Sample records for domain reflectometry waveforms

  1. Time domain reflectometry waveform analysis with second order bounded mean oscillation

    USDA-ARS?s Scientific Manuscript database

    Tangent-line methods and adaptive waveform interpretation with Gaussian filtering (AWIGF) have been proposed for determining reflection positions of time domain reflectometry (TDR) waveforms. However, the accuracy of those methods is limited for short probe TDR sensors. Second order bounded mean osc...

  2. A comparison of second order derivative based models for time domain reflectometry wave form analysis

    USDA-ARS?s Scientific Manuscript database

    Adaptive waveform interpretation with Gaussian filtering (AWIGF) and second order bounded mean oscillation operator Z square 2(u,t,r) are TDR analysis methods based on second order differentiation. AWIGF was originally designed for relatively long probe (greater than 150 mm) TDR waveforms, while Z s...

  3. A reevaluation of TDR propagation time determination in soils and geological media

    USDA-ARS?s Scientific Manuscript database

    Time domain reflectometry (TDR) is an established method for the determination of apparent dielectric permittivity and water content in soils. Using current waveform interpretation procedures, signal attenuation and variation in dielectric media properties along the transmission line can significant...

  4. TDR water content inverse profiling in layered soils during infiltration and evaporation

    NASA Astrophysics Data System (ADS)

    Greco, R.; Guida, A.

    2009-04-01

    During the last three decades, time domain reflectometry (TDR) has become one of the most commonly used tools for soil water content measurements either in laboratory or in the field. Indeed, TDR provides easy and cheap water content estimations with relatively small disturbance to the investigated soil. TDR measurements of soil water content are based on the strong correlation between relative dielectric permittivity of wet soil and its volumetric water content. Several expressions of the relationship between relative dielectric permittivity and volumetric water content have been proposed, empirically stated (Topp et al., 1980) as well as based on semi-analytical approach to dielectric mixing models (Roth et al., 1990; Whalley, 1993). So far, TDR field applications suffered the limitation due to the capability of the technique of estimating only the mean water content in the volume investigated by the probe. Whereas the knowledge of non homogeneous vertical water content profiles was needed, it was necessary to install either several vertical probes of different length or several horizontal probes placed in the soil at different depths, in both cases strongly increasing soil disturbance as well as the complexity of the measurements. Several studies have been recently dedicated to the development of inversion methods aimed to extract more information from TDR waveforms, in order to estimate non homogeneous moisture profiles along the axis of the metallic probe used for TDR measurements. A common feature of all these methods is that electromagnetic transient through the wet soil along the probe is mathematically modelled, assuming that the unknown soil water content distribution corresponds to the best agreement between simulated and measured waveforms. In some cases the soil is modelled as a series of small layers with different dielectric properties, and the waveform is obtained as the result of the superposition of multiple reflections arising from impedance discontinuities between the layers (Nguyen et al., 1997; Todoroff et al., 1998; Heimovaara, 2001; Moret et al., 2006). Other methods consider the dielectric properties of the soil as smoothly variable along probe axis (Greco, 1999; Oswald et al., 2003; Greco, 2006). Aim of the study is testing the applicability to layered soils of the inverse method for the estimation of water content profiles along vertical TDR waveguides, originally applied in laboratory to homogeneous soil samples with monotonic moisture distributions (Greco, 2006), and recently extended to field measurements with more general water content profiles (Greco and Guida, 2008). Influence of soil electrical conductivity, uniqueness of solution, choices of parametrization, parameters identifiabilty, sensitivity of the method to chosen parameters variations are discussed. Finally, the results of the application of the inverse method to a series of infiltration and evaporation experiments carried out in a flume filled with three soil layers of different physical characteristics are presented. ACKNOWLEDGEMENTS The research was co-financed by the Italian Ministry of University, by means of the PRIN 2006 PRIN program, within the research project entitled ‘Definition of critical rainfall thresholds for destructive landslides for civil protection purposes'. REFERENCES Greco, R., 1999. Measurement of water content profiles by single TDR experiments. In: Feyen, J., Wiyo, K. (Eds.), Modelling of Transport Processes in Soils. Wageningen Pers, Wageningen, the Netherlands, pp. 276-283. Greco, R., 2006. Soil water content inverse profiling from single TDR waveforms. J. Hydrol. 317, 325-339. Greco R., Guida A., 2008. Field measurements of topsoil moisture profiles by vertical TDR probes. J. Hydrol. 348, 442- 451. Heimovaara, T.J., 2001. Frequency domain modelling of TDR waveforms in order to obtain frequency dependent dielectric properties of soil samples: a theoretical approach. In: TDR 2001 - Second International Symposium on Time Domain Reflectometry for Innovative Geotechnical Applications. Northwestern University, Evanston, Illinois, pp. 19-21. Moret, D., Arrue, J.L., Lopez, M.V., Gracia, R., 2006. A new TDR waveform analysis approach for soil moisture profiling using a single probe. J. Hydrol. 321, 163-172. Nguyen, B.L., Bruining, J., Slob, E.C., 1997. Saturation profiles from dielectric (frequency domain reflectometry) measurements in porous media. In: Proceedings of International Workshop on characterization and Measurements of the Hydraulic Properties of Unsaturated Porous Media, Riverside, California, pp. 363-375. Oswald, B., Benedickter, H.R., Ba¨chtold, W., Flu¨hler, H., 2003. Spatially resolved water content profiles from inverted time domain reflectometry signals. Water Resour. Res. 39 (12), 1357. Todoroff, P., Lorion, R., Lan Sun Luk, J.-D., 1998. L'utilisation des génétiques pour l'identification de profils hydriques de sol a` partir de courbes réflectométriques. CR Acad. Sci. Paris, Sciences de la terre et des plane`tes 327, 607-610. Topp, G.C., Davis, J.L., Annan, A.P., 1980. Electromagnetic determination of soil water content: measurement in coaxial transmission lines. Water Resour. Res. 16, 574-582. Roth, K., Schulin, R., Fluhler, H., Attinger, W., 1990. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour. Res. 26, 2267-2273. Whalley, W.R., 1993. Considerations on the use of time domain reflectometry (TDR) for measuring soil water content. J. Soil Sci. 44, 1-9.

