediated transcriptional repression

    PubMed Central

    Blevins, Melanie A.; Kouznetsova, Jennifer; Krueger, Aaron B.; King, Rebecca; Griner, Lesley Mathews; Hu, Xin; Southall, Noel; Marugan, Juan J.; Ferrer, Marc

    2015-01-01

    Carboxyl-terminal binding protein (CtBP) is a transcriptional co-repressor that suppresses multiple pro-apoptotic and epithelial genes. CtBP is overexpressed in many human cancers and its overexpression increases stem cell-like features, epithelial-mesenchymal transition, and cancer cell survival. Knockdown of CtBP increases apoptosis independent of p53 and dramatically inhibits tumorigenesis in mouse models. Therefore, targeting CtBP with small molecules that disrupt its interaction with transcription factor partners may be an effective cancer therapy. To elicit its co-repressing effect, CtBP binds to a conserved peptide motif in each transcription factor partner. We developed an AlphaScreen high throughput screening assay to monitor the interaction between CtBP and E1A (which mimics the interaction between CtBP and its transcriptional partners). We screened the LOPAC library of 1280 bioactive compounds and identified NSC95397, which inhibits the CtBP-E1A interaction (IC50 = 2.9 μM). The inhibitory activity of NSC95397 was confirmed using two secondary assays and a counterscreen. NSC95397 also behaved as a weak substrate of CtBP dehydrogenase activity and did not inhibit another dehydrogenase, LDH. Finally, NSC95397 was able to disrupt CtBP-mediated transcriptional repression of a target gene. These studies present a new possibility for the development of a therapeutic agent targeting tumors through disrupting the CtBP transcriptional complex. PMID:25477201

  7. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions.

    PubMed

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-12-01

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability.

  8. Bilateral collicular interaction: modulation of auditory signal processing in frequency domain.

    PubMed

    Cheng, L; Mei, H-X; Tang, J; Fu, Z-Y; Jen, P H-S; Chen, Q-C

    2013-04-01

    In the ascending auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from a variety of lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and the auditory cortex. All these connections make the IC a major center for subcortical temporal and spectral integration of auditory information. In this study, we examine bilateral collicular interaction in the modulation of frequency-domain signal processing of mice using electrophysiological recording and focal electrical stimulation. Focal electrical stimulation of neurons in one IC produces widespread inhibition and focused facilitation of responses of neurons in the other IC. This bilateral collicular interaction decreases the response magnitude and lengthens the response latency of inhibited IC neurons but produces an opposite effect on the response of facilitated IC neurons. In the frequency domain, the focal electrical stimulation of one IC sharpens or expands the frequency tuning curves (FTCs) of neurons in the other IC to improve frequency sensitivity and the frequency response range. The focal electrical stimulation also produces a shift in the best frequency (BF) of modulated IC (ICMdu) neurons toward that of electrically stimulated IC (ICES) neurons. The degree of bilateral collicular interaction is dependent upon the difference in the BF between the ICES neurons and ICMdu neurons. These data suggest that bilateral collicular interaction is a part of dynamic acoustic signal processing that adjusts and improves signal processing as well as reorganizes collicular representation of signal parameters according to the acoustic experience.

  9. Conformational diversity in the TPR domain-mediated interaction of protein phosphatase 5 with Hsp90.

    PubMed

    Cliff, Matthew J; Harris, Richard; Barford, David; Ladbury, John E; Williams, Mark A

    2006-03-01

    Protein phosphatase 5 (Ppp5) is one of several proteins that bind to the Hsp90 chaperone via a tetratricopeptide repeat (TPR) domain. We report the solution structure of a complex of the TPR domain of Ppp5 with the C-terminal pentapeptide of Hsp90. This structure has the "two-carboxylate clamp" mechanism of peptide binding first seen in the Hop-TPR domain complexes with Hsp90 and Hsp70 peptides. However, NMR data reveal that the Ppp5 clamp is highly dynamic, and that there are multiple modes of peptide binding and mobility throughout the complex. Although this interaction is of very high affinity, relatively few persistent contacts are found between the peptide and the Ppp5-TPR domain, thus explaining its promiscuity in binding both Hsp70 and Hsp90 in vivo. We consider the possible implications of this dynamic structure for the mechanism of relief of autoinhibition in Ppp5 and for the mechanisms of TPR-mediated recognition of Hsp90 by other proteins.

  10. The ABCA1 domain responsible for interaction with HIV-1 Nef is conformational and not linear

    PubMed Central

    Jacob, Daria; Hunegnaw, Ruth; Sabyrzyanova, Tatyana A.; Pushkarsky, Tatiana; Chekhov, Vladimir O.; Adzhubei, Alexei A.; Kalebina, Tatyana S.; Bukrinsky, Michael

    2014-01-01

    HIV-1 Nef is an accessory protein responsible for inactivation of a number of host cell proteins essential for anti-viral immune responses. In most cases, Nef binds to the target protein and directs it to a degradation pathway. Our previous studies demonstrated that Nef impairs activity of the cellular cholesterol transporter, ABCA1, and that Nef interacts with ABCA1. Mutation of the 2226DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 disrupted interaction with Nef. Here, we tested Nef interaction with the ABCA1 C-terminal cytoplasmic fragment using yeast 2-hybrid system assay and co-immunoprecipitation analysis in human cells. Surprisingly, analysis in a yeast 2-hybrid system did not reveal any interaction between Nef and the C-terminal cytoplasmic fragment of ABCA1. Using coimmunoprecipitation from HEK 293T cells expressing these polypeptides, only a very weak interaction could be detected. The 2226DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 found previously to be essential for interaction between ABCA1 and Nef is insufficient to bestow strong binding to Nef. Molecular modeling suggested that interaction with Nef may be mediated by a conformational epitope composed of the sequences within the cytoplasmic loop of ABCA1 and the C-terminal cytoplasmic domain. Studies are now underway to characterize this epitope. PMID:24406162

  11. Two domains of the epidermal growth factor receptor are involved in cytoskeletal interactions

    SciTech Connect

    Song Wei; Wu Jing; Ge Gaoxiang; Lin Qishui

    2008-06-13

    Epidermal growth factor receptor can interact directly with F-actin through an actin-binding domain. In the present study, a mutant EGFR, lacking a previously identified actin-binding domain (ABD 1), was still able to bind elements of the cytoskeleton. A second EGFR actin-binding domain (ABD 2) was identified in the region of the receptor that includes Tyr-1148 by a yeast two-hybrid assay. GST fusion proteins comprising ABD 1 or ABD 2 bound actin in vitro and competed for actin-binding with the full-length EGFR. EGFR binding to actin was also studied in intact cells using fluorescence resonance energy transfer (FRET). The localization of the EGFR/actin-binding complex changed after EGF stimulation. Fusion proteins containing mutations in ABD1 or ABD2 did not display a FRET signal. The results lead to the conclusion that the interaction between ABD1 and ABD2 and actin during EGF-induced signal transduction, and thus between EGFR and actin, are important in cell activation.

  12. Intracellular domains interactions and gated motions of IKS potassium channel subunits

    PubMed Central

    Haitin, Yoni; Wiener, Reuven; Shaham, Dana; Peretz, Asher; Cohen, Enbal Ben-Tal; Shamgar, Liora; Pongs, Olaf; Hirsch, Joel A; Attali, Bernard

    2009-01-01

    Voltage-gated K+ channels co-assemble with auxiliary β subunits to form macromolecular complexes. In heart, assembly of Kv7.1 pore-forming subunits with KCNE1 β subunits generates the repolarizing K+ current IKS. However, the detailed nature of their interface remains unknown. Mutations in either Kv7.1 or KCNE1 produce the life-threatening long or short QT syndromes. Here, we studied the interactions and voltage-dependent motions of IKS channel intracellular domains, using fluorescence resonance energy transfer combined with voltage-clamp recording and in vitro binding of purified proteins. The results indicate that the KCNE1 distal C-terminus interacts with the coiled-coil helix C of the Kv7.1 tetramerization domain. This association is important for IKS channel assembly rules as underscored by Kv7.1 current inhibition produced by a dominant-negative C-terminal domain. On channel opening, the C-termini of Kv7.1 and KCNE1 come close together. Co-expression of Kv7.1 with the KCNE1 long QT mutant D76N abolished the K+ currents and gated motions. Thus, during channel gating KCNE1 is not static. Instead, the C-termini of both subunits experience molecular motions, which are disrupted by the D76N causing disease mutation. PMID:19521339

  13. Formation of semi-dilute adhesion domains driven by weak elasticity-mediated interactions.

    PubMed

    Dharan, Nadiv; Farago, Oded

    2016-08-21

    Cell-cell adhesion is established by specific binding of receptor and ligand proteins anchored in the cell membranes. The adhesion bonds attract each other and often aggregate into large clusters that are central to many biological processes. One possible origin of attractive interactions between adhesion bonds is the elastic response of the membranes to their deformation by the bonds. Here, we analyze these elasticity-mediated interactions using a novel mean-field approach. Our analysis of systems at different densities of bonds, ϕ, reveals that the phase diagram, i.e., the binodal and spinodal lines, exhibit a nearly universal behavior when the temperature T is plotted against the scaled density x = ϕξ(2), where ξ is the linear size of the membrane's region affected by the presence of a single isolated bond. The critical point (ϕc , Tc) is located at very low densities, and slightly below Tc we identify phase coexistence between two low-density phases. Dense adhesion domains are observed only when the height by which the bonds deform the membranes, h0, is much larger than their thermal roughness, Δ, which occurs at very low temperatures T≪Tc. We, thus, conclude that the elasticity-mediated interactions are weak and cannot be regarded as responsible for the formation of dense adhesion domains. The weakness of the elasticity-mediated effect and its relevance to dilute systems only can be attributed to the fact that the membrane's elastic energy saturates in the semi-dilute regime, when the typical spacing between the bonds r≳ξ, i.e., for x≲ 1. Therefore, at higher densities, only the mixing entropy of the bonds (which always favors uniform distributions) is thermodynamically relevant. We discuss the implications of our results for the question of immunological synapse formation, and demonstrate that the elasticity-mediated interactions may be involved in the aggregation of these semi-dilute membrane domains. PMID:27426284

  14. L-periaxin interacts with S-periaxin through its PDZ domain.

    PubMed

    Yang, Yenan; Shi, Yawei

    2015-11-16

    Periaxin was first identified as a protein in myelinating Schwann cells through a screen of novel cytoskeleton-associated proteins in peripheral nerve myelination. The periaxin gene encodes two isoforms, namely, L- and S-periaxin, which are 1461 and 147 residues in size, respectively. Several loss-of-function mutations linked to autosomal recessive Dejerine-Sottas neuropathy and demyelinating Charcot-Marie-Tooth disease in periaxin have been described. In this study, the colocolization of L- and S-periaxin in the cytoplasm of RSC96 cells was found by immunofluorescence assays. The interaction between these two isoforms was confirmed by co-immunoprecipitation, fluorescence complementation experiment, and GST pull-down assay. Results also showed that the two periaxin isoforms interacted in the cytoplasm through the PDZ domain, and their interaction prevented the homodimerization of L-periaxin. S-periaxin may regulate the function of L-periaxin in Schwann cells. PMID:26467811

  15. Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains.

    PubMed

    Zerbes, Ralf M; Bohnert, Maria; Stroud, David A; von der Malsburg, Karina; Kram, Anita; Oeljeklaus, Silke; Warscheid, Bettina; Becker, Thomas; Wiedemann, Nils; Veenhuis, Marten; van der Klei, Ida J; Pfanner, Nikolaus; van der Laan, Martin

    2012-09-14

    The mitochondrial inner membrane contains a large protein complex crucial for membrane architecture, the mitochondrial inner membrane organizing system (MINOS). MINOS is required for keeping cristae membranes attached to the inner boundary membrane via crista junctions and interacts with protein complexes of the mitochondrial outer membrane. To study if outer membrane interactions and maintenance of cristae morphology are directly coupled, we generated mutant forms of mitofilin/Fcj1 (formation of crista junction protein 1), a core component of MINOS. Mitofilin consists of a transmembrane anchor in the inner membrane and intermembrane space domains, including a coiled-coil domain and a conserved C-terminal domain. Deletion of the C-terminal domain disrupted the MINOS complex and led to release of cristae membranes from the inner boundary membrane, whereas the interaction of mitofilin with the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM) were enhanced. Deletion of the coiled-coil domain also disturbed the MINOS complex and cristae morphology; however, the interactions of mitofilin with TOM and SAM were differentially affected. Finally, deletion of both intermembrane space domains disturbed MINOS integrity as well as interactions with TOM and SAM. Thus, the intermembrane space domains of mitofilin play distinct roles in interactions with outer membrane complexes and maintenance of MINOS and cristae morphology, demonstrating that MINOS contacts to TOM and SAM are not sufficient for the maintenance of inner membrane architecture.

  16. Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis.

    PubMed

    Yin, Ruohe; Arongaus, Adriana B; Binkert, Melanie; Ulm, Roman

    2015-01-01

    UV-B photon reception by the Arabidopsis thaliana homodimeric UV RESISTANCE LOCUS8 (UVR8) photoreceptor leads to its monomerization and a crucial interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Relay of the subsequent signal regulates UV-B-induced photomorphogenesis and stress acclimation. Here, we report that two separate domains of UVR8 interact with COP1: the β-propeller domain of UVR8 mediates UV-B-dependent interaction with the WD40 repeats-based predicted β-propeller domain of COP1, whereas COP1 activity is regulated by interaction through the UVR8 C-terminal C27 domain. We show not only that the C27 domain is required for UVR8 activity but also that chemically induced expression of the C27 domain is sufficient to mimic UV-B signaling. We further show, in contrast with COP1, that the WD40 repeat proteins REPRESSOR OF UV-B PHOTOMORPHOGENESIS1 (RUP1) and RUP2 interact only with the UVR8 C27 domain. This coincides with their facilitation of UVR8 reversion to the ground state by redimerization and their potential to interact with UVR8 in a UV-B-independent manner. Collectively, our results provide insight into a key mechanism of photoreceptor-mediated signaling and its negative feedback regulation.

  17. A fictitious domain method for fluid/solid coupling applied to the lithosphere/asthenosphere interaction.

    NASA Astrophysics Data System (ADS)

    Cerpa, Nestor; Hassani, Riad; Gerbault, Muriel

    2014-05-01

    A large variety of geodynamical problems can be viewed as a solid/fluid interaction problem coupling two bodies with different physics. In particular the lithosphere/asthenosphere mechanical interaction in subduction zones belongs to this kind of problem, where the solid lithosphere is embedded in the asthenospheric viscous fluid. In many fields (Industry, Civil Engineering,etc.), in which deformations of solid and fluid are "small", numerical modelers consider the exact discretization of both domains and fit as well as possible the shape of the interface between the two domains, solving the discretized physic problems by the Finite Element Method (FEM). Although, in a context of subduction, the lithosphere is submitted to large deformation, and can evolve into a complex geometry, thus leading to important deformation of the surrounding asthenosphere. To alleviate the precise meshing of complex geometries, numerical modelers have developed non-matching interface methods called Fictitious Domain Methods (FDM). The main idea of these methods is to extend the initial problem to a bigger (and simpler) domain. In our version of FDM, we determine the forces at the immersed solid boundary required to minimize (at the least square sense) the difference between fluid and solid velocities at this interface. This method is first-order accurate and the stability depends on the ratio between the fluid background mesh size and the interface discretization. We present the formulation and provide benchmarks and examples showing the potential of the method : 1) A comparison with an analytical solution of a viscous flow around a rigid body. 2) An experiment of a rigid sphere sinking in a viscous fluid (in two and three dimensional cases). 3) A comparison with an analog subduction experiment. Another presentation aims at describing the geodynamical application of this method to Andean subduction dynamics, studying cyclic slab folding on the 660 km discontinuity, and its relationship

  18. A PAS domain-containing regulator controls flagella-flagella interactions in Campylobacter jejuni

    PubMed Central

    Reuter, Mark; Periago, Paula M.; Mulholland, Francis; Brown, Helen L.; van Vliet, Arnoud H. M.

    2015-01-01

    The bipolar flagella of the foodborne bacterial pathogen Campylobacter jejuni confer motility, which is essential for virulence. The flagella of C. jejuni are post-translationally modified, but how this process is controlled is not well understood. In this work, we have identified a novel PAS-domain containing regulatory system, which modulates flagella-flagella interactions in C. jejuni. Inactivation of the cj1387c gene, encoding a YheO-like PAS6 domain linked to a helix-turn-helix domain, resulted in the generation of a tightly associated “cell-train” morphotype, where up to four cells were connected by their flagella. The morphotype was fully motile, resistant to vortexing, accompanied by increased autoagglutination, and was not observed in aflagellated cells. The Δcj1387c mutant displayed increased expression of the adjacent Cj1388 protein, which comprises of a single endoribonuclease L-PSP domain. Comparative genomics showed that cj1387c (yheO) orthologs in bacterial genomes are commonly linked to an adjacent cj1388 ortholog, with some bacteria, including C. jejuni, containing another cj1388-like gene (cj0327). Inactivation of the cj1388 and cj0327 genes resulted in decreased autoagglutination in Tween-20-supplemented media. The Δcj1388 and Δcj0327 mutants were also attenuated in a Galleria larvae-based infection model. Finally, substituting the sole cysteine in Cj1388 for serine prevented Cj1388 dimerization in non-reducing conditions, and resulted in decreased autoagglutination in the presence of Tween-20. We hypothesize that Cj1388 and Cj0327 modulate post-translational modification of the flagella through yet unidentified mechanisms, and propose naming Cj1387 the Campylobacter Flagella Interaction Regulator CfiR, and the Cj1388 and Cj0327 protein as CfiP and CfiQ, respectively. PMID:26284050

  19. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions.

    PubMed

    Storch, Daniela; Menzel, Lena; Frickenhaus, Stephan; Pörtner, Hans-O

    2014-10-01

    Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean. PMID:24890266

  20. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions.

    PubMed

    Storch, Daniela; Menzel, Lena; Frickenhaus, Stephan; Pörtner, Hans-O

    2014-10-01

    Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.

  1. A Novel C-Terminal Domain of RecJ is Critical for Interaction with HerA in Deinococcus radiodurans

    PubMed Central

    Cheng, Kaiying; Zhao, Ye; Chen, Xuanyi; Li, Tao; Wang, Liangyan; Xu, Hong; Tian, Bing; Hua, Yuejin

    2015-01-01

    Homologous recombination (HR) generates error-free repair products, which plays an important role in double strand break repair and replication fork rescue processes. DNA end resection, the critical step in HR, is usually performed by a series of nuclease/helicase. RecJ was identified as a 5′-3′ exonuclease involved in bacterial DNA end resection. Typical RecJ possesses a conserved DHH domain, a DHHA1 domain, and an oligonucleotide/oligosaccharide-binding (OB) fold. However, RecJs from Deinococcus-Thermus phylum, such as Deinococcus radiodurans RecJ (DrRecJ), possess an extra C-terminal domain (CTD), of which the function has not been characterized. Here, we showed that a CTD-deletion of DrRecJ (DrRecJΔC) could not restore drrecJ mutant growth and mitomycin C (MMC)-sensitive phenotypes, indicating that this domain is essential for DrRecJ in vivo. DrRecJΔC displayed reduced DNA nuclease activity and DNA binding ability. Direct interaction was identified between DrRecJ-CTD and DrHerA, which stimulates DrRecJ nuclease activity by enhancing its DNA binding affinity. Moreover, DrNurA nuclease, another partner of DrHerA, inhibited the stimulation of DrHerA on DrRecJ nuclease activity by interaction with DrHerA. Opposing growth and MMC-resistance phenotypes between the recJ and nurA mutants were observed. A novel modulation mechanism among DrRecJ, DrHerA, and DrNurA was also suggested. PMID:26648913

  2. Gbp2 interacts with THO/TREX through a novel type of RRM domain

    PubMed Central

    Martínez-Lumbreras, Santiago; Taverniti, Valerio; Zorrilla, Silvia; Séraphin, Bertrand; Pérez-Cañadillas, José Manuel

    2016-01-01

    Metazoan SR and SR-like proteins are important regulatory factors in RNA splicing, export, translation and RNA decay. We determined the NMR structures and nucleic acid interaction modes of Gbp2 and Hrb1, two paralogous budding yeast proteins with similarities to mammalian SR proteins. Gbp2 RRM1 and RRM2 recognise preferentially RNAs containing the core motif GGUG. Sequence selectivity resides in a non-canonical interface in RRM2 that is highly related to the SRSF1 pseudoRRM. The atypical Gbp2/Hrb1 C-terminal RRM domains (RRM3) do not interact with RNA/DNA, likely because of their novel N-terminal extensions that block the canonical RNA binding interface. Instead, we discovered that RRM3 is crucial for interaction with the THO/TREX complex and identified key residues essential for this interaction. Moreover, Gbp2 interacts genetically with Tho2 as the double deletion shows a synthetic phenotype and preventing Gbp2 interaction with the THO/TREX complex partly supresses gene expression defect associated with inactivation of the latter complex. These findings provide structural and functional insights into the contribution of SR-like proteins in the post-transcriptional control of gene expression. PMID:26602689

  3. Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers

    PubMed Central

    Arumughan, Anup; Roske, Yvette; Barth, Carolin; Forero, Laura Lleras; Bravo-Rodriguez, Kenny; Redel, Alexandra; Kostova, Simona; McShane, Erik; Opitz, Robert; Faelber, Katja; Rau, Kirstin; Mielke, Thorsten; Daumke, Oliver; Selbach, Matthias; Sanchez-Garcia, Elsa; Rocks, Oliver; Panáková, Daniela; Heinemann, Udo; Wanker, Erich E.

    2016-01-01

    Interaction mapping is a powerful strategy to elucidate the biological function of protein assemblies and their regulators. Here, we report the generation of a quantitative interaction network, directly linking 14 human proteins to the AAA+ ATPase p97, an essential hexameric protein with multiple cellular functions. We show that the high-affinity interacting protein ASPL efficiently promotes p97 hexamer disassembly, resulting in the formation of stable p97:ASPL heterotetramers. High-resolution structural and biochemical studies indicate that an extended UBX domain (eUBX) in ASPL is critical for p97 hexamer disassembly and facilitates the assembly of p97:ASPL heterotetramers. This spontaneous process is accompanied by a reorientation of the D2 ATPase domain in p97 and a loss of its activity. Finally, we demonstrate that overproduction of ASPL disrupts p97 hexamer function in ERAD and that engineered eUBX polypeptides can induce cell death, providing a rationale for developing anti-cancer polypeptide inhibitors that may target p97 activity. PMID:27762274

  4. Energy of the interaction between membrane lipid domains calculated from splay and tilt deformations

    NASA Astrophysics Data System (ADS)

    Galimzyanov, T. R.; Molotkovsky, R. J.; Kheyfets, B. B.; Akimov, S. A.

    2013-01-01

    Specific domains, called rafts, are formed in cell membranes. Similar lipid domains can be formed in model membranes as a result of phase separation with raft size may remaining small (˜10-100 nm) for a long time. The characteristic lifetime of a nanoraft ensemble strongly depends on the nature of mutual raft interactions. The interaction energy between the boundaries of two rafts has been calculated under the assumption that the thickness of the raft bilayer is greater than that of the surrounding membrane, and elastic deformations appear in order to smooth the thickness mismatch at the boundary. When rafts approach each other, deformations from their boundaries overlap, making interaction energy profile sophisticated. It has been shown that raft merger occurs in two stages: rafts first merge in one monolayer of the lipid bilayer and then in another monolayer. Each merger stage requires overcoming of an energy barrier of about 0.08-0.12 k BT per 1 nm of boundary length. These results allow us to explain the stability of the ensemble of finite sized rafts.

  5. Membrane protein stability can be compromised by detergent interactions with the extramembranous soluble domains.

    PubMed

    Yang, Zhengrong; Wang, Chi; Zhou, Qingxian; An, Jianli; Hildebrandt, Ellen; Aleksandrov, Luba A; Kappes, John C; DeLucas, Lawrence J; Riordan, John R; Urbatsch, Ina L; Hunt, John F; Brouillette, Christie G

    2014-06-01

    Detergent interaction with extramembranous soluble domains (ESDs) is not commonly considered an important determinant of integral membrane protein (IMP) behavior during purification and crystallization, even though ESDs contribute to the stability of many IMPs. Here we demonstrate that some generally nondenaturing detergents critically destabilize a model ESD, the first nucleotide-binding domain (NBD1) from the human cystic fibrosis transmembrane conductance regulator (CFTR), a model IMP. Notably, the detergents show equivalent trends in their influence on the stability of isolated NBD1 and full-length CFTR. We used differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy to monitor changes in NBD1 stability and secondary structure, respectively, during titration with a series of detergents. Their effective harshness in these assays mirrors that widely accepted for their interaction with IMPs, i.e., anionic > zwitterionic > nonionic. It is noteworthy that including lipids or nonionic detergents is shown to mitigate detergent harshness, as will limiting contact time. We infer three thermodynamic mechanisms from the observed thermal destabilization by monomer or micelle: (i) binding to the unfolded state with no change in the native structure (all detergent classes); (ii) native state binding that alters thermodynamic properties and perhaps conformation (nonionic detergents); and (iii) detergent binding that directly leads to denaturation of the native state (anionic and zwitterionic). These results demonstrate that the accepted model for the harshness of detergents applies to their interaction with an ESD. It is concluded that destabilization of extramembranous soluble domains by specific detergents will influence the stability of some IMPs during purification.

  6. Membrane protein stability can be compromised by detergent interactions with the extramembranous soluble domains

    PubMed Central

    Yang, Zhengrong; Wang, Chi; Zhou, Qingxian; An, Jianli; Hildebrandt, Ellen; Aleksandrov, Luba A; Kappes, John C; DeLucas, Lawrence J; Riordan, John R; Urbatsch, Ina L; Hunt, John F; Brouillette, Christie G

    2014-01-01

    Detergent interaction with extramembranous soluble domains (ESDs) is not commonly considered an important determinant of integral membrane protein (IMP) behavior during purification and crystallization, even though ESDs contribute to the stability of many IMPs. Here we demonstrate that some generally nondenaturing detergents critically destabilize a model ESD, the first nucleotide-binding domain (NBD1) from the human cystic fibrosis transmembrane conductance regulator (CFTR), a model IMP. Notably, the detergents show equivalent trends in their influence on the stability of isolated NBD1 and full-length CFTR. We used differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy to monitor changes in NBD1 stability and secondary structure, respectively, during titration with a series of detergents. Their effective harshness in these assays mirrors that widely accepted for their interaction with IMPs, i.e., anionic > zwitterionic > nonionic. It is noteworthy that including lipids or nonionic detergents is shown to mitigate detergent harshness, as will limiting contact time. We infer three thermodynamic mechanisms from the observed thermal destabilization by monomer or micelle: (i) binding to the unfolded state with no change in the native structure (all detergent classes); (ii) native state binding that alters thermodynamic properties and perhaps conformation (nonionic detergents); and (iii) detergent binding that directly leads to denaturation of the native state (anionic and zwitterionic). These results demonstrate that the accepted model for the harshness of detergents applies to their interaction with an ESD. It is concluded that destabilization of extramembranous soluble domains by specific detergents will influence the stability of some IMPs during purification. PMID:24652590

  7. Editorial overview: Carbohydrate-protein interactions and glycosylation: Glycan synthesis and recognition: finding the perfect partner in a sugar-coated life.

    PubMed

    Feizi, Ten E N; Haltiwanger, Robert S

    2015-10-01

    Oligosaccharides expressed on the surface of cells and in biological fluids as glycoproteins, glycolipids, proteoglycans and polysaccharides can be recognized by partner proteins, and these interactions have been shown to mediate fundamental biological events such as occur in the immune system, signal transduction, development and cancer metastasis. The specificities of these partner proteins (lectins) for their glycan ligands are determined by factors such as glycan composition, shape and density of expression and the involvement of the aglycone moiety as part of the recognition motif. There is increasing knowledge on the mechanisms of these interactions as new secondary binding sites continue to be elucidated adding to the functional awareness of sugar-binding proteins. This issue focuses on recent advances in understanding how C-type lectins in the immune system work, how novel motifs involving asymmetric glycan branch recognition and protein-protein interactions influence critical biological functions including signal transduction and bactericidal pore formation, recent studies on novel glycan-binding proteins produced by bacteriophage, analysis of the interactions between heparin/heparan sulphate and their binding proteins, and recent findings on the molecular interactions between chondroitin-dermatan sulphate and various bioactive protein components. We conclude with a review on a recent fascinating class of processive enzymes responsible for synthesis of high-molecular weight extracellular polysaccharides such as hyaluronic acid, chitin and alginate. PMID:26613983

  8. Editorial overview: Carbohydrate-protein interactions and glycosylation: Glycan synthesis and recognition: finding the perfect partner in a sugar-coated life.

    PubMed

    Feizi, Ten E N; Haltiwanger, Robert S

    2015-10-01

    Oligosaccharides expressed on the surface of cells and in biological fluids as glycoproteins, glycolipids, proteoglycans and polysaccharides can be recognized by partner proteins, and these interactions have been shown to mediate fundamental biological events such as occur in the immune system, signal transduction, development and cancer metastasis. The specificities of these partner proteins (lectins) for their glycan ligands are determined by factors such as glycan composition, shape and density of expression and the involvement of the aglycone moiety as part of the recognition motif. There is increasing knowledge on the mechanisms of these interactions as new secondary binding sites continue to be elucidated adding to the functional awareness of sugar-binding proteins. This issue focuses on recent advances in understanding how C-type lectins in the immune system work, how novel motifs involving asymmetric glycan branch recognition and protein-protein interactions influence critical biological functions including signal transduction and bactericidal pore formation, recent studies on novel glycan-binding proteins produced by bacteriophage, analysis of the interactions between heparin/heparan sulphate and their binding proteins, and recent findings on the molecular interactions between chondroitin-dermatan sulphate and various bioactive protein components. We conclude with a review on a recent fascinating class of processive enzymes responsible for synthesis of high-molecular weight extracellular polysaccharides such as hyaluronic acid, chitin and alginate.

  9. Investigation of ion acceleration mechanism through laser-matter interaction in femtosecond domain

    NASA Astrophysics Data System (ADS)

    Altana, C.; Muoio, A.; Lanzalone, G.; Tudisco, S.; Brandi, F.; Cirrone, G. A. P.; Cristoforetti, G.; Fazzi, A.; Ferrara, P.; Fulgentini, L.; Giove, D.; Koester, P.; Labate, L.; Mascali, D.; Palla, D.; Schillaci, F.; Gizzi, L. A.

    2016-09-01

    An experimental campaign aiming to investigate the ion acceleration mechanisms through laser-matter interaction in the femtosecond domain has been carried out at the ILIL facility at a laser intensity of up to 2×1019 W/cm2. A Thomson Parabola Spectrometer was used to identify different ion species and measure the energy spectra and the corresponding temperature parameters. We discuss the dependence of the protons spectra upon the structural characteristics of the targets (thickness and atomic mass) and the role of surface versus target bulk during acceleration process.

  10. Interactions of Pleckstrin Homology Domains with Membranes: Adding Back the Bilayer via High-Throughput Molecular Dynamics.

