Continuum analysis of the nucleus growth of reverse domains in large ferroelectric crystals
NASA Astrophysics Data System (ADS)
Neumeister, Peter; Balke, Herbert; Lupascu, Doru C.
2009-04-01
Polarization reversal in ferroelectrics arises due to domain nucleation and domain wall motion. The nucleation of reverse domains at crystal boundaries is the fundamental initiation process observed in single crystals. The classical continuum approach by Landauer determines an insurmountable energy barrier to extrinsic domain nucleation. We rediscuss the continuum approach. Predetermined surface states are found to be a misleading concept. Alternate energy contributions, for example, due to a dead layer or due to charge injection as well as reduced domain wall energy and anisotropy of domain wall energy, have to be included into a convincing picture of domain nucleation.
NASA Astrophysics Data System (ADS)
Smith, Nathan; Provatas, Nikolas
Recent experimental work has shown that gold nanoparticles can precipitate from an aqueous solution through a non-classical, multi-step nucleation process. This multi-step process begins with spinodal decomposition into solute-rich and solute-poor liquid domains followed by nucleation from within the solute-rich domains. We present a binary phase-field crystal theory that shows the same phenomology and examine various cross-over regimes in the growth and coarsening of liquid and solid domains. We'd like to the thank Canada Research Chairs (CRC) program for funding this work.
NASA Astrophysics Data System (ADS)
Borie, B.; Kehlberger, A.; Wahrhusen, J.; Grimm, H.; Kläui, M.
2017-08-01
We study the key domain-wall properties in segmented nanowire loop-based structures used in domain-wall-based sensors. The two reasons for device failure, namely, distribution of the domain-wall propagation field (depinning) and the nucleation field are determined with magneto-optical Kerr effect and giant-magnetoresistance (GMR) measurements for thousands of elements to obtain significant statistics. Single layers of Ni81 Fe19 , a complete GMR stack with Co90 Fe10 /Ni81Fe19 as a free layer, and a single layer of Co90 Fe10 are deposited and industrially patterned to determine the influence of the shape anisotropy, the magnetocrystalline anisotropy, and the fabrication processes. We show that the propagation field is influenced only slightly by the geometry but significantly by material parameters. Simulations for a realistic wire shape yield a curling-mode type of magnetization configuration close to the nucleation field. Nonetheless, we find that the domain-wall nucleation fields can be described by a typical Stoner-Wohlfarth model related to the measured geometrical parameters of the wires and fitted by considering the process parameters. The GMR effect is subsequently measured in a substantial number of devices (3000) in order to accurately gauge the variation between devices. This measurement scheme reveals a corrected upper limit to the nucleation fields of the sensors that can be exploited for fast characterization of the working elements.
Controllable Magnetization Processes Induced by Nucleation Sites in Permalloy Rings
NASA Astrophysics Data System (ADS)
Chen, Ying-Jiun; Hsu, Chia-Jung; Liao, Chun-Neng; Huang, Hao-Ting; Lee, Chiun-Peng; Chiu, Yi-Hsun; Tung, Tzu-Yun; Lai, Mei-Feng
2010-02-01
Different arrangements of notches as nucleation sites are demonstrated experimentally and numerically to effectively control the magnetization processes of permalloy rings. In the ring with notches at the same side with respect to field direction, two same-helicity vortex domain walls in the onion state lead to two-step switching going through flux-closure state; in the ring with diagonal notches two opposite-helicity vortex domain walls lead to one-step switching skipping flux-closure state. The switching processes are repeatable in contrast to rings without notches where helicites of two vortex domain walls are random so the switching processes can not be controlled.
NASA Astrophysics Data System (ADS)
Kuncser, A.; Antohe, S.; Kuncser, V.
2017-02-01
Peculiarities of the magnetization reversal process in cylindrical Ni-Cu soft magnetic nanowires with dominant shape anisotropy are analyzed via both static and time dependent micromagnetic simulations. A reversible process involving a coherent-like spin rotation is always observed for magnetic fields applied perpendicularly to the easy axis whereas nucleation of domain walls is introduced for fields applied along the easy axis. Simple criteria for making distinction between a Stoner-Wohlfarth type rotation and a nucleation mechanism in systems with uniaxial magnetic anisotropy are discussed. Superposed reversal mechanisms can be in action for magnetic fields applied at arbitrary angles with respect to the easy axis within the condition of an enough strong axial component required by the nucleation. The dynamics of the domain wall, involving two different stages (nucleation and propagation), is discussed with respect to initial computing conditions and orientations of the magnetic field. A nucleation time of about 3 ns and corkscrew domain walls propagating with a constant velocity of about 150 m/s are obtained in case of Ni-Cu alloy (Ni rich side) NWs with diameters of 40 nm and high aspect ratio.
Topological-charge-driven reversal of ferromagnetic rings via 360∘ domain-wall formation
NASA Astrophysics Data System (ADS)
Oyarce, A. L. Gonzalez; Trypiniotis, T.; Roy, P. E.; Barnes, C. H. W.
2013-05-01
We study the reversal mechanism between opposite closed flux states of ferromagnetic nanorings driven by an azimuthal magnetic field. The reversal proceeds via the formation of 360∘ domain walls, and we show that the role of interacting nucleation sites is essential for the process to take place. Such nucleation is seen to create domain walls with the right topological charge conditions for 360∘ domain-wall formation. Given the symmetry of the system, we utilize an energetic description as a function of the azimuthal field magnitude, which clearly reveals the different stages of this reversal process. The annihilation of the 360∘ domain walls that is necessary for the reversal process to complete is controlling the field value at the final stage of the process. Such a fundamental mechanism for ring reversal has several implications and will guide the design of the various data-storage-device proposals based on nanorings.
Zhang, Haoran; Zhang, Yaqian; Zhang, Yanhui; Chen, Zhiying; Sui, Yanping; Ge, Xiaoming; Deng, Rongxuan; Yu, Guanghui; Jin, Zhi; Liu, Xinyu
2016-08-24
Oxygen can passivate Cu surface active sites when graphene nucleates. Thus, the nucleation density is decreased. The CuO/Cu substrate was chosen for graphene domain synthesis in our study. The results indicate that the CuO/Cu substrate is beneficial for large-scale, single-crystal graphene domain synthesis. Graphene grown on the CuO/Cu substrate exhibits fewer nucleation sites than on Cu foils, suggesting that graphene follows an oxygen-dominating growth. Hydrogen treatment via a heating process could weaken the surface oxygen's role in limiting graphene nucleation under the competition of hydrogen and oxygen and could transfer the synthesis of graphene into a hydrogen-dominating growth. However, the competition only exists during the chemical vapor deposition heating process. For non-hydrogen heated samples, oxygen-dominating growth is experienced even though the samples are annealed in hydrogen for a long time after the heating process. With the temperature increases, the role of hydrogen gradually decreases. The balance of hydrogen and oxygen is adjusted by introducing hydrogen gas at a different heating temperatures. The oxygen concentration on the substrate surface is believed to determine the reactions mechanisms based on the secondary ion mass spectrometry test results. This study provides a new method for the controllable synthesis of graphene nucleation during a heating process.
On the discrimination between nucleation and propagation in nanomagnetic logic devices
NASA Astrophysics Data System (ADS)
Ziemys, Grazvydas; Csaba, Gyorgy; Becherer, Markus
2018-05-01
In this paper we present the extensive nucleation and propagation characterization of fabricated nanomagnets by applying ns-range magnetic field pulses. For that, an artificial nucleation center (ANC) is created by focused ion beam irradiation (FIB) of a 50 x 50 nm area at the side of a Co/Pt island as typically used in Nanomagnetic Logic with perpendicular anisotropy (pNML). Laser-Kerr Microscope is applied for statistical evaluation of the switching probability of the whole magnet, while the wide-field-Kerr microscopy is employed to discriminate between the nucleation process (which takes place at the irradiated ANC area) and the domain wall propagation process along the magnet. We show that the nanomagnet can be treated as a single Stoner-Wolfhart particle above 100 ns field-pulse width, as the whole magnetization is switched during the field-pulse. By contrary, for field-pulse width below 100 ns, the domain wall (DW) motion is the limiting process hindering full magnetization reversal on that time-scale. However, the nucleation still follows the Arrhenius law. The results allow precise understanding of the reversal process and highlight the need for faster DW speed in pNML materials.
Observation of end-vortex nucleation in individual ferromagnetic nanotubes
NASA Astrophysics Data System (ADS)
Mehlin, A.; Gross, B.; Wyss, M.; Schefer, T.; Tütüncüoglu, G.; Heimbach, F.; Fontcuberta i Morral, A.; Grundler, D.; Poggio, M.
2018-04-01
The reversal of uniform axial magnetization in a ferromagnetic nanotube (FNT) has been predicted to occur through the nucleation and propagation of vortex domains forming at the ends. We provide experimental evidence for this behavior through dynamic cantilever magnetometry measurements of individual FNTs. In particular, we identify the nucleation of the vortex end domains as a function of applied magnetic field and show that they mark the onset of magnetization reversal. We find that the nucleation field depends sensitively on the angle between the end surface of the FNT and the applied field. Micromagnetic simulations substantiate the experimental results and highlight the importance of the ends in determining the reversal process. The control over end-vortex nucleation enabled by our findings is promising for the production of FNTs with tailored reversal properties.
NASA Astrophysics Data System (ADS)
Liu, X. Y.; Kitamura, K.; Liu, Y. M.; Ohuchi, F. S.; Li, J. Y.
2011-09-01
Thermal-induced domain wall motion of tip-inverted micro/nanodomains in near-stoichiometric LiNbO3 single crystals was investigated using piezoresponse force microscopy (PFM). The domain wall motion was observed in PFM phase and amplitude images at room temperature after the sample was subjected to a thermal process at a heating temperature higher than 100 °C. In hexagonal domains with only y walls, predetermined nucleation with layer-by-layer growth is the main mechanism for the domain wall motion. In the domains composed of both x walls and y walls, the x walls are more mobile than the y walls, and the domain wall motion starts from the random nucleation of steps along the x walls that finally grow into y walls. The domain wall motion in the near-stoichiometric LiNbO3 crystal is attributed to the energy-preferable domain wall orientation, the pyroelectric effect, and the screening charge variation caused by the thermal process.
Blanchette, Craig D.; Lin, Wan-Chen; Orme, Christine A.; Ratto, Timothy V.; Longo, Marjorie L.
2008-01-01
Domains within the plane of the plasma membrane, referred to as membrane rafts, have been a topic of considerable interest in the field of membrane biophysics. Although model membrane systems have been used extensively to study lipid phase behavior as it relates to the existence of rafts, very little work has focused on either the initial stage of lipid domain nucleation, or the relevant physical parameters such as temperature and interfacial line tension which control nucleation. In this work, we utilize a method in which the kinetic process of lipid domain nucleation is imaged by atomic force microscopy and modeled using classical theory of nucleation to map interfacial line tension in ternary lipid mixtures. These mixtures consist of a fluid phase lipid component (1,2-dilauroyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, or 1,2-dioleoyl-sn-glycero-3-phosphocholine), a solid phase component (galactosylceramide), and cholesterol. Interfacial line tension measurements of galactosylceramide-rich domains track with our previously measured area/perimeter ratios and height mismatches measured here. Line tension also follows known trends in cholesterol interactions and partitioning, as we observed previously with area/perimeter ratios. Our line tension measurements are discussed in combination with recent line tension measurements to address line tension regulation by cholesterol and the dynamic nature of membrane rafts. PMID:18065459
Lupi, Laura; Peters, Baron; Molinero, Valeria
2016-12-07
According to Classical Nucleation Theory (CNT), the transition from liquid to crystal occurs in a single activated step with a transition state controlled by the size of the crystal embryo. This picture has been challenged in the last two decades by several reports of two-step crystallization processes in which the liquid first produces pre-ordered or dense domains, within which the crystal nucleates in a second step. Pre-ordering preceding crystal nucleation has been recently reported in simulations of ice crystallization, raising the question of whether the mechanism of ice nucleation involves two steps. In this paper, we investigate the heterogeneous nucleation of ice on carbon surfaces. We use molecular simulations with efficient coarse-grained models combined with rare event sampling methods and free energy calculations to elucidate the role of pre-ordering of liquid water at the carbon surface in the reaction coordinate for heterogeneous nucleation. We find that ice nucleation proceeds through a classical mechanism, with a single barrier between liquid and crystal. The reaction coordinate that determines the crossing of the nucleation barrier is the size of the crystal nucleus, as predicted by CNT. Wetting of the critical ice nuclei within pre-ordered domains decreases the nucleation barrier, increasing the nucleation rates. The preferential pathway for crystallization involves the early creation of pre-ordered domains that are the birthplace of the ice crystallites but do not represent a minimum in the free energy pathway from liquid to ice. We conclude that a preferential pathway through an intermediate-order precursor does not necessarily result in a two-step mechanism.
Simulation studies of nucleation of ferroelectric polarization reversal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennecka, Geoffrey L.; Winchester, Benjamin Michael
2014-08-01
Electric field-induced reversal of spontaneous polarization is the defining characteristic of a ferroelectric material, but the process(es) and mechanism(s) associated with the initial nucleation of reverse-polarity domains are poorly understood. This report describes studies carried out using phase field modeling of LiTaO 3, a relatively simple prototype ferroelectric material, in order to explore the effects of either mechanical deformation or optically-induced free charges on nucleation and resulting domain configuration during field-induced polarization reversal. Conditions were selected to approximate as closely as feasible those of accompanying experimental work in order to provide not only support for the experimental work but alsomore » ensure that additional experimental validation of the simulations could be carried out in the future. Phase field simulations strongly support surface mechanical damage/deformation as effective for dramatically reducing the overall coercive field (Ec) via local field enhancements. Further, optically-nucleated polarization reversal appears to occur via stabilization of latent nuclei via the charge screening effects of free charges.« less
Filament assembly by Spire: key residues and concerted actin binding.
Rasson, Amy S; Bois, Justin S; Pham, Duy Stephen L; Yoo, Haneul; Quinlan, Margot E
2015-02-27
The most recently identified class of actin nucleators, WASp homology domain 2 (WH2) nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or SC) plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of SC in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within SC that are critical for its activity. Using this information, we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that SC binds actin filaments, in addition to monomers. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dinh, Tra; Fueglistaler, Stephan
2016-04-01
Thin cirrus clouds in the tropical tropopause layer (TTL) are of great interest due to their role in the control of water vapor and temperature in the TTL. Previous research on TTL cirrus clouds has focussed mainly on microphysical processes, specifically the ice nucleation mechanism and dehydration efficiency. Here, we use a cloud resolving model to analyse the sensitivity of TTL cirrus characteristics and impacts with respect to microphysical and radiative processes. A steady-state TTL cirrus cloud field is obtained in the model forced with dynamical conditions typical for the TTL (2-dimensional setup with a Kelvin-wave temperature perturbation). Our model results show that the dehydration efficiency (as given by the domain average relative humidity in the layer of cloud occurrence) is relatively insensitive to the ice nucleation mechanism, i.e. homogeneous versus heterogeneous nucleation. Rather, TTL cirrus affect the water vapor entering the stratosphere via an indirect effect associated with the cloud radiative heating and dynamics. Resolving the cloud radiative heating and the radiatively induced circulations approximately doubles the domain average ice mass. The cloud radiative heating is proportional to the domain average ice mass, and the observed increase in domain average ice mass induces a domain average temperature increase of a few Kelvin. The corresponding increase in water vapor entering the stratosphere is estimated to be about 30 to 40%.
Electron microscopy studies of the morphological evolution in hydrothermally derived lead titanate
NASA Astrophysics Data System (ADS)
Ye, Zhiyuan
Hydrothermal processing is a promising technique to synthesize perovskite ceramic powders. Understanding the reaction mechanisms and the factors that affect the particle morphologies is essential to optimize the hydrothermal processing. In this dissertation, the reaction mechanisms and nucleation processes in hydrothermally derived lead titanate (PbTiO3) are examined and established by morphological studies. The initial concentration of potassium hydroxide [KOH]i had a strong influence on the reaction. As [KOH] i increased from 0.01 M to 0.1 M to 1.0 M, the resultant morphology changed from irregular spherical to dendritic to faceted rectangular platelet morphology. The morphological evolution was well explained in the context of a supersaturation-nucleation relation. As the [KOH]i increased, the supersaturation increased and the nucleation mechanism changed from weak heterogeneous nucleation to strong heterogeneous nucleation or even homogeneous nucleation. These different nucleation mechanisms resulted in the different morphologies. Kinetic and morphological studies suggest that the reaction starting from nanocrystalline titania is dominated by dissolution-precipitation. The titanium precursors strongly affected the reaction. Increasing the particle size of precursors significantly reduced the reaction rate, especially at the low [KOH]i case. In situ transformations play important roles under the conditions of low [KOH] i and/or large particle size of precursors. Investigation using amorphous titania indicated that the nucleation of lead titanate at low and intermediate [KOH]i is via a in situ transformation while at high [KOH]i a dissolution-precipitation mechanism dominates. Ferro electricity of PbTiO3 also affects the particle morphology. The hydrothermal lead titanate particles could grow as a single domain during the processing. The ferroelectric polarization of PbTiO3 induced different local ionic environment between the positively and negatively charged surfaces, resulting a one-sided dendritic morphology at intermediate [KOH] i. The platelet morphology at high [KOH]i gave rise to a new type of size effect. For platelets with size less than a critical size of ˜70 nm, the domain polarization reoriented from perpendicular to the platelet during the processing, to parallel to the platelet after the particles were washed and dried (so that the depolarization energy builds up). This domain reorientation is attributed to strong depolarization effects and anisotropic geometry factors.
The formin DAD domain plays dual roles in autoinhibition and actin nucleation
Gould, Christopher J.; Maiti, Sankar; Michelot, Alphée; Graziano, Brian R.; Blanchoin, Laurent; Goode, Bruce L.
2011-01-01
Summary Formins are a large family of actin assembly-promoting proteins with many important biological roles [1-3]. However, it has remained unclear how formins nucleate actin polymerization. All other nucleators are known to recruit actin monomers as a central part of their mechanisms [3-5]. However, the actin-nucleating FH2 domain of formins lacks appreciable affinity for monomeric actin [6, 7]. Here, we found that yeast and mammalian formins bind actin monomers, but this activity requires their C-terminal DAD domains. Further, we observed that the DAD works in concert with the FH2 to enhance nucleation without affecting the rate of filament elongation. We dissected this mechanism in mDia1, mapped nucleation activity to conserved residues in the DAD, and demonstrated that DAD roles in nucleation and autoinhibition are separable. Further, DAD enhancement of nucleation was independent of contributions from the FH1 domain to nucleation [8]. Together, our data show that: (i) the DAD has dual functions in autoinhibition and nucleation, (ii) the FH1, FH2 and DAD form a tri-partite nucleation machine, and (iii) formins nucleate by recruiting actin monomers, and therefore are more similar to other nucleators than previously thought. PMID:21333540
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata
Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helixmore » of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.« less
Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowires
NASA Astrophysics Data System (ADS)
Viqueira, M. S.; Bajales, N.; Urreta, S. E.; Bercoff, P. G.
2015-05-01
Magnetization reversal processes and coercivity mechanisms in polycrystalline Fe100-xCox nanowire arrays, resulting from an AC electrodeposition process, are investigated. The array coercivity is described on the basis of polarization reversal mechanisms operating in individual wires, under the effect of inter-wire dipolar interactions described by a mean field approximation. For individual wires, a reversal mechanism involving the nucleation and further expansion of domain-wall like spin configuration is considered. The wires have a mean grain size larger than both the nanowire diameter and the exchange length, so localized and non-cooperative nucleation modes are considered. As the Co content increases, the alloy saturation polarization gradually decreases, but the coercive field and the relative remanence of the arrays increase, indicating that they are not controlled by the shape anisotropy in all the composition range. The coercive field dependence on the angle between the applied field and the wire long axis is not well described by reversal mechanisms involving nucleation and further displacement of neither vortex nor transverse ideal domain walls. On the contrary, the angular dependence of the coercive field observed at room temperature is well predicted by a model considering nucleation of inverse domains by localized curling, in regions smaller than the grain size, exhibiting quite small aspect ratios as compared to those of the entire nanowire. In arrays with higher Co contents, a transition from an initial (small angle) localized curling nucleation mechanism to another one, involving localized coherent rotation is observed at about π/4.
Magnetization mechanisms in ordered arrays of polycrystalline Fe{sub 100−x}Co{sub x} nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viqueira, M. S.; Bajales, N.; Urreta, S. E.
2015-05-28
Magnetization reversal processes and coercivity mechanisms in polycrystalline Fe{sub 100−x}Co{sub x} nanowire arrays, resulting from an AC electrodeposition process, are investigated. The array coercivity is described on the basis of polarization reversal mechanisms operating in individual wires, under the effect of inter-wire dipolar interactions described by a mean field approximation. For individual wires, a reversal mechanism involving the nucleation and further expansion of domain-wall like spin configuration is considered. The wires have a mean grain size larger than both the nanowire diameter and the exchange length, so localized and non-cooperative nucleation modes are considered. As the Co content increases, themore » alloy saturation polarization gradually decreases, but the coercive field and the relative remanence of the arrays increase, indicating that they are not controlled by the shape anisotropy in all the composition range. The coercive field dependence on the angle between the applied field and the wire long axis is not well described by reversal mechanisms involving nucleation and further displacement of neither vortex nor transverse ideal domain walls. On the contrary, the angular dependence of the coercive field observed at room temperature is well predicted by a model considering nucleation of inverse domains by localized curling, in regions smaller than the grain size, exhibiting quite small aspect ratios as compared to those of the entire nanowire. In arrays with higher Co contents, a transition from an initial (small angle) localized curling nucleation mechanism to another one, involving localized coherent rotation is observed at about π/4.« less
Nucleation of holin domains and holes optimizes lysis timing of E. coli by phage λ
NASA Astrophysics Data System (ADS)
Ryan, Gillian; Rutenberg, Andrew
2007-03-01
Holin proteins regulate the precise scheduling of Escherichia coli lysis during infection by bacteriophage λ. Inserted into the host bacterium's inner membrane during infection, holins aggregate to form rafts and then holes within those rafts. We present a two-stage nucleation model of holin action, with the nucleation of condensed holin domains followed by the nucleation of holes within these domains. Late nucleation of holin rafts leads to a weak dependence of lysis timing on host cell size, though both nucleation events contribute equally to timing errors. Our simulations recover the accurate scheduling observed experimentally, and also suggest that phage-λ lysis of E.coli is optimized.
Mammalian amyloidogenic proteins promote prion nucleation in yeast.
Chandramowlishwaran, Pavithra; Sun, Meng; Casey, Kristin L; Romanyuk, Andrey V; Grizel, Anastasiya V; Sopova, Julia V; Rubel, Aleksandr A; Nussbaum-Krammer, Carmen; Vorberg, Ina M; Chernoff, Yury O
2018-03-02
Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-β (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Technical Reports Server (NTRS)
Barker, R. E., Jr.
1985-01-01
Transient and steady-state phenomena in temperature, stress, and electric, field intensity in ferroelectric polymers were investigated. The application and extension of the theory in the primary stage to the polarization domain nucleation and growth in ferroelectric polymers were developed. The kinetics of this growth were investigated. Expressions describing nucleation under the influence of an electric field were found through the expansion of the Gibbs' free energy in a Maclaurin series. The series was expanded in the electric field strength rather than the degree of undercooling. The resulting expressions were manipulated and applied to the case of nucleation of polarized domains in ferroelectric polymers. The kinetics of the nucleation and growth of polarized domains are also investigated. This was accomplished through the modification of the Johnson-Mehl-Avrami treatment of crystallization kinetics to be applicable to the growth of polarization domains in ferroelectric materials.
Rosetti, Carla M; Mangiarotti, Agustín; Wilke, Natalia
2017-05-01
In model lipid membranes with phase coexistence, domain sizes distribute in a very wide range, from the nanometer (reported in vesicles and supported films) to the micrometer (observed in many model membranes). Domain growth by coalescence and Ostwald ripening is slow (minutes to hours), the domain size being correlated with the size of the capture region. Domain sizes thus strongly depend on the number of domains which, in the case of a nucleation process, depends on the oversaturation of the system, on line tension and on the perturbation rate in relation to the membrane dynamics. Here, an overview is given of the factors that affect nucleation or spinodal decomposition and domain growth, and their influence on the distribution of domain sizes in different model membranes is discussed. The parameters analyzed respond to very general physical rules, and we therefore propose a similar behavior for the rafts in the plasma membrane of cells, but with obstructed mobility and with a continuously changing environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Nucleation processes of nanobubbles at a solid/water interface
NASA Astrophysics Data System (ADS)
Fang, Chung-Kai; Ko, Hsien-Chen; Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh
2016-04-01
Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules.
Liu, Lixin; Zhou, Hailong; Cheng, Rui; Chen, Yu; Lin, Yung-Chen; Qu, Yongquan; Bai, Jingwei; Ivanov, Ivan A; Liu, Gang; Huang, Yu; Duan, Xiangfeng
2012-01-28
Graphene has attracted considerable interest as a potential material for future electronics. Although mechanical peel is known to produce high quality graphene flakes, practical applications require continuous graphene layers over a large area. The catalyst-assisted chemical vapor deposition (CVD) is a promising synthetic method to deliver wafer-sized graphene. Here we present a systematic study on the nucleation and growth of crystallized graphene domains in an atmospheric pressure chemical vapor deposition (APCVD) process. Parametric studies show that the mean size of the graphene domains increases with increasing growth temperature and CH 4 partial pressure, while the density of domains decreases with increasing growth temperature and is independent of the CH 4 partial pressure. Our studies show that nucleation of graphene domains on copper substrate is highly dependent on the initial annealing temperature. A two-step synthetic process with higher initial annealing temperature but lower growth temperature is developed to reduce domain density and achieve high quality full-surface coverage of monolayer graphene films. Electrical transport measurements demonstrate that the resulting graphene exhibits a high carrier mobility of up to 3000 cm 2 V -1 s -1 at room temperature.
Structure and Dynamics of Domains in Ferroelectric Nanostructures. In-situ TEM Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Xiaoqing
2015-06-30
The goal of this project was to explore the structure and dynamic behaviors of ferroelectric domains in ferroelectric thin films and nanostructures by advanced transmission electron microscopy (TEM) techniques in close collaboration with phase field modeling. The experimental techniques used include aberration-corrected sub-Å resolution TEM and in-situ TEM using a novel scanning tunneling microscopy (STM) - TEM holder that allows the direct observation of nucleation and dynamic evolution of ferroelectric domains under applied electric field. Specifically, this project was aimed to (1) to study the roles of static electrical boundary conditions and electrical charge in controlling the equilibrium domain structuresmore » of BiFeO 3 thin films with controlled substrate constraints, (2) to explore the fundamental mechanisms of ferroelectric domain nucleation, growth, and switching under an applied electric field in both uniform thin films and nanostructures, and to understand the roles of crystal defects such as dislocations and interfaces in these processes, (3) to understand the physics of ferroelectric domain walls and the influence of defects on the electrical switching of ferroelectric domains.« less
Regulatory interactions between two actin nucleators, Spire and Cappuccino.
Quinlan, Margot E; Hilgert, Susanne; Bedrossian, Anaid; Mullins, R Dyche; Kerkhoff, Eugen
2007-10-08
Spire and Cappuccino are actin nucleation factors that are required to establish the polarity of Drosophila melanogaster oocytes. Their mutant phenotypes are nearly identical, and the proteins interact biochemically. We find that the interaction between Spire and Cappuccino family proteins is conserved across metazoan phyla and is mediated by binding of the formin homology 2 (FH2) domain from Cappuccino (or its mammalian homologue formin-2) to the kinase noncatalytic C-lobe domain (KIND) from Spire. In vitro, the KIND domain is a monomeric folded domain. Two KIND monomers bind each FH2 dimer with nanomolar affinity and strongly inhibit actin nucleation by the FH2 domain. In contrast, formation of the Spire-Cappuccino complex enhances actin nucleation by Spire. In Drosophila oocytes, Spire localizes to the cortex early in oogenesis and disappears around stage 10b, coincident with the onset of cytoplasmic streaming.
Organic Single-Crystal Semiconductor Films on a Millimeter Domain Scale.
Kwon, Sooncheol; Kim, Jehan; Kim, Geunjin; Yu, Kilho; Jo, Yong-Ryun; Kim, Bong-Joong; Kim, Junghwan; Kang, Hongkyu; Park, Byoungwook; Lee, Kwanghee
2015-11-18
Nucleation and growth processes can be effectively controlled in organic semiconductor films through a new concept of template-mediated molecular crystal seeds during the phase transition; the effective control of these processes ensures millimeter-scale crystal domains, as well as the performance of the resulting organic films with intrinsic hole mobility of 18 cm(2) V(-1) s(-1). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Deinum, Eva E.; Tindemans, Simon H.; Mulder, Bela M.
2011-10-01
The highly aligned cortical microtubule array of interphase plant cells is a key regulator of anisotropic cell expansion. Recent computational and analytical work has shown that the non-equilibrium self-organization of this structure can be understood on the basis of experimentally observed collisional interactions between dynamic microtubules attached to the plasma membrane. Most of these approaches assumed that new microtubules are homogeneously and isotropically nucleated on the cortical surface. Experimental evidence, however, shows that nucleation mostly occurs from other microtubules and under specific relative angles. Here, we investigate the impact of directed microtubule-bound nucleations on the alignment process using computer simulations. The results show that microtubule-bound nucleations can increase the degree of alignment achieved, decrease the timescale of the ordering process and widen the regime of dynamic parameters for which the system can self-organize. We establish that the major determinant of this effect is the degree of co-alignment of the nucleations with the parent microtubule. The specific role of sideways branching nucleations appears to allow stronger alignment while maintaining a measure of overall spatial homogeneity. Finally, we investigate the suggestion that observed persistent rotation of microtubule domains can be explained through a handedness bias in microtubule-bound nucleations, showing that this is possible only for an extreme bias and over a limited range of parameters.
Hysteresis and the role of nucleation and growth in the hydrogenation of Mg nanolayers.
Mooij, Lennard; Dam, Bernard
2013-02-28
We investigated the hydrogenation of 3 and 10 nm Mg layers sandwiched between Ti using an optical transmission technique (hydrogenography). We observe in situ the two dimensional nucleation and growth of single hydride domains of up to several millimeters in diameter. The low density of nuclei points to preferential nucleation at heterogeneous sites. From an analysis of the growth kinetics we deduce an extremely large edge boundary energy, which we relate to the plastic deformations inherent to the 30% volume expansion of the MgH(2). We find that the nucleation and growth process affects the hysteresis between absorption and desorption. Especially, the absorption branch can be lowered when nucleation barriers are removed. Our results show that when discussing the effect of nano-structuring on hydrogenation it may be quite complex to distinguish the thermodynamic and kinetic effects involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Junhao; Pantelides, Sokrates T.; Zhou, Wu
2015-04-23
Sixty degree grain boundaries in semiconducting transition-metal dichalcogenide (TMDC) monolayers have been shown to act as conductive channels that have profound influence on both the transport properties and exciton behavior of the monolayers. We show that annealing TMDC monolayers at high temperature induces the formation of large-scale inversion domains surrounded by such 60° grain boundaries. To study the formation mechanism of such inversion domains, we use the electron beam in a scanning transmission electron microscope to activate the dynamic process within pristine TMDC monolayers. Moreover, the electron beam acts to generate chalcogen vacancies in TMDC monolayers and provide energy formore » them to undergo structural evolution. We directly visualize the nucleation and growth of such inversion domains and their 60° grain boundaries atom-by-atom within a MoSe 2 monolayer and explore their formation mechanism. Combined with density functional theory, we conclude that the nucleation of the inversion domains and migration of their 60° grain boundaries are driven by the collective evolution of Se vacancies and subsequent displacement of Mo atoms, where such a dynamical process reduces the vacancy-induced lattice shrinkage and stabilizes the system. Our results can help to understand the performance of such materials under severe conditions (e.g., high temperature).« less
Structural analysis of the role of TPX2 in branching microtubule nucleation
Thawani, Akanksha
2017-01-01
The mitotic spindle consists of microtubules (MTs), which are nucleated by the γ-tubulin ring complex (γ-TuRC). How the γ-TuRC gets activated at the right time and location remains elusive. Recently, it was uncovered that MTs nucleate from preexisting MTs within the mitotic spindle, which requires the protein TPX2, but the mechanism basis for TPX2 action is unknown. Here, we investigate the role of TPX2 in branching MT nucleation. We establish the domain organization of Xenopus laevis TPX2 and define the minimal TPX2 version that stimulates branching MT nucleation, which we find is unrelated to TPX2’s ability to nucleate MTs in vitro. Several domains of TPX2 contribute to its MT-binding and bundling activities. However, the property necessary for TPX2 to induce branching MT nucleation is contained within newly identified γ-TuRC nucleation activator motifs. Separation-of-function mutations leave the binding of TPX2 to γ-TuRC intact, whereas branching MT nucleation is abolished, suggesting that TPX2 may activate γ-TuRC to promote branching MT nucleation. PMID:28264915
Rivero, Francisco; Muramoto, Tetsuya; Meyer, Ann-Kathrin; Urushihara, Hideko; Uyeda, Taro QP; Kitayama, Chikako
2005-01-01
Background Formins are multidomain proteins defined by a conserved FH2 (formin homology 2) domain with actin nucleation activity preceded by a proline-rich FH1 (formin homology 1) domain. Formins act as profilin-modulated processive actin nucleators conserved throughout a wide range of eukaryotes. Results We present a detailed sequence analysis of the 10 formins (ForA to J) identified in the genome of the social amoeba Dictyostelium discoideum. With the exception of ForI and ForC all other formins conform to the domain structure GBD/FH3-FH1-FH2-DAD, where DAD is the Diaphanous autoinhibition domain and GBD/FH3 is the Rho GTPase-binding domain/formin homology 3 domain that we propose to represent a single domain. ForC lacks a FH1 domain, ForI lacks recognizable GBD/FH3 and DAD domains and ForA, E and J have additional unique domains. To establish the relationship between formins of Dictyostelium and other organisms we constructed a phylogenetic tree based on the alignment of FH2 domains. Real-time PCR was used to study the expression pattern of formin genes. Expression of forC, D, I and J increased during transition to multi-cellular stages, while the rest of genes displayed less marked developmental variations. During sexual development, expression of forH and forI displayed a significant increase in fusion competent cells. Conclusion Our analysis allows some preliminary insight into the functionality of Dictyostelium formins: all isoforms might display actin nucleation activity and, with the exception of ForI, might also be susceptible to autoinhibition and to regulation by Rho GTPases. The architecture GBD/FH3-FH1-FH2-DAD appears common to almost all Dictyostelium, fungal and metazoan formins, for which we propose the denomination of conventional formins, and implies a common regulatory mechanism. PMID:15740615
Rivero, Francisco; Muramoto, Tetsuya; Meyer, Ann-Kathrin; Urushihara, Hideko; Uyeda, Taro Q P; Kitayama, Chikako
2005-03-01
Formins are multidomain proteins defined by a conserved FH2 (formin homology 2) domain with actin nucleation activity preceded by a proline-rich FH1 (formin homology 1) domain. Formins act as profilin-modulated processive actin nucleators conserved throughout a wide range of eukaryotes. We present a detailed sequence analysis of the 10 formins (ForA to J) identified in the genome of the social amoeba Dictyostelium discoideum. With the exception of ForI and ForC all other formins conform to the domain structure GBD/FH3-FH1-FH2-DAD, where DAD is the Diaphanous autoinhibition domain and GBD/FH3 is the Rho GTPase-binding domain/formin homology 3 domain that we propose to represent a single domain. ForC lacks a FH1 domain, ForI lacks recognizable GBD/FH3 and DAD domains and ForA, E and J have additional unique domains. To establish the relationship between formins of Dictyostelium and other organisms we constructed a phylogenetic tree based on the alignment of FH2 domains. Real-time PCR was used to study the expression pattern of formin genes. Expression of forC, D, I and J increased during transition to multi-cellular stages, while the rest of genes displayed less marked developmental variations. During sexual development, expression of forH and forI displayed a significant increase in fusion competent cells. Our analysis allows some preliminary insight into the functionality of Dictyostelium formins: all isoforms might display actin nucleation activity and, with the exception of ForI, might also be susceptible to autoinhibition and to regulation by Rho GTPases. The architecture GBD/FH3-FH1-FH2-DAD appears common to almost all Dictyostelium, fungal and metazoan formins, for which we propose the denomination of conventional formins, and implies a common regulatory mechanism.
Unraveling Mixed Hydrate Formation: Microscopic Insights into Early Stage Behavior.
Hall, Kyle Wm; Zhang, Zhengcai; Kusalik, Peter G
2016-12-29
The molecular-level details of mixed hydrate nucleation remain unclear despite the broad implications of this process for a variety of scientific domains. Through analysis of mixed hydrate nucleation in a prototypical CH 4 /H 2 S/H 2 O system, we demonstrate that high-level kinetic similarities between mixed hydrate systems and corresponding pure hydrate systems are not a reliable basis for estimating the composition of early stage mixed hydrate nuclei. Moreover, we show that solution compositions prior to and during nucleation are not necessarily effective proxies for the composition of early stage mixed hydrate nuclei. Rather, microscopic details, (e.g., guest-host interactions and previously neglected cage types) apparently play key roles in determining early stage behavior of mixed hydrates. This work thus provides key foundational concepts and insights for understanding mixed hydrate nucleation.
Structural Basis of Actin Filament Nucleation by Tandem W Domains
Chen, Xiaorui; Ni, Fengyun; Tian, Xia; Kondrashkina, Elena; Wang, Qinghua; Ma, Jianpeng
2013-01-01
SUMMARY Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl), a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization. PMID:23727244
NASA Astrophysics Data System (ADS)
Bhattacharjee, Amit Kumar
2017-01-01
For isotropic fluids, classical nucleation theory predicts the nucleation rate, barrier height and critical droplet size by ac- counting for the competition between bulk energy and interfacial tension. The nucleation process in liquid crystals is less understood. We numerically investigate nucleation in monolayered nematogenic films using a mesoscopic framework, in par- ticular, we study the morphology and kinetic pathway in spontaneous formation and growth of droplets of the stable phase in the metastable background. The parameter κ that quantifies the anisotropic elastic energy plays a central role in determining the geometric structure of the droplets. Noncircular nematic droplets with homogeneous director orientation are nucleated in a background of supercooled isotropic phase for small κ. For large κ, noncircular droplets with integer topological charge, accompanied by a biaxial ring at the outer surface, are nucleated. The isotropic droplet shape in a superheated nematic background is found to depend on κ in a similar way. Identical growth laws are found in the two cases, although an unusual two-stage mechanism is observed in the nucleation of isotropic droplets. Temporal distributions of successive events indi- cate the relevance of long-ranged elasticity-mediated interactions within the isotropic domains. Implications for a theoretical description of nucleation in anisotropic fluids are discussed.
NASA Astrophysics Data System (ADS)
Futko, S. I.; Shulitskii, B. G.; Labunov, V. A.; Ermolaeva, E. M.
2018-01-01
A new kinetic model of isothermal growth of single-layer graphene on a copper catalyst as a result of the chemical vapor deposition of hydrocarbons on it at a low pressure has been developed on the basis of in situ measurements of the growth of graphene in the process of its synthesis. This model defines the synthesis of graphene with regard for the chemisorption and catalytic decomposition of ethylene on the surface of a copper catalyst, the diffusion of carbon atoms in the radial direction to the nucleation centers within the thin melted near-surface copper layer, and the nucleation and autocatalytic growth of graphene domains. It is shown that the time dependence of the rate of growth of a graphene domain has a characteristic asymmetrical bell-like shape. The dependences of the surface area and size of a graphene domain and the rate of its growth on the time at different synthesis temperatures and ethylene concentrations have been obtained. Time characteristics of the growth of graphene domains depending on the parameters of their synthesis were calculated. The results obtained can be used for determining optimum regimes of synthesis of graphene in the process of chemical vapor deposition of hydrocarbons on different catalysts with a low solubility of carbon.
Pucci, Carlotta; Cousin, Fabrice; Dole, François; Chapel, Jean-Paul; Schatz, Christophe
2018-02-20
The formulation pathway and/or the mixing method are known to be relevant in many out-of-equilibrium processes. In this work, we studied the effect of the mixing conditions on the physicochemical properties of poly-ε-caprolactone (PCL) particles prepared by solvent displacement. More specifically, water was added in one shot (fast addition) or drop by drop to PCL solution in tetrahydrofuran (THF) to study the impact of the mixing process on particle properties including size, stability, and crystallinity. Two distinct composition maps representing the Ouzo domain characteristic of the presence of metastable nanoparticles have been established for each mixing method. Polymer nanoparticles are formed in the Ouzo domain according to a nucleation and growth (or aggregation) mechanism. The fast addition promotes a larger nucleation rate, thus favoring the formation of small and uniform particles. For the drop-by-drop addition, for which the polymer solubility gradually decreases, the composition trajectories systematically cross an intermediate unstable region between the solubility limit of the polymer and the Ouzo domain. This leads to heterogeneous nucleation as shown by the formation of larger and less stable particles. Particles formed in the Ouzo domain have semi-crystalline properties. The PCL melting point is decreased with the THF fraction trapped in particles in accordance with Flory's theory for melt crystallization. On the other hand, the degree of crystallinity is constant, around 20% regardless of the THF fraction. No difference between fast and slow addition could be detected on the semi-crystalline properties of the particles which emphasize that thermodynamic rather than kinetic factors drive the polymer crystallization in particles. The recovery of bulk PCL crystallinity after the removal of THF from particles tends to confirm this hypothesis.
Manipulation of Magnetic Textures in Thin Films and Devices
NASA Astrophysics Data System (ADS)
Tolley, Robert Douglas
Control and manipulation of magnetic textures is promising for the development of next-generation data storage, memory and processing technologies. Towards this goal, domain wall manipulation in two materials systems are presented here and thoroughly evaluated. Domain walls in ferrimagnetic Cobalt-Terbium alloys and multilayers are created, moved and stabilized via thermal gradients and a static magnetic field and exploit the unique properties of the system across the magnetic compensation point. The response of the systems to thermal gradients is observed via Kerr microscopy and used to determine the positioning of domain walls within patterned devices. Magnetic skyrmions are discovered in thin-film multilayered stacks using an Pt/Co/Os/Pt heterostructures where the thin Osmium layer is used to break interfacial symmetry and enhance the Dzyaloshinskii-Moriya interaction. The resulting skyrmions are manipulated using temperature, magnetic field, and electric current, and special attention is paid to their motion and nucleation behavior. Skyrmions are observed to be formed by low applied currents from nucleation sites and by collapse of stripe textures. Patterned wires allow for the observation of skyrmion nucleation behavior in free space, as well as defect sites, and real-time Kerr microscopy imaging is presented of skyrmion and stripe dynamics. These systems are evaluated from a perspective of their growth, patterning, measurement, and the novel behavior of the magnetic textures.
Desgranges, Caroline; Delhommelle, Jerome
2018-06-18
Using molecular dynamics simulation, we study the impact of the degree of supercooling on the crystal nucleation of ultra-soft particles, modeled with the Gaussian core potential. Focusing on systems with a high number density, our simulations reveal dramatically different behaviors as the degree of supercooling is varied. In the moderate supercooling regime, crystal nucleation proceeds as expected from classical nucleation theory, with a decrease in the free energy of nucleation, as well as in the size of the critical nucleus, as supercooling is increased. On the other hand, in the large supercooling regime, we observe an unusual reversal of behavior with an increase in the free energy of nucleation and in the critical size, as supercooling is increased. This unexpected result is analyzed in terms of the interplay between the glass transition and the crystal nucleation process. Specifically, medium range order crystal-like domains, with structural features different from that of the crystal nucleus, are found to form throughout the system when the supercooling is very large. These, in turn, play a pivotal role in the increase in the free energy of nucleation, as well as in the critical size, as the temperature gets closer to the glass transition.
Elucidating Key Motifs Required for Arp2/3-Dependent and Independent Actin Nucleation by Las17/WASP
Urbanek, Agnieszka N.; Smaczynska-de Rooij, Iwona I.
2016-01-01
Actin nucleation is the key rate limiting step in the process of actin polymerization, and tight regulation of this process is critical to ensure actin filaments form only at specific times and at defined regions of the cell. Arp2/3 is a well-characterised protein complex that can promote nucleation of new filaments, though its activity requires additional nucleation promotion factors (NPFs). The best recognized of these factors are the WASP family of proteins that contain binding motifs for both monomeric actin and for Arp2/3. Previously we demonstrated that the yeast WASP homologue, Las17, in addition to activating Arp2/3 can also nucleate actin filaments de novo, independently of Arp2/3. This activity is dependent on its polyproline rich region. Through biochemical and in vivo analysis we have now identified key motifs within the polyproline region that are required for nucleation and elongation of actin filaments, and have addressed the role of the WH2 domain in the context of actin nucleation without Arp2/3. We have also demonstrated that full length Las17 is able to bind liposomes giving rise to the possibility of direct linkage of nascent actin filaments to specific membrane sites to which Las17 has been recruited. Overall, we propose that Las17 functions as the key initiator of de novo actin filament formation at endocytic sites by nucleating, elongating and tethering nascent filaments which then serve as a platform for Arp2/3 recruitment and function. PMID:27637067
Mechanism of light-induced domain nucleation in LiNbO 3 crystals
NASA Astrophysics Data System (ADS)
Liu, De'an; Zhi, Ya'nan; Luan, Zhu; Yan, Aimin; Liu, Liren
2007-09-01
In this paper, within the spectrum range from 351 nm to 799 nm, the different reductions of nucleation field induced by the focused continuous irradiation with different light intensity are achieved in congruent LiNbO 3 crystals. The reduction proportion increases exponentially with decreasing the irradiation wavelength, and decreases exponentially with increasing the irradiation wavelength. Basing on photo-excited effect, we propose a proper model to explain the mechanism of light-induced domain nucleation in congruent LiNbO 3 crystals.
Fhaner, Mathew; Zhao, Hong; Bian, Xiaochun; Galligan, James J.; Swain, Greg M.
2010-01-01
In order to increase the initial nucleation density for the growth of boron-doped diamond on platinum wires, we employed the novel nucleation process (NNP) originally developed by Rotter et al. and discussed by others [1–3]. This pretreatment method involves (i) the initial formation of a thin carbon layer over the substrate followed by (ii) ultrasonic seeding of this “soft” carbon layer with nanoscale particles of diamond. This two-step pretreatment is followed by the deposition of boron-doped diamond by microwave plasma-assisted CVD. Both the diamond seed particles and sites on the carbon layer itself function as the initial nucleation zones for diamond growth from an H2-rich source gas mixture. We report herein on the characterization of the pre-growth carbon layer formed on Pt as well as boron-doped films grown for 2, 4 and 6 h post NNP pretreatment. Results from scanning electron microscopy, Raman spectroscopy and electrochemical studies are reported. The NNP method increases the initial nucleation density on Pt and leads to the formation of a continuous diamond film in a shorter deposition time than is typical for wires pretreated by conventional ultrasonic seeding. The results indicate that the pregrowth layer itself consists of nanoscopic domains of diamond and functions well to enhance the initial nucleation of diamond without any diamond powder seeding. PMID:21617759
Magnetic stripe domains of [Pt/Co/Cu]{sub 10} multilayer near spin reorientation transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, L.; Liang, J. H.; Xiao, X.
The dependence of magnetic anisotropy, magnetic domain patterns and magnetization reversal processes in [Pt/Co(t{sub Co})/Cu]{sub 10} film stack epitaxied on Cu (111) substrate have been studied as a function of the Co layer thickness t{sub Co}, by magneto-optic polar Kerr magnetometry and microscopy. We find the film undergoes spin reorientation transition from out-of-plane to in-plane as t{sub Co} increases. The SRT thickness is verified by Rotating-field Magneto-Optic Kerr effect method. The film exhibits the stripe domain structures at remanence with the width decreasing while t{sub Co} approaches SRT. As demonstrated by the first order reversal curve measurement, the magnetization reversalmore » process encompasses irreversible domain nucleation, domain annihilation at large field and reversible domain switching near remanence.« less
Analysis of the function of Spire in actin assembly and its synergy with formin and profilin.
Bosch, Montserrat; Le, Kim Ho Diep; Bugyi, Beata; Correia, John J; Renault, Louis; Carlier, Marie-France
2007-11-30
The Spire protein, together with the formin Cappuccino and profilin, plays an important role in actin-based processes that establish oocyte polarity. Spire contains a cluster of four actin-binding WH2 domains. It has been shown to nucleate actin filaments and was proposed to remain bound to their pointed ends. Here we show that the multifunctional character of the WH2 domains allows Spire to sequester four G-actin subunits binding cooperatively in a tight SA(4) complex and to nucleate, sever, and cap filaments at their barbed ends. Binding of Spire to barbed ends does not affect the thermodynamics of actin assembly at barbed ends but blocks barbed end growth from profilin-actin. The resulting Spire-induced increase in profilin-actin concentration enhances processive filament assembly by formin. The synergy between Spire and formin is reconstituted in an in vitro motility assay, which provides a functional basis for the genetic interplay between Spire, formin, and profilin in oogenesis.
NASA Astrophysics Data System (ADS)
Panov, Yu. D.; Moskvin, A. S.; Rybakov, F. N.; Borisov, A. B.
2016-12-01
We made use of a special algorithm for compute unified device architecture for NVIDIA graphics cards, a nonlinear conjugate-gradient method to minimize energy functional, and Monte-Carlo technique to directly observe the forming of the ground state configuration for the 2D hard-core bosons by lowering the temperature and its evolution with deviation away from half-filling. The novel technique allowed us to examine earlier implications and uncover novel features of the phase transitions, in particular, look upon the nucleation of the odd domain structure, emergence of filamentary superfluidity nucleated at the antiphase domain walls of the charge-ordered phase, and nucleation and evolution of different topological structures.
HS-SPM Mapping of Ferroelectric Domain Dynamics with Combined Nanoscale and Nanosecond Resolution
NASA Astrophysics Data System (ADS)
Polomoff, Nicholas Alexander
The unique properties of ferroelectric materials have been applied for a wide variety of device applications. In particular, properties such as spontaneous polarization and domain structure hysteresis at room temperature have rendered its application in nonvolatile memory devices such as FeRAMs. Along with the ever-present drive for smaller memory devices is the demand that they have increased operating speeds, longer retention times, lower power requirements and better overall reliability. It is therefore pertinent that further investigation of the dynamics, kinetics and mechanisms involved with ferroelectric domain polarization reversal at nanoscale lengths and temporal durations be conducted to optimize future ferroelectric based nonvolatile memory devices. Accordingly High Speed Piezoforce Microscopy (HSPFM) will be employed to directly investigate and observe the dynamic nucleation and growth progression of ferroelectric domain polarization reversal processes in thin epitaxial deposited PZT films. The capabilities of HSPFM will allow for in-situ direct observation of nascent dynamic domain polarization reversal events with nanoscale resolution. Correlations and characterization of the thin ferroelectric film samples will be made based on the observed polarization reversal dynamics and switching mechanism with respect to their varying strain states, compositions, and/or orientations. Electrical pulsing schemes will also be employed to enhance the HSPFM procedure to achieve nanoscale temporal resolution of nascent domain nucleation and growth events. A unique pulsing approach is also proposed, and tested, to improve power consumption during switching. Finally, artificial defects will be introduced into the PZT thin film by fabricating arrays of indentations with different shapes and loads. These controlled indents will result in the introduction of different stress states of compression and tension into the ferroelectric thin film. It is hypothesized that these different stress states will have a dramatic effect upon the polarization reversal process, domain nucleation and growth dynamics, as well as the device's overall performance. It is the aim of the research presented in this dissertation to leverage the superior lateral and temporal resolution of the HSPFM technique to observe the influence that a variety of different variables have upon polarization reversal and dynamic ferroelectric domain behavior in attempt to propose conventions in which such variables can be employed for the development of high functioning and overall better operating ferroelectric based devices.
Drosophila Spire is an actin nucleation factor.
Quinlan, Margot E; Heuser, John E; Kerkhoff, Eugen; Mullins, R Dyche
2005-01-27
The actin cytoskeleton is essential for many cellular functions including shape determination, intracellular transport and locomotion. Previous work has identified two factors--the Arp2/3 complex and the formin family of proteins--that nucleate new actin filaments via different mechanisms. Here we show that the Drosophila protein Spire represents a third class of actin nucleation factor. In vitro, Spire nucleates new filaments at a rate that is similar to that of the formin family of proteins but slower than in the activated Arp2/3 complex, and it remains associated with the slow-growing pointed end of the new filament. Spire contains a cluster of four WASP homology 2 (WH2) domains, each of which binds an actin monomer. Maximal nucleation activity requires all four WH2 domains along with an additional actin-binding motif, conserved among Spire proteins. Spire itself is conserved among metazoans and, together with the formin Cappuccino, is required for axis specification in oocytes and embryos, suggesting that multiple actin nucleation factors collaborate to construct essential cytoskeletal structures.
Structure and function of the interacting domains of Spire and Fmn-family formins.
Vizcarra, Christina L; Kreutz, Barry; Rodal, Avital A; Toms, Angela V; Lu, Jun; Zheng, Wei; Quinlan, Margot E; Eck, Michael J
2011-07-19
Evidence for cooperation between actin nucleators is growing. The WH2-containing nucleator Spire and the formin Cappuccino interact directly, and both are essential for assembly of an actin mesh during Drosophila oogenesis. Their interaction requires the kinase noncatalytic C-lobe domain (KIND) domain of Spire and the C-terminal tail of the formin. Here we describe the crystal structure of the KIND domain of human Spir1 alone and in complex with the tail of Fmn2, a mammalian ortholog of Cappuccino. The KIND domain is structurally similar to the C-lobe of protein kinases. The Fmn2 tail is coordinated in an acidic cleft at the base of the domain that appears to have evolved via deletion of a helix from the canonical kinase fold. Our functional analysis of Cappuccino reveals an unexpected requirement for its tail in actin assembly. In addition, we find that the KIND/tail interaction blocks nucleation by Cappuccino and promotes its displacement from filament barbed ends providing insight into possible modes of cooperation between Spire and Cappuccino.
Nucleation and island growth of alkanethiolate ligand domains on gold nanoparticles.
Wang, Yifeng; Zeiri, Offer; Neyman, Alevtina; Stellacci, Francesco; Weinstock, Ira A
2012-01-24
The metal oxide cluster α-AlW(11)O(39)(9-) (1), readily imaged by cryogenic transmission electron microscopy (cryo-TEM), is used as a diagnostic protecting anion to investigate the self-assembly of alkanethiolate monolayers on electrostatically stabilized gold nanoparticles in water. Monolayers of 1 on 13.8 ± 0.9 nm diameter gold nanoparticles are displaced from the gold surface by mercaptoundecacarboxylate, HS(CH(2))(10)CO(2)(-) (11-MU). During this process, no aggregation is observed by UV-vis spectroscopy, and the intermediate ligand-shell organizations of 1 in cryo-TEM images indicate the presence of growing hydrophobic domains, or "islands", of alkanethiolates. UV-vis spectroscopic "titrations", based on changes in the surface plasmon resonance upon exchange of 1 by thiol, reveal that the 330 ± 30 molecules of 1 initially present on each gold nanoparticle are eventually replaced by 2800 ± 30 molecules of 11-MU. UV-vis kinetic data for 11-MU-monolayer formation reveal a slow phase, followed by rapid self-assembly. The Johnson, Mehl, Avrami, and Kolmogorov model gives an Avrami parameter of 2.9, indicating continuous nucleation and two-dimensional island growth. During nucleation, incoming 11-MU ligands irreversibly displace 1 from the Au-NP surface via an associative mechanism, with k(nucleation) = (6.1 ± 0.4) × 10(2) M(-1) s(-1), and 19 ± 8 nuclei, each comprised of ca. 8 alkanethiolates, appear on the gold-nanoparticle surface before rapid growth becomes kinetically dominant. Island growth is also first-order in [11-MU], and its larger rate constant, k(growth), (2.3 ± 0.2) × 10(4) M(-1) s(-1), is consistent with destabilization of molecules of 1 at the boundaries between the hydrophobic (alkanethiolate) and the electrostatically stabilized (inorganic) domains. © 2011 American Chemical Society
Baum, Jake; Tonkin, Christopher J; Paul, Aditya S; Rug, Melanie; Smith, Brian J; Gould, Sven B; Richard, Dave; Pollard, Thomas D; Cowman, Alan F
2008-03-13
Malaria parasites invade host cells using actin-based motility, a process requiring parasite actin filament nucleation and polymerization. Malaria and other apicomplexan parasites lack Arp2/3 complex, an actin nucleator widely conserved across eukaryotes, but do express formins, another type of actin nucleator. Here, we demonstrate that one of two malaria parasite formins, Plasmodium falciparum formin 1 (PfFormin 1), and its ortholog in the related parasite Toxoplasma gondii, follows the moving tight junction between the invading parasite and the host cell, which is the predicted site of the actomyosin motor that powers motility. Furthermore, in vitro, the PfFormin1 actin-binding formin homology 2 domain is a potent nucleator, stimulating actin polymerization and, like other formins, localizing to the barbed end during filament elongation. These findings support a conserved molecular mechanism underlying apicomplexan parasite motility and, given the essential role that actin plays in cell invasion, highlight formins as important determinants of malaria parasite pathogenicity.
Kier, Brandon L.; Anderson, Jordan M.; Andersen, Niels H.
2014-01-01
A hyperstable Pin1 WW domain has been circularly permuted via excision of the fold-nucleating turn; it still folds to form the native three-strand sheet and hydrophobic core features. Multiprobe folding dynamics studies of the normal and circularly permuted sequences, as well as their constituent hairpin fragments and comparable-length β-strand-loop-β-strand models, indicate 2-state folding for all topologies. N-terminal hairpin formation is the fold nucleating event for the wild-type sequence; the slower folding circular permutant has a more distributed folding transition state. PMID:24350581
Direct Observations of Nucleation in a Nondilute Multicomponent Alloy
NASA Technical Reports Server (NTRS)
Sudbrack, Chantal K.; Noebe, Ronald D.; Seidman, David N.
2006-01-01
The chemical pathways leading to gamma'(L1(sub 2)) nucleation from nondilute Ni-5.2 Al-14.2 Cr at. %, gama(fcc), at 873 K are followed with radial distribution functions and isoconcentration surface analyses of direct-space atom-probe tomographic images. Although Cr atoms initially are randomly distributed, a distribution of congruent Ni3Al short-range-order domains (SRO), [R] approx. equals 0.6 nm, results from Al diffusion during quenching. Domain site occupancy develops as their number density increases leading to Al-rich phase separation by gamma'-nucleation, [R]=0.75 nm, after SRO occurs.
Mesostructure of Ordered Corneal Nano-nipple Arrays: The Role of 5-7 Coordination Defects
NASA Astrophysics Data System (ADS)
Lee, Ken C.; Yu, Qi; Erb, Uwe
2016-06-01
Corneal nano-nipple structures consisting of hexagonally arranged protrusions with diameters around 200 nm have long been known for their antireflection capability and have served as biological blueprint for solar cell, optical lens and other surface designs. However, little is known about the global arrangement of these nipples on the ommatidial surface and their growth during the eye development. This study provides new insights based on the analysis of nano-nipple arrangements on the mesoscale across entire ommatidia, which has never been done before. The most important feature in the nipple structures are topological 5- and 7-fold coordination defects, which align to form dislocations and interconnected networks of grain boundaries that divide the ommatidia into crystalline domains in different orientations. Furthermore, the domain size distribution might be log-normal, and the domains demonstrate no preference in crystal orientation. Both observations suggest that the nipple growth process may be similar to the nucleation and growth mechanisms during the formation of other crystal structures. Our results are also consistent with the most recently proposed Turing-type reaction-diffusion process. In fact, we were able to produce the key structural characteristics of the nipple arrangements using Turing analysis from the nucleation to the final structure development.
Applicability of the Fokker-Planck equation to the description of diffusion effects on nucleation
NASA Astrophysics Data System (ADS)
Sorokin, M. V.; Dubinko, V. I.; Borodin, V. A.
2017-01-01
The nucleation of islands in a supersaturated solution of surface adatoms is considered taking into account the possibility of diffusion profile formation in the island vicinity. It is shown that the treatment of diffusion-controlled cluster growth in terms of the Fokker-Planck equation is justified only provided certain restrictions are satisfied. First of all, the standard requirement that diffusion profiles of adatoms quickly adjust themselves to the actual island sizes (adiabatic principle) can be realized only for sufficiently high island concentration. The adiabatic principle is essential for the probabilities of adatom attachment to and detachment from island edges to be independent of the adatom diffusion profile establishment kinetics, justifying the island nucleation treatment as the Markovian stochastic process. Second, it is shown that the commonly used definition of the "diffusion" coefficient in the Fokker-Planck equation in terms of adatom attachment and detachment rates is justified only provided the attachment and detachment are statistically independent, which is generally not the case for the diffusion-limited growth of islands. We suggest a particular way to define the attachment and detachment rates that allows us to satisfy this requirement as well. When applied to the problem of surface island nucleation, our treatment predicts the steady-state nucleation barrier, which coincides with the conventional thermodynamic expression, even though no thermodynamic equilibrium is assumed and the adatom diffusion is treated explicitly. The effect of adatom diffusional profiles on the nucleation rate preexponential factor is also discussed. Monte Carlo simulation is employed to analyze the applicability domain of the Fokker-Planck equation and the diffusion effect beyond it. It is demonstrated that a diffusional cloud is slowing down the nucleation process for a given monomer interaction with the nucleus edge.
Motoya, Kiyoichiro; Hagihala, Masato; Takabatake, Toshiro; ...
2016-02-29
CeIr 3Si 2 is the first three-dimensional uniform magnet in which the long-time variation in magnetic structure was observed. To clarify the microscopic mechanism of this magnetic structural change, time-resolved neutron scattering measurements have been reinvestigated. Clear time variations in the line widths as well as the amplitudes of magnetic Bragg diffractions have been observed in this improved instrumentation. On the notion of this observation, a nucleation-and-growth model of magnetic structural change has been presented. The numerical calculation with this model reproduces well the observation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motoya, Kiyoichiro; Hagihala, Masato; Takabatake, Toshiro
CeIr 3Si 2 is the first three-dimensional uniform magnet in which the long-time variation in magnetic structure was observed. To clarify the microscopic mechanism of this magnetic structural change, time-resolved neutron scattering measurements have been reinvestigated. Clear time variations in the line widths as well as the amplitudes of magnetic Bragg diffractions have been observed in this improved instrumentation. On the notion of this observation, a nucleation-and-growth model of magnetic structural change has been presented. The numerical calculation with this model reproduces well the observation.