  5. Method and apparatus for active tamper indicating device using optical time-domain reflectometry

    DOEpatents

    Smith, D. Barton; Muhs, Jeffrey D.; Pickett, Chris A.; Earl, D. Duncan

    1999-01-01

    An optical time-domain reflectometer (OTDR) launches pulses of light into a link or a system of multiplexed links and records the waveform of pulses reflected by the seals in the link(s). If a seal is opened, the link of cables will become a discontinuous transmitter of the light pulses and the OTDR can immediately detect that a seal has been opened. By analyzing the waveform, the OTDR can also quickly determine which seal(s) were opened. In this way the invention functions as a system of active seals. The invention is intended for applications that require long-term surveillance of a large number of closures. It provides immediate tamper detection, allows for periodic access to secured closures, and can be configured for many different distributions of closures. It can monitor closures in indoor and outdoor locations and it can monitor containers or groups of containers located many kilometers apart.

  6. Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR.

    PubMed

    He, Xiangge; Xie, Shangran; Liu, Fei; Cao, Shan; Gu, Lijuan; Zheng, Xiaoping; Zhang, Min

    2017-02-01

    We demonstrate a novel type of distributed optical fiber acoustic sensor, with the ability to detect and retrieve actual temporal waveforms of multiple vibration events that occur simultaneously at different positions along the fiber. The system is realized via a dual-pulse phase-sensitive optical time-domain reflectometry, and the actual waveform is retrieved by heterodyne phase demodulation. Experimental results show that the system has a background noise level as low as 8.91×10-4  rad/√Hz with a demodulation signal-to-noise ratio of 49.17 dB at 1 kHz, and can achieve a dynamic range of ∼60  dB at 1 kHz (0.1 to 104 rad) for phase demodulation, as well as a detection frequency range from 20 Hz to 25 kHz.