    PubMed

    Yamamoto, Eiji; Kalli, Antreas C; Yasuoka, Kenji; Sansom, Mark S P

    2016-08-01

    A molecular simulation pipeline for determining the mode of interaction of pleckstrin homology (PH) domains with phosphatidylinositol phosphate (PIP)-containing lipid bilayers is presented. We evaluate our methodology for the GRP1 PH domain via comparison with structural and biophysical data. Coarse-grained simulations yield a 2D density landscape for PH/membrane interactions alongside residue contact profiles. Predictions of the membrane localization and interactions of 13 PH domains reveal canonical, non-canonical, and dual PIP-binding sites on the proteins. Thus, the PH domains associate with the PIP molecules in the membrane via a highly positively charged loop. Some PH domains exhibit modes of interaction with PIP-containing membranes additional to this canonical binding mode. All 13 PH domains cause a degree of local clustering of PIP molecules upon binding to the membrane. This provides a global picture of PH domain interactions with membranes. The high-throughput approach could be extended to other families of peripheral membrane proteins. PMID:27427480

  11. Asymmetric domain expansion and dendrite formation in thin films with strong Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Caretta, Lucas; Mann, Maxwell; Tan, Aik-Jun; Beach, Geoffrey

    2015-03-01

    The Dzyaloshinskii-Moriya interaction (DMI) at heavy-metal/ferromagnet interfaces can stabilize chiral spin textures. It has recently been shown that field-driven bubble domain expansion in perpendicularly-magnetized thin films is asymmetric under the application of an in-plane field, which can be used to quantify the DMI effective field in the (DW). We have imaged domain expansion in Pt(3nm)/Co(0.9nm)/Pt(x)/GdOx(3nm) films using wide-field Kerr microscopy to characterize this behavior systematically as a function of DMI strength. In the case of null or weak DMI, realized when top and bottom Pt layers are of similar thickness, the in-plane field dependence of the DW velocity is well-described by the simple expansion model derived in Ref.. However, in the case of strong DMI, we find a strongly nonmonotonic behavior due to flattening of the DW, minimizing Zeeman energy and DMI energy. Moreover, we show that when the ratio of the DMI effective field to the perpendicular anisotropy field is large, expanding bubble domains leave behind fine-scale dendritic structures, consisting of coupled 360 degree DWs. We present modeling that qualitatively describes these behaviors.

  12. The C terminus of fragile X mental retardation protein interacts with the multi-domain Ran-binding protein in the microtubule-organising centre.

    PubMed

    Menon, Rajesh P; Gibson, Toby J; Pastore, Annalisa

    2004-10-01

    Absence of the fragile X mental retardation protein (FMRP) causes fragile X syndrome, the most common form of hereditary mental retardation. FMRP is a mainly cytoplasmic protein thought to be involved in repression of translation, through a complex network of protein-protein and protein-RNA interactions. Most of the currently known protein partners of FMRP recognise the conserved N terminus of the protein. No interaction has yet been mapped to the highly charged, poorly conserved C terminus, so far thought to be involved in RNA recognition through an RGG motif. In the present study, we show that a two-hybrid bait containing residues 419-632 of human FMRP fishes out a protein that spans the sequence of the Ran-binding protein in the microtubule-organising centre (RanBPM/RanBP9). Specific interaction of RanBPM with FMRP was confirmed by in vivo and in vitro assays. In brain tissue sections, RanBPM is highly expressed in the neurons of cerebral cortex and the cerebellar purkinje cells, in a pattern similar to that described for FMRP. Sequence analysis shows that RanBPM is a multi-domain protein. The interaction with FMRP was mapped in a newly identified CRA motif present in the RanBPM C terminus. Our results suggest that the functional role of RanBPM binding is modulation of the RNA-binding properties of FMRP.

  13. Interaction Energy of Domain Walls in a Nonlocal Ginzburg-Landau Type Model from Micromagnetics

    NASA Astrophysics Data System (ADS)

    Ignat, Radu; Moser, Roger

    2016-07-01

    We study a variational model from micromagnetics involving a nonlocal Ginzburg-Landau type energy for {S1}-valued vector fields. These vector fields form domain walls, called Néel walls, that correspond to one-dimensional transitions between two directions within the unit circle {S1}. Due to the nonlocality of the energy, a Néel wall is a two length scale object, comprising a core and two logarithmically decaying tails. Our aim is to determine the energy differences leading to repulsion or attraction between Néel walls. In contrast to the usual Ginzburg-Landau vortices, we obtain a renormalised energy for Néel walls that shows both a tail-tail interaction and a core-tail interaction. This is a novel feature for Ginzburg-Landau type energies that entails attraction between Néel walls of the same sign and repulsion between Néel walls of opposite signs.

  14. Inference of cell-cell interactions from population density characteristics and cell trajectories on static and growing domains.

    PubMed

    Ross, Robert J H; Yates, C A; Baker, R E

    2015-06-01

    A key feature of cell migration is how cell movement is affected by cell-cell interactions. Furthermore, many cell migratory processes such as neural crest stem cell migration [Thomas and Erickson, 2008; McLennan et al., 2012] occur on growing domains or in the presence of a chemoattractant. Therefore, it is important to study interactions between migrating cells in the context of domain growth and directed motility. Here we compare discrete and continuum models describing the spatial and temporal evolution of a cell population for different types of cell-cell interactions on static and growing domains. We suggest that cell-cell interactions can be inferred from population density characteristics in the presence of motility bias, and these population density characteristics for different cell-cell interactions are conserved on both static and growing domains. We also study the expected displacement of a tagged cell, and show that different types of cell-cell interactions can give rise to cell trajectories with different characteristics. These characteristics are conserved in the presence of domain growth, however, they are diminished in the presence of motility bias. Our results are relevant for researchers who study the existence and role of cell-cell interactions in biological systems, so far as we suggest that different types of cell-cell interactions could be identified from cell density and trajectory data.

  15. Interaction of the Tim44 C-terminal domain with negatively charged phospholipids.

    PubMed

    Marom, Milit; Safonov, Roman; Amram, Shay; Avneon, Yoav; Nachliel, Esther; Gutman, Menachem; Zohary, Keren; Azem, Abdussalam; Tsfadia, Yossi

    2009-12-01

    The translocation of proteins from the cytosol into the mitochondrial matrix is mediated by the coordinated action of the TOM complex in the outer membrane, as well as the TIM23 complex and its associated protein import motor in the inner membrane. The focus of this work is the peripheral inner membrane protein Tim44. Tim44 is a vital component of the mitochondrial protein translocation motor that anchors components of the motor to the TIM23 complex. For this purpose, Tim44 associates with the import channel by direct interaction with the Tim23 protein. Additionally, it was shown in vitro that Tim44 associates with acidic model membranes, in particular those containing cardiolipin. The latter interaction was shown to be mediated by the carboxy-terminal domain of Tim44 [Weiss, C., et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8890-8894]. The aim of this study was to determine the precise recognition site for negative lipids in the C-terminal domain of Tim44. In particular, we wanted to examine the recently suggested hypothesis that acidic phospholipids associate with Tim44 via a hydrophobic cavity that is observed in the high-resolution structure of the C-terminal domain of the protein [Josyula, R., et al. (2006) J. Mol. Biol. 359, 798-804]. Molecular dynamics simulations suggest that (i) the hydrophobic tail of lipids may interact with Tim44 via the latter's hydrophobic cavity and (ii) a region, located in the N-terminal alpha-helix of the C-terminal domain (helices A1 and A2), may serve as a membrane attachment site. To validate this assumption, N-terminal truncations of yeast Tim44 were examined for their ability to bind cardiolipin-containing phospholipid vesicles. The results indicate that removal of the N-terminal alpha-helix (helix A1) abolishes the capacity of Tim44 to associate with cardiolipin-containing liposomes. We suggest that helices A1 and A2, in Tim44, jointly promote the association of the protein with acidic phospholipids. PMID:19863062

  16. Fluorescence study of domain structure and lipid interaction of human apolipoproteins E3 and E4.

    PubMed

    Mizuguchi, Chiharu; Hata, Mami; Dhanasekaran, Padmaja; Nickel, Margaret; Okuhira, Keiichiro; Phillips, Michael C; Lund-Katz, Sissel; Saito, Hiroyuki

    2014-12-01

    Human apolipoprotein E (apoE) isoforms exhibit different conformational stabilities and lipid-binding properties that give rise to altered cholesterol metabolism among the isoforms. Using Trp-substituted mutations and site- directed fluorescence labeling, we made a comprehensive comparison of the conformational organization of the N- and C-terminal domains and lipid interactions between the apoE3 and apoE4 isoforms. Trp fluorescence measurements for selectively Trp-substituted variants of apoE isoforms demonstrated that apoE4 adopts less stable conformations in both the N- and C-terminal domains compared to apoE3. Consistent with this, the conformational reorganization of the N-terminal helix bundle occurs at lower guanidine hydrochloride concentration in apoE4 than in apoE3 as monitored by fluorescence resonance energy transfer (FRET) from Trp residues to acrylodan attached at the N-terminal helix. Upon binding of apoE3 and apoE4 variants to egg phosphatidylcholine small unilamellar vesicles, similar changes in Trp fluorescence or FRET efficiency were observed for the isoforms, indi- cating that the opening of the N-terminal helix bundle occurs similarly in apoE3 and apoE4. Introduction of mutations into the C-terminal domain of the apoE isoforms to prevent self-association and maintain the monomeric state resulted in great increase in the rate of binding of the C-terminal helices to a lipid surface. Overall, our results demonstrate that the different conformational organizations of the N- and C-terminal domains have a minor effect on the steady-state lipid-binding behavior of apoE3 and apoE4: rather, self-association property is a critical determinant in the kinetics of lipid binding through the C-terminal helices of apoE isoforms.

  17. Single-spanning transmembrane domains in cell growth and cell-cell interactions

    PubMed Central

    Sawma, Paul; Duneau, Jean-Pierre; Khao, Jonathan; Hénin, Jélerôme; Bagnard, Dominique; Sturgis, James

    2010-01-01

    As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling. PMID:20543559

  18. Pentamidine blocks the interaction between mutant S100A5 and RAGE V domain and inhibits the RAGE signaling pathway.

    PubMed

    Cho, Ching Chang; Chou, Ruey Hwang; Yu, Chin

    2016-08-19

    The human S100 protein family contains small, dimeric and acidic proteins that contain two EF-hand motifs and bind calcium. When S100A5 binds calcium, its conformation changes and promotes interaction with the target protein. The extracellular domain of RAGE (Receptor of Advanced Glycation End products) contain three domains: C1, C2 and V. The RAGE V domain is the target protein of S100A5 that promotes cell survival, growth and differentiation by activating several signaling pathways. Pentamidine is an apoptotic and antiparasitic drug that is used to treat or prevent pneumonia. Here, we found that pentamidine interacts with S100A5 using HSQC titration. We elucidated the interactions of S100A5 with RAGE V domain and pentamidine using fluorescence and NMR spectroscopy. We generated two binary models-the S100A5-RAGE V domain and S100A5-Pentamidine complex-and then observed that the pentamidine and RAGE V domain share a similar binding region in mS100A5. We also used the WST-1 assay to investigate the bioactivity of S100A5, RAGE V domain and pentamidine. These results indicated that pentamidine blocks the binding between S100A5 and RAGE V domain. This finding is useful for the development of new anti-proliferation drugs.

  19. Pentamidine blocks the interaction between mutant S100A5 and RAGE V domain and inhibits the RAGE signaling pathway.

    PubMed

    Cho, Ching Chang; Chou, Ruey Hwang; Yu, Chin

    2016-08-19

    The human S100 protein family contains small, dimeric and acidic proteins that contain two EF-hand motifs and bind calcium. When S100A5 binds calcium, its conformation changes and promotes interaction with the target protein. The extracellular domain of RAGE (Receptor of Advanced Glycation End products) contain three domains: C1, C2 and V. The RAGE V domain is the target protein of S100A5 that promotes cell survival, growth and differentiation by activating several signaling pathways. Pentamidine is an apoptotic and antiparasitic drug that is used to treat or prevent pneumonia. Here, we found that pentamidine interacts with S100A5 using HSQC titration. We elucidated the interactions of S100A5 with RAGE V domain and pentamidine using fluorescence and NMR spectroscopy. We generated two binary models-the S100A5-RAGE V domain and S100A5-Pentamidine complex-and then observed that the pentamidine and RAGE V domain share a similar binding region in mS100A5. We also used the WST-1 assay to investigate the bioactivity of S100A5, RAGE V domain and pentamidine. These results indicated that pentamidine blocks the binding between S100A5 and RAGE V domain. This finding is useful for the development of new anti-proliferation drugs. PMID:27297108

  20. Typical and atypical pragmatic functioning of ASD children and their partners: a study of oppositional episodes in everyday interactions.

    PubMed

    Plumet, Marie-Hélène; Veneziano, Edy

    2015-01-01

    Pragmatic functioning of autism spectrum disorder (ASD) children is rarely examined in socially-meaningful contexts. This study investigates the way oppositional episodes are handled in such contexts by 25 families, 10 with ASD and 15 with typically-developing children. Oppositions occur whenever someone protests, refuses or denies someone else's action, request or statement. The analysis focuses on justifications accounting for the opposition and on their immediate persuasive effect. Analyses of 1,065 oppositional episodes show no differences in justifications among partners and children, except for ASD children with a verbal age 3-4 years, who justify less than their matched controls. The persuasive effect of justifications on children and on partners differs according to their group and verbal age. Implications of the study and future perspectives are discussed. PMID:24970107

  1. The Translocation Domain of Botulinum Neurotoxin A Moderates the Propensity of the Catalytic Domain to Interact with Membranes at Acidic pH

    PubMed Central

    Araye, Anne; Goudet, Amélie; Barbier, Julien; Pichard, Sylvain; Baron, Bruno; England, Patrick; Pérez, Javier; Zinn-Justin, Sophie; Chenal, Alexandre; Gillet, Daniel

    2016-01-01

    Botulinum neurotoxin A (BoNT/A) is composed of three domains: a catalytic domain (LC), a translocation domain (HN) and a receptor-binding domain (HC). Like most bacterial toxins BoNT/A is an amphitropic protein, produced in a soluble form that is able to interact, penetrate and/or cross a membrane to achieve its toxic function. During intoxication BoNT/A is internalized by the cell by receptor-mediated endocytosis. Then, LC crosses the membrane of the endocytic compartment and reaches the cytosol. This translocation is initiated by the low pH found in this compartment. It has been suggested that LC passes in an unfolded state through a transmembrane passage formed by HN. We report here that acidification induces no major conformational change in either secondary or tertiary structures of LC and HN of BoNT/A in solution. GdnHCl-induced denaturation experiments showed that the stability of LC and HN increases as pH drops, and that HN further stabilizes LC. Unexpectedly we found that LC has a high propensity to interact with and permeabilize anionic lipid bilayers upon acidification without the help of HN. This property is downplayed when LC is linked to HN. HN thus acts as a chaperone for LC by enhancing its stability but also as a moderator of the membrane interaction of LC. PMID:27070312

  2. Intramolecular Interactions and Regulation of Cofactor Binding by the Four Repressive Elements in the Caspase Recruitment Domain-containing Protein 11 (CARD11) Inhibitory Domain.

    PubMed

    Jattani, Rakhi P; Tritapoe, Julia M; Pomerantz, Joel L

    2016-04-15

    The CARD11 signaling scaffold transmits signaling between antigen receptors on B and T lymphocytes and the transcription factor NF-κB during the adaptive immune response. CARD11 activity is controlled by an inhibitory domain (ID), which participates in intramolecular interactions and prevents cofactor binding prior to receptor triggering. Oncogenic CARD11 mutations associated with the activated B cell-like subtype of diffuse large B cell lymphoma somehow perturb ID-mediated autoinhibition to confer CARD11 with the dysregulated spontaneous signaling to NF-κB that is required for the proliferation and survival of the lymphoma. Here, we investigate how the four repressive elements (REs) we have discovered in the CARD11 ID function to inhibit CARD11 activity with cooperativity and redundancy. We find that each RE contributes to the maintenance of the closed inactive state of CARD11 that predominates in the absence of receptor engagement. Each RE also contributes to the prevention of Bcl10 binding in the basal unstimulated state. RE1, RE2, and RE3 participate in intramolecular interactions with other CARD11 domains and share domain targets for binding. Remarkably, diffuse large B cell lymphoma-associated gain-of-function mutations in the caspase recruitment domain, LATCH, or coiled coil can perturb intramolecular interactions mediated by multiple REs, suggesting how single amino acid oncogenic CARD11 mutations can perturb or bypass the action of redundant inhibitory REs to achieve the level of hyperactive CARD11 signaling required to support lymphoma growth.

  3. Bpur, the Lyme disease spirochete's PUR domain protein: identification as a transcriptional modulator and characterization of nucleic acid interactions.

    PubMed

    Jutras, Brandon L; Chenail, Alicia M; Carroll, Dustin W; Miller, M Clarke; Zhu, Haining; Bowman, Amy; Stevenson, Brian

    2013-09-01

    The PUR domain is a nucleic acid-binding motif found in critical regulatory proteins of higher eukaryotes and in certain species of bacteria. During investigations into mechanisms by which the Lyme disease spirochete controls synthesis of its Erp surface proteins, it was discovered that the borrelial PUR domain protein, Bpur, binds with high affinity to double-stranded DNA adjacent to the erp transcriptional promoter. Bpur was found to enhance the effects of the erp repressor protein, BpaB. Bpur also bound single-stranded DNA and RNA, with relative affinities RNA > double-stranded DNA > single-stranded DNA. Rational site-directed mutagenesis of Bpur identified amino acid residues and domains critical for interactions with nucleic acids, and it revealed that the PUR domain has a distinct mechanism of interaction with each type of nucleic acid ligand. These data shed light on both gene regulation in the Lyme spirochete and functional mechanisms of the widely distributed PUR domain.

  4. Effect of intermolecular interactions on the nucleation, growth, and propagation of like-spin domains in spin-crossover materials

    NASA Astrophysics Data System (ADS)

    Slimani, A.; Boukheddaden, K.; Yamashita, K.

    2015-07-01

    The nucleation, growth, and propagation of like-spin domains in spin-crossover materials was investigated during the relaxation process of a metastable HS state at low temperature using an electroelastic model running on a deformable two-dimensional square lattice. We distinguish the onset of patterns formation of low-spin domain as the intermolecular interaction is increased, passing successively through random dispersion to clustering pattern and ending up with an impressive single macroscopic domain growth. Attaining and maintaining a single-domain configuration through the transition is attributed to the long-range character of interactions. Qualitative investigation of the elastic energy, of the propagation of the low-spin domain, and of the displacement field are presented. We demonstrate that as the intermolecular interaction increases the propagation of the like-spin domain slowdown. The deformations are believed as the prolonged effect of the intermolecular interactions that are at the origin of the onset of dispersed, poly-, and single-domain nucleation. Spatial autocorrelation of the deformations analysis based on Moran's I index is used. We demonstrate that at short distance significant spatially autocorrelated patterns are detected, and the extent of the autocorrelation decreases with the distance.

  5. Free energetics of rigid body association of ubiquitin binding domains: a biochemical model for binding mediated by hydrophobic interaction.

    PubMed

    Cui, Di; Ou, Shuching; Patel, Sandeep

    2014-07-01

    Weak intermolecular interactions, such as hydrophobic associations, underlie numerous biomolecular recognition processes. Ubiquitin is a small protein that represents a biochemical model for exploring thermodynamic signatures of hydrophobic association as it is widely held that a major component of ubiquitin's binding to numerous partners is mediated by hydrophobic regions on both partners. Here, we use atomistic molecular dynamics simulations in conjunction with the Adaptive Biasing Force sampling method to compute potentials of mean force (the reversible work, or free energy, associated with the binding process) to investigate the thermodynamic signature of complexation in this well-studied biochemical model of hydrophobic association. We observe that much like in the case of a purely hydrophobic solute (i.e., graphene, carbon nanotubes), association is favored by entropic contributions from release of water from the interprotein regions. Moreover, association is disfavored by loss of enthalpic interactions, but unlike in the case of purely hydrophobic solutes, in this case protein-water interactions are lost and not compensated for by additional water-water interactions generated upon release of interprotein and moreso, hydration, water. We further find that relative orientations of the proteins that mutually present hydrophobic regions of each protein to its partner are favored over those that do not. In fact, the free energy minimum as predicted by a force field based method recapitulates the experimental NMR solution structure of the complex.

  6. Mapping interactions between myosin relay and converter domains that power muscle function.

    PubMed

    Kronert, William A; Melkani, Girish C; Melkani, Anju; Bernstein, Sanford I

    2014-05-01

    Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile(508), Asn(509), and Asp(511)) in communicating with converter domain residue Arg(759). We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle.

  7. Quantitation of interactions between two DNA loops demonstrates loop domain insulation in E. coli cells.

    PubMed

    Priest, David G; Kumar, Sandip; Yan, Yan; Dunlap, David D; Dodd, Ian B; Shearwin, Keith E

    2014-10-21

    Eukaryotic gene regulation involves complex patterns of long-range DNA-looping interactions between enhancers and promoters, but how these specific interactions are achieved is poorly understood. Models that posit other DNA loops--that aid or inhibit enhancer-promoter contact--are difficult to test or quantitate rigorously in eukaryotic cells. Here, we use the well-characterized DNA-looping proteins Lac repressor and phage λ CI to measure interactions between pairs of long DNA loops in E. coli cells in the three possible topological arrangements. We find that side-by-side loops do not affect each other. Nested loops assist each other's formation consistent with their distance-shortening effect. In contrast, alternating loops, where one looping element is placed within the other DNA loop, inhibit each other's formation, thus providing clear support for the loop domain model for insulation. Modeling shows that combining loop assistance and loop interference can provide strong specificity in long-range interactions.

  8. Fluorescence assay of the interaction between hemoglobin and the cytoplasmic domain of erythrocyte membrane band 3.

    PubMed

    Sega, Martiana F; Chu, Haiyan; Christian, John A; Low, Philip S

    2015-10-01

    Oxygen tension has emerged as a potent regulator of multiple erythrocyte properties, including glucose metabolism, cell volume, ATP release, and cytoskeletal organization. Because hemoglobin (Hb)(1) binds to the cytoplasmic domain of band 3 (cdb3) in an oxygen dependent manner, with deoxyHb exhibiting significantly greater affinity for cdb3 than oxyHb, the deoxyHb-cdb3 interaction has been hypothesized to constitute the molecular switch for all O2-controlled erythrocyte processes. In this study, we describe a rapid and accurate method for quantitating the interaction of deoxyHb binding to cdb3. For this purpose, enhanced green fluorescent protein (eGFP) is fused to the COOH-terminus of cdb3, and the binding of Hb to the NH2-terminus of cdb3-eGFP is quantitated by Hb-mediated quenching of cdb3-eGFP fluorescence. As expected, the intensity of cdb3-eGFP fluorescence decreases only slightly following addition of oxyHb. However, upon deoxygenation of the same Hb-cdb3 solution, the fluorescence decreases dramatically (i.e. confirming that deoxyHb exhibits much greater affinity for cdb3 than oxyHb). Using this fluorescence quenching method, we not only confirm previously established characteristics of the Hb-cdb3 interaction, but also establish an assay that can be exploited to screen for inhibitors of the sickle Hb-cdb3 interaction that accelerates sickle Hb polymerization.

  9. Quantitation of interactions between two DNA loops demonstrates loop domain insulation in E. coli cells

    PubMed Central

    Priest, David G.; Kumar, Sandip; Yan, Yan; Dunlap, David D.; Dodd, Ian B.; Shearwin, Keith E.

    2014-01-01

    Eukaryotic gene regulation involves complex patterns of long-range DNA-looping interactions between enhancers and promoters, but how these specific interactions are achieved is poorly understood. Models that posit other DNA loops—that aid or inhibit enhancer–promoter contact—are difficult to test or quantitate rigorously in eukaryotic cells. Here, we use the well-characterized DNA-looping proteins Lac repressor and phage λ CI to measure interactions between pairs of long DNA loops in E. coli cells in the three possible topological arrangements. We find that side-by-side loops do not affect each other. Nested loops assist each other’s formation consistent with their distance-shortening effect. In contrast, alternating loops, where one looping element is placed within the other DNA loop, inhibit each other’s formation, thus providing clear support for the loop domain model for insulation. Modeling shows that combining loop assistance and loop interference can provide strong specificity in long-range interactions. PMID:25288735

  10. Viral Interactions with PDZ Domain-Containing Proteins—An Oncogenic Trait?

    PubMed Central

    James, Claire D.; Roberts, Sally

    2016-01-01

    Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis. PMID:26797638

  11. Transcriptional activity of Sp1 is regulated by molecular interactions between the zinc finger DNA binding domain and the inhibitory domain with corepressors, and this interaction is modulated by MEK.

    PubMed

    Lee, Jung-Ahn; Suh, Dong-Chul; Kang, Jae-Eun; Kim, Myung-Hwa; Park, Hyejin; Lee, Min-Nyung; Kim, Jung-Min; Jeon, Bu-Nam; Roh, Hee-Eun; Yu, Mi-Young; Choi, Kang-Yell; Kim, Kyu Yeun; Hur, Man-Wook

    2005-07-29

    Sp1 activates the transcription of many cellular and viral genes with the GC-box in either the proximal promoter or the enhancer. Sp1 is composed of several functional domains, such as the inhibitory domain (ID), two serine/threonine-rich domains, two glutamine-rich domains, three C2H2-type zinc finger DNA binding domains (ZFDBD), and a C-terminal D domain. The ZDDBD is the most highly conserved domain among the Sp-family transcription factors and plays a critical role in GC-box recognition. In this study, we investigated the protein-protein interactions occurring at the Sp1ZFDBD and the Sp1ID, and the molecular mechanisms controlling the interaction. Our results found that Sp1ZFDBD and Sp1ID repressed transcription once they were targeted to the proximal promoter of the pGal4 UAS reporter fusion gene system, suggesting molecular interaction with the repressor molecules. Indeed, mammalian two-hybrid assays, GST fusion protein pull-down assays, and co-immunoprecipitation assays showed that Sp1ZFDBD and Sp1ID are able to interact with corepressor proteins such as SMRT, NcoR, and BCoR. The molecular interactions appear to be regulated by MAP kinase/Erk kinase kinase (MEK). The molecular interactions between Sp1ID and the corepressor might explain the role of Sp1 as a repressor under certain circumstances. The siRNA-induced degradation of the corepressors resulted in an up-regulation of Sp1-dependent transcription. The cellular context of the corepressors and the regulation of molecular interaction between corepressors and Sp1ZFDBD or Sp1ID might be important in controlling Sp1 activity. PMID:15878880

  12. WHERE MULTIFUNCTIONAL DNA REPAIR PROTEINS MEET: MAPPING THE INTERACTION DOMAINS BETWEEN XPG AND WRN

    SciTech Connect

    Rangaraj, K.; Cooper, P.K.; Trego, K.S.

    2009-01-01

    The rapid recognition and repair of DNA damage is essential for the maintenance of genomic integrity and cellular survival. Multiple complex and interconnected DNA damage responses exist within cells to preserve the human genome, and these repair pathways are carried out by a specifi c interplay of protein-protein interactions. Thus a failure in the coordination of these processes, perhaps brought about by a breakdown in any one multifunctional repair protein, can lead to genomic instability, developmental and immunological abnormalities, cancer and premature aging. This study demonstrates a novel interaction between two such repair proteins, Xeroderma pigmentosum group G protein (XPG) and Werner syndrome helicase (WRN), that are both highly pleiotropic and associated with inherited genetic disorders when mutated. XPG is a structure-specifi c endonuclease required for the repair of UV-damaged DNA by nucleotide excision repair (NER), and mutations in XPG result in the diseases Xeroderma pigmentosum (XP) and Cockayne syndrome (CS). A loss of XPG incision activity results in XP, whereas a loss of non-enzymatic function(s) of XPG causes CS. WRN is a multifunctional protein involved in double-strand break repair (DSBR), and consists of 3’–5’ DNA-dependent helicase, 3’–5’ exonuclease, and single-strand DNA annealing activities. Nonfunctional WRN protein leads to Werner syndrome, a premature aging disorder with increased cancer incidence. Far Western analysis was used to map the interacting domains between XPG and WRN by denaturing gel electrophoresis, which separated purifi ed full length and recombinant XPG and WRN deletion constructs, based primarily upon the length of each polypeptide. Specifi c interacting domains were visualized when probed with the secondary protein of interest which was then detected by traditional Western analysis using the antibody of the secondary protein. The interaction between XPG and WRN was mapped to the C-terminal region of

  13. Bilateral Collicular Interaction: Modulation of Auditory Signal Processing in Amplitude Domain

    PubMed Central

    Fu, Zi-Ying; Wang, Xin; Jen, Philip H.-S.; Chen, Qi-Cai

    2012-01-01

    In the ascending auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and from the auditory cortex. All these connections make the IC a major center for subcortical temporal and spectral integration of auditory information. In this study, we examine bilateral collicular interaction in modulating amplitude-domain signal processing using electrophysiological recording, acoustic and focal electrical stimulation. Focal electrical stimulation of one (ipsilateral) IC produces widespread inhibition (61.6%) and focused facilitation (9.1%) of responses of neurons in the other (contralateral) IC, while 29.3% of the neurons were not affected. Bilateral collicular interaction produces a decrease in the response magnitude and an increase in the response latency of inhibited IC neurons but produces opposite effects on the response of facilitated IC neurons. These two groups of neurons are not separately located and are tonotopically organized within the IC. The modulation effect is most effective at low sound level and is dependent upon the interval between the acoustic and electric stimuli. The focal electrical stimulation of the ipsilateral IC compresses or expands the rate-level functions of contralateral IC neurons. The focal electrical stimulation also produces a shift in the minimum threshold and dynamic range of contralateral IC neurons for as long as 150 minutes. The degree of bilateral collicular interaction is dependent upon the difference in the best frequency between the electrically stimulated IC neurons and modulated IC neurons. These data suggest that bilateral collicular interaction mainly changes the ratio between excitation and inhibition during signal processing so as to sharpen the amplitude sensitivity of IC neurons. Bilateral interaction may be also involved in acoustic

  14. Characterization of calmodulin-Fas death domain interaction: an integrated experimental and computational study.

    PubMed

    Fancy, Romone M; Wang, Lingyun; Napier, Tiara; Lin, Jiabei; Jing, Gu; Lucius, Aaron L; McDonald, Jay M; Zhou, Tong; Song, Yuhua

    2014-04-29

    The Fas death receptor-activated death-inducing signaling complex (DISC) regulates apoptosis in many normal and cancer cells. Qualitative biochemical experiments demonstrate that calmodulin (CaM) binds to the death domain of Fas. The interaction between CaM and Fas regulates Fas-mediated DISC formation. A quantitative understanding of the interaction between CaM and Fas is important for the optimal design of antagonists for CaM or Fas to regulate the CaM-Fas interaction, thus modulating Fas-mediated DISC formation and apoptosis. The V254N mutation of the Fas death domain (Fas DD) is analogous to an identified mutant allele of Fas in lpr-cg mice that have a deficiency in Fas-mediated apoptosis. In this study, the interactions of CaM with the Fas DD wild type (Fas DD WT) and with the Fas DD V254N mutant were characterized using isothermal titration calorimetry (ITC), circular dichroism spectroscopy (CD), and molecular dynamics (MD) simulations. ITC results reveal an endothermic binding characteristic and an entropy-driven interaction of CaM with Fas DD WT or with Fas DD V254N. The Fas DD V254N mutation decreased the association constant (Ka) for CaM-Fas DD binding from (1.79 ± 0.20) × 10(6) to (0.88 ± 0.14) × 10(6) M(-1) and slightly increased a standard state Gibbs free energy (ΔG°) for CaM-Fas DD binding from -8.87 ± 0.07 to -8.43 ± 0.10 kcal/mol. CD secondary structure analysis and MD simulation results did not show significant secondary structural changes of the Fas DD caused by the V254N mutation. The conformational and dynamical motion analyses, the analyses of hydrogen bond formation within the CaM binding region, the contact numbers of each residue, and the electrostatic potential for the CaM binding region based on MD simulations demonstrated changes caused by the Fas DD V254N mutation. These changes caused by the Fas DD V254N mutation could affect the van der Waals interactions and electrostatic interactions between CaM and Fas DD, thereby affecting

  15. Interactions between residues 2228-2240 within factor VIIIa C2 domain and factor IXa Gla domain contribute to propagation of clot formation.