Vig, Andrea Teréz; Földi, István; Szikora, Szilárd; Migh, Ede; Gombos, Rita; Tóth, Mónika Ágnes; Huber, Tamás; Pintér, Réka; Talián, Gábor Csaba; Mihály, József; Bugyi, Beáta
2017-08-18
Disheveled-associated activator of morphogenesis (DAAM) is a diaphanous-related formin protein essential for the regulation of actin cytoskeleton dynamics in diverse biological processes. The conserved formin homology 1 and 2 (FH1-FH2) domains of DAAM catalyze actin nucleation and processively mediate filament elongation. These activities are indirectly regulated by the N- and C-terminal regions flanking the FH1-FH2 domains. Recently, the C-terminal diaphanous-autoregulatory domain (DAD) and the C terminus (CT) of formins have also been shown to regulate actin assembly by directly interacting with actin. Here, to better understand the biological activities of DAAM, we studied the role of DAD-CT regions of Drosophila DAAM in its interaction with actin with in vitro biochemical and in vivo genetic approaches. We found that the DAD-CT region binds actin in vitro and that its main actin-binding element is the CT region, which does not influence actin dynamics on its own. However, we also found that it can tune the nucleating activity and the filament end-interaction properties of DAAM in an FH2 domain-dependent manner. We also demonstrate that DAD-CT makes the FH2 domain more efficient in antagonizing with capping protein. Consistently, in vivo data suggested that the CT region contributes to DAAM-mediated filopodia formation and dynamics in primary neurons. In conclusion, our results demonstrate that the CT region of DAAM plays an important role in actin assembly regulation in a biological context. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Controlled motion of domain walls in submicron amorphous wires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ţibu, Mihai; Lostun, Mihaela; Rotărescu, Cristian
Results on the control of the domain wall displacement in cylindrical Fe{sub 77.5}Si{sub 7.5}B{sub 15} amorphous glass-coated submicron wires prepared by rapid quenching from the melt are reported. The control methods have relied on conical notches with various depths, up to a few tens of nm, made in the glass coating and in the metallic nucleus using a focused ion beam (FIB) system, and on the use of small nucleation coils at one of the sample ends in order to apply magnetic field pulses aimed to enhance the nucleation of reverse domains. The notch-based method is used for the firstmore » time in the case of cylindrical ultrathin wires. The results show that the most efficient technique of controlling the domain wall motion in this type of samples is the simultaneous use of notches and nucleation coils. Their effect depends on wire diameter, notch depth, its position on the wire length, and characteristics of the applied pulse.« less
Resolving the Origin of Pseudo-Single Domain Magnetic Behavior
NASA Astrophysics Data System (ADS)
Roberts, Andrew P.; Almeida, Trevor P.; Church, Nathan S.; Harrison, Richard J.; Heslop, David; Li, Yiliang; Li, Jinhua; Muxworthy, Adrian R.; Williams, Wyn; Zhao, Xiang
2017-12-01
The term "pseudo-single domain" (PSD) has been used to describe the transitional state in rock magnetism that spans the particle size range between the single domain (SD) and multidomain (MD) states. The particle size range for the stable SD state in the most commonly occurring terrestrial magnetic mineral, magnetite, is so narrow ( 20-75 nm) that it is widely considered that much of the paleomagnetic record of interest is carried by PSD rather than stable SD particles. The PSD concept has, thus, become the dominant explanation for the magnetization associated with a major fraction of particles that record paleomagnetic signals throughout geological time. In this paper, we argue that in contrast to the SD and MD states, the term PSD does not describe the relevant physical processes, which have been documented extensively using three-dimensional micromagnetic modeling and by parallel research in material science and solid-state physics. We also argue that features attributed to PSD behavior can be explained by nucleation of a single magnetic vortex immediately above the maximum stable SD transition size. With increasing particle size, multiple vortices, antivortices, and domain walls can nucleate, which produce variable cancellation of magnetic moments and a gradual transition into the MD state. Thus, while the term PSD describes a well-known transitional state, it fails to describe adequately the physics of the relevant processes. We recommend that use of this term should be discontinued in favor of "vortex state," which spans a range of behaviors associated with magnetic vortices.
MacLea, Kyle S.; Paul, Kacy R.; Ben-Musa, Zobaida; Waechter, Aubrey; Shattuck, Jenifer E.; Gruca, Margaret
2014-01-01
Multiple yeast prions have been identified that result from the structural conversion of proteins into a self-propagating amyloid form. Amyloid-based prion activity in yeast requires a series of discrete steps. First, the prion protein must form an amyloid nucleus that can recruit and structurally convert additional soluble proteins. Subsequently, maintenance of the prion during cell division requires fragmentation of these aggregates to create new heritable propagons. For the Saccharomyces cerevisiae prion protein Sup35, these different activities are encoded by different regions of the Sup35 prion domain. An N-terminal glutamine/asparagine-rich nucleation domain is required for nucleation and fiber growth, while an adjacent oligopeptide repeat domain is largely dispensable for prion nucleation and fiber growth but is required for chaperone-dependent prion maintenance. Although prion activity of glutamine/asparagine-rich proteins is predominantly determined by amino acid composition, the nucleation and oligopeptide repeat domains of Sup35 have distinct compositional requirements. Here, we quantitatively define these compositional requirements in vivo. We show that aromatic residues strongly promote both prion formation and chaperone-dependent prion maintenance. In contrast, nonaromatic hydrophobic residues strongly promote prion formation but inhibit prion propagation. These results provide insight into why some aggregation-prone proteins are unable to propagate as prions. PMID:25547291
E-cadherin junction formation involves an active kinetic nucleation process
Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng-han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.
2015-01-01
Epithelial (E)-cadherin-mediated cell−cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581
E-cadherin junction formation involves an active kinetic nucleation process
Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han; ...
2015-08-19
Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less
E-cadherin junction formation involves an active kinetic nucleation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han
Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less
Influence of copper morphology in forming nucleation seeds for graphene growth.
Han, Gang Hee; Güneş, Fethullah; Bae, Jung Jun; Kim, Eun Sung; Chae, Seung Jin; Shin, Hyeon-Jin; Choi, Jae-Young; Pribat, Didier; Lee, Young Hee
2011-10-12
We report that highly crystalline graphene can be obtained from well-controlled surface morphology of the copper substrate. Flat copper surface was prepared by using a chemical mechanical polishing method. At early growth stage, the density of graphene nucleation seeds from polished Cu film was much lower and the domain sizes of graphene flakes were larger than those from unpolished Cu film. At later growth stage, these domains were stitched together to form monolayer graphene, where the orientation of each domain crystal was unexpectedly not much different from each other. We also found that grain boundaries and intentionally formed scratched area play an important role for nucleation seeds. Although the best monolayer graphene was grown from polished Cu with a low sheet resistance of 260 Ω/sq, a small portion of multilayers were also formed near the impurity particles or locally protruded parts.
Finger-like pattern formation in dilute surfactant pentaethylene glycol monododecyl ether solutions.
Kubo, Yoshihide; Yokoyama, Yasuhiro; Tanaka, Shinpei
2013-04-07
We report here peculiar finger-like patterns observed during the phase separation process of dilute micellar pentaethylene glycol monododecyl ether solutions. The patterns were composed of parallel and periodic threads of micelle-rich domains. Prior to this pattern formation, the phase separation always started with the appearance of water-rich domains rimmed by the micelle-rich domains. It was found that these rims played a significant role in the pattern formation. We explain this pattern formation using a simple simulation model with disconnectable springs. The simulation results suggested that the spatially inhomogeneous elasticity or connectivity of a transient gel of worm-like micelles was responsible for the rim formation. The rims thus formed lead rim-induced nucleation, growth, and elongation of the domains owing to their small mobility and the elastic frustration around them. These rim-induced processes eventually produce the observed finger-like patterns.
Malginov, Vladimir A; Malginov, Andrey V; Fleishman, Leonid S
2013-01-01
The quench process in high-temperature superconducting (HTS) wires plays an important role in superconducting power devices, such as fault current limiters, magnets, cables, etc. The superconducting device should survive after the overheating due to quench. We studied the evolution of the resistance of the YBCO tape wire during the quench process with 1 ms time resolution for various excitation voltages. The resistive normal zone was found to be located in a domain of about 1-4 cm long. The normal state nucleation begins in 40-60 ms after voltage is applied across the HTS tape. In subsequent 200-300 ms other normal state regions appear. The normal domain heating continues in the following 5-10s that results in a factor of 2-3 increase of its resistance. Formation of the normal domain during the quench process follows the same stages for different excitation voltages. Characteristic domain sizes, lifetimes and temperatures are determined for all stages.
Magnetic domain pattern asymmetry in (Ga, Mn)As/(Ga,In)As with in-plane anisotropy
NASA Astrophysics Data System (ADS)
Herrera Diez, L.; Rapp, C.; Schoch, W.; Limmer, W.; Gourdon, C.; Jeudy, V.; Honolka, J.; Kern, K.
2012-04-01
Appropriate adjustment of the tensile strain in (Ga, Mn)As/(Ga,In)As films allows for the coexistence of in-plane magnetic anisotropy, typical of compressively strained (Ga, Mn)As/GaAs films, and the so-called cross-hatch dislocation pattern seeded at the (Ga,In)As/GaAs interface. Kerr microscopy reveals a close correlation between the in-plane magnetic domain and dislocation patterns, absent in compressively strained materials. Moreover, the magnetic domain pattern presents a strong asymmetry in the size and number of domains for applied fields along the easy [11¯0] and hard [110] directions which is attributed to different domain wall nucleation/propagation energies. This strong influence of the dislocation lines in the domain wall propagation/nucleation provides a lithography-free route to the effective trapping of domain walls in magneto-transport devices based on (Ga, Mn)As with in-plane anisotropy.
Small planar domains in amorphous thin films: Nucleation and equilibrium conditions (abstract)
NASA Astrophysics Data System (ADS)
Labrune, M.; Hamzaoui, S.; Puchalska, I. B.; Battarel, C.; Hubert, A.
1984-03-01
The purpose of this work is to investigate a new type of small flat domain in the shape of lozenges. Such domains may be used for high-density nonvolatile shift register memories [C. Battarel, R. Morille, and A. Caplain, IEEE Trans. Magn. July (1983)]. Experimental and theoretical results for nucleation and stability of small lozenge domains less than 10 μm in length in Co-Ni-P and CoTi [G. Suran, K. Ounadjela, and J. Sztern (this Proceedings)] amorphous thin films 1500 Å thick are presented. The films have a low coercivity (Hc ˜1 Oe) and a significant in-plane uniaxial anisotropy (HK ˜35 Oe). The domains were observed in an optical microscope by longitudinal Kerr effect using an experimental method described by Prutton. Domain nucleation is obtained by applying a local field higher than HK. It must be emphasized that to stabilize the domain two constant fields having opposite direction are required: H1 applied inside the domain and parallel to its magnetization; H2 parallel to the main magnetization of the film (H1>H2). Experimental results obtained for such configuration of magnetic fields will be presented and compared with numerical computations. The theoretical model will be discussed and the role played by the magnetostatic energy emphasized. The model takes into account the spreading of the magnetic charges which appear at the boundary of the domain. Finally, application to experimental devices as mentioned in the first reference above will be shown.
NASA Astrophysics Data System (ADS)
Cao, Haitao; Moutalbi, Nahed; Harnois, Christelle; Hu, Rui; Li, Jinshan; Zhou, Lian; Noudem, Jacques G.
2010-01-01
Mono-domain YBa 2Cu 3O 7-x (Y123) bulk superconductors have been processed using seeded infiltration growth technique (SIG). The combination of melt infiltrated liquid source (Ba 3Cu 5O 8) into the Y 2BaCuO 5 (Y211) pre-form and the nucleation of Y123 domain from SmBa 2Cu 3O 7 crystal seed has been investigated. The different configurations of SIG process were compared in this study. In addition, the effect of the starting Y211 particles size has been studied. The results reveal that, the Y211 particle size and different configurations strongly influence the properties of the final bulk superconductor sample.
Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors
NASA Astrophysics Data System (ADS)
Buragohain, P.; Richter, C.; Schenk, T.; Lu, H.; Mikolajick, T.; Schroeder, U.; Gruverman, A.
2018-05-01
Visualization of domain structure evolution under an electrical bias has been carried out in ferroelectric La:HfO2 capacitors by a combination of Piezoresponse Force Microscopy (PFM) and pulse switching techniques to study the nanoscopic mechanism of polarization reversal and the wake-up process. It has been directly shown that the main mechanism behind the transformation of the polarization hysteretic behavior and an increase in the remanent polarization value upon the alternating current cycling is electrically induced domain de-pinning. PFM imaging and local spectroscopy revealed asymmetric switching in the La:HfO2 capacitors due to a significant imprint likely caused by the different boundary conditions at the top and bottom interfaces. Domain switching kinetics can be well-described by the nucleation limited switching model characterized by a broad distribution of the local switching times. It has been found that the domain velocity varies significantly throughout the switching process indicating strong interaction with structural defects.
Multiple forms of Spire-actin complexes and their functional consequences.
Chen, Christine K; Sawaya, Michael R; Phillips, Martin L; Reisler, Emil; Quinlan, Margot E
2012-03-23
Spire is a WH2 domain-containing actin nucleator essential for establishing an actin mesh during oogenesis. In vitro, in addition to nucleating filaments, Spire can sever them and sequester actin monomers. Understanding how Spire is capable of these disparate functions and which are physiologically relevant is an important goal. To study severing, we examined the effect of Drosophila Spire on preformed filaments in bulk and single filament assays. We observed rapid depolymerization of actin filaments by Spire, which we conclude is largely due to its sequestration activity and enhanced by its weak severing activity. We also studied the solution and crystal structures of Spire-actin complexes. We find structural and functional differences between constructs containing four WH2 domains (Spir-ABCD) and two WH2 domains (Spir-CD) that may provide insight into the mechanisms of nucleation and sequestration. Intriguingly, we observed lateral interactions between actin monomers associated with Spir-ABCD, suggesting that the structures built by these four tandem WH2 domains are more complex than originally imagined. Finally, we propose that Spire-actin mixtures contain both nuclei and sequestration structures.
NASA Astrophysics Data System (ADS)
Guillemot, G.; Avettand-Fènoël, M.-N.; Iosta, A.; Foct, J.
2011-01-01
Hot-dipping galvanizing process is a widely used and efficient way to protect steel from corrosion. We propose to master the microstructure of zinc grains by investigating the relevant process parameters. In order to improve the texture of this coating, we model grain nucleation and growth processes and simulate the zinc solid phase development. A coupling scheme model has been applied with this aim. This model improves a previous two-dimensional model of the solidification process. It couples a cellular automaton (CA) approach and a finite element (FE) method. CA grid and FE mesh are superimposed on the same domain. The grain development is simulated at the micro-scale based on the CA grid. A nucleation law is defined using a Gaussian probability and a random set of nucleating cells. A crystallographic orientation is defined for each one with a choice of Euler's angle (Ψ,θ,φ). A small growing shape is then associated to each cell in the mushy domain and a dendrite tip kinetics is defined using the model of Kurz [2]. The six directions of basal plane and the two perpendicular directions develop in each mushy cell. During each time step, cell temperature and solid fraction are then determined at micro-scale using the enthalpy conservation relation and variations are reassigned at macro-scale. This coupling scheme model enables to simulate the three-dimensional growing kinetics of the zinc grain in a two-dimensional approach. Grain structure evolutions for various cooling times have been simulated. Final grain structure has been compared to EBSD measurements. We show that the preferentially growth of dendrite arms in the basal plane of zinc grains is correctly predicted. The described coupling scheme model could be applied for simulated other product or manufacturing processes. It constitutes an approach gathering both micro and macro scale models.
2015-01-01
The scalable chemical vapor deposition of monolayer hexagonal boron nitride (h-BN) single crystals, with lateral dimensions of ∼0.3 mm, and of continuous h-BN monolayer films with large domain sizes (>25 μm) is demonstrated via an admixture of Si to Fe catalyst films. A simple thin-film Fe/SiO2/Si catalyst system is used to show that controlled Si diffusion into the Fe catalyst allows exclusive nucleation of monolayer h-BN with very low nucleation densities upon exposure to undiluted borazine. Our systematic in situ and ex situ characterization of this catalyst system establishes a basis for further rational catalyst design for compound 2D materials. PMID:25664483
Visualizing domain wall and reverse domain superconductivity.
Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D
2014-08-28
In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.
Visualizing domain wall and reverse domain superconductivity
Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.
2014-01-01
In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004
Control and manipulation of antiferromagnetic skyrmions in racetrack
NASA Astrophysics Data System (ADS)
Xia, Haiyan; Jin, Chendong; Song, Chengkun; Wang, Jinshuai; Wang, Jianbo; Liu, Qingfang
2017-12-01
Controllable manipulations of magnetic skyrmions are essential for next-generation spintronic devices. Here, the duplication and merging of skyrmions, as well as logical AND and OR functions, are designed in antiferromagnetic (AFM) materials with a cusp or smooth Y-junction structures. The operational time are in the dozens of picoseconds, enabling ultrafast information processing. A key factor for the successful operation is the relatively complex Y-junction structures, where domain walls propagate through in a controlled manner, without significant risks of pinning, vanishing or unwanted depinning of existing domain walls, as well as the nucleation of new domain walls. The motions of a multi-bit, namely the motion of an AFM skyrmion-chain in racetrack, are also investigated. Those micromagnetic simulations may contribute to future AFM skyrmion-based spintronic devices, such as nanotrack memory, logic gates and other information processes.
Magnetic properties and magnetic hardening mechansim of Pt-Co-B alloys
NASA Technical Reports Server (NTRS)
Qiu, Ning; Flanagan, F.; Wittig, James E.
1994-01-01
The intrinsic coercivity is found to be maximized in the Pt42Co45B13 ternary alloy which is undercooled and rapidly solidified (quenched using a 70 m/s wheel speed after undercooling), and then annealed (800 C for 2400 min). The same alloy, processed at slower cooling rates and annealed in the same way, has a much larger scale microstructure and a much lower resulting magnetic coercivity. The microstructure which would optimize the coercitvity of this coercivity of this ternary alloy is a completely ordered L1(sub zero) Pt-Co matrix with a submicron magnetic single-domion Co-boride precipitate. The L1(sub zero) phase is highly anistropic magnetically while the Co-boride precipate is somewhat less so. Annealing treatments designed to produced single-domain Co-boride precipitates enhance the coercivity. This suggests that the refined microstructures is responsible for the high coercivities found in the rapidly solidified and annealed alloy. The magnetic domain wall thickness for a Co-boride precipitate is determined from both experimental observation and theoretical calculation in order to evaluate its influence on the coercivity of the alloy. The effects of the pinning of domain walls and the barrier to the nucleation of reverse domains on the coercivity are discussed. Both microstrucutral analysis and theoretical calculation indicate that the high coercivities in the Pt42Co45B13 alloy are due to the difficult nucleation of reverse magnetic domains.
Wu, Baixing; Zhang, Mengmeng; Su, Shichen; Liu, Hehua; Gan, Jianhua; Ma, Jinbiao
2018-06-22
Vernalization is a pivotal stage for some plants involving many epigenetic changes during cold exposure. In Arabidopsis, an essential step in vernalization for further flowering is successful silence the potent floral repressor Flowering Locus C (FLC) by repressing histone mark. AtVal1 is a multi-function protein containing five domains that participate into many recognition processes and is validated to recruit the repress histone modifier PHD-PRC2 complex and interact with components of the ASAP complex target to the FLC nucleation region through recognizing a cis element known as CME (cold memory element) by its plant-specific B3 domain. Here, we determine the crystal structure of the B3 domain in complex with Sph/RY motif in CME. Our structural analysis reveals the specific DNA recognition by B3 domain, combined with our in vitro experiments, we provide the structural insight into the important implication of AtVAL1-B3 domain in flowering process. Copyright © 2018 Elsevier Inc. All rights reserved.
Requirement of the basic region of N-WASP/WAVE2 for actin-based motility.
Suetsugu, S; Miki, H; Yamaguchi, H; Takenawa, T
2001-04-06
WASP family proteins activate nucleation by the Arp2/3 complex, inducing rapid actin polymerization in vitro. Although the C-terminal portion of WASP family proteins (VCA) activates nucleation by the Arp2/3 complex in pure systems, we find that this fragment lacks activity in cell extracts. Thus, polystyrene beads coated with VCA did not move in brain cytosol, while beads coated with N-WASP or WAVE2 did move. The basic clusters between the WH1 domain and the CRIB domain of N-WASP were critical for movement since beads coated with N-WASP or WAVE2 constructs missing the basic clusters (Delta basic) also did not move. Furthermore, VCA and N-WASP/WAVE2 Delta basic constructs were much less able than wild-type N-WASP and WAVE2 to induce actin polymerization in cytosol. All of the proteins, with or without the basic domain, were potent activators of nucleation by purified Arp2/3 complex. Copyright 2001 Academic Press.
Zonda is a novel early component of the autophagy pathway in Drosophila
Melani, Mariana; Valko, Ayelén; Romero, Nuria M.; Aguilera, Milton O.; Acevedo, Julieta M.; Bhujabal, Zambarlal; Perez-Perri, Joel; de la Riva-Carrasco, Rocío V.; Katz, Maximiliano J.; Sorianello, Eleonora; D’Alessio, Cecilia; Juhász, Gabor; Johansen, Terje; Colombo, María I.; Wappner, Pablo
2017-01-01
Autophagy is an evolutionary conserved process by which eukaryotic cells undergo self-digestion of cytoplasmic components. Here we report that a novel Drosophila immunophilin, which we have named Zonda, is critically required for starvation-induced autophagy. We show that Zonda operates at early stages of the process, specifically for Vps34-mediated phosphatidylinositol 3-phosphate (PI3P) deposition. Zonda displays an even distribution under basal conditions and, soon after starvation, nucleates in endoplasmic reticulum–associated foci that colocalize with omegasome markers. Zonda nucleation depends on Atg1, Atg13, and Atg17 but does not require Vps34, Vps15, Atg6, or Atg14. Zonda interacts physically with Atg1 through its kinase domain, as well as with Atg6 and Vps34. We propose that Zonda is an early component of the autophagy cascade necessary for Vps34-dependent PI3P deposition and omegasome formation. PMID:28904211
Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae
2015-01-01
A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability. PMID:26537788
NASA Astrophysics Data System (ADS)
Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae
2015-11-01
A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability.
The Actin Nucleator Cobl Is Controlled by Calcium and Calmodulin
Haag, Natja; Kessels, Michael M.; Qualmann, Britta
2015-01-01
Actin nucleation triggers the formation of new actin filaments and has the power to shape cells but requires tight control in order to bring about proper morphologies. The regulation of the members of the novel class of WASP Homology 2 (WH2) domain-based actin nucleators, however, thus far has largely remained elusive. Our study reveals signal cascades and mechanisms regulating Cordon-Bleu (Cobl). Cobl plays some, albeit not fully understood, role in early arborization of neurons and nucleates actin by a mechanism that requires a combination of all three of its actin monomer–binding WH2 domains. Our experiments reveal that Cobl is regulated by Ca2+ and multiple, direct associations of the Ca2+ sensor Calmodulin (CaM). Overexpression analyses and rescue experiments of Cobl loss-of-function phenotypes with Cobl mutants in primary neurons and in tissue slices demonstrated the importance of CaM binding for Cobl’s functions. Cobl-induced dendritic branch initiation was preceded by Ca2+ signals and coincided with local F-actin and CaM accumulations. CaM inhibitor studies showed that Cobl-mediated branching is strictly dependent on CaM activity. Mechanistic studies revealed that Ca2+/CaM modulates Cobl’s actin binding properties and furthermore promotes Cobl’s previously identified interactions with the membrane-shaping F-BAR protein syndapin I, which accumulated with Cobl at nascent dendritic protrusion sites. The findings of our study demonstrate a direct regulation of an actin nucleator by Ca2+/CaM and reveal that the Ca2+/CaM-controlled molecular mechanisms we discovered are crucial for Cobl’s cellular functions. By unveiling the means of Cobl regulation and the mechanisms, by which Ca2+/CaM signals directly converge on a cellular effector promoting actin filament formation, our work furthermore sheds light on how local Ca2+ signals steer and power branch initiation during early arborization of nerve cells—a key process in neuronal network formation. PMID:26334624
Nanodomain Engineering in Ferroelectric Capacitors with Graphene Electrodes.
Lu, Haidong; Wang, Bo; Li, Tao; Lipatov, Alexey; Lee, Hyungwoo; Rajapitamahuni, Anil; Xu, Ruijuan; Hong, Xia; Farokhipoor, Saeedeh; Martin, Lane W; Eom, Chang-Beom; Chen, Long-Qing; Sinitskii, Alexander; Gruverman, Alexei
2016-10-12
Polarization switching in ferroelectric capacitors is typically realized by application of an electrical bias to the capacitor electrodes and occurs via a complex process of domain structure reorganization. As the domain evolution in real devices is governed by the distribution of the nucleation centers, obtaining a domain structure of a desired configuration by electrical pulsing is challenging, if not impossible. Recent discovery of polarization reversal via the flexoelectric effect has opened a possibility for deterministic control of polarization in ferroelectric capacitors. In this paper, we demonstrate mechanical writing of arbitrary-shaped nanoscale domains in thin-film ferroelectric capacitors with graphene electrodes facilitated by a strain gradient induced by a tip of an atomic force microscope (AFM). A phase-field modeling prediction of a strong effect of graphene thickness on the threshold load required to initiate mechanical switching has been confirmed experimentally. Deliberate voltage-free domain writing represents a viable approach for development of functional devices based on domain topology and electronic properties of the domains and domain walls.
Thawani, Akanksha; Kadzik, Rachel S; Petry, Sabine
2018-05-01
How microtubules (MTs) are generated in the cell is a major question in understanding how the cytoskeleton is assembled. For several decades, γ-tubulin has been accepted as the universal MT nucleator of the cell. Although there is evidence that γ-tubulin complexes are not the sole MT nucleators, identification of other nucleation factors has proven difficult. Here, we report that the well-characterized MT polymerase XMAP215 (chTOG/Msps/Stu2p/Alp14/Dis1 homologue) is essential for MT nucleation in Xenopus egg extracts. The concentration of XMAP215 determines the extent of MT nucleation. Even though XMAP215 and the γ-tubulin ring complex (γ-TuRC) possess minimal nucleation activity individually, together, these factors synergistically stimulate MT nucleation in vitro. The amino-terminal TOG domains 1-5 of XMAP215 bind to αβ-tubulin and promote MT polymerization, whereas the conserved carboxy terminus is required for efficient MT nucleation and directly binds to γ-tubulin. In summary, XMAP215 and γ-TuRC together function as the principal nucleation module that generates MTs in cells.
NASA Astrophysics Data System (ADS)
Lee, Jae-Hyeok; Choe, Jinhyeok; Hwang, Shinwon; Kim, Sang-Koog
2017-08-01
We studied the mechanism of magnetization reversals and coercivity enhancements in three-dimensional (3D) granular Nd-Fe-B permanent magnets using finite-element micromagnetic simulations. The magnetization reversals in the hard magnets consisting of hard-phase grains separated by relatively soft-phase grain boundaries were analyzed with reference to the simulation results for the magnetic field-dependent distributions of the local magnetizations. The saturation magnetization of the grain-boundary phase plays a crucial role in the transition between nucleation- and domain-wall-propagation-controlled reversal processes. The smaller the saturation magnetization of the grain-boundary phase is, the more preferable is the nucleation-controlled process, which results in a larger coercivity. The exchange stiffness of the grain-boundary phase determines the preferred paths of domain-wall propagations, whether inward into grains or along the grain boundaries for relatively small and large exchange stiffness, respectively. However, the exchange stiffness of the grain-boundary phase alone does not significantly contribute to coercivity enhancement in cases where the size of hard-phase grains is much greater than the exchange length. This work paves the way for the design of high-performance hard magnets of large coercivity and maximum-energy-product values.
Immobile defects in ferroelastic walls: Wall nucleation at defect sites
NASA Astrophysics Data System (ADS)
He, X.; Salje, E. K. H.; Ding, X.; Sun, J.
2018-02-01
Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.
Capture Zone Distributions and Island Morphologies in Organic Epitaxy and Graphene Formation
NASA Astrophysics Data System (ADS)
Pimpinelli, Alberto; Einstein, T. L.
2013-03-01
Stating that island nucleation is an essential step in the formation of an epitaxial or supported layer may appear trivially obvious. However, less trivial is the observation that the size of the critical nucleus plays a crucial role in that it determines both the island density (and therefore the size of domains) and the evolution of the island morphology. In this talk we will describe recent developments in the analysis of capture zone distributions (CZD) specifically tailored for application to organic materials. We will also describe specific features of organic and graphene island morphologies, and discuss how they are related to the nucleation process and to the size of the critical nucleus. Work at UMD supported by NSF-MRSEC, Grant DMR 05-20471 and NSF CHE 07-49949
NASA Astrophysics Data System (ADS)
Dyck, B. J.; St Onge, M. R.; Waters, D. J.; Searle, M. P.
2015-12-01
Metamorphosed continental margin sedimentary sequences, which comprise the dominant tectonostratigraphic assemblage exposed in orogenic hinterlands, are crucial to understanding the architecture and evolution of collisional mountain belts. This study explores the textural effect of anatexis in amphibolite-grade conditions and documents the mineral growth mechanisms that control nucleation and growth of K-feldspar, sillimanite and silicate melt. The constrained textural evolution follows four stages: 1) Nucleation - K-feldspar is documented to nucleate epitaxially on isomorphic plagioclase in quartzofeldspathic (psammitic) domains, whereas sillimanite nucleates in the Al-rich (pelitic) domain, initially on [001] mica planes. The first melt forms at the site of muscovite breakdown. 2) Chemically driven growth - In the quartzofeldspathic domain, K-feldspar progressively replaces plagioclase by a K+ - Na+ cation transfer reaction, driven by the freeing of muscovite-bound K+ during breakdown of the mica. Sillimanite forms intergrowths with the remaining hydrous melt components, contained initially in ovoid clots. 3) Merge and coarsening - With an increase in pressure, melt and sillimanite migrate away from clots along grain boundaries. A melt threshold is reached once the grain-boundary network is wetted by melt, increasing the length-scale of diffusion, resulting in grain boundary migration and grain-size coarsening. The melt threshold denotes the transition to an open-system on the lithology scale, where melt is a transient phase. 4) Residual melt crystallization - Residual melt crystallizes preferentially on existing peritectic grains as anatectic quartz, plagioclase, and K-feldspar. As the system cools and closes, grain growth forces melt into the intersections of grain-boundaries, recognized as irregular shaped melt films, or as intergrowths of the volatile-rich phases (i.e. Tur-Ms-Ap). In the Himalayan metamorphic core these processes result in the formation of: pelitic K-feldspar augen gneiss, stockwork leucogranites, and an effective strengthening of the hinterland, as evidenced by a switch in tectonic deformation style, from thin-skinned cover sequence thrust imbrication and folding to out-of-sequence basement-involved thick-skinned thrusting and folding.
Thermal gradients for the stabilization of a single domain wall in magnetic nanowires.
Mejía-López, J; Velásquez, E A; Mazo-Zuluaga, J; Altbir, D
2018-08-24
By means of Monte Carlo simulations we studied field driven nucleation and propagation of transverse domain walls (DWs) in magnetic nanowires subjected to temperature gradients. Simulations identified the existence of critical thermal gradients that allow the existence of reversal processes driven by a single DW. Critical thermal gradients depend on external parameters such as temperature, magnetic field and wire length, and can be experimentally obtained through the measurement of the mean velocity of the magnetization reversal as a function of the temperature gradient. Our results show that temperature gradients provide a high degree of control over DW propagation, which is of great importance for technological applications.
GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation.
Černohorská, Markéta; Sulimenko, Vadym; Hájková, Zuzana; Sulimenko, Tetyana; Sládková, Vladimíra; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel
2016-06-01
Microtubule nucleation from γ-tubulin complexes, located at the centrosome, is an essential step in the formation of the microtubule cytoskeleton. However, the signaling mechanisms that regulate microtubule nucleation in interphase cells are largely unknown. In this study, we report that γ-tubulin is in complexes containing G protein-coupled receptor kinase-interacting protein 1 (GIT1), p21-activated kinase interacting exchange factor (βPIX), and p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) in various cell lines. Immunofluorescence microscopy revealed association of GIT1, βPIX and activated PAK1 with centrosomes. Microtubule regrowth experiments showed that depletion of βPIX stimulated microtubule nucleation, while depletion of GIT1 or PAK1 resulted in decreased nucleation in the interphase cells. These data were confirmed for GIT1 and βPIX by phenotypic rescue experiments, and counting of new microtubules emanating from centrosomes during the microtubule regrowth. The importance of PAK1 for microtubule nucleation was corroborated by the inhibition of its kinase activity with IPA-3 inhibitor. GIT1 with PAK1 thus represent positive regulators, and βPIX is a negative regulator of microtubule nucleation from the interphase centrosomes. The regulatory roles of GIT1, βPIX and PAK1 in microtubule nucleation correlated with recruitment of γ-tubulin to the centrosome. Furthermore, in vitro kinase assays showed that GIT1 and βPIX, but not γ-tubulin, serve as substrates for PAK1. Finally, direct interaction of γ-tubulin with the C-terminal domain of βPIX and the N-terminal domain of GIT1, which targets this protein to the centrosome, was determined by pull-down experiments. We propose that GIT1/βPIX signaling proteins with PAK1 kinase represent a novel regulatory mechanism of microtubule nucleation in interphase cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Ducka, Anna M; Joel, Peteranne; Popowicz, Grzegorz M; Trybus, Kathleen M; Schleicher, Michael; Noegel, Angelika A; Huber, Robert; Holak, Tad A; Sitar, Tomasz
2010-06-29
Three classes of proteins are known to nucleate new filaments: the Arp2/3 complex, formins, and the third group of proteins that contain ca. 25 amino acid long actin-binding Wiskott-Aldrich syndrome protein homology 2 domains, called the WH2 repeats. Crystal structures of the complexes between the actin-binding WH2 repeats of the Spire protein and actin were determined for the Spire single WH2 domain D, the double (SpirCD), triple (SpirBCD), quadruple (SpirABCD) domains, and an artificial Spire WH2 construct comprising three identical D repeats (SpirDDD). SpirCD represents the minimal functional core of Spire that can nucleate actin filaments. Packing in the crystals of the actin complexes with SpirCD, SpirBCD, SpirABCD, and SpirDDD shows the presence of two types of assemblies, "side-to-side" and "straight-longitudinal," which can serve as actin filament nuclei. The principal feature of these structures is their loose, open conformations, in which the sides of actins that normally constitute the inner interface core of a filament are flipped inside out. These Spire structures are distant from those seen in the filamentous nuclei of Arp2/3, formins, and in the F-actin filament.
Ducka, Anna M.; Joel, Peteranne; Popowicz, Grzegorz M.; Trybus, Kathleen M.; Schleicher, Michael; Noegel, Angelika A.; Huber, Robert; Holak, Tad A.; Sitar, Tomasz
2010-01-01
Three classes of proteins are known to nucleate new filaments: the Arp2/3 complex, formins, and the third group of proteins that contain ca. 25 amino acid long actin-binding Wiskott-Aldrich syndrome protein homology 2 domains, called the WH2 repeats. Crystal structures of the complexes between the actin-binding WH2 repeats of the Spire protein and actin were determined for the Spire single WH2 domain D, the double (SpirCD), triple (SpirBCD), quadruple (SpirABCD) domains, and an artificial Spire WH2 construct comprising three identical D repeats (SpirDDD). SpirCD represents the minimal functional core of Spire that can nucleate actin filaments. Packing in the crystals of the actin complexes with SpirCD, SpirBCD, SpirABCD, and SpirDDD shows the presence of two types of assemblies, “side-to-side” and “straight-longitudinal,” which can serve as actin filament nuclei. The principal feature of these structures is their loose, open conformations, in which the sides of actins that normally constitute the inner interface core of a filament are flipped inside out. These Spire structures are distant from those seen in the filamentous nuclei of Arp2/3, formins, and in the F-actin filament. PMID:20538977
González-Delgado, Antonio M; Pérez-Morales, Marta; Giner-Casares, Juan J; Muñoz, Eulogia; Martín-Romero, María T; Camacho, Luis
2009-10-08
In this paper, we study the collapse of a mixed insoluble monolayer formed by a cationic matrix, dioctadecyl-dimethylammonium bromide (DOMA), and a tetra-anionic porphyrin, tetrakis(4-sulfonatophenyl)porphyrin (TSPP), in a molar ratio TSPP/DOMA = 1:4. During the collapse of this system, we visualized the formation of circular domains consisting exclusively of trilayer, although the domains coalescence was not observed. The coexistence of trilayer and monolayer at the final step of the collapse cannot be interpreted exclusively in terms of a thermodynamic phase equilibrium, intervening as an additional factor the anisotropic line tension of the domain. A high line tension implies a high resistance to the domain deformation, and the anisotropy of the line tension implies the lack of coalescence between these domains, which has been experimentally observed by Brewster angle microscopy for us. Under these circumstances, the domains of collapsed material could enclose monolayer regions where the local surface pressure drops thus stopping the collapse process. The collapse of the TSPP/DOMA system is reversible, that is, the return of the three-dimensional material to the monolayer fits into a simple kinetics according to the nucleation-growth-collision theory. As for the collapse, the reverse process is also affected by the line tension of the domains. This paper relates the high line tension and the anisotropic line tension of a given domains with the reversible nature of the collapse process.
Ferroelectric negative capacitance domain dynamics
NASA Astrophysics Data System (ADS)
Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas
2018-05-01
Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transient negative capacitance is shown to originate from reverse domain nucleation and unrestricted domain growth. However, with the onset of domain coalescence, the capacitance becomes positive again. The persistence of the negative capacitance state is therefore limited by the speed of domain wall motion. By changing the applied electric field, capacitor area or external resistance, this domain wall velocity can be varied predictably over several orders of magnitude. Additionally, detailed insights into the intrinsic material properties of the ferroelectric are obtainable through these measurements. A new method for reliable extraction of the average negative capacitance of the ferroelectric is presented. Furthermore, a simple analytical model is developed, which accurately describes the negative capacitance transient time as a function of the material properties and the experimental boundary conditions.
Nuclear ARP2/3 drives DNA break clustering for homology-directed repair.
Schrank, Benjamin R; Aparicio, Tomas; Li, Yinyin; Chang, Wakam; Chait, Brian T; Gundersen, Gregg G; Gottesman, Max E; Gautier, Jean
2018-06-20
DNA double-strand breaks repaired by non-homologous end joining display limited DNA end-processing and chromosomal mobility. By contrast, double-strand breaks undergoing homology-directed repair exhibit extensive processing and enhanced motion. The molecular basis of this movement is unknown. Here, using Xenopus laevis cell-free extracts and mammalian cells, we establish that nuclear actin, WASP, and the actin-nucleating ARP2/3 complex are recruited to damaged chromatin undergoing homology-directed repair. We demonstrate that nuclear actin polymerization is required for the migration of a subset of double-strand breaks into discrete sub-nuclear clusters. Actin-driven movements specifically affect double-strand breaks repaired by homology-directed repair in G2 cell cycle phase; inhibition of actin nucleation impairs DNA end-processing and homology-directed repair. By contrast, ARP2/3 is not enriched at double-strand breaks repaired by non-homologous end joining and does not regulate non-homologous end joining. Our findings establish that nuclear actin-based mobility shapes chromatin organization by generating repair domains that are essential for homology-directed repair in eukaryotic cells.
Study of the magnetic interaction in nanocrystalline Pr-Fe-Co-Nb-B permanent magnets
NASA Astrophysics Data System (ADS)
Dospial, M.; Plusa, D.; Ślusarek, B.
2012-03-01
The magnetic properties of an isotropic, epoxy resin bonded magnets made from Pr-Fe-Co-Nb-B powder were investigated. The magnetization reversal process and magnetic parameters were examined by measurements of the initial magnetization curve, major and minor hysteresis loops and sets of recoil curves. From the initial magnetization curve and the field dependencies of the reversible and irreversible magnetization components derived from the recoil loops it was found that the magnetization reversal process is the combination of the nucleation of reversed domains and pinning of domain walls at the grain boundaries and the reversible rotation of magnetization vector in single domain grains. The interactions between grains were studied by means of δM plots. The nonlinear behavior of δM curve approve that the short range intergrain exchange coupling interactions are dominant in a field up to the sample coercivity. The interaction domains and fine magnetic structure were revealed as the evidence of exchange coupling between soft α-Fe and hard magnetic Nd2Fe14B grains.
Assembly and disassembly of the nucleolus during the cell cycle.
Hernandez-Verdun, Danièle
2011-01-01
The nucleolus is a large nuclear domain in which transcription, maturation and assembly of ribosomes take place. In higher eukaryotes, nucleolar organization in three sub-domains reflects the compartmentation of the machineries related to active or inactive transcription of the ribosomal DNA, ribosomal RNA processing and assembly with ribosomal proteins of the two (40S and 60S) ribosomal subunits. The assembly of the nucleoli during telophase/early G(1) depends on pre-existing machineries inactivated during prophase (the transcription machinery and RNP processing complexes) and on partially processed 45S rRNAs inherited throughout mitosis. In telophase, the 45S rRNAs nucleate the prenucleolar bodies and order the dynamics of nucleolar assembly. The assembly/disassembly processes of the nucleolus depend on the equilibrium between phosphorylation/dephosphorylation of the transcription machinery and on the RNP processing complexes under the control of the CDK1-cyclin B kinase and PP1 phosphatases. The dynamics of assembly/disassembly of the nucleolus is time and space regulated.
Tuning domain size and crystallinity in isoindigo/PCBM organic solar cells via solution shearing
Gu, Kevin L.; Zhou, Yan; Gu, Xiaodan; ...
2016-11-01
Despite having achieved the long sought-after performance of 10% power conversion efficiency, high performance organic photovoltaics (OPVs) are still mostly constrained to lab scale devices fabricated by spin coating. Efforts to produce printed OPVs lag considerably behind, and the sensitivity to different fabrication methods highlights the need to develop a comprehensive understanding of the processing-morphology relationship in printing methods. Here we present a systematic experimental investigation of a model low bandgap polymer/fullerene system, poly-isoindigo thienothiophene/PC 61BM, using a lab-scale analogue to roll-to-roll coating as the fabrication tool in order to understand the impact of processing parameters on morphological evolution. Wemore » report that domain size and polymer crystallinity can be tuned by a factor of two by controlling the temperature and coating speed. Lower fabrication temperature simultaneously decreased the phase separation domain size and increased the relative degree of crystallinity in those domains, leading to improved photocurrent. We conclude that domain size in isoindigo/PCBM is dictated by spontaneous phase separation rather than crystal nucleation and growth. Moreover we present a model to describe the temperature dependence of domain size formation in our system, which demonstrates that morphology is not necessarily strictly dependent on the evaporation rate, but rather on the interplay between evaporation and diffusion during the printing process.« less
RNA Seeds Higher Order Assembly of FUS Protein
Schwartz, Jacob C.; Wang, Xueyin; Podell, Elaine R.; Cech, Thomas R.
2014-01-01
SUMMARY The abundant nuclear RNA-binding protein FUS binds the CTD of RNA polymerase II in an RNA-dependent manner, affecting Ser2 phosphorylation and transcription. Here we examine the mechanism of this process and find that RNA binding nucleates the formation of higher order FUS RNP assemblies that bind the CTD. Both the low-complexity domain and the RGG domain of FUS contribute to assembly. The assemblies appear fibrous by electron microscopy and have characteristics of beta-zipper structures. These results support the emerging view that the pathologic protein aggregation seen in neurodegenerative diseases such as ALS may occur by exaggeration of functionally important assemblies of RNA-binding proteins. PMID:24268778
Thermodynamics and Kinetics of Prenucleation Clusters, Classical and Non-Classical Nucleation
Zahn, Dirk
2015-01-01
Recent observations of prenucleation species and multi-stage crystal nucleation processes challenge the long-established view on the thermodynamics of crystal formation. Here, we review and generalize extensions to classical nucleation theory. Going beyond the conventional implementation as has been used for more than a century now, nucleation inhibitors, precursor clusters and non-classical nucleation processes are rationalized as well by analogous concepts based on competing interface and bulk energy terms. This is illustrated by recent examples of species formed prior to/instead of crystal nucleation and multi-step nucleation processes. Much of the discussed insights were obtained from molecular simulation using advanced sampling techniques, briefly summarized herein for both nucleation-controlled and diffusion-controlled aggregate formation. PMID:25914369
Interface science of virtual GaN substrates on Si(111) via Sc2O3/Y2O3 buffers: Experiment and theory
NASA Astrophysics Data System (ADS)
Tarnawska, L.; Dabrowski, J.; Grzela, T.; Lehmann, M.; Niermann, T.; Paszkiewicz, R.; Storck, P.; Schroeder, T.
2013-06-01
The final film quality of GaN on foreign substrates is known to crucially depend on the initial GaN interface and nucleation characteristics. To shed light on these characteristics of recently pioneered virtual, hexagonal GaN(0001) substrates on Si(111) via step graded Sc2O3(111)/Y2O3(111) buffers, a complex GaN(0001)/Sc2O3(111) interface structure model and the initial nucleation scenario is derived from a combined experimental (reflection high energy electron diffraction and X-ray photoelectron spectroscopy) and theoretical ab initio study. It is shown that the GaN/Sc2O3 interface chemistry is determined by a N-Ga-O-Sc atomic arrangement leading to N-polar GaN films. However, the atomic GaN(0001)/Sc2O3(111) interface configuration is complex and local perturbations might be at the origin of Ga-polar inversion domains in the mainly N-polar GaN films. The initial growth of GaN on Sc2O3 is characterized by an ultrathin N-Ga-O-Sc wetting layer which carries tensile strain and relaxes with increasing thickness. Further GaN deposition results in the formation of 3D islands which fully relax before island coalescence occurs. The implications of the GaN/Sc2O3 interface configuration, the 3D nucleation growth mode, and the coalescence process of misaligned islands are discussed with respect to the defect characteristics (inversion domains, cubic inclusions, threading dislocations) of the final GaN layer.
Overview: Experimental studies of crystal nucleation: Metals and colloids.
Herlach, Dieter M; Palberg, Thomas; Klassen, Ina; Klein, Stefan; Kobold, Raphael
2016-12-07
Crystallization is one of the most important phase transformations of first order. In the case of metals and alloys, the liquid phase is the parent phase of materials production. The conditions of the crystallization process control the as-solidified material in its chemical and physical properties. Nucleation initiates the crystallization of a liquid. It selects the crystallographic phase, stable or meta-stable. Its detailed knowledge is therefore mandatory for the design of materials. We present techniques of containerless processing for nucleation studies of metals and alloys. Experimental results demonstrate the power of these methods not only for crystal nucleation of stable solids but in particular also for investigations of crystal nucleation of metastable solids at extreme undercooling. This concerns the physical nature of heterogeneous versus homogeneous nucleation and nucleation of phases nucleated under non-equilibrium conditions. The results are analyzed within classical nucleation theory that defines the activation energy of homogeneous nucleation in terms of the interfacial energy and the difference of Gibbs free energies of solid and liquid. The interfacial energy acts as barrier for the nucleation process. Its experimental determination is difficult in the case of metals. In the second part of this work we therefore explore the potential of colloidal suspensions as model systems for the crystallization process. The nucleation process of colloids is observed in situ by optical observation and ultra-small angle X-ray diffraction using high intensity synchrotron radiation. It allows an unambiguous discrimination of homogeneous and heterogeneous nucleation as well as the determination of the interfacial free energy of the solid-liquid interface. Our results are used to construct Turnbull plots of colloids, which are discussed in relation to Turnbull plots of metals and support the hypothesis that colloids are useful model systems to investigate crystal nucleation.
Zhang, Yang; Chen, Ying; Fan, Jiwen; ...
2015-09-14
Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of icemore » supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM 2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the dominant role of dust is CCN or IN. These results indicate the importance of the heterogeneous ice nucleation treatments and dust emissions in accurately simulating regional climate and air quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yang; Chen, Ying; Fan, Jiwen
Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of icemore » supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM 2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the dominant role of dust is CCN or IN. These results indicate the importance of the heterogeneous ice nucleation treatments and dust emissions in accurately simulating regional climate and air quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yang; Chen, Ying; Fan, Jiwen
Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of icemore » supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O 3, SO 4 2-, and PM2.5, but increase surface concentrations of CO, NO 2, and SO 2 over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the dominant role of dust is CCN or IN. These results indicate the importance of the heterogeneous ice nucleation treatments and dust emissions in accurately simulating regional climate and air quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Bingke; Cheng, Hui-Chun; Brautigam, Chad A.
Vibrio parahaemolyticus protein L (VopL) is an actin nucleation factor that induces stress fibers when injected into eukaryotic host cells. VopL contains three N-terminal Wiskott-Aldrich homology 2 (WH2) motifs and a unique VopL C-terminal domain (VCD). We describe crystallographic and biochemical analyses of filament nucleation by VopL. The WH2 element of VopL does not nucleate on its own and requires the VCD for activity. The VCD forms a U-shaped dimer in the crystal, stabilized by a terminal coiled coil. Dimerization of the WH2 motifs contributes strongly to nucleation activity, as do contacts of the VCD to actin. Our data leadmore » to a model in which VopL stabilizes primarily lateral (short-pitch) contacts between actin monomers to create the base of a two-stranded filament. Stabilization of lateral contacts may be a common feature of actin filament nucleation by WH2-based factors.« less
Initial growth and topography of 4,4'-biphenyldicarboxylic acid on Cu(001)
NASA Astrophysics Data System (ADS)
Poelsema, Bene; Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Harold J. W.
2013-03-01
We have investigated nucleation and initial growth of BDA on Cu(001) at 300 - 410K, using LEEM and μLEED. BDA condenses in a 2D supramolecular c(8 ×8) network of lying molecules. The dehydrogenated molecules form hydrogen bonds with perpendicular adjacent ones. First, the adsorbed BDA molecules form a disordered dilute phase and at a sufficiently high density, the c(8 ×8) crystalline phase nucleates. From the equilibrium densities at different temperatures we obtain the 2D phase diagram. The phase coexistence line provides a cohesive energy of 0.35 eV. LEEM allows a detailed study of nucleation and growth of BDA on Cu(001) at low supersaturation. The real time microscopic information allows a direct visualization of near-critical nuclei. At 332 K and a deposition rate of 1.4 x 10-6ML/s we find a critical nucleus size about 600 nm2. The corresponding value obtained from classic nucleation theory corresponds nicely with this direct result. We estimate the Gibbs free energy for nucleation under these conditions at 4 eV. The size fluctuations are an order of magnitude stronger than expected. At 410 K the influence of steps on the growth process becomes evident: domain growth is terminated by steps even when they are permeable for individual molecules. This leads to a novel Mullins-Sekerka type of growth instability: the growth is very fast along the steps and less fast perpendicular to the steps. The large solid angle at the advancing edge of the condensate dictates the high growth rate along the step.
Nonrandom γ-TuNA-dependent spatial pattern of microtubule nucleation at the Golgi
Sanders, Anna A. W. M.; Chang, Kevin; Zhu, Xiaodong; Thoppil, Roslin J.; Holmes, William R.; Kaverina, Irina
2017-01-01
Noncentrosomal microtubule (MT) nucleation at the Golgi generates MT network asymmetry in motile vertebrate cells. Investigating the Golgi-derived MT (GDMT) distribution, we find that MT asymmetry arises from nonrandom nucleation sites at the Golgi (hotspots). Using computational simulations, we propose two plausible mechanistic models of GDMT nucleation leading to this phenotype. In the “cooperativity” model, formation of a single GDMT promotes further nucleation at the same site. In the “heterogeneous Golgi” model, MT nucleation is dramatically up-regulated at discrete and sparse locations within the Golgi. While MT clustering in hotspots is equally well described by both models, simulating MT length distributions within the cooperativity model fits the data better. Investigating the molecular mechanism underlying hotspot formation, we have found that hotspots are significantly smaller than a Golgi subdomain positive for scaffolding protein AKAP450, which is thought to recruit GDMT nucleation factors. We have further probed potential roles of known GDMT-promoting molecules, including γ-TuRC-mediated nucleation activator (γ-TuNA) domain-containing proteins and MT stabilizer CLASPs. While both γ-TuNA inhibition and lack of CLASPs resulted in drastically decreased GDMT nucleation, computational modeling revealed that only γ-TuNA inhibition suppressed hotspot formation. We conclude that hotspots require γ-TuNA activity, which facilitates clustered GDMT nucleation at distinct Golgi sites. PMID:28931596
Effects of shear flow on phase nucleation and crystallization.
Mura, Federica; Zaccone, Alessio
2016-04-01
Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.
NASA Astrophysics Data System (ADS)
Lundager Madsen, Hans Erik
2014-09-01
In an attempt to grow pure crystals of the iron(II) phosphate vivianite, Fe3(PO4)2,8H2O, from a solution of Mohr's salt, Fe(NH4)2(SO4)2,6H2O, added to a solution of ammonium phosphate, hydroxylammonium chloride, NH3OHCl, was added to the iron(II) stock solution to eliminate oxidation of iron(II) by oxygen from the air. However, the effect turned out to be the opposite of the expected: whereas hydroxylamine reduces iron(III) in bulk solution, it acted as a strong oxidant in the presence of growing iron phosphate crystals, causing the crystallization of the iron(III) phosphate strengite, FePO4,2H2O, as the only solid phase. Evidently the crystal surface catalyses oxidation of iron(II) by hydroxylamine. The usual composite kinetics of spiral growth and surface nucleation was found. The surface-nucleation part yielded edge free energy λ in the range 12-45 pJ/m, virtually independent of temperature and in the range typical for phosphates of divalent metals. The scatter of values for λ presumably arises from contributions from different crystal forms to the overall growth rate. The low mean value points to strong adsorption of iron(II), which is subsequently oxidized at the crystal surface, forming strengite. The state of the system did not tend to thermodynamic equilibrium, but to a metastable state, presumably controlled by the iron(II) rich surface layer of the crystal. In addition to crystal growth, it was possible to measure nucleation kinetics by light scattering (turbidimetry). A point of transition from heterogeneous to homogeneous nucleation was found, and from the results for the homogeneous domain a rather precise value of crystal surface free energy γ=55 mJ/m2 was found. This is a relatively low value as well, indicating that the redox process plays a role already at the nucleation stage.
Generalized nucleation and looping model for epigenetic memory of histone modifications
Erdel, Fabian; Greene, Eric C.
2016-01-01
Histone modifications can redistribute along the genome in a sequence-independent manner, giving rise to chromatin position effects and epigenetic memory. The underlying mechanisms shape the endogenous chromatin landscape and determine its response to ectopically targeted histone modifiers. Here, we simulate linear and looping-driven spreading of histone modifications and compare both models to recent experiments on histone methylation in fission yeast. We find that a generalized nucleation-and-looping mechanism describes key observations on engineered and endogenous methylation domains including intrinsic spatial confinement, independent regulation of domain size and memory, variegation in the absence of antagonists, and coexistence of short- and long-term memory at loci with weak and strong constitutive nucleation. These findings support a straightforward relationship between the biochemical properties of chromatin modifiers and the spatiotemporal modification pattern. The proposed mechanism gives rise to a phase diagram for cellular memory that may be generally applicable to explain epigenetic phenomena across different species. PMID:27382173
NASA Astrophysics Data System (ADS)
Alves da Silva Junior, J.; Frank, W.; Campillo, M.; Juanes, R.
2017-12-01
Current models for slow slip earthquakes (SSE) assume a simplified fault embedded on a homogeneous half-space. In these models SSE events nucleate on the transition from velocity strengthening (VS) to velocity weakening (VW) down dip from the trench and propagate towards the base of the seismogenic zone, where high normal effective stress is assumed to arrest slip. Here, we investigate SSE nucleation and arrest using quasi-static finite element simulations, with rate and state friction, on a domain with heterogeneous properties and realistic fault geometry. We use the fault geometry of the Guerrero Gap in the Cocos subduction zone, where SSE events occurs every 4 years, as a proxy for subduction zone. Our model is calibrated using surface displacements from GPS observations. We apply boundary conditions according to the plate convergence rate and impose a depth-dependent pore pressure on the fault. Our simulations indicate that the fault geometry and elastic properties of the medium play a key role in the arrest of SSE events at the base of the seismogenic zone. SSE arrest occurs due to aseismic deformations of the domain that result in areas with elevated effective stress. SSE nucleation occurs in the transition from VS to VW and propagates as a crack-like expansion with increased nucleation length prior to dynamic instability. Our simulations encompassing multiple seismic cycles indicate SSE interval times between 1 and 10 years and, importantly, a systematic increase of rupture area prior to dynamic instability, followed by a hiatus in the SSE occurrence. We hypothesize that these SSE characteristics, if confirmed by GPS observations in different subduction zones, can add to the understanding of nucleation of large earthquakes in the seismogenic zone.
Malila, Jussi; McGraw, Robert; Laaksonen, Ari; ...
2015-01-07
Despite recent advances in monitoring nucleation from a vapor at close-to-molecular resolution, the identity of the critical cluster, forming the bottleneck for the nucleation process, remains elusive. During past twenty years, the first nucleation theorem has been often used to extract the size of the critical cluster from nucleation rate measurements. However, derivations of the first nucleation theorem invoke certain questionable assumptions that may fail, e.g., in the case of atmospheric new particle formation, including absence of subcritical cluster losses and heterogeneous nucleation on pre-existing nanoparticles. Here we extend the kinetic derivation of the first nucleation theorem to give amore » general framework to include such processes, yielding sum rules connecting the size dependent particle formation and loss rates to the corresponding loss-free nucleation rate and the apparent critical size from a naïve application of the first nucleation theorem that neglects them.« less
NASA Astrophysics Data System (ADS)
Jain, S.; Papusoi, C.; Admana, R.; Yuan, H.; Acharya, R.
2018-05-01
Curie temperature TC distributions and magnetization reversal mechanism in Cu doped L10 FePt granular films is investigated as a function of film thickness in the range of ˜5-12 nm with Cu mol. % varying in the range of 0%-6%. It is shown that Cu doping increases the FePt tetragonality and chemical ordering. For Cu doped FePt-X films, coercivity (HC) exhibits a non-monotonic behavior with increasing film thickness, i.e., HC increases initially up to tcr ˜ 7 nm, and decreases thereafter. We attribute this behavior to the change in magnetization reversal mechanism from coherent to an incoherent (domain-wall driven) mode. While in un-doped films, the domain-walls nucleate at the grain boundaries, in doped films the Cu atoms may act as domain-wall nucleation and pinning sites, isolating magnetic spin clusters of reduced dimensionality with respect to the physical grain size. This is experimentally supported by a much poorer dependence of the AC susceptibility (both, real and imaginary components) on the film thickness above 7 nm than in the case of un-doped films. The formation of magnetic spin clusters inside the grains as a consequence of the reduced coupling between Fe-Fe and Fe-Pt-Fe atoms with increasing Cu doping can explain the experimentally evidenced reduction of both, the film Curie temperature, TC, and intrinsic anisotropy energy density, KC, with increasing Cu doping.
Qiu, Yuqing; Odendahl, Nathan; Hudait, Arpa; Mason, Ryan; Bertram, Allan K; Paesani, Francesco; DeMott, Paul J; Molinero, Valeria
2017-03-01
Heterogeneous nucleation of ice induced by organic materials is of fundamental importance for climate, biology, and industry. Among organic ice-nucleating surfaces, monolayers of long chain alcohols are particularly effective, while monolayers of fatty acids are significantly less so. As these monolayers expose to water hydroxyl groups with an order that resembles the one in the basal plane of ice, it was proposed that lattice matching between ice and the surface controls their ice-nucleating efficiency. Organic monolayers are soft materials and display significant fluctuations. It has been conjectured that these fluctuations assist in the nucleation of ice. Here we use molecular dynamic simulations and laboratory experiments to investigate the relationship between the structure and fluctuations of hydroxylated organic surfaces and the temperature at which they nucleate ice. We find that these surfaces order interfacial water to form domains with ice-like order that are the birthplace of ice. Both mismatch and fluctuations decrease the size of the preordered domains and monotonously decrease the ice freezing temperature. The simulations indicate that fluctuations depress the freezing efficiency of monolayers of alcohols or acids to half the value predicted from lattice mismatch alone. The model captures the experimental trend in freezing efficiencies as a function of chain length and predicts that alcohols have higher freezing efficiency than acids of the same chain length. These trends are mostly controlled by the modulation of the structural mismatch to ice. We use classical nucleation theory to show that the freezing efficiencies of the monolayers are directly related to their free energy of binding to ice. This study provides a general framework to relate the equilibrium thermodynamics of ice binding to a surface and the nonequilibrium ice freezing temperature and suggests that these could be predicted from the structure of interfacial water.
Spin-orbit torque induced magnetization anisotropy modulation in Pt/(Co/Ni)4/Co/IrMn heterostructure
NASA Astrophysics Data System (ADS)
Engel, Christian; Goolaup, Sarjoosing; Luo, Feilong; Gan, Weiliang; Lew, Wen Siang
2017-04-01
In this work, we show that domain wall (DW) dynamics within a system provide an alternative platform to characterizing spin-orbit torque (SOT) effective fields. In perpendicularly magnetized wires with a Pt/(Co/Ni)4/Co/IrMn stack structure, differential Kerr imaging shows that the magnetization switching process is via the nucleation of the embryo state followed by domain wall propagation. By probing the current induced DW motion in the presence of in-plane field, the SOT effective fields are obtained using the harmonic Hall voltage scheme. The effective anisotropy field of the structure decreases by 12% due to the SOT effective fields, as the in-plane current in the wire is increased.
NASA Astrophysics Data System (ADS)
Kim, N.; Takahashi, M.; Shigematsu, N.; Ree, J. H.; Jung, H.