  7. Utilizing Time Domain Reflectometry on monitoring bedload in a mountain stream

    NASA Astrophysics Data System (ADS)

    Miyata, S.; Fujita, M.

    2015-12-01

    Understanding bedload transport processes in steep mountain streams is essential for disaster mitigation as well as predicting reservoir capacity and restoration of river ecosystem. Despite various monitoring methods proposed previously, precise bedload monitoring in steep streams still remains difficulty. This study aimed to develop a bedload monitoring system by continuous measurement of thickness and porosity of sediment under water that can be applicable to retention basins and pools in steep streams. When a probe of TDR (Time Domain Reflectometry) measurement system is inserted as to penetrate two adjacent layers with different dielectric constants, analysis of TDR waveform enables us to determine position of the layer boundary and ratio of materials in the layer. Methodology of analyzing observed TDR waveforms were established based on results of a series of column experiment, in which a single TDR probe with length of 40 cm was installed in a column filled with water and, then, sand was supplied gradually. Flume experiment was performed to apply the TDR system on monitoring sediment volume under flowing water conditions. Eight probes with lengths of 27 cm were distributed equally in a model retention basin (i.e., container), into which water and bedload were flowed from a connected flume. The model retention basin was weighed by a load cell and the sediment volume was calculated. A semi-automatic waveform analysis was developed to calculate continuously thicknesses and porosities of the sediment at the eight probes. Relative errors of sediment volume and bedload (=time differential of the volume) were 13 % at maximum, suggesting that the TDR system proposed in this study with multiple probes is applicable to bedload monitoring in retention basins of steep streams. Combination of this system and other indirect bedload monitoring method (e.g., geophone) potentially make a breakthrough for understanding sediment transport processes in steep mountain streams.

  8. Time Domain Reflectometry for Damage Detection of Laminated CFRP plate

    DTIC Science & Technology

    2011-08-18

    Final Report PROJECT ID: AOARD-10-4112 Title: Time Domain Reflectometry for damage detection of laminated CFRP plate Researcher: Professor Akira...From July/2010 To July/2011 Abstract Recently, high toughness Carbon Fiber Reinforced Polymer (CFRP) laminates are used to primary structures. The...large laminated CFRP structures. In the previous study, Time Domain Reflectometry (TDR) method is adopted for the detection of the fiber breakages of

  9. Distributed fiber strain and vibration sensor based on Brillouin optical time-domain reflectometry and polarization optical time-domain reflectometry.

    PubMed

    Wang, Feng; Zhang, Xuping; Wang, Xiangchuan; Chen, Haisheng

    2013-07-15

    A distributed fiber strain and vibration sensor which effectively combines Brillouin optical time-domain reflectometry and polarization optical time-domain reflectometry is proposed. Two reference beams with orthogonal polarization states are, respectively, used to perform the measurement. By using the signal obtained from either reference beam, the vibration of fiber can be measured from the polarization effect. After combining the signals obtained by both reference beams, the strain can be measured from the Brillouin effect. In the experiment, 10 m spatial resolution, 0.6 kHz frequency measurement range, 2.5 Hz frequency resolution, and 0.2 MHz uncertainty of Brillouin frequency measurement are realized for a 4 km sensing distance.

  10. Comparison of performance of inclinometer casing and TDR technique

    NASA Astrophysics Data System (ADS)

    Aghda, S. M. Fatemi; Ganjalipour, K.; Nabiollahi, K.