    PubMed

    Soeda, T; Nogami, K; Ogiwara, K; Shima, M

    2011-11-01

    Factor (F)VIII functions as a cofactor in the tenase complex responsible for phospholipid (PL)-dependent FXa generation by FIXa. We have recently reported that the FVIIIa C2 domain (residues 2228-2240) interacts with the FIXa Gla domain in this complex. We examined the role of this interaction in the generation of tenase activity during the process of clot formation, using a synthetic peptide corresponding to residues 2228-2240. The peptide 2228-2240 inhibited FVIIIa/FIXa-mediated FX activation dose-dependently in the presence of PL by >95% (IC50; ~10 μM). This effect was significantly greater than that obtained by peptide 1804-1818 (IC50; ~180 μM) which corresponds to another FIXa-interactive site in the light chain that provides the majority of binding energy for FIXa interaction. Peptide 2228-2240 had little effect on the prothrombin time and did not inhibit FIX activation in the coagulation process mediated by FVIIa/tissue factor or FXIa, suggesting specific inhibition of the intrinsic tenase complex. Clot waveform analysis, a plasma based-assay used to evaluate the process of intrinsic coagulation, demonstrated that peptide 2228-2240 significantly depressed both maximum coagulation velocity (|min1|) and acceleration (|min2|), reflecting the propagation of clot formation, although the clotting time was only marginally prolonged. Thromboelastography, an alternative whole blood based-assay, demonstrated that the peptide inhibited clot formation time, α-angle and maximal clot firmness, but had little effect on the clotting time. Interactions of the FVIIIa C2 domain (residues 2228-2240) with the FIXa Gla domain in the tenase complex appeared to contribute essentially to the propagation of clot formation.

  16. LsbB Bacteriocin Interacts with the Third Transmembrane Domain of the YvjB Receptor.

    PubMed

    Miljkovic, Marija; Uzelac, Gordana; Mirkovic, Nemanja; Devescovi, Giulia; Diep, Dzung B; Venturi, Vittorio; Kojic, Milan

    2016-09-01

    of LsbB is crucial for the bacteriocin activity, most probably through adequate interaction with the third transmembrane domain of the YvjB receptor. The conserved Tyr(356) and Ala(353) residues of YvjB are essential for the function of this Zn-dependent membrane-located protease as a bacteriocin receptor. PMID:27342562

  17. Confocal luminescence microscopy study of defect-domain wall interaction in lithium niobate and its application to light-induced domain engineering

    NASA Astrophysics Data System (ADS)

    Sandmann, Christian

    Understanding the mutual interaction of extrinsic and intrinsic defects with the ferroelectric domain walls of LiNbO3 is the key to achieve domain patterns on the sub-micron scale. For that reason the influence of domain inversion on the Er3+ defect was investigated in a detailed study, in which energetic shifts and changes in the intensity ratio of individual Er3+ sites were found. The results led to an improved model describing the Er3+ defect in LiNbO3 and to the introduction of a concept of an atomistic probe. This atomistic probe allows the determination of the orientation of the ferroelectric axis by means of optical spectroscopy and allows three-dimensional imaging of domain structures with high spatial resolution without topographic artifacts. For this purpose a confocal luminescence microscope was developed, adapted to allow investigation at low temperature and applied electric fields. Based on the concept of an atomistic probe, the interaction of Er and Ti dopants was investigated, and significant spectral broadening and line shifting were found. Calibrating these changes to the [Ti4+]-concentration allows imaging of [Ti4+]-profiles, as found in integrated optical devices. The [Ti4+]-concentration profile can be imaged without artifacts caused by topology, intensity fluctuations, or variations in the [Er3+]-concentration profile. A novel approach was introduced for directly writing ferroelectric domain patterns into LiNbO3 substrates using the confocal microscope to focus visible light from an argon ion laser to a diffraction limited spot. It was shown that space charge fields, created by light with a wavelength of 488nm, can reduce the external applied field needed for domain inversion by up to 30%. So far, structures with a period down to 8mum have been demonstrated. In-situ experiments during domain inversion demonstrated the possibility to monitor the domain inversion process in-situ with a temporal resolution of up to t = 7ms. It could be

  18. Zinc-induced interaction of the metal-binding domain of amyloid-β peptide with DNA.

    PubMed

    Khmeleva, Svetlana A; Mezentsev, Yuri V; Kozin, Sergey A; Tsvetkov, Philipp O; Ivanov, Alexis S; Bodoev, Nikolay V; Makarov, Alexander A; Radko, Sergey P

    2013-01-01

    The interaction of the 16-mer synthetic peptide (Aβ16), which represents the metal-binding domain of the amyloid-β with DNA, was studied employing the surface plasmon resonance technique. It has been shown that Aβ16 binds to the duplex DNA in the presence of zinc ions and thus the metal-binding domain can serve as a zinc-dependent DNA-binding site of the amyloid-β. The interaction of Aβ16 with DNA most probably depends on oligomerization of the peptide and is dominated by interaction with phosphates of the DNA backbone.

  19. The Conserved Phenylalanine in the Transmembrane Domain Enhances Heteromeric Interactions of Syndecans.

    PubMed

    Kwon, Mi-Jung; Park, Jisu; Jang, Sinae; Eom, Chi-Yong; Oh, Eok-Soo

    2016-01-01

    The transmembrane domain (TMD) of the syndecans, a family of transmembrane heparin sulfate proteoglycans, is involved in forming homo- and heterodimers and oligomers that transmit signaling events. Recently, we reported that the unique phenylalanine in TMD positively regulates intramolecular interactions of syndecan-2. Besides the unique phenylalanine, syndecan-2 contains a conserved phenylalanine (SDC2-Phe-169) that is present in all syndecan TMDs, but its function has not been determined. We therefore investigated the structural role of SDC2-Phe-169 in syndecan TMDs. Replacement of SDC2-Phe-169 by tyrosine (S2F169Y) did not affect SDS-resistant homodimer formation but significantly reduced SDS-resistant heterodimer formation between syndecan-2 and -4, suggesting that SDC2-Phe-169 is involved in the heterodimerization/oligomerization of syndecans. Similarly, in an in vitro binding assay, a syndecan-2 mutant (S2(F169Y)) showed a significantly reduced interaction with syndecan-4. FRET assays showed that heteromolecular interactions between syndecan-2 and -4 were reduced in HEK293T cells transfected with S2(F169Y) compared with syndecan-2. Moreover, S2(F169Y) reduced downstream reactions mediated by the heterodimerization of syndecan-2 and -4, including Rac activity, cell migration, membrane localization of PKCα, and focal adhesion formation. The conserved phenylalanine in syndecan-1 and -3 also showed heterodimeric interaction with syndecan-2 and -4. Taken together, these findings suggest that the conserved phenylalanine in the TMD of syndecans is crucial in regulating heteromeric interactions of syndecans.

  20. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey

    NASA Astrophysics Data System (ADS)

    Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen

    2016-03-01

    Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey.

  1. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey.

    PubMed

    Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen

    2016-03-01

    Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey. PMID:27036795

  2. Cysteine-rich domains related to Frizzled receptors and Hedgehog-interacting proteins

    PubMed Central

    Pei, Jimin; Grishin, Nick V

    2012-01-01

    Frizzled and Smoothened are homologous seven-transmembrane proteins functioning in the Wnt and Hedgehog signaling pathways, respectively. They harbor an extracellular cysteine-rich domain (FZ-CRD), a mobile evolutionary unit that has been found in a number of other metazoan proteins and Frizzled-like proteins in Dictyostelium. Domains distantly related to FZ-CRDs, in Hedgehog-interacting proteins (HHIPs), folate receptors and riboflavin-binding proteins (FRBPs), and Niemann-Pick Type C1 proteins (NPC1s), referred to as HFN-CRDs, exhibit similar structures and disulfide connectivity patterns compared with FZ-CRDs. We used computational analyses to expand the homologous set of FZ-CRDs and HFN-CRDs, providing a better understanding of their evolution and classification. First, FZ-CRD-containing proteins with various domain compositions were identified in several major eukaryotic lineages including plants and Chromalveolata, revealing a wider phylogenetic distribution of FZ-CRDs than previously recognized. Second, two new and distinct groups of highly divergent FZ-CRDs were found by sensitive similarity searches. One of them is present in the calcium channel component Mid1 in fungi and the uncharacterized FAM155 proteins in metazoans. Members of the other new FZ-CRD group occur in the metazoan-specific RECK (reversion-inducing-cysteine-rich protein with Kazal motifs) proteins that are putative tumor suppressors acting as inhibitors of matrix metalloproteases. Finally, sequence and three-dimensional structural comparisons helped us uncover a divergent HFN-CRD in glypicans, which are important morphogen-binding heparan sulfate proteoglycans. Such a finding reinforces the evolutionary ties between the Wnt and Hedgehog signaling pathways and underscores the importance of gene duplications in creating essential signaling components in metazoan evolution. PMID:22693159

  3. Measuring frequency domain granger causality for multiple blocks of interacting time series.

    PubMed

    Faes, Luca; Nollo, Giandomenico

    2013-04-01

    In the past years, several frequency-domain causality measures based on vector autoregressive time series modeling have been suggested to assess directional connectivity in neural systems. The most followed approaches are based on representing the considered set of multiple time series as a realization of two or three vector-valued processes, yielding the so-called Geweke linear feedback measures, or as a realization of multiple scalar-valued processes, yielding popular measures like the directed coherence (DC) and the partial DC (PDC). In the present study, these two approaches are unified and generalized by proposing novel frequency-domain causality measures which extend the existing measures to the analysis of multiple blocks of time series. Specifically, the block DC (bDC) and block PDC (bPDC) extend DC and PDC to vector-valued processes, while their logarithmic counterparts, denoted as multivariate total feedback [Formula: see text] and direct feedback [Formula: see text], represent into a full multivariate framework the Geweke's measures. Theoretical analysis of the proposed measures shows that they: (i) possess desirable properties of causality measures; (ii) are able to reflect either direct causality (bPDC, [Formula: see text] or total (direct + indirect) causality (bDC, [Formula: see text] between time series blocks; (iii) reduce to the DC and PDC measures for scalar-valued processes, and to the Geweke's measures for pairs of processes; (iv) are able to capture internal dependencies between the scalar constituents of the analyzed vector processes. Numerical analysis showed that the proposed measures can be efficiently estimated from short time series, allow to represent in an objective, compact way the information derived from the causal analysis of several pairs of time series, and may detect frequency domain causality more accurately than existing measures. The proposed measures find their natural application in the evaluation of directional

  4. Measuring frequency domain granger causality for multiple blocks of interacting time series.

    PubMed

    Faes, Luca; Nollo, Giandomenico

    2013-04-01

    In the past years, several frequency-domain causality measures based on vector autoregressive time series modeling have been suggested to assess directional connectivity in neural systems. The most followed approaches are based on representing the considered set of multiple time series as a realization of two or three vector-valued processes, yielding the so-called Geweke linear feedback measures, or as a realization of multiple scalar-valued processes, yielding popular measures like the directed coherence (DC) and the partial DC (PDC). In the present study, these two approaches are unified and generalized by proposing novel frequency-domain causality measures which extend the existing measures to the analysis of multiple blocks of time series. Specifically, the block DC (bDC) and block PDC (bPDC) extend DC and PDC to vector-valued processes, while their logarithmic counterparts, denoted as multivariate total feedback [Formula: see text] and direct feedback [Formula: see text], represent into a full multivariate framework the Geweke's measures. Theoretical analysis of the proposed measures shows that they: (i) possess desirable properties of causality measures; (ii) are able to reflect either direct causality (bPDC, [Formula: see text] or total (direct + indirect) causality (bDC, [Formula: see text] between time series blocks; (iii) reduce to the DC and PDC measures for scalar-valued processes, and to the Geweke's measures for pairs of processes; (iv) are able to capture internal dependencies between the scalar constituents of the analyzed vector processes. Numerical analysis showed that the proposed measures can be efficiently estimated from short time series, allow to represent in an objective, compact way the information derived from the causal analysis of several pairs of time series, and may detect frequency domain causality more accurately than existing measures. The proposed measures find their natural application in the evaluation of directional

  5. Initiating protease with modular domains interacts with β-glucan recognition protein to trigger innate immune response in insects.

    PubMed

    Takahashi, Daisuke; Garcia, Brandon L; Kanost, Michael R

    2015-11-10

    The autoactivation of an initiating serine protease upon binding of pattern recognition proteins to pathogen surfaces is a crucial step in eliciting insect immune responses such as the activation of Toll and prophenoloxidase pathways. However, the molecular mechanisms responsible for autoactivation of the initiating protease remains poorly understood. Here, we investigated the molecular basis for the autoactivation of hemolymph protease 14 (HP14), an initiating protease in hemolymph of Manduca sexta, upon the binding of β-1,3-glucan by its recognition protein, βGRP2. Biochemical analysis using HP14 zymogen (proHP14), βGRP2, and the recombinant proteins as truncated forms showed that the amino-terminal modular low-density lipoprotein receptor class A (LA) domains within HP14 are required for proHP14 autoactivation that is stimulated by its interaction with βGRP2. Consistent with this result, recombinant LA domains inhibit the activation of proHP14 and prophenoloxidase, likely by competing with the interaction between βGRP2 and LA domains within proHP14. Using surface plasmon resonance, we demonstrated that immobilized LA domains directly interact with βGRP2 in a calcium-dependent manner and that high-affinity interaction requires the C-terminal glucanase-like domain of βGRP2. Importantly, the affinity of LA domains for βGRP2 increases nearly 100-fold in the presence of β-1,3-glucan. Taken together, these results present the first experimental evidence to our knowledge that LA domains of an insect modular protease and glucanase-like domains of a βGRP mediate their interaction, and that this binding is essential for the protease autoactivation. Thus, our study provides important insight into the molecular basis underlying the initiation of protease cascade in insect immune responses. PMID:26504233

  6. Initiating protease with modular domains interacts with β-glucan recognition protein to trigger innate immune response in insects

    PubMed Central

    Takahashi, Daisuke; Garcia, Brandon L.; Kanost, Michael R.

    2015-01-01

    The autoactivation of an initiating serine protease upon binding of pattern recognition proteins to pathogen surfaces is a crucial step in eliciting insect immune responses such as the activation of Toll and prophenoloxidase pathways. However, the molecular mechanisms responsible for autoactivation of the initiating protease remains poorly understood. Here, we investigated the molecular basis for the autoactivation of hemolymph protease 14 (HP14), an initiating protease in hemolymph of Manduca sexta, upon the binding of β-1,3-glucan by its recognition protein, βGRP2. Biochemical analysis using HP14 zymogen (proHP14), βGRP2, and the recombinant proteins as truncated forms showed that the amino-terminal modular low-density lipoprotein receptor class A (LA) domains within HP14 are required for proHP14 autoactivation that is stimulated by its interaction with βGRP2. Consistent with this result, recombinant LA domains inhibit the activation of proHP14 and prophenoloxidase, likely by competing with the interaction between βGRP2 and LA domains within proHP14. Using surface plasmon resonance, we demonstrated that immobilized LA domains directly interact with βGRP2 in a calcium-dependent manner and that high-affinity interaction requires the C-terminal glucanase-like domain of βGRP2. Importantly, the affinity of LA domains for βGRP2 increases nearly 100-fold in the presence of β-1,3-glucan. Taken together, these results present the first experimental evidence to our knowledge that LA domains of an insect modular protease and glucanase-like domains of a βGRP mediate their interaction, and that this binding is essential for the protease autoactivation. Thus, our study provides important insight into the molecular basis underlying the initiation of protease cascade in insect immune responses. PMID:26504233

  7. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions.

    PubMed

    Lupiáñez, Darío G; Kraft, Katerina; Heinrich, Verena; Krawitz, Peter; Brancati, Francesco; Klopocki, Eva; Horn, Denise; Kayserili, Hülya; Opitz, John M; Laxova, Renata; Santos-Simarro, Fernando; Gilbert-Dussardier, Brigitte; Wittler, Lars; Borschiwer, Marina; Haas, Stefan A; Osterwalder, Marco; Franke, Martin; Timmermann, Bernd; Hecht, Jochen; Spielmann, Malte; Visel, Axel; Mundlos, Stefan

    2015-05-21

    Mammalian genomes are organized into megabase-scale topologically associated domains (TADs). We demonstrate that disruption of TADs can rewire long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. This rewiring occurred only if the variant disrupted a CTCF-associated boundary domain. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome. PMID:25959774

  8. Evolution of light domain walls interacting with dark matter, part 1

    NASA Technical Reports Server (NTRS)

    Massarotti, Alessandro

    1990-01-01

    The evolution of domain walls generated in the early Universe is discussed considering an interaction between the walls and a major gaseous component of the dark matter. The walls are supposed able to reflect the particles elastically and with a reflection coefficient of unity. A toy Lagrangian that could give rise to such a phenomenon is discussed. In the simple model studied, highly non-relativistic and slowly varying speeds are obtained for the domain walls (approximately 10 (exp -2)(1+z)(exp -1)) and negligible distortions of the microwave background. In addition, these topological defects may provide a mechanism of forming the large scale structure of the Universe, by creating fluctuations in the dark matter (delta rho/rho approximately O(1)) on a scale comparable with the distance the walls move from the formation (in the model d less than 20 h(exp -1) Mpc). The characteristic scale of the wall separation can be easily chosen to be of the order of 100 Mpc instead of being restricted to the horizon scale, as usually obtained.

  9. Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions

    PubMed Central

    Lupiáñez, Darío G.; Kraft, Katerina; Heinrich, Verena; Krawitz, Peter; Brancati, Francesco; Klopocki, Eva; Horn, Denise; Kayserili, Hülya; Opitz, John M.; Laxova, Renata; Santos-Simarro, Fernando; Gilbert-Dussardier, Brigitte; Wittler, Lars; Borschiwer, Marina; Haas, Stefan A.; Osterwalder, Marco; Franke, Martin; Timmermann, Bernd; Hecht, Jochen; Spielmann, Malte; Visel, Axel; Mundlos, Stefan

    2016-01-01

    SUMMARY Mammalian genomes are organized into megabase-scale topologically associated domains (TADs). We demonstrate that disruption of TADs can rewire long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. This rewiring occurred only if the variant disrupted a CTCF-associated boundary domain. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome. PMID:25959774

  10. Category-specific naming deficit in Alzheimer's disease: the effect of a display by domain interaction.

    PubMed

    Zannino, Gian Daniele; Perri, Roberta; Caltagirone, Carlo; Carlesimo, Giovanni A

    2007-04-01

    A category-specific naming effect penalizing living things has often been reported in patients suffering from Alzheimer's disease (AD) and in other brain damaged populations, while the opposite dissociation (i.e., lower accuracy in naming nonliving than living things) is much rarer. In this study, we investigated whether the use of line drawings (rather than color photographs) in picture-naming tasks could be a relevant factor in the emergence of a category effect penalizing living things and found evidence in favor of this hypothesis. We administered the same naming tasks comprising living and nonliving items to 10 subjects suffering from AD and 10 normal controls. Once the stimuli were line drawings and once color photographs. A reliable Group x Semantic domain interaction, indicating a disproportionate impairment for living things in the AD group, was only found when line drawings were presented. Results are discussed with reference to two competing approaches to category-specificity in brain damaged people. One assumes that category effects are due to the differential involvement of dedicated neural subsystems, the other emphasizes the role of cross domains imbalances in processing demands. We conclude that our findings lead support to the latter approach. PMID:17266996

  11. Field-driven Domain Wall Motion in Ferromagnetic Nanowires with Bulk Dzyaloshinskii-Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Zhuo, Fengjun; Sun, Z. Z.

    2016-04-01

    Field-driven domain wall (DW) motion in ferromagnetic nanowires with easy- and hard-axis anisotropies was studied theoretically and numerically in the presence of the bulk Dzyaloshinskii-Moriya interaction (DMI) based on the Landau-Lifshitz-Gilbert equation. We propose a new trial function and offer an exact solution for DW motion along a uniaxial nanowire driven by an external magnetic field. A new strategy was suggested to speed up DW motion in a uniaxial magnetic nanowire with large DMI parameters. In the presence of hard-axis anisotropy, we find that the breakdown field and velocity of DW motion was strongly affected by the strength and sign of the DMI parameter under external fields. This work may be useful for future magnetic information storage devices based on DW motion.

  12. The UBAP1 Subunit of ESCRT-I Interacts with Ubiquitin via a SOUBA Domain

    PubMed Central

    Agromayor, Monica; Soler, Nicolas; Caballe, Anna; Kueck, Tonya; Freund, Stefan M.; Allen, Mark D.; Bycroft, Mark; Perisic, Olga; Ye, Yu; McDonald, Bethan; Scheel, Hartmut; Hofmann, Kay; Neil, Stuart J.D.; Martin-Serrano, Juan; Williams, Roger L.

    2012-01-01

    Summary The endosomal sorting complexes required for transport (ESCRTs) facilitate endosomal sorting of ubiquitinated cargo, MVB biogenesis, late stages of cytokinesis, and retroviral budding. Here we show that ubiquitin associated protein 1 (UBAP1), a subunit of human ESCRT-I, coassembles in a stable 1:1:1:1 complex with Vps23/TSG101, VPS28, and VPS37. The X-ray crystal structure of the C-terminal region of UBAP1 reveals a domain that we describe as a solenoid of overlapping UBAs (SOUBA). NMR analysis shows that each of the three rigidly arranged overlapping UBAs making up the SOUBA interact with ubiquitin. We demonstrate that UBAP1-containing ESCRT-I is essential for degradation of antiviral cell-surface proteins, such as tetherin (BST-2/CD317), by viral countermeasures, namely, the HIV-1 accessory protein Vpu and the Kaposi sarcoma-associated herpesvirus (KSHV) ubiquitin ligase K5. PMID:22405001

  13. Intrinsically disordered cytoplasmic domains of two cytokine receptors mediate conserved interactions with membranes.

    PubMed

    Haxholm, Gitte W; Nikolajsen, Louise F; Olsen, Johan G; Fredsted, Jacob; Larsen, Flemming H; Goffin, Vincent; Pedersen, Stine F; Brooks, Andrew J; Waters, Michael J; Kragelund, Birthe B

    2015-06-15

    Class 1 cytokine receptors regulate essential biological processes through complex intracellular signalling networks. However, the structural platform for understanding their functions is currently incomplete as structure-function studies of the intracellular domains (ICDs) are critically lacking. The present study provides the first comprehensive structural characterization of any cytokine receptor ICD and demonstrates that the human prolactin (PRL) receptor (PRLR) and growth hormone receptor (GHR) ICDs are intrinsically disordered throughout their entire lengths. We show that they interact specifically with hallmark lipids of the inner plasma membrane leaflet through conserved motifs resembling immuno receptor tyrosine-based activation motifs (ITAMs). However, contrary to the observations made for ITAMs, lipid association of the PRLR and GHR ICDs was shown to be unaccompanied by changes in transient secondary structure and independent of tyrosine phosphorylation. The results of the present study provide a new structural platform for studying class 1 cytokine receptors and may implicate the membrane as an active component regulating intracellular signalling.

  14. Field-driven Domain Wall Motion in Ferromagnetic Nanowires with Bulk Dzyaloshinskii-Moriya Interaction

    PubMed Central

    Zhuo, Fengjun; Sun, Z. Z.

    2016-01-01

    Field-driven domain wall (DW) motion in ferromagnetic nanowires with easy- and hard-axis anisotropies was studied theoretically and numerically in the presence of the bulk Dzyaloshinskii-Moriya interaction (DMI) based on the Landau-Lifshitz-Gilbert equation. We propose a new trial function and offer an exact solution for DW motion along a uniaxial nanowire driven by an external magnetic field. A new strategy was suggested to speed up DW motion in a uniaxial magnetic nanowire with large DMI parameters. In the presence of hard-axis anisotropy, we find that the breakdown field and velocity of DW motion was strongly affected by the strength and sign of the DMI parameter under external fields. This work may be useful for future magnetic information storage devices based on DW motion. PMID:27118064

  15. Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Ono, Teruo

    Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions start to play an important role in modern magnetism due to their extraordinary stability which can be hailed as future memory devices. Recently, novel type of antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction (DMI), has been uncovered and found to influence on the formation of topological defects. Exploring how the DMI affects the dynamics of topological defects is therefore an important task. Here we investigate the dynamics of the magnetic domain wall (DW) under a DMI by developing a time-of-flight measurement scheme which allows us to measure the DW velocity for magnetic fields up to 0.3T. For a weak DMI, the trend of DW velocity follows the Walker's model which predicts that the velocity of DW increases with field up to a threshold (Walker field) and decreases abruptly. On the other hand, for a strong DMI, velocity breakdown is completely suppressed and the DW keeps its maximum velocity even far above the Walker field. Such a distinct trend of the DW velocity, which has never been predicted, can be explained in terms of magnetic soliton, of which topology can be protected by the DMI. Importantly, such a soliton-like DW motion is only observed in two dimensional systems, implying that the vertical Bloch lines (VBLs) creating inside of the magnetic domain-wall play a crucial role. This work was partly supported by JSPS KAKENHI Grant Numbers 15H05702, 26870300, 26870304, 26103002, 25.4251, Collaborative Research Program of the Institute for Chemical Research, Kyoto University, and R & D Project for ICT Key Technology of MEXT from the Japan Society for the Promotion of Science (JSPS).

  16. Physical Interactions Between the Thermosphere and Ionosphere, and Coupling to the Neighboring Domains

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, T. J.

    2011-12-01

    Coupled thermosphere ionosphere physics-based models have about a 25 year heritage. This paper reviews the physical processes pertaining to the interaction between the neutral and plasma domains, and what we have learnt from the coupling physics embedded in the models. The interactions range from the chemical to the dynamic, from the linear to the non-linear, and from the intuitive to the non-intuitive. For example, coupled thermosphere-ionosphere models have been able to unravel some of the complexities of the storm-time response, in particular the observed seasonal/local-time characteristics of the ionospheric negative phase and its connection to the transport of thermospheric major species. Another example is the unexpected asymmetry in the neutral wind response to magnetospheric forcing, which is a good example of a non-linear response. Both these cases illustrate how, physical modeling, firstly, can be used as a tool to simulate the phenomena, and secondly, can be used to elucidate the underlying physical processes at work. This second step, is the most difficult and time-consuming, and is often neglected. Still many outstanding issues remain, which will likely be address by coupling to the neighboring domains. For instance, the challenge of the semi-annual variation in several neutral and plasma parameters has yet to be modeled successfully. The hope is that coupling with the lower atmosphere will shed light on the physical processes. Another example is the huge increases in plasma density at mid-latitudes, which likely requires careful coupling of thermosphere-ionosphere with both inner and outer magnetosphere codes. Both these directions, coupling with the lower atmosphere and with the magnetosphere, are active and fruitful lines of research that will provide the momentum for future advances in understanding of the coupled geospace physical system.

  17. Simulation of near-field plasmonic interactions with a local approximation order discontinuous Galerkin time-domain method

    NASA Astrophysics Data System (ADS)

    Viquerat, Jonathan; Lanteri, Stéphane

    2016-01-01

    During the last ten years, the discontinuous Galerkin time-domain (DGTD) method has progressively emerged as a viable alternative to well established finite-difference time-domain (FDTD) and finite-element time-domain (FETD) methods for the numerical simulation of electromagnetic wave propagation problems in the time-domain. The method is now actively studied in various application contexts including those requiring to model light/matter interactions on the nanoscale. Several recent works have demonstrated the viability of the DGDT method for nanophotonics. In this paper we further demonstrate the capabilities of the method for the simulation of near-field plasmonic interactions by considering more particularly the possibility of combining the use of a locally refined conforming tetrahedral mesh with a local adaptation of the approximation order.

  18. C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis.

    PubMed

    Rodriguez, Lesia; Gonzalez-Guzman, Miguel; Diaz, Maira; Rodrigues, Americo; Izquierdo-Garcia, Ana C; Peirats-Llobet, Marta; Fernandez, Maria A; Antoni, Regina; Fernandez, Daniel; Marquez, Jose A; Mulet, Jose M; Albert, Armando; Rodriguez, Pedro L

    2014-12-01

    Membrane-delimited abscisic acid (ABA) signal transduction plays a critical role in early ABA signaling, but the molecular mechanisms linking core signaling components to the plasma membrane are unclear. We show that transient calcium-dependent interactions of PYR/PYL ABA receptors with membranes are mediated through a 10-member family of C2-domain ABA-related (CAR) proteins in Arabidopsis thaliana. Specifically, we found that PYL4 interacted in an ABA-independent manner with CAR1 in both the plasma membrane and nucleus of plant cells. CAR1 belongs to a plant-specific gene family encoding CAR1 to CAR10 proteins, and bimolecular fluorescence complementation and coimmunoprecipitation assays showed that PYL4-CAR1 as well as other PYR/PYL-CAR pairs interacted in plant cells. The crystal structure of CAR4 was solved, which revealed that, in addition to a classical calcium-dependent lipid binding C2 domain, a specific CAR signature is likely responsible for the interaction with PYR/PYL receptors and their recruitment to phospholipid vesicles. This interaction is relevant for PYR/PYL function and ABA signaling, since different car triple mutants affected in CAR1, CAR4, CAR5, and CAR9 genes showed reduced sensitivity to ABA in seedling establishment and root growth assays. In summary, we identified PYR/PYL-interacting partners that mediate a transient Ca(2+)-dependent interaction with phospholipid vesicles, which affects PYR/PYL subcellular localization and positively regulates ABA signaling. PMID:25465408

  19. C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis.

    PubMed

    Rodriguez, Lesia; Gonzalez-Guzman, Miguel; Diaz, Maira; Rodrigues, Americo; Izquierdo-Garcia, Ana C; Peirats-Llobet, Marta; Fernandez, Maria A; Antoni, Regina; Fernandez, Daniel; Marquez, Jose A; Mulet, Jose M; Albert, Armando; Rodriguez, Pedro L

    2014-12-01

    Membrane-delimited abscisic acid (ABA) signal transduction plays a critical role in early ABA signaling, but the molecular mechanisms linking core signaling components to the plasma membrane are unclear. We show that transient calcium-dependent interactions of PYR/PYL ABA receptors with membranes are mediated through a 10-member family of C2-domain ABA-related (CAR) proteins in Arabidopsis thaliana. Specifically, we found that PYL4 interacted in an ABA-independent manner with CAR1 in both the plasma membrane and nucleus of plant cells. CAR1 belongs to a plant-specific gene family encoding CAR1 to CAR10 proteins, and bimolecular fluorescence complementation and coimmunoprecipitation assays showed that PYL4-CAR1 as well as other PYR/PYL-CAR pairs interacted in plant cells. The crystal structure of CAR4 was solved, which revealed that, in addition to a classical calcium-dependent lipid binding C2 domain, a specific CAR signature is likely responsible for the interaction with PYR/PYL receptors and their recruitment to phospholipid vesicles. This interaction is relevant for PYR/PYL function and ABA signaling, since different car triple mutants affected in CAR1, CAR4, CAR5, and CAR9 genes showed reduced sensitivity to ABA in seedling establishment and root growth assays. In summary, we identified PYR/PYL-interacting partners that mediate a transient Ca(2+)-dependent interaction with phospholipid vesicles, which affects PYR/PYL subcellular localization and positively regulates ABA signaling.