2017-12-01
Intragranular recrystallization, including subgrain-rotation-recrystallization (SGR) and nucleation (and growth) of new grains along boundaries of deformation twins and bands, is an important process leading to grain-size reduction and causing rheological change depending on deformation condition. Despite of its importance, the detailed processes of intragranular recrystallization are still somewhat unclear. We deformed a limestone using triaxial testing machine at AIST of Japan at temperature of 500 700 °, strain rate of 10-4 10-5 s-1, confining pressure of 200 MPa and strain of up to 30%, to explore intragranular recrystallization processes of calcite. The limestone contains two abundant fossils, crinoid and trilobite. The crinoids are mono- or poly-crystalline. We focus on the monocrystalline crinoids with a coarser grain size ( 700 μm). The trilobites are polycrystalline and much finer-grained ( 7 μm) with initially a strong c-axis preferred orientation. At a lower temperature condition, subgrains develop both in twin and host domains of crinoids and evolve into new grains by SGR. At a higher temperature, recrystallized grains have irregular grain boundaries and bimodal grain-size distribution, implying grain-boundary migration (GBM) recrystallization. At a lower temperature, new grains nucleating and growing along twin boundaries inherit lattice orientation of twin domain, and with the nucleation site and usually a smaller grain size, they can be distinguished from new grains by SGR. At a higher temperature, however, the distinction is difficult at present due to extensive GBM. For the trilobites, there is only local GBM with no significant change in grain size, and flattening of grains reflects the bulk strain at a lower temperature. At a higher temperature, individual grains of the trilobites are equi-axed with weakened LPO, although the strain of trilobites is higher than bulk strain. These microfabrics suggest that the dominant deformation mechanism of the trilobites is diffusion creep. Although the initial LPO of the trilobites is weakened, the LPO is still preserved up to strain of 30%. This implies that even if the grain size of trilobites and matrix is similar in naturally deformed limestones, the lattice orientation map may be useful in recognizing trilobite fossils.
Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling.
Chesnel, Karine; Safsten, Alex; Rytting, Matthew; Fullerton, Eric E
2016-06-01
The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same pattern during field cycling, is important for magnetic recording technologies. Here we demonstrate MDM in [Co/Pd]/IrMn films, using coherent X-ray scattering. Under illumination, the magnetic domains in [Co/Pd] produce a speckle pattern, a unique fingerprint of their nanoscale configuration. We measure MDM by cross-correlating speckle patterns throughout magnetization processes. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-coupling with the underlying IrMn layer. The degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. If the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation. Our findings show how to fully control the occurrence of MDM by field cooling.
Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling
Chesnel, Karine; Safsten, Alex; Rytting, Matthew; ...
2016-06-01
The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same pattern during field cycling, is important for magnetic recording technologies. Here we demonstrate MDM in [Co/Pd]/IrMn films, using coherent X-ray scattering. Under illumination, the magnetic domains in [Co/Pd] produce a speckle pattern, a unique fingerprint of their nanoscale configuration. We measure MDM by cross-correlating speckle patterns throughout magnetization processes. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-coupling with the underlying IrMn layer.more » The degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. Lastly, if the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation. Our findings show how to fully control the occurrence of MDM by field cooling.« less
Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling
Chesnel, Karine; Safsten, Alex; Rytting, Matthew; Fullerton, Eric E.
2016-01-01
The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same pattern during field cycling, is important for magnetic recording technologies. Here we demonstrate MDM in [Co/Pd]/IrMn films, using coherent X-ray scattering. Under illumination, the magnetic domains in [Co/Pd] produce a speckle pattern, a unique fingerprint of their nanoscale configuration. We measure MDM by cross-correlating speckle patterns throughout magnetization processes. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-coupling with the underlying IrMn layer. The degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. If the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation. Our findings show how to fully control the occurrence of MDM by field cooling. PMID:27248368
Highly repeatable nanoscale phase coexistence in vanadium dioxide films
NASA Astrophysics Data System (ADS)
Huffman, T. J.; Lahneman, D. J.; Wang, S. L.; Slusar, T.; Kim, Bong-Jun; Kim, Hyun-Tak; Qazilbash, M. M.
2018-02-01
It is generally believed that in first-order phase transitions in materials with imperfections, the formation of phase domains must be affected to some extent by stochastic (probabilistic) processes. The stochasticity would lead to unreliable performance in nanoscale devices that have the potential to exploit the transformation of physical properties in a phase transition. Here we show that stochasticity at nanometer length scales is completely suppressed in the thermally driven metal-insulator transition (MIT) in sputtered vanadium dioxide (V O2 ) films. The nucleation and growth of domain patterns of metallic and insulating phases occur in a strikingly reproducible way. The completely deterministic nature of domain formation and growth in films with imperfections is a fundamental and unexpected finding about the kinetics of this material. Moreover, it opens the door for realizing reliable nanoscale devices based on the MIT in V O2 and similar phase-change materials.
Shibuta, Yasushi; Sakane, Shinji; Miyoshi, Eisuke; Okita, Shin; Takaki, Tomohiro; Ohno, Munekazu
2017-04-05
Can completely homogeneous nucleation occur? Large scale molecular dynamics simulations performed on a graphics-processing-unit rich supercomputer can shed light on this long-standing issue. Here, a billion-atom molecular dynamics simulation of homogeneous nucleation from an undercooled iron melt reveals that some satellite-like small grains surrounding previously formed large grains exist in the middle of the nucleation process, which are not distributed uniformly. At the same time, grains with a twin boundary are formed by heterogeneous nucleation from the surface of the previously formed grains. The local heterogeneity in the distribution of grains is caused by the local accumulation of the icosahedral structure in the undercooled melt near the previously formed grains. This insight is mainly attributable to the multi-graphics processing unit parallel computation combined with the rapid progress in high-performance computational environments.Nucleation is a fundamental physical process, however it is a long-standing issue whether completely homogeneous nucleation can occur. Here the authors reveal, via a billion-atom molecular dynamics simulation, that local heterogeneity exists during homogeneous nucleation in an undercooled iron melt.
Abioye, Amos Olusegun; Chi, George Tangyie; Simone, Elena; Nagy, Zoltan
2016-07-25
One step aqueous melt-crystallization and in situ granulation was utilized to produce ibuprofen-cationic dextran [diethylaminoethyl dextran (Ddex)] conjugate crystanules without the use of surfactants or organic solvents. This study investigates the mechanism of in situ granulation-induced crystanule formation using ibuprofen (Ibu) and Ddex. Laboratory scale batch aqueous crystallization system containing in situ monitoring probes for particle vision measurement (PVM), UV-vis measurement and focused beam reflectance measurements (FBRM) was adapted using pre-defined formulation and process parameters. Pure ibuprofen showed nucleation domain between 25 and 64°C, producing minicrystals with onset of melting at 76°C and enthalpy of fusion (ΔH) of 26.22kJ/mol. On the other hand Ibu-Ddex crystanules showed heterogeneous nucleation which produced spherical core-shell structure. PVM images suggest that internalization of ibuprofen in Ddex corona occurred during the melting phase (before nucleation) which inhibited crystal growth inside the Ddex corona. The remarkable decrease in ΔH of the crystanules from 26.22 to 11.96kJ/mol and the presence of broad overlapping DSC thermogram suggests formation of ibuprofen-Ddex complex and crystalline-amorphous transformation. However Raman and FTIR spectra did not show any significant chemical interaction between ibuprofen and Ddex. A significant increase in dissolution efficiency from 45 to 81% within 24h and reduced burst release provide evidence for potential application of crystanules in controlled drug delivery systems. It was evident that in situ granulation of ibuprofen inhibited the aqueous crystallization process. It was concluded that in situ granulation-aqueous crystallization technique is a novel unit operation with potential application in continuous pharmaceutical processing. Copyright © 2016 Elsevier B.V. All rights reserved.
Electric-field-induced domain intersection in BaTiO3 single crystal
NASA Astrophysics Data System (ADS)
He, Ming; Wang, Mengxia; Zhang, Zhihua
2017-03-01
Large-angle convergent beam electron diffraction was used to determine the directions of polarization vectors in a BaTiO3 single crystal. Domain intersections driven by an electric field were investigated by in situ transmission electron microscopy. The dark triangles observed in the domain intersection region can be accounted for by dislocations and the strain field. Domains nucleate at the domain tip depending on the dislocations and strain field to relieve the accumulated stress. Schematic representations of the intersecting domains and the microscopic structure are given, clarifying the special electric-field-induced domain structure.
Nucleation and microstructure development in Cr-Mo-V tool steel during gas atomization
NASA Astrophysics Data System (ADS)
Behúlová, M.; Grgač, P.; Čička, R.
2017-11-01
Nucleation studies of undercooled metallic melts are of essential interest for the understanding of phase selection, growth kinetics and microstructure development during their rapid non-equilibrium solidification. The paper deals with the modelling of nucleation processes and microstructure development in the hypoeutectic tool steel Ch12MF4 with the chemical composition of 2.37% C, 12.06 % Cr, 1.2% Mo, 4.0% V and balance Fe [wt. %] in the process of nitrogen gas atomization. Based on the classical theory of homogeneous nucleation, the nucleation temperature of molten rapidly cooled spherical particles from this alloy with diameter from 40 μm to 600 μm in the gas atomization process is calculated using various estimations of parameters influencing the nucleation process - the Gibbs free energy difference between solid and liquid phases and the solid/liquid interfacial energy. Results of numerical calculations are compared with experimentally measured nucleation temperatures during levitation experiments and microstructures developed in rapidly solidified powder particles from the investigated alloy.
Li, Yang; Li, JiaHao; Liu, BaiXin
2015-10-28
Nucleation is one of the most essential transformation paths in phase transition and exerts a significant influence on the crystallization process. Molecular dynamics simulations were performed to investigate the atomic-scale nucleation mechanisms of NiTi metallic glasses upon devitrification at various temperatures (700 K, 750 K, 800 K, and 850 K). Our simulations reveal that at 700 K and 750 K, nucleation is polynuclear with high nucleation density, while at 800 K it is mononuclear. The underlying nucleation mechanisms have been clarified, manifesting that nucleation can be induced either by the initial ordered clusters (IOCs) or by the other precursors of nuclei evolved directly from the supercooled liquid. IOCs and other precursors stem from the thermal fluctuations of bond orientational order in supercooled liquids during the quenching process and during the annealing process, respectively. The simulation results not only elucidate the underlying nucleation mechanisms varied with temperature, but also unveil the origin of nucleation. These discoveries offer new insights into the devitrification mechanism of metallic glasses.
Exploring the multiverse with topological defects
NASA Astrophysics Data System (ADS)
Zhang, Jun
Inflationary cosmology suggests a nontrivial spacetime structure on scales beyond our observable universe, the multiverse. Based on the observation that topological defects and vacuum bubbles can spontaneously nucleate in a de Sitter like inflating space, we explore two different aspects of the multiverse model in this thesis. Hence the main body of this study consists of two parts. In the first part, we investigate domain walls and cosmic strings that may nucleate in the false vacuum. If we live in a bubble universe surrounded by the false vacuum, as suggested by the eternal inflationary multiverse model, the nucleating defects could collide with our bubble universe, and leave potentially observable signals. We investigate different kinds of collisions and their consequences. We suggest such collisions generically result in signals such as radiation and gravitational waves or the defects themselves or a combination of both propagating into our bubble, and therefore provide a new approach to searching for the multiverse. In the second part, we study the fate of domain walls and vacuum bubbles that could nucleate in the slow roll inflation. We show that, depending on their sizes, these objects will form either black holes or wormholes after inflation. We study the spacetime structure of the resulting wormholes. Our analysis indicates the presence of domain walls and vacuum bubbles in the slow roll inflation has significant effects on the global structure of our universe, that is by forming wormholes, it can lead to the picture of a multiverse. We also calculate the mass spectrum of the resulting black holes and wormholes under certain assumptions. We argue that the observation of a population of black holes with such mass spectrum could be considered as evidence of the existence of both inflation and multiverse.
Baker, Joseph L.; Courtemanche, Naomi; Parton, Daniel L.; ...
2014-12-04
Formins catalyze nucleation and growth of actin filaments. In this paper, we study the structure and interactions of actin with the FH2 domain of budding yeast formin Bni1p. We built an all-atom model of the formin dimer on an Oda actin filament 7-mer and studied structural relaxation and interprotein interactions by molecular dynamics simulations. These simulations produced a refined model for the FH2 dimer associated with the barbed end of the filament and showed electrostatic interactions between the formin knob and actin target-binding cleft. Mutations of two formin residues contributing to these interactions (R1423N, K1467L, or both) reduced the interactionmore » energies between the proteins, and in coarse-grained simulations, the formin lost more interprotein contacts with an actin dimer than with an actin 7-mer. Finally, biochemical experiments confirmed a strong influence of these mutations on Bni1p-mediated actin filament nucleation, but not elongation, suggesting that different interactions contribute to these two functions of formins.« less
Recent progress on understanding the mechanisms of amyloid nucleation.
Chatani, Eri; Yamamoto, Naoki
2018-04-01
Amyloid fibrils are supramolecular protein assemblies with a fibrous morphology and cross-β structure. The formation of amyloid fibrils typically follows a nucleation-dependent polymerization mechanism, in which a one-step nucleation scheme has widely been accepted. However, a variety of oligomers have been identified in early stages of fibrillation, and a nucleated conformational conversion (NCC) mechanism, in which oligomers serve as a precursor of amyloid nucleation and convert to amyloid nuclei, has been proposed. This development has raised the need to consider more complicated multi-step nucleation processes in addition to the simplest one-step process, and evidence for the direct involvement of oligomers as nucleation precursors has been obtained both experimentally and theoretically. Interestingly, the NCC mechanism has some analogy with the two-step nucleation mechanism proposed for inorganic and organic crystals and protein crystals, although a more dramatic conformational conversion of proteins should be considered in amyloid nucleation. Clarifying the properties of the nucleation precursors of amyloid fibrils in detail, in comparison with those of crystals, will allow a better understanding of the nucleation of amyloid fibrils and pave the way to develop techniques to regulate it.
Computational modeling of soot nucleation
NASA Astrophysics Data System (ADS)
Chung, Seung-Hyun
Recent studies indicate that soot is the second most significant driver of climate change---behind CO2, but ahead of methane---and increased levels of soot particles in the air are linked to health hazards such as heart disease and lung cancer. Within the soot formation process, soot nucleation is the least understood step, and current experimental findings are still limited. This thesis presents computational modeling studies of the major pathways of the soot nucleation process. In this study, two regimes of soot nucleation---chemical growth and physical agglomeration---were evaluated and the results demonstrated that combustion conditions determine the relative importance of these two routes. Also, the dimerization process of polycyclic aromatic hydrocarbons, which has been regarded as one of the most important physical agglomeration processes in soot formation, was carefully examined with a new method for obtaining the nucleation rate using molecular dynamics simulation. The results indicate that the role of pyrene dimerization, which is the commonly accepted model, is expected to be highly dependent on various flame temperature conditions and may not be a key step in the soot nucleation process. An additional pathway, coronene dimerization in this case, needed to be included to improve the match with experimental data. The results of this thesis provide insight on the soot nucleation process and can be utilized to improve current soot formation models.
Kinetics of spontaneous filament nucleation via oligomers: Insights from theory and simulation
NASA Astrophysics Data System (ADS)
Šarić, Andela; Michaels, Thomas C. T.; Zaccone, Alessio; Knowles, Tuomas P. J.; Frenkel, Daan
2016-12-01
Nucleation processes are at the heart of a large number of phenomena, from cloud formation to protein crystallization. A recently emerging area where nucleation is highly relevant is the initiation of filamentous protein self-assembly, a process that has broad implications in many research areas ranging from medicine to nanotechnology. As such, spontaneous nucleation of protein fibrils has received much attention in recent years with many theoretical and experimental studies focussing on the underlying physical principles. In this paper we make a step forward in this direction and explore the early time behaviour of filamentous protein growth in the context of nucleation theory. We first provide an overview of the thermodynamics and kinetics of spontaneous nucleation of protein filaments in the presence of one relevant degree of freedom, namely the cluster size. In this case, we review how key kinetic observables, such as the reaction order of spontaneous nucleation, are directly related to the physical size of the critical nucleus. We then focus on the increasingly prominent case of filament nucleation that includes a conformational conversion of the nucleating building-block as an additional slow step in the nucleation process. Using computer simulations, we study the concentration dependence of the nucleation rate. We find that, under these circumstances, the reaction order of spontaneous nucleation with respect to the free monomer does no longer relate to the overall physical size of the nucleating aggregate but rather to the portion of the aggregate that actively participates in the conformational conversion. Our results thus provide a novel interpretation of the common kinetic descriptors of protein filament formation, including the reaction order of the nucleation step or the scaling exponent of lag times, and put into perspective current theoretical descriptions of protein aggregation.
Kinetics of spontaneous filament nucleation via oligomers: Insights from theory and simulation.
Šarić, Anđela; Michaels, Thomas C T; Zaccone, Alessio; Knowles, Tuomas P J; Frenkel, Daan
2016-12-07
Nucleation processes are at the heart of a large number of phenomena, from cloud formation to protein crystallization. A recently emerging area where nucleation is highly relevant is the initiation of filamentous protein self-assembly, a process that has broad implications in many research areas ranging from medicine to nanotechnology. As such, spontaneous nucleation of protein fibrils has received much attention in recent years with many theoretical and experimental studies focussing on the underlying physical principles. In this paper we make a step forward in this direction and explore the early time behaviour of filamentous protein growth in the context of nucleation theory. We first provide an overview of the thermodynamics and kinetics of spontaneous nucleation of protein filaments in the presence of one relevant degree of freedom, namely the cluster size. In this case, we review how key kinetic observables, such as the reaction order of spontaneous nucleation, are directly related to the physical size of the critical nucleus. We then focus on the increasingly prominent case of filament nucleation that includes a conformational conversion of the nucleating building-block as an additional slow step in the nucleation process. Using computer simulations, we study the concentration dependence of the nucleation rate. We find that, under these circumstances, the reaction order of spontaneous nucleation with respect to the free monomer does no longer relate to the overall physical size of the nucleating aggregate but rather to the portion of the aggregate that actively participates in the conformational conversion. Our results thus provide a novel interpretation of the common kinetic descriptors of protein filament formation, including the reaction order of the nucleation step or the scaling exponent of lag times, and put into perspective current theoretical descriptions of protein aggregation.
Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.
Fang, Rui; Tanaka, Kazunari; Mudhivarthi, Vamsi; Bogner, Robin H; Pikal, Michael J
2018-03-01
Several controlled ice nucleation techniques have been developed to increase the efficiency of the freeze-drying process as well as to improve the quality of pharmaceutical products. Owing to the reduction in ice surface area, these techniques have the potential to reduce the degradation of proteins labile during freezing. The objective of this study was to evaluate the effect of ice nucleation temperature on the in-process stability of lactate dehydrogenase (LDH). LDH in potassium phosphate buffer was nucleated at -4°C, -8°C, and -12°C using ControLyo™ or allowed to nucleate spontaneously. Both the enzymatic activity and tetramer recovery after freeze-thawing linearly correlated with product ice nucleation temperature (n = 24). Controlled nucleation also significantly improved batch homogeneity as reflected by reduced inter-vial variation in activity and tetramer recovery. With the correlation established in the laboratory, the degradation of protein in manufacturing arising from ice nucleation temperature differences can be quantitatively predicted. The results show that controlled nucleation reduced the degradation of LDH during the freezing process, but this does not necessarily translate to vastly superior stability during the entire freeze-drying process. The capability of improving batch homogeneity provides potential advantages in scaling-up from lab to manufacturing scale. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Magnetic Dinner Salads: The Role of Biogenic Magnetite in Cryopreservation for Common Food Plants
NASA Astrophysics Data System (ADS)
Chaffee, T. M.; Kirschvink, J. L.; Kobayashi, A. K.
2015-12-01
Biogenically-precipitated magnetite has been found in organisms ranging from Bacteria, single-celled protists, and many of the animal phyla, where its major function is navigation and magnetoreception. To date there is but a single report of biogenic magnetite in plants (essentially, magnetoferritin), and that is in common grass (Festuca species, from Gajdardziska-Josifovska et. al. doi:10.1127/0935-1221/2001/0013/0863). Recent developments in cryopreservation suggest that ~ 1 mT, ~ 10 Hz oscillating magnetic fields can drastically reduce ice nucleation during freezing, promote supercooling, and minimize cellular damage in living tissues (e.g., Kaku et al., doi: 10.1016/j.cryobiol.2012.02.001). Kobayashi & Kirschvink (2014, doi:10.1016/j.cryobiol.2013.12.002) suggest that biogenic magnetite crystals could be the nucleating site for damaging ice crystals, and that they would be driven magneto-mechanically to rotate in those oscillating fields which could inhibit the ice crystal nucleation process. This prompted our investigation into the magnetite content of ordinary fruit and vegetable food products, as knowledge of the natural levels of biogenic magnetite in the human food supply could guide the selection of which foods might work for this type of cryopreservation. Our study involved a range of common foods including avocados, bananas, garlic, and apples. Samples were prepared in a clean lab environment kept free of contaminant particles, and subjected to a variety of standard rock-magnetic tests including IRM and ARM acquisition, and the corresponding Af demagnetization, on a standard 2G™ SRM. Results are consistent with moderately interacting single-domain magnetite (see figure), with moderate inter-particle interaction effects. Typical magnetite concentrations in these samples are in the range of .1 to 1 ng/g for room temperature samples, increasing to the range of 1-10 ng/g when measured frozen (to inhibit thermal rotation of small particles and clumps). If these are distributed as fine, single-domain particles they would constitute the largest mineral surface area in the tissues, (aside from amorphous silica phytoliths), and are therefore likely the site of ice crystal nucleation.
Thermodynamics and Kinetics of Prenucleation Clusters, Classical and Non-Classical Nucleation.
Zahn, Dirk
2015-07-20
Recent observations of prenucleation species and multi-stage crystal nucleation processes challenge the long-established view on the thermodynamics of crystal formation. Here, we review and generalize extensions to classical nucleation theory. Going beyond the conventional implementation as has been used for more than a century now, nucleation inhibitors, precursor clusters and non-classical nucleation processes are rationalized as well by analogous concepts based on competing interface and bulk energy terms. This is illustrated by recent examples of species formed prior to/instead of crystal nucleation and multi-step nucleation processes. Much of the discussed insights were obtained from molecular simulation using advanced sampling techniques, briefly summarized herein for both nucleation-controlled and diffusion-controlled aggregate formation. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Varsano, Neta; Fargion, Iael; Wolf, Sharon G; Leiserowitz, Leslie; Addadi, Lia
2015-02-04
Atherosclerosis is the major precursor of cardiovascular disease. The formation of cholesterol crystals in atherosclerotic plaques is associated with the onset of acute pathology. The cholesterol crystals induce physical injury in the plaque core, promoting cell apoptosis and triggering an increased inflammatory response. Herein we address the question of how cholesterol crystal formation occurs in atherosclerosis. We demonstrate that three-dimensional (3D) cholesterol crystals can undergo directed nucleation from bilayer membranes containing two-dimensional (2D) cholesterol crystalline domains. We studied crystal formation on supported lipid bilayers loaded with exogenous cholesterol and labeled using a monoclonal antibody that specifically recognizes ordered cholesterol arrays. Our findings show that 3D crystals are formed exclusively on the bilayer regions where there are segregated 2D cholesterol crystalline domains and that they form on the domains. This study has potentially significant implications for our understanding of the crucial step in the mechanism by which atherosclerotic lesions form.
Phase Coexistence and Kinetic Arrest in the Magnetostructural Transition of the Ordered Alloy FeRh
Keavney, David J.; Choi, Yongseong; Holt, Martin V.; ...
2018-01-29
In materials where two or more ordering degrees of freedom are closely matched in their free energies, coupling between them, or multiferroic behavior can occur. These phenomena can produce a very rich phase behavior, as well as emergent phases that offer useful properties and opportunities to reveal novel phenomena in phase transitions. The ordered alloy FeRh undergoes an antiferromagnetic to ferromagnetic phase transition at ~375 K, which illustrates the interplay between structural and magnetic order mediated by a delicate energy balance between two configurations. We have examined this transition using a combination of high-resolution x-ray structural and magnetic imaging andmore » comprehensive x-ray magnetic circular dichroism spectroscopy. We find that the transition proceeds via a defect-driven domain nucleation and growth mechanism, with significant return point memory in both the structural and magnetic domain configurations. In conclusion, the domains show evidence of inhibited growth after nucleation, resulting in a quasi- 2nd order temperature behavior.« less
Experiments on Nucleation in Different Flow Regimes
NASA Technical Reports Server (NTRS)
Bayuzick, R. J.; Hofmeister, W. H.; Morton, C. M.; Robinson, M. B.
1999-01-01
The vast majority of metallic engineering materials are solidified from the liquid phase. Understanding the solidification process is essential to control microstructure, which in turn, determines the properties of materials. The genesis of solidification is nucleation, where the first stable solid forms from the liquid phase. Nucleation kinetics determine the degree of undercooling and phase selection. As such, it is important to understand nucleation phenomena in order to control solidification or glass formation in metals and alloys. Early experiments in nucleation kinetics were accomplished by droplet dispersion methods. Dilatometry was used by Turnbull and others, and more recently differential thermal analysis and differential scanning calorimetry have been used for kinetic studies. These techniques have enjoyed success; however, there are difficulties with these experiments. Since materials are dispersed in a medium, the character of the emulsion/metal interface affects the nucleation behavior. Statistics are derived from the large number of particles observed in a single experiment, but dispersions have a finite size distribution which adds to the uncertainty of the kinetic determinations. Even though temperature can be controlled quite well before the onset of nucleation, the release of the latent heat of fusion during nucleation of particles complicates the assumption of isothermality during these experiments. Containerless processing has enabled another approach to the study of nucleation kinetics. With levitation techniques it is possible to undercool one sample to nucleation repeatedly in a controlled manner, such that the statistics of the nucleation process can be derived from multiple experiments on a single sample. The authors have fully developed the analysis of nucleation experiments on single samples following the suggestions of Skripov. The advantage of these experiments is that the samples are directly observable. The nucleation temperature can be measured by noncontact optical pyrometry, the mass of the sample is known, and post processing analysis can be conducted on the sample. The disadvantages are that temperature measurement must have exceptionally high precision, and it is not possible to isolate specific heterogeneous sites as in droplet dispersions.
Effect of nucleation time on bending response of ionic polymer–metal composite actuators
Kim, Suran; Hong, Seungbum; Choi, Yoon-Young; ...
2013-07-02
We attempted an autocatalytic electro-less plating of nickel in order to replace an electroless impregnation-reduction (IR) method in ionic polymer–metal composite (IPMC) actuators to reduce cost and processing time. Because nucleation time of Pd–Sn colloids is the determining factor of overall processing time, we used the nucleation time as our control parameter. In order to optimize nucleation time and investigate its effect on the performance of IPMC actuators, we analyzed the relationship between the nucleation time, interface morphology and electrical properties. The optimized nucleation time was 10 h. Furthermore, the trends of the performance and electrical properties as a functionmore » of nucleation time were attributed to the fact that the Ni penetration depth was determined by the minimum diffusion length of either Pd–Sn colloids or reducing agent ions. The Ni-IPMC actuators can be fabricated less than 14 h processing time without deteriorating performance of the actuators, which is comparable to Pt-IPMC prepared by IR method.« less
NASA Astrophysics Data System (ADS)
Schwarz, Daniel; Henneke, Caroline; Kumpf, Christian
2016-02-01
Molecular films present an elegant way for the uniform functionalization or doping of graphene. Here, we present an in situ study on the initial growth of copper phthalocyanine (CuPc) on epitaxial graphene on Ir(111). We followed the growth up to a closed monolayer with low energy electron microscopy and selected area electron diffraction (μLEED). The molecules coexist on graphene in a disordered phase without long-range order and an ordered crystalline phase. The local topography of the graphene substrate plays an important role in the nucleation process of the crystalline phase. Graphene flakes on Ir(111) feature regions that are under more tensile stress than others. We observe that the CuPc molecules form ordered domains initially on those graphene regions that are closest to the fully relaxed lattice. We attribute this effect to a stronger influence of the underlying Ir(111) substrate for molecules adsorbed on those relaxed regions.
NASA Technical Reports Server (NTRS)
Jensen, E. J.; Toon, O. B.
1994-01-01
We have investigated the processes that control ice crystal nucleation in the upper troposphere using a numerical model. Nucleation of ice resulting from cooling was simulated for a range of aerosol number densities, initial temperatures, and cooling rates. In contrast to observations of stratus clouds, we find that the number of ice crystals that nucleate in cirrus is relatively insensitive to the number of aerosols present. The ice crystal size distribution at the end of the nucleation process is unaffected by the assumed initial aerosol number density. Essentially, nucleation continues until enough ice crystals are present such that their deposition growth rapidly depletes the vapor and shuts off any further nucleation. However, the number of ice crystals nucleated increases rapidly with decreasing initial temperature and increasing cooling rate. This temperature dependence alone could explain the large ice crystal number density observed in very cold tropical cirrus.
Molecular-dynamics simulations of urea nucleation from aqueous solution
Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele
2015-01-01
Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete. PMID:25492932
Molecular-dynamics simulations of urea nucleation from aqueous solution.
Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele
2015-01-06
Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete.
Misfit paradox on nucleation potency of MgO and MgAl{sub 2}O{sub 4} for Al
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, D.; Wang, L.
MgO and MgAl{sub 2}O{sub 4} are believed to be effective heterogeneous nuclei for Al based alloys due to their small lattice misfits with Al. However, there is a strong evidence to suggest that liquid Al reacts with MgO and MgAl{sub 2}O{sub 4} phases but the heterogeneous nucleation behavior of such phases is rarely discussed. In order to identify the nucleation mechanism of Al, under the interference of the chemical reaction, the heterogeneous nucleation process is systematically investigated through thermal analysis and high resolution transmission electron microscopy (HRTEM). The observed multi-nucleation interfaces (Al/MgO, Al/MgAl{sub 2}O{sub 4} and Al/Al{sub 2}O{sub 3}) andmore » scattered experimental undercooling data indicate an independent multi-phase nucleation process in these systems. - Highlights: •Theoretical lattice misfit doesn’t always disclose nucleation potency. •The nucleation of liquid can be triggered by multi-nucleation interfaces. •An independent multi-agents nucleation was verified in the study.« less
Graphene nanoribbon as an elastic damper
NASA Astrophysics Data System (ADS)
Evazzade, Iman; Lobzenko, Ivan P.; Saadatmand, Danial; Korznikova, Elena A.; Zhou, Kun; Liu, Bo; Dmitriev, Sergey V.
2018-05-01
Heterostructures composed of dissimilar two-dimensional nanomaterials can have nontrivial physical and mechanical properties which are potentially useful in many applications. Interestingly, in some cases, it is possible to create heterostructures composed of weakly and strongly stretched domains with the same chemical composition, as has been demonstrated for some polymer chains, DNA, and intermetallic nanowires supporting this effect of two-phase stretching. These materials, at relatively strong tension forces, split into domains with smaller and larger tensile strains. Within this region, average strain increases at constant tensile force due to the growth of the domain with the larger strain, at the expense of the domain with smaller strain. Here, the two-phase stretching phenomenon is described for graphene nanoribbons with the help of molecular dynamics simulations. This unprecedented feature of graphene that is revealed in our study is related to the peculiarities of nucleation and the motion of the domain walls separating the domains of different elastic strain. It turns out that the loading–unloading curves exhibit a hysteresis-like behavior due to the energy dissipation during the domain wall nucleation and motion. Here, we put forward the idea of implementing graphene nanoribbons as elastic dampers, efficiently converting mechanical strain energy into heat during cyclic loading–unloading through elastic extension where domains with larger and smaller strains coexist. Furthermore, in the regime of two-phase stretching, graphene nanoribbon is a heterostructure for which the fraction of domains with larger and smaller strain, and consequently its physical and mechanical properties, can be tuned in a controllable manner by applying elastic strain and/or heat.
Graphene nanoribbon as an elastic damper.
Evazzade, Iman; Lobzenko, Ivan P; Saadatmand, Danial; Korznikova, Elena A; Zhou, Kun; Liu, Bo; Dmitriev, Sergey V
2018-05-25
Heterostructures composed of dissimilar two-dimensional nanomaterials can have nontrivial physical and mechanical properties which are potentially useful in many applications. Interestingly, in some cases, it is possible to create heterostructures composed of weakly and strongly stretched domains with the same chemical composition, as has been demonstrated for some polymer chains, DNA, and intermetallic nanowires supporting this effect of two-phase stretching. These materials, at relatively strong tension forces, split into domains with smaller and larger tensile strains. Within this region, average strain increases at constant tensile force due to the growth of the domain with the larger strain, at the expense of the domain with smaller strain. Here, the two-phase stretching phenomenon is described for graphene nanoribbons with the help of molecular dynamics simulations. This unprecedented feature of graphene that is revealed in our study is related to the peculiarities of nucleation and the motion of the domain walls separating the domains of different elastic strain. It turns out that the loading-unloading curves exhibit a hysteresis-like behavior due to the energy dissipation during the domain wall nucleation and motion. Here, we put forward the idea of implementing graphene nanoribbons as elastic dampers, efficiently converting mechanical strain energy into heat during cyclic loading-unloading through elastic extension where domains with larger and smaller strains coexist. Furthermore, in the regime of two-phase stretching, graphene nanoribbon is a heterostructure for which the fraction of domains with larger and smaller strain, and consequently its physical and mechanical properties, can be tuned in a controllable manner by applying elastic strain and/or heat.
Nonrandom γ-TuNA-dependent spatial pattern of microtubule nucleation at the Golgi.
Sanders, Anna A W M; Chang, Kevin; Zhu, Xiaodong; Thoppil, Roslin J; Holmes, William R; Kaverina, Irina
2017-11-07
Noncentrosomal microtubule (MT) nucleation at the Golgi generates MT network asymmetry in motile vertebrate cells. Investigating the Golgi-derived MT (GDMT) distribution, we find that MT asymmetry arises from nonrandom nucleation sites at the Golgi (hotspots). Using computational simulations, we propose two plausible mechanistic models of GDMT nucleation leading to this phenotype. In the "cooperativity" model, formation of a single GDMT promotes further nucleation at the same site. In the "heterogeneous Golgi" model, MT nucleation is dramatically up-regulated at discrete and sparse locations within the Golgi. While MT clustering in hotspots is equally well described by both models, simulating MT length distributions within the cooperativity model fits the data better. Investigating the molecular mechanism underlying hotspot formation, we have found that hotspots are significantly smaller than a Golgi subdomain positive for scaffolding protein AKAP450, which is thought to recruit GDMT nucleation factors. We have further probed potential roles of known GDMT-promoting molecules, including γ-TuRC-mediated nucleation activator (γ-TuNA) domain-containing proteins and MT stabilizer CLASPs. While both γ-TuNA inhibition and lack of CLASPs resulted in drastically decreased GDMT nucleation, computational modeling revealed that only γ-TuNA inhibition suppressed hotspot formation. We conclude that hotspots require γ-TuNA activity, which facilitates clustered GDMT nucleation at distinct Golgi sites. © 2017 Sanders et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Ruth, Max E.; Iacocca, Ezio; Kevrekidis, Panayotis G.; Hoefer, Mark A.
2018-03-01
Stripe domains are narrow, elongated, reversed regions that exist in magnetic materials with perpendicular magnetic anisotropy. They appear as a pair of domain walls that can exhibit topology with a nonzero chirality. Recent experimental and numerical investigations identify an instability of stripe domains along the long direction as a means of nucleating isolated magnetic skyrmions. Here, the onset and nonlinear evolution of transverse instabilities for a dynamic stripe domain known as the bion stripe are investigated. Both nontopological and topological variants of the bion stripe are shown to exhibit a long-wavelength transverse instability with different characteristic features. In the former, small transverse variations in the stripe's width lead to a neck instability that eventually pinches the nontopological stripe into a chain of two-dimensional breathers composed of droplet soliton pairs. In the latter case, small variations in the stripe's center result in a snake instability whose topological structure leads to the nucleation of dynamic magnetic skyrmions and antiskyrmions as well as perimeter-modulated droplets. Quantitative, analytical predictions for both the early, linear evolution and the long-time, nonlinear evolution are achieved using an averaged Lagrangian approach that incorporates both exchange (dispersion) and anisotropy (nonlinearity). The method of analysis is general and can be applied to other filamentary structures.
An exact and efficient first passage time algorithm for reaction-diffusion processes on a 2D-lattice
NASA Astrophysics Data System (ADS)
Bezzola, Andri; Bales, Benjamin B.; Alkire, Richard C.; Petzold, Linda R.
2014-01-01
We present an exact and efficient algorithm for reaction-diffusion-nucleation processes on a 2D-lattice. The algorithm makes use of first passage time (FPT) to replace the computationally intensive simulation of diffusion hops in KMC by larger jumps when particles are far away from step-edges or other particles. Our approach computes exact probability distributions of jump times and target locations in a closed-form formula, based on the eigenvectors and eigenvalues of the corresponding 1D transition matrix, maintaining atomic-scale resolution of resulting shapes of deposit islands. We have applied our method to three different test cases of electrodeposition: pure diffusional aggregation for large ranges of diffusivity rates and for simulation domain sizes of up to 4096×4096 sites, the effect of diffusivity on island shapes and sizes in combination with a KMC edge diffusion, and the calculation of an exclusion zone in front of a step-edge, confirming statistical equivalence to standard KMC simulations. The algorithm achieves significant speedup compared to standard KMC for cases where particles diffuse over long distances before nucleating with other particles or being captured by larger islands.
An exact and efficient first passage time algorithm for reaction–diffusion processes on a 2D-lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezzola, Andri, E-mail: andri.bezzola@gmail.com; Bales, Benjamin B., E-mail: bbbales2@gmail.com; Alkire, Richard C., E-mail: r-alkire@uiuc.edu
2014-01-01
We present an exact and efficient algorithm for reaction–diffusion–nucleation processes on a 2D-lattice. The algorithm makes use of first passage time (FPT) to replace the computationally intensive simulation of diffusion hops in KMC by larger jumps when particles are far away from step-edges or other particles. Our approach computes exact probability distributions of jump times and target locations in a closed-form formula, based on the eigenvectors and eigenvalues of the corresponding 1D transition matrix, maintaining atomic-scale resolution of resulting shapes of deposit islands. We have applied our method to three different test cases of electrodeposition: pure diffusional aggregation for largemore » ranges of diffusivity rates and for simulation domain sizes of up to 4096×4096 sites, the effect of diffusivity on island shapes and sizes in combination with a KMC edge diffusion, and the calculation of an exclusion zone in front of a step-edge, confirming statistical equivalence to standard KMC simulations. The algorithm achieves significant speedup compared to standard KMC for cases where particles diffuse over long distances before nucleating with other particles or being captured by larger islands.« less
NASA Astrophysics Data System (ADS)
Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.
2013-04-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.
Kumar, Amit; Arruda, Thomas M; Tselev, Alexander; Ivanov, Ilia N; Lawton, Jamie S; Zawodzinski, Thomas A; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V
2013-01-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.
Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.
2013-01-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes. PMID:23563856
Thermostability analysis of line-tension-associated nucleation at a gas-liquid interface.
Singha, Sanat Kumar; Das, Prasanta Kumar; Maiti, Biswajit
2017-01-01
The influence of line tension on the thermostability of a droplet nucleated from an oversaturated vapor at the interface of the vapor and another immiscible liquid is investigated. Along with the condition of mechanical equilibrium, the notion of extremization of the reversible work of formation is considered to obtain the critical parameters related to heterogeneous nucleation. From the energetic formulation, the critical reversible work of formation is found to be greater than that of homogeneous nucleation for high value of the positive line tension. On the other hand, for high value of the negative line tension, the critical reversible work of formation becomes negative. Therefore, these thermodynamic instabilities under certain substrate wettability situations necessitate a free-energetics-based stability of the nucleated droplet, because the system energy is not minimized under these conditions. This thermostability is analogous to the transition-based stability proposed by Widom [B. Widom, J. Phys. Chem. 99, 2803 (1995)]10.1021/j100009a041 in the case of partial wetting phenomena along with the positive line tension. The thermostability analysis limits the domain of the solution space of the present critical-value problem as the thermodynamic transformation in connection with homogeneous and workless nucleation is considered. Within the stability range of the geometry-based wetting parameters, three limiting modes of nucleation, i.e., total-dewetting-related homogeneous nucleation, and total-wetting-associated and total-submergence-associated workless nucleation scenarios, are identified. Either of the two related limiting wetting scenarios of workless nucleation, namely, total wetting and total submergence, is found to be favorable depending on the geometry-based wetting conditions. The line-tension-associated nucleation on a liquid surface can be differentiated from that on a rigid substrate, as in the former, the stability based on mechanical equilibrium and a typical case of workless nucleation with complete submergence are observed.
NASA Astrophysics Data System (ADS)
Xu, Sichen; Yin, Jianfeng; Tang, Rujun; Zhang, Wenxu; Peng, Bin; Zhang, Wanli
2017-11-01
The effects of the planar shape anisotropy and biasing field on the magnetization reversal process (MRP) of the diamond-shaped NiFe nano films have been investigated by micromagnetic simulations. Results show that when the length to width ratio (LWR) of the diamond-shaped film is small, the MRP of the diamond-shaped films are sensitive to LWR. But when LWR is larger than 2, a stable domain switching mode is observed which nucleates from the center of the diamond and then expands to the edges. At a fixed LWR, the magnitude of the switching fields decrease with the increase of the biasing field, but the domain switching mode is not affected by the biasing field. Further analysis shows that demagnetization energy dominates over the MRP of the diamond-shaped films. The above LWR dependence of MRP can be well explained by a variation of the shape anisotropic factor with LWR.
Bhate, Manjiri; Wang, Xin; Baum, Jean; Brodsky, Barbara
2002-05-21
The collagen model peptide T1-892 includes a C-terminal nucleation domain, (Gly-Pro-Hyp)(4), and an N-terminal (Gly-X-Y)(6) sequence taken from type I collagen. In osteogenesis imperfecta (OI) and other collagen diseases, single base mutations often convert one Gly to a larger residue, and T1-892 homologues modeling such mutations were synthesized with Gly to Ala substitutions in either the (Gly-Pro-Hyp)(4) domain, Gly25Ala, or the (Gly-X-Y)(6) domain, Gly10Ala. CD and NMR studies show the Gly10Ala peptide forms a normal triple-helix at the C-terminal end and propagates from the C- to the N-terminus until the Gly --> Ala substitution is encountered. At this point, triple-helix folding is terminated and cannot be reinitiated, leaving a nonhelical N-terminus. A decreased thermal stability is observed as a result of the shorter length of the triple-helix. In contrast, introduction of the Gly to Ala replacement at position 25, in the nucleation domain, shifts the monomer/trimer equilibrium toward the monomer form. The increased monomer and lower trimer populations are reflected in the dramatic decrease in triple-helix content and stability. Unlike the Ala replacement at position 10, the Ala substitution in the (Gly-Pro-Hyp)(4) region can still be incorporated into a triple-helix, but at a greatly decreased rate of folding, since the original efficient nucleation site is no longer operative. The specific consequences of Gly to Ala replacements in two distinctive sequences in this triple-helical peptide may help clarify the variability in OI clinical severity resulting from mutations at different sites along type I collagen chains.
BAR domain proteins regulate Rho GTPase signaling.
Aspenström, Pontus
2014-01-01
BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesnel, Karine; Safsten, Alex; Rytting, Matthew
The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same pattern during field cycling, is important for magnetic recording technologies. Here we demonstrate MDM in [Co/Pd]/IrMn films, using coherent X-ray scattering. Under illumination, the magnetic domains in [Co/Pd] produce a speckle pattern, a unique fingerprint of their nanoscale configuration. We measure MDM by cross-correlating speckle patterns throughout magnetization processes. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-coupling with the underlying IrMn layer.more » The degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. Lastly, if the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation. Our findings show how to fully control the occurrence of MDM by field cooling.« less
Singer, Andrej; Boucheron, Leandra; Dietze, Sebastian H.; Jensen, Katharine E.; Vine, David; McNulty, Ian; Dufresne, Eric R.; Prum, Richard O.; Mochrie, Simon G. J.; Shpyrko, Oleg G.
2016-01-01
Many organisms in nature have evolved sophisticated cellular mechanisms to produce photonic nanostructures and, in recent years, diverse crystalline symmetries have been identified and related to macroscopic optical properties. However, because we know little about the distributions of domain sizes, the orientations of photonic crystals, and the nature of defects in these structures, we are unable to make the connection between the nanostructure and its development and functionality. We report on nondestructive studies of the morphology of chitinous photonic crystals in butterfly wing scales. Using spatially and angularly resolved x-ray diffraction, we find that the domains are highly oriented with respect to the whole scale, indicating growth from scale boundaries. X-ray coherent diffractive imaging reveals two types of crystalline domain interfaces: abrupt changes between domains emerging from distinct nucleation sites and smooth transitions with edge dislocations presumably resulting from internal stresses during nanostructure development. Our study of the scale structure reveals new aspects of photonic crystal growth in butterfly wings and shows their similarity to block copolymer materials. It opens new avenues to exploration of fundamental processes underlying the growth of biological photonic nanostructures in a variety of species. PMID:27386575
Singer, Andrej; Boucheron, Leandra; Dietze, Sebastian H; Jensen, Katharine E; Vine, David; McNulty, Ian; Dufresne, Eric R; Prum, Richard O; Mochrie, Simon G J; Shpyrko, Oleg G
2016-06-01
Many organisms in nature have evolved sophisticated cellular mechanisms to produce photonic nanostructures and, in recent years, diverse crystalline symmetries have been identified and related to macroscopic optical properties. However, because we know little about the distributions of domain sizes, the orientations of photonic crystals, and the nature of defects in these structures, we are unable to make the connection between the nanostructure and its development and functionality. We report on nondestructive studies of the morphology of chitinous photonic crystals in butterfly wing scales. Using spatially and angularly resolved x-ray diffraction, we find that the domains are highly oriented with respect to the whole scale, indicating growth from scale boundaries. X-ray coherent diffractive imaging reveals two types of crystalline domain interfaces: abrupt changes between domains emerging from distinct nucleation sites and smooth transitions with edge dislocations presumably resulting from internal stresses during nanostructure development. Our study of the scale structure reveals new aspects of photonic crystal growth in butterfly wings and shows their similarity to block copolymer materials. It opens new avenues to exploration of fundamental processes underlying the growth of biological photonic nanostructures in a variety of species.
NASA Astrophysics Data System (ADS)
Zhang, Ming; Cao, Gaolong; Tian, Huanfang; Sun, Shuaishuai; Li, Zhongwen; Li, Xingyuan; Guo, Cong; Li, Zian; Yang, Huaixin; Li, Jianqi
2017-11-01
The photoinduced martensitic (MT) transition and reverse transition in a shape memory alloy M n50N i40S n10 have been examined by using high spatiotemporal resolution four-dimensional transmission electron microscopy (4D-TEM), and the experimental results clearly demonstrate that the MT transition and reverse transition in this Heusler alloy contain a variety of structural dynamic features at picosecond time scales. The 4D-TEM imaging and diffraction observations clearly show that MT transition and MT domain nucleation, which are related to cooperative atomic motions, occur at between 10 and 20 ps, depending on the thickness of the sample. Moreover, a strong coupling between the MT transition and lattice breathing mode is discovered in this system, which can result in a periodic structural oscillation between the MT phase and austenitic (AUS) phase. This allows us to directly observe the MT nucleation and domain wall motions in transient states using high spatiotemporal imaging. A careful analysis of the ultrafast images demonstrates the presence of remarkable transient states, which exhibit the essential features of MT nucleation, lattice symmetry breaking, and a rapid growth of MT plates. These results not only provide insights into the time-resolved structural dynamics and elementary mechanisms that govern the MT transition but also contribute to the development of a novel technique for future 4D-TEM investigations.
Mesoscopic Metal-Insulator Transition at Ferroelastic Domain Walls in VO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Keith M; Kalinin, Sergei V; Kolmakov, Andrei
2010-01-01
The novel phenomena induced by symmetry breaking at homointerfaces between ferroic variants in ferroelectric and ferroelastic materials have attracted recently much attention. Using variable temperature scanning microwave microscopy, we demonstrate the mesoscopic strain-induced metal-insulator phase transitions in the vicinity of ferroelastic domain walls in the semiconductive VO2 that nucleated at temperatures as much as 10-12 C below bulk transition, resulting in the formation of conductive channels in the material. Density functional theory is used to rationalize the process low activation energy. This behavior, linked to the strain inhomogeneity inherent in ferroelastic materials, can strongly affect interpretation of phase-transition studies inmore » VO2 and similar materials with symmetry-lowering transitions, and can also be used to enable new generations of electronic devices though strain engineering of conductive and semiconductive regions.« less
NASA Astrophysics Data System (ADS)
Tanaka, S.; Kubo, Y.; Yokoyama, Y.; Toda, A.; Taguchi, K.; Kajioka, H.
2011-12-01
We investigated the phase separation phenomena in dilute surfactant pentaethylene glycol monodedecyl ether (C12E5) solutions focusing on the growth law of separated domains. The solutions confined between two glass plates were found to exhibit the phase inversion, characteristic of the viscoelastic phase separation; the majority phase (water-rich phase) nucleated as droplets and the minority phase (micelle-rich phase) formed a network temporarily, then they collapsed into an usual sea-island pattern where minority phase formed islands. We found from the real-space microscopic imaging that the dynamic scaling hypothesis did not hold throughout the coarsening process. The power law growth of the domains with the exponent close to 1/3 was observed even though the coarsening was induced mainly by hydrodynamic flow, which was explained by Darcy's law of laminar flow.
Magnetic Properties of NdFe10Mo2-N Bonded Magnet
NASA Astrophysics Data System (ADS)
Zhang, Hong-Wei; Hu, Bo-Ping; Han, Zhong-Fan; Jin, Han-Min; Fu, Quan
1997-06-01
The dependence of remanence and coercivity on the magnetizing field is studied for isotropic and anisotropic epoxy resin bonded magnets. It was found that the coercivity of the NdFe10Mo2-N bonded magnet is mainly controlled by nucleation of reversed magnetic domains. Variation of iHc with Zn content and heat treatment conditions is studied. The value of 0 iHc obtained in the best Zn-bonded condition is about 0.15 T higher than before bonding. The variation of the amount of α-Fe with processing conditions is demonstrated for anisotropic Zn-bonded magnets.
Black holes and the multiverse
NASA Astrophysics Data System (ADS)
Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun
2016-02-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.
Experiments on Nucleation in Different Flow Regimes
NASA Technical Reports Server (NTRS)
Bayuzick, Robert J.
1999-01-01
The vast majority of metallic engineering materials are solidified from the liquid phase. Understanding the solidification process is essential to control microstructure, which in turn, determines the properties of materials. The genesis of solidification is nucleation, where the first stable solid forms from the liquid phase. Nucleation kinetics determine the degree of undercooling and phase selection. As such, it is important to understand nucleation phenomena in order to control solidification or glass formation in metals and alloys. Early experiments in nucleation kinetics were accomplished by droplet dispersion methods [1-6]. Dilitometry was used by Turnbull and others, and more recently differential thermal analysis and differential scanning calorimetry have been used for kinetic studies. These techniques have enjoyed success; however, there are difficulties with these experiments. Since materials are dispersed in a medium, the character of the emulsion/metal interface affects the nucleation behavior. Statistics are derived from the large number of particles observed in a single experiment, but dispersions have a finite size distribution which adds to the uncertainty of the kinetic determinations. Even though temperature can be controlled quite well before the onset of nucleation, the release of the latent heat of fusion during nucleation of particles complicates the assumption of isothermality during these experiments. Containerless processing has enabled another approach to the study of nucleation kinetics [7]. With levitation techniques it is possible to undercool one sample to nucleation repeatedly in a controlled manner, such that the statistics of the nucleation process can be derived from multiple experiments on a single sample. The authors have fully developed the analysis of nucleation experiments on single samples following the suggestions of Skripov [8]. The advantage of these experiments is that the samples are directly observable. The nucleation temperature can be measured by noncontact optical pyrometry, the mass of the sample is known, and post processing analysis can be conducted on the sample. The disadvantages are that temperature measurement must have exceptionally high precision, and it is not possible to isolate specific heterogeneous sites as in droplet dispersions.
Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions.
Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z
2018-01-28
We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.
Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions
NASA Astrophysics Data System (ADS)
Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.
2018-01-01
We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.
Correlation between the ripple phase and stripe domains in membranes.
Bernchou, Uffe; Midtiby, Henrik; Ipsen, John Hjort; Simonsen, Adam Cohen
2011-12-01
We investigate the relationship between stripe domains and the ripple phase in membranes. These have previously been observed separately without being linked explicitly. Past results have demonstrated that solid and ripple phases exhibit rich textural patterns related to the orientational order of tilted lipids and the orientation of ripple corrugations. Here we reveal a highly complex network pattern of ripple and solid domains in DLPC, DPPC bilayers with structures covering length scales from 10 nm to 100 μm. Using spincoated double supported membranes we investigate domains by correlated AFM and fluorescence microscopy. Cooling experiments demonstrate the mode of nucleation and growth of stripe domains enriched in the fluorescent probe. Concurrent AFM imaging reveals that these stripe domains have a one-to-one correspondence with a rippled morphology running parallel to the stripe direction. Both thin and thick stripe domains are observed having ripple periods of 13.5±0.2 nm and 27.4±0.6 nm respectively. These are equivalent to previously observed asymmetric/equilibrium and symmetric/metastable ripple phases, respectively. Thin stripes grow from small solid domains and grow predominantly in length with a speed of ~3 times that of the thick stripes. Thick stripes grow by templating on the sides of thinner stripes or can emerge directly from the fluid phase. Bending and branching angles of stripes are in accordance with an underlying six fold lattice. We discuss mechanisms for the nucleation and growth of ripples and discuss a generic phase diagram that may partly rationalize the coexistence of metastable and stable phases. Copyright © 2011 Elsevier B.V. All rights reserved.
Preface: Special Topic on Nucleation: New Concepts and Discoveries.
Kelton, K F; Frenkel, Daan
2016-12-07
Many phenomena in the world around us depend on infrequent, yet short-lived, events that completely alter how a system subsequently develops in time. In the physical sciences, there are many examples of such crucial "rare events." Among the most important of these are nucleation processes, in which, due to a rare fluctuation, a new phase forms spontaneously within a meta-stable parent phase. Because nucleation processes are both rare and rapid and happen on a microscopic spatial scale, their experimental study is challenging. In recent years, there have been major developments both in the experimental study of nucleation phenomena and in the numerical simulation of such processes. As the articles in this special issue demonstrate, these recent advances in the ability to probe nucleation phenomena have transformed our understanding of the field.
Experiments on Nucleation in Different Flow Regimes
NASA Technical Reports Server (NTRS)
Bayuzick, R. J.; Hofmeister, W. H.; Morton, C. M.; Robinson, M. B.
1998-01-01
The vast majority of metallic engineering materials are solidified from the liquid phase. Understanding the solidification process is essential to control microstructure, which in turn, determines the properties of materials. The genesis of solidification is nucleation, where the first stable solid forms from the liquid phase. Nucleation kinetics determine the degree of undercooling and phase selection. As such, it is important to understand nucleation phenomena in order to control solidification or glass formation in metals and alloys. Early experiments in nucleation kinetics were accomplished by droplet dispersion methods. Dilitometry was used by Turnbull and others, and more recently differential thermal analysis and differential scanning calorimetry have been used for kinetic studies. These techniques have enjoyed success; however, there are difficulties with these experiments. Since materials are dispersed in a medium, the character of the emulsion/metal interface affects the nucleation behavior. Statistics are derived from the large number of particles observed in a single experiment, but dispersions have a finite size distribution which adds to the uncertainty of the kinetic determinations. Even though temperature can be controlled quite well before the onset of nucleation, the release of the latent heat of fusion during nucleation of particles complicates the assumption of isothermality during these experiments. Containerless processing has enabled another approach to the study of nucleation kinetics. With levitation techniques it is possible to undercool one sample to nucleation repeatedly in a controlled manner, such that the statistics of the nucleation process can be derived from multiple experiments on a single sample. The authors have fully developed the analysis of nucleation experiments on single samples following the suggestions of Skripov. The advantage of these experiments is that the samples are directly observable. The nucleation temperature can be measured by noncontact optical pyrometry, the mass of the sample is known, and post-processing analysis can be conducted on the sample. The disadvantages are that temperature measurement must have exceptionally high precision, and it is not possible to isolate specific heterogeneous sites as in droplet dispersions. Levitation processing of refractory materials in ultra high vacuum provides an avenue to conduct these kinetic studies on single samples. Two experimental methods have been identified where ultra high vacuum experiments are possible; electrostatic levitation in ground-based experiments and electromagnetic processing in low earth orbit on TEMPUS. Such experiments, reported here, were conducted on zirconium. Liquid zirconium is an excellent solvent and has a high solubility for contaminants contained in the bulk material as well as those contaminants found in the vacuum environment. Oxides, nitrides, and carbides do not exist in the melt, and do not form on the surface of molten zirconium, for the materials and vacuum levels used in this study. Ground-based experiments with electrostatic levitation have shown that the statistical nucleation kinetic experiments are viable and yield results which are consistent with classical nucleation theory. The advantage of low earth orbit experiments is the ability to vary the flow conditions in the liquid prior to nucleation. The put-pose of nucleation experiments in TEMPUS was to examine.
NASA Astrophysics Data System (ADS)
Niedermeier, Dennis; Ervens, Barbara; Clauss, Tina; Voigtländer, Jens; Wex, Heike; Hartmann, Susan; Stratmann, Frank
2014-01-01
In a recent study, the Soccer ball model (SBM) was introduced for modeling and/or parameterizing heterogeneous ice nucleation processes. The model applies classical nucleation theory. It allows for a consistent description of both apparently singular and stochastic ice nucleation behavior, by distributing contact angles over the nucleation sites of a particle population assuming a Gaussian probability density function. The original SBM utilizes the Monte Carlo technique, which hampers its usage in atmospheric models, as fairly time-consuming calculations must be performed to obtain statistically significant results. Thus, we have developed a simplified and computationally more efficient version of the SBM. We successfully used the new SBM to parameterize experimental nucleation data of, e.g., bacterial ice nucleation. Both SBMs give identical results; however, the new model is computationally less expensive as confirmed by cloud parcel simulations. Therefore, it is a suitable tool for describing heterogeneous ice nucleation processes in atmospheric models.
Controlling the crystal polymorph by exploiting the time dependence of nucleation rates.
Little, Laurie J; King, Alice A K; Sear, Richard P; Keddie, Joseph L
2017-10-14
Most substances can crystallise into two or more different crystal lattices called polymorphs. Despite this, there are no systems in which we can quantitatively predict the probability of one competing polymorph forming instead of the other. We address this problem using large scale (hundreds of events) studies of the competing nucleation of the alpha and gamma polymorphs of glycine. In situ Raman spectroscopy is used to identify the polymorph of each crystal. We find that the nucleation kinetics of the two polymorphs is very different. Nucleation of the alpha polymorph starts off slowly but accelerates, while nucleation of the gamma polymorph starts off fast but then slows. We exploit this difference to increase the purity with which we obtain the gamma polymorph by a factor of ten. The statistics of the nucleation of crystals is analogous to that of human mortality, and using a result from medical statistics, we show that conventional nucleation data can say nothing about what, if any, are the correlations between competing nucleation processes. Thus we can show that with data of our form it is impossible to disentangle the competing nucleation processes. We also find that the growth rate and the shape of a crystal depend on it when nucleated. This is new evidence that nucleation and growth are linked.
Heterogeneous ice nucleation of α-pinene SOA particles before and after ice cloud processing
NASA Astrophysics Data System (ADS)
Wagner, Robert; Höhler, Kristina; Huang, Wei; Kiselev, Alexei; Möhler, Ottmar; Mohr, Claudia; Pajunoja, Aki; Saathoff, Harald; Schiebel, Thea; Shen, Xiaoli; Virtanen, Annele
2017-05-01
The ice nucleation ability of α-pinene secondary organic aerosol (SOA) particles was investigated at temperatures between 253 and 205 K in the Aerosol Interaction and Dynamics in the Atmosphere cloud simulation chamber. Pristine SOA particles were nucleated and grown from pure gas precursors and then subjected to repeated expansion cooling cycles to compare their intrinsic ice nucleation ability during the first nucleation event with that observed after ice cloud processing. The unprocessed α-pinene SOA particles were found to be inefficient ice-nucleating particles at cirrus temperatures, with nucleation onsets (for an activated fraction of 0.1%) as high as for the homogeneous freezing of aqueous solution droplets. Ice cloud processing at temperatures below 235 K only marginally improved the particles' ice nucleation ability and did not significantly alter their morphology. In contrast, the particles' morphology and ice nucleation ability was substantially modified upon ice cloud processing in a simulated convective cloud system, where the α-pinene SOA particles were first activated to supercooled cloud droplets and then froze homogeneously at about 235 K. As evidenced by electron microscopy, the α-pinene SOA particles adopted a highly porous morphology during such a freeze-drying cycle. When probing the freeze-dried particles in succeeding expansion cooling runs in the mixed-phase cloud regime up to 253 K, the increase in relative humidity led to a collapse of the porous structure. Heterogeneous ice formation was observed after the droplet activation of the collapsed, freeze-dried SOA particles, presumably caused by ice remnants in the highly viscous material or the larger surface area of the particles.
Gillijns, W; Aladyshkin, A Yu; Lange, M; Van Bael, M J; Moshchalkov, V V
2005-11-25
Domain-wall superconductivity is studied in a superconducting Nb film placed between two ferromagnetic Co/Pd multilayers with perpendicular magnetization. The parameters of top and bottom ferromagnetic films are chosen to provide different coercive fields, so that the magnetic domain structure of the ferromagnets can be selectively controlled. From the dependence of the critical temperature Tc on the applied magnetic field H, we have found evidence for domain-wall superconductivity in this three-layered F/S/F structure for different magnetic domain patterns. The phase boundary, calculated numerically for this structure from the linearized Ginzburg-Landau equation, is in good agreement with the experimental data.
Two-Dimensional Nucleation on the Terrace of Colloidal Crystals with Added Polymers.