    2018-03-01

    TDR (Time Domain Reflectometry) and GPR (Ground Penetrating Radar) are two of the electromagnetic methods in applied geophysics, which using them for various applications are developing. The Time Domain Reflectometry is a remote sensing method that has been used for years to determine the nature of the materials and spatial location. The use of TDR system has led to innovative applications of it and comparing it with previous measuring techniques, since it has developed. In this study, not only a summary of the basics of TDR application for monitoring of ground deformation is offered, but also a comparison of this technology with other measurement techniques (inclinometer casing) is provided. Actually, this paper presents a case study in which the opportunity arose to compare these two technologies in detecting subsurface deformation in slopes. A TDR system includes a radar wave receiver & generator, a transmission line and a waveguide. The generated electro-magnetic pulse moves toward the waveguide within the conductor cable and enters the test environment. For this study, slopes overlooking the Darian dam bottom outlet, power house and spillway were instrumented with RG59/U coaxial cables for TDR monitoring and slope inclinometer. Coaxial cables - as a TDR sensor - and inclinometer casings were installed in a same bore hole where coaxial cable was attached to the inclinometer casing. Shear and tensile deformations of the cable, which is caused by ground movements, significantly impacts on cable reflection coefficient. In Darian dam boreholes, the cable points subject to the shear and stretch were correlated with deformation points of the inclinometer casings in incremental displacement graphs. This study shows that TDR technique is more sensitive than inclinometer casing for small movement in the slide planes. Because manual processing of TDR data is hard and need experienced personnel, the authors have designed an algorithm to compare the shape of the new TDR waveforms with the base reading waveform in order to monitor the subsurface deformations.

  11. Determining soil volumetric moisture content using time domain reflectometry

    DOT National Transportation Integrated Search

    1998-02-01

    Time domain reflectometry (TDR) is a technique used to measure indirectly the in situ volumetric moisture content of soil. Current research provides a variety of prediction equations that estimate the volumetric moisture content using the dielectric ...

  12. Inclinometer--time-domain reflectometry comparative study : research implementation plan.

    DOT National Transportation Integrated Search

    2005-10-01

    ODOT currently uses slope indicator probing to analyze subsurface conditions at roadway landslide : locations. However, the current method is subject to several limitations, and time domain reflectometry : (TDR) has been proposed as an alternative to...

  13. Time-domain reflectometry of water content in portland cement concrete

    DOT National Transportation Integrated Search

    1997-11-01

    Time-domain reflectometry is useful for measuring the moisture content of solids. However, little information exists on its use with portland cement concrete. By monitoring the response from TDR sensors embedded in concrete as the concrete dried, the...

  14. Inclinometer - Time Domain Reflectometry Comparative Study

    DOT National Transportation Integrated Search

    2004-12-01

    Four pairs of inclinometers and time domain reflectometry (TDR) cables were set up to make a side-by-side : comparison of the performance of these systems in detecting slippage of soils in the shoulders of State Route 124 : and State Route 338 in Mei...

  15. Inclinometer--time-domain reflectometry comparative study.

    DOT National Transportation Integrated Search

    2004-12-01

    Four pairs of inclinometers and time domain reflectometry (TDR) cables were set up to make a side-by-side : comparison of the performance of these systems in detecting slippage of soils in the shoulders of State Route 124 : and State Route 338 in Mei...

  16. Directly coupled vs conventional time domain reflectometry in soils

    USDA-ARS?s Scientific Manuscript database

    Time domain reflectometry (TDR), a technique for estimation of soil water, measures the travel time of an electromagnetic pulse on electrodes embedded in the soil, but has limited application in commercial agriculture due to costs, labor, and sensing depth. Conventional TDR systems have employed ana...

  17. Improved theory of time domain reflectometry with variable coaxial cable length for electrical conductivity measurements

    USDA-ARS?s Scientific Manuscript database

    Although empirical models have been developed previously, a mechanistic model is needed for estimating electrical conductivity (EC) using time domain reflectometry (TDR) with variable lengths of coaxial cable. The goals of this study are to: (1) derive a mechanistic model based on multisection tra...

  18. Water content measurement in forest soils and decayed wood using time domain reflectometry

    Treesearch

    Andrew Gray; Thomas Spies

    1995-01-01

    The use of time domain reflectometry to measure moisture content in forest soils and woody debris was evaluated. Calibrations were developed on undisturbed soil cores from four forest stands and on point samples from decayed logs. An algorithm for interpreting irregularly shaped traces generated by the reflectometer was also developed. Two different calibration...