  20. C2-Domain Abscisic Acid-Related Proteins Mediate the Interaction of PYR/PYL/RCAR Abscisic Acid Receptors with the Plasma Membrane and Regulate Abscisic Acid Sensitivity in Arabidopsis[C][W

    PubMed Central

    Rodriguez, Lesia; Diaz, Maira; Rodrigues, Americo; Izquierdo-Garcia, Ana C.; Peirats-Llobet, Marta; Fernandez, Maria A.; Antoni, Regina; Fernandez, Daniel; Marquez, Jose A.; Mulet, Jose M.; Albert, Armando; Rodriguez, Pedro L.

    2014-01-01

    Membrane-delimited abscisic acid (ABA) signal transduction plays a critical role in early ABA signaling, but the molecular mechanisms linking core signaling components to the plasma membrane are unclear. We show that transient calcium-dependent interactions of PYR/PYL ABA receptors with membranes are mediated through a 10-member family of C2-domain ABA-related (CAR) proteins in Arabidopsis thaliana. Specifically, we found that PYL4 interacted in an ABA-independent manner with CAR1 in both the plasma membrane and nucleus of plant cells. CAR1 belongs to a plant-specific gene family encoding CAR1 to CAR10 proteins, and bimolecular fluorescence complementation and coimmunoprecipitation assays showed that PYL4-CAR1 as well as other PYR/PYL-CAR pairs interacted in plant cells. The crystal structure of CAR4 was solved, which revealed that, in addition to a classical calcium-dependent lipid binding C2 domain, a specific CAR signature is likely responsible for the interaction with PYR/PYL receptors and their recruitment to phospholipid vesicles. This interaction is relevant for PYR/PYL function and ABA signaling, since different car triple mutants affected in CAR1, CAR4, CAR5, and CAR9 genes showed reduced sensitivity to ABA in seedling establishment and root growth assays. In summary, we identified PYR/PYL-interacting partners that mediate a transient Ca2+-dependent interaction with phospholipid vesicles, which affects PYR/PYL subcellular localization and positively regulates ABA signaling. PMID:25465408

  1. Structure and interactions of the C-terminal metal binding domain of Archaeoglobus fulgidus CopA

    SciTech Connect

    Agarwal, S.; Hong, D.; Desai, N.K.; H.Sazinsky, M.; Argüello, J.M.; Rosenzweig, A.C.

    2010-08-13

    The Cu(+)-ATPase CopA from Archaeoglobus fulgidus belongs to the P(1B) family of the P-type ATPases. These integral membrane proteins couple the energy of ATP hydrolysis to heavy metal ion translocation across membranes. A defining feature of P(1B-1)-type ATPases is the presence of soluble metal binding domains at the N-terminus (N-MBDs). The N-MBDs exhibit a conserved ferredoxin-like fold, similar to that of soluble copper chaperones, and bind metal ions via a conserved CXXC motif. The N-MBDs enable Cu(+) regulation of turnover rates apparently through Cu-sensitive interactions with catalytic domains. A. fulgidus CopA is unusual in that it contains both an N-terminal MBD and a C-terminal MBD (C-MBD). The functional role of the unique C-MBD has not been established. Here, we report the crystal structure of the apo, oxidized C-MBD to 2.0 A resolution. In the structure, two C-MBD monomers form a domain-swapped dimer, which has not been observed previously for similar domains. In addition, the interaction of the C-MBD with the other cytoplasmic domains of CopA, the ATP binding domain (ATPBD) and actuator domain (A-domain), has been investigated. Interestingly, the C-MBD interacts specifically with both of these domains, independent of the presence of Cu(+) or nucleotides. These data reinforce the uniqueness of the C-MBD and suggest a distinct structural role for the C-MBD in CopA transport.

  2. Energetic domains analysis of bovine α-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide

    NASA Astrophysics Data System (ADS)

    Chamani, J.

    2010-08-01

    Domain analysis of the dialyzed form of α-lactalbumin (m-α-LA) with varying concentrations of Cu +2 and DTAB has been carried out by differential scanning calorimetry (DSC), circular dichroism (CD) and resonance Rayleigh scattering (RLS) to elucidate the effect of the ligands on the thermal and structural properties of m-α-LA. The DSC profile displayed two dissimilar temperature-induced heat-absorption peaks as well as two melting points ( T m = 305 K, T m = 333 K). The m-α-LA is not a new form of α-LA, but rather contains a mixture of the apo- and holo-forms of α-LA (i.e., a-α-LA and h-α-LA) at low and high temperatures, respectively. The presence of Cu +2 as the metal ion and DTAB as the non-metal ion altered the two heat-absorption peaks in such a manner that, with the addition of Cu +2 to m-α-LA, the excess molar heat capacity profile showed three sub-peaks, i.e., one sub-peak for a-α-LA at 303.2 K and two other sub-peaks for h-α-LA at 325 K and 334 K. The presence of these peaks was due to the molecular population of the a-α-LA form changing into h-α-LA. Contrarily, when it came to the interaction between DTAB and m-α-LA, the DSC thermogram showed two sub-peaks, i.e., one sub-peak for a-α-LA and another sub-peak for h-α-LA, resulting from the molecular population of the h-α-LA form changing into a-α-LA. The CD experiments on m-α-LA upon interaction with Cu +2 and DTAB demonstrated an increment and a decrement, respectively, of the α-helix content relative to that of the protein in the absence of the ligands. However, the α-helix induced by Cu +2 as a metal ion inspired one energetics domain in m-α-LA, wherefore it could be deduced that the helicity content caused an increment of the energetics content of α-LA. Hence, Cu +2 and DTAB at various concentrations played important roles as good probes for defining the electrostatic moiety for domains of m-α-LA initiated through a dissimilarity with regard to the α-helicity of these domains

  3. Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold.

    PubMed

    Checco, James W; Kreitler, Dale F; Thomas, Nicole C; Belair, David G; Rettko, Nicholas J; Murphy, William L; Forest, Katrina T; Gellman, Samuel H

    2015-04-14

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and β-amino acid residues ("α/β-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF165-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain-mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.

  4. The Shank3 Interaction Partner ProSAPiP1 Regulates Postsynaptic SPAR Levels and the Maturation of Dendritic Spines in Hippocampal Neurons

    PubMed Central

    Reim, Dominik; Weis, Tobias M.; Halbedl, Sonja; Delling, Jan Philipp; Grabrucker, Andreas M.; Boeckers, Tobias M.; Schmeisser, Michael J.

    2016-01-01

    The postsynaptic density or PSD is a submembranous compartment containing a wide array of proteins that contribute to both morphology and function of excitatory glutamatergic synapses. In this study, we have analyzed functional aspects of the Fezzin ProSAP-interacting protein 1 (ProSAPiP1), an interaction partner of the well-known PSD proteins Shank3 and SPAR. Using lentiviral-mediated overexpression and knockdown of ProSAPiP1, we found that this protein is dispensable for the formation of both pre- and postsynaptic specializations per se. We further show that ProSAPiP1 regulates SPAR levels at the PSD and the maturation of dendritic spines. In line with previous findings on the ProSAPiP1 homolog PSD-Zip70, we conclude that Fezzins essentially contribute to the maturation of excitatory spine synapses. PMID:27252646

  5. Structural insights of homotypic interaction domains in the ligand-receptor signal transduction of tumor necrosis factor (TNF)

    PubMed Central

    Park, Young-Hoon; Jeong, Mi Suk; Jang, Se Bok

    2016-01-01

    Several members of tumor necrosis factor receptor (TNFR) superfamily that these members activate caspase-8 from death-inducing signaling complex (DISC) in TNF ligand-receptor signal transduction have been identified. In the extrinsic pathway, apoptotic signal transduction is induced in death domain (DD) superfamily; it consists of a hexahelical bundle that contains 80 amino acids. The DD superfamily includes about 100 members that belong to four subfamilies: death domain (DD), caspase recruitment domain (CARD), pyrin domain (PYD), and death effector domain (DED). This superfamily contains key building blocks: with these blocks, multimeric complexes are formed through homotypic interactions. Furthermore, each DD-binding event occurs exclusively. The DD superfamily regulates the balance between death and survival of cells. In this study, the structures, functions, and unique features of DD superfamily members are compared with their complexes. By elucidating structural insights of DD superfamily members, we investigate the interaction mechanisms of DD domains; these domains are involved in TNF ligand-receptor signaling. These DD superfamily members play a pivotal role in the development of more specific treatments of cancer. [BMB Reports 2016; 49(3): 159-166] PMID:26615973

  6. The Habc Domain of the SNARE Vam3 Interacts with the HOPS Tethering Complex to Facilitate Vacuole Fusion*

    PubMed Central

    Lürick, Anna; Kuhlee, Anne; Bröcker, Cornelia; Kümmel, Daniel; Raunser, Stefan; Ungermann, Christian

    2015-01-01

    Membrane fusion at vacuoles requires a consecutive action of the HOPS tethering complex, which is recruited by the Rab GTPase Ypt7, and vacuolar SNAREs to drive membrane fusion. It is assumed that the Sec1/Munc18-like Vps33 within the HOPS complex is largely responsible for SNARE chaperoning. Here, we present direct evidence for HOPS binding to SNAREs and the Habc domain of the Vam3 SNARE protein, which may explain its function during fusion. We show that HOPS interacts strongly with the Vam3 Habc domain, assembled Q-SNAREs, and the R-SNARE Ykt6, but not the Q-SNARE Vti1 or the Vam3 SNARE domain. Electron microscopy combined with Nanogold labeling reveals that the binding sites for vacuolar SNAREs and the Habc domain are located in the large head of the HOPS complex, where Vps16 and Vps33 have been identified before. Competition experiments suggest that HOPS bound to the Habc domain can still interact with assembled Q-SNAREs, whereas Q-SNARE binding prevents recognition of the Habc domain. In agreement, membranes carrying Vam3ΔHabc fuse poorly unless an excess of HOPS is provided. These data suggest that the Habc domain of Vam3 facilitates the assembly of the HOPS/SNARE machinery at fusion sites and thus supports efficient membrane fusion. PMID:25564619

  7. Adult Attachment as a Risk Factor for Intimate Partner Violence : The "Mispairing" of Partners' Attachment Styles

    ERIC Educational Resources Information Center

    Doumas, Diana M.; Pearson, Christine L.; Elgin, Jenna E.; McKinley, Lisa L.

    2008-01-01

    This study examined the relationship between intimate partner violence and adult attachment in a sample of 70 couples. The attachment style of each partner and the interaction of the partners' attachment styles were examined as predictors of intimate partner violence. Additional analyses were conducted to examine violence reciprocity and to…

  8. Direct interaction of v-Src with the focal adhesion kinase mediated by the Src SH2 domain.

    PubMed Central

    Xing, Z; Chen, H C; Nowlen, J K; Taylor, S J; Shalloway, D; Guan, J L

    1994-01-01

    The recently described focal adhesion kinase (FAK) has been implicated in signal transduction pathways initiated by cell adhesion receptor integrins and by neuropeptide growth factors. To examine the mechanisms by which FAK relays signals from the membrane to the cell interior, we carried out a series of experiments to detect potential FAK interactions with proteins containing Src homology 2 (SH2) domains that are important intracellular signaling molecules. Using v-Src-transformed NIH3T3 cells, we showed that FAK was present in the immune-complex precipitated by anti-Src antibody, suggesting potential interaction of FAK with v-Src in vivo. We also showed potentially direct interaction of FAK with v-Src in vivo using the yeast two-hybrid system. Using recombinant FAK expressed in insect cells and bacterial fusion proteins containing Src SH2 domains, we showed direct binding of FAK to the Src SH2 domain but not to the SH3 domain in vitro. A kinase-defective mutant of FAK, which is not autophosphorylated, did not interact with the Src SH2 domain under the same conditions, suggesting the involvement of the FAK autophosphorylation sites. Treatment of FAK with a protein-tyrosine phosphatase decreased its binding to the Src SH2 domain, whereas autophosphorylation in vitro increased its binding. These results confirm the importance of FAK autophosphorylation sites in its interaction with SH2 domain-containing proteins. Taken together, these results suggest that FAK may mediate signal transduction events initiated on the cell surface by kinase activation and autophosphorylation that result in its binding to other key intracellular signaling molecules. Images PMID:8054685

  9. Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine.

    PubMed

    Improta-Brears, T; Ghosh, S; Bell, R M

    1999-08-01

    Activation of Raf-1 kinase is preceded by a translocation of Raf-1 to the plasma membrane in response to external stimuli. The membrane localization of Raf-1 is facilitated through its interaction with activated Ras and with membrane phospholipids. Previous evidence suggests that the interaction of Raf-1 with Ras is mediated by two distinct domains within the N-terminal region of Raf-1 comprising amino acid residues 51-131 and residues 139-184, the latter of which codes for a zinc containing cysteine-rich domain. The cysteine-rich domain of Raf-1 is also reported to associate with other proteins, such as 14-3-3, and for selectively binding acidic phospholipids, particularly phosphatidylserine (PS). In the present study, we have investigated the consequences of progressive deletions and point mutations within the cysteine-rich domain of Raf-1 on its ability to bind PS. A reduced interaction with PS was observed in vitro for all deletion mutants of Raf-1 expressed either as full-length proteins or as fragments containing the isolated cysteine-rich domain. In particular, the cluster of basic amino acids R143, K144, and K148 appeared to be critical for interaction with PS, since substitution of all three residues to alanine resulted in a protein that failed to interact with liposomes enriched for PS. Expression of Raf-1 in vivo, containing point mutations in the cysteine-rich domain resulted in a truncated polypeptide that lacked both the Ras and PS binding sites and could no longer translocate to the plasma membrane upon serum stimulation. These results indicate that the basic residues 143, 144 and 148 in the anterior half of Raf-1 cysteine-rich domain play a role in the association with the lipid bilayer and possibly in protein stability, therefore they might contribute to Raf-1 localization and subsequent activation.

  10. The BARD1 C-Terminal Domain Structure and Interactions with Polyadenylation Factor CstF-50

    SciTech Connect

    Edwards, Ross A.; Lee, Megan S.; Tsutakawa, Susan E.; Williams, R. Scott; Tainer, John A.; Glover, J. N. Mark

    2009-07-13

    The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF- 50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins.Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase.

  11. Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Yoshimura, Yoko; Kim, Kab-Jin; Taniguchi, Takuya; Tono, Takayuki; Ueda, Kohei; Hiramatsu, Ryo; Moriyama, Takahiro; Yamada, Keisuke; Nakatani, Yoshinobu; Ono, Teruo

    2016-02-01

    Topological defects such as magnetic solitons, vortices and skyrmions have started to play an important role in modern magnetism because of their extraordinary stability, which can be exploited in the production of memory devices. Recently, a type of antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction (DMI; refs ,), has been uncovered and found to influence the formation of topological defects. Exploring how the DMI affects the dynamics of topological defects is therefore an important task. Here we investigate the dynamics of the magnetic domain wall (DW) under a DMI by developing a real time DW detection scheme. For a weak DMI, the DW velocity increases with the external field and reaches a peak velocity at a threshold field, beyond which it abruptly decreases. For a strong DMI, on the other hand, the velocity reduction is completely suppressed and the peak velocity is maintained constant even far above the threshold field. Such a distinct trend of the velocity can be explained in terms of a magnetic soliton, the topology of which is protected during its motion. Our results therefore shed light on the physics of dynamic topological defects, which paves the way for future work in topology-based memory applications.

  12. Polypeptide Modulators of Caspase Recruitment Domain (CARD)-CARD-mediated Protein-Protein Interactions*

    PubMed Central

    Palacios-Rodríguez, Yadira; García-Laínez, Guillermo; Sancho, Mónica; Gortat, Anna; Orzáez, Mar; Pérez-Payá, Enrique

    2011-01-01

    The caspase recruitment domain (CARD) is present in a large number of proteins. Initially, the CARD was recognized as part of the caspase activation machinery. CARD-CARD interactions play a role in apoptosis and are responsible for the Apaf-1-mediated activation of procaspase-9 in the apoptosome. CARD-containing proteins mediate the inflammasome-dependent activation of proinflammatory caspase-1. More recently, new roles for CARD-containing proteins have been reported in signaling pathways associated with immune responses. The functional role of CARD-containing proteins and CARDs in coordinating apoptosis and inflammatory and immune responses is not completely understood. We have explored the putative cross-talk between apoptosis and inflammation by analyzing the modulatory activity on both the Apaf-1/procaspase-9 interaction and the inflammasome-mediated procaspase-1 activation of CARD-derived polypeptides. To this end, we analyzed the activity of individual recombinant CARDs, rationally designed CARD-derived peptides, and peptides derived from phage display. PMID:22065589

  13. A rigid surface boundary element for soil-structure interaction analysis in the direct time domain

    NASA Astrophysics Data System (ADS)

    Rizos, D. C.

    Many soil-structure interaction problems involve studies of single or multiple rigid bodies of arbitrary shape and soil media. The commonly used boundary element methods implement the equations of the rigid body in a form that depends on the particulars of the geometry and requires partitioning and condensation of the associated algebraic system of equations. The present work employs the direct time domain B-Spline BEM for 3D elastodynamic analysis and presents an efficient implementation of rigid bodies of arbitrary shape in contact with, or embedded in, elastic media. The formulation of a rigid surface boundary element introduced herein is suitable for direct superposition in the BEM system of algebraic equations. Consequently, solutions are computed in a single analysis step, eliminating, thus, the need for partitioning of the system of equations. Computational efficiency is also achieved due to the extremely sparse form of the associated coefficient matrices. The proposed element can be used for the modeling of single or multiple rigid bodies of arbitrary shape within the framework of the BEM method. The efficiency and general nature of the proposed element is demonstrated through applications related to the dynamic analysis of rigid surface and embedded foundations and their interaction with embedded rigid bodies of arbitrary shape.

  14. Charge-pairing interactions control the conformational setpoint and motions of the FMN domain in neuronal nitric oxide synthase.

    PubMed

    Haque, Mohammad Mahfuzul; Bayachou, Mekki; Fadlalla, Mohammed A; Durra, Deborah; Stuehr, Dennis J

    2013-03-15

    The NOS (nitric oxide synthase; EC 1.14.13.39) enzymes contain a C-terminal flavoprotein domain [NOSred (reductase domain of NOS)] that binds FAD and FMN, and an N-terminal oxygenase domain that binds haem. Evidence suggests that the FMN-binding domain undergoes large conformational motions to shuttle electrons between the NADPH/FAD-binding domain [FNR (ferredoxin NADP-reductase)] and the oxygenase domain. Previously we have shown that three residues on the FMN domain (Glu762, Glu816 and Glu819) that make charge-pairing interactions with the FNR help to slow electron flux through nNOSred (neuronal NOSred). In the present study, we show that charge neutralization or reversal at each of these residues alters the setpoint [Keq(A)] of the NOSred conformational equilibrium to favour the open (FMN-deshielded) conformational state. Moreover, computer simulations of the kinetic traces of cytochrome c reduction by the mutants suggest that they have higher conformational transition rates (1.5-4-fold) and rates of interflavin electron transfer (1.5-2-fold) relative to wild-type nNOSred. We conclude that the three charge-pairing residues on the FMN domain govern electron flux through nNOSred by stabilizing its closed (FMN-shielded) conformational state and by retarding the rate of conformational switching between its open and closed conformations. PMID:23289611

  15. Domain–domain interactions in full-length p53 and a specific DNA complex probed by methyl NMR spectroscopy

    PubMed Central

    Bista, Michal; Freund, Stefan M.; Fersht, Alan R.

    2012-01-01

    The tumor suppressor p53 is a homotetramer of 4 × 393 residues. Its core domain and tetramerization domain are linked and flanked by intrinsically disordered sequences, which hinder its full structural characterization. There is an outstanding problem of the state of the tetramerization domain. Structural studies on the isolated tetramerization domain show it is in a folded tetrameric conformation, but there are conflicting models from electron microscopy of the full-length protein, one of which proposes that the domain is not tetramerically folded and the tetrameric protein is stabilized by interactions between the N and C termini. Here, we present methyl-transverse relaxation optimized NMR spectroscopy (methyl-TROSY) investigations on the full-length and separate domains of the protein with its methionine residues enriched with 13C to probe its quaternary structure. We obtained high-quality spectra of both the full-length tetrameric p53 and its DNA complex, observing the environment at 11 specific methyl sites. The tetramerization domain was as tetramerically folded in the full-length constructs as in the isolated domain. The N and C termini were intrinsically disordered in both the full-length protein and its complex with a 20-residue specific DNA sequence. Additionally, we detected in the interface of the core (DNA-binding) and N-terminal parts of the protein a slow conformational exchange process that was modulated by specific recognition of DNA, indicating allosteric processes. PMID:22972749

  16. LC8 dynein light chain (DYNLL1) binds to the C-terminal domain of ATM-interacting protein (ATMIN/ASCIZ) and regulates its subcellular localization

    SciTech Connect

    Rapali, Peter; Garcia-Mayoral, Maria Flor; Martinez-Moreno, Monica; Tarnok, Krisztian; Schlett, Katalin; Albar, Juan Pablo; Bruix, Marta; Nyitray, Laszlo; Rodriguez-Crespo, Ignacio

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer We have screened a human library with dynein light chain DYNLL1 (DLC8) as bait. Black-Right-Pointing-Pointer Dynein light chain DYNLL1 binds to ATM-kinase interacting protein (ATMIN). Black-Right-Pointing-Pointer ATMIN has 17 SQ/TQ motifs, a motif frequently found in DYNLL1-binding partners. Black-Right-Pointing-Pointer The two proteins interact in vitro, with ATMIN displaying at least five binding sites. Black-Right-Pointing-Pointer The interaction of ATMIN and DYNNL1 in transfected cells can also be observed. -- Abstract: LC8 dynein light chain (now termed DYNLL1 and DYNLL2 in mammals), a dimeric 89 amino acid protein, is a component of the dynein multi-protein complex. However a substantial amount of DYNLL1 is not associated to microtubules and it can thus interact with dozens of cellular and viral proteins that display well-defined, short linear motifs. Using DYNLL1 as bait in a yeast two-hybrid screen of a human heart library we identified ATMIN, an ATM kinase-interacting protein, as a DYNLL1-binding partner. Interestingly, ATMIN displays at least 18 SQ/TQ motifs in its sequence and DYNLL1 is known to bind to proteins with KXTQT motifs. Using pepscan and yeast two-hybrid techniques we show that DYNLL1 binds to multiple SQ/TQ motifs present in the carboxy-terminal domain of ATMIN. Recombinant expression and purification of the DYNLL1-binding region of ATMIN allowed us to obtain a polypeptide with an apparent molecular mass in gel filtration close to 400 kDa that could bind to DYNLL1 in vitro. The NMR data-driven modelled complexes of DYNLL1 with two selected ATMIN peptides revealed a similar mode of binding to that observed between DYNLL1 and other peptide targets. Remarkably, co-expression of mCherry-DYNLL1 and GFP-ATMIN mutually affected intracellular protein localization. In GFP-ATMIN expressing-cells DNA damage induced efficiently nuclear foci formation, which was partly impeded by the presence of mCherry-DYNLL1

  17. Regulation of Abiotic Stress Signalling by Arabidopsis C-Terminal Domain Phosphatase-Like 1 Requires Interaction with a K-Homology Domain-Containing Protein

    PubMed Central

    Jeong, In Sil; Fukudome, Akihito; Aksoy, Emre; Bang, Woo Young; Kim, Sewon; Guan, Qingmei; Bahk, Jeong Dong; May, Kimberly A.; Russell, William K.; Zhu, Jianhua; Koiwa, Hisashi

    2013-01-01

    Arabidopsis thaliana CARBOXYL-TERMINAL DOMAIN (CTD) PHOSPHATASE-LIKE 1 (CPL1) regulates plant transcriptional responses to diverse stress signals. Unlike typical CTD phosphatases, CPL1 contains two double-stranded (ds) RNA binding motifs (dsRBMs) at its C-terminus. Some dsRBMs can bind to dsRNA and/or other proteins, but the function of the CPL1 dsRBMs has remained obscure. Here, we report identification of REGULATOR OF CBF GENE EXPRESSION 3 (RCF3) as a CPL1-interacting protein. RCF3 co-purified with tandem-affinity-tagged CPL1 from cultured Arabidopsis cells and contains multiple K-homology (KH) domains, which were predicted to be important for binding to single-stranded DNA/RNA. Yeast two-hybrid, luciferase complementation imaging, and bimolecular fluorescence complementation analyses established that CPL1 and RCF3 strongly associate in vivo, an interaction mediated by the dsRBM1 of CPL1 and the KH3/KH4 domains of RCF3. Mapping of functional regions of CPL1 indicated that CPL1 in vivo function requires the dsRBM1, catalytic activity, and nuclear targeting of CPL1. Gene expression profiles of rcf3 and cpl1 mutants were similar during iron deficiency, but were distinct during the cold response. These results suggest that tethering CPL1 to RCF3 via dsRBM1 is part of the mechanism that confers specificity to CPL1-mediated transcriptional regulation. PMID:24303021

  18. Plant homologs of mammalian MBT-domain protein-regulated KDM1 histone lysine demethylases do not interact with plant Tudor/PWWP/MBT-domain proteins.

    PubMed

    Sadiq, Irfan; Keren, Ido; Citovsky, Vitaly

    2016-02-19

    Histone lysine demethylases of the LSD1/KDM1 family play important roles in epigenetic regulation of eukaryotic chromatin, and they are conserved between plants and animals. Mammalian LSD1 is thought to be targeted to its substrates, i.e., methylated histones, by an MBT-domain protein SFMBT1 that represents a component of the LSD1-based repressor complex and binds methylated histones. Because MBT-domain proteins are conserved between different organisms, from animals to plants, we examined whether the KDM1-type histone lysine demethylases KDM1C and FLD of Arabidopsis interact with the Arabidopsis Tudor/PWWP/MBT-domain SFMBT1-like proteins SL1, SL2, SL3, and SL4. No such interaction was detected using the bimolecular fluorescence complementation assay in living plant cells. Thus, plants most likely direct their KDM1 chromatin-modifying enzymes to methylated histones of the target chromatin by a mechanism different from that employed by the mammalian cells.

  19. Analytical applications of partitioning in aqueous two-phase systems: Exploring protein structural changes and protein-partner interactions in vitro and in vivo by solvent interaction analysis method.

    PubMed

    Zaslavsky, Boris Y; Uversky, Vladimir N; Chait, Arnon

    2016-05-01

    This review covers the fundamentals of protein partitioning in aqueous two-phase systems (ATPS). Included is a review of advancements in the analytical application of solute partitioning in ATPS over the last two decades, with multiple examples of experimental data providing evidence that phase-forming polymers do not interact with solutes partitioned in ATPS. The partitioning of solutes is governed by the differences in solute interactions with aqueous media in the two phases. Solvent properties of the aqueous media in these two phases may be characterized and manipulated. The solvent interaction analysis (SIA) method, based on the solute partitioning in ATPS, may be used for characterization and analysis of individual proteins and their interactions with different partners. The current state of clinical proteomics regarding the discovery and monitoring of new protein biomarkers is discussed, and it is argued that the protein expression level in a biological fluid may be not the optimal focus of clinical proteomic research. Multiple examples of application of the SIA method for discovery of changes in protein structure and protein-partner interactions in biological fluids are described. The SIA method reveals new opportunities for discovery and monitoring structure-based protein biomarkers.

  20. Administrative Agents, Policy Partners, and Political Catalysts: A Structural Perspective on the Interactions of Governmental and Nonprofit Organizations.

    ERIC Educational Resources Information Center

    Wyszomirski, Margaret J.

    1989-01-01

    Notes the blurring of boundaries between public and private sectors, pointing out that the interaction between governmental and non-profit agencies is increasing in the areas of public policy. Argues that these increasing interactions need to be integrated into the political science curriculum. (GG)

  1. Solution Structure of the Helicase-Interaction Domain of the Primase DnaG: A Model for Helicase Activation

    PubMed Central

    Syson, Karl; Thirlway, Jenny; Hounslow, Andrea M.; Soultanas, Panos; Waltho, Jonathan P.

    2011-01-01

    Summary The helicase-primase interaction is a critical event in DNA replication and is mediated by a putative helicase-interaction domain within the primase. The solution structure of the helicase-interaction domain of DnaG reveals that it is made up of two independent subdomains: an N-terminal six-helix module and a C-terminal two-helix module that contains the residues of the primase previously identified as important in the interaction with the helicase. We show that the two-helix module alone is sufficient for strong binding between the primase and the helicase but fails to activate the helicase; both subdomains are required for helicase activation. The six-helix module of the primase has only one close structural homolog, the N-terminal domain of the corresponding helicase. This surprising structural relationship, coupled with the differences in surface properties of the two molecules, suggests how the helicase-interaction domain may perturb the structure of the helicase and lead to activation. PMID:15837199

  2. The Development and Application of a Quantitative Peptide Microarray Based Approach to Protein Interaction Domain Specificity Space*

    PubMed Central

    Engelmann, Brett W.; Kim, Yohan; Wang, Miaoyan; Peters, Bjoern; Rock, Ronald S.; Nash, Piers D.

    2014-01-01

    Protein interaction domain (PID) linear peptide motif interactions direct diverse cellular processes in a specific and coordinated fashion. PID specificity, or the interaction selectivity derived from affinity preferences between possible PID-peptide pairs is the basis of this ability. Here, we develop an integrated experimental and computational cellulose peptide conjugate microarray (CPCMA) based approach for the high throughput analysis of PID specificity that provides unprecedented quantitative resolution and reproducibility. As a test system, we quantify the specificity preferences of four Src Homology 2 domains and 124 physiological phosphopeptides to produce a novel quantitative interactome. The quantitative data set covers a broad affinity range, is highly precise, and agrees well with orthogonal biophysical validation, in vivo interactions, and peptide library trained algorithm predictions. In contrast to preceding approaches, the CPCMAs proved capable of confidently assigning interactions into affinity categories, resolving the subtle affinity contributions of residue correlations, and yielded predictive peptide motif affinity matrices. Unique CPCMA enabled modes of systems level analysis reveal a physiological interactome with expected node degree value decreasing as a function of affinity, resulting in minimal high affinity binding overlap between domains; uncover that Src Homology 2 domains bind ligands with a similar average affinity yet strikingly different levels of promiscuity and binding dynamic range; and parse with unprecedented quantitative resolution contextual factors directing specificity. The CPCMA platform promises broad application within the fields of PID specificity, synthetic biology, specificity focused drug design, and network biology. PMID:25135669

  3. Interactions between the PDZ domains of Bazooka (Par-3) and phosphatidic acid: in vitro characterization and role in epithelial development.