Nozawa, Jun; Uda, Satoshi; Guo, Suxia; Hu, Sumeng; Toyotama, Akiko; Yamanaka, Junpei; Okada, Junpei; Koizumi, Haruhiko
2017-04-04
Understanding nucleation dynamics is important both fundamentally and technologically in materials science and other scientific fields. Two-dimensional (2D) nucleation is the predominant growth mechanism in colloidal crystallization, in which the particle interaction is attractive, and has recently been regarded as a promising method to fabricate varieties of complex nanostructures possessing innovative functionality. Here, polymers are added to a colloidal suspension to generate a depletion attractive force, and the detailed 2D nucleation process on the terrace of the colloidal crystals is investigated. In the system, we first measured the nucleation rate at various area fractions of particles on the terrace, ϕ area . In situ observations at single-particle resolution revealed that nucleation behavior follows the framework of classical nucleation theory (CNT), such as single-step nucleation pathway and existence of critical size. Characteristic nucleation behavior is observed in that the nucleation and growth stage are clearly differentiated. When many nuclei form in a small area of the terrace, a high density of kink sites of once formed islands makes growth more likely to occur than further nucleation because nucleation has a higher energy barrier than growth. The steady-state homogeneous 2D nucleation rate, J, and the critical size of nuclei, r*, are measured by in situ observations based on the CNT, which enable us to obtain the step free energy, γ, which is an important parameter for characterizing the nucleation process. The γ value is found to change according to the strength of attraction, which is tuned by the concentration of the polymer as a depletant.
Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review.
Geidobler, R; Winter, G
2013-10-01
In the scientific community as well as in commercial freeze-drying, controlled ice nucleation has received a lot of attention because increasing the ice nucleation temperature can significantly reduce primary drying duration. Furthermore, controlled ice nucleation enables to reduce the randomness of the ice nucleation temperature, which can be a serious scale-up issue during process development. In this review, fundamentals of ice nucleation in the field of freeze-drying are presented. Furthermore, the impact of controlled ice nucleation on product qualities is discussed, and methods to achieve controlled ice nucleation are presented. Copyright © 2013 Elsevier B.V. All rights reserved.
Formation of surface nanobubbles on nanostructured substrates.
Wang, Lei; Wang, Xingya; Wang, Liansheng; Hu, Jun; Wang, Chun Lei; Zhao, Binyu; Zhang, Xuehua; Tai, Renzhong; He, Mengdong; Chen, Liqun; Zhang, Lijuan
2017-01-19
The nucleation and stability of nanoscale gas bubbles located at a solid/liquid interface are attracting significant research interest. It is known that the physical and chemical properties of the solid surface are crucial for the formation and properties of the surface nanobubbles. Herein, we experimentally and numerically investigated the formation of nanobubbles on nanostructured substrates. Two kinds of nanopatterned surfaces, namely, nanotrenches and nanopores, were fabricated using an electron beam lithography technique and used as substrates for the formation of nanobubbles. Atomic force microscopy images showed that all nanobubbles were selectively located on the hydrophobic domains but not on the hydrophilic domains. The sizes and contact angles of the nanobubbles became smaller with a decrease in the size of the hydrophobic domains. The results indicated that the formation and stability of the nanobubbles could be controlled by regulating the sizes and periods of confinement of the hydrophobic nanopatterns. The experimental results were also supported by molecular dynamics simulations. The present study will be very helpful for understanding the effects of surface features on the nucleation and stability of nanobubbles/nanodroplets at a solid/liquid interface.
Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation
NASA Astrophysics Data System (ADS)
Nakasuji, Toshiki; Morishita, Kazunori; Ruan, Xiaoyong
2017-02-01
A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP's composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.
Structural basis of Arp2/3 complex inhibition by GMF, Coronin, and Arpin
Sokolova, Olga S.; Chemeris, Angelina; Guo, Siyang; Alioto, Salvatore L.; Gandhi, Meghal; Padrick, Shae; Pechnikova, Evgeniya; David, Violaine; Gautreau, Alexis; Goode, Bruce L.
2017-01-01
The evolutionarily conserved Arp2/3 complex plays a central role in nucleating the branched actin filament arrays that drive cell migration, endocytosis, and other processes. To better understand Arp2/3 complex regulation, we used single particle electron microscopy to compare the structures of Arp2/3 complex bound to three different inhibitory ligands: GMF, Coronin, and Arpin. Although the three inhibitors have distinct binding sites on Arp2/3 complex, they each induced an ‘open’ nucleation-inactive conformation. Coronin promoted a standard (previously described) open conformation of Arp2/3 complex, with the N-terminal β-propeller domain of Coronin positioned near the p35/ARPC2 subunit of Arp2/3 complex. GMF induced two distinct open conformations of Arp2/3 complex, which correlated with two suggested binding sites for GMF. Further, GMF synergized with Coronin in inhibiting actin nucleation by Arp2/3 complex. Arpin, which uses VCA-related acidic (A) motifs to interact with the Arp2/3 complex, induced the standard open conformation, and two new masses appeared at positions near Arp2 and Arp3. Further, Arpin showed additive inhibitory effects on Arp2/3 complex with Coronin and GMF. Together, these data suggest that Arp2/3 complex conformation is highly polymorphic and that its activities can be controlled combinatorially by different inhibitory ligands. PMID:27939292
Evolution of atomic structure during nanoparticle formation
Tyrsted, Christoffer; Lock, Nina; Jensen, Kirsten M. Ø.; ...
2014-04-14
Understanding the mechanism of nanoparticle formation during synthesis is a key prerequisite for the rational design and engineering of desirable materials properties, yet remains elusive due to the difficulty of studying structures at the nanoscale under real conditions. Here, the first comprehensive structural description of the formation of a nanoparticle, yttria-stabilized zirconia (YSZ), all the way from its ionic constituents in solution to the final crystal, is presented. The transformation is a complicated multi-step sequence of atomic reorganizations as the material follows the reaction pathway towards the equilibrium product. Prior to nanoparticle nucleation, reagents reorganize into polymeric species whose structuremore » is incompatible with the final product. Instead of direct nucleation of clusters into the final product lattice, a highly disordered intermediate precipitate forms with a local bonding environment similar to the product yet lacking the correct topology. During maturation, bond reforming occurs by nucleation and growth of distinct domains within the amorphous intermediary. The present study moves beyond kinetic modeling by providing detailed real-time structural insight, and it is demonstrated that YSZ nanoparticle formation and growth is a more complex chemical process than accounted for in conventional models. This level of mechanistic understanding of the nanoparticle formation is the first step towards more rational control over nanoparticle synthesis through control of both solution precursors and reaction intermediaries.« less
Heterogeneous Nucleation of Methane Hydrate in a Water-Decane-Methane Emulsion
NASA Astrophysics Data System (ADS)
Shestakov, V. A.; Kosyakov, V. I.; Manakov, A. Yu.; Stoporev, A. S.; Grachev, E. V.
2018-07-01
Heterogeneous nucleation in disperse systems with metastable disperse phases plays an important role in the mechanisms of environmental and technological processes. The effect the concentration and activity of particles that initiate the formation of a new phase have on nucleation processes in such systems is considered. An approach is proposed that allows construction of a spectrum of particle activity characterizing the features of nucleation in a sample, based on the fraction of crystallized droplets depending on the level of supercooling and the use of Weibull's distribution. The proposed method is used to describe experimental data on the heterogeneous nucleation of methane hydrate in an emulsion in a water-decane-methane system.
Surface nanobubble nucleation dynamics during water-ethanol exchange
NASA Astrophysics Data System (ADS)
Chan, Chon U.; Ohl, Claus-Dieter
2015-11-01
Water-ethanol exchange has been a promising nucleation method for surface attached nanobubbles since their discovery. In this process, water and ethanol displace each other sequentially on a substrate. As the gas solubility is 36 times higher in ethanol than water, it was suggested that the exchange process leads to transient supersaturation and is responsible for the nanobubble nucleation. In this work, we visualize the nucleation dynamics by controllably mixing water and ethanol. It depicts the temporal evolution of the conventional exchange in a single field of view, detailing the conditions for surface nanobubble nucleation and the flow field that influences their spatial organization. This technique can also pattern surface nanobubbles with variable size distribution.
Carter, W G; Wayner, E A
1988-03-25
We previously identified a 90-kDa cell surface glycoprotein, termed the class III collagen receptor (CRIII), that bound to collagen in affinity chromatography experiments (Wayner, E. A., and Carter, W. G. (1987) J. Cell Biol. 105, 1873-1884). Here, we utilize monoclonal antibodies to define three domains of the CRIII, hydrophobic transmembrane, phosphorylated cytoplasmic, and glycosylated extracellular. The domain designations are based on the following characteristics. (i) Differential extraction, phase partitioning with Triton X-114, and incorporation into liposomes all indicate that the CRIII is an intrinsic membrane receptor with a hydrophobic domain. After incorporation into liposomes the CRIII binds collagen. (ii) Immunofluorescence microscopy reveals that most nucleated cells express the CRIII and that after extraction with Triton X-100, the Triton-insoluble CRIII distributes in a fibrillar pattern at the cell periphery and in closed loops that partially co-distributed with vimentin. The CRIII contains phosphoserine residues which are located on a cytoplasmic domain that may interact with the cytoskeleton. (iii) The CRIII contains 25% carbohydrate in 8-10 asparagine-linked carbohydrate chains of 2800 daltons each bound to a 65-kDa core peptide in the extracellular domain. Peptide mapping with trypsin defined a glycosylated 27-kDa extracellular fragment and a phosphorylated and glycosylated 35-kDa transmembrane fragment. These data suggest a model for the CRIII that links the cytoskeleton with the extracellular matrix.
The Stress-Dependent Activation Parameters for Dislocation Nucleation in Molybdenum Nanoparticles.
Chachamovitz, Doron; Mordehai, Dan
2018-03-02
Many specimens at the nanoscale are pristine of dislocations, line defects which are the main carriers of plasticity. As a result, they exhibit extremely high strengths which are dislocation-nucleation controlled. Since nucleation is a thermally activated process, it is essential to quantify the stress-dependent activation parameters for dislocation nucleation in order to study the strength of specimens at the nanoscale and its distribution. In this work, we calculate the strength of Mo nanoparticles in molecular dynamics simulations and we propose a method to extract the activation free-energy barrier for dislocation nucleation from the distribution of the results. We show that by deforming the nanoparticles at a constant strain rate, their strength distribution can be approximated by a normal distribution, from which the activation volumes at different stresses and temperatures are calculated directly. We found that the activation energy dependency on the stress near spontaneous nucleation conditions obeys a power-law with a critical exponent of approximately 3/2, which is in accordance with critical exponents found in other thermally activated processes but never for dislocation nucleation. Additionally, significant activation entropies were calculated. Finally, we generalize the approach to calculate the activation parameters for other driving-force dependent thermally activated processes.
Classical nucleation theory in the phase-field crystal model
NASA Astrophysics Data System (ADS)
Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas
2018-04-01
A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.
Classical nucleation theory in the phase-field crystal model.
Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas
2018-04-01
A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.
Hydrodynamic cavitation in Stokes flow of anisotropic fluids.
Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G; Sengupta, Anupam
2017-05-30
Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.
Hydrodynamic cavitation in Stokes flow of anisotropic fluids
Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam
2017-01-01
Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids. PMID:28555615
Hydrodynamic cavitation in Stokes flow of anisotropic fluids
NASA Astrophysics Data System (ADS)
Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam
2017-05-01
Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.
Zhang, Kai; Du, Kai; Liu, Hao; ...
2015-07-20
The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. In this paper, by fabricating antidot arrays in La 0.325Pr 0.3Ca 0.375MnO 3 (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal–insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM phase domains increasing the metal–insulator transition withmore » decreasing temperature or increasing magnetic field. Finally, this study points to a way in which electronic phase separation in manganites can be artificially controlled without changing chemical composition or applying external field.« less
Nanostructures nucleation in carbon-metal gaseous phase: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Galiullina, G. M.; Orekhov, N. D.; Stegailov, V. V.
2018-01-01
We perform nonequilibrium molecular dynamics simulation of carbon nanoclusters nucleation and early stages of growth from the gaseous phase. We analyze the catalytic effect of iron atoms on the nucleation kinetics and structure of the resultant nanoparticles. Reactive Force Field (ReaxFF) is used in the simulations for the description of bond formation and dissociation during the nucleation process at the nanoscale. The catalytic effect of iron reveals itself even on nanosecond simulation times: iron atoms accelerate the process of clustering but result in less graphitized carbon structures.
Heterogeneous Nucleation of Colloidal Crystals on a Glass Substrate with Depletion Attraction.
Guo, Suxia; Nozawa, Jun; Hu, Sumeng; Koizumi, Haruhiko; Okada, Junpei; Uda, Satoshi
2017-10-10
The heterogeneous nucleation of colloidal crystals with attractive interactions has been investigated via in situ observations. We have found two types of nucleation processes: a cluster that overcomes the critical size for nucleation with a monolayer, and a method that occurs with two layers. The Gibbs free energy changes (ΔG) for these two types of nucleation processes are evaluated by taking into account the effect of various interfacial energies. In contrast to homogeneous nucleation, the change in interfacial free energy, Δσ, is generated for colloidal nucleation on a foreign substrate such as a cover glass in the present study. The Δσ and step free energy of the first layer, γ 1 , are obtained experimentally based on the equation deduced from classical nucleation theory (CNT). It is concluded that the ΔG of q-2D nuclei is smaller than of monolayer nuclei, provided that the same number of particles are used, which explains the experimental result that the critical size in q-2D nuclei is smaller than that in monolayer nuclei.
Modeling Studying the Role of Bacteria on ice Nucleation Processes
NASA Astrophysics Data System (ADS)
Sun, J.
2006-12-01
Certain air-borne bacteria have been recognized as active ice nuclei at the temperatures warm than - 10°C. Ice nucleating bacteria commonly found in plants and ocean surface. These ice nucleating bacteria are readily disseminated into the atmosphere and have been observed in clouds and hailstones, and their importance in cloud formation process and precipitation, as well as causing diseases in plants and animal kingdom, have been considered for over two decades, but their significance in atmospheric processes are yet to be understood. A 1.5-D non-hydrostatic cumulus cloud model with bin-resolved microphysics is developed and is to used to examine the relative importance of sulphate aerosol concentrations on the evolution of cumulus cloud droplet spectra and ice multiplication process, as well as ice initiation process by ice nucleating bacteria in the growing stage of cumulus clouds and the key role of this process on the ice multiplication in the subsequent dissipating stage of cumulus clouds. In this paper, we will present some sensitivity test results of the evolution of cumulus cloud spectra, ice concentrations at various concentrations of sulfate aerosols, and at different ideal sounding profiles. We will discuss the implication of our results in understanding of ice nucleation processes.
NASA Astrophysics Data System (ADS)
Herlach, Dieter M.; Kobold, Raphael; Klein, Stefan
2018-03-01
Glass formation of a liquid undercooled below its melting temperature requires the complete avoidance of crystal nucleation and subsequent crystal growth. Even though they are not part of the glass formation process, a detailed knowledge of both processes involved in crystallization is mandatory to determine the glass-forming ability of metals and metallic alloys. In the present work, methods of containerless processing of drops by electrostatic and electromagnetic levitation are applied to undercool metallic melts prior to solidification. Heterogeneous nucleation on crucible walls is completely avoided giving access to large undercoolings. A freely suspended drop offers the additional benefit of showing the rapid crystallization process of an undercooled melt in situ by proper diagnostic means. As a reference, crystal nucleation and dendrite growth in the undercooled melt of pure Zr are experimentally investigated. Equivalently, binary Zr-Cu, Zr-Ni and Zr-Pd and ternary Zr-Ni-Cu alloys are studied, whose glass-forming abilities differ. The experimental results are analyzed within classical nucleation theory and models of dendrite growth. The findings give detailed knowledge about the nucleation-undercooling statistics and the growth kinetics over a large range of undercooling.
NASA Astrophysics Data System (ADS)
Salma, Imre; Varga, Veronika; Németh, Zoltán
2017-12-01
Effects of a new aerosol particle formation (NPF) and particle diameter growth process as a single source of atmospheric particle number concentrations were evaluated and quantified on the basis of experimental data sets obtained from particle number size distribution measurements in the city centre and near-city background of Budapest for 5 years. Nucleation strength factors for a nucleation day (NSFNUC) and for a general day (NSFGEN) were derived separately for seasons and full years. The former characteristic represents the concentration increment of ultrafine (UF) particles specifically on nucleation days with respect to accumulation-mode (regional background) concentrations (particles with equivalent diameters of 100-1000 nm; N100-1000) due solely to the nucleation process. The latter factor expresses the contribution of nucleation to particle numbers on general days; thus, it represents a longer time interval such as season or year. The nucleation source had the largest effect on the concentrations around noon and early afternoon, as expected. During this time interval, it became the major source of particles in the near-city background. Nucleation increased the daily mean concentrations on nucleation days by mean factors of 2.3 and 1.58 in the near-city background and city centre, respectively. Its effect was largest in winter, which was explained by the substantially lower N100-1000 levels on nucleation days than those on non-nucleation days. On an annual timescale, 37 % of the UF particles were generated by nucleation in the near-city background, while NPF produced 13 % of UF particles in the city centre. The differences among the annual mean values, and among the corresponding seasonal mean values, were likely caused by the variability in controlling factors from year to year. The values obtained represent the lower limits of the contributions. The shares determined imply that NPF is a non-negligible or substantial source of particles in near-city background environments and even in city centres, where the vehicular road emissions usually prevail. Atmospheric residence time of nucleation-mode particles was assessed by a decay curve analysis, and a mean of 02:30 was obtained. The present study suggests that the health-related consequences of the atmospheric NPF and growth process in cities should also be considered in addition to its urban climate implications.
Numerical investigation of homogeneous cavitation nucleation in a microchannel
NASA Astrophysics Data System (ADS)
Lyu, Xiuxiu; Pan, Shucheng; Hu, Xiangyu; Adams, Nikolaus A.
2018-06-01
The physics of nucleation in water is an important issue for many areas, ranging from biomedical to engineering applications. Within the present study, we investigate numerically homogeneous nucleation in a microchannel induced by shock reflection to gain a better understanding of the mechanism of homogeneous nucleation. The liquid expands due to the reflected shock and homogeneous cavitation nuclei are generated. An Eulerian-Lagrangian approach is employed for modeling this process in a microchanel. Two-dimensional axisymmetric Euler equations are solved for obtaining the time evolution of shock, gas bubble, and the ambient fluid. The dynamics of dispersed vapor bubbles is coupled with the surrounding fluid in a Lagrangian framework, describing bubble location and bubble size variation. Our results reproduce nuclei distributions at different stages of homogeneous nucleation and are in good agreement with experimental results. We obtain numerical data for the negative pressure that water can sustain under the process of homogeneous nucleation. An energy transformation description for the homogeneous nucleation inside a microchannel flow is derived and analyzed in detail.
Adherent nanoparticles-mediated micro- and nanobubble nucleation
NASA Astrophysics Data System (ADS)
Chan, Chon U.; Chen, Long Quan; Lippert, Alexander; Arora, Manish; Ohl, Claus-Dieter
2014-11-01
Surface nanobubbles are commonly nucleated through water-ethanol-water exchange. It is believed that the higher gas solubility in ethanol and exothermic mixing leads to a supersaturation of gas in water. However details of the nucleation dynamic are still unknown. Here we apply the exchange process onto a glass surface deposited with nanoparticles and monitor the dynamics optically at video frame rates. During exchange bubbles of a few micron in diameter nucleate at the sites of nanoparticles. These microbubbles eventually dissolve in ethanol but are stable in water. This agrees with the nucleation process observed for surface nanobubbles. Also we find a reduction of surface attached nanobubbles near the particles, which might be due to gas uptake from the microbubble growth. Finally, high speed recordings reveal stick-slip motion of the triple contact line during the growth process. We will discuss possibilities of utilizing the findings for contamination detection and ultrasonic cleaning.
Voltage Drop in a Ferroelectric Single Layer Capacitor by Retarded Domain Nucleation.
Kim, Yu Jin; Park, Hyeon Woo; Hyun, Seung Dam; Kim, Han Joon; Kim, Keum Do; Lee, Young Hwan; Moon, Taehwan; Lee, Yong Bin; Park, Min Hyuk; Hwang, Cheol Seong
2017-12-13
Ferroelectric (FE) capacitor is a critical electric component in microelectronic devices. Among many of its intriguing properties, the recent finding of voltage drop (V-drop) across the FE capacitor while the positive charges flow in is especially eye-catching. This finding was claimed to be direct evidence that the FE capacitor is in negative capacitance (NC) state, which must be useful for (infinitely) high capacitance and ultralow voltage operation of field-effect transistors. Nonetheless, the NC state corresponds to the maximum energy state of the FE material, so it has been widely accepted in the community that the material alleviates that state by forming ferroelectric domains. This work reports a similar V-drop effect from the 150 nm thick epitaxial BaTiO 3 ferroelectric thin film, but the interpretation was completely disparate; the V-drop can be precisely simulated by the reverse domain nucleation and propagation of which charge effect cannot be fully compensated for by the supplied charge from the external charge source. The disappearance of the V-drop effect was also observed by repeated FE switching only up to 10 cycles, which can hardly be explained by the involvement of the NC effect. The retained reverse domain nuclei even after the subsequent poling can explain such behavior.
Spire-type actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division.
Pfender, Sybille; Kuznetsov, Vitaliy; Pleiser, Sandra; Kerkhoff, Eugen; Schuh, Melina
2011-06-07
Oocytes mature into eggs by extruding half of their chromosomes in a small cell termed the polar body. Asymmetric oocyte division is essential for fertility [1], but despite its importance, little is known about its mechanism. In mammals, the meiotic spindle initially forms close to the center of the oocyte. Thus, two steps are required for asymmetric meiotic division: first, asymmetric spindle positioning and second, polar body extrusion. Here, we identify Spire1 and Spire2 as new key factors in asymmetric division of mouse oocytes. Spire proteins are novel types of actin nucleators that drive nucleation of actin filaments with their four WH2 actin-binding domains [2-6]. We show that Spire1 and Spire2 first mediate asymmetric spindle positioning by assembling an actin network that serves as a substrate for spindle movement. Second, they drive polar body extrusion by promoting assembly of the cleavage furrow. Our data suggest that Spire1 and Spire2 cooperate with Formin-2 (Fmn2) to nucleate actin filaments in mouse oocytes and that both types of nucleators act as a functional unit. This study not only reveals how Spire1 and Spire2 drive two critical steps of asymmetric oocyte division, but it also uncovers the first physiological function of Spire-type actin nucleators in vertebrates. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zohar, S.; Choi, Y.; Love, D. M.
We use X-ray Excited Luminescence Microscopy to investigate the elemental and layer resolved magnetic reversal in an interlayer exchange coupled (IEC) epitaxial Fe/Cr wedge/Co heterostructure. The transition from strongly coupled parallel Co-Fe reversal for Cr thickness t(Cr) < 0.34 nm to weakly coupled layer independent reversal for t(Cr) > 1.5 nm is punctuated at 0.34 < t(Cr) < 1.5 nm by a combination of IEC guided domain wall motion and stationary zig zag domain walls. Domain walls nucleated at switching field minima are guided by IEC spatial gradients and collapse at switching field maxima.
How does spallation microdamage nucleate in bulk amorphous alloys under shock loading?
NASA Astrophysics Data System (ADS)
Huang, X.; Ling, Z.; Zhang, H. S.; Ma, J.; Dai, L. H.
2011-11-01
Specially designed plate-impact experiments have been conducted on a Zr-based amorphous alloy using a single-stage light gas gun. To understand the microdamage nucleation process in the material, the samples are subjected to dynamic tensile loadings of identical amplitude (˜ 3.18 GPa) but with different durations (83-201 ns). A cellular pattern with an equiaxed shape is observed on the spallation surface, which shows that spallation in the tested amorphous alloy is a typical ductile fracture and that microvoids have been nucleated during the process. Based on the observed fracture morphologies of the spallation surface and free-volume theory, we propose a microvoid nucleation model of bulk amorphous alloys. It is found that nucleation of microvoids at the early stage of spallation in amorphous alloys results from diffusion and coalescence of free volume, and that high mean tensile stress plays a dominant role in microvoid nucleation.
Zonda is a novel early component of the autophagy pathway in Drosophila.
Melani, Mariana; Valko, Ayelén; Romero, Nuria M; Aguilera, Milton O; Acevedo, Julieta M; Bhujabal, Zambarlal; Perez-Perri, Joel; de la Riva-Carrasco, Rocío V; Katz, Maximiliano J; Sorianello, Eleonora; D'Alessio, Cecilia; Juhász, Gabor; Johansen, Terje; Colombo, María I; Wappner, Pablo
2017-11-01
Autophagy is an evolutionary conserved process by which eukaryotic cells undergo self-digestion of cytoplasmic components. Here we report that a novel Drosophila immunophilin, which we have named Zonda, is critically required for starvation-induced autophagy. We show that Zonda operates at early stages of the process, specifically for Vps34-mediated phosphatidylinositol 3-phosphate (PI3P) deposition. Zonda displays an even distribution under basal conditions and, soon after starvation, nucleates in endoplasmic reticulum-associated foci that colocalize with omegasome markers. Zonda nucleation depends on Atg1, Atg13, and Atg17 but does not require Vps34, Vps15, Atg6, or Atg14. Zonda interacts physically with Atg1 through its kinase domain, as well as with Atg6 and Vps34. We propose that Zonda is an early component of the autophagy cascade necessary for Vps34-dependent PI3P deposition and omegasome formation. © 2017 Melani, Valko, Romero, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Oya, Eriko; Kato, Hiroaki; Chikashige, Yuji; Tsutsumi, Chihiro; Hiraoka, Yasushi; Murakami, Yota
2013-01-01
Heterochromatin at the pericentromeric repeats in fission yeast is assembled and spread by an RNAi-dependent mechanism, which is coupled with the transcription of non-coding RNA from the repeats by RNA polymerase II. In addition, Rrp6, a component of the nuclear exosome, also contributes to heterochromatin assembly and is coupled with non-coding RNA transcription. The multi-subunit complex Mediator, which directs initiation of RNA polymerase II-dependent transcription, has recently been suggested to function after initiation in processes such as elongation of transcription and splicing. However, the role of Mediator in the regulation of chromatin structure is not well understood. We investigated the role of Mediator in pericentromeric heterochromatin formation and found that deletion of specific subunits of the head domain of Mediator compromised heterochromatin structure. The Mediator head domain was required for Rrp6-dependent heterochromatin nucleation at the pericentromere and for RNAi-dependent spreading of heterochromatin into the neighboring region. In the latter process, Mediator appeared to contribute to efficient processing of siRNA from transcribed non-coding RNA, which was required for efficient spreading of heterochromatin. Furthermore, the head domain directed efficient transcription in heterochromatin. These results reveal a pivotal role for Mediator in multiple steps of transcription-coupled formation of pericentromeric heterochromatin. This observation further extends the role of Mediator to co-transcriptional chromatin regulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pointer, William David
The objective of this effort is to establish a strategy and process for generation of suitable computational mesh for computational fluid dynamics simulations of departure from nucleate boiling in a 5 by 5 fuel rod assembly held in place by PWR mixing vane spacer grids. This mesh generation process will support ongoing efforts to develop, demonstrate and validate advanced multi-phase computational fluid dynamics methods that enable more robust identification of dryout conditions and DNB occurrence.Building upon prior efforts and experience, multiple computational meshes were developed using the native mesh generation capabilities of the commercial CFD code STAR-CCM+. These meshes weremore » used to simulate two test cases from the Westinghouse 5 by 5 rod bundle facility. The sensitivity of predicted quantities of interest to the mesh resolution was then established using two evaluation methods, the Grid Convergence Index method and the Least Squares method. This evaluation suggests that the Least Squares method can reliably establish the uncertainty associated with local parameters such as vector velocity components at a point in the domain or surface averaged quantities such as outlet velocity magnitude. However, neither method is suitable for characterization of uncertainty in global extrema such as peak fuel surface temperature, primarily because such parameters are not necessarily associated with a fixed point in space. This shortcoming is significant because the current generation algorithm for identification of DNB event conditions relies on identification of such global extrema. Ongoing efforts to identify DNB based on local surface conditions will address this challenge« less
Partitioning of ice nucleating particles: Which modes matter?
NASA Astrophysics Data System (ADS)
Hande, Luke; Hoose, Corinna
2017-04-01
Ice particles in clouds have a large impact on cloud lifetime, precipitation amount, and cloud radiative properties through the indirect aerosol effect. Thus, correctly modelling ice formation processes is important for simulations preformed on all spatial and temporal scales. Ice forms on aerosol particles through several different mechanisms, namely deposition nucleation, immersion freezing, and contact freezing. However there is conflicting evidence as to which mode dominates, and the relative importance of the three heterogeneous ice nucleation mechanisms, as well as homogeneous nucleation, remains an open question. The environmental conditions, and hence the cloud type, have a large impact on determining which nucleation mode dominates. In order to understand this, simulations were performed with the COSMO-LES model, utilising state of the art parameterisations to describe the different nucleation mechanisms for several semi-idealised cloud types commonly occurring over central Europe. The cloud types investigated include a semi-idealised, and an idealised convective cloud, an orographic cloud, and a stratiform cloud. Results show that immersion and contact freezing dominate at warmer temperatures, and under most conditions, deposition nucleation plays only a minor role. In clouds where sufficiently high levels of water vapour are present at colder temperatures, deposition nucleation can play a role, however in general homogeneous nucleation dominates at colder temperatures. Since contact nucleation depends on the environmental relative humidity, enhancements in this nucleation mode can be seen in areas of dry air entrainment. The results indicate that ice microphysical processes are somewhat sensitve to the environmental conditions and therefore the cloud type.
Nucleation in Polymers and Soft Matter
NASA Astrophysics Data System (ADS)
Xu, Xiaofei; Ting, Christina L.; Kusaka, Isamu; Wang, Zhen-Gang
2014-04-01
Nucleation is a ubiquitous phenomenon in many physical, chemical, and biological processes. In this review, we describe recent progress on the theoretical study of nucleation in polymeric fluids and soft matter, including binary mixtures (polymer blends, polymers in poor solvents, compressible polymer-small molecule mixtures), block copolymer melts, and lipid membranes. We discuss the methodological development for studying nucleation as well as novel insights and new physics obtained in the study of the nucleation behavior in these systems.
Awotwe Otoo, David; Agarabi, Cyrus; Khan, Mansoor A
2014-07-01
The aim of the present study was to apply an integrated process analytical technology (PAT) approach to control and monitor the effect of the degree of supercooling on critical process and product parameters of a lyophilization cycle. Two concentrations of a mAb formulation were used as models for lyophilization. ControLyo™ technology was applied to control the onset of ice nucleation, whereas tunable diode laser absorption spectroscopy (TDLAS) was utilized as a noninvasive tool for the inline monitoring of the water vapor concentration and vapor flow velocity in the spool during primary drying. The instantaneous measurements were then used to determine the effect of the degree of supercooling on critical process and product parameters. Controlled nucleation resulted in uniform nucleation at lower degrees of supercooling for both formulations, higher sublimation rates, lower mass transfer resistance, lower product temperatures at the sublimation interface, and shorter primary drying times compared with the conventional shelf-ramped freezing. Controlled nucleation also resulted in lyophilized cakes with more elegant and porous structure with no visible collapse or shrinkage, lower specific surface area, and shorter reconstitution times compared with the uncontrolled nucleation. Uncontrolled nucleation however resulted in lyophilized cakes with relatively lower residual moisture contents compared with controlled nucleation. TDLAS proved to be an efficient tool to determine the endpoint of primary drying. There was good agreement between data obtained from TDLAS-based measurements and SMART™ technology. ControLyo™ technology and TDLAS showed great potential as PAT tools to achieve enhanced process monitoring and control during lyophilization cycles. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides
NASA Astrophysics Data System (ADS)
Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas
2017-02-01
Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection.
Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides
Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas
2017-01-01
Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection. PMID:28157236
Surface Crystallization of Cloud Droplets: Implications for Climate Change and Ozone Depletion
NASA Technical Reports Server (NTRS)
Tabazadeh, A.; Djikaev, Y. S.; Reiss, H.; Gore, Warren J. (Technical Monitor)
2002-01-01
The process of supercooled liquid water crystallization into ice is still not well understood. Current experimental data on homogeneous freezing rates of ice nucleation in supercooled water droplets show considerable scatter. For example, at -33 C, the reported freezing nucleation rates vary by as much as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Until now, experimental data on the freezing of supercooled water has been analyzed under the assumption that nucleation of ice took place in the interior volume of a water droplet. Here, the same data is reanalyzed assuming that the nucleation occurred "pseudoheterogeneously" at the air (or oil)-liquid water interface of the droplet. Our analysis suggest that the scatter in the nucleation data can be explained by two main factors. First, the current assumption that nucleation occurs solely inside the volume of a water droplet is incorrect. Second, because the nucleation process most likely occurs on the surface, the rates of nuclei formation could differ vastly when oil or air interfaces are involved. Our results suggest that ice freezing in clouds may initiate on droplet surfaces and such a process can allow for low amounts of liquid water (approx. 0.002 g per cubic meters) to remain supercooled down to -40 C as observed in the atmosphere.
Nucleation of shear bands in amorphous alloys
Perepezko, John H.; Imhoff, Seth D.; Chen, Ming-Wei; Wang, Jun-Qiang; Gonzalez, Sergio
2014-01-01
The initiation and propagation of shear bands is an important mode of localized inhomogeneous deformation that occurs in a wide range of materials. In metallic glasses, shear band development is considered to center on a structural heterogeneity, a shear transformation zone that evolves into a rapidly propagating shear band under a shear stress above a threshold. Deformation by shear bands is a nucleation-controlled process, but the initiation process is unclear. Here we use nanoindentation to probe shear band nucleation during loading by measuring the first pop-in event in the load–depth curve which is demonstrated to be associated with shear band formation. We analyze a large number of independent measurements on four different bulk metallic glasses (BMGs) alloys and reveal the operation of a bimodal distribution of the first pop-in loads that are associated with different shear band nucleation sites that operate at different stress levels below the glass transition temperature, Tg. The nucleation kinetics, the nucleation barriers, and the density for each site type have been determined. The discovery of multiple shear band nucleation sites challenges the current view of nucleation at a single type of site and offers opportunities for controlling the ductility of BMG alloys. PMID:24594599
Optical and Acoustic Device Applications of Ferroelastic Crystals
NASA Astrophysics Data System (ADS)
Meeks, Steven Wayne
This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use these periodic structures are discussed. These devices are a tunable active grating laser (TAG laser), a tunable active grating (TAG), and a tunable acoustic bulk wave filter.
NASA Astrophysics Data System (ADS)
Sudha, C.; Srinivasan, K.
2014-09-01
Polymorphic nucleation behavior of pharmaceutical solid paracetamol has been investigated by performing swift cooling crystallization process. Saturated aqueous solution prepared at 318 K was swiftly cooled to 274 K in steps of every 1 K in the temperature range from 274 K to 313 K with uniform stirring of 100 rpm. The resultant supersaturation generated in the mother solution favours the nucleation of three different polymorphs of paracetamol. Lower supersaturation region σ=0.10-0.83 favours stable mono form I; the intermediate supersaturation region σ=0.92-1.28 favours metastable ortho form II and the higher supersaturation region σ=1.33-1.58 favours unstable form III polymorphic nucleation. Depending upon the level of supersaturation generated during swift cooling process and the corresponding solubility limit and metastable zone width (MSZW) of each polymorph, the nucleation of a particular polymorph occurs in the system. The type of polymorphs was identified by in-situ optical microscopy and the internal structure was confirmed by Powder X-ray diffraction (PXRD) study. By this novel approach, the preferred nucleation regions of all the three polymorphs of paracetamol are optimized in terms of different cooling ranges employed during the swift cooling process. Also solution mediated polymorphic transformations from unstable to mono and ortho to mono polymorphs have been studied by in-situ.
NASA Astrophysics Data System (ADS)
He, Tong; Bai, Yang; Liu, Xiuting; Guo, Dan; Liu, Yandong
2018-04-01
We investigated the effect of Sn micro-alloying on recrystallization nucleation and growth processes of ferritic stainless steels. The as-received hot rolled sheets were cold rolled up to 80% reduction and then annealed at 740-880 °C for 5 min. The cold rolling and recrystallization microstructures and micro-textures of Sn-containing and Sn-free ferritic stainless steels were all determined by electron backscatter diffraction. Our Results show that Sn micro-alloying has important effects on recrystallization nucleation and growth processes of ferritic stainless steels. Sn micro-alloying conduces to grain fragmentation in the deformation band, more fragmented grains are existed in Sn-containing cold rolled sheets, which provides more sites for recrystallization nucleation. Sn micro-alloying also promotes recrystallization process and inhibits the growth of recrystallized grains. The recrystallization nucleation and growth mechanism of Sn-containing and Sn-free ferritic stainless steels are both characterized by orientation nucleation and selective growth, but Sn micro-alloying promotes the formation of γ-oriented grains. Furthermore, Sn micro-alloying contributes to the formation of Σ13b CSL boundaries and homogeneous γ-fiber texture. Combining the results of microstructure and micro-texture, the formability of Sn-containing ferritic stainless steels will be improved to some extent.
Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet.
Li, Yingxuan; Bunes, Benjamin R; Zang, Ling; Zhao, Jie; Li, Yan; Zhu, Yunqing; Wang, Chuanyi
2016-02-23
Because of the lack of experimental evidence, much confusion still exists on the nucleation and growth dynamics of a nanostructure, particularly of metal. The situation is even worse for nanodroplets because it is more difficult to induce the formation of a nanodroplet while imaging the dynamic process with atomic resolution. Here, taking advantage of an electron beam to induce the growth of Bi nanodroplets on a SrBi2Ta2O9 platelet under a high resolution transmission electron microscope (HRTEM), we directly observed the detailed growth pathways of Bi nanodroplets from the earliest stage of nucleation that were previously inaccessible. Atomic scale imaging reveals that the dynamics of nucleation involves a much more complex trajectory than previously predicted based on classical nucleation theory (CNT). The monatomic Bi layer was first formed in the nucleation process, which induced the formation of the prenucleated clusters. Following that, critical nuclei for the nanodroplets formed both directly from the addition of atoms to the prenucleated clusters by the classical growth process and indirectly through transformation of an intermediate liquid film based on the Stranski-Krastanov growth mode, in which the liquid film was induced by the self-assembly of the prenucleated clusters. Finally, the growth of the Bi nanodroplets advanced through the classical pathway and sudden droplet coalescence. This study allows us to visualize the critical steps in the nucleation process of an interfacial nanodroplet, which suggests a revision of the perspective of CNT.
NASA Astrophysics Data System (ADS)
Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang
2015-03-01
The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.
Jaiswal, Richa; Stepanik, Vince; Rankova, Aneliya; Molinar, Olivia; Goode, Bruce L; McCartney, Brooke M
2013-05-10
Vertebrate APC collaborates with Dia through its Basic domain to assemble actin filaments. Despite limited sequence homology between the vertebrate and Drosophila APC Basic domains, Drosophila APC1 collaborates with Dia to stimulate actin assembly in vitro. The mechanism of actin assembly is highly conserved over evolution. APC-Dia collaborations may be crucial in a wide range of animal cells. Adenomatous polyposis coli (APC) is a large multidomain protein that regulates the cytoskeleton. Recently, it was shown that vertebrate APC through its Basic domain directly collaborates with the formin mDia1 to stimulate actin filament assembly in the presence of nucleation barriers. However, it has been unclear whether these activities extend to homologues of APC and Dia in other organisms. Drosophila APC and Dia are each required to promote actin furrow formation in the syncytial embryo, suggesting a potential collaboration in actin assembly, but low sequence homology between the Basic domains of Drosophila and vertebrate APC has left their functional and mechanistic parallels uncertain. To address this question, we purified Drosophila APC1 and Dia and determined their individual and combined effects on actin assembly using both bulk fluorescence assays and total internal reflection fluorescence microscopy. Our data show that APC1, similar to its vertebrate homologue, bound to actin monomers and nucleated and bundled filaments. Further, Drosophila Dia nucleated actin assembly and protected growing filament barbed ends from capping protein. Drosophila APC1 and Dia directly interacted and collaborated to promote actin assembly in the combined presence of profilin and capping protein. Thus, despite limited sequence homology, Drosophila and vertebrate APCs exhibit highly related activities and mechanisms and directly collaborate with formins. These results suggest that APC-Dia interactions in actin assembly are conserved and may underlie important in vivo functions in a broad range of animal phyla.
Magnetization processes in core/shell exchange-spring structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J. S.
2015-03-27
The magnetization reversal processes in cylindrical and spherical soft core/hard shell exchange-spring structures are investigated via the analytical nucleation theory, and are verified with numerical micromagnetic simulations. At small core sizes, the nucleation of magnetic reversal proceeds via the modified bulging mode, where the transverse component of the magnetization is only semi-coherent in direction and the nucleation field contains a contribution from self-demagnetization. For large core sizes, the modified curling mode, where the magnetization configuration is vortex-like, is favored at nucleation. The preference for the modified curling mode is beneficial in that the fluxclosure allows cylindrical and spherical core/shell exchange-springmore » elements to be densely packed into bulk permanent magnets without affecting the nucleation field, thereby offering the potential for high energy product.« less
Iyer, Lavanya K.; Sacha, Gregory A.; Moorthy, Balakrishnan S.; Nail, Steven L.; Topp, Elizabeth M.
2016-01-01
Myoglobin (Mb) was lyophilized in the absence (Mb-A) and presence (Mb-B) of sucrose in a pilot-scale lyophilizer with or without controlled ice nucleation. Cake morphology was characterized using scanning electron microscopy (SEM) and changes in protein structure were monitored using solid-state Fourier-transform infrared spectroscopy (ssFTIR), solid-state hydrogen-deuterium exchange-mass spectrometry (ssHDX-MS) and solid-state photolytic labeling-mass spectrometry (ssPL-MS). The results showed greater variability in nucleation temperature and irregular cake structure for formulations lyophilized without controlled nucleation. Controlled nucleation resulted in nucleation at ~ −5 °C and uniform cake structure. Formulations containing sucrose showed better retention of protein structure by all measures than formulations without sucrose. Samples lyophilized with and without controlled nucleation were similar by most measures of protein structure. However, ssPL-MS showed the greatest pLeu incorporation and more labeled regions for Mb-B lyophilized with controlled nucleation. The data support the use of ssHDX-MS and ssPL-MS to study formulation and process-induced conformational changes in lyophilized proteins. PMID:27044943
Mechanism of two-step vapour-crystal nucleation in a pore
NASA Astrophysics Data System (ADS)
van Meel, J. A.; Liu, Y.; Frenkel, D.
2015-09-01
We present a numerical study of the effect of hemispherical pores on the nucleation of Lennard-Jones crystals from the vapour phase. As predicted by Page and Sear, there is a narrow range of pore radii, where vapour-liquid nucleation can become a two-step process. A similar observation was made for different pore geometries by Giacomello et al. We find that the maximum nucleation rate depends on both the size and the adsorption strength of the pore. Moreover, a poe can be more effective than a planar wall with the same strength of attraction. Pore-induced vapour-liquid nucleation turns out to be the rate-limiting step for crystal nucleation. This implies that crystal nucleation can be enhanced by a judicious choice of the wetting properties of a microporous nucleating agent.
Interface and thickness dependent domain switching and stability in Mg doped lithium niobate
Neumayer, Sabine M.; Ivanov, Ilia N.; Manzo, Michele; ...
2015-12-08
Controlling ferroelectric switching in Mg doped lithium niobate (Mg: LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg: LN above buried PE phases that allow for precise ferroelectric patterning via domain growthmore » control. Furthermore, piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the "up" to the "down" state increases with increasing thickness in pure Mg: LN, whereas the voltage required for stable back switching to the original "up" state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg: LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg: LN layer above due to the presence of uncompensated polarization charge at the PE-Mg: LN boundary. Furthermore, these alterations in internal electric fields within the sample cause long-range lattice distortions in Mg: LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.« less
Interface and thickness dependent domain switching and stability in Mg doped lithium niobate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4
2015-12-14
Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore,more » piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the “up” to the “down” state increases with increasing thickness in pure Mg:LN, whereas the voltage required for stable back switching to the original “up” state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg:LN layer above due to the presence of uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg:LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.« less
Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.
Ickes, Luisa; Welti, André; Hoose, Corinna; Lohmann, Ulrike
2015-02-28
The probability of homogeneous ice nucleation under a set of ambient conditions can be described by nucleation rates using the theoretical framework of Classical Nucleation Theory (CNT). This framework consists of kinetic and thermodynamic parameters, of which three are not well-defined (namely the interfacial tension between ice and water, the activation energy and the prefactor), so that any CNT-based parameterization of homogeneous ice formation is less well-constrained than desired for modeling applications. Different approaches to estimate the thermodynamic and kinetic parameters of CNT are reviewed in this paper and the sensitivity of the calculated nucleation rate to the choice of parameters is investigated. We show that nucleation rates are very sensitive to this choice. The sensitivity is governed by one parameter - the interfacial tension between ice and water, which determines the energetic barrier of the nucleation process. The calculated nucleation rate can differ by more than 25 orders of magnitude depending on the choice of parameterization for this parameter. The second most important parameter is the activation energy of the nucleation process. It can lead to a variation of 16 orders of magnitude. By estimating the nucleation rate from a collection of droplet freezing experiments from the literature, the dependence of these two parameters on temperature is narrowed down. It can be seen that the temperature behavior of these two parameters assumed in the literature does not match with the predicted nucleation rates from the fit in most cases. Moreover a comparison of all possible combinations of theoretical parameterizations of the dominant two free parameters shows that one combination fits the fitted nucleation rates best, which is a description of the interfacial tension coming from a molecular model [Reinhardt and Doye, J. Chem. Phys., 2013, 139, 096102] in combination with the activation energy derived from self-diffusion measurements [Zobrist et al., J. Phys. Chem. C, 2007, 111, 2149]. However, some fundamental understanding of the processes is still missing. Further research in future might help to tackle this problem. The most important questions, which need to be answered to constrain CNT, are raised in this study.
Ice Nucleation Properties of Oxidized Carbon Nanomaterials
2015-01-01
Heterogeneous ice nucleation is an important process in many fields, particularly atmospheric science, but is still poorly understood. All known inorganic ice nucleating particles are relatively large in size and tend to be hydrophilic. Hence it is not obvious that carbon nanomaterials should nucleate ice. However, in this paper we show that four different readily water-dispersible carbon nanomaterials are capable of nucleating ice. The tested materials were carboxylated graphene nanoflakes, graphene oxide, oxidized single walled carbon nanotubes and oxidized multiwalled carbon nanotubes. The carboxylated graphene nanoflakes have a diameter of ∼30 nm and are among the smallest entities observed so far to nucleate ice. Overall, carbon nanotubes were found to nucleate ice more efficiently than flat graphene species, and less oxidized materials nucleated ice more efficiently than more oxidized species. These well-defined carbon nanomaterials may pave the way to bridging the gap between experimental and computational studies of ice nucleation. PMID:26267196
Champagne experiences various rhythmical bubbling regimes in a flute.
Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos
2006-09-20
Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.
Metadynamics studies of crystal nucleation
Giberti, Federico; Salvalaglio, Matteo; Parrinello, Michele
2015-01-01
Crystallization processes are characterized by activated events and long timescales. These characteristics prevent standard molecular dynamics techniques from being efficiently used for the direct investigation of processes such as nucleation. This short review provides an overview on the use of metadynamics, a state-of-the-art enhanced sampling technique, for the simulation of phase transitions involving the production of a crystalline solid. In particular the principles of metadynamics are outlined, several order parameters are described that have been or could be used in conjunction with metadynamics to sample nucleation events and then an overview is given of recent metadynamics results in the field of crystal nucleation. PMID:25866662
NASA Astrophysics Data System (ADS)
Parambil, Jose V.; Poornachary, Sendhil K.; Tan, Reginald B. H.; Heng, Jerry Y. Y.
2017-07-01
Studies on the use of template surfaces to induce heterogeneous crystal nucleation have gained momentum in recent years-with potential applications in selective crystallisation of polymorphs and in the generation of seed crystals in a continuous crystallisation process. In developing a template-assisted solution crystallisation process, the kinetics of homogeneous versus heterogeneous crystal nucleation could be influenced by solute-solvent, solute-template, and solvent-template interactions. In this study, we report the effect of solvents of varying polarity on the nucleation of carbamazepine (CBZ) crystal polymorphs, a model active pharmaceutical ingredient. The experimental results demonstrate that functionalised template surfaces are effective in promoting crystallisation of either the metastable (form II) or stable (form III) polymorphs of CBZ only in moderately (methanol, ethanol, isopropanol) and low polar (toluene) solvents. A solvent with high polarity (acetonitrile) is thought to mask the template effect on heterogeneous nucleation due to strong solute-solvent and solvent-template interactions. The current study highlights that a quality-by-design (QbD) approach-considering the synergistic effects of solute concentration, solvent type, solution temperature, and template surface chemistry on crystal nucleation-is critical to the development of a template-induced crystallisation process.
Liu, Baodan; Yang, Bing; Yuan, Fang; Liu, Qingyun; Shi, Dan; Jiang, Chunhai; Zhang, Jinsong; Staedler, Thorsten; Jiang, Xin
2015-12-09
In this work, we demonstrate a new strategy to create WZ-GaN/3C-SiC heterostructure nanowires, which feature controllable morphologies. The latter is realized by exploiting the stacking faults in 3C-SiC as preferential nucleation sites for the growth of WZ-GaN. Initially, cubic SiC nanowires with an average diameter of ∼100 nm, which display periodic stacking fault sections, are synthesized in a chemical vapor deposition (CVD) process to serve as the core of the heterostructure. Subsequently, hexagonal wurtzite-type GaN shells with different shapes are grown on the surface of 3C-SiC wire core. In this context, it is possible to obtain two types of WZ-GaN/3C-SiC heterostructure nanowires by means of carefully controlling the corresponding CVD reactions. Here, the stacking faults, initially formed in 3C-SiC nanowires, play a key role in guiding the epitaxial growth of WZ-GaN as they represent surface areas of the 3C-SiC nanowires that feature a higher surface energy. A dedicated structural analysis of the interfacial region by means of high-resolution transmission electron microscopy (HRTEM) revealed that the disordering of the atom arrangements in the SiC defect area promotes a lattice-matching with respect to the WZ-GaN phase, which results in a preferential nucleation. All WZ-GaN crystal domains exhibit an epitaxial growth on 3C-SiC featuring a crystallographic relationship of [12̅10](WZ-GaN) //[011̅](3C-SiC), (0001)(WZ-GaN)//(111)(3C-SiC), and d(WZ-GaN(0001)) ≈ 2d(3C-SiC(111)). The approach to utilize structural defects of a nanowire core to induce a preferential nucleation of foreign shells generally opens up a number of opportunities for the epitaxial growth of a wide range of semiconductor nanostructures which are otherwise impossible to acquire. Consequently, this concept possesses tremendous potential for the applications of semiconductor heterostructures in various fields such as optics, electrics, electronics, and photocatalysis for energy harvesting and environment processing.
NASA Technical Reports Server (NTRS)
Barker, R. E., Jr.
1986-01-01
The work includes an investigation of the applicability of the nucleation theory to second and higher order thermodynamic transitions in the Ehrenfest sense, and a number of significant conclusions relevant to first order transitions, as well. The underlying theoretical method consisted of expanding the Gibbs' free energy in a Maclarin or Taylor series and then using fundamental thermodynamic determinable quantities, and interpreting the results. Work was performed on the existence and interpretation of an interfacial energy between phases in a second order transition in addition to an investigation of the solid-liquid interfacial energy for various polymers. Extensive considerations were devoted to various aspects of a particular polymer, polyvinylidene fluoride (PVDF or PVF2), including an experimetal investigation of the effects of an applied electric field on the morphology of melt crystallization and on the nucleation and growth of polarized domains.
Lai, Stanley C S; Lazenby, Robert A; Kirkman, Paul M; Unwin, Patrick R
2015-02-01
The nucleation and growth of metal nanoparticles (NPs) on surfaces is of considerable interest with regard to creating functional interfaces with myriad applications. Yet, key features of these processes remain elusive and are undergoing revision. Here, the mechanism of the electrodeposition of silver on basal plane highly oriented pyrolytic graphite (HOPG) is investigated as a model system at a wide range of length scales, spanning electrochemical measurements from the macroscale to the nanoscale using scanning electrochemical cell microscopy (SECCM), a pipette-based approach. The macroscale measurements show that the nucleation process cannot be modelled as either truly instantaneous or progressive, and that step edge sites of HOPG do not play a dominant role in nucleation events compared to the HOPG basal plane, as has been widely proposed. Moreover, nucleation numbers extracted from electrochemical analysis do not match those determined by atomic force microscopy (AFM). The high time and spatial resolution of the nanoscale pipette set-up reveals individual nucleation and growth events at the graphite basal surface that are resolved and analysed in detail. Based on these results, corroborated with complementary microscopy measurements, we propose that a nucleation-aggregative growth-detachment mechanism is an important feature of the electrodeposition of silver NPs on HOPG. These findings have major implications for NP electrodeposition and for understanding electrochemical processes at graphitic materials generally.
NASA Astrophysics Data System (ADS)
Povey, Malcolm J. W.
2016-12-01
Nucleation in food colloids has been studied in detail using ultrasound spectroscopy. Our data show that classical nucleation theory (CNT) remains a sound basis from which to understand nucleation in food colloids and analogous model systems using n-alkanes. Various interpretations and modifications of CNT are discussed with regard to their relevance to food colloids. Much of the evidence presented is based on the ultrasound velocity spectrometry measurements which has many advantages for the study of nucleating systems compared to light scattering and NMR due to its sensitivity at low solid contents and its ability to measure true solid contents in the nucleation and early crystal growth stages. Ultrasound attenuation spectroscopy also responds to critical fluctuations in the induction region. We show, however, that a periodic pressure fluctuation such as a quasi-continuous (as opposed to a pulse comprising only a few pressure cycles) ultrasound field can alter the nucleation process, even at very low acoustic intensity. Thus care must be taken when using ultrasound techniques that the measurements do not alter the studied processes. Quasi-continuous ultrasound fields may enhance or suppress nucleation and the criteria to determine such effects are derived. The conclusions of this paper are relevant to colloidal systems in foods, pharmaceuticals, agro-chemicals, cosmetics, and personal products.
Overview of TANGENT (Tandem Aerosol Nucleation and Growth ENvironment Tube) 2017 IOP Study
NASA Astrophysics Data System (ADS)
Tiszenkel, L.
2017-12-01
New particle formation consists of two steps: nucleation and growth of nucleated particles. However, most laboratory studies have been conducted under conditions where these two processes are convoluted together, thereby hampering the detailed understanding of the effect of chemical species and atmospheric conditions on two processes. The objective of the Tandem Aerosol Nucleation and Growth ENvironment Tube (TANGENT) laboratory study is to investigate aerosol nucleation and growth properties independently by separating these two processes in two different flow tubes. This research is a collaboration between the University of Alabama in Huntsville and the University of Delaware. In this poster we will present the experimental setup of TANGENT and summarize the key results from the first IOP (intense observation period) experiments undertaken during Summer 2017. Nucleation takes place in a temperature- and RH-controlled fast flow reactor (FT-1) where sulfuric acid forms from OH radicals and sulfur dioxide. Sulfuric acid and impurity base compounds are detected with chemical ionization mass spectrometers (CIMS). Particle sizes and number concentrations of newly nucleated particles are measured with a scanning mobility particle sizer (SMPS) and particle size magnifier (PSM), providing concentrations of particles between 1-100 nm. The nucleation particles are transferred directly to the growth tube (FT-2) where oxidants and biogenic organic precursors are added to grow nucleated nanoparticles. Sizes of particles after growth are analyzed with an additional SMPS and elemental chemical composition of 50 nm and above particles detected with a nano-aerosol mass spectrometer (NAMS). TANGENT provides the unique ability to conduct experiments that can monitor and control reactant concentrations, aerosol size and aerosol chemical composition during nucleation and growth. Experiments during this first IOP study have elucidated the effects of sulfur dioxide, particle size, relative humidity, temperature, oxidants and biogenic organics on nanoparticle formation and growth. In another 3 companion posters, we will discuss findings of these results in detail.
Diao, Ying; Myerson, Allan S; Hatton, T Alan; Trout, Bernhardt L
2011-05-03
Current industrial practice for control of primary nucleation (nucleation from a system without pre-existing crystalline matter) during crystallization from solution involves control of supersaturation generation, impurity levels, and solvent composition. Nucleation behavior remains largely unpredictable, however, due to the presence of container surfaces, dust, dirt, and other impurities that can provide heterogeneous nucleation sites, thus making the control and scale-up of processes that depend on primary nucleation difficult. To develop a basis for the rational design of surfaces to control nucleation during crystallization from solution, we studied the role of surface chemistry and morphology of various polymeric substrates on heterogeneous nucleation using aspirin as a model compound. Nucleation induction time statistics were utilized to investigate and quantify systematically the effectiveness of polymer substrates in inducing nucleation. The nucleation induction time study revealed that poly(4-acryloylmorpholine) and poly(2-carboxyethyl acrylate), each cross-linked by divinylbenzene, significantly lowered the nucleation induction time of aspirin while the other polymers were essentially inactive. In addition, we found the presence of nanoscopic pores on certain polymer surfaces led to order-of-magnitude faster aspirin nucleation rates when compared with surfaces without pores. We studied the preferred orientation of aspirin crystals on polymer films and found the nucleation-active polymer surfaces preferentially nucleated the polar facets of aspirin, guided by hydrogen bonds. A model based on interfacial free energies was also developed which predicted the same trend of polymer surface nucleation activities as indicated by the nucleation induction times.
Mishra, Rakesh; Jayaraman, Murali; Roland, Bartholomew P.; Landrum, Elizabeth; Fullam, Timothy; Kodali, Ravindra; Thakur, Ashwani K.; Arduini, Irene; Wetzel, Ronald
2011-01-01
Although oligomeric intermediates are transiently formed in almost all known amyloid assembly reactions, their mechanistic roles are poorly understood. Recently we demonstrated a critical role for the 17 amino acid N-terminal segment (httNT) of huntingtin (htt) in oligomer-mediated amyloid assembly of htt N-terminal fragments. In this mechanism, the httNT segment forms the α-helix rich core of the oligomers, leaving most or all of each polyglutamine (polyQ) segment disordered and solvent-exposed. Nucleation of amyloid structure occurs within this local high concentration of disordered polyQ. Here we demonstrate the kinetic importance of httNT self-assembly by describing inhibitory httNT-containing peptides that appear to work by targeting nucleation within the oligomer fraction. These molecules inhibit amyloid nucleation by forming mixed oligomers with the httNT domains of polyQ-containing htt N-terminal fragments. In one class of inhibitor, nucleation is passively suppressed due to the reduced local concentration of polyQ within the mixed oligomer. In the other class, nucleation is actively suppressed by a proline-rich polyQ segment covalently attached to httNT. Studies with D-amino acid and scrambled sequence versions of httNT suggest that inhibition activity is strongly linked to the propensity of inhibitory peptides to make amphipathic α-helices. HttNT derivatives with C-terminal cell penetrating peptide segments, also exhibit excellent inhibitory activity. The httNT-based peptides described here, especially those with protease-resistant D-amino acids and/or with cell penetrating sequences, may prove useful as lead therapeutics for inhibiting nucleation of amyloid formation in Huntington’s disease. PMID:22178478
Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng
2014-11-10
Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.
Congdon, Thomas; Dean, Bethany T; Kasperczak-Wright, James; Biggs, Caroline I; Notman, Rebecca; Gibson, Matthew I
2015-09-14
Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL(-1). Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes.
2015-01-01
Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL–1. Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes PMID:26258729
NASA Astrophysics Data System (ADS)
Rangel-Alvarado, Rodrigo Benjamin; Nazarenko, Yevgen; Ariya, Parisa A.
2015-11-01
Physicochemical processes of nucleation constitute a major uncertainty in understanding aerosol-cloud interactions. To improve the knowledge of the ice nucleation process, we characterized physical, chemical, and biological properties of fresh snow using a suite of state-of-the-art techniques based on mass spectrometry, electron microscopy, chromatography, and optical particle sizing. Samples were collected at two North American Arctic sites, as part of international campaigns (2006 and 2009), and in the city of Montreal, Canada, over the last decade. Particle size distribution analyses, in the range of 3 nm to 10 µm, showed that nanosized particles are the most numerous (38-71%) in fresh snow, with a significant portion (11 to 19%) less than 100 nm in size. Particles with diameters less than 200 nm consistently exhibited relatively high ice-nucleating properties (on average ranged from -19.6 ± 2.4 to -8.1 ± 2.6°C). Chemical analysis of the nanosized fraction suggests that they contain bioorganic materials, such as amino acids, as well as inorganic compounds with similar characteristics to mineral dust. The implication of nanoparticle ubiquity and abundance in diverse snow ecosystems are discussed in the context of their importance in understanding atmospheric nucleation processes.
Ion-induced nucleation in solution: promotion of solute nucleation in charged levitated droplets.
Draper, Neil D; Bakhoum, Samuel F; Haddrell, Allen E; Agnes, George R
2007-09-19
We have investigated the nucleation and growth of sodium chloride in both single quiescent charged droplets and charged droplet populations that were levitated in an electrodynamic levitation trap (EDLT). In both cases, the magnitude of a droplet's net excess charge (ions(DNEC)) influenced NaCl nucleation and growth, albeit in different capacities. We have termed the phenomenon ion-induced nucleation in solution. For single quiescent levitated droplets, an increase in ions(DNEC) resulted in a significant promotion of NaCl nucleation, as determined by the number of crystals observed. For levitated droplet populations, a change in NaCl crystal habit, from regular cubic shapes to dome-shaped dendrites, was observed once a surface charge density threshold of -9 x 10(-4) e.nm(-2) was surpassed. Although promotion of NaCl nucleation was observed for droplet population experiments, this can be attributed in part to the increased rate of solvent evaporation observed for levitated droplet populations having a high net charge. Promotion of nucleation was also observed for two organic acids, 2,4,6-trihydroxyacetophenone monohydrate (THAP) and alpha-cyano-4-hydroxycinnamic acid (CHCA). These results are of direct relevance to processes that occur in both soft-ionization techniques for mass spectrometry and to a variety of industrial processes. To this end, we have demonstrated the use of ion-induced nucleation in solution to form ammonium nitrate particles from levitated droplets to be used in in vitro toxicology studies of ambient particle types.