  19. NASA Hybrid Reflectometer Project

    NASA Technical Reports Server (NTRS)

    Lynch, Dana; Mancini, Ron (Technical Monitor)

    2002-01-01

    Time-domain and frequency-domain reflectometry have been used for about forty years to locate opens and shorts in cables. Interpretation of reflectometry data is as much art as science. Is there information in the data that is being missed? Can the reflectometers be improved to allow us to detect and locate defects in cables that are not outright shorts or opens? The Hybrid Reflectometer Project was begun this year at NASA Ames Research Center, initially to model wire physics, simulating time-domain reflectometry (TDR) signals in those models and validating the models against actual TDR data taken on testbed cables. Theoretical models of reflectometry in wires will give us an understanding of the merits and limits of these techniques and will guide the application of a proposed hybrid reflectometer with the aim of enhancing reflectometer sensitivity to the point that wire defects can be detected. We will point out efforts by some other researchers to apply wire physics models to the problem of defect detection in wires and we will describe our own initial efforts to create wire physics models and report on testbed validation of the TDR simulations.

  20. Er:Yb phosphate glass laser with nonlinear absorber for phase-sensitive optical time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Zhirnov, A. A.; Pnev, A. B.; Svelto, C.; Norgia, M.; Pesatori, A.; Galzerano, G.; Laporta, P.; Shelestov, D. A.; Karasik, V. E.

    2017-11-01

    A novel laser for phase-sensitive optical time-domain reflectometry (Φ-OTDR) is presented. The advantages of a compact solid-state laser are listed, current problems are shown. Experiments with a microchip single-optical-element laser, from setup construction to usage in Φ-OTDR system, are presented. New laser scheme with two-photon intracavity absorber is suggested and its advantages are described.

  1. Determination of medium electrical properties through full-wave modelling of frequency domain reflectrometry data

    NASA Astrophysics Data System (ADS)

    André, Frédéric; Lambot, Sébastien

    2015-04-01

    Accurate knowledge of the shallow soil properties is of prime importance in agricultural, hydrological and environmental engineering. During the last decade, numerous geophysical techniques, either invasive or resorting to proximal or remote sensing, have been developed and applied for quantitative characterization of soil properties. Amongst them, time domain reflectrometry (TDR) and frequency domain reflectometry (FDR) are recognized as standard techniques for the determination of soil dielectric permittivity and electrical conductivity, based on the reflected electromagnetic waves from a probe inserted into the soil. TDR data were first commonly analyzed in the time domain using methods considering only a part of the waveform information. Later, advancements have led to the possibility of analyzing the TDR signal through full-wave inverse modeling either in the time or the frequency domains. A major advantage of FDR compared to TDR is the possibility to increase the bandwidth, thereby increasing the information content of the data and providing more detailed characterization of the medium. Amongst the recent works in this field, Minet et al. (2010) developed a modeling procedure for processing FDR data based on an exact solution of Maxwell's equations for wave propagation in one-dimensional multilayered media. In this approach, the probe head is decoupled from the medium and is fully described by characteristic transfer functions. The authors successfully validated the method for homogeneous sand subject to a range of water contents. In the present study, we further validated the modelling approach using reference liquids with well-characterized frequency-dependent electrical properties. In addition, the FDR model was coupled with a dielectric mixing model to investigate the ability of retrieving water content, pore water electrical conductivity and sand porosity from inversion of FDR data acquired in sand subject to different water content levels. Finally, the possibility of reconstructing the vertical profile of the properties by inversion of FDR data collected during progressive insertion of the probe into a vertically heterogeneous medium was also investigated. Index Terms: Frequency domain reflectrometry (FDR), frequency dependence, dielectric permittivity, electrical conductivity Reference: Minet J., Lambot S., Delaide G., Huisman J.A., Vereecken H., Vanclooster M., 2010. A generalized frequency domain reflectometry modeling technique for soil electrical properties determination. Vadose Zone Journal, 9: 1063-1072.