    PubMed

    Yu, Cao Guo; Harris, Tony J C

    2012-09-01

    Bazooka (Par-3) is a conserved polarity regulator that organizes molecular networks in a wide range of cell types. In epithelia, it functions as a plasma membrane landmark to organize the apical domain. Bazooka is a scaffold protein that interacts with proteins through its three PDZ (postsynaptic density 95, discs large, zonula occludens-1) domains and other regions. In addition, Bazooka has been shown to interact with phosphoinositides. Here we show that the Bazooka PDZ domains interact with the negatively charged phospholipid phosphatidic acid immobilized on solid substrates or in liposomes. The interaction requires multiple PDZ domains, and conserved patches of positively charged amino acid residues appear to mediate the interaction. Increasing or decreasing levels of diacylglycerol kinase or phospholipase D-enzymes that produce phosphatidic acid-reveal a role for phosphatidic acid in Bazooka embryonic epithelial activity but not its localization. Mutating residues implicated in phosphatidic acid binding revealed a possible role in Bazooka localization and function. These data implicate a closer connection between Bazooka and membrane lipids than previously recognized. Bazooka polarity landmarks may be conglomerates of proteins and plasma membrane lipids that modify each other's activities for an integrated effect on cell polarity.

  4. Oxidative stress–induced assembly of PML nuclear bodies controls sumoylation of partner proteins

    PubMed Central

    Sahin, Umut; Ferhi, Omar; Jeanne, Marion; Benhenda, Shirine; Berthier, Caroline; Jollivet, Florence; Niwa-Kawakita, Michiko; Faklaris, Orestis; Setterblad, Niclas; Lallemand-Breitenbach, Valérie

    2014-01-01

    The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO–SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss. PMID:24637324

  5. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins.

    PubMed

    Sahin, Umut; Ferhi, Omar; Jeanne, Marion; Benhenda, Shirine; Berthier, Caroline; Jollivet, Florence; Niwa-Kawakita, Michiko; Faklaris, Orestis; Setterblad, Niclas; de Thé, Hugues; Lallemand-Breitenbach, Valérie

    2014-03-17

    The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO-SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss.

  6. Size Regulation in the Segmentation of Drosophila: Interacting Interfaces between Localized Domains of Gene Expression Ensure Robust Spatial Patterning

    NASA Astrophysics Data System (ADS)

    Vakulenko, Sergei; Manu; Reinitz, John; Radulescu, Ovidiu

    2009-10-01

    We propose a new mechanism for robust biological patterning. The mechanism bears analogy to interface dynamics in condensed media. We apply this method to study how gene networks control segmentation of Drosophila. The proposed model is minimal involving only 4 genes and a morphogen gradient. We discuss experimental data for which developmental genes are expressed within domains spatially limited by kinks (interfaces) and the gene interaction scheme contains both weak and strong repulsion. We show how kink-kink interactions can be calculated from the gene interactions and how the gene interaction scheme ensures the control of proportions (size regulation).

  7. From the chromatin interaction network to the organization of the human genome into replication N/U-domains

    NASA Astrophysics Data System (ADS)

    Boulos, Rasha E.; Julienne, Hanna; Baker, Antoine; Chen, Chun-Long; Petryk, Nataliya; Kahli, Malik; dʼAubenton-Carafa, Yves; Goldar, Arach; Jensen, Pablo; Hyrien, Olivier; Thermes, Claude; Arneodo, Alain; Audit, Benjamin

    2014-11-01

    The three-dimensional (3D) architecture of the mammalian nucleus is now being unraveled thanks to the recent development of chromatin conformation capture (3C) technologies. Here we report the results of a combined multiscale analysis of genome-wide mean replication timing and chromatin conformation data that reveal some intimate relationships between chromatin folding and human DNA replication. We previously described megabase replication N/U-domains as mammalian multiorigin replication units, and showed that their borders are ‘master’ replication initiation zones that likely initiate cascades of origin firing responsible for the stereotypic replication of these domains. Here, we demonstrate that replication N/U-domains correspond to the structural domains of self-interacting chromatin, and that their borders act as insulating regions both in high-throughput 3C (Hi-C) data and high-resolution 3C (4C) experiments. Further analyses of Hi-C data using a graph-theoretical approach reveal that N/U-domain borders are long-distance, interconnected hubs of the chromatin interaction network. Overall, these results and the observation that a well-defined ordering of chromatin states exists from N/U-domain borders to centers suggest that ‘master’ replication initiation zones are at the heart of a high-order, epigenetically controlled 3D organization of the human genome.

  8. Studies on the interactions of SAP-1 (an N-terminal truncated form of cystatin S) with its binding partners by CD-spectroscopic and molecular docking methods.

    PubMed

    Yadav, Vikash Kumar; Mandal, Rahul Shubhra; Puniya, Bhanwar Lal; Singh, Sarman; Yadav, Savita

    2015-01-01

    SAP-1 is a 113 amino acid long single-chain protein which belongs to the type 2 cystatin gene family. In our previous study, we have purified SAP-1 from human seminal plasma and observed its cross-class inhibitory property. At this time, we report the interaction of SAP-1 with diverse proteases and its binding partners by CD-spectroscopic and molecular docking methods. The circular dichroism (CD) spectroscopic studies demonstrate that the conformation of SAP-1 is changed after its complexation with proteases, and the alterations in protein secondary structure are quantitatively calculated with increase of α-helices and reduction of β-strand content. To get insight into the interactions between SAP-1 and proteases, we make an effort to model the three-dimensional structure of SAP-1 by molecular modeling and verify its stability and viability through molecular dynamics simulations and finally complexed with different proteases using ClusPro 2.0 Server. A high degree of shape complementarity is examined within the complexes, stabilized by a number of hydrogen bonds (HBs) and hydrophobic interactions. Using HB analyses in different protein complexes, we have identified a series of key residues that may be involved in the interactions between SAP-1 and proteases. These findings will assist to understand the mechanism of inhibition of SAP-1 for different proteases and provide intimation for further research.

  9. Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin.

    PubMed

    Bhat, M A; Rios, J C; Lu, Y; Garcia-Fresco, G P; Ching, W; St Martin, M; Li, J; Einheber, S; Chesler, M; Rosenbluth, J; Salzer, J L; Bellen, H J

    2001-05-01

    Myelinated fibers are organized into distinct domains that are necessary for saltatory conduction. These domains include the nodes of Ranvier and the flanking paranodal regions where glial cells closely appose and form specialized septate-like junctions with axons. These junctions contain a Drosophila Neurexin IV-related protein, Caspr/Paranodin (NCP1). Mice that lack NCP1 exhibit tremor, ataxia, and significant motor paresis. In the absence of NCP1, normal paranodal junctions fail to form, and the organization of the paranodal loops is disrupted. Contactin is undetectable in the paranodes, and K(+) channels are displaced from the juxtaparanodal into the paranodal domains. Loss of NCP1 also results in a severe decrease in peripheral nerve conduction velocity. These results show a critical role for NCP1 in the delineation of specific axonal domains and the axon-glia interactions required for normal saltatory conduction. PMID:11395000

  10. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold

    SciTech Connect

    Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.; Belair, David G.; Rettko, Nicholas J.; Murphy, William L.; Forest, Katrina T.; Gellman, Samuel H.

    2015-04-14

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. Here, we describe a strategy for designing oligomers containing both α- and β-amino acid residues ("α/β-peptides") that mimic several peptides derived from the three-helix bundle "Z-domain" scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF₁₆₅-induced proliferation of human umbilical vein endothelial cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Such reagents would be useful for diagnostic and therapeutic applications.

  11. p53 Transcriptional activity is mediated through the SRC1-interacting domain of CBP/p300.

    PubMed

    Livengood, Jill A; Scoggin, Kirsten E S; Van Orden, Karen; McBryant, Steven J; Edayathumangalam, Rajeswari S; Laybourn, Paul J; Nyborg, Jennifer K

    2002-03-15

    The tumor suppressor p53 recruits the cellular coactivator CBP/p300 to mediate the transcriptional activation of target genes. In this study, we identify a novel p53-interacting region in CBP/p300, which we call CR2, located near the carboxyl terminus. The 95-amino acid CR2 region (amino acids 2055--2150) is located adjacent to the C/H3 domain and corresponds precisely with the minimal steroid receptor coactivator 1 (SRC1)-interacting domain of CBP (also called IBiD). We show that the region of p53 that participates in the CR2 interaction resides within the first 107 amino acids of the protein. p53 binds strongly to the CR2 domain of both CBP and the highly homologous coactivator p300. Importantly, an in-frame deletion of CR2 within the full-length p300 protein strongly compromises p300-mediated p53 transcriptional activation from a chromatin template in vitro. The identification of the p53-interacting CR2 domain in CBP/p300 prompted us to ask if the human T-cell leukemia virus (HTLV-I) Tax protein, which also interacts with CR2, competes with p53 for binding to this domain. We show that p53 and Tax exhibit mutually exclusive binding to the CR2 region, possibly contributing to the previously reported Tax repression of p53 function. Together, these studies identify and molecularly characterize a new p53 binding site on CBP/p300 that participates in coactivator-mediated p53 transcription function. The identity of the p53.CR2 interaction indicates that at least three distinct sites on CBP/p300 may participate in mediating p53 transactivation. PMID:11782467

  12. Charge Pairing Interactions Control the Conformational Setpoint and Motions of the FMN Domain in Neuronal Nitric Oxide Synthase

    PubMed Central

    Haque, Mohammad Mahfuzul; Bayachou, Mekki; Fadlalla, Mohammed A.; Durra, Deborah; Stuehr, Dennis J.

    2013-01-01

    SYNOPSIS The Nitric Oxide Synthases (NOS; EC 1.14.13.39) contain a C-terminal flavoprotein domain (NOSred) that binds FAD and FMN and an N-terminal oxygenase domain that binds heme. Evidence suggests that the FMN-binding domain undergoes large conformational motions to shuttle electrons between the NADPH/FAD-binding domain (FNR) and the oxygenase domain. previously we showed that three residues on the FMN domain (Glu762, Glu816 and Glu819) that make charge-pairing interactions with the FNR help to slow electron flux through nNOSred. In this study, we show that charge neutralization or reversal at each of these residues alters the setpoint (KeqA) of the NOSred conformational equilibrium to favor of the open (FMN-deshielded) conformational state. Moreover, computer simulations of the kinetic traces of cytochrome c reduction by the mutants suggest that they have relatively larger effects on the conformational transition rates (from 1.5 to 4x faster) and the rate of interflavin electron transfer (from 1.5 to 2x faster) relative to wild type nNOSred. We conclude that the three charge-pairing residues on the FMN domain govern electron flux through nNOSred by stabilizing its closed (FMN-shielded) conformational state and by retarding the rate of conformational switching between its open and closed conformations. PMID:23289611

  13. Domain Interactions in the Yeast ATP Binding Cassette Transporter Ycf1p: Intragenic Suppressor Analysis of Mutations in the Nucleotide Binding Domains

    PubMed Central

    Falcón-Pérez, Juan M.; Martínez-Burgos, Mónica; Molano, Jesús; Mazón, María J.; Eraso, Pilar

    2001-01-01

    The yeast cadmium factor (Ycf1p) is a vacuolar ATP binding cassette (ABC) transporter required for heavy metal and drug detoxification. Cluster analysis shows that Ycf1p is strongly related to the human multidrug-associated protein (MRP1) and cystic fibrosis transmembrane conductance regulator and therefore may serve as an excellent model for the study of eukaryotic ABC transporter structure and function. Identifying intramolecular interactions in these transporters may help to elucidate energy transfer mechanisms during transport. To identify regions in Ycf1p that may interact to couple ATPase activity to substrate binding and/or movement across the membrane, we sought intragenic suppressors of ycf1 mutations that affect highly conserved residues presumably involved in ATP binding and/or hydrolysis. Thirteen intragenic second-site suppressors were identified for the D777N mutation which affects the invariant Asp residue in the Walker B motif of the first nucleotide binding domain (NBD1). Two of the suppressor mutations (V543I and F565L) are located in the first transmembrane domain (TMD1), nine (A1003V, A1021T, A1021V, N1027D, Q1107R, G1207D, G1207S, S1212L, and W1225C) are found within TMD2, one (S674L) is in NBD1, and another one (R1415G) is in NBD2, indicating either physical proximity or functional interactions between NBD1 and the other three domains. The original D777N mutant protein exhibits a strong defect in the apparent affinity for ATP and Vmax of transport. The phenotypic characterization of the suppressor mutants shows that suppression does not result from restoring these alterations but rather from a change in substrate specificity. We discuss the possible involvement of Asp777 in coupling ATPase activity to substrate binding and/or transport across the membrane. PMID:11466279

  14. Structure of the Membrane-tethering GRASP Domain Reveals a Unique PDZ Ligand Interaction That Mediates Golgi Biogenesis

    SciTech Connect

    Truschel, S.T.; Heroux, A.; Sengupta, D.; Foote, A.; Macbeth, M. R.; Linstedt, A. D.

    2011-06-10

    Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.

  15. Structure of the Membrane-tethering GRASP Domain Reveals a Unique PDZ Ligand Interaction That Mediates Golgi Biogenesis

    SciTech Connect

    S Truschel; D Sengupta; A Foote; A Heroux; M Macbeth; A Linstedt

    2011-12-31

    Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.

  16. Isolation and Characterization of Pepper Genes Interacting with the CMV-P1 Helicase Domain.

    PubMed

    Choi, Yoomi; Kang, Min-Young; Lee, Joung-Ho; Kang, Won-Hee; Hwang, JeeNa; Kwon, Jin-Kyung; Kang, Byoung-Cheorl

    2016-01-01

    Cucumber mosaic virus (CMV) is a destructive pathogen affecting Capsicum annuum (pepper) production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase). Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C. annuum 'Bukang' cDNA library was screened, producing a total of 76 potential clones interacting with the P1 helicase. Beta-galactosidase filter lift assay, PCR screening, and sequencing analysis narrowed the candidates to 10 genes putatively involved in virus infection. The candidate host genes were silenced in Nicotiana benthamiana plants that were then inoculated with CMV-P1 tagged with the green fluorescent protein (GFP). Plants silenced for seven of the genes showed development comparable to N. benthamiana wild type, whereas plants silenced for the other three genes showed developmental defects including stunting and severe distortion. Silencing formate dehydrogenase and calreticulin-3 precursor led to reduced virus accumulation. Formate dehydrogenase-silenced plants showed local infection in inoculated leaves, but not in upper (systemic) leaves. In the calreticulin-3 precursor-silenced plants, infection was not observed in either the inoculated or the upper leaves. Our results demonstrate that formate dehydrogenase and calreticulin-3 precursor are required for CMV-P1 infection.

  17. Isolation and Characterization of Pepper Genes Interacting with the CMV-P1 Helicase Domain

    PubMed Central

    Choi, Yoomi; Kang, Min-Young; Lee, Joung-Ho; Kang, Won-Hee; Hwang, JeeNa; Kwon, Jin-Kyung; Kang, Byoung-Cheorl

    2016-01-01

    Cucumber mosaic virus (CMV) is a destructive pathogen affecting Capsicum annuum (pepper) production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase). Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C. annuum ‘Bukang’ cDNA library was screened, producing a total of 76 potential clones interacting with the P1 helicase. Beta-galactosidase filter lift assay, PCR screening, and sequencing analysis narrowed the candidates to 10 genes putatively involved in virus infection. The candidate host genes were silenced in Nicotiana benthamiana plants that were then inoculated with CMV-P1 tagged with the green fluorescent protein (GFP). Plants silenced for seven of the genes showed development comparable to N. benthamiana wild type, whereas plants silenced for the other three genes showed developmental defects including stunting and severe distortion. Silencing formate dehydrogenase and calreticulin-3 precursor led to reduced virus accumulation. Formate dehydrogenase-silenced plants showed local infection in inoculated leaves, but not in upper (systemic) leaves. In the calreticulin-3 precursor-silenced plants, infection was not observed in either the inoculated or the upper leaves. Our results demonstrate that formate dehydrogenase and calreticulin-3 precursor are required for CMV-P1 infection. PMID:26751216

  18. Isolation and Characterization of Pepper Genes Interacting with the CMV-P1 Helicase Domain.

    PubMed

    Choi, Yoomi; Kang, Min-Young; Lee, Joung-Ho; Kang, Won-Hee; Hwang, JeeNa; Kwon, Jin-Kyung; Kang, Byoung-Cheorl

    2016-01-01

    Cucumber mosaic virus (CMV) is a destructive pathogen affecting Capsicum annuum (pepper) production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase). Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C. annuum 'Bukang' cDNA library was screened, producing a total of 76 potential clones interacting with the P1 helicase. Beta-galactosidase filter lift assay, PCR screening, and sequencing analysis narrowed the candidates to 10 genes putatively involved in virus infection. The candidate host genes were silenced in Nicotiana benthamiana plants that were then inoculated with CMV-P1 tagged with the green fluorescent protein (GFP). Plants silenced for seven of the genes showed development comparable to N. benthamiana wild type, whereas plants silenced for the other three genes showed developmental defects including stunting and severe distortion. Silencing formate dehydrogenase and calreticulin-3 precursor led to reduced virus accumulation. Formate dehydrogenase-silenced plants showed local infection in inoculated leaves, but not in upper (systemic) leaves. In the calreticulin-3 precursor-silenced plants, infection was not observed in either the inoculated or the upper leaves. Our results demonstrate that formate dehydrogenase and calreticulin-3 precursor are required for CMV-P1 infection. PMID:26751216

  19. Structure of the N-terminal domain of human thioredoxin-interacting protein.

    PubMed

    Polekhina, Galina; Ascher, David Benjamin; Kok, Shie Foong; Beckham, Simone; Wilce, Matthew; Waltham, Mark

    2013-03-01

    Thioredoxin-interacting protein (TXNIP) is one of the six known α-arrestins and has recently received considerable attention owing to its involvement in redox signalling and metabolism. Various stress stimuli such as high glucose, heat shock, UV, H2O2 and mechanical stress among others robustly induce the expression of TXNIP, resulting in the sequestration and inactivation of thioredoxin, which in turn leads to cellular oxidative stress. While TXNIP is the only α-arrestin known to bind thioredoxin, TXNIP and two other α-arrestins, Arrdc4 and Arrdc3, have been implicated in metabolism. Furthermore, owing to its roles in the pathologies of diabetes and cardiovascular disease, TXNIP is considered to be a promising drug target. Based on their amino-acid sequences, TXNIP and the other α-arrestins are remotely related to β-arrestins. Here, the crystal structure of the N-terminal domain of TXNIP is reported. It provides the first structural information on any of the α-arrestins and reveals that although TXNIP adopts a β-arrestin fold as predicted, it is structurally more similar to Vps26 proteins than to β-arrestins, while sharing below 15% pairwise sequence identity with either.

  20. Targeting Id protein interactions by an engineered HLH domain induces human neuroblastoma cell differentiation.

    PubMed

    Ciarapica, R; Annibali, D; Raimondi, L; Savino, M; Nasi, S; Rota, R

    2009-04-30

    Inhibitor of DNA-binding (Id) proteins prevent cell differentiation, promote growth and sustain tumour development. They do so by binding to E proteins and other transcription factors through the helix-loop-helix (HLH) domain, and inhibiting transcription. This makes HLH-mediated Id protein interactions an appealing therapeutic target. We have used the dominant interfering HLH dimerization mutant 13I to model the impact of Id inhibition in two human neuroblastoma cell lines: LA-N-5, similar to immature neuroblasts, and SH-EP, resembling more immature precursor cells. We have validated 13I as an Id inhibitor by showing that it selectively binds to Ids, impairs complex formation with RB, and relieves repression of E protein-activated transcription. Id inactivation by 13I enhances LA-N-5 neural features and causes SH-EP cells to acquire neuronal morphology, express neuronal proteins such as N-CAM and NF-160, proliferate more slowly, and become responsive to retinoic acid. Concomitantly, 13I augments the cell-cycle inhibitor p27(Kip1) and reduces the angiogenic factor vascular endothelial growth factor. These effects are Id specific, being counteracted by Id overexpression. Furthermore, 13I strongly impairs tumorigenic properties in agar colony formation and cell invasion assays. Targeting Id dimerization may therefore be effective for triggering differentiation and restraining neuroblastoma cell tumorigenicity.

  1. Pleckstrin homology domain-interacting protein (PHIP) as a marker and mediator of melanoma metastasis

    PubMed Central

    De Semir, David; Nosrati, Mehdi; Bezrookove, Vladimir; Dar, Altaf A.; Federman, Scot; Bienvenu, Geraldine; Venna, Suraj; Rangel, Javier; Climent, Joan; Meyer Tamgüney, Tanja M.; Thummala, Suresh; Tong, Schuyler; Leong, Stanley P. L.; Haqq, Chris; Billings, Paul; Miller, James R.; Sagebiel, Richard W.; Debs, Robert; Kashani-Sabet, Mohammed

    2012-01-01

    Although melanomas with mutant v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) can now be effectively targeted, there is no molecular target for most melanomas expressing wild-type BRAF. Here, we show that the activation of Pleckstrin homology domain-interacting protein (PHIP), promotes melanoma metastasis, can be used to classify a subset of primary melanomas, and is a prognostic biomarker for melanoma. Systemic, plasmid-based shRNA targeting of Phip inhibited the metastatic progression of melanoma, whereas stable suppression of Phip in melanoma cell lines suppressed metastatic potential and prolonged the survival of tumor-bearing mice. The human PHIP gene resides on 6q14.1, and although 6q loss has been observed in melanoma, the PHIP locus was preserved in melanoma cell lines and patient samples, and its overexpression was an independent adverse predictor of survival in melanoma patients. In addition, a high proportion of PHIP-overexpressing melanomas harbored increased PHIP copy number. PHIP-overexpressing melanomas include tumors with wild-type BRAF, neuroblastoma RAS viral (v-ras) oncogene homolog, and phosphatase and tensin homolog, demonstrating PHIP activation in triple-negative melanoma. These results describe previously unreported roles for PHIP in predicting and promoting melanoma metastasis, and in the molecular classification of melanoma. PMID:22511720

  2. Pleckstrin homology domain-interacting protein (PHIP) as a marker and mediator of melanoma metastasis.

    PubMed

    De Semir, David; Nosrati, Mehdi; Bezrookove, Vladimir; Dar, Altaf A; Federman, Scot; Bienvenu, Geraldine; Venna, Suraj; Rangel, Javier; Climent, Joan; Meyer Tamgüney, Tanja M; Thummala, Suresh; Tong, Schuyler; Leong, Stanley P L; Haqq, Chris; Billings, Paul; Miller, James R; Sagebiel, Richard W; Debs, Robert; Kashani-Sabet, Mohammed

    2012-05-01

    Although melanomas with mutant v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) can now be effectively targeted, there is no molecular target for most melanomas expressing wild-type BRAF. Here, we show that the activation of Pleckstrin homology domain-interacting protein (PHIP), promotes melanoma metastasis, can be used to classify a subset of primary melanomas, and is a prognostic biomarker for melanoma. Systemic, plasmid-based shRNA targeting of Phip inhibited the metastatic progression of melanoma, whereas stable suppression of Phip in melanoma cell lines suppressed metastatic potential and prolonged the survival of tumor-bearing mice. The human PHIP gene resides on 6q14.1, and although 6q loss has been observed in melanoma, the PHIP locus was preserved in melanoma cell lines and patient samples, and its overexpression was an independent adverse predictor of survival in melanoma patients. In addition, a high proportion of PHIP-overexpressing melanomas harbored increased PHIP copy number. PHIP-overexpressing melanomas include tumors with wild-type BRAF, neuroblastoma RAS viral (v-ras) oncogene homolog, and phosphatase and tensin homolog, demonstrating PHIP activation in triple-negative melanoma. These results describe previously unreported roles for PHIP in predicting and promoting melanoma metastasis, and in the molecular classification of melanoma. PMID:22511720

  3. Kinetics of endophilin N-BAR domain dimerization and membrane interactions.

    PubMed

    Capraro, Benjamin R; Shi, Zheng; Wu, Tingting; Chen, Zhiming; Dunn, Joanna M; Rhoades, Elizabeth; Baumgart, Tobias

    2013-05-01

    The recruitment to plasma membrane invaginations of the protein endophilin is a temporally regulated step in clathrin-mediated endocytosis. Endophilin is believed to sense or stabilize membrane curvature, which in turn likely depends on the dimeric structure of the protein. The dynamic nature of the membrane association and dimerization of endophilin is thus functionally important and is illuminated herein. Using subunit exchange Förster resonance energy transfer (FRET), we determine dimer dissociation kinetics and find a dimerization equilibrium constant orders of magnitude lower than previously published values. We characterize N-BAR domain membrane association kinetics under conditions where the dimeric species predominates, by stopped flow, observing prominent electrostatic sensitivity of membrane interaction kinetics. Relative to membrane binding, we find that protein monomer/dimer species equilibrate with far slower kinetics. Complementary optical microscopy studies reveal strikingly slow membrane dissociation and an increase of dissociation rate constant for a construct lacking the amphipathic segment helix 0 (H0). We attribute the slow dissociation kinetics to higher-order protein oligomerization on the membrane. We incorporate our findings into a kinetic scheme for endophilin N-BAR membrane binding and find a significant separation of time scales for endophilin membrane binding and subsequent oligomerization. This separation may facilitate the regulation of membrane trafficking phenomena.

  4. Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers.

    PubMed

    Lee, Dong Woog; Banquy, Xavier; Kristiansen, Kai; Kaufman, Yair; Boggs, Joan M; Israelachvili, Jacob N

    2014-02-25

    The surface forces apparatus and atomic force microscope were used to study the effects of lipid composition and concentrations of myelin basic protein (MBP) on the structure of model lipid bilayers, as well as the interaction forces and adhesion between them. The lipid bilayers had a lipid composition characteristic of the cytoplasmic leaflets of myelin from "normal" (healthy) and "disease-like" [experimental allergic encephalomyelitis (EAE)] animals. They showed significant differences in the adsorption mechanism of MBP. MBP adsorbs on normal bilayers to form a compact film (3-4 nm) with strong intermembrane adhesion (∼0.36 mJ/m(2)), in contrast to its formation of thicker (7-8 nm) swelled films with weaker intermembrane adhesion (∼0.13 mJ/m(2)) on EAE bilayers. MBP preferentially adsorbs to liquid-disordered submicron domains within the lipid membranes, attributed to hydrophobic attractions. These results show a direct connection between the lipid composition of membranes and membrane-protein adsorption mechanisms that affects intermembrane spacing and adhesion and has direct implications for demyelinating diseases.

  5. Intramolecular Interactions between the Protease and Structural Domains Are Important for the Functions of Serine Protease Autotransporters▿ †

    PubMed Central

    Tsang, Casey; Malik, Huma; Nassman, Deana; Huang, Antony; Tariq, Fayha; Oelschlaeger, Peter; Stathopoulos, Christos

    2010-01-01

    Autotransporter (AT) is a protein secretion pathway found in Gram-negative bacteria featuring a multidomain polypeptide with a signal sequence, a passenger domain, and a translocator domain. An AT subfamily named serine protease ATs of the family Enterobacteriaceae (SPATEs) is characterized by the presence of a conserved serine protease motif in the passenger domain which contributes to bacterial pathogenesis. The goal of the current study is to determine the importance of the passenger domain conserved residues in the SPATE proteolytic and adhesive functions using the temperature-sensitive hemagglutinin (Tsh) protein as our model. To begin, mutations of 21 fully conserved residues in the four passenger domain conserved motifs were constructed by PCR-based site-directed mutagenesis. Seventeen mutants exhibited a wild-type secretion level; among these mutants, eight displayed reduced proteolytic activities in Tsh-specific oligopeptide and mucin cleavage assays. These eight mutants also demonstrated lower affinities to extracellular matrix proteins, collagen IV, and fibronectin. These eight conserved residues were analyzed by molecular graphics modeling to demonstrate their intramolecular interactions with the catalytic triad and other key residues. Additional mutations were made to confirm the above interactions in order to demonstrate their significance to the SPATE functions. Altogether our data suggest that certain conserved residues in the SPATE passenger domain are important for both the proteolytic and adhesive activities of SPATE by maintaining the proper protein structure via intramolecular interactions between the protease and β-helical domains. Here, we provide new insight into the structure-function relationship of the SPATEs and the functional roles of their conserved residues. PMID:20479079

  6. Amino acid residues in the laminin G domains of protein S involved in tissue factor pathway inhibitor interaction.

    PubMed

    Somajo, Sofia; Ahnström, Josefin; Fernandez-Recio, Juan; Gierula, Magdalena; Villoutreix, Bruno O; Dahlbäck, Björn

    2015-05-01

    Protein S functions as a cofactor for tissue factor pathway inhibitor (TFPI) and activated protein C (APC). The sex hormone binding globulin (SHBG)-like region of protein S, consisting of two laminin G-like domains (LG1 and LG2), contains the binding site for C4b-binding protein (C4BP) and TFPI. Furthermore, the LG-domains are essential for the TFPI-cofactor function and for expression of full APC-cofactor function. The aim of the current study was to localise functionally important interaction sites in the protein S LG-domains using amino acid substitutions. Four protein S variants were created in which clusters of surface-exposed amino acid residues within the LG-domains were substituted. All variants bound normally to C4BP and were fully functional as cofactors for APC in plasma and in pure component assays. Two variants, SHBG2 (E612A, I614A, F265A, V393A, H453A), involving residues from both LG-domains, and SHBG3 (K317A, I330A, V336A, D365A) where residues in LG1 were substituted, showed 50-60 % reduction in enhancement of TFPI in FXa inhibition assays. For SHBG3 the decreased TFPI cofactor function was confirmed in plasma based thrombin generation assays. Both SHBG variants bound to TFPI with decreased affinity in surface plasmon resonance experiments. The TFPI Kunitz 3 domain is known to contain the interaction site for protein S. Using in silico analysis and protein docking exercises, preliminary models of the protein S SHBG/TFPI Kunitz domain 3 complex were created. Based on a combination of experimental and in silico data we propose a binding site for TFPI on protein S, involving both LG-domains.

  7. A Proteomic approach to discover and compare interacting partners of Papillomavirus E2 proteins from diverse phylogenetic groups

    PubMed Central

    Jang, Moon Kyoo; Anderson, D. Eric; van Doorslaer, Koenraad; McBride, Alison A.

    2015-01-01

    Papillomaviruses are a very successful group of viruses that replicate persistently in localized regions of the stratified epithelium of their specific host. Infection results in pathologies ranging from asymptomatic infection, benign warts, to malignant carcinomas. Despite this diversity, papillomavirus genomes are small (7-8 kbp) and contain at most eight genes. To sustain the complex papillomaviral life cycle, each viral protein has multiple functions and interacts with and manipulates a plethora of cellular proteins. In this study, we use tandem affinity purification and mass spectrometry to identify host factors that interact with eleven different papillomavirus E2 proteins from diverse phylogenetic groups. The E2 proteins function in viral transcription and replication and correspondingly interact with host proteins involved in transcription, chromatin remodeling and modification, replication and RNA processing. PMID:25758368

  8. Structure/Function Analysis of Protein-Protein Interactions Developed by the Yeast Pih1 Platform Protein and Its Partners in Box C/D snoRNP Assembly.