NASA Astrophysics Data System (ADS)
Sahyoun, Maher; Wex, Heike; Gosewinkel, Ulrich; Šantl-Temkiv, Tina; Nielsen, Niels W.; Finster, Kai; Sørensen, Jens H.; Stratmann, Frank; Korsholm, Ulrik S.
2016-08-01
Bacterial ice-nucleating particles (INP) are present in the atmosphere and efficient in heterogeneous ice-nucleation at temperatures up to -2 °C in mixed-phase clouds. However, due to their low emission rates, their climatic impact was considered insignificant in previous modeling studies. In view of uncertainties about the actual atmospheric emission rates and concentrations of bacterial INP, it is important to re-investigate the threshold fraction of cloud droplets containing bacterial INP for a pronounced effect on ice-nucleation, by using a suitable parameterization that describes the ice-nucleation process by bacterial INP properly. Therefore, we compared two heterogeneous ice-nucleation rate parameterizations, denoted CH08 and HOO10 herein, both of which are based on classical-nucleation-theory and measurements, and use similar equations, but different parameters, to an empirical parameterization, denoted HAR13 herein, which considers implicitly the number of bacterial INP. All parameterizations were used to calculate the ice-nucleation probability offline. HAR13 and HOO10 were implemented and tested in a one-dimensional version of a weather-forecast-model in two meteorological cases. Ice-nucleation-probabilities based on HAR13 and CH08 were similar, in spite of their different derivation, and were higher than those based on HOO10. This study shows the importance of the method of parameterization and of the input variable, number of bacterial INP, for accurately assessing their role in meteorological and climatic processes.
Green's Function and Stress Fields in Stochastic Heterogeneous Continua
NASA Astrophysics Data System (ADS)
Negi, Vineet
Many engineering materials used today are heterogenous in composition e.g. Composites - Polymer Matrix Composites, Metal Matrix Composites. Even, conventional engineering materials - metals, plastics, alloys etc. - may develop heterogeneities, like inclusions and residual stresses, during the manufacturing process. Moreover, these materials may also have intrinsic heterogeneities at a nanoscale in the form of grain boundaries in metals, crystallinity in amorphous polymers etc. While, the homogenized constitutive models for these materials may be satisfactory at a macroscale, recent studies of phenomena like fatigue failure, void nucleation, size-dependent brittle-ductile transition in polymeric nanofibers reveal a major play of micro/nanoscale physics in these phenomena. At this scale, heterogeneities in a material may no longer be ignored. Thus, this demands a study into the effects of various material heterogeneities. In this work, spatial heterogeneities in two material properties - elastic modulus and yield stress - have been investigated separately. The heterogeneity in the elastic modulus is studied in the context of Green's function. The Stochastic Finite Element method is adopted to get the mean statistics of the Green's function defined on a stochastic heterogeneous 2D infinite space. A study of the elastic-plastic transition in a domain having stochastic heterogenous yield stress was done using Mont-Carlo methods. The statistics for various stress and strain fields during the transition were obtained. Further, the effects of size of the domain and the strain-hardening rate on the stress fields during the heterogeneous elastic-plastic transition were investigated. Finally, a case is made for the role of the heterogenous elastic-plastic transition in damage nucleation and growth.
NASA Astrophysics Data System (ADS)
Wang, Ning; Sun, Xiaomin; Chen, Jianmin; Li, Xiang
2017-02-01
Free radicals in atmosphere have played an important role in the atmospheric chemistry. The chloro-Criegee free radicals are produced easily in the decomposition of primary ozonide (POZ) of the trichloroethylene, and can react with O2, NO, NO2, SO2 and H2O subsequently. Then the inorganic salts, polar organic nitrogen and organic sulfur compounds, oxygen-containing heterocyclic intermediates and polyhydroxy compounds can be obtained. The heterogeneous nucleation of oxidation intermediates in the formation of fine particles is investigated using molecular dynamics simulation. The detailed nucleation processes are reported. According to molecular dynamics simulation, the nucleation with a diameter of 2 nm is formed in the Organic Compounds-(NH4)2SO4-H2O system. The spontaneous nucleation is an important process in the formation of fine particles in atmosphere. The model study gives a good example from volatile organic compounds to new fine particles.
Clark, Michael D; Morris, Kenneth R; Tomassone, Maria Silvina
2017-09-12
We present a novel simulation-based investigation of the nucleation of nanodroplets from solution and from vapor. Nucleation is difficult to measure or model accurately, and predicting when nucleation should occur remains an open problem. Of specific interest is the "metastable limit", the observed concentration at which nucleation occurs spontaneously, which cannot currently be estimated a priori. To investigate the nucleation process, we employ gauge-cell Monte Carlo simulations to target spontaneous nucleation and measure thermodynamic properties of the system at nucleation. Our results reveal a widespread correlation over 5 orders of magnitude of solubilities, in which the metastable limit depends exclusively on solubility and the number density of generated nuclei. This three-way correlation is independent of other parameters, including intermolecular interactions, temperature, molecular structure, system composition, and the structure of the formed nuclei. Our results have great potential to further the prediction of nucleation events using easily measurable solute properties alone and to open new doors for further investigation.
Sorokin, A; Vancassel, X; Mirabel, P
2005-12-22
A kinetic model to predict nucleation rates in the sulfuric acid-water system is presented. It allows calculating steady-state nucleation rates and the corresponding time lag, using a direct solution of a system of kinetic equations that describe the populations of sub- and near-critical clusters. This kinetic model takes into account cluster-cluster collisions and decay of clusters into smaller clusters. The model results are compared with some predictions obtained with the classical nucleation theory (CNT) and also with available measurement data obtained in smog chambers or flow tubes. It is shown that in the case of slow nucleation processes, the kinetic model and the CNT as used by Shugard et al. [J. Chem. Phys. 75, 5298 (1974)] give the same results. However, in the case of intensive nucleation, a large part of the nucleation flux is due to cluster-cluster collisions and the CNT underestimates the nucleation rates.
Kinetics of binary nucleation of vapors in size and composition space.
Fisenko, Sergey P; Wilemski, Gerald
2004-11-01
We reformulate the kinetic description of binary nucleation in the gas phase using two natural independent variables: the total number of molecules g and the molar composition x of the cluster. The resulting kinetic equation can be viewed as a two-dimensional Fokker-Planck equation describing the simultaneous Brownian motion of the clusters in size and composition space. Explicit expressions for the Brownian diffusion coefficients in cluster size and composition space are obtained. For characterization of binary nucleation in gases three criteria are established. These criteria establish the relative importance of the rate processes in cluster size and composition space for different gas phase conditions and types of liquid mixtures. The equilibrium distribution function of the clusters is determined in terms of the variables g and x. We obtain an approximate analytical solution for the steady-state binary nucleation rate that has the correct limit in the transition to unary nucleation. To further illustrate our description, the nonequilibrium steady-state cluster concentrations are found by numerically solving the reformulated kinetic equation. For the reformulated transient problem, the relaxation or induction time for binary nucleation was calculated using Galerkin's method. This relaxation time is affected by processes in both size and composition space, but the contributions from each process can be separated only approximately.
Uncovering molecular processes in crystal nucleation and growth by using molecular simulation.
Anwar, Jamshed; Zahn, Dirk
2011-02-25
Exploring nucleation processes by molecular simulation provides a mechanistic understanding at the atomic level and also enables kinetic and thermodynamic quantities to be estimated. However, whilst the potential for modeling crystal nucleation and growth processes is immense, there are specific technical challenges to modeling. In general, rare events, such as nucleation cannot be simulated using a direct "brute force" molecular dynamics approach. The limited time and length scales that are accessible by conventional molecular dynamics simulations have inspired a number of advances to tackle problems that were considered outside the scope of molecular simulation. While general insights and features could be explored from efficient generic models, new methods paved the way to realistic crystal nucleation scenarios. The association of single ions in solvent environments, the mechanisms of motif formation, ripening reactions, and the self-organization of nanocrystals can now be investigated at the molecular level. The analysis of interactions with growth-controlling additives gives a new understanding of functionalized nanocrystals and the precipitation of composite materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kobayashi, Atsuko; Horikawa, Masamoto; Kirschvink, Joseph L; Golash, Harry N
2018-05-22
In supercooled water, ice nucleation is a stochastic process that requires ∼250-300 molecules to transiently achieve structural ordering before an embryonic seed crystal can nucleate. This happens most easily on crystalline surfaces, in a process termed heterogeneous nucleation; without such surfaces, water droplets will supercool to below -30 °C before eventually freezing homogeneously. A variety of fundamental processes depends on heterogeneous ice nucleation, ranging from desert-blown dust inducing precipitation in clouds to frost resistance in plants. Recent experiments have shown that crystals of nanophase magnetite (Fe 3 O 4 ) are powerful nucleation sites for this heterogeneous crystallization of ice, comparable to other materials like silver iodide and some cryobacterial peptides. In natural materials containing magnetite, its ferromagnetism offers the possibility that magneto-mechanical motion induced by external oscillating magnetic fields could act to disrupt the water-crystal interface, inhibiting the heterogeneous nucleation process in subfreezing water and promoting supercooling. For this to act, the magneto-mechanical rotation of the particles should be higher than the magnitude of Brownian motions. We report here that 10-Hz precessing magnetic fields, at strengths of 1 mT and above, on ∼50-nm magnetite crystals dispersed in ultrapure water, meet these criteria and do indeed produce highly significant supercooling. Using these rotating magnetic fields, we were able to elicit supercooling in two representative plant and animal tissues (celery and bovine muscle), both of which have detectable, natural levels of ferromagnetic material. Tailoring magnetic oscillations for the magnetite particle size distribution in different tissues could maximize this supercooling effect. Copyright © 2018 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Rendel, Pedro M.; Gavrieli, Ittai; Wolff-Boenisch, Domenik; Ganor, Jiwchar
2018-03-01
The main obstacle in the formulation of a quantitative rate-model for mineral precipitation is the absence of a rigorous method for coupling nucleation and growth processes. In order to link both processes, we conducted a series of batch experiments in which gypsum nucleation was followed by crystal growth. Experiments were carried out using various stirring methods in several batch vessels made of different materials. In the experiments, the initial degree of supersaturation of the solution with respect to gypsum (Ωgyp) was set between 1.58 and 1.82. Under these conditions, heterogeneous nucleation is the dominant nucleation mode. Based on changes in SO42- concentration with time, the induction time of gypsum nucleation and the following rate of crystal growth were calculated for each experiment. The induction time (6-104 h) was found to be a function of the vessel material, while the rates of crystal growth, which varied over three orders of magnitude, were strongly affected by the stirring speed and its mode (i.e. rocking, shaking, magnetic stirrer, and magnetic impeller). The SO42- concentration data were then used to formulate a forward model that couples the simple rate laws for nucleation and crystal growth of gypsum into a single kinetic model. Accordingly, the obtained rate law is based on classical nucleation theory and heterogeneous crystal growth.
Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids
NASA Astrophysics Data System (ADS)
Cai, Y.; Wu, H. A.; Luo, S. N.
2014-06-01
Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (˜0.9 J {m}^{-2}) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (1033 - 34 s-1 m-3) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.
Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.
Cai, Y; Wu, H A; Luo, S N
2014-06-07
Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (~0.9 J m⁻²) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10(33 - 34) s(-1) m(-3)) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.
Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Y.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wu, H. A., E-mail: wuha@ustc.edu.cn
2014-06-07
Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energymore » barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (∼0.9 J m{sup −2}) and the Tolman length (0.4–0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10{sup 33−34} s{sup −1} m{sup −3}) and critical size (3–4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.« less
Thermodynamic and Dynamic Aspects of Ice Nucleation
NASA Technical Reports Server (NTRS)
Barahona, Donifan
2018-01-01
It is known that ice nucleating particles (INP) immersed within supercooled droplets promote the formation of ice. Common theoretical models used to represent this process assume that the immersed particle lowers the work of ice nucleation without significantly affecting the dynamics of water in the vicinity of the particle. This is contrary to evidence showing that immersed surfaces significantly affect the viscosity and diffusivity of vicinal water. To study how this may affect ice formation this work introduces a model linking the ice nucleation rate to the modification of the dynamics and thermodynamics of vicinal water by immersed particles. It is shown that INP that significantly reduce the work of ice nucleation also pose strong limitations to the growth of the nascent ice germs. This leads to the onset of a new ice nucleation regime, called spinodal ice nucleation, where the dynamics of ice germ growth instead of the ice germ size determines the nucleation rate. Nucleation in this regime is characterized by an enhanced sensitivity to particle area and cooling rate. Comparison of the predicted ice nucleation rate against experimental measurements for a diverse set of species relevant to cloud formation suggests that spinodal ice nucleation may be common in nature.
NASA Astrophysics Data System (ADS)
Onufer, Jozef; Ziman, Ján; Duranka, Peter; Kladivová, Mária
2018-07-01
The effect of gradual annealing on the domain wall mobility (velocity), nucleation, critical depinning and propagation fields in amorphous FeSiB microwires has been studied. A new experimental set-up, presented in this paper, allows measurement of average domain wall velocity for four different conditions and detection of the presence of unidirectional effect in wall propagation without manipulation of the microwire. The proposed interpretation is that a domain wall is considered as a relatively long object which can change its axial dimension due to inhomogeneity of damping forces acting on the wall during its propagation. It is demonstrated that unidirectional effect in domain wall propagation can be strongly reduced by annealing the wire at temperatures higher than 350 °C.
GCSS Cirrus Parcel Model Comparison Project
NASA Technical Reports Server (NTRS)
Lin, Ruei-Fong; Starr, David OC.; DeMott, Paul J.; Cotton, Richard; Jensen, Eric; Sassen, Kenneth; Einaudi, Franco (Technical Monitor)
2000-01-01
The Cirrus Parcel Model Comparison Project, a project of GCSS Working Group on Cirrus Cloud Systems (WG2), involves the systematic comparison of current models of ice crystal nucleation and growth for specified, typical, cirrus cloud environments. The goal of this project is to document and understand the factors resulting in significant inter-model differences. The intent is to foment research leading to model improvement and validation. In Phase 1 of the project reported here, simulated cirrus cloud microphysical properties are compared for situations of "warm" (-40 C) and "cold" (-60 C) cirrus subject to updrafts of 4, 20 and 100 cm/s, respectively. Five models participated. These models employ explicit microphysical schemes wherein the size distribution of each class of particles (aerosols and ice crystals) is resolved into bins. Simulations are made including both homogeneous and heterogeneous ice nucleation mechanisms. A single initial aerosol population of sulfuric acid particles is prescribed for all simulations. To isolate the treatment of the homogeneous freezing (of haze drops) nucleation process, the heterogeneous nucleation mechanism is disabled for a second parallel set of simulations. Qualitative agreement is found for the homogeneous-nucleation-only simulations, e.g., the number density of nucleated ice crystals increases with the strength of the prescribed updraft. However, non-negligible quantitative differences are found. Detailed analysis reveals that the homogeneous nucleation formulation, aerosol size, ice crystal growth rate (particularly the deposition coefficient), and water vapor uptake rate are critical components that lead to differences in predicted microphysics. Systematic bias exists between results based on a modified classical theory approach and models using an effective freezing temperature approach to the treatment of nucleation. Each approach is constrained by critical freezing data from laboratory studies, but each includes assumptions that can only be justified by further laboratory data. Consequently, it is not yet clear if the two approaches can be made consistent. Large haze particles may deviate considerably from equilibrium size in moderate to strong updrafts (20-100 cm/s) at -60 C when the commonly invoked equilibrium assumption is lifted. The resulting difference in particle-size-dependent solution concentration of haze particles may significantly affect the ice nucleation rate during the initial nucleation interval. The uptake rate for water vapor excess by ice crystals is another key component regulating the total number of nucleated ice crystals. This rate, the product of ice number concentration and ice crystal diffusional growth rate, which is sensitive to the deposition coefficient when ice particles are small, partially controls the peak nucleation rate achieved in an air parcel and the duration of the active nucleation time period. The effects of heterogeneous nucleation are most pronounced in weak updraft situations. Vapor competition by the nucleated (heterogeneous) ice crystals limits the achieved ice supersaturation and thus suppresses the contribution of homogeneous nucleation. Correspondingly, ice crystal number density is markedly reduced. Definitive laboratory and atmospheric benchmark data are needed for the heterogeneous nucleation process. Inter-model differences are correspondingly greater than in the case of the homogeneous nucleation process acting alone.
Properties of the seismic nucleation phase
Beroza, G.C.; Ellsworth, W.L.
1996-01-01
Near-source observations show that earthquakes begin abruptly at the P-wave arrival, but that this beginning is weak, with a low moment rate relative to the rest of the main shock. We term this initial phase of low moment rate the seismic nucleation phase. We have observed the seismic nucleation phase for a set of 48 earthquakes ranging in magnitude from 1.1-8.1. The size and duration of the seismic nucleation phase scale with the total seismic moment of the earthquake, suggesting that the process responsible for the seismic nucleation phase carries information about the eventual size of the earthquake. The seismic nucleation phase is characteristically followed by quadratic growth in the moment rate, consistent with self-similar rupture at constant stress drop. In this paper we quantify the properties of the seismic nucleation phase and offer several possible explanations for it.
Solute Nucleation and Growth in Supercritical Fluid Mixtures
NASA Technical Reports Server (NTRS)
Smedley, Gregory T.; Wilemski, Gerald; Rawlins, W. Terry; Joshi, Prakash; Oakes, David B.; Durgin, William W.
1996-01-01
This research effort is directed toward two primary scientific objectives: (1) to determine the gravitational effect on the measurement of nucleation and growth rates near a critical point and (2) to investigate the nucleation process in supercritical fluids to aid in the evaluation and development of existing theoretical models and practical applications. A nucleation pulse method will be employed for this investigation using a rapid expansion to a supersaturated state that is maintained for approximately 1 ms followed by a rapid recompression to a less supersaturated state that effectively terminates nucleation while permitting growth to continue. Nucleation, which occurs during the initial supersaturated state, is decoupled from growth by producing rapid pressure changes. Thermodynamic analysis, condensation modeling, apparatus design, and optical diagnostic design necessary for the initiation of a theoretical and experimental investigation of naphthalene nucleation from supercritical CO2 have been completed.
Naffakh, Mohammed; Marco, Carlos; Ellis, Gary
2011-09-22
The dynamic crystallization and melting behavior of isotactic polypropylene-tungsten disulfide (iPP/IF-WS(2)) nanocomposites incorporating a β-nucleating agent is investigated by X-ray diffraction and differential scanning calorimetry. A conventional melt-processing strategy is employed to generate new materials that exhibit variable α and β polymorphism under the appropriate kinetic conditions. The results show that when the dual additive system is employed the nucleation ability on isotactic polypropylene not only depends on the nucleation efficiency (NE) and relative content of the individual α and β-nucleating agents, but also on the cooling rates employed. The nucleating behavior of the additives is explained by competitive nucleation, and the correlation between crystallization and melting temperatures and relative content of α and β-crystals of iPP in the nanocomposites is discussed.
Overview: Nucleation of clathrate hydrates
NASA Astrophysics Data System (ADS)
Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.
2016-12-01
Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.
Overview: Nucleation of clathrate hydrates.
Warrier, Pramod; Khan, M Naveed; Srivastava, Vishal; Maupin, C Mark; Koh, Carolyn A
2016-12-07
Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.
Spatial localization of nanoparticle growth in photoinduced nanocomposites
NASA Astrophysics Data System (ADS)
Smirnov, Anton A.; Pikulin, Alexander; Bityurin, Nikita
2018-02-01
Photoinduced nanocomposites are the polymer materials where the nanoparticles can be generated by the light irradiation. The single atoms of metal are formed due to the photoreduction of the metal-containing precursor added to the polymer matrix. Then the atoms precipitate into the nanoparticles (NPs). Similarly, semiconductor NPs are assembled from the monomer species such as CdS, which can be released due to the photodestruction of the appropriate precursor. We analyze theoretically the possibility of spatial confinement of growing nanoparticles in a domain where the elementary species are generated by a three-dimensionally localized source. It is shown that the effective confinement can be achieved only if the size of the generation domain exceeds some critical spatial scale determined by the parameters of the system. The confinement is provided by the trapping of the diffusing elementary species by the growing nanoparticles. The proposed model considers the irreversible particle growth, typical for the noble metals. Both the nucleation and the particle growth processes are suggested to be diffusion controlled.
Formation and organization of protein domains in the immunological synapse
NASA Astrophysics Data System (ADS)
Carlson, Andreas; Mahadevan, L.
2014-11-01
The cellular basis for the adaptive immune response during antigen recognition relies on a specialized protein interface known as the immunological synapse. Here, we propose a minimal mathematical model for the dynamics of the IS that encompass membrane mechanics, hydrodynamics and protein kinetics. Simple scaling laws describe the dynamics of protein clusters as a function of membrane stiffness, rigidity of the adhesive proteins, and fluid flow in the synaptic cleft. Numerical simulations complement the scaling laws by quantifying the nucleation, growth and stabilization of proteins domains on the size of the cell. Direct comparison with experiment suggests that passive dynamics suffices to describe the short-time formation and organization of protein clusters, while the stabilization and long time dynamics of the synapse is likely determined by active cytoskeleton processes triggered by receptor binding. Our study reveals that the fluid flow generated by the interplay between membrane deformation and protein binding kinetics can assist immune cells in regulating protein sorting.
Park, Steve; Giri, Gaurav; Shaw, Leo; Pitner, Gregory; Ha, Jewook; Koo, Ja Hoon; Gu, Xiaodan; Park, Joonsuk; Lee, Tae Hoon; Nam, Ji Hyun; Hong, Yongtaek; Bao, Zhenan
2015-01-01
The electronic properties of solution-processable small-molecule organic semiconductors (OSCs) have rapidly improved in recent years, rendering them highly promising for various low-cost large-area electronic applications. However, practical applications of organic electronics require patterned and precisely registered OSC films within the transistor channel region with uniform electrical properties over a large area, a task that remains a significant challenge. Here, we present a technique termed “controlled OSC nucleation and extension for circuits” (CONNECT), which uses differential surface energy and solution shearing to simultaneously generate patterned and precisely registered OSC thin films within the channel region and with aligned crystalline domains, resulting in low device-to-device variability. We have fabricated transistor density as high as 840 dpi, with a yield of 99%. We have successfully built various logic gates and a 2-bit half-adder circuit, demonstrating the practical applicability of our technique for large-scale circuit fabrication. PMID:25902502
Lipp, M M; Lee, K Y; Waring, A; Zasadzinski, J A
1997-01-01
Fluorescence, polarized fluorescence, and Brewster angle microscopy reveal that human lung surfactant protein SP-B and its amino terminus (SP-B[1-25]) alter the phase behavior of palmitic acid monolayers by inhibiting the formation of condensed phases and creating a new fluid protein-rich phase. This fluid phase forms a network that separates condensed phase domains at coexistence and persists to high surface pressures. The network changes the monolayer collapse mechanism from heterogeneous nucleation/growth and fracturing processes to a more homogeneous process through isolating individual condensed phase domains. This results in higher surface pressures at collapse, and monolayers easier to respread on expansion, factors essential to the in vivo function of lung surfactant. The network is stabilized by a low-line tension between the coexisting phases, as confirmed by the observation of extended linear domains, or "stripe" phases, and a Gouy-Chapman analysis of protein-containing monolayers. Comparison of isotherm data and observed morphologies of monolayers containing SP-B(1-25) with those containing the full SP-B sequence show that the shortened peptide retains most of the native activity of the full-length protein, which may lead to cheaper and more effective synthetic replacement formulations. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 PMID:9168053
Molecular beam epitaxial growth and structural characterization of ZnS on (001) GaAs
NASA Technical Reports Server (NTRS)
Benz, R. G., II; Huang, P. C.; Stock, S. R.; Summers, C. J.
1988-01-01
The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as assessed by X-ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces.
Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng
2014-01-01
Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies. PMID:25382029
The Nucleation of Protein Aggregates - From Crystals to Amyloid Fibrils.
Buell, Alexander K
2017-01-01
The condensation and aggregation of individual protein molecules into dense insoluble phases is of relevance in such diverse fields as materials science, medicine, structural biology and pharmacology. A common feature of these condensation phenomena is that they usually are nucleated processes, i.e. the first piece of the condensed phase is energetically costly to create and hence forms slowly compared to its subsequent growth. Here we give a compact overview of the differences and similarities of various protein nucleation phenomena, their theoretical description in the framework of colloid and polymer science and their experimental study. Particular emphasis is put on the nucleation of a specific type of filamentous protein aggregates, amyloid fibrils. The current experimentally derived knowledge on amyloid fibril nucleation is critically assessed, and we argue that it is less advanced than is generally believed. This is due to (I) the lack of emphasis that has been put on the distinction between homogeneous and heterogeneous nucleation in experimental studies (II) the use of oversimplifying and/or inappropriate theoretical frameworks for the analysis of kinetic data of amyloid fibril nucleation. A strategy is outlined and advocated of how our understanding of this important class of processes can be improved in the future. © 2017 Elsevier Inc. All rights reserved.
Stress-induced reversible and irreversible ferroelectric domain switching
NASA Astrophysics Data System (ADS)
Chen, Zibin; Huang, Qianwei; Wang, Feifei; Ringer, Simon P.; Luo, Haosu; Liao, Xiaozhou
2018-04-01
Ferroelectric materials have been extensively explored for applications in electronic devices because of their ferroelectric/ferroelastic domain switching behaviour under electric bias or mechanical stress. Recent findings on applying mechanical loading to manipulate reversible logical signals in non-volatile ferroelectric memory devices make ferroelectric materials more attractive to scientists and engineers. However, the dynamical microscopic structural behaviour of ferroelectric domains under stress is not well understood, which limits the applications of ferroelectric/ferroelastic switching in memory devices. Here, the kinetics of reversible and irreversible ferroelectric domain switching induced by mechanical stress in relaxor-based ferroelectrics was explored. In-situ transmission electron microscopy investigation revealed that 90° ferroelastic and 180° ferroelectric domain switching can be induced by low and high mechanical stresses. The nucleation and growth of nanoscale domains overwhelm the defect-induced pinning effect on the stable micro-domain walls. This study provides deep insights for exploring the mechanical kinetics for ferroelectric/ferroelastic domains and a clear pathway to overcome the domain pinning effect of defects in ferroelectrics.
Controlled ice nucleation using freeze-dried Pseudomonas syringae encapsulated in alginate beads.
Weng, Lindong; Tessier, Shannon N; Swei, Anisa; Stott, Shannon L; Toner, Mehmet
2017-04-01
The control of ice nucleation is of fundamental significance in many process technologies related to food and pharmaceutical science and cryobiology. Mechanical perturbation, electromagnetic fields and ice-nucleating agents (INAs) have been known to induce ice nucleation in a controlled manner. But these ice-nucleating methods may suffer from cumbersome manual operations, safety concerns of external fields, and biocompatibility and recovery issues of INA particles, especially when used in living systems. Given the automatic ice-seeding nature of INAs, a promising solution to overcome some of the above limitations is to engineer a biocomposite that accommodates the INA particles but minimizes their interactions with biologics, as well as enabling the recovery of used particles. In this study, freeze-dried Pseudomonas syringae, a model ice-nucleating agent, was encapsulated into microliter-sized alginate beads. We evaluated the performance of the bacterial hydrogel beads to initiate ice nucleation in water and aqueous glycerol solution by investigating factors including the size and number of the beads and the local concentration of INA particles. In the aqueous sample of a fixed volume, the total mass of the INA particles (m) was found to be the governing parameter that is solely responsible for determining the ice nucleation performance of the bacterial hydrogel beads. The freezing temperature has a strong positive linear correlation with log 10 m. The findings in this study provide an effective, predictable approach to control ice nucleation, which can improve the outcome and standardization of many ice-assisted process technologies. Copyright © 2017 Elsevier Inc. All rights reserved.
What experiments on pinned nanobubbles can tell about the critical nucleus for bubble nucleation.
Xiao, Qianxiang; Liu, Yawei; Guo, Zhenjiang; Liu, Zhiping; Frenkel, Daan; Dobnikar, Jure; Zhang, Xianren
2017-12-22
The process of homogeneous bubble nucleation is almost impossible to probe experimentally, except near the critical point or for liquids under large negative tension. Elsewhere in the phase diagram, the bubble nucleation barrier is so high as to be effectively insurmountable. Consequently, there is a severe lack of experimental studies of homogenous bubble nucleation under conditions of practical importance (e.g., cavitation). Here we use a simple geometric relation to show that we can obtain information about the homogeneous nucleation process from Molecular Dynamics studies of bubble formation in solvophobic nanopores on a solid surface. The free energy of pinned nanobubbles has two extrema as a function of volume: one state corresponds to a free-energy maximum ("the critical nucleus"), the other corresponds to a free-energy minimum (the metastable, pinned nanobubble). Provided that the surface tension does not depend on nanobubble curvature, the radius of the curvature of the metastable surface nanobubble is independent of the radius of the pore and is equal to the radius of the critical nucleus in homogenous bubble nucleation. This observation opens the way to probe the parameters that determine homogeneous bubble nucleation under experimentally accessible conditions, e.g. with AFM studies of metastable nanobubbles. Our theoretical analysis also indicates that a surface with pores of different sizes can be used to determine the curvature corrections to the surface tension. Our conclusions are not limited to bubble nucleation but suggest that a similar approach could be used to probe the structure of critical nuclei in crystal nucleation.
Heteroepitaxial growth of GaAs on (100) Ge/Si using migration enhanced epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanoto, H.; Loke, W. K.; Yoon, S. F.
In this paper, heteroepitaxial growth of GaAs on nominal (100) Ge/Si substrate was investigated. The root-mean square surface roughness of the sample where the first few monolayers of the GaAs were nucleated by migration enhanced epitaxy (MEE) is four times smaller compared to the sample without such a process, indicating better surface planarity. From the (004) x-ray diffraction rocking curve measurement, the full width at half maximum of the GaAs layer nucleated by MEE is 40% lower compared to that of the GaAs layer without such a process, indicating better crystal quality. Furthermore, it was found that the sample wheremore » the GaAs layer was nucleated by MEE experienced early relaxation. As the MEE process promotes two-dimensional growth, the GaAs layer where nucleation was initiated by such a process has fewer islandlike formations. This leads to a pseudomorphically grown GaAs layer, which experiences higher strain compared to the GaAs layer with more islandlike formations, where most relaxation occurs on the free surface of the islands. Therefore, for the same layer thickness, the GaAs layer on (100) Ge/Si substrate where nucleation was initiated by MEE relaxed first.« less
Zhang, Q B; Hua, Y X
2014-12-28
The electrochemical nucleation and growth kinetics of copper nanoparticles on a Ni electrode have been studied with cyclic voltammetry and chronoamperometry in the choline chloride (ChCl)-urea based deep eutectic solvent (DES). The copper source was introduced into the solvent by the dissolution of Cu(I) oxide (Cu2O). Cyclic voltammetry indicates that the electroreduction of Cu(I) species in the DES is a diffusion-controlled quasi-reversible process. The analysis of the chronoamperometric transient behavior during electrodeposition suggests that the deposition of copper on the Ni electrode at low temperatures follows a progressive nucleation and three-dimensional growth controlled by diffusion. The effect of temperature on the diffusion coefficient of Cu(I) species that is present in the solvent and electron transfer rate constant obeys the Arrhenius law, according to which the activation energies are estimated to be 49.20 and 21.72 kJ mol(-1), respectively. The initial stage of morphological study demonstrates that both electrode potential and temperature play important roles in controlling the nucleation and growth kinetics of the nanocrystals during the electrodeposition process. Electrode potential is observed to affect mainly the nucleation process, whereas temperature makes a major contribution to the growth process.
Initial stage of nucleation-mediated crystallization of a supercooled melt
NASA Astrophysics Data System (ADS)
Chernov, A. A.; Pil'nik, A. A.; Islamov, D. R.
2016-09-01
The kinetic model of nucleation-mediated crystallization of a supercooled melt is presented in this work. It correctly takes into account the change in supercooling of the initial phase in the process of formation and evolution of a new phase. The model makes it possible to find the characteristic time of the process, time course of the crystal phase volume, solidified material microstructure. The distinctive feature of the model is the use of the "forbidden" zones in the volume where the formation of new nucleation centers is suppressed.
Numerical studies from quantum to macroscopic scales of carbon nanoparticules in hydrogen plasma
NASA Astrophysics Data System (ADS)
Lombardi, Guillaume; Ngandjong, Alain; Mezei, Zsolt; Mougenot, Jonathan; Michau, Armelle; Hassouni, Khaled; Seydou, Mahamadou; Maurel, François
2016-09-01
Dusty plasmas take part in large scientific domains from Universe Science to nanomaterial synthesis processes. They are often generated by growth from molecular precursor. This growth leads to the formation of larger clusters which induce solid germs nucleation. Particle formed are described by an aerosol dynamic taking into account coagulation, molecular deposition and transport processes. These processes are controlled by the elementary particle. So there is a strong coupling between particle dynamics and plasma discharge equilibrium. This study is focused on the development of a multiscale physic and numeric model of hydrogen plasmas and carbon particles around three essential coupled axes to describe the various physical phenomena: (i) Macro/mesoscopic fluid modeling describing in an auto-coherent way, characteristics of the plasma, molecular clusters and aerosol behavior; (ii) the classic molecular dynamics offering a description to the scale molecular of the chains of chemical reactions and the phenomena of aggregation; (iii) the quantum chemistry to establish the activation barriers of the different processes driving the nanopoarticule formation.
NASA Astrophysics Data System (ADS)
Futko, S. I.; Shulitskii, B. G.; Labunov, V. A.; Ermolaeva, E. M.
2016-11-01
A kinetic model of isothermal synthesis of multilayer graphene on the surface of a nickel foil in the process of chemical vapor deposition, on it, of hydrocarbons supplied in the pulsed regime is considered. The dependences of the number of graphene layers formed and the time of their growth on the temperature of the process, the concentration of acetylene, and the thickness of the nickel foil were calculated. The regime parameters of the process of chemical vapor deposition, at which single-layer graphene and bi-layer graphene are formed, were determined. The dynamics of growth of graphene domains at chemical-vapor-deposition parameters changing in wide ranges was investigated. It is shown that the time dependences of the rates of growth of single-layer graphene and bi-layer graphene are nonlinear in character and that they are determined by the kinetics of nucleation and growth of graphene and the diffusion flow of carbon atoms in the nickel foil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Gourihar R.; China, Swarup; Liu, Shang
The role of atmospheric relevant soot particles that are processed in the atmosphere toward ice nucleation at cirrus cloud condition is poorly understood. In this study, the ice nucleating properties of diesel soot particles subjected to various physical and chemical aging treatments were investigated at temperatures ranging from -40 to -50 °C. We show that bare soot particles nucleate ice in deposition mode, but coating with secondary organics suppresses the heterogeneous ice nucleation potential of soot particles requiring homogeneous freezing threshold conditions. However, the ice nucleation efficiency of soot particles coated with an aqueous organic layer was similar to baremore » soot particles. Hydration of bare soot particles slightly enhanced the ice nucleation efficiency, and the IN abilities of compact soot particles (roundness = ~ 0.6) were similar to bare lacey soot particles (roundness = ~ 0.4). These results indicate that ice nucleation properties are sensitive to the various aging treatments.« less
Thakur, Anil S.; Robin, Gautier; Guncar, Gregor; Saunders, Neil F. W.; Newman, Janet; Martin, Jennifer L.; Kobe, Bostjan
2007-01-01
Background Crystallization is a major bottleneck in the process of macromolecular structure determination by X-ray crystallography. Successful crystallization requires the formation of nuclei and their subsequent growth to crystals of suitable size. Crystal growth generally occurs spontaneously in a supersaturated solution as a result of homogenous nucleation. However, in a typical sparse matrix screening experiment, precipitant and protein concentration are not sampled extensively, and supersaturation conditions suitable for nucleation are often missed. Methodology/Principal Findings We tested the effect of nine potential heterogenous nucleating agents on crystallization of ten test proteins in a sparse matrix screen. Several nucleating agents induced crystal formation under conditions where no crystallization occurred in the absence of the nucleating agent. Four nucleating agents: dried seaweed; horse hair; cellulose and hydroxyapatite, had a considerable overall positive effect on crystallization success. This effect was further enhanced when these nucleating agents were used in combination with each other. Conclusions/Significance Our results suggest that the addition of heterogeneous nucleating agents increases the chances of crystal formation when using sparse matrix screens. PMID:17971854
Ohta, Yasuhito; Okamoto, Yoshiko; Page, Alister J; Irle, Stephan; Morokuma, Keiji
2009-11-24
The atomic scale details of single-walled carbon nanotube (SWNT) nucleation on metal catalyst particles are elusive to experimental observations. Computer simulation of metal-catalyzed SWNT nucleation is a challenging topic but potentially of great importance to understand the factors affecting SWNT diameters, chirality, and growth efficiency. In this work, we use nonequilibrium density functional tight-binding molecular dynamics simulations and report nucleation of sp(2)-carbon cap structures on an iron particle consisting of 38 atoms. One C(2) molecule was placed every 1.0 ps around an Fe(38) cluster for 30 ps, after which a further 410 ps of annealing simulation without carbon supply was performed. We find that sp(2)-carbon network nucleation and annealing processes occur in three sequential and repetitive stages: (A) polyyne chains on the metal surface react with each other to evolve into a Y-shaped polyyne junction, which preferentially form a five-membered ring as a nucleus; (B) polyyne chains on the first five-membered ring form an additional fused five- or six-membered ring; and (C) pentagon-to-hexagon self-healing rearrangement takes place with the help of short-lived polyyne chains, stabilized by the mobile metal atoms. The observed nucleation process resembles the formation of a fullerene cage. However, the metal particle plays a key role in differentiating the nucleation process from fullerene cage formation, most importantly by keeping the growing cap structure from closing into a fullerene cage and by keeping the carbon edge "alive" for the addition of new carbon material.
Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2
Petry, Sabine; Groen, Aaron C.; Ishihara, Keisuke; Mitchison, Timothy J.; Vale, Ronald D.
2013-01-01
Summary The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence also has suggested that microtubules might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires gamma-tubulin and augmin and is stimulated by GTP-bound Ran and its effector TPX2, factors previously implicated in chromatin-stimulated nucleation. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance. PMID:23415226
Atkinson, Samantha; Kirik, Angela; Kirik, Viktor
2014-01-01
Aligned microtubule arrays spatially organize cell division, trafficking, and determine the direction of cell expansion in plant cells. In response to changes in environmental and developmental signals, cells reorganize their microtubule arrays into new configurations. Here, we tested the role of microtubule nucleation during hormone-induced microtubule array reorientation. We have found that in the process of microtubule array reorientation the ratios between branching, parallel, and de-novo nucleations remained constant, suggesting that the microtubule reorientation mechanism does not involve changes in nucleation modes. In the ton2/fass mutant, which has reduced microtubule branching nucleation frequency and decreased nucleation activity of the γ-tubulin complexes, microtubule arrays were able to reorient. Presented data suggest that reorientation of microtubules into transverse arrays in response to hormones does not involve changes in microtubule nucleation at the periclinal cell surface PMID:25135522
Comparing the ice nucleation efficiencies of ice nucleating substrates to natural mineral dusts
NASA Astrophysics Data System (ADS)
Steinke, Isabelle; Funk, Roger; Höhler, Kristina; Haarig, Moritz; Hoffmann, Nadine; Hoose, Corinna; Kiselev, Alexei; Möhler, Ottmar; Leisner, Thomas
2014-05-01
Mineral dust particles in the atmosphere may act as efficient ice nuclei over a wide range of temperature and relative humidity conditions. The ice nucleation capability of dust particles mostly depends on the particle surface area and the associated physico-chemical surface properties. It has been observed that the surface-related ice nucleation efficiency of different dust particles and mineral species can vary by several orders of magnitude. However, the relation between aerosol surface properties and observed ice nucleation efficiency is still not completely understood due to the large variability of chemical compositions and morphological features. In order to gain a better understanding of small scale freezing processes, we investigated the freezing of several hundreds of small droplets (V=0.4 nl) deposited on materials with reasonably well defined surfaces such as crystalline silicon wafers, graphite and freshly cleaved mica sheets under atmospherically relevant conditions. These substrates are intended to serve as simple model structures compared to the surface of natural aerosol particles. To learn more about the impact of particle morphology on ice nucleation processes, we also investigated micro-structured silicon wafers with prescribed trenches. The ice nucleation efficiencies deduced from these experiments are expressed as ice nucleation active surface site density values. With this approach, the freezing properties of the above-described substrates could be compared to those of natural mineral dusts such as agricultural soil dusts, volcanic ash and fossil diatoms, which have been investigated in AIDA cloud chamber experiments. All tested ice nucleating substrates were consistently less efficient at nucleating ice than the natural mineral dusts. Crystalline silicon only had a negligible influence on the freezing of small droplets, leading to freezing near the homogeneous freezing temperature threshold. Applying surface structures to silicon led to a shift towards heterogeneous freezing. However, the measured ice nucleation active surface site densities were still smaller than those of mineral dusts.
Nonclassical nucleation pathways in protein crystallization
NASA Astrophysics Data System (ADS)
Zhang, Fajun
2017-11-01
Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.
Nonclassical nucleation pathways in protein crystallization.
Zhang, Fajun
2017-11-08
Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.
Ice Nucleation in Deep Convection
NASA Technical Reports Server (NTRS)
Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)
2001-01-01
The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.
Thermally activated vapor bubble nucleation: The Landau-Lifshitz-Van der Waals approach
NASA Astrophysics Data System (ADS)
Gallo, Mirko; Magaletti, Francesco; Casciola, Carlo Massimo
2018-05-01
Vapor bubbles are formed in liquids by two mechanisms: evaporation (temperature above the boiling threshold) and cavitation (pressure below the vapor pressure). The liquid resists in these metastable (overheating and tensile, respectively) states for a long time since bubble nucleation is an activated process that needs to surmount the free energy barrier separating the liquid and the vapor states. The bubble nucleation rate is difficult to assess and, typically, only for extremely small systems treated at an atomistic level of detail. In this work a powerful approach, based on a continuum diffuse interface modeling of the two-phase fluid embedded with thermal fluctuations (fluctuating hydrodynamics), is exploited to study the nucleation process in homogeneous conditions, evaluating the bubble nucleation rates and following the long-term dynamics of the metastable system, up to the bubble coalescence and expansion stages. In comparison with more classical approaches, this methodology allows us on the one hand to deal with much larger systems observed for a much longer time than possible with even the most advanced atomistic models. On the other, it extends continuum formulations to thermally activated processes, impossible to deal with in a purely determinist setting.
NASA Astrophysics Data System (ADS)
Nanev, Christo N.; Petrov, Kostadin P.
2017-12-01
The use of the classical nucleation-growth-separation principle (NGSP) was restricted hitherto to nucleation kinetics studies only. A novel application of the NGSP is proposed. To reduce crystal polydispersity internal seeding of equally-sized crystals is suggested, the advantage being avoidance of crystal grinding, sieving and any introduction of impurities. In the present study, size distributions of grown insulin crystals are interpreted retrospectively to select the proper nucleation stage parameters. The conclusion is that when steering a crystallization process aimed at reducing crystal polydispersity, the shortest possible nucleation stage duration has to be chosen because it renders the closest size distribution of the nucleated crystal seeds. Causes of inherent propensity to increasing crystal polydispersity during prolonged growth are also explored. Step sources of increased activity, present in some crystals while absent in others, are pointed as the major polydispersity cause. Insulin crystal morphology is also considered since it determines the dissolution rate of a crystalline medicine.
Eliaz, Noam; Eliyahu, Moshe
2007-03-01
Recently, interest in electrochemical formation of hydroxyapatite has evolved. In this work, highly crystalline hydroxyapatite is electrodeposited on pure titanium and Ti-6Al-4V alloy. In situ and ex situ imaging, coupled with potentiostatic and potentiodynamic measurements, is conducted by means of electrochemical atomic force microscopy. This allows for a study of the nucleation and growth of hydroxyapatite as well as of its near-atomic structure. Electrodeposition of hydroxyapatite is shown to result from precipitation in solution, following two stages: (1) instantaneous nucleation, two-dimensional growth; (2) progressive nucleation, three-dimensional growth. Although some nucleation occurs already at -842 mV, potentials that are more negative than -1.26 V versus SCE are required for enhanced growth. Mass transport is found to have only secondary effect on the deposition process. The conclusions of this work have implications in optimization of coatings on implants as well as in enhancement of the understanding of bone mineralization in vivo.
Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation
NASA Astrophysics Data System (ADS)
Niemann, R.; Hahn, S.; Diestel, A.; Backen, A.; Schultz, L.; Nielsch, K.; Wagner, M. F.-X.; Fähler, S.
2016-06-01
Magnetocaloric materials are promising as solid state refrigerants for more efficient and environmentally friendly cooling devices. The highest effects have been observed in materials that exhibit a first-order phase transition. These transformations proceed by nucleation and growth which lead to a hysteresis. Such irreversible processes are undesired since they heat up the material and reduce the efficiency of any cooling application. In this article, we demonstrate an approach to decrease the hysteresis by locally changing the nucleation barrier. We created artificial nucleation sites and analyzed the nucleation and growth processes in their proximity. We use Ni-Mn-Ga, a shape memory alloy that exhibits a martensitic transformation. Epitaxial films serve as a model system, but their high surface-to-volume ratio also allows for a fast heat transfer which is beneficial for a magnetocaloric regenerator geometry. Nanoindentation is used to create a well-defined defect. We quantify the austenite phase fraction in its proximity as a function of temperature which allows us to determine the influence of the defect on the transformation.
Oda, Toshiro; Aihara, Tomoki; Wakabayashi, Katsuzo
2016-01-01
Nucleators generating new F-actin filaments play important roles in cell activities. Detailed information concerning the events involved in nucleation of actin alone in vitro is fundamental to understanding these processes, but such information has been hard to come by. We addressed the early process of salt-induced polymerization of actin using the time-resolved synchrotron small-angle X-ray scattering (SAXS). Actin molecules in low salt solution maintain a monomeric state by an electrostatic repulsive force between molecules. On mixing with salts, the repulsive force was rapidly screened, causing an immediate formation of many of non-polymerizable dimers. SAXS kinetic analysis revealed that tetramerization gives the highest energetic barrier to further polymerization, and the major nucleation is the formation of helical tetramers. Filaments start to grow rapidly with the formation of pentamers. These findings suggest an acceleration mechanism of actin assembly by a variety of nucleators in cells. PMID:27775032
Jo, Joon-Jung; Kim, Min-Ji; Son, Jung-Tae; Kim, Jandi; Shin, Jong-Shik
2009-07-17
Nucleic acid hybridization is one of the essential biological processes involved in storage and transmission of genetic information. Here we quantitatively determined the effect of secondary structure on the hybridization activation energy using structurally defined oligonucleotides. It turned out that activation energy is linearly proportional to the length of a single-stranded region flanking a nucleation site, generating a 0.18 kcal/mol energy barrier per nucleotide. Based on this result, we propose that the presence of single-stranded segments available for non-productive base pairing with a nucleation counterpart extends the searching process for nucleation sites to find a perfect match. This result may provide insights into rational selection of a target mRNA site for siRNA and antisense gene silencing.
Effects of gaseous sulphuric acid on diesel exhaust nanoparticle formation and characteristics.
Rönkkö, Topi; Lähde, Tero; Heikkilä, Juha; Pirjola, Liisa; Bauschke, Ulrike; Arnold, Frank; Schlager, Hans; Rothe, Dieter; Yli-Ojanperä, Jaakko; Keskinen, Jorma
2013-10-15
Diesel exhaust gaseous sulphuric acid (GSA) concentrations and particle size distributions, concentrations, and volatility were studied at four driving conditions with a heavy duty diesel engine equipped with oxidative exhaust after-treatment. Low sulfur fuel and lubricant oil were used in the study. The concentration of the exhaust GSA was observed to vary depending on the engine driving history and load. The GSA affected the volatile particle fraction at high engine loads; higher GSA mole fraction was followed by an increase in volatile nucleation particle concentration and size as well as increase of size of particles possessing nonvolatile core. The GSA did not affect the number of nonvolatile particles. At low and medium loads, the exhaust GSA concentration was low and any GSA driven changes in particle population were not observed. Results show that during the exhaust cooling and dilution processes, besides critical in volatile nucleation particle formation, GSA can change the characteristics of all nucleation mode particles. Results show the dual nature of the nucleation mode particles so that the nucleation mode can include simultaneously volatile and nonvolatile particles, and fulfill the previous results for the nucleation mode formation, especially related to the role of GSA in formation processes.
Nonstationary homogeneous nucleation
NASA Technical Reports Server (NTRS)
Harstad, K. G.
1974-01-01
The theory of homogeneous condensation is reviewed and equations describing this process are presented. Numerical computer solutions to transient problems in nucleation (relaxation to steady state) are presented and compared to a prior computation.
NASA Technical Reports Server (NTRS)
Lin, Ruei-Fong; Starr, David OC; DeMott, Paul J.; Cotton, Richard; Sassen, Kenneth; Jensen, Eric; Einaudi, Franco (Technical Monitor)
2001-01-01
The Cirrus Parcel Model Comparison Project, a project of the GCSS (GEWEX Cloud System Studies) Working Group on Cirrus Cloud Systems, involves the systematic comparison of current models of ice crystal nucleation and growth for specified, typical, cirrus cloud environments. In Phase I of the project reported here, simulated cirrus cloud microphysical properties are compared for situations of "warm" (40 C) and "cold" (-60 C) cirrus, both subject to updrafts of 4, 20 and 100 centimeters per second. Five models participated. The various models employ explicit microphysical schemes wherein the size distribution of each class of particles (aerosols and ice crystals) is resolved into bins or treated separately. Simulations are made including both the homogeneous and heterogeneous ice nucleation mechanisms. A single initial aerosol population of sulfuric acid particles is prescribed for all simulations. To isolate the treatment of the homogeneous freezing (of haze droplets) nucleation process, the heterogeneous nucleation mechanism is disabled for a second parallel set of simulations. Qualitative agreement is found for the homogeneous-nucleation- only simulations, e.g., the number density of nucleated ice crystals increases with the strength of the prescribed updraft. However, significant quantitative differences are found. Detailed analysis reveals that the homogeneous nucleation rate, haze particle solution concentration, and water vapor uptake rate by ice crystal growth (particularly as controlled by the deposition coefficient) are critical components that lead to differences in predicted microphysics. Systematic bias exists between results based on a modified classical theory approach and models using an effective freezing temperature approach to the treatment of nucleation. Each approach is constrained by critical freezing data from laboratory studies, but each includes assumptions that can only be justified by further laboratory research. Consequently, it is not yet clear if the two approaches can be made consistent. Large haze particles may deviate considerably from equilibrium size in moderate to strong updrafts (20-100 centimeters per second) at -60 C when the commonly invoked equilibrium assumption is lifted. The resulting difference in particle-size- dependent solution concentration of haze particles may significantly affect the ice particle formation rate during the initial nucleation interval. The uptake rate for water vapor excess by ice crystals is another key component regulating the total number of nucleated ice crystals. This rate, the product of particle number concentration and ice crystal diffusional growth rate, which is particularly sensitive to the deposition coefficient when ice particles are small, modulates the peak particle formation rate achieved in an air parcel and the duration of the active nucleation time period. The effects of heterogeneous nucleation are most pronounced in weak updraft situations. Vapor competition by the heterogeneously nucleated ice crystals may limit the achieved ice supersaturation and thus suppresses the contribution of homogeneous nucleation. Correspondingly, ice crystal number density is markedly reduced. Definitive laboratory and atmospheric benchmark data are needed for the heterogeneous nucleation process. Inter-model differences are correspondingly greater than in the case of the homogeneous nucleation process acting alone.
Spin Hall and Spin Swapping Torques in Diffusive Ferromagnets
NASA Astrophysics Data System (ADS)
Pauyac, Christian Ortiz; Chshiev, Mairbek; Manchon, Aurelien; Nikolaev, Sergey A.
2018-04-01
A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession, and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precession effects displays a complex spatial dependence that can be exploited to generate torques and nucleate or propagate domain walls in centrosymmetric geometries without the use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.
NASA Astrophysics Data System (ADS)
Zhang, Chaoliang; Fukami, Shunsuke; DuttaGupta, Samik; Sato, Hideo; Ohno, Hideo
2018-04-01
We study spin-orbit torque (SOT) switching in W/CoFeB/MgO structures with various dot sizes (120-3500 nm) using pulsed current of various widths τ (800 ps-100 ms) to examine the time and spatial evolution of magnetization switching. We show that the switching behavior and the resultant threshold switching current density J th strongly depend on device size and pulse width. The switching mode in a 3500 nm dot device changes from probabilistic switching to reproducible partial switching as τ decreases. At τ = 800 ps, J th becomes more than 3 times larger than that in the long-pulse regime. A decrease in dot size to 700 nm does not significantly change the switching characteristics, suggesting that domain-wall propagation among the nucleated multiple domains governs switching. In contrast, devices with further reduced size (120 nm) show normal full switching with increasing probability with current and insignificant dependence of J th on τ, indicating that nucleation governs switching.
Spatially and time-resolved magnetization dynamics driven by spin-orbit torques
NASA Astrophysics Data System (ADS)
Baumgartner, Manuel; Garello, Kevin; Mendil, Johannes; Avci, Can Onur; Grimaldi, Eva; Murer, Christoph; Feng, Junxiao; Gabureac, Mihai; Stamm, Christian; Acremann, Yves; Finizio, Simone; Wintz, Sebastian; Raabe, Jörg; Gambardella, Pietro
2017-10-01
Current-induced spin-orbit torques are one of the most effective ways to manipulate the magnetization in spintronic devices, and hold promise for fast switching applications in non-volatile memory and logic units. Here, we report the direct observation of spin-orbit-torque-driven magnetization dynamics in Pt/Co/AlOx dots during current pulse injection. Time-resolved X-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a subnanosecond current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of the damping-like and field-like spin-orbit torques and the Dzyaloshinskii-Moriya interaction, and show that reproducible switching events can be obtained for over 1012 reversal cycles.
Non-equilibrium Quasi-Chemical Nucleation Model
NASA Astrophysics Data System (ADS)
Gorbachev, Yuriy E.
2018-04-01
Quasi-chemical model, which is widely used for nucleation description, is revised on the basis of recent results in studying of non-equilibrium effects in reacting gas mixtures (Kolesnichenko and Gorbachev in Appl Math Model 34:3778-3790, 2010; Shock Waves 23:635-648, 2013; Shock Waves 27:333-374, 2017). Non-equilibrium effects in chemical reactions are caused by the chemical reactions themselves and therefore these contributions should be taken into account in the corresponding expressions for reaction rates. Corrections to quasi-equilibrium reaction rates are of two types: (a) spatially homogeneous (caused by physical-chemical processes) and (b) spatially inhomogeneous (caused by gas expansion/compression processes and proportional to the velocity divergency). Both of these processes play an important role during the nucleation and are included into the proposed model. The method developed for solving the generalized Boltzmann equation for chemically reactive gases is applied for solving the set of equations of the revised quasi-chemical model. It is shown that non-equilibrium processes lead to essential deviation of the quasi-stationary distribution and therefore the nucleation rate from its traditional form.
Role of filament annealing in the kinetics and thermodynamics of nucleated polymerization.
Michaels, Thomas C T; Knowles, Tuomas P J
2014-06-07
The formation of nanoscale protein filaments from soluble precursor molecules through nucleated polymerization is a common form of supra-molecular assembly phenomenon. This process underlies the generation of a range of both functional and pathological structures in nature. Filament breakage has emerged as a key process controlling the kinetics of the growth reaction since it increases the number of filament ends in the system that can act as growth sites. In order to ensure microscopic reversibility, however, the inverse process of fragmentation, end-to-end annealing of filaments, is a necessary component of a consistent description of such systems. Here, we combine Smoluchowski kinetics with nucleated polymerization models to generate a master equation description of protein fibrillization, where filamentous structures can undergo end-to-end association, in addition to elongation, fragmentation, and nucleation processes. We obtain self-consistent closed-form expressions for the growth kinetics and discuss the key physics that emerges from considering filament fusion relative to current fragmentation only models. Furthermore, we study the key time scales that describe relaxation to equilibrium.
Microstructure development in Kolmogorov, Johnson-Mehl, and Avrami nucleation and growth kinetics
NASA Astrophysics Data System (ADS)
Pineda, Eloi; Crespo, Daniel
1999-08-01
A statistical model with the ability to evaluate the microstructure developed in nucleation and growth kinetics is built in the framework of the Kolmogorov, Johnson-Mehl, and Avrami theory. A populational approach is used to compute the observed grain-size distribution. The impingement process which delays grain growth is analyzed, and the effective growth rate of each population is estimated considering the previous grain history. The proposed model is integrated for a wide range of nucleation and growth protocols, including constant nucleation, pre-existing nuclei, and intermittent nucleation with interface or diffusion-controlled grain growth. The results are compared with Monte Carlo simulations, giving quantitative agreement even in cases where previous models fail.
Transient nucleate pool boiling in microgravity: Some initial results
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.; Lee, H. S.; Ervin, J. S.
1994-01-01
Variable gravity provides an opportunity to test the understanding of phenomena which are considered to depend on buoyancy, such as nucleate pool boiling. The active fundamental research in nucleate boiling has sought to determine the mechanisms or physical processes responsible for its high effectiveness, manifested by the high heat flux levels possible with relatively low temperature differences. Earlier research on nucleate pool boiling at high gravity levels under steady conditions demonstrated quantitatively that the heat transfer is degraded as the buoyancy normal to the heater surfaced increases. Correspondingly, it was later shown, qualitatively for short periods of time only, that nucleate boiling heat transfer is enhanced as the buoyancy normal to the heater surface is reduced. It can be deduced that nucleate pool boiling can be sustained as a quasi-steady process provided that some means is available to remove the vapor generated from the immediate vicinity of the heater surface. One of the objectives of the research, the initial results of which are presented here, is to quantify the heat transfer associated with boiling in microgravity. Some quantitative results of nucleate pool boiling in high quality microgravity (a/g approximately 10(exp -5)) of 5s duration, obtained in an evacuated drop tower, are presented here. These experiments were conducted as precursors of longer term space experiments. A transient heating technique is used, in which the heater surface is a transparent gold film sputtered on a qua rtz substrate, simultaneously providing the mean surface temperature from resistance thermometry and viewing of the boiling process both from beneath and across the surface. The measurement of the transient mean heater surface temperature permits the computation, by numerical means, of the transient mean heat transfer coefficient. The preliminary data obtained demonstrates that a quasi-steady boiling process can occur in microgravity if the bulk liquid subcooling is sufficiently high and if the imposed heat flux is sufficiently low. This is attributed to suface tension effects at the liquid-vapor-solid junction causing rewetting to take place, sustaining the nucleate boiling. Otherwise, dryout at the heater surface will occur, as observed.
Pinpointing chiral structures with front-back polarized neutron reflectometry.
O'Donovan, K V; Borchers, J A; Majkrzak, C F; Hellwig, O; Fullerton, E E
2002-02-11
A new development in spin-polarized neutron reflectometry enables us to more fully characterize the nucleation and growth of buried domain walls in layered magnetic materials. We applied this technique to a thin-film exchange-spring magnet. After first measuring the reflectivity with the neutrons striking the front, we measure with the neutrons striking the back. Simultaneous fits are sensitive to the presence of spiral spin structures. The technique reveals previously unresolved features of field-dependent domain walls in exchange-spring systems and has sufficient generality to apply to a variety of magnetic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bingbing; Knopf, Daniel A.; China, Swarup
Heterogeneous ice nucleation is a physical chemistry process of critical relevance to a range of topics in the fundamental and the applied sciences and technologies. Heterogeneous ice nucleation remains insufficiently understood. This is in part due to the lack of experimental methods capable of in situ visualization of ice formation over nucleating substrates with microscopically characterized morphology and composition. We present development, validation and first applications of a novel electron microscopy platform allowing observation of individual ice nucleation events at temperature and relative humidity (RH) relevant for ice formation in a broad range of environmental and applied technology processes. Themore » approach utilizes a custom-built ice nucleation cell, interfaced with an Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system allows dynamic observations of individual ice formation events over particles of atmospheric relevance and determination of the ice nucleation mechanisms. Additional IN-ESEM experiments allow examination of the location of ice formation on the surface of individual particles and micro-spectroscopy analysis of the ice nucleating particles (INPs). This includes elemental composition detected by the energy dispersed analysis of X-rays (EDX), speciation of the organic content in particles using scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and Helium ion microscopy (HeIM). The capabilities of the IN-ESEM experimental platform are demonstrated first on laboratory standards and then by chemical imaging of INPs using a complex sample of ambient particles.« less
Samad, Noor Asma Fazli Abdul; Sin, Gürkan; Gernaey, Krist V; Gani, Rafiqul
2013-11-01
This paper presents the application of uncertainty and sensitivity analysis as part of a systematic model-based process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty, while for sensitivity analysis, global methods including the standardized regression coefficients (SRC) and Morris screening are used to identify the most significant parameters. The potassium dihydrogen phosphate (KDP) crystallization process is used as a case study, both in open-loop and closed-loop operation. In the uncertainty analysis, the impact on the predicted output of uncertain parameters related to the nucleation and the crystal growth model has been investigated for both a one- and two-dimensional crystal size distribution (CSD). The open-loop results show that the input uncertainties lead to significant uncertainties on the CSD, with appearance of a secondary peak due to secondary nucleation for both cases. The sensitivity analysis indicated that the most important parameters affecting the CSDs are nucleation order and growth order constants. In the proposed PAT system design (closed-loop), the target CSD variability was successfully reduced compared to the open-loop case, also when considering uncertainty in nucleation and crystal growth model parameters. The latter forms a strong indication of the robustness of the proposed PAT system design in achieving the target CSD and encourages its transfer to full-scale implementation. Copyright © 2013 Elsevier B.V. All rights reserved.