  2. Experimental Test of Coupled Wave Model of Large Coils

    DTIC Science & Technology

    1985-06-01

    46556 Abstract: Recent data from Time Domain Pulse Reflectometry experiments on a three turn coil in the form of a race track corroborate the...Domain Pulse Reflectometry experiments on a three turn coil in the form of a race track corroborate the theory of coupled wave model for large coils...Gabriel, "Coupled Wave Model for Large Magnet Coils", NASA Contractor Report 3332, National Aeronautics and Space Administration, Washington, DC

  3. Remote Strain Sensing of CFRP Using Microwave Frequency Domain Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote measurement of strain occurring at the first ply of a composite fiber reinforced polymer (CFRP) structure using Radio Frequency (RF) Electro-Magnetic (EM) radiation. While microwave reflectometry has been used to detect disbonds in CFRP structures, its use in detecting strain has been limited. This work will present data demonstrating the measurement of the reactance changes due to loading conditions that are indicative of strain in a CFRP structure. In addition, the basic EM signature will be presented along with an analysis of temperature and humidity effects.

  4. Applications of electromagnetic principles in the design and development of proximity wireless sensors

    NASA Astrophysics Data System (ADS)

    Alam, Md Nazmul

    Sensors and sensing system are playing dominant roles in monitoring the health of infrastructure, such as bridges, power lines, gas pipelines, rail roads etc. Sensing modalities employing Surface Acoustic Waves (SAW), Electromagnetic (EM) and optical have been investigated and reported. Sensors that utilize the perturbation of EM fields as function of the change in the physical structural or material phenomenon are of particular interest because of their inherent synergy with electronic system and diagnostic techniques, e.g. Time Domain Reflectometry (TDR), Joint-Time-Frequency-Domain-Reflectometry (JTFDR). The focus of this work is to study and develop new sensing and monitoring concepts that are based on EM principles. First, the analyses, design and development of a static electric field type sensor are presented for application in embedded concrete moisture content measurement. The analytical formulation and results based on conformal mapping method for an interdigitated sensor clearly show the dependency of the field penetration depth and the inter-electrode capacitance on the electrode sizes and their spacings. It is observed that larger electrode size and small separation are needed in order to achieve substantially higher capacitance or large field penetration depth. A meander and a circular sensor are fabricated and tested to demonstrate concrete moisture content measurements that show that moisture content is a linear function of sensor interelectrode capacitance. Second, sub-wavelength dimension non-intrusive wave launchers are designed and tested that can launch TDR or JTFDR type broadband surface wave waveforms in the VHF-UHF bands in order to detect cable faults. Greater than 3:1 transmission bandwidth (100-300 MHz) is obtained with a cylindrical launcher on square orthogonal ground plane while with a CSW launcher more than an octave (100-240 MHz) bandwidth is achieved. Open circuit faults are detected using surface waves and TDR on two XLPE cables. Third, a new mathematical method is developed that can be used to determine the changes in the dielectric constant of a cable insulating material. By comparing the experimental JTFDR waveform signatures from a new and an aged cable, it is demonstrated that the change in the average dielectric constant of the insulation material can be estimated from the phase transfer functions obtained from the FFT of measured magnitude and phase responses. The experimental data obtained for two types of cables, XLPE and EPR show that the dielectric constant decreases with accelerated aging. Finally, JTFDR surface wave sensing method is developed and applied to determine the locations of aging related insulation damage in power cables. The comparative power spectral responses of conducted and non-intrusive surface wave JTFDR waveforms clearly show the resulting bandwidth reduction in the latter primarily because of the reflective nature of the coupling. It is demonstrated that with the help of a non-intrusive wave launcher and a 120 MHz Gaussian chirp waveform the location of aging related insulation damages can be detected. Experiments conducted show the cross-correlation peaks at subsequent aging intervals as the cable is aged inside a heat chamber.