    PubMed

    Quinternet, Marc; Rothé, Benjamin; Barbier, Muriel; Bobo, Claude; Saliou, Jean-Michel; Jacquemin, Clémence; Back, Régis; Chagot, Marie-Eve; Cianférani, Sarah; Meyer, Philippe; Branlant, Christiane; Charpentier, Bruno; Manival, Xavier

    2015-08-28

    In eukaryotes, nucleotide post-transcriptional modifications in RNAs play an essential role in cell proliferation by contributing to pre-ribosomal RNA processing, ribosome assembly and activity. Box C/D small nucleolar ribonucleoparticles catalyze site-specific 2'-O-methylation of riboses, one of the most prevalent RNA modifications. They contain one guide RNA and four core proteins and their in vivo assembly requires numerous factors including (HUMAN/Yeast) BCD1/Bcd1p, NUFIP1/Rsa1p, ZNHIT3/Hit1p, the R2TP complex composed of protein PIH1D1/Pih1p and RPAP3/Tah1p that bridges the R2TP complex to the HSP90/Hsp82 chaperone and two AAA+ ATPases. We show that Tah1p can stabilize Pih1p in the absence of Hsp82 activity during the stationary phase of growth and consequently that the Tah1p:Pih1p interaction is sufficient for Pih1p stability. This prompted us to establish the solution structure of the Tah1p:Pih1p complex by NMR. The C-terminal tail S93-S111 of Tah1p snakes along Pih1p264-344 folded in a CS domain to form two intermolecular β-sheets and one covering loop. However, a thorough inspection of the NMR and crystal structures revealed structural differences that may be of functional importance. In addition, our NMR and isothermal titration calorimetry data revealed the formation of direct contacts between Pih1p257-344 and the Hsp82MC domain in the presence of Tah1p. By co-expression in Escherichia coli, we demonstrate that Pih1p has two other direct partners, the Rsa1p assembly factor and the Nop58p core protein, and in vivo and in vitro experiments mapped the required binding domains. Our data suggest that these two interactions are mutually exclusive. The implication of this finding for box C/D small nucleolar ribonucleoparticle assembly is discussed. PMID:26210662

  9. Solution structure of the PsIAA4 oligomerization domain reveals interaction modes for transcription factors in early auxin response.

    PubMed

    Dinesh, Dhurvas Chandrasekaran; Kovermann, Michael; Gopalswamy, Mohanraj; Hellmuth, Antje; Calderón Villalobos, Luz Irina A; Lilie, Hauke; Balbach, Jochen; Abel, Steffen

    2015-05-12

    The plant hormone auxin activates primary response genes by facilitating proteolytic removal of auxin/indole-3-acetic acid (AUX/IAA)-inducible repressors, which directly bind to transcriptional auxin response factors (ARF). Most AUX/IAA and ARF proteins share highly conserved C-termini mediating homotypic and heterotypic interactions within and between both protein families. The high-resolution NMR structure of C-terminal domains III and IV of the AUX/IAA protein PsIAA4 from pea (Pisum sativum) revealed a globular ubiquitin-like β-grasp fold with homologies to the Phox and Bem1p (PB1) domain. The PB1 domain of wild-type PsIAA4 features two distinct surface patches of oppositely charged amino acid residues, mediating front-to-back multimerization via electrostatic interactions. Mutations of conserved basic or acidic residues on either face suppressed PsIAA4 PB1 homo-oligomerization in vitro and confirmed directional interaction of full-length PsIAA4 in vivo (yeast two-hybrid system). Mixing of oppositely mutated PsIAA4 PB1 monomers enabled NMR mapping of the negatively charged interface of the reconstituted PsIAA4 PB1 homodimer variant, whose stoichiometry (1:1) and equilibrium binding constant (KD ∼ 6.4 μM) were determined by isothermal titration calorimetry. In silico protein-protein docking studies based on NMR and yeast interaction data derived a model of the PsIAA4 PB1 homodimer, which is comparable with other PB1 domain dimers, but indicated considerable differences between the homodimeric interfaces of AUX/IAA and ARF PB1 domains. Our study provides an impetus for elucidating the molecular determinants that confer specificity to complex protein-protein interaction circuits between members of the two central families of transcription factors important to the regulation of auxin-responsive gene expression. PMID:25918389

  10. Solution structure of the PsIAA4 oligomerization domain reveals interaction modes for transcription factors in early auxin response.

    PubMed

    Dinesh, Dhurvas Chandrasekaran; Kovermann, Michael; Gopalswamy, Mohanraj; Hellmuth, Antje; Calderón Villalobos, Luz Irina A; Lilie, Hauke; Balbach, Jochen; Abel, Steffen

    2015-05-12

    The plant hormone auxin activates primary response genes by facilitating proteolytic removal of auxin/indole-3-acetic acid (AUX/IAA)-inducible repressors, which directly bind to transcriptional auxin response factors (ARF). Most AUX/IAA and ARF proteins share highly conserved C-termini mediating homotypic and heterotypic interactions within and between both protein families. The high-resolution NMR structure of C-terminal domains III and IV of the AUX/IAA protein PsIAA4 from pea (Pisum sativum) revealed a globular ubiquitin-like β-grasp fold with homologies to the Phox and Bem1p (PB1) domain. The PB1 domain of wild-type PsIAA4 features two distinct surface patches of oppositely charged amino acid residues, mediating front-to-back multimerization via electrostatic interactions. Mutations of conserved basic or acidic residues on either face suppressed PsIAA4 PB1 homo-oligomerization in vitro and confirmed directional interaction of full-length PsIAA4 in vivo (yeast two-hybrid system). Mixing of oppositely mutated PsIAA4 PB1 monomers enabled NMR mapping of the negatively charged interface of the reconstituted PsIAA4 PB1 homodimer variant, whose stoichiometry (1:1) and equilibrium binding constant (KD ∼ 6.4 μM) were determined by isothermal titration calorimetry. In silico protein-protein docking studies based on NMR and yeast interaction data derived a model of the PsIAA4 PB1 homodimer, which is comparable with other PB1 domain dimers, but indicated considerable differences between the homodimeric interfaces of AUX/IAA and ARF PB1 domains. Our study provides an impetus for elucidating the molecular determinants that confer specificity to complex protein-protein interaction circuits between members of the two central families of transcription factors important to the regulation of auxin-responsive gene expression.

  11. Disorganized Behavior in Adolescent-Parent Interaction: Relations to Attachment State of Mind, Partner Abuse, and Psychopathology

    ERIC Educational Resources Information Center

    Obsuth, Ingrid; Hennighausen, Katherine; Brumariu, Laura E.; Lyons-Ruth, Karlen

    2014-01-01

    Disoriented, punitive, and caregiving/role-confused attachment behaviors are associated with psychopathology in childhood, but have not been assessed in adolescence. A total of 120 low-income late adolescents (aged 18-23 years) and parents were assessed in a conflict-resolution paradigm. Their interactions were coded with the Goal-Corrected…

  12. When Training with a Partner Is Inferior to Training Alone: The Importance of Dyad Type and Interaction Quality

    ERIC Educational Resources Information Center

    Crook, Amy E.; Beier, Margaret E.

    2010-01-01

    Dyad training, where trainees learn in pairs but ultimately perform individually, has been shown to be an effective method for training some skills. The effectiveness of this approach, however, may be tied to the type of task to be trained and the quality of the interaction in the dyad. We report two studies on the effectiveness of dyad training…

  13. Supply determines demand: influence of partner quality and quantity on the interactions between bats and pitcher plants.

    PubMed

    Schöner, Caroline R; Schöner, Michael G; Kerth, Gerald; Grafe, T Ulmar

    2013-09-01

    Interspecific relationships such as mutualism and parasitism are major drivers of biodiversity. Because such interactions often comprise more than two species, ecological studies increasingly focus on complex multispecies systems. However, the spatial heterogeneity of multi-species interactions is often poorly understood. Here, we investigate the unusual interaction of a bat (Kerivoula hardwickii hardwickii) and two pitcher plant species (Nepenthes hemsleyana and N. bicalcarata) whose pitchers serve as roost for bats. Nepenthes hemsleyana offers roosts of higher quality, indicated by a more stable microclimate compared to N. bicalcarata but occurs at lower abundance and is less common than the latter. Whereas N. hemsleyana benefits from the roosting bats by gaining nitrogen from their feces, the bats' interaction with N. bicalcarata seems to be commensal or even parasitic. Bats stayed longer in roosts of higher quality provided by N. hemsleyana and preferred them to pitchers of N. bicalcarata in a disturbance experiment. Moreover, bats roosting only in pitchers of N. hemsleyana had a higher body condition and were less infested with parasites compared to bats roosting in pitchers of N. bicalcarata. Our study shows how the local supply of roosts with different qualities affects the behavior and status of their inhabitants and-as a consequence-how the demand of the inhabitants can influence evolutionary adaptations of the roost providing species.

  14. Direct interaction of tumor suppressor CEACAM1 with beta catenin: identification of key residues in the long cytoplasmic domain.

    PubMed

    Jin, Lan; Li, Yun; Chen, Charng-Jui; Sherman, Mark A; Le, Keith; Shively, John E

    2008-07-01

    CEACAM1-4L (carcinoembryonic antigen cell adhesion molecule 1, with 4 extracellular Ig-like domains and a long, 71 amino acid cytoplasmic domain) is expressed in epithelial cells and activated T-cells, but is down-regulated in most epithelial cell cancers and T-cell leukemias. A highly conserved sequence within the cytoplasmic domain has ca 50% sequence homology with Tcf-3 and -4, transcription factors that bind beta-catenin, and to a lesser extent (32% homology), with E-cadherin that also binds beta-catenin. We show by quantitative yeast two-hybrid, BIAcore, GST-pull down, and confocal analyses that this domain directly interacts with beta-catenin, and that H-469 and K-470 are key residues that interact with the armadillo repeats of beta-catenin. Jurkat cells transfected with CEACAM1-4L have 2-fold less activity in the TOPFLASH reporter assay, and in MCF7 breast cancer cells that fail to express CEACAM1, transfection with CEACAM1 and growth in Ca2+ media causes redistribution of beta-catenin from the cytoplasm to the cell membrane, demonstrating a functional role for the long cytoplasmic domain of CEACAM1 in regulation of beta-catenin activity.

  15. Enhanced interaction between pseudokinase and kinase domains in Gcn2 stimulates eIF2α phosphorylation in starved cells.

    PubMed

    Lageix, Sebastien; Rothenburg, Stefan; Dever, Thomas E; Hinnebusch, Alan G

    2014-05-01

    The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α, from yeast to mammals. The Gcn2 kinase domain (KD) is inherently inactive and requires allosteric stimulation by adjoining regulatory domains. Gcn2 contains a pseudokinase domain (YKD) required for high-level eIF2α phosphorylation in amino acid starved yeast cells; however, the role of the YKD in KD activation was unknown. We isolated substitutions of evolutionarily conserved YKD amino acids that impair Gcn2 activation without reducing binding of the activating ligand, uncharged tRNA, to the histidyl-tRNA synthetase-related domain of Gcn2. Several such Gcn- substitutions cluster in predicted helices E and I (αE and αI) of the YKD. We also identified Gcd- substitutions, evoking constitutive activation of Gcn2, mapping in αI of the YKD. Interestingly, αI Gcd- substitutions enhance YKD-KD interactions in vitro, whereas Gcn- substitutions in αE and αI suppress both this effect and the constitutive activation of Gcn2 conferred by YKD Gcd- substitutions. These findings indicate that the YKD interacts directly with the KD for activation of kinase function and identify likely sites of direct YKD-KD contact. We propose that tRNA binding to the HisRS domain evokes a conformational change that increases access of the YKD to sites of allosteric activation in the adjoining KD.

  16. Calmodulin Regulates Human Ether à Go-Go 1 (hEAG1) Potassium Channels through Interactions of the Eag Domain with the Cyclic Nucleotide Binding Homology Domain*

    PubMed Central

    Lörinczi, Eva; Helliwell, Matthew; Finch, Alina; Stansfeld, Phillip J.; Davies, Noel W.; Mahaut-Smith, Martyn; Muskett, Frederick W.; Mitcheson, John S.

    2016-01-01

    The ether à go-go family of voltage-gated potassium channels is structurally distinct. The N terminus contains an eag domain (eagD) that contains a Per-Arnt-Sim (PAS) domain that is preceded by a conserved sequence of 25–27 amino acids known as the PAS-cap. The C terminus contains a region with homology to cyclic nucleotide binding domains (cNBHD), which is directly linked to the channel pore. The human EAG1 (hEAG1) channel is remarkably sensitive to inhibition by intracellular calcium (Ca2+i) through binding of Ca2+-calmodulin to three sites adjacent to the eagD and cNBHD. Here, we show that the eagD and cNBHD interact to modulate Ca2+-calmodulin as well as voltage-dependent gating. Sustained elevation of Ca2+i resulted in an initial profound inhibition of hEAG1 currents, which was followed by a phase when current amplitudes partially recovered, but activation gating was slowed and shifted to depolarized potentials. Deletion of either the eagD or cNBHD abolished the inhibition by Ca2+i. However, deletion of just the PAS-cap resulted in a >15-fold potentiation in response to elevated Ca2+i. Mutations of residues at the interface between the eagD and cNBHD have been linked to human cancer. Glu-600 on the cNBHD, when substituted with residues with a larger volume, resulted in hEAG1 currents that were profoundly potentiated by Ca2+i in a manner similar to the ΔPAS-cap mutant. These findings provide the first evidence that eagD and cNBHD interactions are regulating Ca2+-dependent gating and indicate that the binding of the PAS-cap with the cNBHD is required for the closure of the channels upon CaM binding. PMID:27325704

  17. Effect of dipole-dipole interaction on self-control magnetization oscillation in double-domain nanomagnets

    NASA Astrophysics Data System (ADS)

    Gao, Y. J.; Guo, Y. J.; Liu, J.-M.

    2012-03-01

    A double-domain model with long-range dipole-dipole interaction is proposed to investigate the self-oscillation of magnetization in nano-magnetic systems driven by self-controlled spin-polarized current. The dynamic behavior of magnetization oscillation is calculated by a modified Landau-Lifshitz-Gilbert equation in order to evaluate the effects of the long-range dipole-dipole interaction. While the self-oscillation of magnetization can be maintained substantially, several self-oscillation regions are experienced as the dipole-dipole interaction increases gradually.

  18. A cotton BURP domain protein interacts with α-expansin and their co-expression promotes plant growth and fruit production.

    PubMed

    Xu, Bing; Gou, Jin-Ying; Li, Fu-Guang; Shangguan, Xiao-Xia; Zhao, Bo; Yang, Chang-Qing; Wang, Ling-Jian; Yuan, Sheng; Liu, Chang-Jun; Chen, Xiao-Ya

    2013-05-01

    Plant growth requires cell wall extension. The cotton AtRD22-Like 1 gene GhRDL1, predominately expressed in elongating fiber cells, encodes a BURP domain-containing protein. Here, we show that GhRDL1 is localized in cell wall and interacts with GhEXPA1, an α-expansin functioning in wall loosening. Transgenic cotton overexpressing GhRDL1 showed an increase in fiber length and seed mass, and an enlargement of endopleura cells of ovules. Expression of either GhRDL1 or GhEXPA1 alone in Arabidopsis led to a substantial increase in seed size; interestingly, their co-expression resulted in the increased number of siliques, the nearly doubled seed mass, and the enhanced biomass production. Cotton plants overexpressing GhRDL1 and GhEXPA1 proteins produced strikingly more fruits (bolls), leading to up to 40% higher fiber yield per plant without adverse effects on fiber quality and vegetative growth. We demonstrate that engineering cell wall protein partners has a great potential in promoting plant growth and crop yield.

  19. Dictyostelium calcium-binding protein 4a interacts with nucleomorphin, a BRCT-domain protein that regulates nuclear number.

    PubMed

    Myre, Michael A; O'Day, Danton H

    2004-09-17

    Nucleomorphin from Dictyostelium discoideum is a nuclear calmodulin-binding protein that is a member of the BRCT-domain containing cell cycle checkpoint proteins. Two differentially expressed isoforms, NumA and NumB, share an extensive acidic domain (DEED) that when deleted produces highly multinucleated cells. We performed a yeast two-hybrid screen of a Dictyostelium cDNA library using NumA as bait. Here we show that nucleomorphin interacts with calcium-binding protein 4a (CBP4a) in a Ca(2+)-dependent manner. Further deletion analysis suggests this interaction requires residues found within the DEED domain. NumA and CBP4a mRNAs are expressed at the same stages of development. CBP4a belongs to a large family of Dictyostelium CBPs, for which no cellular or developmental functions had previously been determined. Since the interaction of CBP4a with nucleomorphin requires the DEED domain, this suggests that CBP4a may respond to Ca(2+)-signalling through modulating factors that might function in concert to regulate nuclear number. PMID:15325281

  20. Identification of a conserved domain of the HIV-1 transmembrane protein gp41 which interacts with cholesteryl groups.

    PubMed

    Vincent, Nadine; Genin, Christian; Malvoisin, Etienne

    2002-12-23

    A soluble form of the HIV-1 envelope glycoprotein gp160 devoid of the transmembrane anchor domain was found to bind to cholesteryl-hemisuccinate agarose. The external subunit gp120 failed to bind to the resin, suggesting that the site responsible for the binding to cholesterol was located in the transmembrane protein gp41. We constructed a series of maltose binding protein (MBP) fusion proteins representing overlapping fragments of the gp41 molecule and we studied their capacity to bind to cholesteryl beads. The domain responsible for binding to cholesterol was localised within the residues 668 to 684 immediately adjacent to the membrane spanning domain. We identified a short sequence (LWYIK, aa 678-683) comparable to the cholesterol interaction amino acid consensus pattern published by Li and Papadopoulos [Endocrinology 139 (1998) 4991]. We demonstrated that the sequence LWYIK synthesized fused to the MBP was able to bind to cholesteryl groups. A synthetic peptide containing the sequence LWYIK was found to inhibit the interaction between cholesteryl beads and MBP44, an MBP fusion HIV-1 envelope protein that contains the putative cholesterol binding domain. Human sera obtained from HIV-1 seropositive patients did not react in ELISA to the LWYIK sequence, suggesting that this region is not exposed to the immune system. The biological significance of the interaction between gp41 and cholesterol is discussed.

  1. Hepadnavirus infection requires interaction between the viral pre-S domain and a specific hepatocellular receptor.

    PubMed

    Klingmüller, U; Schaller, H

    1993-12-01

    To better define the molecules involved in the initial interaction between hepadnaviruses and hepatocytes, we performed binding and infectivity studies with the duck hepatitis B virus (DHBV) and cultured primary duck hepatocytes. In competition experiments with naturally occurring subviral particles containing DHBV surface proteins, these DNA-free particles were found to interfere with viral infectivity if used at sufficiently high concentrations. In direct binding saturation experiments with radiolabelled subviral particles, a biphasic titration curve containing a saturable component was obtained. Quantitative evaluation of both the binding and the infectivity data indicates that the duck hepatocyte presents about 10(4) high-affinity binding sites for viral and subviral particles. Binding to these productive sites may be preceded by reversible virus attachment to a large number of less specific, nonsaturable primary binding sites. To identify which of the viral envelope proteins is responsible for hepatocyte-specific attachment, subviral particles containing only one of the two DHBV surface proteins were produced in Saccharomyces cerevisiae. In infectivity competition experiments, only particles containing the large pre-S/S protein were found to markedly reduce the efficiency of DHBV infection, while particles containing the small S protein had only a minor effect. Similarly, physical binding of radiolabelled serum-derived subviral particles to primary duck hepatocytes was inhibited well only by the yeast-derived pre-S/S particles. Together, these results strongly support the notion that hepadnaviral infection is initiated by specific attachment of the pre-S domain of the large DHBV envelope protein to a limited number of hepatocellular binding sites.

  2. Altered expression of AT-rich interactive domain 1A in hepatocellular carcinoma.

    PubMed

    Abe, Hiroyuki; Hayashi, Akimasa; Kunita, Akiko; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Shibahara, Junji; Kokudo, Norihiro; Fukayama, Masashi

    2015-01-01

    AT-rich interactive domain 1A (ARID1A) is a subunit of the Switch/Sucrose non-fermentable (SWI/SNF) chromatin remodeling complex. Recently, genome-wide whole exome sequencing revealed frequent mutations of ARID1A in hepatocellular carcinoma, but clinicopathological significance of ARID1A alteration has not been clarified yet. In this study, expression of ARID1A was investigated immunohistochemically in 290 cases of hepatocellular carcinomas. In the evaluation of tissue microarrays, cases of ARID1A alteration (63 total cases, 21.7%) consisted of 11 (3.8%) cases showing loss of expression and 52 (17.9%) with weak expression. Alteration of ARID1A was correlated with larger tumor size (P=0.034) and well or moderate differentiation of tumor histology (P=0.035). There was no significant correlation with age, sex, cirrhosis, TNM stage, tumor size, number of tumors, vascular invasion, patient survival, HBV infection, HCV infection, heavy use of alcohol, nor diabetes mellitus. EBER in situ hybridization was negative in all 11 cases with loss of ARID1A. Altered expression of ARID1A was inversely correlated with nuclear expression of p53 (P=0.018) or beta-catenin (P=0.025). There was some heterogeneity of ARID1A alteration within each case, and immunohistochemistry of the whole sections demonstrated that four of 11 cases with loss of ARID1A in TMA analysis showed localized positive area within the tumor. Alteration of ARID1A may accelerate tumor growth in a subset of hepatocellular carcinoma, and this pathway may be distinct from p53 and beta-catenin pathways. PMID:26045782

  3. Defect ordering and defect-domain-wall interactions in PbTiO3: A first-principles study

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Anand; Damjanovic, Dragan; Setter, Nava; Marzari, Nicola

    2013-12-01

    The properties of ferroelectric materials, such as lead zirconate titanate (PZT), are heavily influenced by the interaction of defects with domain walls. These defects are either intrinsic or are induced by the addition of dopants. We study here PbTiO3 (the end member of a key family of solid solutions) in the presence of acceptor (Fe) and donor (Nb) dopants, and the interactions of the different defects and defect associates with the domain walls. For the case of iron acceptors, the calculations point to the formation of defect associates involving an iron substitutional defect and a charged oxygen vacancy (FeTi'-VO..). This associate exhibits a strong tendency to align in the direction of the bulk polarization; in fact, ordering of defects is also observed in pure PbTiO3 in the form of lead-oxygen divacancies. Conversely, calculations on donor-doped PbTiO3 do not indicate the formation of polar defect complexes involving donor substitutions. Last, it is observed that both isolated defects in donor-doped materials and defect associates in acceptor-doped materials are more stable at 180∘ domain walls. However, polar defect complexes lead to asymmetric potentials at domain walls due to the interaction of the defect polarization with the bulk polarization. The relative pinning characteristics of different defects are then compared, to develop an understanding of defect-domain-wall interactions in both doped and pure PbTiO3. These results may also help in understanding hardening and softening mechanisms in PZT.

  4. A Novel Domain in Translational GTPase BipA Mediates Interaction with the 70S Ribosome and Influences GTP Hydrolysis

    SciTech Connect

    deLivron, M.; Makanji, H; Lane, M; Robinson, V

    2009-01-01

    BipA is a universally conserved prokaryotic GTPase that exhibits differential ribosome association in response to stress-related events. It is a member of the translation factor family of GTPases along with EF-G and LepA. BipA has five domains. The N-terminal region of the protein, consisting of GTPase and {beta}-barrel domains, is common to all translational GTPases. BipA domains III and V have structural counterparts in EF-G and LepA. However, the C-terminal domain (CTD) of the protein is unique to the BipA family. To investigate how the individual domains of BipA contribute to the biological properties of the protein, deletion constructs were designed and their GTP hydrolysis and ribosome binding properties assessed. Data presented show that removal of the CTD abolishes the ability of BipA to bind to the ribosome and that ribosome complex formation requires the surface provided by domains III and V and the CTD. Additional mutational analysis was used to outline the BipA-70S interaction surface extending across these domains. Steady state kinetic analyses revealed that successive truncation of domains from the C-terminus resulted in a significant increase in the intrinsic GTP hydrolysis rate and a loss of ribosome-stimulated GTPase activity. These results indicate that, similar to other translational GTPases, the ribosome binding and GTPase activities of BipA are tightly coupled. Such intermolecular regulation likely plays a role in the differential ribosome binding by the protein.

  5. Structure-based identification of CaMKIIα-interacting MUPP1 PDZ domains and rational design of peptide ligands to target such interaction in human fertilization.

    PubMed

    Zhang, Yi-Le; Han, Zhao-Feng; Sun, Ying-Pu

    2016-06-01

    The recognition and association between Ca(2+)/calmodulin-activated protein kinase II-α (CaMKIIα) and multi-PDZ domain protein 1 (MUPP1) plays an important role in sperm acrosome reaction and human fertilization, which is mediated by the binding of CaMKIIα's C-terminal tail to one or more PDZ domains of the scaffolding protein MUPP1. In this study, we attempt to identify the CaMKIIα-interacting MUPP1 PDZ domains and to design peptide ligands that can potently target and then competitively disrupt such interaction. Here, a synthetic biology approach was proposed to systematically characterize the structural basis, energetic property, dynamic behavior and biological implication underlying the intermolecular interactions between the C-terminal peptide of CaMKIIα and all the 13 PDZ domains of MUPP1. These domains can be grouped into four clusters in terms of their sequence, structure and physiochemical profile; different clusters appear to recognize different classes of PDZ-binding motifs. The cluster 3 includes two members, i.e. MUPP1 PDZ 5 and 11 domains, which were suggested to bind class II motif Φ-X-Φ(-COOH) of the C-terminal peptide SGAPSV(-COOH) of CaMKIIα. Subsequently, the two domains were experimentally measured as the moderate- and high-affinity binders of the peptide by using fluorescence titration (dissociation constants K d = 25.2 ± 4.6 and 0.47 ± 0.08 µM for peptide binding to PDZ 5 and 11, respectively), which was in line with theoretical prediction (binding free energies ΔG total = -7.6 and -9.2 kcal/mol for peptide binding to PDZ 5 and 11, respectively). A systematic mutation of SGAPSV(-COOH) residues suggested few favorable amino acids at different residue positions of the peptide, which were then combined to generate a number of potent peptide mutants for PDZ 11 domain. Consequently, two peptides (SIAPNV(-COOH) and SIVMNV(-COOH)) were identified to have considerably improved affinity with K d increase by ~tenfold relative to

  6. The structure of Prp40 FF1 domain and its interaction with the crn-TPR1 motif of Clf1 gives a new insight into the binding mode of FF domains.

    PubMed

    Gasch, Alexander; Wiesner, Silke; Martin-Malpartida, Pau; Ramirez-Espain, Ximena; Ruiz, Lidia; Macias, Maria J

    2006-01-01

    The yeast splicing factor Prp40 (pre-mRNA processing protein 40) consists of a pair of WW domains followed by several FF domains. The region comprising the FF domains has been shown to associate with the 5' end of U1 small nuclear RNA and to interact directly with two proteins, the Clf1 (Crooked neck-like factor 1) and the phosphorylated repeats of the C-terminal domain of RNA polymerase II (CTD-RNAPII). In this work we reported the solution structure of the first FF domain of Prp40 and the identification of a novel ligand-binding site in FF domains. By using chemical shift assays, we found a binding site for the N-terminal crooked neck tetratricopeptide repeat of Clf1 that is distinct and structurally separate from the previously identified CTD-RNAPII binding pocket of the FBP11 (formin-binding protein 11) FF1 domain. No interaction, however, was observed between the Prp40 FF1 domain and three different peptides derived from the CTD-RNAPII protein. Indeed, the equivalent CTD-RNAPII-binding site in the Prp40 FF1 domain is predominantly negatively charged and thus unfavorable for an interaction with phosphorylated peptide sequences. Sequence alignments and phylogenetic tree reconstructions using the FF domains of three functionally related proteins, Prp40, FBP11, and CA150, revealed that Prp40 and FBP11 are not orthologous proteins and supported the different ligand specificities shown by their respective FF1 domains. Our results also revealed that not all FF domains in Prp40 are functionally equivalent. We proposed that at least two different interaction surfaces exist in FF domains that have evolved to recognize distinct binding motifs.

  7. De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles.

    PubMed

    Chen, Yong; Wang, Yunfei; Xuan, Zhenyu; Chen, Min; Zhang, Michael Q

    2016-06-20

    Defining chromatin interaction frequencies and topological domains is a great challenge for the annotations of genome structures. Although the chromosome conformation capture (3C) and its derivative methods have been developed for exploring the global interactome, they are limited by high experimental complexity and costs. Here we describe a novel computational method, called CITD, for de novo prediction of the chromatin interaction map by integrating histone modification data. We used the public epigenomic data from human fibroblast IMR90 cell and embryonic stem cell (H1) to develop and test CITD, which can not only successfully reconstruct the chromatin interaction frequencies discovered by the Hi-C technology, but also provide additional novel details of chromosomal organizations. We predicted the chromatin interaction frequencies, topological domains and their states (e.g. active or repressive) for 98 additional cell types from Roadmap Epigenomics and ENCODE projects. A total of 131 protein-coding genes located near 78 preserved boundaries among 100 cell types are found to be significantly enriched in functional categories of the nucleosome organization and chromatin assembly. CITD and its predicted results can be used for complementing the topological domains derived from limited Hi-C data and facilitating the understanding of spatial principles underlying the chromosomal organization. PMID:27060148

  8. Architectural proteins Pita, Zw5,and ZIPIC contain homodimerization domain and support specific long-range interactions in Drosophila

    PubMed Central

    Zolotarev, Nikolay; Fedotova, Anna; Kyrchanova, Olga; Bonchuk, Artem; Penin, Aleksey A.; Lando, Andrey S.; Eliseeva, Irina A.; Kulakovskiy, Ivan V.; Maksimenko, Oksana; Georgiev, Pavel

    2016-01-01

    According to recent models, as yet poorly studied architectural proteins appear to be required for local regulation of enhancer–promoter interactions, as well as for global chromosome organization. Transcription factors ZIPIC, Pita and Zw5 belong to the class of chromatin insulator proteins and preferentially bind to promoters near the TSS and extensively colocalize with cohesin and condensin complexes. ZIPIC, Pita and Zw5 are structurally similar in containing the N-terminal zinc finger-associated domain (ZAD) and different numbers of C2H2-type zinc fingers at the C-terminus. Here we have shown that the ZAD domains of ZIPIC, Pita and Zw5 form homodimers. In Drosophila transgenic lines, these proteins are able to support long-distance interaction between GAL4 activator and the reporter gene promoter. However, no functional interaction between binding sites for different proteins has been revealed, suggesting that such interactions are highly specific. ZIPIC facilitates long-distance stimulation of the reporter gene by GAL4 activator in yeast model system. Many of the genomic binding sites of ZIPIC, Pita and Zw5 are located at the boundaries of topologically associated domains (TADs). Thus, ZAD-containing zinc-finger proteins can be attributed to the class of architectural proteins. PMID:27137890

  9. The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains

    PubMed Central

    Kim, Jung-Hwan; Yu, Siwang; Chen, J. Don; Kong, A.-N. Tony

    2012-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2, NM 006164, 605 AA) is essential for the antioxidant responsive element (ARE)-mediated expression of a group of detoxifying antioxidant genes that detoxify carcinogens and protect against oxidative stress. Several proteins have been identified as Nrf2-interacting molecules. In this study, we found that the overexpression of RAC3/AIB-1/SRC-3, a nuclear co-regulator and oncogene frequently amplified in human breast cancers, induced heme oxygenase-1 (HO-1) through Nrf2 transactivation in HeLa cells. Next, we determined the interaction between RAC3 and Nrf2 proteins using a co-immunoprecipitation assay (co-IP) and fluorescence resonance energy transfer (FRET) analysis. The results showed that RAC3 bound directly to the Nrf2 protein in the nucleus. Subsequently, we identified the interacting domains of Nrf2 and RAC3 using a GST pull-down assay. The results showed that both the N-terminal RAC3-pasB and C-terminal RAC3-R3B3 domains were tightly bound to the Neh4 and Neh5 transactivation domains. Furthermore, chromatin immunoprecipitation (ChIP) showed that RAC3 bound tightly to the ARE enhancer region of the HO-1 promoter via Nrf2 binding. These data suggest that Nrf2 activation is modulated and directly controlled through interactions with the RAC3 protein in HeLa cells. PMID:22370642

  10. De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles

    PubMed Central

    Chen, Yong; Wang, Yunfei; Xuan, Zhenyu; Chen, Min; Zhang, Michael Q.