Doubled heterogeneous crystal nucleation in sediments of hard sphere binary-mass mixtures
NASA Astrophysics Data System (ADS)
Löwen, Hartmut; Allahyarov, Elshad
2011-10-01
Crystallization during the sedimentation process of a binary colloidal hard spheres mixture is explored by Brownian dynamics computer simulations. The two species are different in buoyant mass but have the same interaction diameter. Starting from a completely mixed system in a finite container, gravity is suddenly turned on, and the crystallization process in the sample is monitored. If the Peclet numbers of the two species are both not too large, crystalline layers are formed at the bottom of the cell. The composition of lighter particles in the sedimented crystal is non-monotonic in the altitude: it is first increasing, then decreasing, and then increasing again. If one Peclet number is large and the other is small, we observe the occurrence of a doubled heterogeneous crystal nucleation process. First, crystalline layers are formed at the bottom container wall which are separated from an amorphous sediment. At the amorphous-fluid interface, a secondary crystal nucleation of layers is identified. This doubled heterogeneous nucleation can be verified in real-space experiments on colloidal mixtures.
Black holes as bubble nucleation sites
NASA Astrophysics Data System (ADS)
Gregory, Ruth; Moss, Ian G.; Withers, Benjamin
2014-03-01
We consider the effect of inhomogeneities on the rate of false vacuum decay. Modelling the inhomogeneity by a black hole, we construct explicit Euclidean instantons which describe the nucleation of a bubble of true vacuum centred on the inhomogeneity. We find that inhomogeneity significantly enhances the nucleation rate over that of the Coleman-de Luccia instanton — the black hole acts as a nucleation site for the bubble. The effect is larger than previously believed due to the contributions to the action from conical singularities. For a sufficiently low initial mass, the original black hole is replaced by flat space during this process, as viewed by a single causal patch observer. Increasing the initial mass, we find a critical value above which a black hole remnant survives the process. This resulting black hole can have a higher mass than the original black hole, but always has a lower entropy. We compare the process to bubble-to-bubble transitions, where there is a semi-classical Lorentzian description in the WKB approximation.
Nucleation and growth constraints and outcome in the natural gas hydrate system
NASA Astrophysics Data System (ADS)
Osegovic, J. P.; Max, M. D.
2016-12-01
Hydrate formation processes are functions of energy distribution constrained by physical and kinetic parameters. The generation of energy and energy derivative plots of a constrained growth crucible are used to demonstrate nucleation probability zones (phase origin(s)). Nucleation sets the stage for growth by further constraining the pathways through changes in heat capacity, heat flow coefficient, and enthalpy which in turn modify the mass and energy flow into the hydrate formation region. Nucleation events result from the accumulation of materials and energy relative to pressure, temperature, and composition. Nucleation induction is predictive (a frequency parameter) rather than directly dependent on time. Growth, as mass tranfer into a new phase, adds time as a direct parameter. Growth has direct feedback on phase transfer, energy dynamics, and mass export/import rates. Many studies have shown that hydrate growth is largely an equilibrium process controlled by either mass or energy flows. Subtle changes in the overall energy distribution shift the equilibrium in a predictable fashion. We will demonstrate the localization of hydrate nucleation in a reservoir followed by likely evolution of growth in a capped, sand filled environment. The gas hydrate stability zone (GHSZ) can be characterized as a semi-batch crystallizer in which nucleation and growth of natural gas hydrate (NGH) is a continuous process that may result in very large concentrations of NGH. Gas flux, or the relative concentration of hydrate-forming gas is the critical factor in a GHSZ. In an open groundwater system in which flow rate exceeds diffusion transport rate, dissolved natural gas is transported into and through the GHSZ. In a closed system, such as a geological trap, diffusion of hydrate-forming gas from a free gas zone below the GHSZ is the primary mechanism for movement of gas reactants. Because of the lower molecular weight of methane, where diffusion is the principal transport mechanism, the natural system can be a purification process for formation of increasingly pure NGH from a mixed gas solution over time.
Time-evolution of grain size distributions in random nucleation and growth crystallization processes
NASA Astrophysics Data System (ADS)
Teran, Anthony V.; Bill, Andreas; Bergmann, Ralf B.
2010-02-01
We study the time dependence of the grain size distribution N(r,t) during crystallization of a d -dimensional solid. A partial differential equation, including a source term for nuclei and a growth law for grains, is solved analytically for any dimension d . We discuss solutions obtained for processes described by the Kolmogorov-Avrami-Mehl-Johnson model for random nucleation and growth (RNG). Nucleation and growth are set on the same footing, which leads to a time-dependent decay of both effective rates. We analyze in detail how model parameters, the dimensionality of the crystallization process, and time influence the shape of the distribution. The calculations show that the dynamics of the effective nucleation and effective growth rates play an essential role in determining the final form of the distribution obtained at full crystallization. We demonstrate that for one class of nucleation and growth rates, the distribution evolves in time into the logarithmic-normal (lognormal) form discussed earlier by Bergmann and Bill [J. Cryst. Growth 310, 3135 (2008)]. We also obtain an analytical expression for the finite maximal grain size at all times. The theory allows for the description of a variety of RNG crystallization processes in thin films and bulk materials. Expressions useful for experimental data analysis are presented for the grain size distribution and the moments in terms of fundamental and measurable parameters of the model.
Role of clusters in nonclassical nucleation and growth of protein crystals
Sleutel, Mike; Van Driessche, Alexander E. S.
2014-01-01
The development of multistep nucleation theory has spurred on experimentalists to find intermediate metastable states that are relevant to the solidification pathway of the molecule under interest. A great deal of studies focused on characterizing the so-called “precritical clusters” that may arise in the precipitation process. However, in macromolecular systems, the role that these clusters might play in the nucleation process and in the second stage of the precipitation process, i.e., growth, remains to a great extent unknown. Therefore, using biological macromolecules as a model system, we have studied the mesoscopic intermediate, the solid end state, and the relationship that exists between them. We present experimental evidence that these clusters are liquid-like and stable with respect to the parent liquid and metastable compared with the emerging crystalline phase. The presence of these clusters in the bulk liquid is associated with a nonclassical mechanism of crystal growth and can trigger a self-purifying cascade of impurity-poisoned crystal surfaces. These observations demonstrate that there exists a nontrivial connection between the growth of the macroscopic crystalline phase and the mesoscopic intermediate which should not be ignored. On the other hand, our experimental data also show that clusters existing in protein solutions can significantly increase the nucleation rate and therefore play a relevant role in the nucleation process. PMID:24449867
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, William
Over the 21 years of funding we have pursued several projects related to earthquakes, damage and nucleation. We developed simple models of earthquake faults which we studied to understand Gutenburg-Richter scaling, foreshocks and aftershocks, the effect of spatial structure of the faults and its interaction with underlying self organization and phase transitions. In addition we studied the formation of amorphous solids via the glass transition. We have also studied nucleation with a particular concentration on transitions in systems with a spatial symmetry change. In addition we investigated the nucleation process in models that mimic rock masses. We obtained the structuremore » of the droplet in both homogeneous and heterogeneous nucleation. We also investigated the effect of defects or asperities on the nucleation of failure in simple models of earthquake faults.« less
New particle formation in rural areas - what is behind the story?
NASA Astrophysics Data System (ADS)
Boy, M.; Sihto, S. L.-; Lauros, J.; Bonn, B.; Guenther, A.
2009-04-01
New particle formation in rural areas - what's behind it? M. Boy(1), S.-L. Sihto(1), J. Lauros(1), B. Bonn(2) and A. Guenther(3) (1) Department of Physical Sciences, P.O. Box 64, 00014 University of Helsinki, Finland. (2) Institute of Atmospherical and Environmental Sciences, J. W. Goethe University, Altenhöferallee 1, D-60438 Frankfurt/Main, Germany (3) ACD, NCAR, P.O. Box 3000, 80305 Boulder, Colorado, USA. New particle formation has been observed at almost all sites, where both particle number concentrations and size distributions have been measured. Although many field campaigns, laboratory experiments and new modelling approaches have led to increased understanding, detailed mechanisms responsible for the formation of new particles in the troposphere have still not been completely elucidated. In MALTE (Model to predict new Aerosol formation in the Lower Troposphere) individually developed codes from different institutes around the globe merged into a one-dimensional model including aerosol dynamics, boundary layer meteorology, biology and chemistry in order to investigate the formation and growth processes of Secondary Organic Aerosols (SOA) under realistic atmospheric conditions. Our knowledge concerning the formation of very small particles or clusters is still limited. The question of which molecules are involved in the atmospheric nucleation processes remains controversial within the aerosol community. MALTE takes several hypothetical nucleation theories into account for the formation of secondary aerosols. To test the different hypothesis concerning atmospheric nucleation we used data from several field stations in Europe, USA, Africa and Australia. Furthermore, we investigated the role of certain organic vapours in the particle formation processes during intensive laboratory chamber experiments at NCAR - National Centre for Atmospheric Research in Boulder, Colorado, USA. Initial model simulations performed with the activation or kinetic nucleation mechanism predict nucleation rates that are strongly correlated with observed nucleation rates at background areas like boreal forest in Finland or somewhat more polluted areas east of Leipzig, Germany. In addition, many chamber experiments raise the possibility that organic vapours may form new particles by organic nucleation. Regarding the possibility that organic vapours can nucleate, as apparently observed in several chamber experiments, we estimated with MALTE that even with low SO2 concentrations, sufficient sulphuric acid is generated to explain observed particle number concentrations via the activation or kinetic nucleation mechanism alone. To investigate the possibility for nucleation of organic vapours we included in MALTE a parameterization developed by Bonn et al. (2008). Calculated nucleation rates with the organic nucleation code for data achieved during a field campaign in USA and the chamber experiments at NCAR showed high agreement with the measurements. It is currently not possible to draw a final conclusion if nucleation of organic vapours in the real atmosphere is present and if yes how important it is compared to other nucleation mechanisms.
Dodge, D.A.; Beroza, G.C.; Ellsworth, W.L.
1996-01-01
We find that foreshocks provide clear evidence for an extended nucleation process before some earthquakes. In this study, we examine in detail the evolution of six California foreshock sequences, the 1986 Mount Lewis (ML, = 5.5), the 1986 Chalfant (ML = 6.4), the. 1986 Stone Canyon (ML = 4.7), the 1990 Upland (ML = 5.2), the 1992 Joshua Tree (MW= 6.1), and the 1992 Landers (MW = 7.3) sequence. Typically, uncertainties in hypocentral parameters are too large to establish the geometry of foreshock sequences and hence to understand their evolution. However, the similarity of location and focal mechanisms for the events in these sequences leads to similar foreshock waveforms that we cross correlate to obtain extremely accurate relative locations. We use these results to identify small-scale fault zone structures that could influence nucleation and to determine the stress evolution leading up to the mainshock. In general, these foreshock sequences are not compatible with a cascading failure nucleation model in which the foreshocks all occur on a single fault plane and trigger the mainshock by static stress transfer. Instead, the foreshocks seem to concentrate near structural discontinuities in the fault and may themselves be a product of an aseismic nucleation process. Fault zone heterogeneity may also be important in controlling the number of foreshocks, i.e., the stronger the heterogeneity, the greater the number of foreshocks. The size of the nucleation region, as measured by the extent of the foreshock sequence, appears to scale with mainshock moment in the same manner as determined independently by measurements of the seismic nucleation phase. We also find evidence for slip localization as predicted by some models of earthquake nucleation. Copyright 1996 by the American Geophysical Union.
Bubble nucleation in simple and molecular liquids via the largest spherical cavity method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Miguel A., E-mail: m.gonzalez12@imperial.ac.uk; Department of Chemistry, Imperial College London, London SW7 2AZ; Abascal, José L. F.
2015-04-21
In this work, we propose a methodology to compute bubble nucleation free energy barriers using trajectories generated via molecular dynamics simulations. We follow the bubble nucleation process by means of a local order parameter, defined by the volume of the largest spherical cavity (LSC) formed in the nucleating trajectories. This order parameter simplifies considerably the monitoring of the nucleation events, as compared with the previous approaches which require ad hoc criteria to classify the atoms and molecules as liquid or vapor. The combination of the LSC and the mean first passage time technique can then be used to obtain themore » free energy curves. Upon computation of the cavity distribution function the nucleation rate and free-energy barrier can then be computed. We test our method against recent computations of bubble nucleation in simple liquids and water at negative pressures. We obtain free-energy barriers in good agreement with the previous works. The LSC method provides a versatile and computationally efficient route to estimate the volume of critical bubbles the nucleation rate and to compute bubble nucleation free-energies in both simple and molecular liquids.« less
Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions.
Karjalainen, Panu; Rönkkö, Topi; Pirjola, Liisa; Heikkilä, Juha; Happonen, Matti; Arnold, Frank; Rothe, Dieter; Bielaczyc, Piotr; Keskinen, Jorma
2014-02-18
Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions.
A simple model for heterogeneous nucleation of isotactic polypropylene
NASA Astrophysics Data System (ADS)
Howard, Michael; Milner, Scott
2013-03-01
Flow-induced crystallization (FIC) is of interest because of its relevance to processes such as injection molding. It has been suggested that flow increases the homogeneous nucleation rate by reducing the melt state entropy. However, commercial polypropylene (iPP) exhibits quiescent nucleation rates that are much too high to be consistent with homogeneous nucleation in carefully purified samples. This suggests that heterogeneous nucleation is dominant for typical samples used in FIC experiments. We describe a simple model for heterogeneous nucleation of iPP, in terms of a cylindrical nucleus on a flat surface with the critical size and barrier set by the contact angle. Analysis of quiescent crystallization data with this model gives reasonable values for the contact angle. We have also employed atomistic simulations of iPP crystals to determine surface energies with vacuum and with Hamaker-matched substrates, and find values consistent with the contact angles inferred from heterogeneous nucleation experiments. In future work, these results combined with calculations from melt rheology of entropy reduction due to flow can be used to estimate the heterogeneous nucleation barrier reduction due to flow, and hence the increase in nucleation rate due to FIC for commecial iPP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Hidetoshi, E-mail: hsuzuki@cc.miyazaki-u.ac.jp; Nakata, Yuka; Takahasi, Masamitu
2016-03-15
The formation and evolution of rotational twin (TW) domains introduced by a stacking fault during molecular-beam epitaxial growth of GaAs on Si (111) substrates were studied by in situ x-ray diffraction. To modify the volume ratio of TW to total GaAs domains, GaAs was deposited under high and low group V/group III (V/III) flux ratios. For low V/III, there was less nucleation of TW than normal growth (NG) domains, although the NG and TW growth rates were similar. For high V/III, the NG and TW growth rates varied until a few GaAs monolayers were deposited; the mean TW domain sizemore » was smaller for all film thicknesses.« less
Alignment of Ge nanoislands on Si(111) by Ga-induced substrate self-patterning.
Schmidt, Th; Flege, J I; Gangopadhyay, S; Clausen, T; Locatelli, A; Heun, S; Falta, J
2007-02-09
A novel mechanism is described which enables the selective formation of three-dimensional Ge islands. Submonolayer adsorption of Ga on Si(111) at high temperature leads to a self-organized two-dimensional pattern formation by separation of the 7 x 7 substrate and Ga/Si(111)-(square root[3] x square root[3])-R30 degrees domains. The latter evolve at step edges and domain boundaries of the initial substrate reconstruction. Subsequent Ge deposition results in the growth of 3D islands which are aligned at the boundaries between bare and Ga-covered domains. This result is explained in terms of preferential nucleation conditions due to a modulation of the surface chemical potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru
The vapor–liquid nucleation in a dense Lennard-Jones system is studied analytically and numerically. A solution of the nucleation kinetic equations, which includes the elementary processes of condensation/evaporation involving the lightest clusters, is obtained, and the nucleation rate is calculated. Based on the equation of state for the cluster vapor, the pre-exponential factor is obtained. The latter diverges as a spinodal is reached, which results in the nucleation enhancement. The work of critical cluster formation is calculated using the previously developed two-parameter model (TPM) of small clusters. A simple expression for the nucleation rate is deduced and it is shown thatmore » the work of cluster formation is reduced for a dense vapor. This results in the nucleation enhancement as well. To verify the TPM, a simulation is performed that mimics a steady-state nucleation experiments in the thermal diffusion cloud chamber. The nucleating vapor with and without a carrier gas is simulated using two different thermostats for the monomers and clusters. The TPM proves to match the simulation results of this work and of other studies.« less
A Discrete Fracture Network Model with Stress-Driven Nucleation and Growth
NASA Astrophysics Data System (ADS)
Lavoine, E.; Darcel, C.; Munier, R.; Davy, P.
2017-12-01
The realism of Discrete Fracture Network (DFN) models, beyond the bulk statistical properties, relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. The realism can be improved by injecting prior information in DFN from a better knowledge of the geological fracturing processes. We first develop a model using simple kinematic rules for mimicking the growth of fractures from nucleation to arrest, in order to evaluate the consequences of the DFN structure on the network connectivity and flow properties. The model generates fracture networks with power-law scaling distributions and a percentage of T-intersections that are consistent with field observations. Nevertheless, a larger complexity relying on the spatial variability of natural fractures positions cannot be explained by the random nucleation process. We propose to introduce a stress-driven nucleation in the timewise process of this kinematic model to study the correlations between nucleation, growth and existing fracture patterns. The method uses the stress field generated by existing fractures and remote stress as an input for a Monte-Carlo sampling of nuclei centers at each time step. Networks so generated are found to have correlations over a large range of scales, with a correlation dimension that varies with time and with the function that relates the nucleation probability to stress. A sensibility analysis of input parameters has been performed in 3D to quantify the influence of fractures and remote stress field orientations.
2017-01-01
Controlled synthesis of a hybrid nanomaterial based on titanium oxide and single-layer graphene (SLG) using atomic layer deposition (ALD) is reported here. The morphology and crystallinity of the oxide layer on SLG can be tuned mainly with the deposition temperature, achieving either a uniform amorphous layer at 60 °C or ∼2 nm individual nanocrystals on the SLG at 200 °C after only 20 ALD cycles. A continuous and uniform amorphous layer formed on the SLG after 180 cycles at 60 °C can be converted to a polycrystalline layer containing domains of anatase TiO2 after a postdeposition annealing at 400 °C under vacuum. Using aberration-corrected transmission electron microscopy (AC-TEM), characterization of the structure and chemistry was performed on an atomic scale and provided insight into understanding the nucleation and growth. AC-TEM imaging and electron energy loss spectroscopy revealed that rocksalt TiO nanocrystals were occasionally formed at the early stage of nucleation after only 20 ALD cycles. Understanding and controlling nucleation and growth of the hybrid nanomaterial are crucial to achieving novel properties and enhanced performance for a wide range of applications that exploit the synergetic functionalities of the ensemble. PMID:28356613
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4
2015-12-28
Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarizationmore » as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg:LN in combination with suitable metal electrodes that allow for further tailoring of conductivity.« less
Monomer-dependent secondary nucleation in amyloid formation.
Linse, Sara
2017-08-01
Secondary nucleation of monomers on the surface of an already existing aggregate that is formed from the same kind of monomers may lead to autocatalytic amplification of a self-assembly process. Such monomer-dependent secondary nucleation occurs during the crystallization of small molecules or proteins and self-assembled materials, as well as in protein self-assembly into fibrous structures. Indications of secondary nucleation may come from analyses of kinetic experiments starting from pure monomers or monomers supplemented with a low concentration of pre-formed aggregates (seeds). More firm evidence requires additional experiments, for example those employing isotope labels to distinguish new aggregates arising from the monomer from those resulting from fragmentation of the seed. In cases of amyloid formation, secondary nucleation leads to the formation of toxic oligomers, and inhibitors of secondary nucleation may serve as starting points for therapeutic developments. Secondary nucleation displays a high degree of structural specificity and may be enhanced by mutations or screening of electrostatic repulsion.
Homogeneous crystal nucleation in Ni droplets
NASA Astrophysics Data System (ADS)
Kožíšek, Zdeněk; Demo, Pavel
2017-10-01
Crystal nucleation kinetics is often represented by induction times or metastable zone widths (Kulkarni et al., 2013; Bokeloh et al., 2011). Repeating measurements of supercooling or time delay, at which phase transition is detected, are statistically processed to determine the so-called survivorship function, from which nucleation rate is computed. The size distribution of nuclei is difficult to measure near the critical size directly, and it is not clear which amount of nuclei is formed at the moment when the phase transition is detected. In the present paper, kinetic nucleation equations are solved for the crystal nucleation in Ni liquid droplet to determine the number of nuclei formed within a considered system. Analysis of supercooling experimental data, based on the classical nucleation theory CNT), computes appropriate values of the nucleation rate. However, CNT underestimates the number of nuclei F (F ≪ 1 for supercritical sizes). Taking into account the dependence of the surface energy on nucleus size to data analysis overcomes this discrepancy and leads to reasonable values of the size distribution of nuclei.
Devos, O; Gabrielli, C; Tribollet, B
2004-01-01
An original technique allowed three in situ measurements to be obtained simultaneously, i.e. electrochemical and mass measurements and a microscope image of the interface between electrode and solution. The nucleation-growth process of CaCO3 deposition was investigated by varying different parameters which influenced the supersaturation coefficient, the Ca2+ concentration, pH and convection of the carbonically pure water near the substrate. The results showed that the variation of the scaling rate was due, for the two first cases, to an influence of the nucleation process whereas for the last case, the kinetics of scale deposition were modified by a shift of the growth rate.
Determination of perpendicular magnetic anisotropy based on the magnetic droplet nucleation
NASA Astrophysics Data System (ADS)
Nishimura, Tomoe; Kim, Duck-Ho; Okuno, Takaya; Hirata, Yuushou; Futakawa, Yasuhiro; Yoshikawa, Hiroki; Kim, Sanghoon; Tsukamoto, Arata; Shiota, Yoichi; Moriyama, Takahiro; Ono, Teruo
2018-05-01
We propose an alternative method of determining the magnetic anisotropy field μ0 H K in ferro-/ferrimagnets. On the basis of the droplet nucleation model, there exists linearity between domain-wall (DW) energy density and in-plane magnetic field. We find that the slope is simply represented by μ0 H K and Dzyaloshinskii–Moriya interaction (DMI). By measuring the in-plane magnetic field dependence of the coercivity field, closely corresponding to the DW energy density, a robust value for μ0 H K can be quantified. This robust value can be used to determine μ0 H K over a wide range of values, overcoming the limitations caused by the small strength of the external magnetic field typically used in experiments.
Li, Yi; Xu, Ben; Hu, Shenyang; ...
2015-07-01
The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domainsmore » on the magnetization reversal behavior and the magnetic properties.« less
Why are some Interfaces in Materials Stronger than others?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fensin, Saryu J.; Cerreta, Ellen K.; Gray, George T.
2014-06-26
Grain boundaries (GBs) are often the preferred sites for void nucleation in ductile metals. However, it has been observed that all boundaries do not contribute equally to this process. We present a mechanistic rationale for the role of GBs in damage nucleation in copper, along with a quantitative map for predicting preferred void nucleation at GBs based on molecular dynamics simulations in copper. Simulations show a direct correlation between the void nucleation stress and the ability of a grain boundary to plastically deform by emitting dislocations, during shock compression. Plastic response of a GB, affects the development of stress concentrationsmore » believed to be responsible for void nucleation by acting as a dissipation mechanism for the applied stress.« less
Polarization domain walls in optical fibres as topological bits for data transmission
Gilles, M.; Bony, P-Y.; Garnier, J.; Picozzi, A.; Guasoni, M.; Fatome, J.
2016-01-01
Domain walls are topological defects which occur at symmetry-breaking phase transitions. While domain walls have been intensively studied in ferromagnetic materials, where they nucleate at the boundary of neighbouring regions of oppositely aligned magnetic dipoles, their equivalent in optics have not been fully explored so far. Here, we experimentally demonstrate the existence of a universal class of polarization domain walls in the form of localized polarization knots in conventional optical fibres. We exploit their binding properties for optical data transmission beyond the Kerr limits of normally dispersive fibres. In particular, we demonstrate how trapping energy in well-defined train of polarization domain walls allows undistorted propagation of polarization knots at a rate of 28 GHz along a 10 km length of normally dispersive optical fibre. These results constitute the first experimental observation of kink-antikink solitary wave propagation in nonlinear fibre optics. PMID:28168000
NASA Astrophysics Data System (ADS)
Liu, Huihua; Chaudhary, Deeptangshu
2014-08-01
The crystalline domain changes and lamellar structure observations of sorbitol-plasticized starch nanocomposite had been investigated via synchrotron. Strong interactions were found between amylose-sorbitol, resulting in reduced inter-helix spacing of the starch polymer. Achievable dspacing of nanoclay was confirmed to be correlated to the moisture content (mc) within the nanocomposites. SAXS diffraction patterns changed from circular (high mc samples) to elliptical (low mc samples), indicating the formation of long periodic structure and increased heterogeneities of the electron density within the samples. Two different domains sized at around 90 Å and 350 Å were found for the low mc samples. However, only the ~90 Å domain was observed in high mc samples. Formation of the 380 Å domain is attributed to the retrogradation behaviour in the absence of water molecules. Meanwhile, the nucleation effect of nanoclay is another factor leading to the emergence of the larger crystalline domain.
Surface nucleation in complex rheological systems
NASA Astrophysics Data System (ADS)
Herfurth, J.; Ulrich, J.
2017-07-01
Forced nucleation induced by suitable foreign seeds is an important tool to control the production of defined crystalline products. The quality of a surface provided by seed materials represents an important variable in the production of crystallizing layers that means for the nucleation process. Parameters like shape and surface structure, size and size distribution of the seed particles as well as the ability to hold up the moisture (the solvent), can have an influence on the nucleation process of different viscous supersaturated solutions. Here the properties of different starch powders as seeds obtained from corn, potato, rice, tapioca and wheat were tested. It could be found, that the best nucleation behavior of a sugar solution could be reached with the use of corn starch as seed material. Here the surface of the crystallized sugar layer is smooth, crystallization time is short (<3 h) and the shape of the product is easily reproducible. Beneficial properties of seed materials are therefore an edged, uneven surface, small particle sizes as well as low moisture content at ambient conditions within the seed materials.
Optical nucleation of bubble clouds in a high pressure spherical resonator.
Anderson, Phillip; Sampathkumar, A; Murray, Todd W; Gaitan, D Felipe; Glynn Holt, R
2011-11-01
An experimental setup for nucleating clouds of bubbles in a high-pressure spherical resonator is described. Using nanosecond laser pulses and multiple phase gratings, bubble clouds are optically nucleated in an acoustic field. Dynamics of the clouds are captured using a high-speed CCD camera. The images reveal cloud nucleation, growth, and collapse and the resulting emission of radially expanding shockwaves. These shockwaves are reflected at the interior surface of the resonator and then reconverge to the center of the resonator. As the shocks reconverge upon the center of the resonator, they renucleate and grow the bubble cloud. This process is repeated over many acoustic cycles and with each successive shock reconvergence, the bubble cloud becomes more organized and centralized so that subsequent collapses give rise to stronger, better defined shockwaves. After many acoustic cycles individual bubbles cannot be distinguished and the cloud is then referred to as a cluster. Sustainability of the process is ultimately limited by the detuning of the acoustic field inside the resonator. The nucleation parameter space is studied in terms of laser firing phase, laser energy, and acoustic power used.
Mandemaker, Laurens D B; Filez, Matthias; Delen, Guusje; Tan, Huanshu; Zhang, Xuehua; Lohse, Detlef; Weckhuysen, Bert M
2018-04-19
Metal-organic framework (MOF) thin films show unmatched promise as smart membranes and photocatalytic coatings. However, their nucleation and growth resulting from intricate molecular assembly processes are not well understood yet are crucial to control the thin film properties. Here, we directly observe the nucleation and growth behavior of HKUST-1 thin films by real-time in situ AFM at different temperatures in a Cu-BTC solution. In combination with ex situ infrared (nano)spectroscopy, synthesis at 25 °C reveals initial nucleation of rapidly growing HKUST-1 islands surrounded by a continuously nucleating but slowly growing HKUST-1 carpet. Monitoring at 13 and 50 °C shows the strong impact of temperature on thin film formation, resulting in (partial) nucleation and growth inhibition. The nucleation and growth mechanisms as well as their kinetics provide insights to aid in future rational design of MOF thin films.
NASA Astrophysics Data System (ADS)
Mozaffari, Maryam; Goiko, Maria; de Bruyn, John; Goldberg, Harvey
2015-03-01
Biomineralization is the process by which living organisms synthesize minerals. Osteopontin (OPN), a mineral-associated protein, has been shown to be a potent inhibitor of mineral formation, a process that is dependent on phosphorylation. To gain a better understanding of the mechanism of inhibition, dynamic light scattering (DLS) was used to monitor the initial stages of nucleation, providing information about the size and relative concentration of the growing crystals as a function of time. DLS was used to investigate the effect of phosphorylated (P3, pOPAR) and non-phosphorylated (P0, OPAR) OPN peptides on the formation and growth of hydroxyapatite (HA) crystals from supersaturated solutions of calcium and phosphate ions. The non-phosphorylated P0 had a limited effect on HA nucleation and growth, while its thrice-phosphorylated isoform, P3, was a potent inhibitor of HA nucleation. The aspartic acid-rich OPAR was found to moderately inhibit nucleation but not growth, while its singly-phosphorylated isoform, pOPAR, inhibited HA nucleation more effectively, with some effect on HA crystal growth. The order of the inhibitory potential of these peptides was pOPAR>OPAR>P3>P0. This work confirms that highly acidic and phosphorylated peptides can inhibit the nucleation of HA more effectively.
A compact physical model for the simulation of pNML-based architectures
NASA Astrophysics Data System (ADS)
Turvani, G.; Riente, F.; Plozner, E.; Schmitt-Landsiedel, D.; Breitkreutz-v. Gamm, S.
2017-05-01
Among emerging technologies, perpendicular Nanomagnetic Logic (pNML) seems to be very promising because of its capability of combining logic and memory onto the same device, scalability, 3D-integration and low power consumption. Recently, Full Adder (FA) structures clocked by a global magnetic field have been experimentally demonstrated and detailed characterizations of the switching process governing the domain wall (DW) nucleation probability Pnuc and time tnuc have been performed. However, the design of pNML architectures represent a crucial point in the study of this technology; this can have a remarkable impact on the reliability of pNML structures. Here, we present a compact model developed in VHDL which enables to simulate complex pNML architectures while keeping into account critical physical parameters. Therefore, such parameters have been extracted from the experiments, fitted by the corresponding physical equations and encapsulated into the proposed model. Within this, magnetic structures are decomposed into a few basic elements (nucleation centers, nanowires, inverters etc.) represented by the according physical description. To validate the model, we redesigned a FA and compared our simulation results to the experiment. With this compact model of pNML devices we have envisioned a new methodology which makes it possible to simulate and test the physical behavior of complex architectures with very low computational costs.
NASA Astrophysics Data System (ADS)
Budke, Carsten; Dreischmeier, Katharina; Koop, Thomas
2014-05-01
Homogeneous ice nucleation is a stochastic process, implying that it is not only temperature but also time dependent. For heterogeneous ice nucleation it is still under debate whether there is a significant time dependence or not. In case of minor time dependence it is probably sufficient to use a singular or slightly modified singular approach, which mainly supposes temperature dependence and just small stochastic variations. We contribute to this discussion using a novel optical freezing array termed BINARY (Bielefeld Ice Nucleation ARraY). The setup consists of an array of microliter-sized droplets on a Peltier cooling stage. The droplets are separated from each other with a polydimethylsiloxane (PDMS) spacer to prevent a Bergeron-Findeisen process, in which the first freezing droplets grow at the expense of the remaining liquid ones due to their vapor pressure differences. An automatic detection of nucleation events is realized optically by the change in brightness during freezing. Different types of ice nucleating agents were tested with the presented setup, e. g. pollen and clay mineral dust. Exemplarily, cooling rate dependent measurements are shown for the heterogeneous ice nucleation induced by Snomax®. The authors gratefully acknowledge funding by the German Research Foundation (DFG) through the project BIOCLOUDS (KO 2944/1-1) and through the research unit INUIT (FOR 1525) under KO 2944/2-1. We particularly thank our INUIT partners for fruitful collaboration and sharing of ideas and IN samples.
Biological ice nucleation initiates hailstone formation
NASA Astrophysics Data System (ADS)
Michaud, Alexander B.; Dore, John E.; Leslie, Deborah; Lyons, W. Berry; Sands, David C.; Priscu, John C.
2014-11-01
Cloud condensation and ice nuclei in the troposphere are required precursors to cloud and precipitation formation, both of which influence the radiative balance of Earth. The initial stage of hailstone formation (i.e., the embryo) and the subsequent layered growth allow hail to be used as a model for the study of nucleation processes in precipitation. By virtue of the preserved particle and isotopic record captured by hailstones, they represent a unique form of precipitation that allows direct characterization of the particles present during atmospheric ice nucleation. Despite the ecological and economic consequences of hail storms, the dynamics of hailstone nucleation, and thus their formation, are not well understood. Our experiments show that hailstone embryos from three Rocky Mountain storms contained biological ice nuclei capable of freezing water at warm, subzero (°C) temperatures, indicating that biological particles can act as nucleation sites for hailstone formation. These results are corroborated by analysis of δD and δ18O from melted hailstone embryos, which show that the hailstones formed at similarly warm temperatures in situ. Low densities of ice nucleation active abiotic particles were also present in hailstone embryos, but their low concentration indicates they were not likely to have catalyzed ice formation at the warm temperatures determined from water stable isotope analysis. Our study provides new data on ice nucleation occurring at the bottom of clouds, an atmospheric region whose processes are critical to global climate models but which has challenged instrument-based measurements.
Motility Determinants in WASP Family ProteinsD⃞
Yarar, Defne; D'Alessio, Joseph A.; Jeng, Robert L.; Welch, Matthew D.
2002-01-01
In response to upstream signals, proteins in the Wiskott-Aldrich Syndrome protein (WASP) family regulate actin nucleation via the Arp2/3 complex. Despite intensive study of the function of WASP family proteins in nucleation, it is not yet understood how their distinct structural organization contributes to actin-based motility. Herein, we analyzed the activities of WASP and Scar1 truncation derivatives by using a bead-based motility assay. The minimal region of WASP sufficient to direct movement was the C-terminal WCA fragment, whereas the corresponding region of Scar1 was insufficient. In addition, the proline-rich regions of WASP and Scar1 and the Ena/VASP homology 1 (EVH1) domain of WASP independently enhanced motility rates. The contributions of these regions to motility could not be accounted for by their direct effects on actin nucleation with the Arp2/3 complex, suggesting that they stimulate motility by recruiting additional factors. We have identified profilin as one such factor. WASP- and Scar1-coated bead motility rates were significantly reduced by depletion of profilin and VASP and could be more efficiently rescued by a combination of VASP and wild-type profilin than by VASP and a mutant profilin that cannot bind proline-rich sequences. Moreover, motility of WASP WCA beads was not affected by the depletion or addback of VASP and profilin. Our results suggest that recruitment of factors, including profilin, by the proline-rich regions of WASP and Scar1 and the EVH1 domain of WASP stimulates cellular actin-based motility. PMID:12429845
A review of phosphate mineral nucleation in biology and geobiology.
Omelon, Sidney; Ariganello, Marianne; Bonucci, Ermanno; Grynpas, Marc; Nanci, Antonio
2013-10-01
Relationships between geological phosphorite deposition and biological apatite nucleation have often been overlooked. However, similarities in biological apatite and phosphorite mineralogy suggest that their chemical formation mechanisms may be similar. This review serves to draw parallels between two newly described phosphorite mineralization processes, and proposes a similar novel mechanism for biologically controlled apatite mineral nucleation. This mechanism integrates polyphosphate biochemistry with crystal nucleation theory. Recently, the roles of polyphosphates in the nucleation of marine phosphorites were discovered. Marine bacteria and diatoms have been shown to store and concentrate inorganic phosphate (Pi) as amorphous, polyphosphate granules. Subsequent release of these P reserves into the local marine environment as Pi results in biologically induced phosphorite nucleation. Pi storage and release through an intracellular polyphosphate intermediate may also occur in mineralizing oral bacteria. Polyphosphates may be associated with biologically controlled apatite nucleation within vertebrates and invertebrates. Historically, biological apatite nucleation has been attributed to either a biochemical increase in local Pi concentration or matrix-mediated apatite nucleation control. This review proposes a mechanism that integrates both theories. Intracellular and extracellular amorphous granules, rich in both calcium and phosphorus, have been observed in apatite-biomineralizing vertebrates, protists, and atremate brachiopods. These granules may represent stores of calcium-polyphosphate. Not unlike phosphorite nucleation by bacteria and diatoms, polyphosphate depolymerization to Pi would be controlled by phosphatase activity. Enzymatic polyphosphate depolymerization would increase apatite saturation to the level required for mineral nucleation, while matrix proteins would simultaneously control the progression of new biological apatite formation.
Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy
NASA Astrophysics Data System (ADS)
Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander
2016-04-01
Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.
Kirik, Angela; Ehrhardt, David W.; Kirik, Viktor
2012-01-01
Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microtubule nucleation on cortical microtubules is regulated by the Arabidopsis thaliana B′′ subunit of protein phosphatase 2A, which is encoded by the TONNEAU2/FASS (TON2) gene. The probability of nucleation from γ-tubulin complexes localized at the cell cortex was not affected by a loss of TON2 function, suggesting a specific role of TON2 in regulating the nucleation geometry. Both loss of TON2 function and ectopic targeting of TON2 to the plasma membrane resulted in defects in cell shape, suggesting the importance of TON2-mediated regulation of the microtubule cytoskeleton in cell morphogenesis. Loss of TON2 function also resulted in an inability for cortical arrays to reorient in response to light stimulus, suggesting an essential role for TON2 and microtubule branching nucleation in reorganization of microtubule arrays. Our data establish TON2 as a regulator of interphase microtubule nucleation and provide experimental evidence for a novel regulatory step in the process of microtubule-dependent nucleation. PMID:22395485
Simple improvements to classical bubble nucleation models.
Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg
2015-08-01
We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.
Protein Polymerization into Fibrils from the Viewpoint of Nucleation Theory.
Kashchiev, Dimo
2015-11-17
The assembly of various proteins into fibrillar aggregates is an important phenomenon with wide implications ranging from human disease to nanoscience. Using general kinetic results of nucleation theory, we analyze the polymerization of protein into linear or helical fibrils in the framework of the Oosawa-Kasai (OK) model. We show that while within the original OK model of linear polymerization the process does not involve nucleation, within a modified OK model it is nucleation-mediated. Expressions are derived for the size of the fibril nucleus, the work for fibril formation, the nucleation barrier, the equilibrium and stationary fibril size distributions, and the stationary fibril nucleation rate. Under otherwise equal conditions, this rate decreases considerably when the short (subnucleus) fibrils lose monomers much more frequently than the long (supernucleus) fibrils, a feature that should be born in mind when designing a strategy for stymying or stimulating fibril nucleation. The obtained dependence of the nucleation rate on the concentration of monomeric protein is convenient for experimental verification and for use in rate equations accounting for nucleation-mediated fibril formation. The analysis and the results obtained for linear fibrils are fully applicable to helical fibrils whose formation is describable by a simplified OK model. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Effects of glycerol monosterate on TPUs crystallization and its foaming behavior
NASA Astrophysics Data System (ADS)
Hossieny, N.; Nofar, M.; Shaayegan, V.; Park, C. B.
2014-05-01
Thermoplastic polyurethane (TPU) containing 0-2 wt% glycerol monosterate (GMS) were compounded by a twin screw compounder and then foamed using a batch process and n-butane. Differential scanning calorimetry (DSC) and high-pressure DSC were performed to evaluate the effects of GMS and pressurized butane on the crystallization kinetics of TPU. The results showed that the synergistic effect of GMS and high pressure butane significantly promoted hard segment (HS) crystallization in the TPU-GMS samples. The TPU-GMS samples showed significant increase in crystallinity over a wide range of saturation temperatures in the presence of butane compared to neat melt-compounded TPU (PR-TPU). Comparing the foam characteristics of PR-TPU and TPU-GMS samples, it was observed that both samples exhibited microcellular morphology with high cell density over a wide range of processing temperatures of 150°C - 170°C. However at a high foaming temperature (170°C), PR-TPU foams showed high cell coalescence compared to TPU-GMS. Furthermore, TPU-GMS samples showed a much higher expansion ratio compared to PR-TPU over a wide range of processing temperatures. The lubricating effect of GMS assisted the HS to stack together and form crystalline domains. These HS crystalline domains are present at high temperature acting both as a heterogeneous nucleating sites as well as reinforcement leading to the observed microcellular morphology with a high expansion ratio in TPU-GMS samples.
Singh, Arvinder; Winterbottom, Emily F.; Ji, Yon Ju; Hwang, Yoo-Seok; Daar, Ira O.
2013-01-01
Abl interactor 1 (Abi1) is a scaffold protein that plays a central role in the regulation of actin cytoskeleton dynamics as a constituent of several key protein complexes, and homozygous loss of this protein leads to embryonic lethality in mice. Because this scaffold protein has been shown in cultured cells to be a critical component of pathways controlling cell migration and actin regulation at cell-cell contacts, we were interested to investigate the in vivo role of Abi1 in morphogenesis during the development of Xenopus embryos. Using morpholino-mediated translation inhibition, we demonstrate that knockdown of Abi1 in the whole embryo, or specifically in eye field progenitor cells, leads to disruption of eye morphogenesis. Moreover, signaling through the Src homology 3 domain of Abi1 is critical for proper movement of retinal progenitor cells into the eye field and their appropriate differentiation, and this process is dependent upon an interaction with the nucleation-promoting factor Wasp (Wiskott-Aldrich syndrome protein). Collectively, our data demonstrate that the Abi1 scaffold protein is an essential regulator of cell movement processes required for normal eye development in Xenopus embryos and specifically requires an Src homology 3 domain-dependent interaction with Wasp to regulate this complex morphogenetic process. PMID:23558677
Dynamics of protein aggregation and oligomer formation governed by secondary nucleation
NASA Astrophysics Data System (ADS)
Michaels, Thomas C. T.; Lazell, Hamish W.; Arosio, Paolo; Knowles, Tuomas P. J.
2015-08-01
The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial to progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.
Dynamics of protein aggregation and oligomer formation governed by secondary nucleation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaels, Thomas C. T., E-mail: tctm3@cam.ac.uk; Lazell, Hamish W.; Arosio, Paolo
2015-08-07
The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial tomore » progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.« less
NASA Astrophysics Data System (ADS)
Pan, Weichun; Kolomeisky, Anatoly B.; Vekilov, Peter G.
2005-05-01
Nucleation of ordered solid phases of proteins triggers numerous phenomena in laboratory, industry, and in healthy and sick organisms. Recent simulations and experiments with protein crystals suggest that the formation of an ordered crystalline nucleus is preceded by a disordered high-density cluster, akin to a droplet of high-density liquid that has been observed with some proteins; this mechanism allowed a qualitative explanation of recorded complex nucleation kinetics curves. Here, we present a simple phenomenological theory that takes into account intermediate high-density metastable states in the nucleation process. Nucleation rate data at varying temperature and protein concentration are reproduced with high fidelity using literature values of the thermodynamic and kinetic parameters of the system. Our calculations show that the growth rate of the near-critical and supercritical ordered clusters within the dense intermediate is a major factor for the overall nucleation rate. This highlights the role of viscosity within the dense intermediate for the formation of the ordered nucleus. The model provides an understanding of the action of additives that delay or accelerate nucleation and presents a framework within which the nucleation of other ordered protein solid phases, e.g., the sickle cell hemoglobin polymers, can be analyzed.
Men, Yumei; Yan, Qingzhao; Jiang, Guangfeng; Zhang, Xianren; Wang, Wenchuan
2009-05-01
In this work, we propose a method to stabilize a nucleus in the framework of lattice density-functional theory (LDFT) by imposing a suitable constraint. Using this method, the shape of critical nucleus and height of the nucleation barrier can be determined without using a predefined nucleus as input. As an application of this method, we study the nucleation behavior of vapor-liquid transition in nanosquare pores with infinite length and relate the observed hysteresis loop on an adsorption isotherm to the nucleation mechanism. According to the dependence of hysteresis and the nucleation mechanism on the fluid-wall interaction, w , in this work, we have classified w into three regions ( w>0.9 , 0.1< or =w< or =0.9 , and w<0.1 ), which are denoted as strongly, moderately, and weakly attractive fluid-wall interaction, respectively. The dependence of hysteresis on the fluid-wall interaction is interpreted by the different nucleation mechanisms. Our constrained LDFT calculations also show that the different transition paths may induce different nucleation behaviors. The transition path dependence should be considered if morphological transition of nuclei exists during a nucleation process.
Partitioning the primary ice formation modes in large eddy simulations of mixed-phase clouds
NASA Astrophysics Data System (ADS)
Hande, Luke B.; Hoose, Corinna
2017-11-01
State-of-the-art aerosol-dependent parameterisations describing each heterogeneous ice nucleation mode (contact, immersion, and deposition ice nucleation), as well as homogeneous nucleation, were incorporated into a large eddy simulation model. Several cases representing commonly occurring cloud types were simulated in an effort to understand which ice nucleation modes contribute the most to total concentrations of ice crystals. The cases include a completely idealised warm bubble, semi-idealised deep convection, an orographic cloud, and a stratiform case. Despite clear differences in thermodynamic conditions between the cases, the results are remarkably consistent between the different cloud types. In all the investigated cloud types and under normal aerosol conditions, immersion freezing dominates and contact freezing also contributes significantly. At colder temperatures, deposition nucleation plays only a small role, and homogeneous freezing is important. To some extent, the temporal evolution of the cloud determines the dominant freezing mechanism and hence the subsequent microphysical processes. Precipitation is not correlated with any one ice nucleation mode, instead occurring simultaneously when several nucleation modes are active. Furthermore, large variations in the aerosol concentration do affect the dominant ice nucleation mode; however, they have only a minor influence on the precipitation amount.
Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics
NASA Astrophysics Data System (ADS)
Guzina, Bojan B.; Bonnet, Marc
2006-10-01
The aim of this study is an extension and employment of the concept of topological derivative as it pertains to the nucleation of infinitesimal inclusions in a reference (i.e. background) acoustic medium. The developments are motivated by the need to develop a preliminary indicator functional that would aid the solution of inverse scattering problems in terms of a rational initial 'guess' about the geometry and material characteristics of a hidden (finite) obstacle; an information that is often required by iterative minimization algorithms. To this end the customary definition of topological derivative, which quantifies the sensitivity of a given cost functional with respect to the creation of an infinitesimal hole, is adapted to permit the nucleation of a dissimilar acoustic medium. On employing the Green's function for the background domain, computation of topological sensitivity for the three-dimensional Helmholtz equation is reduced to the solution of a reference, Laplace transmission problem. Explicit formulae are given for the nucleating inclusions of spherical and ellipsoidal shapes. For generality the developments are also presented in an alternative, adjoint-field setting that permits nucleation of inclusions in an infinite, semi-infinite or finite background medium. Through numerical examples, it is shown that the featured topological sensitivity could be used, in the context of inverse scattering, as an effective obstacle indicator through an assembly of sampling points where it attains pronounced negative values. On varying a material characteristic (density) of the nucleating obstacle, it is also shown that the proposed methodology can be used as a preparatory tool for both geometric and material identification.
NASA Technical Reports Server (NTRS)
Larsen, D. C.; Sievert, J. L.
1975-01-01
The potential of producing the glassy form of selected materials in the weightless, containerless nature of space processing is examined through the development of kinetic relationships describing nucleation and crystallization phenomena. Transformation kinetics are applied to a well-characterized system (SiO2), an excellent glass former (B2O3), and a poor glass former (Al2O3) by conventional earth processing methods. Viscosity and entropy of fusion are shown to be the primary materials parameters controlling the glass forming tendency. For multicomponent systems diffusion-controlled kinetics and heterogeneous nucleation effects are considered. An analytical empirical approach is used to analyze the mullite system. Results are consistent with experimentally observed data and indicate the promise of mullite as a future space processing candidate.
NASA Astrophysics Data System (ADS)
China, Swarup
Atmospheric particles are ubiquitous in Earth's atmosphere and impact the environment and the climate while affecting human health and Earth's radiation balance, and degrading visibility. Atmospheric particles directly affect our planet's radiation budget by scattering and absorbing solar radiation, and indirectly by interacting with clouds. Single particle morphology (shape, size and internal structure) and mixing state (coating by organic and inorganic material) can significantly influence the particle optical properties as well as various microphysical processes, involving cloud-particle interactions and including heterogeneous ice nucleation and water uptake. Conversely, aerosol cloud processing can affect the morphology and mixing of the particles. For example, fresh soot has typically an open fractal-like structure, but aging and cloud processing can restructure soot into more compacted shapes, with different optical and ice nucleation properties. During my graduate research, I used an array of electron microscopy and image analysis tools to study morphology and mixing state of a large number of individual particles collected during several field and laboratory studies. To this end, I investigated various types of particles such as tar balls (spherical carbonaceous particles emitted during biomass burning) and dust particles, but with a special emphasis on soot particles. In addition, I used the Stony Brook ice nucleation cell facility to investigate heterogeneous ice nucleation and water uptake by long-range transported particles collected at the Pico Mountain Observatory, in the Archipelago of the Azores. Finally, I used ice nucleation data from the SAAS (Soot Aerosol Aging Study) chamber study at the Pacific Northwest National Laboratory to understand the effects that ice nucleation and supercooled water processing has on the morphology of residual soot particles. Some highlights of our findings and implications are discussed next. We found that the morphology of fresh soot emitted by vehicles depends on the driving conditions (i.e.; the vehicle specific power). Soot emitted by biomass burning is often heavily coated by other materials while processing of soot in urban environment exhibits complex mixing. We also found that long-range transported soot over the ocean after atmospheric processing is very compacted. In addition, our results suggest that freezing process can facilitate restructuring of soot and results into collapsed soot. Furthermore, numerical simulations showed strong influence on optical properties when fresh open fractal-like soot evolved to collapsed soot. Further investigation of long-range transported aged particles exhibits that they are efficient in water uptake and can induce ice nucleation in colder temperature. Our results have implications for assessing the impact of the morphology and mixing state of soot particles on human health, environment and climate. Our findings can provide guidance to numerical models such as particle-resolved mixing state models to account for, and better understand, vehicular emissions and soot evolution since its emission to atmospheric processing in urban environment and finally in remote regions after long-range transport. Morphology and mixing state information can be used to model observational-constrained optical properties. The details of morphology and mixing state of soot particles are crucial to assess the accuracy of climate models in describing the contribution of soot radiative forcing and their direct and indirect climate effects. Finally, our observations of ice nucleation ability by aged particles show that nucleated particles are internally mixed and coated with several materials.
Dynamical properties of epitaxial ferroelectric superlattices
NASA Astrophysics Data System (ADS)
Kim, Y.; Gerhardt, R. A.; Erbil, A.
1997-04-01
The dynamical properties of epitaxial ferroelectric heterostructures have been investigated by studying the dielectric behavior under external electric field. A phenomenon with a giant permittivity was observed. At low frequencies, real permittivities as high as 420 000 have been measured. Real and imaginary parts of the dielectric constant show large dispersion at high frequencies. In dc measurements, a nonlinear resistance is observed with a well-defined threshold field, correlating with the dc bias-field dependence of ac permittivities. We model these observations as a result of the motion of pinned domain-wall lattices, having sliding-mode motion at high electric fields. The good agreement between the experimental and theoretical results suggests that the deposited interdigitated electrode pattern plays a crucial role in controlling domain-wall dynamics. The pinning of the domain wall comes from a nucleation barrier to the creation of new domain walls.
Nucleation and growth mechanisms of nano magnesium hydride from the hydrogen sorption kinetics.
Mooij, Lennard; Dam, Bernard
2013-07-21
We use a combination of hydrogenography and Johnson-Mehl-Avrami-Kolmogorov (JMAK) analyses to identify (1) the driving force dependence of the nucleation and growth mechanism of MgH2 in thin film multilayers of Mg (10 nm) and (2) the nucleation and growth mechanism of Mg in the earlier formed MgH2, i.e. the hydrogen desorption process. We conclude that JMAK may be successfully applied to obtain the nucleation and growth mechanism of hydrogen absorption. The desorption mechanism, however, is not simply the reverse of the absorption mechanism. We find evidence that the barrier for nucleation of Mg is small. The dehydrogenation probably involves the formation of voids, which is energetically more favorable than elastic and plastic deformation of the multilayer.
Sun, Yidi; Leong, Nicole T; Jiang, Tommy; Tangara, Astou; Darzacq, Xavier; Drubin, David G
2017-08-16
Actin-related protein 2/3 (Arp2/3) complex activation by nucleation promoting factors (NPFs) such as WASP, plays an important role in many actin-mediated cellular processes. In yeast, Arp2/3-mediated actin filament assembly drives endocytic membrane invagination and vesicle scission. Here we used genetics and quantitative live-cell imaging to probe the mechanisms that concentrate NPFs at endocytic sites, and to investigate how NPFs regulate actin assembly onset. Our results demonstrate that SH3 (Src homology 3) domain-PRM (proline-rich motif) interactions involving multivalent linker proteins play central roles in concentrating NPFs at endocytic sites. Quantitative imaging suggested that productive actin assembly initiation is tightly coupled to accumulation of threshold levels of WASP and WIP, but not to recruitment kinetics or release of autoinhibition. These studies provide evidence that WASP and WIP play central roles in establishment of a robust multivalent SH3 domain-PRM network in vivo, giving actin assembly onset at endocytic sites a switch-like behavior.
Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid-β peptide
NASA Astrophysics Data System (ADS)
Cohen, Samuel I. A.; Cukalevski, Risto; Michaels, Thomas C. T.; Šarić, Andela; Törnquist, Mattias; Vendruscolo, Michele; Dobson, Christopher M.; Buell, Alexander K.; Knowles, Tuomas P. J.; Linse, Sara
2018-05-01
Mapping free-energy landscapes has proved to be a powerful tool for studying reaction mechanisms. Many complex biomolecular assembly processes, however, have remained challenging to access using this approach, including the aggregation of peptides and proteins into amyloid fibrils implicated in a range of disorders. Here, we generalize the strategy used to probe free-energy landscapes in protein folding to determine the activation energies and entropies that characterize each of the molecular steps in the aggregation of the amyloid-β peptide (Aβ42), which is associated with Alzheimer's disease. Our results reveal that interactions between monomeric Aβ42 and amyloid fibrils during fibril-dependent secondary nucleation fundamentally reverse the thermodynamic signature of this process relative to primary nucleation, even though both processes generate aggregates from soluble peptides. By mapping the energetic and entropic contributions along the reaction trajectories, we show that the catalytic efficiency of Aβ42 fibril surfaces results from the enthalpic stabilization of adsorbing peptides in conformations amenable to nucleation, resulting in a dramatic lowering of the activation energy for nucleation.
Cohen, Samuel I A; Cukalevski, Risto; Michaels, Thomas C T; Šarić, Anđela; Törnquist, Mattias; Vendruscolo, Michele; Dobson, Christopher M; Buell, Alexander K; Knowles, Tuomas P J; Linse, Sara
2018-05-01
Mapping free-energy landscapes has proved to be a powerful tool for studying reaction mechanisms. Many complex biomolecular assembly processes, however, have remained challenging to access using this approach, including the aggregation of peptides and proteins into amyloid fibrils implicated in a range of disorders. Here, we generalize the strategy used to probe free-energy landscapes in protein folding to determine the activation energies and entropies that characterize each of the molecular steps in the aggregation of the amyloid-β peptide (Aβ42), which is associated with Alzheimer's disease. Our results reveal that interactions between monomeric Aβ42 and amyloid fibrils during fibril-dependent secondary nucleation fundamentally reverse the thermodynamic signature of this process relative to primary nucleation, even though both processes generate aggregates from soluble peptides. By mapping the energetic and entropic contributions along the reaction trajectories, we show that the catalytic efficiency of Aβ42 fibril surfaces results from the enthalpic stabilization of adsorbing peptides in conformations amenable to nucleation, resulting in a dramatic lowering of the activation energy for nucleation.
The Nucleation and Growth of Protein Crystals
NASA Technical Reports Server (NTRS)
Pusey, Marc
2004-01-01
Obtaining crystals of suitable size and high quality continues to be a major bottleneck in macromolecular crystallography. Currently, structural genomics efforts are achieving on average about a 10% success rate in going from purified protein to a deposited crystal structure. Growth of crystals in microgravity was proposed as a means of overcoming size and quality problems, which subsequently led to a major NASA effort in microgravity crystal growth, with the agency also funding research into understanding the process. Studies of the macromolecule crystal nucleation and growth process were carried out in a number of labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. Based upon experimental evidence, as well as simple starting assumptions, we have proposed that crystal nucleation occurs by a series of discrete self assembly steps, which 'set' the underlying crystal symmetry. This talk will review the model developed, and its origins, in our laboratory for how crystals nucleate and grow, and will then present, along with preliminary data, how we propose to use this model to improve the success rate for obtaining crystals from a given protein.
Nanoscale plasma chemistry enables fast, size-selective nanotube nucleation.
Ostrikov, Kostya Ken; Mehdipour, Hamid
2012-03-07
The possibility of fast, narrow-size/chirality nucleation of thin single-walled carbon nanotubes (SWCNTs) at low, device-tolerant process temperatures in a plasma-enhanced chemical vapor deposition (CVD) is demonstrated using multiphase, multiscale numerical experiments. These effects are due to the unique nanoscale reactive plasma chemistry (NRPC) on the surfaces and within Au catalyst nanoparticles. The computed three-dimensional process parameter maps link the nanotube incubation times and the relative differences between the incubation times of SWCNTs of different sizes/chiralities to the main plasma- and precursor gas-specific parameters and explain recent experimental observations. It is shown that the unique NRPC leads not only to much faster nucleation of thin nanotubes at much lower process temperatures, but also to better selectivity between the incubation times of SWCNTs with different sizes and chiralities, compared to thermal CVD. These results are used to propose a time-programmed kinetic approach based on fast-responding plasmas which control the size-selective, narrow-chirality nucleation and growth of thin SWCNTs. This approach is generic and can be used for other nanostructure and materials systems. © 2012 American Chemical Society
Topological defects from the multiverse
NASA Astrophysics Data System (ADS)
Zhang, Jun; Blanco-Pillado, Jose J.; Garriga, Jaume; Vilenkin, Alexander
2015-05-01
Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizushima, Yuki; Saito, Takayuki, E-mail: saito.takayuki@shizuoka.ac.jp
Bubble nucleation and growth following plasma channeling (filament) and white-light continuum in liquid irradiated by a single-shot fs-pulse were experimentally investigated with close observation of the time scale. Making full use of a new confocal system and time-resolved visualization techniques, we obtained evidence suggestive of a major/minor role of the non-linear/thermal effects during the fs-pulse-induced bubble's fountainhead (10{sup −13} s) and growth (10{sup −7} s), which was never observed with the use of the ns-pulse (i.e., optic cavitation). In this context, the fs-pulse-induced bubble is not an ordinary optic cavitation but rather is nonlinear-optic cavitation. We present the intrinsic differencesmore » in the dominant-time domain of the fs-pulse and ns-pulse excitation, and intriguingly, a mere hundred femtoseconds' excitation predetermines the size of the bubble appearing several microseconds after irradiation. That is, the nucleation happens temporally beyond a six-order-of-magnitude difference.« less
Korobov, A
2009-03-01
Discrete random tessellations appear not infrequently in describing nucleation and growth transformations. Generally, several non-Euclidean metrics are possible in this case. Previously [A. Korobov, Phys. Rev. B 76, 085430 (2007)] continual analogs of such tessellations have been studied. Here one of the simplest discrete varieties of the Kolmogorov-Johnson-Mehl-Avrami model, namely, the model with von Neumann neighborhoods, has been examined per se, i.e., without continualization. The tessellation is uniform in the sense that domain boundaries consist of tiles. Similarities and distinctions between discrete and continual models are discussed.
Phase-field-crystal model for magnetocrystalline interactions in isotropic ferromagnetic solids
NASA Astrophysics Data System (ADS)
Faghihi, Niloufar; Provatas, Nikolas; Elder, K. R.; Grant, Martin; Karttunen, Mikko
2013-09-01
An isotropic magnetoelastic phase-field-crystal model to study the relation between morphological structure and magnetic properties of pure ferromagnetic solids is introduced. Analytic calculations in two dimensions were used to determine the phase diagram and obtain the relationship between elastic strains and magnetization. Time-dependent numerical simulations in two dimensions were used to demonstrate the effect of grain boundaries on the formation of magnetic domains. It was shown that the grain boundaries act as nucleating sites for domains of reverse magnetization. Finally, we derive a relation for coercivity versus grain misorientation in the isotropic limit.
Wan, William; Bian, Wen; McDonald, Michele; ...
2013-08-28
The fungal prion-forming domain HET-s(218–289) forms infectious amyloid fibrils at physiological pH that were shown by solid-state NMR to be assemblies of a two-rung β-solenoid structure. Under acidic conditions, HET-s(218–289) has been shown to form amyloid fibrils that have very low infectivity in vivo, but structural information about these fibrils has been very limited. In this paper, we show by x-ray fiber diffraction that the HET-s(218–289) fibrils formed under acidic conditions have a stacked β-sheet architecture commonly found in short amyloidogenic peptides and denatured protein aggregates. At physiological pH, stacked β-sheet fibrils nucleate the formation of the infectious β-solenoid prionsmore » in a process of heterogeneous seeding, but do so with kinetic profiles distinct from those of spontaneous or homogeneous (seeded with infectious β-solenoid fibrils) fibrillization. Several serial passages of stacked β-sheet-seeded solutions lead to fibrillization kinetics similar to homogeneously seeded solutions. Finally, our results directly show that structural mutation can occur between substantially different amyloid architectures, lending credence to the suggestion that the processes of strain adaptation and crossing species barriers are facilitated by structural mutation.« less
Spatiotemporal perspective on the decay of turbulence in wall-bounded flows.
Manneville, Paul
2009-02-01
By use of a reduced model focusing on the in-plane dependence of plane Couette flow, it is shown that the turbulent-->laminar relaxation process can be understood as a nucleation problem similar to that occurring at a thermodynamic first-order phase transition. The approach, apt to deal with the large extension of the system considered, challenges the current interpretation in terms of chaotic transients typical of temporal chaos. The study of the distribution of the sizes of laminar domains embedded in turbulent flow proves that an abrupt transition from sustained spatiotemporal chaos to laminar flow can take place at some given value of the Reynolds number Rlow, whether or not the local chaos lifetime, as envisioned within low-dimensional dynamical systems theory, diverges at finite R beyond Rlow.