    2016-01-01

    Defining chromatin interaction frequencies and topological domains is a great challenge for the annotations of genome structures. Although the chromosome conformation capture (3C) and its derivative methods have been developed for exploring the global interactome, they are limited by high experimental complexity and costs. Here we describe a novel computational method, called CITD, for de novo prediction of the chromatin interaction map by integrating histone modification data. We used the public epigenomic data from human fibroblast IMR90 cell and embryonic stem cell (H1) to develop and test CITD, which can not only successfully reconstruct the chromatin interaction frequencies discovered by the Hi-C technology, but also provide additional novel details of chromosomal organizations. We predicted the chromatin interaction frequencies, topological domains and their states (e.g. active or repressive) for 98 additional cell types from Roadmap Epigenomics and ENCODE projects. A total of 131 protein-coding genes located near 78 preserved boundaries among 100 cell types are found to be significantly enriched in functional categories of the nucleosome organization and chromatin assembly. CITD and its predicted results can be used for complementing the topological domains derived from limited Hi-C data and facilitating the understanding of spatial principles underlying the chromosomal organization. PMID:27060148

  11. Architectural proteins Pita, Zw5,and ZIPIC contain homodimerization domain and support specific long-range interactions in Drosophila.

    PubMed

    Zolotarev, Nikolay; Fedotova, Anna; Kyrchanova, Olga; Bonchuk, Artem; Penin, Aleksey A; Lando, Andrey S; Eliseeva, Irina A; Kulakovskiy, Ivan V; Maksimenko, Oksana; Georgiev, Pavel

    2016-09-01

    According to recent models, as yet poorly studied architectural proteins appear to be required for local regulation of enhancer-promoter interactions, as well as for global chromosome organization. Transcription factors ZIPIC, Pita and Zw5 belong to the class of chromatin insulator proteins and preferentially bind to promoters near the TSS and extensively colocalize with cohesin and condensin complexes. ZIPIC, Pita and Zw5 are structurally similar in containing the N-terminal zinc finger-associated domain (ZAD) and different numbers of C2H2-type zinc fingers at the C-terminus. Here we have shown that the ZAD domains of ZIPIC, Pita and Zw5 form homodimers. In Drosophila transgenic lines, these proteins are able to support long-distance interaction between GAL4 activator and the reporter gene promoter. However, no functional interaction between binding sites for different proteins has been revealed, suggesting that such interactions are highly specific. ZIPIC facilitates long-distance stimulation of the reporter gene by GAL4 activator in yeast model system. Many of the genomic binding sites of ZIPIC, Pita and Zw5 are located at the boundaries of topologically associated domains (TADs). Thus, ZAD-containing zinc-finger proteins can be attributed to the class of architectural proteins. PMID:27137890

  12. Direct interaction of the N-terminal domain of ribosomal protein S1 with protein S2 in Escherichia coli.

    PubMed

    Byrgazov, Konstantin; Manoharadas, Salim; Kaberdina, Anna C; Vesper, Oliver; Moll, Isabella

    2012-01-01

    Despite of the high resolution structure available for the E. coli ribosome, hitherto the structure and localization of the essential ribosomal protein S1 on the 30 S subunit still remains to be elucidated. It was previously reported that protein S1 binds to the ribosome via protein-protein interaction at the two N-terminal domains. Moreover, protein S2 was shown to be required for binding of protein S1 to the ribosome. Here, we present evidence that the N-terminal domain of S1 (amino acids 1-106; S1(106)) is necessary and sufficient for the interaction with protein S2 as well as for ribosome binding. We show that over production of protein S1(106) affects E. coli growth by displacing native protein S1 from its binding pocket on the ribosome. In addition, our data reveal that the coiled-coil domain of protein S2 (S2α(2)) is sufficient to allow protein S1 to bind to the ribosome. Taken together, these data uncover the crucial elements required for the S1/S2 interaction, which is pivotal for translation initiation on canonical mRNAs in gram-negative bacteria. The results are discussed in terms of a model wherein the S1/S2 interaction surface could represent a possible target to modulate the selectivity of the translational machinery and thereby alter the translational program under distinct conditions.

  13. Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain

    PubMed Central

    Zhao, Jianfei; Favero, David S.; Peng, Hao; Neff, Michael M.

    2013-01-01

    The Arabidopsis thaliana genome encodes 29 AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) genes, which evolved into two phylogenic clades. The AHL proteins contain one or two AT-hook motif(s) and one plant and prokaryote conserved (PPC)/domain of unknown function #296 (DUF296) domain. Seedlings lacking both SOB3/AHL29 and ESC/AHL27 confer a subtle long-hypocotyl phenotype compared with the WT or either single-null mutant. In contrast, the missense allele sob3-6 confers a dramatic long-hypocotyl phenotype in the light. In this study, we examined the dominant-negative feature of sob3-6 and found that it encodes a protein with a disrupted AT-hook motif that abolishes binding to AT-rich DNA. A loss-of-function approach demonstrated different, yet redundant, contributions of additional AHL genes in suppressing hypocotyl elongation in the light. We showed that AHL proteins interact with each other and themselves via the PPC/DUF296 domain. AHLs also share interactions with other nuclear proteins, such as transcription factors, suggesting that these interactions also contribute to the functional redundancy within this gene family. The coordinated action of AHLs requires an AT-hook motif capable of binding AT-rich DNA, as well as a PPC/DUF296 domain containing a conserved Gly-Arg-Phe-Glu-Ile-Leu region. Alteration of this region abolished SOB3/AHL29’s physical interaction with transcription factors and resulted in a dominant-negative allele in planta that was phenotypically similar to sob3-6. We propose a molecular model where AHLs interact with each other and themselves, as well as other nuclear proteins, to form complexes which modulate plant growth and development. PMID:24218605

  14. GDCF - An interactive approach to domain connectivity among systems of overset grids

    NASA Technical Reports Server (NTRS)

    Mccann, Karen M.; Meakin, Robert L.

    1993-01-01

    The graphical domain connectivity function (GDCF) graphical interface, which was designed to address the need to simplify hole cutter shape selection and positioning in order to exploit the computational savings obtainable through the domain connectivity function (DCF) is described. GDCF was used to prepare data for the V22 tilt-rotor geometry, and data input time was decreased by an order of magnitude. The combined use of GDCF and DCF to satisfy domain connectivity requirements for systems of overset grids is found to minimize both human and computational resources.

  15. Evidence for functional interaction between domains II and V of 23S ribosomal RNA from an erythromycin-resistant mutant.

    PubMed Central

    Douthwaite, S; Prince, J B; Noller, H F

    1985-01-01

    A mutation affording low levels of erythromycin resistance has been obtained by in vitro hydroxylamine mutagenesis of a cloned ribosomal RNA operon from Escherichia coli. The site of the mutational event responsible for antibiotic resistance was localized to the gene region encoding domain II of 23S rRNA by replacement of restriction fragments in the wild-type plasmid by corresponding fragments from the mutant plasmid. DNA sequencing showed that positions 1219-1230 of the 23S rRNA gene are deleted in the mutant. Since all previously characterized rRNA mutations conferring resistance to erythromycin show changes exclusively in domain V, our present findings provide direct evidence for functional interaction between domains II and V of 23S rRNA. Images PMID:3909142

  16. Evidence for General and Domain-Specific Elements of Teacher-Child Interactions: Associations with Preschool Children's Development

    ERIC Educational Resources Information Center

    Hamre, Bridget; Hatfield, Bridget; Pianta, Robert; Jamil, Faiza

    2014-01-01

    This study evaluates a model for considering domain-general and domain-specific associations between teacher-child interactions and children's development, using a bifactor analytic strategy. Among a sample of 325 early childhood classrooms there was evidence for both general elements of teacher-child interaction (responsive teaching) and…

  17. [Protein-protein interactions of cytochromes P450 3A4 and 3A5 with their intermediate redox partners cytochromes b5].

    PubMed

    Gnedenko, O V; Ivanov, A S; Iablokov, E O; Usanov, S A; Mukha, D V; Sergeev, G V; Kuzikov, A V; Moskaleva, N E; Bulko, T V; Shumiantseva, V V; Archakov, A I

    2014-01-01

    Molecular interactions between proteins redox partners (cytochromes P450 3A4, 3A5 and cytochrome b5) within the monooxygenase system, which is known to be involved in drug biotransformation, were investigated. Human cytochromes P450 3A4 and 3A5 (CYP3A4 and CYP3A5) form complexes with various cytochromes b5: the microsomal (b5mc) and mitochondrial (b5om) forms of this protein, as well as with 2 "chimeric" proteins, b5(om-mc), b5(mc-om). Kinetic constants and equilibrium dissociation constants were determined by the SPR biosensor. Essential distinction between CYP3A4 and CYP3A5 was only observed upon their interactions with cytochrome b5om. Electroanalytical characteristics of electrodes with immobilized hemoproteins were obtained. The electrochemical analysis of CYP3A4, CYP3A5, b5mc, b5om, b5(om-mc), and b5(mc-om) immobilized on screen printed graphite electrodes modified with membranous matrix revealed that these proteins have very close reduction potentials -0.435 - -0.350 V (vs. Ag/AgCl). Cytochrome b5mc was shown to be capable of stimulating the electrocatalytic activity of CYP3A4 to testosterone.

  18. [Protein-protein interactions of cytochromes P450 3A4 and 3A5 with their intermediate redox partners cytochromes b5].

    PubMed

    Gnedenko, O V; Ivanov, A S; Yablokov, E O; Usanov, S A; Mukha, D V; Sergeev, G V; Kuzikov, A V; Bulko, T V; Moskaleva, N E; Shumyantseva, V V; Archakov, A I

    2015-01-01

    Molecular interactions between proteins redox partners (cytochromes Р450 3А4, 3А5 and cytochrome b5) within the monooxygenase system, which is known to be involved in drug biotransformation, were investigated. Human cytochromes Р450 3А4 and 3А5 (CYP3A4 and CYP3A5) form complexes with various cytochromes b5: the microsomal (b5mc) and mitochondrial (b5om) forms of this protein, as well as with 2 "chimeric" proteins, b5(om-mc), b5(mc-om). Kinetic constants and equilibrium dissociation constants were determined by the SPR biosensor. Essential distinction between CYP3A4 and CYP3A5 was only observed upon their interactions with cytochrome b5om. Electroanalytical characteristics of electrodes with immobilized hemoproteins were obtained. The electrochemical analysis of CYP3A4, CYP3A5, b5mc, b5om, b5(om-mc), and b5(mc-om) immobilized on screen printed graphite electrodes modified with membranous matrix revealed that these proteins have very close reduction potentials -0.435  -0.350 V (vs. Ag/AgCl). Cytochrome b5mc was shown to be capable of stimulating the electrocatalytic activity of CYP3A4 in the presence of its substrate testosterone.

  19. The Scavenger Receptor SSc5D Physically Interacts with Bacteria through the SRCR-Containing N-Terminal Domain

    PubMed Central

    Bessa Pereira, Catarina; Bocková, Markéta; Santos, Rita F.; Santos, Ana Mafalda; Martins de Araújo, Mafalda; Oliveira, Liliana; Homola, Jiří; Carmo, Alexandre M.

    2016-01-01

    The scavenger receptor cysteine-rich (SRCR) family comprises a group of membrane-attached or secreted proteins that contain one or more modules/domains structurally similar to the membrane distal domain of type I macrophage scavenger receptor. Although no all-inclusive biological function has been ascribed to the SRCR family, some of these receptors have been shown to recognize pathogen-associated molecular patterns (PAMP) of bacteria, fungi, or other microbes. SSc5D is a recently described soluble SRCR receptor produced by monocytes/macrophages and T lymphocytes, consisting of an N-terminal portion, which contains five SRCR modules, and a large C-terminal mucin-like domain. Toward establishing a global common role for SRCR domains, we interrogated whether the set of five SRCR domains of SSc5D displayed pattern recognition receptor (PRR) properties. For that purpose, we have expressed in a mammalian expression system the N-terminal SRCR-containing moiety of SSc5D (N-SSc5D), thus excluding the mucin-like domain likely by nature to bind microorganisms, and tested the capacity of the SRCR functional groups to physically interact with bacteria. Using conventional protein–bacteria binding assays, we showed that N-SSc5D had a superior capacity to bind to Escherichia coli strains RS218 and IHE3034 compared with that of the extracellular domains of the SRCR proteins CD5 and CD6 (sCD5 and sCD6, respectively), and similar E. coli-binding properties as Spα, a proven PRR of the SRCR family. We have further designed a more sensitive, real-time, and label-free surface plasmon resonance (SPR)-based assay and examined the capacity of N-SSc5D, Spα, sCD5, and sCD6 to bind to different bacteria. We demonstrated that N-SSc5D compares with Spα in the capacity to bind to E. coli and Listeria monocytogenes, and further that it can distinguish between pathogenic E. coli RS218 and IHE3034 strains and the non-pathogenic laboratory E. coli strain BL21(DE3). Our work thus advocates the

  20. Dengue NS3, an RNAi suppressor, modulates the human miRNA pathways through its interacting partner.

    PubMed

    Kakumani, Pavan Kumar; Rajgokul, K S; Ponia, Sanket Singh; Kaur, Inderjeet; Mahanty, Srikrishna; Medigeshi, Guruprasad R; Banerjea, Akhil C; Chopra, Arun Prasad; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2015-10-01

    RNAi acts as a host immune response against non-self molecules, including viruses. Viruses evolved to neutralize this response by expressing suppressor proteins. In the present study, we investigated dengue virus non structural protein 3 (dvNS3), for its RNAi-suppressor activity in human cell lines. Dengue virus (DV) NS3 reverts the GFP expression in GFP-silenced cell lines. Pull-down assays of dvNS3 revealed that it interacts with the host factor human heat shock cognate 70 (hHSC70). Down-regulation of hHSC70 resulted in accumulation of dengue viral genomic RNA. Also, the interaction of dvNS3 with hHSC70 perturbs the formation of RISC (RNA-induced silencing complex)-loading complex (RLC), by displacing TRBP (TAR RNA-binding protein) and possibly impairing the downstream activity of miRNAs. Interestingly, some of these miRNAs have earlier been reported to be down-regulated upon DV infection in Huh7 cells. Further studies on the miRNA-mRNA relationship along with mRNA profiling of samples overexpressing dvNS3 revealed up-regulation of TAZ (tafazzin) and SYNGR1 (synaptogyrin 1), known dengue viral host factors (DVHFs). Importantly, overexpression of dvNS3 in human embryonic kidney (HEK) 293T cells resulted in modulation of both mature and precursor miRNAs in human cell lines. Subsequent analysis suggested that dvNS3 induced stage-specific down-regulation of miRNAs. Taken together, these results suggest that dvNS3 affects biogenesis and function of host miRNAs to regulate DVHFs for favouring DV replication.

  1. In vitro interaction between coxsackievirus B3 VP1 protein and human pleckstrin homology domain retinal protein (PHR1).

    PubMed

    Zhou, Ying; Zhang, Zhiqin; Wang, Hongluan; Xia, Yanhua; Li, Xiuzhen; Yan, Yan; Zou, Weiwen; Zeng, Lingbing; Huang, Xiaotian

    2015-10-01

    Coxsackievirus B3 (CVB3) infection causes central nervous system diseases including aseptic meningitis and encephalitis. To understand the mechanism of this virus, a yeast two-hybrid system was used to screen cellular proteins from a human heart cDNA library. The results revealed that the human Pleckstrin Homology Domain Retinal protein (PHR1), a PH domain-containing protein with low expression in the heart and high expression in the brain, interacts with CVB3 VP1, a major structural protein of CVB3. Yeast mating assays and in vitro coimmunoprecipitation verified the interaction between CVB3 VP1 and PHR1. An α-galactosidase assay indicated that of α-galactosidase activity was higher in positive clones than in controls suggesting a strong interaction. Furthermore, assay of deletion mutants defined the minimal region of PHR1 required for its interaction with VP1 as amino acids 95-172 and two regions of VP1 required for its interaction with PHR1 as amino acids 729-767 and 811-859. The results revealed multiple binding sites between PHR1 and CVB3 VP1 and suggested that the strong interaction between these two proteins might play an important role in central nervous system disease in the human brain.

  2. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    SciTech Connect

    Verbakel, Werner; Carmeliet, Geert; Engelborghs, Yves

    2011-08-12

    Highlights: {yields} The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. {yields} This SAP-like domain is essential for chromosome loading during early mitosis. {yields} NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. {yields} The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase Nu

  3. The RFTS Domain of Raf2 Is Required for Cul4 Interaction and Heterochromatin Integrity in Fission Yeast

    PubMed Central

    White, Sharon A.; Buscaino, Alessia; Sanchez-Pulido, Luis; Ponting, Chris P.; Nowicki, Matthew W.; Allshire, Robin C.

    2014-01-01

    Centromeric heterochromatin assembly in fission yeast is critical for faithful chromosome segregation at mitosis. Its assembly requires a concerted pathway of events whereby the RNA interference (RNAi) pathway guides H3K9 methylation to target sequences. H3K9 methylation, a hallmark of heterochromatin structure, is mediated by the single histone methyltransferase Clr4 (equivalent to metazoan Suv3-9), a component of the CLRC complex. Loss of or defects in CLRC components disrupts heterochromatin formation due to loss of H3K9 methylation, thus an intact, fully functional CLRC complex is required for heterochromatin integrity. Despite its importance, little is known about the contribution of the CLRC component Raf2 to H3K9 methylation and heterochromatin assembly. We demonstrate that Raf2 is concentrated at centromeres and contrary to other analyses, we find that loss of Raf2 does not affect CENP-ACnp1 localisation or recruitment to centromeres. Our sequence alignments show that Raf2 contains a Replication Foci Targeting Sequence (RFTS) domain homologous to the RFTS domain of the human DNA methyltransferase DNMT1. We show that the Raf2 RFTS domain is required for centromeric heterochromatin formation as its mutation disrupts H3K9 methylation but not the processing of centromeric transcripts into small interfering RNAs (siRNAs) by the RNAi pathway. Analysis of biochemical interactions demonstrates that the RFTS domain mediates an interaction between Raf2 and the CLRC component Cul4. We conclude that the RFTS domain of Raf2 is a protein interaction module that plays an important role in heterochromatin formation at centromeres. PMID:25090107

  4. The RFTS domain of Raf2 is required for Cul4 interaction and heterochromatin integrity in fission yeast.

    PubMed

    White, Sharon A; Buscaino, Alessia; Sanchez-Pulido, Luis; Ponting, Chris P; Nowicki, Matthew W; Allshire, Robin C

    2014-01-01

    Centromeric heterochromatin assembly in fission yeast is critical for faithful chromosome segregation at mitosis. Its assembly requires a concerted pathway of events whereby the RNA interference (RNAi) pathway guides H3K9 methylation to target sequences. H3K9 methylation, a hallmark of heterochromatin structure, is mediated by the single histone methyltransferase Clr4 (equivalent to metazoan Suv3-9), a component of the CLRC complex. Loss of or defects in CLRC components disrupts heterochromatin formation due to loss of H3K9 methylation, thus an intact, fully functional CLRC complex is required for heterochromatin integrity. Despite its importance, little is known about the contribution of the CLRC component Raf2 to H3K9 methylation and heterochromatin assembly. We demonstrate that Raf2 is concentrated at centromeres and contrary to other analyses, we find that loss of Raf2 does not affect CENP-ACnp1 localisation or recruitment to centromeres. Our sequence alignments show that Raf2 contains a Replication Foci Targeting Sequence (RFTS) domain homologous to the RFTS domain of the human DNA methyltransferase DNMT1. We show that the Raf2 RFTS domain is required for centromeric heterochromatin formation as its mutation disrupts H3K9 methylation but not the processing of centromeric transcripts into small interfering RNAs (siRNAs) by the RNAi pathway. Analysis of biochemical interactions demonstrates that the RFTS domain mediates an interaction between Raf2 and the CLRC component Cul4. We conclude that the RFTS domain of Raf2 is a protein interaction module that plays an important role in heterochromatin formation at centromeres.

  5. XRCC1 interaction with the REV1 C-terminal domain suggests a role in post replication repair.

    PubMed

    Gabel, Scott A; DeRose, Eugene F; London, Robert E

    2013-12-01

    The function of X-ray cross complementing group 1 protein (XRCC1), a scaffold that binds to DNA repair enzymes involved in single-strand break and base excision repair, requires that it be recruited to sites of damaged DNA. However, structural insights into this recruitment are currently limited. Sequence analysis of the first unstructured linker domain of XRCC1 identifies a segment consistent with a possible REV1 interacting region (X1RIR) motif. The X1RIR motif is present in translesion polymerases that can be recruited to the pol /REV1 DNA repair complex via a specific interaction with the REV1 C-terminal domain. NMR and fluorescence titration studies were performed on XRCC1-derived peptides containing this putative RIR motif in order to evaluate the binding affinity for the REV1 C-terminal domain. These studies demonstrate an interaction of the XRCC1-derived peptide with the human REV1 C-terminal domain characterized by dissociation constants in the low micromolar range. Ligand competition studies comparing the XRCC1 RIR peptide with previously studied RIR peptides were found to be inconsistent with the NMR based Kd values. These discrepancies were resolved using a fluorescence assay for which the RIR–REV1 system is particularly well suited. The structure of a REV1-XRCC1 peptide complex was determined by using NOE restraints to dock the unlabeled XRCC1 peptide with a labeled REV1 C-terminal domain. The structure is generally homologous with previously determined complexes with the pol κ and pol η RIR peptides, although the helical segment in XRCC1 is shorter than was observed in these cases. These studies suggest the possible involvement of XRCC1 and its associated repair factors in post replication repair.

  6. Predictability of Conversation Partners

    NASA Astrophysics Data System (ADS)

    Takaguchi, Taro; Nakamura, Mitsuhiro; Sato, Nobuo; Yano, Kazuo; Masuda, Naoki

    2011-08-01

    Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song , ScienceSCIEAS0036-8075 327, 1018 (2010)] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  7. The time domain moving Green function of a railway track and its application to wheel-rail interactions

    NASA Astrophysics Data System (ADS)

    Sheng, X.; Xiao, X.; Zhang, S.

    2016-09-01

    When dealing with wheel-rail interactions for a high-speed train using the time domain Green function of a railway track, it would be more reasonable to use the moving Green function associated with a reference frame moving with the train, since observed from this frame wheel/rail forces are stationary. In this paper, the time domain moving Green function of a railway track as an infinitely long periodic structure is defined, derived, discussed and applied. The moving Green function is defined as the Fourier transform, from the load frequency domain to the time domain, of the response of the rail due to a moving harmonic load. The response of the rail due to a moving harmonic load is calculated using the Fourier transform-based method. A relationship is established between the moving Green function and the conventional impulse response function of the track. Properties of the moving Green function are then explored which can largely simplify the calculation of the Green function. And finally, the moving Green function is applied to deal with interactions between wheels and a track with or without rail dampers, allowing non-linearity in wheel-rail contact and demonstrating the effect of the rail dampers.

  8. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer

    PubMed Central

    Gallon, Matthew; Clairfeuille, Thomas; Steinberg, Florian; Mas, Caroline; Ghai, Rajesh; Sessions, Richard B.; Teasdale, Rohan D.; Collins, Brett M.; Cullen, Peter J.

    2014-01-01

    The sorting nexin 27 (SNX27)-retromer complex is a major regulator of endosome-to-plasma membrane recycling of transmembrane cargos that contain a PSD95, Dlg1, zo-1 (PDZ)-binding motif. Here we describe the core interaction in SNX27-retromer assembly and its functional relevance for cargo sorting. Crystal structures and NMR experiments reveal that an exposed β-hairpin in the SNX27 PDZ domain engages a groove in the arrestin-like structure of the vacuolar protein sorting 26A (VPS26A) retromer subunit. The structure establishes how the SNX27 PDZ domain simultaneously binds PDZ-binding motifs and retromer-associated VPS26. Importantly, VPS26A binding increases the affinity of the SNX27 PDZ domain for PDZ- binding motifs by an order of magnitude, revealing cooperativity in cargo selection. With disruption of SNX27 and retromer function linked to synaptic dysfunction and neurodegenerative disease, our work provides the first step, to our knowledge, in the molecular description of this important sorting complex, and more broadly describes a unique interaction between a PDZ domain and an arrestin-like fold. PMID:25136126

  9. The interaction of process and domain in prefrontal cortex during inductive reasoning

    PubMed Central

    Babcock, Laura; Vallesi, Antonino

    2015-01-01

    Inductive reasoning is an everyday process that allows us to make sense of the world by creating rules from a series of instances. Consistent with accounts of process-based fractionations of the prefrontal cortex (PFC) along the left–right axis, inductive reasoning has been reliably localized to left PFC. However, these results may be confounded by the task domain, which is typically verbal. Indeed, some studies show that right PFC activation is seen with spatial tasks. This study used fMRI to examine the effects of process and domain on the brain regions recruited during a novel pattern discovery task. Twenty healthy young adult participants were asked to discover the rule underlying the presentation of a series of letters in varied spatial locations. The rules were either verbal (pertaining to a single semantic category) or spatial (geometric figures). Bilateral ventrolateral PFC activations were seen for the spatial domain, while the verbal domain showed only left ventrolateral PFC. A conjunction analysis revealed that the two domains recruited a common region of left ventrolateral PFC. The data support a central role of left PFC in inductive reasoning. Importantly, they also suggest that both process and domain shape the localization of reasoning in the brain. PMID:25498406

  10. Partner Ballroom Dance Robot -PBDR-

    NASA Astrophysics Data System (ADS)

    Kosuge, Kazuhiro; Takeda, Takahiro; Hirata, Yasuhisa; Endo, Mitsuru; Nomura, Minoru; Sakai, Kazuhisa; Koizumi, Mizuo; Oconogi, Tatsuya

    In this research, we have developed a dance partner robot, which has been developed as a platform for realizing the effective human-robot coordination with physical interaction. The robot could estimate the next dance step intended by a human and dance the step with the human. This paper introduce the robot referred to as PBDR (Partner Ballroom Dance Robot), which has performed graceful dancing with the human in EXPO 2005, Aichi, Japan.

  11. Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research

    PubMed Central

    Koch, Bjørn EV; Stougaard, Jens; Spaink, Herman P

    2015-01-01

    Chitin is a vital polysaccharide component of protective structures in many eukaryotic organisms but seems absent in vertebrates. Chitin or chitin oligomers are therefore prime candidates for non-self-molecules, which are recognized and degraded by the vertebrate immune system. Despite the absence of polymeric chitin in vertebrates, chitinases and chitinase-like proteins (CLPs) are well conserved in vertebrate species. In many studies, these proteins have been found to be involved in immune regulation and in mediating the degradation of chitinous external protective structures of invading pathogens. Several important aspects of chitin immunostimulation have recently been uncovered, advancing our understanding of the complex regulatory mechanisms that chitin mediates. Likewise, the last few years have seen large advances in our understanding of the mechanisms and molecular interactions of chitinases and CLPs in relation to immune response regulation. It is becoming increasingly clear that their function in this context is not exclusive to chitin producing pathogens, but includes bacterial infections and cancer signaling as well. Here we provide an overview of the immune signaling properties of chitin and other closely related biomolecules. We also review the latest literature on chitinases and CLPs of the GH18 family. Finally, we examine the existing literature on zebrafish chitinases, and propose the use of zebrafish as a versatile model to complement the existing murine models. This could especially be of benefit to the exploration of the function of chitinases in infectious diseases using high-throughput approaches and pharmaceutical interventions. PMID:25595947

  12. Functional Analysis of BcBem1 and Its Interaction Partners in Botrytis cinerea: Impact on Differentiation and Virulence

    PubMed Central

    Schumacher, Julia; Kokkelink, Leonie; Tudzynski, Paul

    2014-01-01

    In phytopathogenic fungi the establishment and maintenance of polarity is not only essential for vegetative growth and differentiation, but also for penetration and colonization of host tissues. We investigated orthologs of members of the yeast polarity complex in the grey mould fungus Botrytis cinerea: the scaffold proteins Bem1 and Far1, the GEF (guanine nucleotide exchange factor) Cdc24, and the formin Bni1 (named Sep1 in B. cinerea). BcBem1 does not play an important role in regular hyphal growth, but has significant impact on spore formation and germination, on the establishment of conidial anastomosis tubes (CATs) and on virulence. As in other fungi, BcBem1 interacts with the GEF BcCdc24 and the formin BcSep1, indicating that in B. cinerea the apical complex has a similar structure as in yeast. A functional analysis of BcCdc24 suggests that it is essential for growth, since it was not possible to obtain homokaryotic deletion mutants. Heterokaryons of Δcdc24 (supposed to exhibit reduced bccdc24 transcript levels) already show a strong phenotype: an inability to penetrate the host tissue, a significantly reduced growth rate and malformation of conidia, which tend to burst as observed for Δbcbem1. Also the formin BcSep1 has significant impact on hyphal growth and development, whereas the role of the putative ortholog of the yeast scaffold protein Far1 remains open: Δbcfar1 mutants have no obvious phenotypes. PMID:24797931

  13. Small GTPase Rac1 and its interaction partner Cla4 regulate polarized growth and pathogenicity in Verticillium dahliae.

    PubMed

    Tian, Hui; Zhou, Lei; Guo, Wangzhen; Wang, Xinyu

    2015-01-01

    Rac1 is a small GTPase coordinating diverse cellular functions such as cell polarity, vesicular trafficking, the cell cycle and transcriptional dynamics in many organisms. In this study, we investigate the biological functions of VdRac1, a Rac1 homolog in the soil-borne, wilt-causing fungus Verticillium dahliae. The VdRac1 gene was deleted in a V. dahliae virulence strain Vd8 isolated from a local cotton cultivar. ΔVdrac1 mutants display drastic reduction in colony expansion and form compact, convoluted colonies, show hyper-branching, loss of polarity and ability to penetrate, leading to severely reduced virulence. The p21-activated kinase Cla4 (named as VdCla4 in V. dahliae) null mutants ΔVdcla4 share identical phenotypes with ΔVdrac1. Yeast two-hybrid studies prove that VdCla4 is an effector of VdRac1. Localizations of actin and reactive oxygen species (ROS) in ΔVdrac1 and ΔVdcla4 compared with the corresponding wild-type strain reveal that VdRac1 and VdCla4 play a primary role in polarized hyphal growth via organization of ROS and play only a minor role in the organization of actin. The Vdrac1 and Vdcla4 null mutants are defective in conidiation and trace elements can partially compensate for the defect. Our data demonstrate that VdRac1 regulates polarized growth and pathogenicity by interacting with its effector VdCla4 in V. dahliae.