NASA Astrophysics Data System (ADS)
Khokhar, Fawad S.; van Gastel, Raoul; Schwarz, Daniel; Zandvliet, Harold J. W.; Poelsema, Bene
2011-09-01
The growth of 4,4'-biphenyldicarboxylic acid (BDA) on Cu(001) has been studied using low energy electron microscopy and selective area low energy electron diffraction. The emergence of large islands and hydrogen bonding to perpendicularly oriented, adjacent molecules is confirmed. The two benzene rings of adsorbed BDA are twisted along the molecular axis. Unconventional growth of the domains, followed by a second nucleation stage, is observed at room temperature. This unanticipated feature is attributed to the accumulation of stress in the islands. Ostwald ripening in the films and the decay of BDA domains at 448 K exhibits features that are consistent with diffusion limited behavior.
NASA Astrophysics Data System (ADS)
Okita, Shin; Verestek, Wolfgang; Sakane, Shinji; Takaki, Tomohiro; Ohno, Munekazu; Shibuta, Yasushi
2017-09-01
Continuous processes of homogeneous nucleation, solidification and grain growth are spontaneously achieved from an undercooled iron melt without any phenomenological parameter in the molecular dynamics (MD) simulation with 12 million atoms. The nucleation rate at the critical temperature is directly estimated from the atomistic configuration by cluster analysis to be of the order of 1034 m-3 s-1. Moreover, time evolution of grain size distribution during grain growth is obtained by the combination of Voronoi and cluster analyses. The grain growth exponent is estimated to be around 0.3 from the geometric average of the grain size distribution. Comprehensive understanding of kinetic properties during continuous processes is achieved in the large-scale MD simulation by utilizing the high parallel efficiency of a graphics processing unit (GPU), which is shedding light on the fundamental aspects of production processes of materials from the atomistic viewpoint.
Current state of aerosol nucleation parameterizations for air-quality and climate modeling
NASA Astrophysics Data System (ADS)
Semeniuk, Kirill; Dastoor, Ashu
2018-04-01
Aerosol nucleation parameterization models commonly used in 3-D air quality and climate models have serious limitations. This includes classical nucleation theory based variants, empirical models and other formulations. Recent work based on detailed and extensive laboratory measurements and improved quantum chemistry computation has substantially advanced the state of nucleation parameterizations. In terms of inorganic nucleation involving BHN and THN including ion effects these new models should be considered as worthwhile replacements for the old models. However, the contribution of organic species to nucleation remains poorly quantified. New particle formation consists of a distinct post-nucleation growth regime which is characterized by a strong Kelvin curvature effect and is thus dependent on availability of very low volatility organic species or sulfuric acid. There have been advances in the understanding of the multiphase chemistry of biogenic and anthropogenic organic compounds which facilitate to overcome the initial aerosol growth barrier. Implementation of processes influencing new particle formation is challenging in 3-D models and there is a lack of comprehensive parameterizations. This review considers the existing models and recent innovations.
Importance of Chemical Composition of Ice Nuclei on the Formation of Arctic Ice Clouds
NASA Astrophysics Data System (ADS)
Keita, Setigui Aboubacar; Girard, Eric
2016-09-01
Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation remain poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TICs-1 are composed by non-precipitating small (radar-unseen) ice crystals of less than 30 μm in diameter. The second type, TICs-2, are detected by radar and are characterized by a low concentration of large precipitating ice crystals ice crystals (>30 μm). To explain these differences, we hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibits the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a lower concentration of larger ice crystals. Water vapor available for deposition being the same, these crystals reach a larger size. Current weather and climate models cannot simulate these different types of ice clouds. This problem is partly due to the parameterizations implemented for ice nucleation. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation on IN of different chemical compositions have been developed. These parameterizations are based on two approaches: stochastic (that is nucleation is a probabilistic process, which is time dependent) and singular (that is nucleation occurs at fixed conditions of temperature and humidity and time-independent). The best approach remains unclear. This research aims to better understand the formation process of Arctic TICs using recently developed ice nucleation parameterizations. For this purpose, we have implemented these ice nucleation parameterizations into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska. Simulation results of the TICs-2 observed on April 15th and 25th (acidic cases) and TICs-1 observed on April 5th (non-acidic cases) are presented. Our results show that the stochastic approach based on the classical nucleation theory with the appropriate contact angle is better. Parameterizations of ice nucleation based on the singular approach tend to overestimate the ice crystal concentration in TICs-1 and TICs-2. The classical nucleation theory using the appropriate contact angle is the best approach to use to simulate the ice clouds investigated in this research.
Pendola, Martin; Jain, Gaurav; Davidyants, Anastasia; ...
2016-09-26
We examined the mineralization performance of a nacre protein, AP7, within seawater mineralization assays that form aragonite and magnesium calcite. Under these conditions AP7 forms hydrogel particles that vary in size and complexity depending upon ionic conditions. These hydrogels “hijack” the mineralization process by limiting nucleation in bulk solution and promoting nucleation within the hydrogels.
The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study.
Zhang, Zhengcai; Guo, Guang-Jun
2017-07-26
Although ice powders are widely used in gas hydrate formation experiments, the effects of ice on hydrate nucleation and what happens in the quasi-liquid layer of ice are still not well understood. Here, we used high-precision constant energy molecular dynamics simulations to study methane hydrate nucleation from vapor-liquid mixtures exposed to the basal, prismatic, and secondary prismatic planes of hexagonal ice (ice Ih). Although no significant difference is observed in hydrate nucleation processes for these different crystal planes, it is found, more interestingly, that methane hydrate can nucleate either on the ice surface heterogeneously or in the bulk solution phase homogeneously. Several factors are mentioned to be able to promote the heterogeneous nucleation of hydrates, including the adsorption of methane molecules at the solid-liquid interface, hydrogen bonding between hydrate cages and the ice structure, the stronger ability of ice to transfer heat than that of the aqueous solution, and the higher occurrence probability of hydrate cages in the vicinity of the ice surface than in the bulk solution. Meanwhile, however, the other factors including the hydrophilicity of ice and the ice lattice mismatch with clathrate hydrates can inhibit heterogeneous nucleation on the ice surface and virtually promote homogeneous nucleation in the bulk solution. Certainly, the efficiency of ice as a promoter and as an inhibitor for heterogeneous nucleation is different. We estimate that the former is larger than the latter under the working conditions. Additionally, utilizing the benefit of ice to absorb heat, the NVE simulation of hydrate formation with ice can mimic the phenomenon of ice shrinking during the heterogeneous nucleation of hydrates and lower the overly large temperature increase during homogeneous nucleation. These results are helpful in understanding the nucleation mechanism of methane hydrate in the presence of ice.
USDA-ARS?s Scientific Manuscript database
Human Noroviruses (HuNoVs) are the main cause of nonbacterial gastroenteritis. Contaminated produce is a main vehicle for dissemination of HuNoVs. In this study, we used an ice nucleation protein (INP) mediated surface display system to present the protruding domain of GII.4 HuNoV capsid protein (G...
Kühbacher, Andreas; Emmenlauer, Mario; Rämo, Pauli; Kafai, Natasha; Dehio, Christoph
2015-01-01
ABSTRACT Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide small interfering RNA (siRNA) screening for host factors involved in bacterial infection, we identified diverse cellular signaling networks and protein complexes that support or limit these processes. In addition, we could precise previously described molecular pathways involved in Listeria invasion. In particular our results show that the requirements for actin nucleators during Listeria entry and actin comet tail formation are different. Knockdown of several actin nucleators, including SPIRE2, reduced bacterial invasion while not affecting the generation of comet tails. Most interestingly, we observed that in contrast to our expectations, not all of the seven subunits of the Arp2/3 complex are required for Listeria entry into cells or actin tail formation and that the subunit requirements for each of these processes differ, highlighting a previously unsuspected versatility in Arp2/3 complex composition and function. PMID:25991686
The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes.
Whale, Thomas F; Holden, Mark A; Wilson, Theodore W; O'Sullivan, Daniel; Murray, Benjamin J
2018-05-07
Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression <0.1 °C) of several ammonium salts can cause suspended particles of feldspars and quartz to nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 10 5 . This concentration was chosen for a survey across multiple solutes-nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these 'solute effects', to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where activation of CCN at low temperatures might lead to enhanced ice formation relative to pathways where CCN activation occurs at higher temperatures prior to cooling to nucleation temperature.
The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes
Holden, Mark A.; Wilson, Theodore W.; O'Sullivan, Daniel; Murray, Benjamin J.
2018-01-01
Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression <0.1 °C) of several ammonium salts can cause suspended particles of feldspars and quartz to nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 105. This concentration was chosen for a survey across multiple solutes–nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these ‘solute effects’, to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where activation of CCN at low temperatures might lead to enhanced ice formation relative to pathways where CCN activation occurs at higher temperatures prior to cooling to nucleation temperature. PMID:29780544
Wong, Ian; Teo, Guo Hui; Neto, Chiara; Thickett, Stuart C
2015-09-30
Inspired by an example found in nature, the design of patterned surfaces with chemical and topographical contrast for the collection of water from the atmosphere has been of intense interest in recent years. Herein we report the synthesis of such materials via a combination of macromolecular design and polymer thin film dewetting to yield surfaces consisting of raised hydrophilic bumps on a hydrophobic background. RAFT polymerization was used to synthesize poly(2-hydroxypropyl methacrylate) (PHPMA) of targeted molecular weight and low dispersity; spin-coating of PHPMA onto polystyrene films produced stable polymer bilayers under appropriate conditions. Thermal annealing of these bilayers above the glass transition temperature of the PHPMA layer led to complete dewetting of the top layer and the formation of isolated PHPMA domains atop the PS film. Due to the vastly different rates of water nucleation on the two phases, preferential dropwise nucleation of water occurred on the PHPMA domains, as demonstrated by optical microscopy. The simplicity of the preparation method and ability to target polymers of specific molecular weight demonstrate the value of these materials with respect to large-scale water collection devices or other materials science applications where patterning is required.
NASA Astrophysics Data System (ADS)
Kolesnikov, A. G.; Samardak, A. S.; Stebliy, M. E.; Ognev, A. V.; Chebotkevich, L. A.; Sadovnikov, A. V.; Nikitov, S. A.; Kim, Yong Jin; Cha, In Ho; Kim, Young Keun
2017-05-01
One of the major societal challenges is reducing the power consumption of information technology (IT) devices and numerous data centers. Distinct from the current approaches based on switching of magnetic single-domain nanostructures or on movement of domain walls under high currents, an original magnetic skyrmion technology offers ultra-low power, fast, high-density, and scalable spintronic devices, including non-volatile random access memory. Using data-driven micromagnetic simulations, we demonstrate the possibility of spontaneous nucleation and stabilization of different skyrmionic states, such as skyrmions, merons, and meron-like configurations, in heavy metal/ferromagnetic nanodisks with the interfacial Dzyaloshinskii-Moriya interaction (iDMI) as a result of quasi-static magnetization reversal only. Since iDMI is not easily modulated in real systems, we show that skyrmion stabilization is easily achievable by manipulating magnetic anisotropy, saturation magnetization, and the diameters of nanodisks. The state diagrams, presented in terms of the topological charge, allow to explicitly distinguish the intermediate states between skyrmions and merons and can be used for developing a skyrmionic medium, which has been recently proposed to be a building block for future spin-orbitronic devices.
Singular trajectories: space-time domain topology of developing speckle fields
NASA Astrophysics Data System (ADS)
Vasil'ev, Vasiliy; Soskin, Marat S.
2010-02-01
It is shown the space-time dynamics of optical singularities is fully described by singularities trajectories in space-time domain, or evolution of transverse coordinates(x, y) in some fixed plane z0. The dynamics of generic developing speckle fields was realized experimentally by laser induced scattering in LiNbO3:Fe photorefractive crystal. The space-time trajectories of singularities can be divided topologically on two classes with essentially different scenario and duration. Some of them (direct topological reactions) consist from nucleation of singularities pair at some (x, y, z0, t) point, their movement and annihilation. They possess form of closed loops with relatively short time of existence. Another much more probable class of trajectories are chain topological reactions. Each of them consists from sequence of links, i.e. of singularities nucleation in various points (xi yi, ti) and following annihilation of both singularities in other space-time points with alien singularities of opposite topological indices. Their topology and properties are established. Chain topological reactions can stop on the borders of a developing speckle field or go to infinity. Examples of measured both types of topological reactions for optical vortices (polarization C points) in scalar (elliptically polarized) natural developing speckle fields are presented.
Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection
NASA Technical Reports Server (NTRS)
Karma, Alain; Trivedi, Rohit
1999-01-01
Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth competition of these two phases leads to a rich variety of microstructures that depend sensitively upon the relative importance of nucleation, diffusion, and convection.
Lazenby, Robert A.; Kirkman, Paul M.
2015-01-01
The nucleation and growth of metal nanoparticles (NPs) on surfaces is of considerable interest with regard to creating functional interfaces with myriad applications. Yet, key features of these processes remain elusive and are undergoing revision. Here, the mechanism of the electrodeposition of silver on basal plane highly oriented pyrolytic graphite (HOPG) is investigated as a model system at a wide range of length scales, spanning electrochemical measurements from the macroscale to the nanoscale using scanning electrochemical cell microscopy (SECCM), a pipette-based approach. The macroscale measurements show that the nucleation process cannot be modelled as either truly instantaneous or progressive, and that step edge sites of HOPG do not play a dominant role in nucleation events compared to the HOPG basal plane, as has been widely proposed. Moreover, nucleation numbers extracted from electrochemical analysis do not match those determined by atomic force microscopy (AFM). The high time and spatial resolution of the nanoscale pipette set-up reveals individual nucleation and growth events at the graphite basal surface that are resolved and analysed in detail. Based on these results, corroborated with complementary microscopy measurements, we propose that a nucleation-aggregative growth-detachment mechanism is an important feature of the electrodeposition of silver NPs on HOPG. These findings have major implications for NP electrodeposition and for understanding electrochemical processes at graphitic materials generally. PMID:29560200
In-situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts
NASA Astrophysics Data System (ADS)
Masotta, M.; Ni, H.; Keppler, H.
2013-12-01
Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in-situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1100 to 1240 °C and 1 bar, obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (<20 MPa in basalt and andesite, ca. 100 MPa in rhyodacite), probably due to heterogeneous nucleation of bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate (GR) ranges from 3.4*10-6 to 5.2*10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density (NB) at nucleation ranges from 1.8*108 to 7.9*107 cm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble-size distribution (BSD) through time, the BSD's of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSD's may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and explosive eruptions.
Cellulose and Their Characteristic Ice Nucleation Activity- Freezing on a Chip
NASA Astrophysics Data System (ADS)
Häusler, Thomas; Felgitsch, Laura; Grothe, Hinrich
2016-04-01
The influence of clouds on the Earth's climate system is well known (IPCC, 2013). Cloud microphysics determines for example cloud lifetime and precipitation properties. Clouds are cooling the climate system by reflecting incoming solar radiation and warm its surface by trapping outgoing infrared radiation (Baker and Peter, 2008). In all these processes, aerosol particles play a crucial role by acting as cloud condensation nuclei (CCN) for liquid droplets and as an ice nucleation particle (INP) for the formation of ice particles. Freezing processes at higher temperatures than -38°C occur heterogeneously (Pruppacher and Klett 1997). Therefore aerosol particles act like a catalyst, which reduces the energy barrier for nucleation. The nucleation mechanisms, especially the theory of functional sites are not entirely understood. It remains unclear which class of compound nucleates ice. Here we present a unique technique to perform drop- freezing experiments in a more efficient way. A self-made freezing- chip will be presented. Measurements done to proof the efficiency of our setup as well as advantages compared with other setups will be discussed. Furthermore we present a proxy for biological INPs, microcrystalline cellulose. Cellulose is the main component of herbal cell walls (about 50 wt%). It is a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose can contribute to the diverse spectrum of ice nucleation particles. We present results of the nucleation activity measurements of MCCs as well as the influence of concentration, preparation or chemical modification.
NASA Astrophysics Data System (ADS)
Khan, Irfan; Costeux, Stephane; Bunker, Shana; Moore, Jonathan; Kar, Kishore
2012-11-01
Nanocellular porous materials present unusual optical, dielectric, thermal and mechanical properties and are thus envisioned to find use in a variety of applications. Thermoplastic polymeric foams show considerable promise in achieving these properties. However, there are still considerable challenges in achieving nanocellular foams with densities as low as conventional foams. Lack of in-depth understanding of the effect of process parameters and physical properties on the foaming process is a major obstacle. A numerical model has been developed to simulate the simultaneous nucleation and bubble growth during depressurization of thermoplastic polymers saturated with supercritical blowing agents. The model is based on the popular ``Influence Volume Approach,'' which assumes a growing boundary layer with depleted blowing agent surrounds each bubble. Classical nucleation theory is used to predict the rate of nucleation of bubbles. By solving the mass balance, momentum balance and species conservation equations for each bubble, the model is capable of predicting average bubble size, bubble size distribution and bulk porosity. The model is modified to include mechanisms for Joule-Thompson cooling during depressurization and secondary foaming. Simulation results for polymer with and without nucleating agents will be discussed and compared with experimental data.
Early stages of zeolite growth
NASA Astrophysics Data System (ADS)
Kumar, Sandeep
Zeolites are crystalline nonporous aluminosilicates with important applications in separation, purification, and adsorption of liquid and gaseous molecules. However, an ability to tailor the zeolite microstructure, such as particle size/shape and pore-size, to make it benign for specific application requires control over nucleation and particle growth processes. But, the nucleation and crystallization mechanisms of zeolites are not fully understood. In this context, the synthesis of an all-silica zeolite with MFI-type framework has been studied extensively as a model system. Throughout chapters 2, 4 and 5, MFI growth process has been investigated by small-angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). Of fundamental importance is the role of nanoparticles (~5 nm), which are present in the precursor sol, in MFI nucleation and crystallization. Formation of amorphous aggregates and their internal restructuring are concluded as essential steps in MFI nucleation. Early stage zeolite particles have disordered and less crystalline regions within, which indicates the role of structurally distributed population of nanoparticles in growth. Faceting occurs after the depletion of nanoparticles. The chapter 6 presents growth studies in silica sols prepared by using a dimer of tertaprpylammonium (TPA) and reports that MFI nucleation and crystallization are delayed with a more pronounced delay in crystal growth.
NASA Astrophysics Data System (ADS)
Ó'Ciardhá, Clifford T.; Frawley, Patrick J.; Mitchell, Niall A.
2011-08-01
In this work the primary nucleation kinetics have been estimated for the anti-solvent crystallisation of paracetamol in methanol-water solutions from metastable zone widths (MSZW) and induction times at 25 °C. Laser back-scattering via a focused beam reflectance Measurement (FBRM ®) is utilised to detect the onset of nucleation. The theoretical approach of Kubota was employed to estimate the nucleation kinetics, which accounts for the sensitivity of the nucleation detection technique. This approach is expanded in this work to analyse the induction time for an anti-solvent crystallisation process. Solvent composition is known to have a significant impact on the measured induction times and MSZW. The induction time in this paper was measured from 40% to 70% mass water and the MSZW is measured from 40% to 60% mass water. The primary focus of the paper was to gauge the extent of how solvent composition affects nucleation kinetics so that this effect may be incorporated into a population balance model. Furthermore, the effects of solvent composition on the estimated nucleation rates are investigated. The primary nucleation rates were found to decrease with dynamic solvent composition, with the extent of their reduction linked to the gradient of the solubility curve. Finally, both MSZW and induction time methods have been found to produce similar estimates for the nucleation parameters.
Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation
Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu
2015-01-01
Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments. PMID:26311304
Ice-nucleating bacteria control the order and dynamics of interfacial water
Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; ...
2016-04-22
Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering onmore » the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.« less
Ice-nucleating bacteria control the order and dynamics of interfacial water
Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias
2016-01-01
Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346
Preferential nucleation during polymorphic transformations
Sharma, H.; Sietsma, J.; Offerman, S. E.
2016-08-03
Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR’s) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR’s with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller – and thereforemore » nucleation more probable - with increasing number of special OR’s. As a result, these insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material.« less
2018-01-01
Metal–organic framework (MOF) thin films show unmatched promise as smart membranes and photocatalytic coatings. However, their nucleation and growth resulting from intricate molecular assembly processes are not well understood yet are crucial to control the thin film properties. Here, we directly observe the nucleation and growth behavior of HKUST-1 thin films by real-time in situ AFM at different temperatures in a Cu-BTC solution. In combination with ex situ infrared (nano)spectroscopy, synthesis at 25 °C reveals initial nucleation of rapidly growing HKUST-1 islands surrounded by a continuously nucleating but slowly growing HKUST-1 carpet. Monitoring at 13 and 50 °C shows the strong impact of temperature on thin film formation, resulting in (partial) nucleation and growth inhibition. The nucleation and growth mechanisms as well as their kinetics provide insights to aid in future rational design of MOF thin films. PMID:29595980
Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi
2013-04-01
The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.
Nucleation in the presence of long-range interactions. [performed on ferroelectric barium titanate
NASA Technical Reports Server (NTRS)
Chandra, P.
1989-01-01
Unlike droplet nucleation near a liquid-gas critical point, the decay of metastable phases in crystalline materials is strongly affected by the presence of long-range forces. Field quench experiments performed on the ferroelectric barium titanate indicate that nucleation in this material is markedly different from that observed in liquids. In this paper, a theory for nucleation at a first-order phase transition in which the mediating forces are long range is presented. It is found that the long-range force induces cooperative nucleation and growth processes, and that this feedback mechanism produces a well-defined delay time with a sharp onset in the transformation to the stable phase. Closed-form expressions for the characteristic onset time and width of the transition are developed, in good agreement with numerical and experimental results.
Li, N.; Yadav, S. K.; Liu, X. -Y.; ...
2015-11-05
Using the in situ indentation of TiN in a high-resolution transmission electron microscope, the nucleation of full as well as partial dislocations has been observed from {001} and {111} surfaces, respectively. The critical elastic strains associated with the nucleation of the dislocations were analyzed from the recorded atomic displacements, and the nucleation stresses corresponding to the measured critical strains were computed using density functional theory. The resolved shear stress was estimated to be 13.8 GPa for the partial dislocation 1/6 <110> {111} and 6.7 GPa for the full dislocation ½ <110> {110}. Moreover, such an approach of quantifying nucleation stressesmore » for defects via in situ high-resolution experiment coupled with density functional theory calculation may be applied to other unit processes.« less
Incubation behavior of silicon nanowire growth investigated by laser-assisted rapid heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Sang-gil; Kim, Eunpa; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu
2016-08-15
We investigate the early stage of silicon nanowire growth by the vapor-liquid-solid mechanism using laser-localized heating combined with ex-situ chemical mapping analysis by energy-filtered transmission electron microscopy. By achieving fast heating and cooling times, we can precisely determine the nucleation times for nanowire growth. We find that the silicon nanowire nucleation process occurs on a time scale of ∼10 ms, i.e., orders of magnitude faster than the times reported in investigations using furnace processes. The rate-limiting step for silicon nanowire growth at temperatures in the vicinity of the eutectic temperature is found to be the gas reaction and/or the silicon crystalmore » growth process, whereas at higher temperatures it is the rate of silicon diffusion through the molten catalyst that dictates the nucleation kinetics.« less
NASA Astrophysics Data System (ADS)
Fukuyama, Eiichi; Tsuchida, Kotoyo; Kawakata, Hironori; Yamashita, Futoshi; Mizoguchi, Kazuo; Xu, Shiqing
2018-05-01
We were able to successfully capture rupture nucleation processes on a 2-D fault surface during large-scale biaxial friction experiments using metagabbro rock specimens. Several rupture nucleation patterns have been detected by a strain gauge array embedded inside the rock specimens as well as by that installed along the edge walls of the fault. In most cases, the unstable rupture started just after the rupture front touched both ends of the rock specimen (i.e., when rupture front extended to the entire width of the fault). In some cases, rupture initiated at multiple locations and the rupture fronts coalesced to generate unstable ruptures, which could only be detected from the observation inside the rock specimen. Therefore, we need to carefully examine the 2-D nucleation process of the rupture especially when analyzing the data measured only outside the rock specimen. At least the measurements should be done at both sides of the fault to identify the asymmetric rupture propagation on the fault surface, although this is not perfect yet. In the present experiment, we observed three typical types of the 2-D rupture propagation patterns, two of which were initiated at a single location either close to the fault edge or inside the fault. This initiation could be accelerated by the free surface effect at the fault edge. The third one was initiated at multiple locations and had a rupture coalescence at the middle of the fault. These geometrically complicated rupture initiation patterns are important for understanding the earthquake nucleation process in nature.
Neumayer, Sabine M.; Strelcov, Evgheni; Manzo, Michele; ...
2015-12-28
Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarizationmore » as well as atmospheric conditions. Additionally, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. In polarization dependent current flow, attributed to charged domain walls and band bending, it the rectifying ability of Mg: LN in combination with suitable metal electrodes that allow for further tailoring of conductivity is demonstrated.« less
2016-01-01
The nucleation of crystals in liquids is one of nature’s most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments. PMID:27228560
Wilson, P W; Heneghan, A F; Haymet, A D J
2003-02-01
In biological systems, nucleation of ice from a supercooled aqueous solution is a stochastic process and always heterogeneous. The average time any solution may remain supercooled is determined only by the degree of supercooling and heterogeneous nucleation sites it encounters. Here we summarize the many and varied definitions of the so-called "supercooling point," also called the "temperature of crystallization" and the "nucleation temperature," and exhibit the natural, inherent width associated with this quantity. We describe a new method for accurate determination of the supercooling point, which takes into account the inherent statistical fluctuations of the value. We show further that many measurements on a single unchanging sample are required to make a statistically valid measure of the supercooling point. This raises an interesting difference in circumstances where such repeat measurements are inconvenient, or impossible, for example for live organism experiments. We also discuss the effect of solutes on this temperature of nucleation. Existing data appear to show that various solute species decrease the nucleation temperature somewhat more than the equivalent melting point depression. For non-ionic solutes the species appears not to be a significant factor whereas for ions the species does affect the level of decrease of the nucleation temperature.
The influence of dopants on the nucleation of semiconductor nanocrystals from homogeneous solution.
Bryan, J Daniel; Schwartz, Dana A; Gamelin, Daniel R
2005-09-01
The influence of Co2+ ions on the homogeneous nucleation of ZnO is examined. Using electronic absorption spectroscopy as a dopant-specific in-situ spectroscopic probe, Co2+ ions are found to be quantitatively excluded from the ZnO critical nuclei but incorporated nearly statistically in the subsequent growth layers, resulting in crystallites with pure ZnO cores and Zn(1-x)Co(x)O shells. Strong inhibition of ZnO nucleation by Co2+ ions is also observed. These results are explained using the classical nucleation model. Statistical analysis of nucleation inhibition data allows estimation of the critical nucleus size as 25 +/- 4 Zn2+ ions. Bulk calorimetric data allow the activation barrier for ZnO nucleation containing a single Co2+ impurity to be estimated as 5.75 kcal/mol cluster greater than that of pure ZnO, corresponding to a 1.5 x 10(4)-fold reduction in the ZnO nucleation rate constant upon introduction of a single Co2+ impurity. These data and analysis offer a rare view into the role of composition in homogeneous nucleation processes, and specifically address recent experiments targeting formation of semiconductor quantum dots containing single magnetic impurity ions at their precise centers.
Nucleation mode particles with a nonvolatile core in the exhaust of a heavy duty diesel vehicle.
Rönkkö, Topi; Virtanen, Annele; Kannosto, Jonna; Keskinen, Jorma; Lappi, Maija; Pirjola, Liisa
2007-09-15
The characteristics of the nucleation mode particles of a Euro IV heavy-duty diesel vehicle exhaust were studied. The NOx and PM emissions of the vehicle were controlled through the use of cooled EGR and high-pressure fuel injection techniques; no exhaust gas after-treatment was used. Particle measurements were performed in vehicle laboratory and on road. Nucleation mode dominated the particle number size distribution in all the tested driving conditions. According to the on-road measurements, the nucleation mode was already formed after 0.7 s residence time in the atmosphere and no significant changes were observed for longer residence times. The nucleation mode was insensitive to the fuel sulfur content, dilution air temperature, and relative humidity. An increase in the dilution ratio decreased the size of the nucleation mode particles. This behavior was observed to be linked to the total hydrocarbon concentration in the diluted sample. In volatility measurements, the nucleation mode particles were observed to have a nonvolatile core with volatile species condensed on it. The results indicate that the nucleation mode particles have a nonvolatile core formed before the dilution process. The core particles have grown because of the condensation of semivolatile material, mainly hydrocarbons, during the dilution.
Sosso, Gabriele C; Chen, Ji; Cox, Stephen J; Fitzner, Martin; Pedevilla, Philipp; Zen, Andrea; Michaelides, Angelos
2016-06-22
The nucleation of crystals in liquids is one of nature's most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments.
NASA Astrophysics Data System (ADS)
Ruthven, R. C.; Ketcham, R. A.; Kelly, E. D.
2015-12-01
Three-dimensional textural analysis of garnet porphyroblasts and electron microprobe analyses can, in concert, be used to pose novel tests that challenge and ultimately increase our understanding of metamorphic crystallization mechanisms. Statistical analysis of high-resolution X-ray computed tomography (CT) data of garnet porphyroblasts tells us the degree of ordering or randomness of garnets, which can be used to distinguish the rate-limiting factors behind their nucleation and growth. Electron microprobe data for cores, rims, and core-to-rim traverses are used as proxies to ascertain porphyroblast nucleation and growth rates, and the evolution of sample composition during crystallization. MnO concentrations in garnet cores serve as a proxy for the relative timing of nucleation, and rim concentrations test the hypothesis that MnO is in equilibrium sample-wide during the final stages of crystallization, and that concentrations have not been greatly altered by intracrystalline diffusion. Crystal size distributions combined with compositional data can be used to quantify the evolution of nucleation rates and sample composition during crystallization. This study focuses on quartzite schists from the Picuris Mountains with heterogeneous garnet distributions consisting of dense and sparse layers. 3D data shows that the sparse layers have smaller, less euhedral garnets, and petrographic observations show that sparse layers have more quartz and less mica than dense layers. Previous studies on rocks with homogeneously distributed garnet have shown that crystallization rates are diffusion-controlled, meaning that they are limited by diffusion of nutrients to growth and nucleation sites. This research extends this analysis to heterogeneous rocks to determine nucleation and growth rates, and test the assumption of rock-wide equilibrium for some major elements, among a set of compositionally distinct domains evolving in mm- to cm-scale proximity under identical P-T conditions.
Terminating DNA Tile Assembly with Nanostructured Caps.
Agrawal, Deepak K; Jiang, Ruoyu; Reinhart, Seth; Mohammed, Abdul M; Jorgenson, Tyler D; Schulman, Rebecca
2017-10-24
Precise control over the nucleation, growth, and termination of self-assembly processes is a fundamental tool for controlling product yield and assembly dynamics. Mechanisms for altering these processes programmatically could allow the use of simple components to self-assemble complex final products or to design processes allowing for dynamic assembly or reconfiguration. Here we use DNA tile self-assembly to develop general design principles for building complexes that can bind to a growing biomolecular assembly and terminate its growth by systematically characterizing how different DNA origami nanostructures interact with the growing ends of DNA tile nanotubes. We find that nanostructures that present binding interfaces for all of the binding sites on a growing facet can bind selectively to growing ends and stop growth when these interfaces are presented on either a rigid or floppy scaffold. In contrast, nucleation of nanotubes requires the presentation of binding sites in an arrangement that matches the shape of the structure's facet. As a result, it is possible to build nanostructures that can terminate the growth of existing nanotubes but cannot nucleate a new structure. The resulting design principles for constructing structures that direct nucleation and termination of the growth of one-dimensional nanostructures can also serve as a starting point for programmatically directing two- and three-dimensional crystallization processes using nanostructure design.
Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition
NASA Astrophysics Data System (ADS)
Gupta, Uma Shankar; Mohapatra, Ranjita K.; Srivastava, Ajit M.; Tiwari, Vivek K.
2010-10-01
We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using the Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken’s hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.
Black holes and the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleatingmore » during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.« less
NASA Astrophysics Data System (ADS)
Li, Cong; Zhang, Yu; Ji, Qingqing; Shi, Jianping; Chen, Zhaolong; Zhou, Xiebo; Fang, Qiyi; Zhang, Yanfeng
2016-09-01
In accommodating the rapid development of two-dimensional (2D) nanomaterials, chemical vapor deposition (CVD) has become a powerful tool for their batch production with desirable characteristics, such as high crystal quality, large domain size, and tunable domain shape. The crystallinity and morphology of the growth substrates usually play a crucial role in the CVD synthesis of high-quality monolayer MoS2, a kind of 2D layered material which has ignited huge interest in nanoelectronics, optoelectronics and energy harvesting, etc. Herein, by utilizing a low-pressure chemical vapor deposition (LPCVD) system, we demonstrate a regioselective synthesis of monolayer MoS2 on the corrugated single-crystal LaAlO3 (100) with twin crystal domains induced by the second-order phase transition. Unique dendritic morphologies with tunable nucleation densities were obtained in different regions of the undulated substrate, presenting a strong substrate modulation effect. Interestingly, the exposure of abundant active edge sites along with the rather high nucleation density makes the monolayer dendritic MoS2 a good electrocatalyst for hydrogen evolution reaction (HER), particularly featured by a rather high exchange current density (70.4 μA cm-2). Furthermore, uniform monolayer MoS2 films can also be obtained and transferred to arbitrary substrates. We believe that this work provides a new growth system for the controllable synthesis of 2D layered materials with unique dendritic morphologies, as well as its great application potential in energy conversion and harvesting.
Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Uma Shankar; Tiwari, Vivek K.; Mohapatra, Ranjita K.
2010-10-01
We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using themore » Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken's hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.« less
Nucleation and growth of chimney pores during electron-beam additive manufacturing
Cordero, Zachary C.; Dinwiddie, Ralph B.; Immel, David; ...
2016-12-05
The nucleation and growth of chimney pores during powder-bed, electron-beam additive manufacturing is investigated using in-situ infrared thermography as well as microcomputed tomography of as-printed parts. The pores are found to nucleate at dimples on the part s surface, clearly demonstrating how process parameters can affect surface roughness, which can in turn affect the internal defect structure in an additive manufactured part. Based on the results of this study, several strategies for suppressing the formation of chimney pores are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Swanee J.; Kozioziemski, Bernard J.
In this work, we performed a series of experiments to elucidate the characteristics of a good template for solid hydrogen nucleation. Zinc stands out among several materials with comparable size and shape. Nucleation could be observed to occur on top of sharp features, such as grain boundaries and cracks, but our attempts proved unsuccessful to fabricate or replicate such features. The variations of the supercooling (ΔT) values measured for comparable samples and the dependence of ΔT on the cell temperature cycling revealed that templated nucleation of solid hydrogen is a very delicate process.
Searles, J A; Carpenter, J F; Randolph, T W
2001-07-01
The objective of this study was to determine the influence of ice nucleation temperature on the primary drying rate during lyophilization for samples in vials that were frozen on a lyophilizer shelf. Aqueous solutions of 10% (w/v) hydroxyethyl starch were frozen in vials with externally mounted thermocouples and then partially lyophilized to determine the primary drying rate. Low- and high-particulate-containing samples, ice-nucleating additives silver iodide and Pseudomonas syringae, and other methods were used to obtain a wide range of nucleation temperatures. In cases where the supercooling exceeded 5 degrees C, freezing took place in the following three steps: (1) primary nucleation, (2) secondary nucleation encompassing the entire liquid volume, and (3) final solidification. The primary drying rate was dependent on the ice nucleation temperature, which is stochastic in nature but is affected by particulate content and the presence of ice nucleators. Sample cooling rates of 0.05 to 1 degrees C/min had no effect on nucleation temperatures and drying rate. We found that the ice nucleation temperature is the primary determinant of the primary drying rate. However, the nucleation temperature is not under direct control, and its stochastic nature and sensitivity to difficult-to-control parameters result in drying rate heterogeneity. Nucleation temperature heterogeneity may also result in variation in other morphology-related parameters such as surface area and secondary drying rate. Overall, these results document that factors such as particulate content and vial condition, which influence ice nucleation temperature, must be carefully controlled to avoid, for example, lot-to-lot variability during cGMP production. In addition, if these factors are not controlled and/or are inadvertently changed during process development and scaleup, a lyophilization cycle that was successful on the research scale may fail during large-scale production.
Wahlberg, Nanna; Madsen, Anders Ø; Mikkelsen, Kurt V
2018-06-09
We have investigated the mechanism of the nucleation of acetaminophen on poly(methyl-methacrylate) and poly(vinyl-acetate) utilizing a combination of quantum mechanical computations and electrostatic models. We have used a heterogeneous dielectric solvation model to determine the stability of different orientations of acetaminophen on polymer surfaces. We find that for the nucleation of acetaminophen on the polymer surfaces in vacuum, the most stable orientation is a flat orientation. For the nucleation process in solution where acetaminophen and the polymer surface are surrounded by a solvent, we find that the heterogeneous dielectric solvation model predicts that a sideways orientation is the most stable orientation.
Quantification of asymmetric microtubule nucleation at sub-cellular structures
Zhu, Xiaodong; Kaverina, Irina
2012-01-01
Cell polarization is important for multiple physiological processes. In polarized cells, microtubules (MTs) are organized into a spatially polarized array. Generally, in non-differentiated cells, it is assumed that MTs are symmetrically nucleated exclusively from centrosome (microtubule organizing center, MTOC) and then reorganized into the asymmetric array. We have recently identified the Golgi complex as an additional MTOC that asymmetrically nucleates MTs toward one side of the cell. Methods used for alternative MTOC identification include microtubule re-growth after complete drug-induced depolymerization and tracking of growing microtubules using fluorescence labeled MT +TIP binding proteins in living cells. These approaches can be used for quantification of MT nucleation sites at diverse sub-cellular structures. PMID:21773933
Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains
Kassan, Adam; Herms, Albert; Fernández-Vidal, Andrea; Bosch, Marta; Schieber, Nicole L.; Reddy, Babu J.N.; Fajardo, Alba; Gelabert-Baldrich, Mariona; Tebar, Francesc; Enrich, Carlos; Gross, Steven P.
2013-01-01
Control of lipid droplet (LD) nucleation and copy number are critical, yet poorly understood, processes. We use model peptides that shift from the endoplasmic reticulum (ER) to LDs in response to fatty acids to characterize the initial steps of LD formation occurring in lipid-starved cells. Initially, arriving lipids are rapidly packed in LDs that are resistant to starvation (pre-LDs). Pre-LDs are restricted ER microdomains with a stable core of neutral lipids. Subsequently, a first round of “emerging” LDs is nucleated, providing additional lipid storage capacity. Finally, in proportion to lipid concentration, new rounds of LDs progressively assemble. Confocal microscopy and electron tomography suggest that emerging LDs are nucleated in a limited number of ER microdomains after a synchronized stepwise process of protein gathering, lipid packaging, and recognition by Plin3 and Plin2. A comparative analysis demonstrates that the acyl-CoA synthetase 3 is recruited early to the assembly sites, where it is required for efficient LD nucleation and lipid storage. PMID:24368806
Water condensation: a multiscale phenomenon.
Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund; Gurevich, Leonid
2014-02-01
The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address the shortcomings of the thermodynamic theory in describing the nucleation and emphasize the importance of nanoscale effects. This leads to the description of condensation from a molecular viewpoint. Also presented is how the nucleation can be simulated by use of molecular models, and how the condensation process is simulated on the macroscale using computational fluid dynamics. Finally, examples of hybrid models combining molecular and macroscale models for the simulation of condensation on a surface are presented.
Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 Earthquake.
Kato, Aitaro; Fukuda, Jun'ichi; Kumazawa, Takao; Nakagawa, Shigeki
2016-04-25
The earthquake nucleation process has been vigorously investigated based on geophysical observations, laboratory experiments, and theoretical studies; however, a general consensus has yet to be achieved. Here, we studied nucleation process for the 2014 Iquique, Chile Mw 8.2 megathrust earthquake located within the current North Chile seismic gap, by analyzing a long-term earthquake catalog constructed from a cross-correlation detector using continuous seismic data. Accelerations in seismicity, the amount of aseismic slip inferred from repeating earthquakes, and the background seismicity, accompanied by an increasing frequency of earthquake migrations, started around 270 days before the mainshock at locations up-dip of the largest coseismic slip patch. These signals indicate that repetitive sequences of fast and slow slip took place on the plate interface at a transition zone between fully locked and creeping portions. We interpret that these different sliding modes interacted with each other and promoted accelerated unlocking of the plate interface during the nucleation phase.
Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 Earthquake
NASA Astrophysics Data System (ADS)
Kato, Aitaro; Fukuda, Jun'Ichi; Kumazawa, Takao; Nakagawa, Shigeki
2016-04-01
The earthquake nucleation process has been vigorously investigated based on geophysical observations, laboratory experiments, and theoretical studies; however, a general consensus has yet to be achieved. Here, we studied nucleation process for the 2014 Iquique, Chile Mw 8.2 megathrust earthquake located within the current North Chile seismic gap, by analyzing a long-term earthquake catalog constructed from a cross-correlation detector using continuous seismic data. Accelerations in seismicity, the amount of aseismic slip inferred from repeating earthquakes, and the background seismicity, accompanied by an increasing frequency of earthquake migrations, started around 270 days before the mainshock at locations up-dip of the largest coseismic slip patch. These signals indicate that repetitive sequences of fast and slow slip took place on the plate interface at a transition zone between fully locked and creeping portions. We interpret that these different sliding modes interacted with each other and promoted accelerated unlocking of the plate interface during the nucleation phase.
Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 Earthquake
Kato, Aitaro; Fukuda, Jun’ichi; Kumazawa, Takao; Nakagawa, Shigeki
2016-01-01
The earthquake nucleation process has been vigorously investigated based on geophysical observations, laboratory experiments, and theoretical studies; however, a general consensus has yet to be achieved. Here, we studied nucleation process for the 2014 Iquique, Chile Mw 8.2 megathrust earthquake located within the current North Chile seismic gap, by analyzing a long-term earthquake catalog constructed from a cross-correlation detector using continuous seismic data. Accelerations in seismicity, the amount of aseismic slip inferred from repeating earthquakes, and the background seismicity, accompanied by an increasing frequency of earthquake migrations, started around 270 days before the mainshock at locations up-dip of the largest coseismic slip patch. These signals indicate that repetitive sequences of fast and slow slip took place on the plate interface at a transition zone between fully locked and creeping portions. We interpret that these different sliding modes interacted with each other and promoted accelerated unlocking of the plate interface during the nucleation phase. PMID:27109362
Universal Ferroelectric Switching Dynamics of Vinylidene Fluoride-trifluoroethylene Copolymer Films
Hu, Wei Jin; Juo, Deng-Ming; You, Lu; Wang, Junling; Chen, Yi-Chun; Chu, Ying-Hao; Wu, Tom
2014-01-01
In this work, switching dynamics of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer films are investigated over unprecedentedly wide ranges of temperature and electric field. Remarkably, domain switching of copolymer films obeys well the classical domain nucleation and growth model although the origin of ferroelectricity in organic ferroelectric materials inherently differs from the inorganic counterparts. A lower coercivity limit of 50 MV/m and 180° domain wall energy of 60 mJ/m2 are determined for P(VDF-TrFE) films. Furthermore, we discover in copolymer films an anomalous temperature-dependent crossover behavior between two power-law scaling regimes of frequency-dependent coercivity, which is attributed to the transition between flow and creep motions of domain walls. Our observations shed new light on the switching dynamics of semi-crystalline ferroelectric polymers, and such understandings are critical for realizing their reliable applications. PMID:24759786
Investigation of the non-volatile resistance change in noncentrosymmetric compounds
Herng, T. S.; Kumar, A.; Ong, C. S.; Feng, Y. P.; Lu, Y. H.; Zeng, K. Y.; Ding, J.
2012-01-01
Coexistence of polarization and resistance-switching characteristics in single compounds has been long inspired scientific and technological interests. Here, we report the non-volatile resistance change in noncentrosymmetric compounds investigated by using defect nanotechnology and contact engineering. Using a noncentrosymmetric material of ZnO as example, we first transformed ZnO into high resistance state. Then ZnO electrical polarization was probed and its domains polarized 180° along the [001]-axis with long-lasting memory effect (>25 hours). Based on our experimental observations, we have developed a vacancy-mediated pseudoferroelectricity model. Our first-principle calculations propose that vacancy defects initiate a spontaneous inverted domains nucleation at grain boundaries, and then they grow in the presence of an electrical field. The propagation of inverted domains follows the scanning tip motion under applied electrical field, leading to the growth of polarized domains over large areas. PMID:22905318
Electrical fatigue behaviour in lead zirconate titanate: an experimental and theoretical study
NASA Astrophysics Data System (ADS)
Bhattacharyya, Mainak; Arockiarajan, A.
2013-08-01
A systematic investigation on electrical fatigue in lead zirconate titanate (PZT) is carried out for different loading frequencies. Experiments are conducted up to 106 cycles to measure the electrical displacement and longitudinal strain on bulk ceramics in the bipolar mode with large electrical loading conditions. A simplified macroscopic model based on physical mechanisms of domain switching is developed to predict the non-linear behaviour. In this model, the volume fraction of a domain is used as the internal variable by considering the mechanisms of domain nucleation and propagation (domain wall movement). The measured material properties at different fatigue cycles are incorporated into the switching model as damage parameters and the classical strain versus electric field and electric displacement versus electric field curves are simulated. Comparison between the experiments and simulations shows that the proposed model can reproduce the characteristics of non-linear as well as fatigue responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yoosoo; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791; Kim, Se-Hyun
Highlights: • Membrane fusion driven by SNARE complex is hindered by several polyphenols. • Distinctive inhibitory effect of each polyphenol on SNARE zippering in neuron was examined. • FRET between fluorescence protein-tagged SNAREs probed well SNARE zippering in PC12 cells. • Delphinidin and cyanidin inhibit N-terminal SNARE nucleation in Ca{sup 2+}-independent manner. • Myricetin inhibits Ca{sup 2+}-dependent transmembrane association of SNARE complex. - Abstract: Fusion of synaptic vesicles with the presynaptic plasma membrane in the neuron is mediated by soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) proteins. SNARE complex formation is a zippering-like process which initiates at the N-terminus andmore » proceeds to the C-terminal membrane-proximal region. Previously, we showed that this zippering-like process is regulated by several polyphenols, leading to the arrest of membrane fusion and the inhibition of neuroexocytosis. In vitro studies using purified SNARE proteins reconstituted in liposomes revealed that each polyphenol uniquely regulates SNARE zippering. However, the unique regulatory effect of each polyphenol in cells has not yet been examined. In the present study, we observed SNARE zippering in neuronal PC12 cells by measuring the fluorescence resonance energy transfer (FRET) changes of a cyan fluorescence protein (CFP) and a yellow fluorescence protein (YFP) fused to the N-termini or C-termini of SNARE proteins. We show that delphinidin and cyanidin inhibit the initial N-terminal nucleation of SNARE complex formation in a Ca{sup 2+}-independent manner, while myricetin inhibits Ca{sup 2+}-dependent transmembrane domain association of the SNARE complex in the cell. This result explains how polyphenols exhibit botulinum neurotoxin-like activity in vivo.« less
Role of stacking disorder in ice nucleation
NASA Astrophysics Data System (ADS)
Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H.; Molinero, Valeria
2017-11-01
The freezing of water affects the processes that determine Earth’s climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.
Role of stacking disorder in ice nucleation.
Lupi, Laura; Hudait, Arpa; Peters, Baron; Grünwald, Michael; Gotchy Mullen, Ryan; Nguyen, Andrew H; Molinero, Valeria
2017-11-08
The freezing of water affects the processes that determine Earth's climate. Therefore, accurate weather and climate forecasts hinge on good predictions of ice nucleation rates. Such rate predictions are based on extrapolations using classical nucleation theory, which assumes that the structure of nanometre-sized ice crystallites corresponds to that of hexagonal ice, the thermodynamically stable form of bulk ice. However, simulations with various water models find that ice nucleated and grown under atmospheric temperatures is at all sizes stacking-disordered, consisting of random sequences of cubic and hexagonal ice layers. This implies that stacking-disordered ice crystallites either are more stable than hexagonal ice crystallites or form because of non-equilibrium dynamical effects. Both scenarios challenge central tenets of classical nucleation theory. Here we use rare-event sampling and free energy calculations with the mW water model to show that the entropy of mixing cubic and hexagonal layers makes stacking-disordered ice the stable phase for crystallites up to a size of at least 100,000 molecules. We find that stacking-disordered critical crystallites at 230 kelvin are about 14 kilojoules per mole of crystallite more stable than hexagonal crystallites, making their ice nucleation rates more than three orders of magnitude higher than predicted by classical nucleation theory. This effect on nucleation rates is temperature dependent, being the most pronounced at the warmest conditions, and should affect the modelling of cloud formation and ice particle numbers, which are very sensitive to the temperature dependence of ice nucleation rates. We conclude that classical nucleation theory needs to be corrected to include the dependence of the crystallization driving force on the size of the ice crystallite when interpreting and extrapolating ice nucleation rates from experimental laboratory conditions to the temperatures that occur in clouds.
Heterogeneous nucleation on rough surfaces: Generalized Gibbs' approach.
Abyzov, Alexander S; Schmelzer, Jürn W P; Davydov, Leonid N
2017-12-07
Heterogeneous nucleation (condensation) of liquid droplets from vapor (gas) on a defective solid surface is considered. The vapor is described by the van der Waals equation of state. The dependence of nucleating droplet parameters on droplet size is accounted for within the generalized Gibbs approach. As a surface defect, a conic void is taken. This choice allows us to simplify the analysis and at the same time to follow the main aspects of the influence of the surface roughness on the nucleation process. Similar to condensation on ideal planar surfaces, the contact angle and catalytic factor for heterogeneous nucleation on a rough surface depend on the degree of vapor overcooling. In the case of droplet formation on a hydrophilic surface of a conic void, the nucleation rate considerably increases in comparison with the condensation on a planar interface. In fact, the presence of a defect on the hydrophilic surface leads to a considerable shift of the spinodal towards lower supersaturation in comparison with heterogeneous nucleation on a planar interface. With the decrease in the void cone angle, the heterogeneous spinodal approaches the binodal, and the region of metastability is diminished at the expense of the instability region.
Invasive advance of an advantageous mutation: nucleation theory.
O'Malley, Lauren; Basham, James; Yasi, Joseph A; Korniss, G; Allstadt, Andrew; Caraco, Thomas
2006-12-01
For sedentary organisms with localized reproduction, spatially clustered growth drives the invasive advance of a favorable mutation. We model competition between two alleles where recurrent mutation introduces a genotype with a rate of local propagation exceeding the resident's rate. We capture ecologically important properties of the rare invader's stochastic dynamics by assuming discrete individuals and local neighborhood interactions. To understand how individual-level processes may govern population patterns, we invoke the physical theory for nucleation of spatial systems. Nucleation theory discriminates between single-cluster and multi-cluster dynamics. A sufficiently low mutation rate, or a sufficiently small environment, generates single-cluster dynamics, an inherently stochastic process; a favorable mutation advances only if the invader cluster reaches a critical radius. For this mode of invasion, we identify the probability distribution of waiting times until the favored allele advances to competitive dominance, and we ask how the critical cluster size varies as propagation or mortality rates vary. Increasing the mutation rate or system size generates multi-cluster invasion, where spatial averaging produces nearly deterministic global dynamics. For this process, an analytical approximation from nucleation theory, called Avrami's Law, describes the time-dependent behavior of the genotype densities with remarkable accuracy.
Cheng, Lina; Sun, Da-Wen; Zhu, Zhiwei; Zhang, Zi
2017-03-04
Freezing plays an important role in food preservation and the emergence of rapid freezing technologies can be highly beneficial to the food industry. This paper reviews some novel food freezing technologies, including high-pressure freezing (HPF), ultrasound-assisted freezing (UAF), electrically disturbed freezing (EF) and magnetically disturbed freezing (MF), microwave-assisted freezing (MWF), and osmo-dehydro-freezing (ODF). HPF and UAF can initiate ice nucleation rapidly, leading to uniform distribution of ice crystals and the control of their size and shape. Specifically, the former is focused on increasing the degree of supercooling, whereas the latter aims to decrease it. Direct current electric freezing (DC-EF) and alternating current electric freezing (AC-EF) exhibit different effects on ice nucleation. DC-EF can promote ice nucleation and AC-EF has the opposite effect. Furthermore, ODF has been successfully used for freezing various vegetables and fruit. MWF cannot control the nucleation temperature, but can decrease supercooling degree, thus decreasing the size of ice crystals. The heat and mass transfer processes during ODF have been investigated experimentally and modeled mathematically. More studies should be carried out to understand the effects of these technologies on food freezing process.
Staley, James T
2017-06-01
In 2015, the Royal Society of London held a meeting to discuss the various hypotheses regarding the origin of the Eukarya. Although not all participants supported a hypothesis, the proposals that did fit into two broad categories: one group favoured 'Prokaryotes First' hypotheses and another addressed 'Eukaryotes First' hypotheses. Those who proposed Prokaryotes First hypotheses advocated either a fusion event between a bacterium and an archaeon that produced the first eukaryote or the direct evolution of the Eukarya from the Archaea. The Eukaryotes First proponents posit that the eukaryotes evolved initially and then, by reductive evolution, produced the Bacteria and Archaea. No mention was made of another previously published hypothesis termed the Nuclear Compartment Commonality (NuCom) hypothesis, which proposed the evolution of the Eukarya and Bacteria from nucleated ancestors (Staley 2013 Astrobiol Outreach 1 , 105 (doi:10.4172/2332-2519.1000105)). Evidence from two studies indicates that the nucleated Planctomycetes-Verrucomicrobia-Chlamydia superphylum members are the most ancient Bacteria known (Brochier & Philippe 2002 Nature 417 , 244 (doi:10.1038/417244a); Jun et al. 2010 Proc. Natl Acad. Sci. USA 107 , 133-138 (doi:10.1073/pnas.0913033107)). This review summarizes the evidence for the NuCom hypothesis and discusses how simple the NuCom hypothesis is in explaining eukaryote evolution relative to the other hypotheses. The philosophical importance of simplicity and its relationship to truth in hypotheses such as NuCom and Domain Cell Theory is presented. Domain Cell Theory is also proposed herein, which contends that each of the three cellular lineages of life, the Archaea, Bacteria and Eukarya domains, evolved independently, in support of the NuCom hypothesis. All other proposed hypotheses violate Domain Cell Theory because they posit the evolution of different cellular descendants from ancestral cellular types. © 2017 The Authors.
NASA Astrophysics Data System (ADS)
Coffey, David C.
2007-12-01
Conjugated polymers, small molecules, and colloidal semiconductor nanocrystals are promising materials for use in low-cost, thin-film solar cells. The photovoltaic performance of these materials, however, is highly dependent on film structure, and directly correlating local film structures with device performance remains challenging. This dissertation describes several techniques we have developed to probe and control the local optoelectronic properties of organic semiconducting films. First, with an aim of rapidly fabricating photovoltaic films with varying morphology, we demonstrate that Dip-Pen Nanolithography (DPN) can be used to control nanoscale phase separation with sub-150 nm lateral resolution in polymer films that are 20--80 nm thick. This control is based on writing monolayer chemical templates that nucleate phase separation, and we use this technique to study heterogeneous nucleation in thin films. Second, we use time-resolved electrostatic force microscopy (trEFM) to measure photoexcited charge in polymer films with a resolution of 100 nm and 100 mus. We show that such data can predict the external quantum efficiencies of polymer photodiodes, and can thus link device performance with local optoelectronic properties. When applied to the study of blended polyfluorene films, we show that domain centers can buildup charge faster then domain interfaces, which indicates that polymer/polymer blend devices should be modeled as having impure donor/acceptor domains. Third, we use photoconductive atomic force microscopy (pcAFM) to map local photocurrents with 20 nm-resolution in polymer/fullerene solar cells- achieving an order of magnitude better resolution than previous techniques. We present photocurrent maps under short-circuit conditions (zero applied bias), as well as under various applied voltages. We find significant variations in the short-circuit current between regions that appear identical in AFM topography. These variations occur from one domain to another, as well as on larger length scales incorporating multiple domains. Our results suggest that organic solar cells can be significantly improved with better donor/acceptor structuring.
Climate Impacts of Ice Nucleation
NASA Technical Reports Server (NTRS)
Gettelman, Andrew; Liu, Xiaohong; Barahona, Donifan; Lohmann, Ulrike; Chen, Celia
2012-01-01
Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).
Electrodeposition of CuZn Alloys from the Non-Cyanide Alkaline Baths
NASA Astrophysics Data System (ADS)
Li, Minggang; Wei, Guoying; Hu, Shuangshuang; Xu, Shuhan; Yang, Yejiong; Miao, Qinfang
2015-10-01
Effect of copper sulfate on CuZn alloys electroplating from non-cyanide baths are investigated by different electrochemical methods. Cyclic voltammetry and current transient measurements are used to characterize the CuZn alloys electroplating system in order to analyze the nucleation and growth mechanism. The reduction of Cu and CuZn alloy on sheet iron substrates shows an instantaneous nucleation process. However, the reduction of Zn on sheet iron substrates shows a progressive nucleation process. The structure and surface morphology of CuZn alloys are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The morphology of CuZn alloys obtained with 50 g L-1 copper sulfate presents a smooth and compact deposit and the size of crystal particle is uniform.
Grain boundary oxidation and its effects on high temperature fatigue life
NASA Technical Reports Server (NTRS)
Liu, H. W.; Oshida, Yoshiki
1986-01-01
Fatigue lives at elevated temperatures are often shortened by creep and/or oxidation. Creep causes grain boundary void nucleation and grain boundary cavitation. Grain boundary voids and cavities will accelerate fatigue crack nucleation and propagation, and thereby shorten fatigue life. The functional relationships between the damage rate of fatigue crack nucleation and propagation and the kinetic process of oxygen diffusion depend on the detailed physical processes. The kinetics of grain boundary oxidation penetration was investigated. The statistical distribution of grain boundary penetration depth was analyzed. Its effect on high temperature fatigue life are discussed. A model of intermittent micro-ruptures of grain boundary oxide was proposed for high temperature fatigue crack growth. The details of these studies are reported.
Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging
NASA Astrophysics Data System (ADS)
Yu, Yuanfang; Li, Zhenzhen; Wang, Wenhui; Guo, Xitao; Jiang, Jie; Nan, Haiyan; Ni, Zhenhua
2017-03-01
CVD graphene is a promising candidate for optoelectronic applications due to its high quality and high yield. However, multi-layer domains could inevitably form at the nucleation centers during the growth. Here, we propose an optical imaging technique to precisely identify the multilayer domains and also the ratio of their coverage in large-scale CVD monolayer graphene. We have also shown that the stacking disorder in twisted bilayer graphene as well as the impurities on the graphene surface could be distinguished by optical imaging. Finally, we investigated the effects of bilayer domains on the optical and electrical properties of CVD graphene, and found that the carrier mobility of CVD graphene is seriously limited by scattering from bilayer domains. Our results could be useful for guiding future optoelectronic applications of large-scale CVD graphene. Project supported by the National Natural Science Foundation of China (Nos. 61422503, 61376104), the Open Research Funds of Key Laboratory of MEMS of Ministry of Education (SEU, China), and the Fundamental Research Funds for the Central Universities.
NASA Astrophysics Data System (ADS)
Murasawa, Go; Yeduru, Srinivasa R.; Kohl, Manfred
2016-12-01
This study investigated macroscopic inhomogeneous deformation occurring in single-crystal Ni-Mn-Ga foils under uniaxial tensile loading. Two types of single-crystal Ni-Mn-Ga foil samples were examined as-received and after thermo-mechanical training. Local strain and the strain field were measured under tensile loading using laser speckle and digital image correlation. The as-received sample showed a strongly inhomogeneous strain field with intermittence under progressive deformation, but the trained sample result showed strain field homogeneity throughout the specimen surface. The as-received sample is a mainly polycrystalline-like state composed of the domain structure. The sample contains many domain boundaries and large domain structures in the body. Its structure would cause large local strain band nucleation with intermittence. However, the trained one is an ideal single-crystalline state with a transformation preferential orientation of variants after almost all domain boundary and large domain structures vanish during thermo-mechanical training. As a result, macroscopic homogeneous deformation occurs on the trained sample surface during deformation.
Chen, Wenduo; Zhu, Youliang; Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi
2016-01-01
Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures.
Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi
2016-01-01
Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures. PMID:26986851
Selective growth of Pb islands on graphene/SiC buffer layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X. T.; Miao, Y. P.; Ma, D. Y.
2015-02-14
Graphene is fabricated by thermal decomposition of silicon carbide (SiC) and Pb islands are deposited by Pb flux in molecular beam epitaxy chamber. It is found that graphene domains and SiC buffer layer coexist. Selective growth of Pb islands on SiC buffer layer rather than on graphene domains is observed. It can be ascribed to the higher adsorption energy of Pb atoms on the 6√(3) reconstruction of SiC. However, once Pb islands nucleate on graphene domains, they will grow very large owing to the lower diffusion barrier of Pb atoms on graphene. The results are consistent with first-principle calculations. Sincemore » Pb atoms on graphene are nearly free-standing, Pb islands grow in even-number mode.« less
Superferromagnetic domain state of a discontinuous metal insulator multilayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedanta, S.; Petracic, O.; Kleemann, W.
2005-07-01
Polarized neutron reflectivity (PNR) and magnetometry studies have been performed on the granular multilayer [Co{sub 80}Fe{sub 20}(1.3 nm)/Al{sub 2}O{sub 3}(3 nm)]{sub 10}. Due to strong interparticle interactions, a collective superferromagnetic state is encountered. Cole-Cole plots drawn from the complex ac susceptibility are measured as functions of frequency, temperature, and field amplitudes that hint at the relaxation, creep, sliding, and switching regimes of pinned domain walls that are in close agreement with results obtained from simulations. Very slow switching with exponential relaxation under near-coercive fields is confirmed by PNR measurements. The complete absence of spin-flip scattering confirms that the magnetization reversalmore » is achieved merely by domain nucleation and growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Stephen J.; Kathmann, Shawn M.; Slater, B.
2015-05-14
Ice formation is one of the most common and important processes on earth and almost always occurs at the surface of a material. A basic understanding of how the physicochemical properties of a material’s surface affect its ability to form ice has remained elusive. Here, we use molecular dynamics simulations to directly probe heterogeneous ice nucleation at a hexagonal surface of a nanoparticle of varying hydrophilicity. Surprisingly, we find that structurally identical surfaces can both inhibit and promote ice formation and analogous to a chemical catalyst, it is found that an optimal interaction between the surface and the water existsmore » for promoting ice nucleation.We use our microscopic understanding of the mechanism to design a modified surface in silico with enhanced ice nucleating ability. C 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.« less
Energy dispersive-EXAFS of Pd nucleation at a liquid/liquid interface
NASA Astrophysics Data System (ADS)
Chang, S.-Y.; Booth, S. G.; Uehara, A.; Mosselmans, J. F. W.; Cibin, G.; Pham, V.-T.; Nataf, L.; Dryfe, R. A. W.; Schroeder, S. L. M.
2016-05-01
Energy dispersive extended X-ray absorption fine structure (EDE) has been applied to Pd nanoparticle nucleation at a liquid/liquid interface under control over the interfacial potential and thereby the driving force for nucleation. Preliminary analysis focusing on Pd K edge-step height determination shows that under supersaturated conditions the concentration of Pd near the interface fluctuate over a period of several hours, likely due to the continuous formation and dissolution of sub-critical nuclei. Open circuit potential measurements conducted ex-situ in a liquid/liquid electrochemical cell support this view, showing that the fluctuations in Pd concentration are also visible as variations in potential across the liquid/liquid interface. By decreasing the interfacial potential through inclusion of a common ion (tetraethylammonium, TEA+) the Pd nanoparticle growth rate could be slowed down, resulting in a smooth nucleation process. Eventually, when the TEA+ ions reached an equilibrium potential, Pd nucleation and particle growth were inhibited.
Bubble nucleation in stout beers
NASA Astrophysics Data System (ADS)
Lee, W. T.; McKechnie, J. S.; Devereux, M. G.
2011-05-01
Bubble nucleation in weakly supersaturated solutions of carbon dioxide—such as champagne, sparkling wines, and carbonated beers—is well understood. Bubbles grow and detach from nucleation sites: gas pockets trapped within hollow cellulose fibers. This mechanism appears not to be active in stout beers that are supersaturated solutions of nitrogen and carbon dioxide. In their canned forms these beers require additional technology (widgets) to release the bubbles which will form the head of the beer. We extend the mathematical model of bubble nucleation in carbonated liquids to the case of two gases and show that this nucleation mechanism is active in stout beers, though substantially slower than in carbonated beers and confirm this by observation. A rough calculation suggests that despite the slowness of the process, applying a coating of hollow porous fibers to the inside of a can or bottle could be a potential replacement for widgets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.
Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering onmore » the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.« less
Schwierz, Nadine; Frost, Christina V; Geissler, Phillip L; Zacharias, Martin
2017-02-02
Secondary nucleation pathways in which existing amyloid fibrils catalyze the formation of new aggregates and neurotoxic oligomers are of immediate importance for the onset and progression of Alzheimer's disease. Here, we apply extensive all-atom molecular dynamics simulations in explicit water to study surface-activated secondary nucleation pathways at the extended lateral β-sheet surface of a preformed Aβ 9-40 filament. Calculation of free-energy profiles allows us to determine binding free energies and conformational intermediates for nucleation complexes consisting of 1-4 Aβ peptides. In addition, we combine the free-energy profiles with position-dependent diffusion profiles to extract complementary kinetic information and macroscopic growth rates. Single monomers bind to the β-sheet surface in a disordered, hydrophobically collapsed conformation, whereas dimers and larger oligomers can retain a cross-β conformation resembling a more ordered fibril structure. The association processes during secondary nucleation follow a dock/lock mechanism consisting of a fast initial encounter phase (docking) and a slow structural rearrangement phase (locking). The major driving forces for surface-activated secondary nucleation are the release of a large number of hydration water molecules and the formation of hydrophobic interface contacts, the latter being in contrast to the elongation process at filament tips, which is dominated by the formation of stable and highly specific interface hydrogen bonds. The calculated binding free energies and the association rates for the attachment of Aβ monomers and oligomers to the extended lateral β-sheet surface of the filament seed are higher compared to those for elongation at the filament tips, indicating that secondary nucleation pathways can become important once a critical concentration of filaments has formed.
NASA Astrophysics Data System (ADS)
Zellmer, Georg; Sakamoto, Naoya; Hwang, Shyh-Lung; Matsuda, Nozomi; Iizuka, Yoshiyuki; Moebis, Anja; Yurimoto, Hisayoshi
2016-09-01
Crystal nucleation and growth are first order processes captured in volcanic rocks and record important information about the rates of magmatic processes and chemical evolution of magmas during their ascent and eruption. We have studied glass-rich andesitic tephras from the Central Plateau of the Southern Taupo Volcanic Zone by electron- and ion-microbeam imaging techniques to investigate down to sub-micrometre scale the potential effects of compositional boundary layers (CBLs) of melt around crystals on the nucleation and growth of mineral phases and the chemistry of crystal growth zones. We find that CBLs may influence the types of mineral phases nucleating and growing, and growth textures such as the development of swallowtails. The chemistry of the CBLs also has the capacity to trigger intermittent overgrowths of nanometre-scale bands of different phases in rapidly growing crystals, resulting in what we refer to as cryptic phase zoning. The existence of cryptic phase zoning has implications for the interpretation of microprobe compositional data, and the resulting inferences made on the conditions of magmatic evolution. Identification of cryptic phase zoning may in future lead to more accurate thermobarometric estimates and thus geospeedometric constraints. In future, a more quantitative characterization of CBL formation and its effects on crystal nucleation and growth may contribute to a better understanding of melt rheology and magma ascent processes at the onset of explosive volcanic eruptions, and will likely be of benefit to hazard mitigation efforts.
Nucleation and growth of order in Cu(3)Au (111) films
NASA Astrophysics Data System (ADS)
Bonham, Scott William
The present work epitaxial investigated two types of ordering phenomena using films of Cusb3Au, the order-disorder phase transition on the (111) crystal surface, and preferential selection of one of two possible stacking domains. Cusb3Au has long been a model system for studying order-disorder phase transition. Bulk material exhibits a discontinuous transition while the surfaces exhibit continuos transitions and the long-range order parameter S is proportional to (Tsb{c}-T)sp{beta}, where Tsb{c} is the critical temperature. The transition of the (111) surface is studied with qualitative reflection high-energy electron diffraction (RHEED), which is sensitive to only the first few atomic layers. This work significantly improves on an earlier study through both improved data collection and more comprehensive data analysis. The measured value of beta =0.50± 0.02 agrees with both the earlier measurements and with predictions of mean field theory. In addition, data on surface defects during the transition and on the kinetics of ordering are presented. During epitaxial growth of (111) face-centered cubic crystal films, such as disordered Cusb3Au, there are two possible ways that successive layers can be laid down, leading to two types of stacking domains. However, a small vicinal miscut (0.5sp° {-}1sp° ) of the crystal surface introduces step edges that change nucleation preferences of the domains, resulting in one being preferred over the other by ratios up to 700:1. Fifteen samples were measured and this preference has been found to depend systematically and strongly on the magnitude and direction of the sample miscut. A qualitative RHEED study confirms that a preference for one of the stacking senses is present after deposition of a few monlolayers of Cusb3Au. The observed behavior of the film can be explained by a model in which Cu and Au atoms minimize their number of Nb nearest neighbors when growing over the Nb step edges. This represents both a discovery of a new phenomena in epitaxial nucleation and a technique for the production of improved epitaxial films.
Kiani, Hossein; Sun, Da-Wen; Delgado, Adriana; Zhang, Zhihang
2012-05-01
Nucleation, as an important stage of freezing process, can be induced by the irradiation of power ultrasound. In this study, the effect of irradiation temperature (-2 °C, -3 °C, -4 °C and -5 °C), irradiation duration (0s, 1s, 3s, 5s, 10s or 15s) and ultrasound intensity (0.07 W cm(-2), 0.14 W cm(-2), 0.25 W cm(-2), 0.35 W cm(-2) and 0.42 W cm(-2)) on the dynamic nucleation of ice in agar gel samples was studied. The samples were frozen in an ethylene glycol-water mixture (-20 °C) in an ultrasonic bath system after putting them into tubing vials. Results indicated that ultrasound irradiation is able to initiate nucleation at different supercooled temperatures (from -5 °C to -2 °C) in agar gel if optimum intensity and duration of ultrasound were chosen. Evaluation of the effect of 0.25 W cm(-2) ultrasound intensity and different durations of ultrasound application on agar gels showed that 1s was not long enough to induce nucleation, 3s induced the nucleation repeatedly but longer irradiation durations resulted in the generation of heat and therefore nucleation was postponed. Investigation of the effect of ultrasound intensity revealed that higher intensities of ultrasound were effective when a shorter period of irradiation was used, while lower intensities only resulted in nucleation when a longer irradiation time was applied. In addition to this, higher intensities were not effective at longer irradiation times due to the heat generated in the samples by the heating effect of ultrasound. In conclusion, the use of ultrasound as a means to control the crystallization process offers promising application in freezing of solid foods, however, optimum conditions should be selected. Copyright © 2011 Elsevier B.V. All rights reserved.
Thermodynamic Derivation of the Activation Energy for Ice Nucleation
NASA Technical Reports Server (NTRS)
Barahona, D.
2015-01-01
Cirrus clouds play a key role in the radiative and hydrological balance of the upper troposphere. Their correct representation in atmospheric models requires an understanding of the microscopic processes leading to ice nucleation. A key parameter in the theoretical description of ice nucleation is the activation energy, which controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk, this approach may introduce bias in calculated nucleation rates. In this work a theoretical model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K, where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets; however, they may affect the formation of ice in haze aerosol particles. The new model provides an independent estimation of the activation energy and the homogeneous ice nucleation rate, and it may help to improve the interpretation of experimental results and the development of parameterizations for cloud formation.
Barrow, Matthew S; Williams, P Rhodri; Chan, Hoi-Houng; Dore, John C; Bellissent-Funel, Marie-Claire
2012-10-14
High-speed photographic studies and neutron diffraction measurements have been made of water under tension in a Berthelot tube. Liquid water was cooled below the normal ice-nucleation temperature and was in a doubly-metastable state prior to a collapse of the liquid state. This transition was accompanied by an exothermic heat release corresponding with the rapid production of a solid phase nucleated by cavitation. Photographic techniques have been used to observe the phase transition over short time scales in which a solidification front is observed to propagate through the sample. Significantly, other images at a shorter time interval reveal the prior formation of cavitation bubbles at the beginning of the process. The ice-nucleation process is explained in terms of a mechanism involving hydrodynamically-induced changes in tension in supercooled water in the near vicinity of an expanding cavitation bubble. Previous explanations have attributed the nucleation of the solid phase to the production of high positive pressures. Corresponding results are presented which show the initial neutron diffraction pattern after ice-nucleation. The observed pattern does not exhibit the usual crystalline pattern of hexagonal ice [I(h)] that is formed under ambient conditions, but indicates the presence of other ice forms. The composite features can be attributed to a mixture of amorphous ice, ice-I(h)/I(c) and the high-pressure form, ice-III, and the diffraction pattern continues to evolve over a time period of about an hour.
Immersion Freezing of Aluminas: The Effect of Crystallographic Properties on Ice Nucleation
NASA Astrophysics Data System (ADS)
King, M.; Chong, E.; Freedman, M. A.
2017-12-01
Atmospheric aerosol particles serve as the nuclei for heterogeneous ice nucleation, a process that allows for ice to form at higher temperatures and lower supersaturations with respect to ice. This process is essential to the formation of ice in cirrus clouds. Heterogeneous ice nucleation is affected by many factors including the composition, crystal structure, porosity, and surface area of the particles. However, these factors are not well understood and, as such, are difficult to account for in climate models. To test the effects of crystal structure on ice nucleation, a system of transition aluminas (Al2O3) that differ only in their crystal structure, despite being compositionally similar, were tested using immersion freezing. Particles were immersed in water and placed into a temperature controlled chamber. Freezing events were then recorded as the chamber was cooled to negative 30 °. Alpha-alumina, which is a member of the hexagonal crystal system, showed a significantly higher temperature at which all particles froze in comparison to other samples. This supports the hypothesis that, since a hexagonal crystal structure is the lowest energy state for ice, hexagonal surface structures would best facilitate ice nucleation. However, a similar sample of hexagonal chi-alumina did not show the same results. Further analysis of the samples will be done to characterize surface structures and composition. These conflicting data sets raise interesting questions about the effect of other surface features, such as surface area and porosity, on ice nucleation.
NASA Astrophysics Data System (ADS)
Hajiri, T.; Yoshida, T.; Jaiswal, S.; Filianina, M.; Borie, B.; Ando, H.; Asano, H.; Zabel, H.; Kläui, M.
2016-11-01
We report unusual magnetization switching processes and angular-dependent exchange bias effects in fully epitaxial Co3FeN /MnN bilayers, where magnetocrystalline anisotropy and exchange coupling compete, probed by longitudinal and transverse magneto-optic Kerr effect (MOKE) magnetometry. The MOKE loops show multistep jumps corresponding to the nucleation and propagation of 90∘ domain walls in as-grown bilayers. By inducing exchange coupling, we confirm changes of the magnetization switching process due to the unidirectional anisotropy field of the exchange coupling. Taking into account the experimentally obtained values of the fourfold magnetocrystalline anisotropy, the unidirectional anisotropy field, the exchange-coupling constant, and the uniaxial anisotropy including its direction, the calculated angular-dependent exchange bias reproduces the experimental results. These results demonstrate the essential role of the competition between magnetocrystalline anisotropy and exchange coupling for understanding and tailoring exchange-coupling phenomena usable for engineering switching in fully epitaxial bilayers made of tailored materials.
Chen, Bin; Kim, Hyunmi; Keasler, Samuel J; Nellas, Ricky B
2008-04-03
The aggregation-volume-bias Monte Carlo based simulation technique, which has led to our recent success in vapor-liquid nucleation research, was extended to the study of crystal nucleation processes. In contrast to conventional bulk-phase techniques, this method deals with crystal nucleation events in cluster systems. This approach was applied to the crystal nucleation of Lennard-Jonesium under a wide range of undercooling conditions from 35% to 13% below the triple point. It was found that crystal nucleation in these model clusters proceeds initially via a vapor-liquid like aggregation followed by the formation of crystals inside the aggregates. The separation of these two stages of nucleation is distinct except at deeper undercooling conditions where the crystal nucleation barrier was found to diminish. The simulation results obtained for these two nucleation steps are separately compared to the classical nucleation theory (CNT). For the vapor-liquid nucleation step, the CNT was shown to provide a reasonable description of the critical cluster size but overestimate the barrier heights, consistent with previous simulation studies. On the contrary, for the crystal nucleation step, nearly perfect agreement with the barrier heights was found between the simulations and the CNT. For the critical cluster size, the comparison is more difficult as the simulation data were found to be sensitive to the definition of the solid cluster, but a stringent criterion and lower undercooling conditions generally lead to results closer with the CNT. Additional simulations at undercooling conditions of 40% or above indicate a nearly barrierless transition from the liquid to crystalline-like structure for sufficiently large clusters, which leads to further departure of the barrier height predicted by the CNT from the simulation data for the aggregation step. This is consistent with the latest experimental results on argon that show an unusually large underestimation of the nucleation rate by the CNT toward deep undercooling conditions.
Heterogeneous nucleation and growth of nanoparticles at environmental interfaces
Jun, Young -Shin; Kim, Doyoon; Neil, Chelsea W.
2016-08-11
Here, mineral nucleation is a phase transformation of aqueous components to solids with an accompanying creation of new surfaces. In this evolutional, yet elusive, process, nuclei often form at environmental interfaces, which provide remarkably reactive sites for heterogeneous nucleation and growth. Naturally occurring nucleation processes significantly contribute to the biogeochemical cycles of important components in the Earth’s crust, such as iron and manganese oxide minerals and calcium carbonate. However, in recent decades, these cycles have been significantly altered by anthropogenic activities, which affect the aqueous chemistry and equilibrium of both surface and subsurface systems. These alterations can trigger the dissolutionmore » of existing minerals and formation of new nanoparticles (i.e., nucleation and growth) and consequently change the porosity and permeability of geomedia in subsurface environments. Newly formed nanoparticles can also actively interact with components in natural and engineered aquatic systems, including those posing a significant hazard such as arsenic. These interactions can bilaterally influence the fate and transport of both newly formed nanoparticles and aqueous components. Due to their importance in natural and engineered processes, heterogeneous nucleation at environmental interfaces has started to receive more attention. However, a lack of time-resolved in situ analyses makes the evaluation of heterogeneous nucleation challenging because the physicochemical properties of both the nuclei and surfaces significantly and dynamically change with time and aqueous chemistry. This Account reviews our in situ kinetic studies of the heterogeneous nucleation and growth behaviors of iron(III) (hydr)oxide, calcium carbonate, and manganese (hydr)oxide minerals in aqueous systems. In particular, we utilized simultaneous small-angle and grazing incidence small-angle X-ray scattering (SAXS/GISAXS) to investigate in situ and in real-time the effects of water chemistry and substrate identity on heterogeneously and homogeneously formed nanoscale precipitate size dimensions and total particle volume. Using this technique, we also provided a new platform for quantitatively comparing between heterogeneous and homogeneous nucleation and growth of nanoparticles and obtaining undiscovered interfacial energies between nuclei and surfaces. In addition, nanoscale surface characterization tools, such as in situ atomic force microscopy (AFM), were utilized to support and complement our findings. With these powerful nanoscale tools, we systematically evaluated the influences of environmentally abundant (oxy)anions and cations and the properties of environmental surfaces, such as surface charge and hydrophobicity. The findings, significantly enhanced by in situ observations, can lead to a more accurate prediction of the behaviors of nanoparticles in the environment and enable better control of the physicochemical properties of nanoparticles in engineered systems, such as catalytic reactions and energy storage.« less
Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces.
Jun, Young-Shin; Kim, Doyoon; Neil, Chelsea W
2016-09-20
Mineral nucleation is a phase transformation of aqueous components to solids with an accompanying creation of new surfaces. In this evolutional, yet elusive, process, nuclei often form at environmental interfaces, which provide remarkably reactive sites for heterogeneous nucleation and growth. Naturally occurring nucleation processes significantly contribute to the biogeochemical cycles of important components in the Earth's crust, such as iron and manganese oxide minerals and calcium carbonate. However, in recent decades, these cycles have been significantly altered by anthropogenic activities, which affect the aqueous chemistry and equilibrium of both surface and subsurface systems. These alterations can trigger the dissolution of existing minerals and formation of new nanoparticles (i.e., nucleation and growth) and consequently change the porosity and permeability of geomedia in subsurface environments. Newly formed nanoparticles can also actively interact with components in natural and engineered aquatic systems, including those posing a significant hazard such as arsenic. These interactions can bilaterally influence the fate and transport of both newly formed nanoparticles and aqueous components. Due to their importance in natural and engineered processes, heterogeneous nucleation at environmental interfaces has started to receive more attention. However, a lack of time-resolved in situ analyses makes the evaluation of heterogeneous nucleation challenging because the physicochemical properties of both the nuclei and surfaces significantly and dynamically change with time and aqueous chemistry. This Account reviews our in situ kinetic studies of the heterogeneous nucleation and growth behaviors of iron(III) (hydr)oxide, calcium carbonate, and manganese (hydr)oxide minerals in aqueous systems. In particular, we utilized simultaneous small-angle and grazing incidence small-angle X-ray scattering (SAXS/GISAXS) to investigate in situ and in real-time the effects of water chemistry and substrate identity on heterogeneously and homogeneously formed nanoscale precipitate size dimensions and total particle volume. Using this technique, we also provided a new platform for quantitatively comparing between heterogeneous and homogeneous nucleation and growth of nanoparticles and obtaining undiscovered interfacial energies between nuclei and surfaces. In addition, nanoscale surface characterization tools, such as in situ atomic force microscopy (AFM), were utilized to support and complement our findings. With these powerful nanoscale tools, we systematically evaluated the influences of environmentally abundant (oxy)anions and cations and the properties of environmental surfaces, such as surface charge and hydrophobicity. The findings, significantly enhanced by in situ observations, can lead to a more accurate prediction of the behaviors of nanoparticles in the environment and enable better control of the physicochemical properties of nanoparticles in engineered systems, such as catalytic reactions and energy storage.
Magnetic force microscopy studies in bulk polycrystalline iron
NASA Astrophysics Data System (ADS)
Abuthahir, J.; Kumar, Anish
2018-02-01
The paper presents magnetic force microscopy (MFM) studies on the effect of crystallographic orientation and external magnetic field on magnetic microstructure in a bulk polycrystalline iron specimen. The magneto crystalline anisotropic effect on the domain structure is characterized with the support of electron backscatter diffraction study. The distinct variations in magnetic domain structure are observed based on the crystallographic orientation of the grain surface normal with respect to the cube axis i.e. the easy axis of magnetization. Further, the local magnetization behavior is studied in-situ by MFM in presence of external magnetic field in the range of -2000 to 2000 Oe. Various micro-magnetization phenomena such as reversible and irreversible domain wall movements, expansion and contraction of domains, Barkhausen jump, bowing of a pinned domain wall and nucleation of a spike domain are visualized. The respective changes in the magnetic microstructure are compared with the bulk magnetization obtained using vibrating sample magnetometer. Bowing of a domain wall, pinned at two points, upon application of magnetic field is used to estimate the domain wall energy density. The MFM studies in presence of external field applied in two perpendicular directions are used to reveal the influence of the crystalline anisotropy on the local micro-magnetization.
Folding of Polymer Chains in Early Stage of Crystallization
NASA Astrophysics Data System (ADS)
Yuan, Shichen; Miyoshi, Toshikazu
Understanding the structural formation of long polymer chains in the early stage of crystallization is one of the long-standing problems in polymer science. Using solid state NMR, we investigated chain trajectory of isotactic polypropylene in the mesomorphic nano-domains formed via rapid and deep quenching. Comparison of experimental and simulated 13C-13C Double Quantum (DQ) buildup curves demonstrated that instead of random re-entry models and solidification models, individual chains in the mesomorphic form iPP adopt adjacent reentry sequences with an average folding number of
Oxidation-assisted graphene heteroepitaxy on copper foil.
Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François
2016-11-10
We propose an innovative, easy-to-implement approach to synthesize aligned large-area single-crystalline graphene flakes by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, favoring the growth of centimeter-sized copper (111) grains through the mechanism of abnormal grain growth. Second, the oxidation of the copper surface also drastically reduces the nucleation density of graphene. This oxidation/reduction sequence leads to the synthesis of aligned millimeter-sized monolayer graphene domains in epitaxial registry with copper (111). The as-grown graphene flakes are demonstrated to be both single-crystalline and of high quality.
Structure and Growth of Hexagonal Boron Nitride on Ir(111).
Farwick Zum Hagen, Ferdinand H; Zimmermann, Domenik M; Silva, Caio C; Schlueter, Christoph; Atodiresei, Nicolae; Jolie, Wouter; Martínez-Galera, Antonio J; Dombrowski, Daniela; Schröder, Ulrike A; Will, Moritz; Lazić, Predrag; Caciuc, Vasile; Blügel, Stefan; Lee, Tien-Lin; Michely, Thomas; Busse, Carsten
2016-12-27
Using the X-ray standing wave method, scanning tunneling microscopy, low energy electron diffraction, and density functional theory, we precisely determine the lateral and vertical structure of hexagonal boron nitride on Ir(111). The moiré superstructure leads to a periodic arrangement of strongly chemisorbed valleys in an otherwise rather flat, weakly physisorbed plane. The best commensurate approximation of the moiré unit cell is (12 × 12) boron nitride cells resting on (11 × 11) substrate cells, which is at variance with several earlier studies. We uncover the existence of two fundamentally different mechanisms of layer formation for hexagonal boron nitride, namely, nucleation and growth as opposed to network formation without nucleation. The different pathways are linked to different distributions of rotational domains, and the latter enables selection of a single orientation only.
Rapid localized crystallization of lysozyme by laser trapping.
Yuyama, Ken-Ichi; Chang, Kai-Di; Tu, Jing-Ru; Masuhara, Hiroshi; Sugiyama, Teruki
2018-02-28
Confining protein crystallization to a millimetre size was achieved within 0.5 h after stopping 1 h intense trapping laser irradiation, which shows excellent performance in spatial and temporal controllability compared to spontaneous nucleation. A continuous-wave near-infrared laser beam is tightly focused into a glass/solution interfacial layer of a supersaturated buffer solution of hen egg-white lysozyme (HEWL). The crystallization is not observed during laser trapping, but initiated by stopping the laser irradiation. The generated crystals are localized densely in a circular area with a diameter of a few millimetres around the focal spot and show specific directions of the optical axes of the HEWL crystals. To interpret this unique crystallization, we propose a mechanism that nucleation and the subsequent growth take place in a highly concentrated domain consisting of HEWL liquid-like clusters after turning off laser trapping.
Zhu, Min; Xia, Mengjiao; Song, Zhitang; Cheng, Yan; Wu, Liangcai; Rao, Feng; Song, Sannian; Wang, Miao; Lu, Yegang; Feng, Songlin
2015-06-07
Phase change materials, successfully used in optical data-storage and non-volatile electronic memory, are well-known for their ultrafast crystallization speed. However, the fundamental understanding of their crystallization behavior, especially the nucleation process, is limited by present experimental techniques. Here, real-time radial distribution functions (RDFs), derived from the selected area electron diffractions, are employed as structural probes to comprehensively study both nucleation and subsequent growth stages of Ti-doped Sb2Te3 (TST) materials in the electron-irradiation crystallization process. It can be found that the incorporation of Ti atoms in Sb2Te3 forms wrong bonds such as Ti-Te, Ti-Sb, breaks the originally ordered atomic arrangement and diminishes the initial nucleus size of the as-deposited films, which results in better thermal stability. But these nuclei hardly grow until their sizes exceed a critical value, and then a rapid growth period starts. This means that an extended nucleation time is required to form the supercritical nuclei of TST alloys with higher concentration. Also, the increasing formation of four-membered rings, which served as nucleation sites, after doping excessive Ti is responsible for the change of the crystallization behavior from growth-dominated to nucleation-dominated.
Controlled ice nucleation in cryopreservation--a review.
Morris, G John; Acton, Elizabeth
2013-04-01
We review here for the first time, the literature on control of ice nucleation in cryopreservation. Water and aqueous solutions have a tendency to undercool before ice nucleation occurs. Control of ice nucleation has been recognised as a critical step in the cryopreservation of embryos and oocytes but is largely ignored for other cell types. We review the processes of ice nucleation and crystal growth in the solution around cells and tissues during cryopreservation with an emphasis on non IVF applications. The extent of undercooling that is encountered during the cooling of various cryocontainers is defined and the methods that have been employed to control the nucleation of ice are examined. The effects of controlled ice nucleation on the structure of the sample and the outcome of cryopreservation of a range of cell types and tissues are presented and the physical events which define the cellular response are discussed. Nucleation of ice is the most significant uncontrolled variable in conventional cryopreservation leading to sample to sample variation in cell recovery, viability and function and should be controlled to allow standardisation of cryopreservation protocols for cells for biobanking, cell based assays or clinical application. This intervention allows a way of increasing viability of cells and reducing variability between samples and should be included as standard operating procedures are developed. Copyright © 2012 Elsevier Inc. All rights reserved.
SUCCESS Evidence for Cirrus Cloud Ice Nucleation Mechanisms
NASA Technical Reports Server (NTRS)
Jensen, Eric; Gore, Warren J. Y. (Technical Monitor)
1997-01-01
During the SUCCESS mission, several measurements were made which should improve our understanding of ice nucleation processes in cirrus clouds. Temperature and water vapor concentration were made with a variety of instruments on the NASA DC-8. These observations should provide accurate upper tropospheric humidities. In particular, we will evaluate what humidities are required for ice nucleation. Preliminary results suggest that substantial supersaturations frequently exist in the upper troposphere. The leading-edge region of wave-clouds (where ice nucleation occurs) was sampled extensively at temperatures near -40 and -60C. These observations should give precise information about conditions required for ice nucleation. In addition, we will relate the observed aerosol composition and size distributions to the ice formation observed to evaluate the role of soot or mineral particles on ice nucleation. As an alternative technique for determining what particles act as ice nuclei, numerous samples of aerosols inside ice crystals were taken. In some cases, large numbers of aerosols were detected in each crystal, indicating that efficient scavenging occurred. Analysis of aerosols in ice crystals when only one particle per crystal was detected should help with the ice nucleation issue. Direct measurements of the ice nucleating activity of ambient aerosols drawn into airborne cloud chambers were also made. Finally, measurements of aerosols and ice crystals in contrails should indicate whether aircraft exhaust soot particles are effective ice nuclei.
Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD.
Chauve, T; Montagnat, M; Barou, F; Hidas, K; Tommasi, A; Mainprice, D
2017-02-13
Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=-5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the 'parent' ones suggests the possibility of 'spontaneous' nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).
Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD
Barou, F.; Hidas, K.; Tommasi, A.; Mainprice, D.
2017-01-01
Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=−5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the ‘parent’ ones suggests the possibility of ‘spontaneous’ nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025294
Nucleation and crystal growth behavior of nepheline in simulated high-level waste glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K.; Amoroso, J.; Mcclane, D.
The Savannah River National Laboratory (SRNL) has been tasked with supporting glass formulation development and process control strategies in key technical areas, relevant to the Department of Energy’s Office of River Protection (DOE-ORP) and related to high-level waste (HLW) vitrification at the Waste Treatment and Immobilization Plant (WTP). Of specific interest is the development of predictive models for crystallization of nepheline (NaAlSiO4) in HLW glasses formulated at high alumina concentrations. This report summarizes recent progress by researchers at SRNL towards developing a predicative tool for quantifying nepheline crystallization in HLW glass canisters using laboratory experiments. In this work, differential scanningmore » calorimetry (DSC) was used to obtain the temperature regions over which nucleation and growth of nepheline occur in three simulated HLW glasses - two glasses representative of WTP projections and one glass representative of the Defense Waste Processing Facility (DWPF) product. The DWPF glass, which has been studied previously, was chosen as a reference composition and for comparison purposes. Complementary quantitative X-ray diffraction (XRD) and optical microscopy confirmed the validity of the methodology to determine nucleation and growth behavior as a function of temperature. The nepheline crystallization growth region was determined to generally extend from ~ 500 to >850 °C, with the maximum growth rates occurring between 600 and 700 °C. For select WTP glass compositions (high Al2O3 and B2O3), the nucleation range extended from ~ 450 to 600 °C, with the maximum nucleation rates occurring at ~ 530 °C. For the DWPF glass composition, the nucleation range extended from ~ 450 to 750 °C with the maximum nucleation rate occurring at ~ 640 °C. The nepheline growth at the peak temperature, as determined by XRD, was between 35 - 75 wt.% /hour. A maximum nepheline growth rate of ~ 0.1 mm/hour at 700 °C was measured for the DWPF composition using optical microscopy. This research establishes a viable alternative to more traditional techniques for evaluating nepheline crystallization in large numbers of glasses, which are prohibitively time consuming or otherwise impractical. The ultimate objective is to combine the nucleation and growth information obtained from DSC, like that presented in this report, with computer simulations of glass cooling within the canister to accurately predict nepheline crystallization in HLW during processing through WTP.« less
Crack Nucleation in β Titanium Alloys under High Cycle Fatigue Conditions - A Review
NASA Astrophysics Data System (ADS)
Benjamin, Rohit; Nageswara Rao, M.
2017-05-01
Beta titanium (β-Ti) alloys have emerged over the last 3 to 4 decades as an important class of titanium alloys. Many of the applications that they found, particularly in aerospace sector, are such that their high cycle fatigue (HCF) behavior becomes critical. In HCF regime, crack nucleation accounts for major part of the life. Consequently it becomes important to understand the mechanisms underlying the nucleation of cracks under HCF type loading conditions. The purpose of this review is to document the best understanding we have on date on crack nucleation in β-Ti alloys under HCF conditions. Role of various microstructural features encountered in β-Ti alloys in influencing the crack nucleation under HCF conditions has been reviewed. It has been brought out that changes in processing can result in changes in microstructure which in turn influence the time for crack nucleation/fatigue life and fatigue limit. While majority of fatigue failures originate at the surface, subsurface cracking is not uncommon with β-Ti alloys and the factors leading to subsurface cracking have been discussed in this review.
3D Study of the Morphology and Dynamics of Zeolite Nucleation.
Melinte, Georgian; Georgieva, Veselina; Springuel-Huet, Marie-Anne; Nossov, Andreï; Ersen, Ovidiu; Guenneau, Flavien; Gedeon, Antoine; Palčić, Ana; Bozhilov, Krassimir N; Pham-Huu, Cuong; Qiu, Shilun; Mintova, Svetlana; Valtchev, Valentin
2015-12-07
The principle aspects and constraints of the dynamics and kinetics of zeolite nucleation in hydrogel systems are analyzed on the basis of a model Na-rich aluminosilicate system. A detailed time-series EMT-type zeolite crystallization study in the model hydrogel system was performed to elucidate the topological and temporal aspects of zeolite nucleation. A comprehensive set of analytical tools and methods was employed to analyze the gel evolution and complement the primary methods of transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR) spectroscopy. TEM tomography reveals that the initial gel particles exhibit a core-shell structure. Zeolite nucleation is topologically limited to this shell structure and the kinetics of nucleation is controlled by the shell integrity. The induction period extends to the moment when the shell is consumed and the bulk solution can react with the core of the gel particles. These new findings, in particular the importance of the gel particle shell in zeolite nucleation, can be used to control the growth process and properties of zeolites formed in hydrogels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microtubule nucleation and organization in dendrites
Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.
2016-01-01
ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122
Vapor-liquid nucleation: the solid touch.
Yarom, Michal; Marmur, Abraham
2015-08-01
Vapor-liquid nucleation is a ubiquitous process that has been widely researched in many disciplines. Yet, case studies are quite scattered in the literature, and the implications of some of its basic concepts are not always clearly stated. This is especially noticeable for heterogeneous nucleation, which involves a solid surface in touch with the liquid and vapor. The current review attempts to offer a comprehensive, though concise, thermodynamic discussion of homogeneous and heterogeneous nucleation in vapor-liquid systems. The fundamental concepts of nucleation are detailed, with emphasis on the role of the chemical potential, and on intuitive explanations whenever possible. We review various types of nucleating systems and discuss the effect of the solid geometry on the characteristics of the new phase formation. In addition, we consider the effect of mixing on the vapor-liquid equilibrium. An interesting sub-case is that of a non-volatile solute that modifies the chemical potential of the liquid, but not of the vapor. Finally, we point out topics that need either further research or more exact, accurate presentation. Copyright © 2014 Elsevier B.V. All rights reserved.
Representation of Nucleation Mode Microphysics in a Global Aerosol Model with Sectional Microphysics
NASA Technical Reports Server (NTRS)
Lee, Y. H.; Pierce, J. R.; Adams, P. J.
2013-01-01
In models, nucleation mode (1 nm
Spire-1 contributes to the invadosome and its associated invasive properties.
Lagal, Vanessa; Abrivard, Marie; Gonzalez, Virginie; Perazzi, Audrey; Popli, Sonam; Verzeroli, Elodie; Tardieux, Isabelle
2014-01-15
Cancer cells have an increased ability to squeeze through extracellular matrix gaps that they create by promoting proteolysis of its components. Major sites of degradation are specialized micro-domains in the plasma membrane collectively named invadosomes where the Arp2/3 complex and formin proteins cooperate to spatio-temporally control actin nucleation and the folding of a dynamic F-actin core. At invadosomes, proper coupling of exo-endocytosis allows polarized delivery of proteases that facilitate degradation of ECM and disruption of the cellular barrier. We investigated the contribution of the actin nucleator Spire-1 to invadosome structure and function, using Src-activated cells and cancer cells. We found that Spire-1 is specifically recruited at invadosomes and is part of a multi-molecular complex containing Src kinase, the formin mDia1 and actin. Spire-1 interacts with the Rab3A GTPase, a key player in the regulation of exocytosis that is present at invadosomes. Finally, over- and under-expression of Spire-1 resulted in cells with an increased or decreased potential for matrix degradation, respectively, therefore suggesting a functional interplay of Spire-1 with both actin nucleation and vesicular trafficking that might impact on cell invasive and metastatic behavior.
Topological defects from the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun; Vilenkin, Alexander; Blanco-Pillado, Jose J.
2015-05-01
Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to bemore » quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.« less
Topological defects from the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun; Blanco-Pillado, Jose J.; IKERBASQUE, Basque Foundation for Science, 48013, Bilbao
2015-05-28
Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to bemore » quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.« less
Heterogeneous-nucleation and glass-formation studies of 56Ga2O3-44CaO
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Curreri, Peter A.; Pline, David
1987-01-01
Glass formation and heterogeneous crystallization are described for the reluctant-glass-forming 56Ga2O3-44CaO eutectic composition. The times and temperatures for nucleation at various cooling rates and experimental conditions were measured and empirical continuous-cooling-crystallization boundaries were constructed for various heterogeneous nucleation processes. A definition for an empirical critical cooling rate to form a glass from reluctant borderline glass formers is proposed, i.e., the cooling rate that results in glass formation in 95 percent of the quenching experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMurry, Peter; Smuth, James
This final technical report describes our research activities that have, as the ultimate goal, the development of a model that explains growth rates of freshly nucleated particles. The research activities, which combine field observations with laboratory experiments, explore the relationship between concentrations of gas-phase species that contribute to growth and the rates at which those species are taken up. We also describe measurements of the chemical composition of freshly nucleated particles in a variety of locales, as well as properties (especially hygroscopicity) that influence their effects on climate.
Materials and Morphology Study for Templated Hydrogen Solidification
Shin, Swanee J.; Kozioziemski, Bernard J.
2017-11-29
In this work, we performed a series of experiments to elucidate the characteristics of a good template for solid hydrogen nucleation. Zinc stands out among several materials with comparable size and shape. Nucleation could be observed to occur on top of sharp features, such as grain boundaries and cracks, but our attempts proved unsuccessful to fabricate or replicate such features. The variations of the supercooling (ΔT) values measured for comparable samples and the dependence of ΔT on the cell temperature cycling revealed that templated nucleation of solid hydrogen is a very delicate process.
The Hb A variant (beta73 Asp-->Leu) disrupts Hb S polymerization by a novel mechanism.
Adachi, Kazuhiko; Ding, Min; Surrey, Saul; Rotter, Maria; Aprelev, Alexey; Zakharov, Mikhail; Weng, Weijun; Ferrone, Frank A
2006-09-22
Polymerization of a 1:1 mixture of hemoglobin S (Hb S) and the artificial mutant HbAbeta73Leu produces a dramatic morphological change in the polymer domains in 1.0 M phosphate buffer that are a characteristic feature of polymer formation. Instead of feathery domains with quasi 2-fold symmetry that characterize polymerization of Hb S and all previously known mixtures such as Hb A/S and Hb F/S mixtures, these domains are compact structures of quasi-spherical symmetry. Solubility of Hb S/Abeta73Leu mixtures was similar to that of Hb S/F mixtures. Kinetics of polymerization indicated that homogeneous nucleation rates of Hb S/Abeta73Leu mixtures were the same as those of Hb S/F mixtures, while exponential polymer growth (B) of Hb S/Abeta73Leu mixtures were about three times slower than those of Hb S/F mixtures. Differential interference contrast (DIC) image analysis also showed that fibers in the mixture appear to elongate between three and five times more slowly than in equivalent Hb S/F mixtures by direct measurements of exponential growth of mass of polymer in a domain. We propose that these results of Hb S/Abeta73Leu mixtures arise from a non-productive binding of the hybrid species of this mixture to the end of the growing polymer. This "cap" prohibits growth of polymers, but by nature is temporary, so that the net effect is a lowered growth rate of polymers. Such a cap is consistent with known features of the structure of the Hb S polymer. Domains would be more spherulitic because slower growth provides more opportunity for fiber bending to spread domains from their initial 2-fold symmetry. Moreover, since monomer depletion proceeds more slowly in this mixture, more homogeneous nucleation events occur, and the resulting gel has a far more granular character than normally seen in mixtures of non-polymerizing hemoglobins with Hb S. This mixture is likely to be less stiff than polymerized mixtures of other hybrids such as Hb S with HbF, potentially providing a novel approach to therapy.
Coarse-grained models of key self-assembly processes in HIV-1
NASA Astrophysics Data System (ADS)
Grime, John
Computational molecular simulations can elucidate microscopic information that is inaccessible to conventional experimental techniques. However, many processes occur over time and length scales that are beyond the current capabilities of atomic-resolution molecular dynamics (MD). One such process is the self-assembly of the HIV-1 viral capsid, a biological structure that is crucial to viral infectivity. The nucleation and growth of capsid structures requires the interaction of large numbers of capsid proteins within a complicated molecular environment. Coarse-grained (CG) models, where degrees of freedom are removed to produce more computationally efficient models, can in principle access large-scale phenomena such as the nucleation and growth of HIV-1 capsid lattice. We report here studies of the self-assembly behaviors of a CG model of HIV-1 capsid protein, including the influence of the local molecular environment on nucleation and growth processes. Our results suggest a multi-stage process, involving several characteristic structures, eventually producing metastable capsid lattice morphologies that are amenable to subsequent capsid dissociation in order to transmit the viral infection.
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Mukut, K. M.; Tamim, Saiful Islam; Faisal, A. H. M.
2017-06-01
This study focuses on the occurrence of bubble nucleation in a liquid confined in a nano scale confinement and subjected to rapid cooling at one of its wall. Due to the very small size scale of the present problem, we adopt the molecular dynamics (MD) approach. The liquid (Argon) is confined within two solid (Platinum) walls. The temperature of the upper wall of the confinement is maintained at 90 K while the lower wall is being cooled rapidly to 50 K from initial equilibrium temperature of 90 K within 0.1 ns. This results in the nucleation and formation of nanobubbles in the liquid. The pattern of bubble nucleation has been studied for three different conditions of solid-liquid interfacial wettability such as hydrophilic, hydrophobic and neutral. Behavior of bubble nucleation is significantly different in the three case of solid-liquid interfacial wettability. In case of the hydrophobic confinement (weakly adsorbing), the liquid cannot achieve deeper metastability; vapor layers appear immediately on the walls. In case of the neutral confinement (moderately adsorbing), bubble nucleation is promoted by the walls where the nucleation is heterogeneous. In case of the hydrophilic walls (strongly adsorbing) bubbles are developed inside the liquid; that is the nucleation process is homogeneous. The variation in bubble nucleation under different conditions of surface wettability has been studied by the analysis of number density distribution, spatial temperature distribution, spatial number density distribution and heat flux through the upper and lower walls of the confinement. The present study indicates that the variation of heat transfer efficiency due to different surface wettability has significant effect on the size, shape and location of bubble nucleation in case rapid cooling of liquid in nano confinement.
Critical Nuclei Size, Rate, and Activation Energy of H2 Gas Nucleation.
German, Sean R; Edwards, Martin A; Ren, Hang; White, Henry S
2018-03-21
Electrochemical measurements of the nucleation rate of individual H 2 bubbles at the surface of Pt nanoelectrodes (radius = 7-41 nm) are used to determine the critical size and geometry of H 2 nuclei leading to stable bubbles. Precise knowledge of the H 2 concentration at the electrode surface, C H 2 surf , is obtained by controlled current reduction of H + in a H 2 SO 4 solution. Induction times of single-bubble nucleation events are measured by stepping the current, to control C H 2 surf , while monitoring the voltage. We find that gas nucleation follows a first-order rate process; a bubble spontaneously nucleates after a stochastic time delay, as indicated by a sudden voltage spike that results from impeded transport of H + to the electrode. Hundreds of individual induction times, at different applied currents and using different Pt nanoelectrodes, are used to characterize the kinetics of phase nucleation. The rate of bubble nucleation increases by four orders of magnitude (0.3-2000 s -1 ) over a very small relative change in C H 2 surf (0.21-0.26 M, corresponding to a ∼0.025 V increase in driving force). Classical nucleation theory yields thermodynamic radii of curvature for critical nuclei of 4.4 to 5.3 nm, corresponding to internal pressures of 330 to 270 atm, and activation energies for nuclei formation of 14 to 26 kT, respectively. The dependence of nucleation rate on H 2 concentration indicates that nucleation occurs by a heterogeneous mechanism, where the nuclei have a contact angle of ∼150° with the electrode surface and contain between 35 and 55 H 2 molecules.
NASA Astrophysics Data System (ADS)
Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.
2010-05-01
Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative budget. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative budget over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local measurements: over southern Finland, where cluster activation proceeds efficiently, we find that charged nucleation of sulfuric acid and water contributes on average less than 10% to ultrafine aerosol concentrations, in good agreement with observations.
NASA Astrophysics Data System (ADS)
Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.
2010-11-01
Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative forcing. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative forcing over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local measurements: over southern Finland, where cluster activation proceeds efficiently, we find that charged nucleation of sulfuric acid and water contributes on average less than 10% to ultrafine aerosol concentrations, in good agreement with observations.
Härtel, Steffen; Fanani, María Laura; Maggio, Bruno
2005-01-01
Sphingomyelinases (SMases) hydrolyze the membrane constituent sphingomyelin (SM) to phosphocholine and ceramide (Cer). Growing evidence supports that SMase-induced SM→Cer conversion leads to the formation of lateral Cer-enriched domains which drive structural reorganization in lipid membranes. We previously provided visual evidence in real-time for the formation of Cer-enriched domains in SM monolayers through the action of the neutral Bacillus cereus SMase. In this work, we disclose a succession of discrete morphologic transitions and lateral organization of Cer-enriched domains that underlay the SMase-generated surface topography. We further reveal how these structural parameters couple to the generation of two-dimensional electrostatic fields, based upon the specific orientation of the lipid dipole moments in the Cer-enriched domains. Advanced image processing routines in combination with time-resolved epifluorescence microscopy on Langmuir monolayers revealed: 1), spontaneous nucleation and circular growth of Cer-enriched domains after injection of SMase into the subphase of the SM monolayer; 2), domain-intrinsic discrete transitions from circular to periodically undulating shapes followed by a second transition toward increasingly branched morphologies; 3), lateral superstructure organization into predominantly hexagonal domain lattices; 4), formation of super-superstructures by the hexagonal lattices; and 5), rotationally and laterally coupled domain movement before domain border contact. All patterns proved to be specific for the SMase-driven system since they could not be observed with Cer-enriched domains generated by defined mixtures of SM/Cer in enzyme-free monolayers at the same surface pressure (Π = 10 mN/m). Following the theories of lateral shape transitions, dipolar electrostatic interactions of lipid domains, and direct determinations of the monolayer dipole potential, our data show that SMase induces a domain-specific packing and orientation of the molecular dipole moments perpendicular to the air/water interface. In consequence, protein-driven generation of specific out-of-equilibrium states, an accepted concept for maintenance of transmembrane lipid asymmetry, must also be considered on the lateral level. Lateral enzyme-specific out-of-equilibrium organization of lipid domains represents a new level of signal transduction from local (nm) to long-range (μm) scales. The cross-talk between lateral domain structures and dipolar electrostatic fields adds new perspectives to the mechanisms of SMase-mediated signal transduction in biological membranes. PMID:15489298
NASA Astrophysics Data System (ADS)
Schwarzenböck, A.; Mertes, S.; Heintzenberg, J.; Wobrock, W.; Laj, P.
The paper focuses on the redistribution of aerosol particles (APs) during the artificial nucleation and subsequent growth of ice crystals in a supercooled cloud. A significant number of the supercooled cloud droplets during icing periods (seeding agents: C 3H 8, CO 2) did not freeze as was presumed prior to the experiment but instead evaporated. The net mass flux of water vapour from the evaporating droplets to the nucleating ice crystals (Bergeron-Findeisen mechanism) led to the release of residual particles that simultaneously appeared in the interstitial phase. The strong decrease of the droplet residuals confirms the nucleation of ice particles on seeding germs without natural aerosol particles serving as ice nuclei. As the number of residual particles during the seedings did not drop to zero, other processes such as heterogeneous ice nucleation, spontaneous freezing, entrainment of supercooled droplets and diffusion to the created particle-free ice germs must have contributed to the experimental findings. During the icing periods, residual mass concentrations in the condensed phase dropped by a factor of 1.1-6.7, as compared to the unperturbed supercooled cloud. As the Bergeron-Findeisen process also occurs without artificial seeding in the atmosphere, this study demonstrated that the hydrometeors in mixed-phase clouds might be much cleaner than anticipated for the simple freezing process of supercooled droplets in tropospheric mid latitude clouds.
In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts
NASA Astrophysics Data System (ADS)
Masotta, M.; Ni, H.; Keppler, H.
2014-02-01
Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1,100 to 1,240 °C and 0.1 MPa (1 bar), obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (<60 MPa in basalt and andesite, 200 MPa in rhyodacite), probably due to heterogeneous nucleation of bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate ( G R) ranges from 3.4 × 10-6 to 5.2 × 10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density ( N B) at nucleation ranges from 7.9 × 104 mm-3 to 1.8 × 105 mm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble size distribution (BSD) through time, the BSDs of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSDs may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and explosive eruptions.
NASA Astrophysics Data System (ADS)
Higgins, N.; Lapusta, N.
2014-12-01
Many large earthquakes on natural faults are preceded by smaller events, often termed foreshocks, that occur close in time and space to the larger event that follows. Understanding the origin of such events is important for understanding earthquake physics. Unique laboratory experiments of earthquake nucleation in a meter-scale slab of granite (McLaskey and Kilgore, 2013; McLaskey et al., 2014) demonstrate that sample-scale nucleation processes are also accompanied by much smaller seismic events. One potential explanation for these foreshocks is that they occur on small asperities - or bumps - on the fault interface, which may also be the locations of smaller critical nucleation size. We explore this possibility through 3D numerical simulations of a heterogeneous 2D fault embedded in a homogeneous elastic half-space, in an attempt to qualitatively reproduce the laboratory observations of foreshocks. In our model, the simulated fault interface is governed by rate-and-state friction with laboratory-relevant frictional properties, fault loading, and fault size. To create favorable locations for foreshocks, the fault surface heterogeneity is represented as patches of increased normal stress, decreased characteristic slip distance L, or both. Our simulation results indicate that one can create a rate-and-state model of the experimental observations. Models with a combination of higher normal stress and lower L at the patches are closest to matching the laboratory observations of foreshocks in moment magnitude, source size, and stress drop. In particular, we find that, when the local compression is increased, foreshocks can occur on patches that are smaller than theoretical critical nucleation size estimates. The additional inclusion of lower L for these patches helps to keep stress drops within the range observed in experiments, and is compatible with the asperity model of foreshock sources, since one would expect more compressed spots to be smoother (and hence have lower L). In this heterogeneous rate-and-state fault model, the foreshocks interact with each other and with the overall nucleation process through their postseismic slip. The interplay amongst foreshocks, and between foreshocks and the larger-scale nucleation process, is a topic of our future work.
Crystal growth in a microgravity environment
NASA Technical Reports Server (NTRS)
Kroes, Roger L. (Inventor); Reiss, Donald A. (Inventor); Lehoczky, Sandor L. (Inventor)
1992-01-01
Gravitational phenomena, including convection, sedimentation, and interactions of materials with their containers all affect the crystal growth process. If they are not taken into consideration they can have adverse effects on the quantity and quality of crystals produced. As a practical matter, convection, and sedimentation can be completely eliminated only under conditions of low gravity attained during orbital flight. There is, then, an advantage to effecting crystallization in space. In the absence of convection in a microgravity environment cooling proceeds by thermal diffusion from the walls to the center of the solution chamber. This renders control of nucleation difficult. Accordingly, there is a need for a new improved nucleation process in space. Crystals are nucleated by creating a small localized region of high relative supersaturation in a host solution at a lower degree of supersaturation.
NASA Astrophysics Data System (ADS)
Angell, C. A.
1997-02-01
We show how energy landscape concepts can rationalize the observations on glassforming liquids over the whole range of behavior, strong to fragile. In particular, we show how the existence of landscapes with both strong and fragile megabasins can provide a basis for understanding the nature of quasi-first-order transitions between amorphous states such as those observed to occur in the glassy states of “strong” glassformers. We show how this propensity originates in the liquid state and then emphasize the analogy provided, at the mesoscopic level, by the folding transition in proteins. Recognition that the folding transition is an equilibrium first-order transition between polyamorphic forms of a complex system implies recognition of the need for a nucleation step in the process. When nucleated phase transitions are kinetically retarded, their probability can be influenced by time-temperature history and by the presence of nucleating agents. Nucleation events are statistically rare in mesoscopic systems, hence the ability to fold rapidly should require special features in the folding molecular structure or the presence of nucleating agents. We propose that the unwanted folding events leading to pathogenic forms of certain proteins (prions) can be stimulated by nucleating agents, which thus may be the unidentified infectious agents in “mad cow” disease and related maladies.
Mechanisms for Ductile Rupture - FY16 ESC Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyce, Brad L.; Carroll, Jay D.; Noell, Phillip
2017-01-01
Ductile rupture in metals is generally a multi-step process of void nucleation, growth, and coalescence. Particle decohesion and particle fracture are generally invoked as the primary microstructural mechanisms for room-temperature void nucleation. However, because high-purity materials also fail by void nucleation and coalescence, other microstructural features must also act as sites for void nucleation. Early studies of void initiation in high-purity materials, which included post-mortem fracture surface characterization using scanning electron microscopy (SEM) and high-voltage electron microscopy (HVEM) and in-situ HVEM observations of fracture, established the presence of dislocation cell walls as void initiation sites in high-purity materials. Direct experimentalmore » evidence for this contention was obtained during in-situ HVEM tensile tests of Be single crystals. Voids between 0.2 and 1 μm long appeared suddenly along dislocation cell walls during tensile straining. However, subsequent attempts to replicate these results in other materials, particularly α -Fe single crystals, were unsuccessful because of the small size of the dislocation cells, and these remain the only published in-situ HVEM observations of void nucleation at dislocation cell walls in the absence of a growing macrocrack. Despite this challenge, other approaches to studying void nucleation in high-purity metals also indicate that dislocation cell walls are nucleation sites for voids.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishchenko, L; Khan, M; Aizenberg, J
Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescencemore » of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. This combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishchenko, Lidiya; Khan, M.; Aizenberg, Joanna
Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescencemore » of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Furthermore, control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. The combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.« less
In vivo bubble nucleation probability in sheep brain tissue.
Gateau, J; Aubry, J-F; Chauvet, D; Boch, A-L; Fink, M; Tanter, M
2011-11-21
Gas nuclei exist naturally in living bodies. Their activation initiates cavitation activity, and is possible using short ultrasonic excitations of high amplitude. However, little is known about the nuclei population in vivo, and therefore about the rarefaction pressure required to form bubbles in tissue. A novel method dedicated to in vivo investigations was used here that combines passive and active cavitation detection with a multi-element linear ultrasound probe (4-7 MHz). Experiments were performed in vivo on the brain of trepanated sheep. Bubble nucleation was induced using a focused single-element transducer (central frequency 660 kHz, f-number = 1) driven by a high power (up to 5 kW) electric burst of two cycles. Successive passive recording and ultrafast active imaging were shown to allow detection of a single nucleation event in brain tissue in vivo. Experiments carried out on eight sheep allowed statistical studies of the bubble nucleation process. The nucleation probability was evaluated as a function of the peak negative pressure. No nucleation event could be detected with a peak negative pressure weaker than -12.7 MPa, i.e. one order of magnitude higher than the recommendations based on the mechanical index. Below this threshold, bubble nucleation in vivo in brain tissues is a random phenomenon.
Time related variations in stem cell harvesting of umbilical cord blood
NASA Astrophysics Data System (ADS)
Mazzoccoli, Gianluigi; Miscio, Giuseppe; Fontana, Andrea; Copetti, Massimiliano; Francavilla, Massimo; Bosi, Alberto; Perfetto, Federico; Valoriani, Alice; de Cata, Angelo; Santodirocco, Michele; Totaro, Angela; Rubino, Rosa; di Mauro, Lazzaro; Tarquini, Roberto
2016-02-01
Umbilical cord blood (UCB) contains hematopoietic stem cells and multipotent mesenchymal cells useful for treatment in malignant/nonmalignant hematologic-immunologic diseases and regenerative medicine. Transplantation outcome is correlated with cord blood volume (CBV), number of total nucleated cells (TNC), CD34+ progenitor cells and colony forming units in UCB donations. Several studies have addressed the role of maternal/neonatal factors associated with the hematopoietic reconstruction potential of UCB, including: gestational age, maternal parity, newborn sex and birth weight, placental weight, labor duration and mode of delivery. Few data exist regarding as to how time influences UCB collection and banking patterns. We retrospectively analyzed 17.936 cord blood donations collected from 1999 to 2011 from Tuscany and Apulia Cord Blood Banks. Results from generalized multivariable linear mixed models showed that CBV, TNC and CD34+ cell were associated with known obstetric and neonatal parameters and showed rhythmic patterns in different time domains and frequency ranges. The present findings confirm that volume, total nucleated cells and stem cells of the UCB donations are hallmarked by rhythmic patterns in different time domains and frequency ranges and suggest that temporal rhythms in addition to known obstetric and neonatal parameters influence CBV, TNC and CD34+ cell content in UBC units.
NASA Astrophysics Data System (ADS)
Prades, Marta; Beltrán, Héctor; Masó, Nahum; Cordoncillo, Eloisa; West, Anthony R.
2008-11-01
The ferroelectric tetragonal tungsten bronze (TTB) phases, Ba2RETi2Nb3O15:RE=Nd,Sm, were prepared by low temperature solvothermal synthesis. The permittivity versus temperature data of sintered ceramics show two unusual features: first, a hysteresis of 50-100 °C between values of the Curie temperature Tc on heat-cool cycles and second: a huge depression in the Curie-Weiss temperature T0. Both effects are attributed to the complex nature of their TTB-related crystal structures with different superstructures above and below Tc and the difficulty in nucleating ferroelectric domains on cooling through Tc. Several factors may contribute to the latter difficulty: first, the structures contain two sets of crystallographic sites for the "active" Ti, Nb ions; second, the distribution of Ti and Nb over these two sets of sites is not random but partially ordered; and third, below Tc a weak commensurate superstructure perpendicular to the polar c&barbelow; axis is present, but above Tc a weak incommensurate superstructure in a similar orientation is present. Hence the formation of the ferroelectric structure on cooling requires both nucleation of polar domains involving two sets of cation sites and structural change from an incommensurate to a commensurate supercell.
Nucleation speed limit on remote fluid induced earthquakes
Parsons, Thomas E.; Akinci, Aybige; Malignini, Luca
2017-01-01
Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes.
Nucleation speed limit on remote fluid-induced earthquakes.
Parsons, Tom; Malagnini, Luca; Akinci, Aybige
2017-08-01
Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth's crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes.
Nucleation speed limit on remote fluid-induced earthquakes
Parsons, Tom; Malagnini, Luca; Akinci, Aybige
2017-01-01
Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes. PMID:28845448
NASA Technical Reports Server (NTRS)
Phillips, Vaughan T. J.; Andronache, Constantin; Sherwood, Steven C.; Bansemer, Aaron; Conant, William C.; Demott, Paul J.; Flagan, Richard C.; Heymsfield, Andy; Jonsson, Haflidi; Poellot, Micheal;
2005-01-01
Simulations of a cumulonimbus cloud observed in the Cirrus regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) with an advanced version of the Explicit Microphysics Model (EMM) are presented. The EMM has size-resolved aerosols and predicts the time evolution of sizes, bulk densities and axial ratios of ice particles. Observations by multiple aircraft in the troposphere provide inputs to the model, including observations of the ice nuclei and of the entire size distribution of condensation nuclei. Homogeneous droplet freezing is found to be the source of almost all of the ice crystals in the anvil updraught of this particular model cloud. Most of the simulated droplets that freeze to form anvil crystals appear to be nucleated by activation of aerosols far above cloud base in the interior of the cloud ("secondary" or "in cloud" droplet nucleation). This is partly because primary droplets formed at cloud base are invariably depleted by accretion before they can reach the anvil base in the updraught, which promotes an increase with height of the average supersaturation in the updraught aloft. More than half of these aerosols, activated far above cloud base, are entrained into the updraught of this model cloud from the lateral environment above about 5 km above mean sea level. This confirms the importance of remote sources of atmospheric aerosol for anvil glaciation. Other nucleation processes impinge indirectly upon the anvil glaciation by modifying the concentration of supercooled droplets in the upper levels of the mixed-phase region. For instance, the warm-rain process produces a massive indirect impact on the anvil crystal concentration, because it determines the mass of precipitation forming in the updraught. It competes with homogeneous freezing as a sink for cloud droplets. The effects from turbulent enhancement of the warm-rain process and from the nucleation processes on the anvil ice properties are assessed.
Regiospecific Nucleation and Growth of Silane Coupling Agent Droplets onto Colloidal Particles
2017-01-01
Nucleation-and-growth processes are used extensively in the synthesis of spherical colloids, and more recently regiospecific nucleation-and-growth processes have been exploited to prepare more complex colloids such as patchy particles. We demonstrate that surface geometry alone can be made to play the dominant role in determining the final particle geometry in such syntheses, meaning that intricate chemical surface patternings are not required. We present a synthesis method for “lollipop”-shaped colloidal heterodimers (patchy particles), combining a recently published nucleation-and-growth technique with our recent findings that particle geometry influences the locus of droplet adsorption onto anisotropic template particles. Specifically, 3-methacryloxypropyl trimethoxysilane (MPTMS) is nucleated and grown onto bullet-shaped and nail-shaped colloids. The shape of the template particle can be chosen such that the MPTMS adsorbs regiospecifically onto the flat ends. In particular, we find that particles with a wider base increase the range of droplet volumes for which the minimum in the free energy of adsorption is located at the flat end of the particle compared with bullet-shaped particles of the same aspect ratio. We put forward an extensive analysis of the synthesis mechanism and experimentally determine the physical properties of the heterodimers, supported by theoretical simulations. Here we numerically optimize, for the first time, the shape of finite-sized droplets as a function of their position on the rod-like silica particle surface. We expect that our findings will give an impulse to complex particle creation by regiospecific nucleation and growth. PMID:29057028