  14. Structural biology of redox partner interactions in P450cam monooxygenase: a fresh look at an old system.

    PubMed

    Sevrioukova, Irina F; Poulos, Thomas L

    2011-03-01

    The P450cam monooxygenase system consists of three separate proteins: the FAD-containing, NADH-dependent oxidoreductase (putidaredoxin reductase or Pdr), cytochrome P450cam and the 2Fe2S ferredoxin (putidaredoxin or Pdx), which transfers electrons from Pdr to P450cam. Over the past few years our lab has focused on the interaction between these redox components. It has been known for some time that Pdx can serve as an effector in addition to its electron shuttle role. The binding of Pdx to P450cam is thought to induce structural changes in the P450cam active site that couple electron transfer to substrate hydroxylation. The nature of these structural changes has remained unclear until a particular mutant of P450cam (Leu358Pro) was found to exhibit spectral perturbations similar to those observed in wild type P450cam bound to Pdx. The crystal structure of the L358P variant has provided some important insights on what might be happening when Pdx docks. In addition to these studies, many Pdx mutants have been analyzed to identify regions important for electron transfer. Somewhat surprisingly, we found that Pdx residues predicted to be at the P450cam-Pdx interface play different roles in the reduction of ferric P450cam and the ferrous P450-O(2) complex. More recently we have succeeded in obtaining the structure of a chemically cross-linked Pdr-Pdx complex. This fusion protein represents a valid model for the noncovalent Pdr-Pdx complex as it retains the redox activities of native Pdr and Pdx and supports monooxygenase reactions catalyzed by P450cam. The insights gained from these studies will be summarized in this review.

  15. PLCβ isoforms differ in their subcellular location and their CT-domain dependent interaction with Gαq.

    PubMed

    Adjobo-Hermans, Merel J W; Crosby, Kevin C; Putyrski, Mateusz; Bhageloe, Arshia; van Weeren, Laura; Schultz, Carsten; Goedhart, Joachim; Gadella, Theodorus W J

    2013-01-01

    Phospholipase C (PLC) β isoforms are implicated in various physiological processes and pathologies. However, mechanistic insight into the localization and activation of each of the isoforms is limited. Therefore, it is crucial to gain more in-depth knowledge as to the regulation of the different isoforms. Here we describe the subcellular location of full-length PLCβ isozymes and their C-terminal (CT) domains. Strikingly, we found isoforms PLCβ1 and PLCβ4 to be enriched at the plasma membrane, contrary to isoforms PLCβ2 and PLCβ3. We determined that the CT domain is an inhibitor of Gq-mediated increases in intracellular calcium, the potency of its effect being dependent upon the CT domain isoform used. Furthermore, ratiometric fluorescence resonance energy transfer (FRET) imaging was used to study the kinetics of the Gαq-CTβx interactions. By the use of recently developed tools, which enable the on-demand activation of Gαq, we could show that the interaction between constitutively active Gαq and PLCβ3 prolongs the residence time of PLCβ3 at the plasma membrane. These findings suggest that under physiological circumstances, PLCβ3 and Gαq interact in a kiss-and-run fashion, likely due to the GTPase-activating activity of PLCβ towards Gαq.

  16. Trans-activation of EphA4 and FGF receptors mediated by direct interactions between their cytoplasmic domains

    PubMed Central

    Yokote, Hideyuki; Fujita, Koji; Jing, Xuefeng; Sawada, Takahiro; Liang, Sitai; Yao, Li; Yan, Xiaomei; Zhang, Yueqiang; Schlessinger, Joseph; Sakaguchi, Kazushige

    2005-01-01

    A yeast two-hybrid analysis has shown that the juxtamembrane region of FGF receptor 3 (FGFR3) interacts with the cytoplasmic domain of EphA4, which is a member of the largest family of receptor tyrosine kinases. Complex formation between the two receptors was shown to be mediated by direct interactions between the juxtamembrane domain of FGFR1, FGFR2, FGFR3, or FGFR4 and the N-terminal portion of the tyrosine kinase domain of EphA4. Activation of FGFR1 in transfected cells resulted in tyrosine phosphorylation of a kinase-negative EphA4 mutant and activation of EphA4 led to tyrosine phosphorylation of a kinase-negative FGFR1 mutant. Moreover, both receptors stimulate tyrosine phosphorylation of the docking protein FRS2α and induce mitogen-activated protein kinase stimulation with a time course and intensity that depends on the ligand that is applied. We also demonstrate that FGF-receptor-mediated mitogen-activated protein kinase stimulation is potentiated in cells costimulated with ephrin-A1. The direct interaction between EphA4 and FGFRs and the potentiation of FGF response that is induced by ephrin-A1 stimulation may modulate the biological responses that are mediated by these receptor families in cells or tissues in which the two receptors are coexpressed. PMID:16365308

  17. Isolation of peptides from phage-displayed random peptide libraries that interact with the talin-binding domain of vinculin.

    PubMed Central

    Adey, N B; Kay, B K

    1997-01-01

    Peptides isolated from combinatorial libraries typically interact with, and thus help to characterize, biologically relevant binding domains of target proteins. To characterize the binding domains of the focal adhesion protein vinculin, vinculin-binding peptides were isolated from two phage-displayed random peptide libraries. Altogether, five non-similar vinculin-binding peptides were identified. Despite the lack of obvious sequence similarity between the peptides, binding and competition studies indicated that all five interact with the talin-binding domain of vinculin and do not disrupt the binding of alpha-actinin or paxillin to vinculin. The identified peptides and talin bind to vinculin in a comparable manner; both bind to immobilized vinculin, but neither binds to soluble vinculin unless the C-terminus of vinculin has been deleted. An analysis of amino acid variants of one of the peptides has revealed three non-contiguous motifs that also occur in the region of talin previously demonstrated to bind vinculin. Amino acid substitutions within a 127-residue segment of talin capable of binding vinculin confirmed the importance of two of the motifs and suggest that residues critical for binding are within a 16-residue region. This study demonstrates that the vinculin-binding peptides interact with vinculin in a biologically relevant manner and represent an excellent tool for further study of the biochemistry of vinculin. PMID:9182713

  18. Topological Layers in the HIV-1 gp120 Inner Domain Regulate gp41 Interaction and CD4-Triggered Conformational Transitions

    PubMed Central

    Finzi, Andrés; Xiang, Shi-Hua; Pacheco, Beatriz; Wang, Liping; Haight, Jessica; Kassa, Aemro; Danek, Brenda; Pancera, Marie; Kwong, Peter D.; Sodroski, Joseph

    2010-01-01

    SUMMARY The entry of human immunodeficiency virus (HIV-1) into cells is initiated by binding of the gp120 exterior envelope glycoprotein to the receptor, CD4. How does CD4 binding trigger conformational changes in gp120 that allow the gp41 transmembrane envelope glycoprotein to mediate viral-cell membrane fusion? The transition from the unliganded to the CD4-bound state is regulated by two potentially flexible topological layers (“Layers 1 and 2”) in the gp120 inner domain. Both layers apparently contribute to the non-covalent association of unliganded gp120 with gp41. After CD4 makes initial contact with the gp120 outer domain, Layer 1-Layer 2 interactions strengthen gp120-CD4 binding by reducing the off-rate. Layer 1-Layer 2 interactions also destabilize the activated state induced on HIV-1 by treatment with soluble CD4. Thus, despite lack of contact with CD4, the gp120 inner domain layers govern CD4 triggering by participating in conformational transitions within gp120 and regulating the interaction with gp41. PMID:20227370

  19. Structural and motional contributions of the Bacillus subtilis ClpC N-domain in adaptor protein interactions

    PubMed Central

    Kojetin, Douglas J.; McLaughlin, Patrick D.; Thompson, Richele J.; Dubnau, David; Prepiak, Peter; Rance, Mark; Cavanagh, John

    2009-01-01

    Summary The AAA+ superfamily protein ClpC is a key regulator of cell development in Bacillus subtilis. As part of a large oligomeric complex, ClpC controls an array of cellular processes by recognizing, unfolding, and providing misfolded and aggregated proteins as substrates for the ClpP peptidase. ClpC is unique compared to other HSP100/Clp proteins, as it requires an adaptor protein for all fundamental activities. The NMR solution structure of the N-terminal repeat domain of ClpC (N-ClpCR) comprises two structural repeats of a four-helix motif. NMR experiments used to map the MecA adaptor protein interaction surface of N-ClpCR reveal that regions involved in the interaction possess conformational flexibility, as well as conformational exchange on the μs-ms time-scale. The electrostatic surface of N-ClpCR differs substantially compared to the N-domain of Escherichia coli ClpA and ClpB, suggesting that the electrostatic surface characteristics of HSP100/Clp N-domains may play a role in adaptor protein and substrate interaction specificity, and perhaps contribute to the unique adaptor protein requirement of ClpC. PMID:19361434

  20. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity.

    PubMed

    Wu, Zong-Sian; Liu, Che Fu; Fu, Brian; Chou, Ruey-Hwang; Yu, Chin

    2016-09-01

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs.

  1. The disordered C-terminal domain of human DNA glycosylase NEIL1 contributes to its stability via intramolecular interactions.

    PubMed

    Hegde, Muralidhar L; Tsutakawa, Susan E; Hegde, Pavana M; Holthauzen, Luis Marcelo F; Li, Jing; Oezguen, Numan; Hilser, Vincent J; Tainer, John A; Mitra, Sankar

    2013-07-10

    NEIL1 [Nei (endonuclease VIII)-like protein 1], one of the five mammalian DNA glycosylases that excise oxidized DNA base lesions in the human genome to initiate base excision repair, contains an intrinsically disordered C-terminal domain (CTD; ~100 residues), not conserved in its Escherichia coli prototype Nei. Although dispensable for NEIL1's lesion excision and AP lyase activities, this segment is required for efficient in vivo enzymatic activity and may provide an interaction interface for many of NEIL1's interactions with other base excision repair proteins. Here, we show that the CTD interacts with the folded domain in native NEIL1 containing 389 residues. The CTD is poised for local folding in an ordered structure that is induced in the purified fragment by osmolytes. Furthermore, deletion of the disordered tail lacking both Tyr and Trp residues causes a red shift in NEIL1's intrinsic Trp-specific fluorescence, indicating a more solvent-exposed environment for the Trp residues in the truncated protein, which also exhibits reduced stability compared to the native enzyme. These observations are consistent with stabilization of the native NEIL1 structure via intramolecular, mostly electrostatic, interactions that were disrupted by mutating a positively charged (Lys-rich) cluster of residues (amino acids 355-360) near the C-terminus. Small-angle X-ray scattering (SAXS) analysis confirms the flexibility and dynamic nature of NEIL1's CTD, a feature that may be critical to providing specificity for NEIL1's multiple, functional interactions.

  2. Membrane Domains Based on Ankyrin and Spectrin Associated with Cell–Cell Interactions

    PubMed Central

    Bennett, Vann; Healy, Jane

    2009-01-01

    Nodes of Ranvier and axon initial segments of myelinated nerves, sites of cell–cell contact in early embryos and epithelial cells, and neuromuscular junctions of skeletal muscle all perform physiological functions that depend on clustering of functionally related but structurally diverse ion transporters and cell adhesion molecules within microdomains of the plasma membrane. These specialized cell surface domains appeared at different times in metazoan evolution, involve a variety of cell types, and are populated by distinct membrane-spanning proteins. Nevertheless, recent work has shown that these domains all share on their cytoplasmic surfaces a membrane skeleton comprised of members of the ankyrin and spectrin families. This review will summarize basic features of ankyrins and spectrins, and will discuss emerging evidence that these proteins are key players in a conserved mechanism responsible for assembly and maintenance of physiologically important domains on the surfaces of diverse cells. PMID:20457566

  3. Free Energy Landscape of Lipid Interactions with Regulatory Binding Sites on the Transmembrane Domain of the EGF Receptor.

    PubMed

    Hedger, George; Shorthouse, David; Koldsø, Heidi; Sansom, Mark S P

    2016-08-25

    Lipid molecules can bind to specific sites on integral membrane proteins, modulating their structure and function. We have undertaken coarse-grained simulations to calculate free energy profiles for glycolipids and phospholipids interacting with modulatory sites on the transmembrane helix dimer of the EGF receptor within a lipid bilayer environment. We identify lipid interaction sites at each end of the transmembrane domain and compute interaction free energy profiles for lipids with these sites. Interaction free energies ranged from ca. -40 to -4 kJ/mol for different lipid species. Those lipids (glycolipid GM3 and phosphoinositide PIP2) known to modulate EGFR function exhibit the strongest binding to interaction sites on the EGFR, and we are able to reproduce the preference for interaction with GM3 over other glycolipids suggested by experiment. Mutation of amino acid residues essential for EGFR function reduce the binding free energy of these key lipid species. The residues interacting with the lipids in the simulations are in agreement with those suggested by experimental (mutational) studies. This approach provides a generalizable tool for characterizing the interactions of lipids that bind to specific sites on integral membrane proteins.

  4. Free Energy Landscape of Lipid Interactions with Regulatory Binding Sites on the Transmembrane Domain of the EGF Receptor

    PubMed Central

    2016-01-01

    Lipid molecules can bind to specific sites on integral membrane proteins, modulating their structure and function. We have undertaken coarse-grained simulations to calculate free energy profiles for glycolipids and phospholipids interacting with modulatory sites on the transmembrane helix dimer of the EGF receptor within a lipid bilayer environment. We identify lipid interaction sites at each end of the transmembrane domain and compute interaction free energy profiles for lipids with these sites. Interaction free energies ranged from ca. −40 to −4 kJ/mol for different lipid species. Those lipids (glycolipid GM3 and phosphoinositide PIP2) known to modulate EGFR function exhibit the strongest binding to interaction sites on the EGFR, and we are able to reproduce the preference for interaction with GM3 over other glycolipids suggested by experiment. Mutation of amino acid residues essential for EGFR function reduce the binding free energy of these key lipid species. The residues interacting with the lipids in the simulations are in agreement with those suggested by experimental (mutational) studies. This approach provides a generalizable tool for characterizing the interactions of lipids that bind to specific sites on integral membrane proteins. PMID:27109430

  5. The N-terminal domain of the tomato immune protein Prf contains multiple homotypic and Pto kinase interaction sites.

    PubMed

    Saur, Isabel Marie-Luise; Conlan, Brendon Francis; Rathjen, John Paul

    2015-05-01

    Resistance to Pseudomonas syringae bacteria in tomato (Solanum lycopersicum) is conferred by the Prf recognition complex, composed of the nucleotide-binding leucine-rich repeats protein Prf and the protein kinase Pto. The complex is activated by recognition of the P. syringae effectors AvrPto and AvrPtoB. The N-terminal domain is responsible for Prf homodimerization, which brings two Pto kinases into close proximity and holds them in inactive conformation in the absence of either effector. Negative regulation is lost by effector binding to the catalytic cleft of Pto, leading to disruption of its P+1 loop within the activation segment. This change is translated through Prf to a second Pto molecule in the complex. Here we describe a schematic model of the unique Prf N-terminal domain dimer and its interaction with the effector binding determinant Pto. Using heterologous expression in Nicotiana benthamiana, we define multiple sites of N domain homotypic interaction and infer that it forms a parallel dimer folded centrally to enable contact between the N and C termini. Furthermore, we found independent binding sites for Pto at either end of the N-terminal domain. Using the constitutively active mutant ptoL205D, we identify a potential repression site for Pto in the first ∼100 amino acids of Prf. Finally, we find that the Prf leucine-rich repeats domain also binds the N-terminal region, highlighting a possible mechanism for transfer of the effector binding signal to the NB-LRR regulatory unit (consisting of a central nucleotide binding and C-terminal leucine-rich repeats). PMID:25792750

  6. The N-terminal domain of the tomato immune protein Prf contains multiple homotypic and Pto kinase interaction sites.

    PubMed

    Saur, Isabel Marie-Luise; Conlan, Brendon Francis; Rathjen, John Paul

    2015-05-01

    Resistance to Pseudomonas syringae bacteria in tomato (Solanum lycopersicum) is conferred by the Prf recognition complex, composed of the nucleotide-binding leucine-rich repeats protein Prf and the protein kinase Pto. The complex is activated by recognition of the P. syringae effectors AvrPto and AvrPtoB. The N-terminal domain is responsible for Prf homodimerization, which brings two Pto kinases into close proximity and holds them in inactive conformation in the absence of either effector. Negative regulation is lost by effector binding to the catalytic cleft of Pto, leading to disruption of its P+1 loop within the activation segment. This change is translated through Prf to a second Pto molecule in the complex. Here we describe a schematic model of the unique Prf N-terminal domain dimer and its interaction with the effector binding determinant Pto. Using heterologous expression in Nicotiana benthamiana, we define multiple sites of N domain homotypic interaction and infer that it forms a parallel dimer folded centrally to enable contact between the N and C termini. Furthermore, we found independent binding sites for Pto at either end of the N-terminal domain. Using the constitutively active mutant ptoL205D, we identify a potential repression site for Pto in the first ∼100 amino acids of Prf. Finally, we find that the Prf leucine-rich repeats domain also binds the N-terminal region, highlighting a possible mechanism for transfer of the effector binding signal to the NB-LRR regulatory unit (consisting of a central nucleotide binding and C-terminal leucine-rich repeats).

  7. Regulatory domains of the A-Myb transcription factor and its interaction with the CBP/p300 adaptor molecules.

    PubMed Central

    Facchinetti, V; Loffarelli, L; Schreek, S; Oelgeschläger, M; Lüscher, B; Introna, M; Golay, J

    1997-01-01

    The A-Myb transcription factor belongs to the Myb family of oncoproteins and is likely to be involved in the regulation of proliferation and/or differentiation of normal B cells and Burkitt's lymphoma cells. To characterize in detail the domains of A-Myb that regulate its function, we have generated a series of deletion mutants and have investigated their trans-activation potential as well as their DNA-binding activity. Our results have allowed us to delineate the trans-activation domain as well as two separate regulatory regions. The boundaries of the trans-activation domain (amino acid residues 218-319) are centred on a sequence rich in charged amino acids (residues 259-281). A region (residues 320-482) localized immediately downstream of the trans-activation domain and containing a newly identified conserved stretch of 48 residues markedly inhibits specific DNA binding. Finally the last 110 residues of A-Myb (residues 643-752), which include a sequence conserved in all mammalian myb genes (region III), negatively regulate the maximal trans-activation potential of A-Myb. We have also investigated the functional interaction between A-Myb and the nuclear adaptor molecule CBP [cAMP response element-binding protein (CREB)-binding protein]. We demonstrate that CBP synergizes with A-Myb in a dose-dependent fashion, and that this co-operative effect can be inhibited by E1A and can also be observed with the CBP homologue p300. We show that this functional synergism requires the presence of the A-Myb charged sequence and that it involves physical interaction between A-Myb and the CREB-binding domain of CBP. PMID:9210395

  8. An Amphiphysin-Like Domain in Fus2p Is Required for Rvs161p Interaction and Cortical Localization.

    PubMed

    Stein, Richard A; Smith, Jean A; Rose, Mark D

    2016-02-01

    Cell-cell fusion fulfils essential roles in fertilization, development and tissue repair. In the budding yeast, Saccharomyces cerevisiae, fusion between two haploid cells of opposite mating type generates the diploid zygote. Fus2p is a pheromone-induced protein that regulates cell wall removal during mating. Fus2p shuttles from the nucleus to localize at the shmoo tip, bound to Rvs161p, an amphiphysin. However, Rvs161p independently binds a second amphiphysin, Rvs167p, playing an essential role in endocytosis. To understand the basis of the Fus2p-Rvs161p interaction, we analyzed Fus2p structural domains. A previously described N-terminal domain (NTD) is necessary and sufficient to regulate nuclear/cytoplasmic trafficking of Fus2p. The Dbl homology domain (DBH) binds GTP-bound Cdc42p; binding is required for cell fusion, but not localization. We identified an approximately 200 amino acid region of Fus2p that is both necessary and sufficient for Rvs161p binding. The Rvs161p binding domain (RBD) contains three predicted alpha-helices; structural modeling suggests that the RBD adopts an amphiphysin-like structure. The RBD contains a 13-amino-acid region, conserved with Rvs161p and other amphiphysins, which is essential for binding. Mutations in the RBD, predicted to affect membrane binding, abolish cell fusion without affecting Rvs161p binding. We propose that Fus2p/Rvs161p form a novel heterodimeric amphiphysin required for cell fusion. Rvs161p binding is required but not sufficient for Fus2p localization. Mutations in the C-terminal domain (CTD) of Fus2p block localization, but not Rvs161p binding, causing a significant defect in cell fusion. We conclude that the Fus2p CTD mediates an additional, Rvs161p-independent interaction at the shmoo tip. PMID:26681517

  9. To punish or to leave: distinct cognitive processes underlie partner control and partner choice behaviors.

    PubMed

    Martin, Justin W; Cushman, Fiery

    2015-01-01

    When a cooperative partner defects, at least two types of response are available: Punishment, aimed at modifying behavior, and ostracism, aimed at avoiding further social interaction with the partner. These options, termed partner control and partner choice, have been distinguished at behavioral and evolutionary levels. However, little work has compared their cognitive bases. Do these disparate behaviors depend on common processes of moral evaluation? Specifically, we assess whether they show identical patterns of dependence on two key dimensions of moral evaluation: A person's intentions, and the outcomes that they cause. We address this issue in a "trembling hand" economic game. In this game, an allocator divides a monetary stake between themselves and a responder based on a stochastic mechanism. This allows for dissociations between the allocator's intent and the actual outcome. Responders were either given the opportunity to punish or reward the allocator (partner control) or to switch to a different partner for a subsequent round of play (partner choice). Our results suggest that partner control and partner choice behaviors are supported by distinct underlying cognitive processes: Partner control exhibits greater sensitivity to the outcomes a partner causes, while partner choice is influenced almost exclusively by a partner's intentions. This cognitive dissociation can be understood in light of the unique adaptive functions of partner control and partner choice.

  10. The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL.

    PubMed

    Miles, Jennifer A; Frost, Mark G; Carroll, Eilis; Rowe, Michelle L; Howard, Mark J; Sidhu, Ateesh; Chaugule, Viduth K; Alpi, Arno F; Walden, Helen

    2015-08-21

    The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo. PMID:26149689

  11. A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II.

    PubMed Central

    Bourquin, J P; Stagljar, I; Meier, P; Moosmann, P; Silke, J; Baechi, T; Georgiev, O; Schaffner, W

    1997-01-01

    The largest subunit of RNA polymerase II shows a striking difference in the degree of phosphorylation, depending on its functional state: initiating and elongating polymerases are unphosphorylated and highly phosphorylated respectively. Phosphorylation mostly occurs at the C-terminal domain (CTD), which consists of a repetitive heptapeptide structure. Using the yeast two-hybrid system, we have selected for mammalian proteins that interact with the phosphorylated CTD of mammalian RNA polymerase II. A prominent isolate, designated SRcyp/CASP10, specifically interacts with the CTD not only in vivo but also in vitro . It contains a serine/arginine-rich (SR) domain, similar to that found in the SR protein family of pre-mRNA splicing factors, which is required for interaction with the CTD. Most remarkably, the N-terminal region of SRcyp includes a peptidyl-prolyl cis - trans isomerase domain characteristic of immunophilins/cyclophilins (Cyp), a protein family implicated in protein folding, assembly and transport. SRcyp is a nuclear protein with a characteristic distribution in large irregularly shaped nuclear speckles and co-localizes perfectly with the SR domain-containing splicing factor SC35. Recent independent investigations have provided complementary data, such as an association of the phosphorylated form of RNA polymerase II with the nuclear speckles, impaired splicing in a CTD deletion background and inhibition of in vitro splicing by CTD peptides. Taken together, these data indicate that factors directly or indirectly involved in splicing are associated with the elongating RNA polymerases, from where they might translocate to the nascent transcripts to ensure efficient splicing, concomitant with transcription. PMID:9153302

  12. Functional Interactions of the HHCC Domain of Moloney Murine Leukemia Virus Integrase Revealed by Nonoverlapping Complementation and Zinc-Dependent Dimerization

    PubMed Central

    Yang, Fan; Leon, Oscar; Greenfield, Norma J.; Roth, Monica J.

    1999-01-01

    The retroviral integrase (IN) is required for the integration of viral DNA into the host genome. The N terminus of IN contains an HHCC zinc finger-like motif, which is conserved among all retroviruses. To study the function of the HHCC domain of Moloney murine leukemia virus IN, the first N-terminal 105 residues were expressed independently. This HHCC domain protein is found to complement a completely nonoverlapping construct lacking the HHCC domain for strand transfer, 3′ processing and coordinated disintegration reactions, revealing trans interactions among IN domains. The HHCC domain protein binds zinc at a 1:1 ratio and changes its conformation upon binding to zinc. The presence of zinc within the HHCC domain stimulates selective integration processes. Zinc promotes the dimerization of the HHCC domain and protects it from N-ethylmaleimide modification. These studies dissect and define the requirement for the HHCC domain, the exact function of which remains unknown. PMID:9971758

  13. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane.

    PubMed

    Kriechbaumer, Verena; Botchway, Stanley W; Slade, Susan E; Knox, Kirsten; Frigerio, Lorenzo; Oparka, Karl; Hawes, Chris

    2015-11-01

    The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane.

  14. Analysis of the expression patterns, subcellular localisations and interaction partners of Drosophila proteins using a pigP protein trap library

    PubMed Central

    Lowe, Nick; Rees, Johanna S.; Roote, John; Ryder, Ed; Armean, Irina M.; Johnson, Glynnis; Drummond, Emma; Spriggs, Helen; Drummond, Jenny; Magbanua, Jose P.; Naylor, Huw; Sanson, Bénédicte; Bastock, Rebecca; Huelsmann, Sven; Trovisco, Vitor; Landgraf, Matthias; Knowles-Barley, Seymour; Armstrong, J. Douglas; White-Cooper, Helen; Hansen, Celia; Phillips, Roger G.; Lilley, Kathryn S.; Russell, Steven; St Johnston, Daniel

    2014-01-01

    Although we now have a wealth of information on the transcription patterns of all the genes in the Drosophila genome, much less is known about the properties of the encoded proteins. To provide information on the expression patterns and subcellular localisations of many proteins in parallel, we have performed a large-scale protein trap screen using a hybrid piggyBac vector carrying an artificial exon encoding yellow fluorescent protein (YFP) and protein affinity tags. From screening 41 million embryos, we recovered 616 verified independent YFP-positive lines representing protein traps in 374 genes, two-thirds of which had not been tagged in previous P element protein trap screens. Over 20 different research groups then characterized the expression patterns of the tagged proteins in a variety of tissues and at several developmental stages. In parallel, we purified many of the tagged proteins from embryos using the affinity tags and identified co-purifying proteins by mass spectrometry. The fly stocks are publicly available through the Kyoto Drosophila Genetics Resource Center. All our data are available via an open access database (Flannotator), which provides comprehensive information on the expression patterns, subcellular localisations and in vivo interaction partners of the trapped proteins. Our resource substantially increases the number of available protein traps in Drosophila and identifies new markers for cellular organelles and structures. PMID:25294943

  15. Are 50-khz calls used as play signals in the playful interactions of rats? III. The effects of devocalization on play with unfamiliar partners as juveniles and as adults.

    PubMed

    Kisko, Theresa M; Euston, David R; Pellis, Sergio M

    2015-04-01

    When playing, rats emit 50-kHz calls which may function as play signals. A previous study using devocalized rats provides support for the hypothesis that 50-kHz function to promote and maintain playful interactions (Kisko et al., 2015). However, in that study, all pairs were cage mates and familiar with each other's playful tendencies that could have attenuated the role of play signals. The present study uses unfamiliar pairs to eliminate any chance for such attenuation. Four hypotheses about how 50-kHz calls could act as play signals were tested, that (1) they maintain the playful mood of the partner, (2) they are used to locate partners, (3) they attract play partners and (4) they reduce the risk of playful encounters from escalating to serious fights. Predictions arising from the first three hypotheses, tested in juveniles, were not supported, suggesting that, for juveniles, 50-kHz calls are not facilitating playful interactions as play signals. The fourth hypothesis, however, was supported in adults, but not in juveniles, in that unfamiliar adult males were more likely to escalate playful encounters into serious fights when one partner was devocalized. These findings suggest that vocalizations at most have a minor role in juvenile play but serve a more central role in modulating adult interactions between strangers, allowing for the tactical mitigation of the risk of aggression.

  16. Faculty Social Networking Interactions: Using Social Domain Theory to Assess Student Views

    ERIC Educational Resources Information Center

    Nemetz, Patricia L.

    2012-01-01

    As educators consider using social networking sites, like Facebook, for educational innovations, they must be aware of possible vulnerabilities associated with the blurring of social and professional boundaries. This research uses social domain theory to examine how students rate the appropriateness of various faculty postings, behaviors, and…

  17. Direct interaction of the tau 1 transactivation domain of the human glucocorticoid receptor with the basal transcriptional machinery.

    PubMed Central

    McEwan, I J; Wright, A P; Dahlman-Wright, K; Carlstedt-Duke, J; Gustafsson, J A

    1993-01-01

    We have used a yeast (Saccharomyces cerevisiae) cell free transcription system to study protein-protein interactions involving the tau 1 transactivation domain of the human glucocorticoid receptor that are important for transcriptional transactivation by the receptor. Purified tau 1 specifically inhibited transcription from a basal promoter derived from the CYC1 gene and from the adenovirus 2 major late core promoter in a concentration-dependent manner. This inhibition or squelching was correlated with the transactivation activity of tau 1. Recombinant yeast TATA-binding protein (yTFIID), although active in vitro, did not specifically reverse the inhibitory effect of tau 1. In addition, no specific interaction between tau 1 and yTFIID could be shown in vitro by affinity chromatography. Taken together, these results indicate that the tau 1 transactivation domain of the human glucocorticoid receptor interacts directly with the general transcriptional apparatus through some target protein(s) that is distinct from the TATA-binding factor. Furthermore, this assay can be used to identify interacting factors, since after phosphocellulose chromatography of a whole-cell yeast extract, a fraction that contained an activity which selectively counteracted the squelching effect of tau 1 was found. Images PMID:8417339

  18. Pepper protein phosphatase type 2C, CaADIP1 and its interacting partner CaRLP1 antagonistically regulate ABA signalling and drought response.

    PubMed

    Lim, Chae Woo; Lee, Sung Chul

    2016-07-01

    Abscisic acid (ABA) is a key phytohormone that regulates plant growth and developmental processes, including seed germination and stomatal closing. Here, we report the identification and functional characterization of a novel type 2C protein phosphatase, CaADIP1 (Capsicum annuum ABA and Drought-Induced Protein phosphatase 1). The expression of CaADIP1 was induced in pepper leaves by ABA, drought and NaCl treatments. Arabidopsis plants overexpressing CaADIP1 (CaADIP1-OX) exhibited an ABA-hyposensitive and drought-susceptible phenotype. We used a yeast two-hybrid screening assay to identify CaRLP1 (Capsicum annuum RCAR-Like Protein 1), which interacts with CaADIP1 in the cytoplasm and nucleus. In contrast to CaADIP1-OX plants, CaRLP1-OX plants displayed an ABA-hypersensitive and drought-tolerant phenotype, which was characterized by low levels of transpirational water loss and increased expression of stress-responsive genes relative to those of wild-type plants. In CaADIP1-OX/CaRLP1-OX double transgenic plants, ectopic expression of the CaRLP1 gene led to strong suppression of CaADIP1-induced ABA hyposensitivity during the germinative and post-germinative stages, indicating that CaADIP1 and CaRLP1 act in the same signalling pathway and CaADIP1 functions downstream of CaRLP1. Our results indicate that CaADIP1 and its