  5. Nd:YAG-laser-based time-domain reflectometry measurements of the intrinsic reflection signature from PMMA fiber splices

    NASA Astrophysics Data System (ADS)

    Lawson, Christopher M.; Michael, Robert R., Jr.; Dressel, Earl M.; Harmony, David W.

    1991-12-01

    Optical time domain reflectometry (OTDR) measurements have been performed on polished polymethylmethacrylate (PMMA) plastic fiber splices. After the dominant splice reflection sources due to surface roughness, inexact index matching, and fiber core misalignment were eliminated, an intrinsic OTDR signature 3 - 8 dB above the Rayleigh backscatter floor remained with all tested fibers. This minimum splice reflectivity exhibits characteristics that are consistent with sub-surface polymer damage and can be used for detection of PMMA fiber splices.

  6. The study of dielectric relaxation in aqueous carbohydrates solutions using time domain reflectometry technique

    NASA Astrophysics Data System (ADS)

    Hudge, Pravin G.; Lokhande, Milind P.; Kumbharkhane, Ashok C.

    2012-09-01

    Complex permittivity spectra of aqueous solutions of monosaccharide ( d-glucose) and disaccharides ( d-sucrose) in the frequency range from 10 MHz to 30 GHz at various concentrations and temperatures have been determined using time domain reflectometry technique. The complex dielectric permittivity spectrum of d-glucose and d-sucrose in water shows Cole-Davidson type behaviour. Dielectric constant (ɛ0) and relaxation time (τ), Kirkwood correlation factor, activation enthalpy and entropy parameters have been determined.

  7. High-resolution high-sensitivity and truly distributed optical frequency domain reflectometry for structural crack detection

    NASA Astrophysics Data System (ADS)

    Li, Wenhai; Bao, Xiaoyi; Chen, Liang

    2014-05-01

    Optical Frequency Domain Reflectometry (OFDR) with the use of polarization maintaining fiber (PMF) is capable of distinguishing strain and temperature, which is critical for successful field applications such as structural health monitoring (SHM) and smart material. Location-dependent measurement sensitivities along PMF are compensated by cross- and auto-correlations measurements of the spectra form a distributed parameter matrix. Simultaneous temperature and strain measurement accuracy of 1μstrain and 0.1°C is achieved with 2.5mm spatial resolution in over 180m range.

  8. Method and Apparatus for Monitoring the Integrity of a Geomembrane Liner using time Domain Reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, John L.

    1998-11-09

    Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.

  9. Method and apparatus for monitoring the integrity of a geomembrane liner using time domain reflectometry

    DOEpatents

    Morrison, John L [Idaho Falls, ID

    2001-04-24

    Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.

  10. Pinpointing chiral structures with front-back polarized neutron reflectometry.

    PubMed

    O'Donovan, K V; Borchers, J A; Majkrzak, C F; Hellwig, O; Fullerton, E E

    2002-02-11

    A new development in spin-polarized neutron reflectometry enables us to more fully characterize the nucleation and growth of buried domain walls in layered magnetic materials. We applied this technique to a thin-film exchange-spring magnet. After first measuring the reflectivity with the neutrons striking the front, we measure with the neutrons striking the back. Simultaneous fits are sensitive to the presence of spiral spin structures. The technique reveals previously unresolved features of field-dependent domain walls in exchange-spring systems and has sufficient generality to apply to a variety of magnetic systems.

  11. Field-programmable gate array-controlled sweep velocity-locked laser pulse generator

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-05-01

    A field-programmable gate array (FPGA)-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design based on an all-digital phase-locked loop (ADPLL) is proposed. A distributed feedback laser with modulated injection current was used as a swept-frequency laser source. An open-loop predistortion modulation waveform was calibrated using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then implemented using an FPGA to lock the output of a Mach-Zehnder interferometer that was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency-domain reflectometry system used to interrogate a subterahertz range fiber structure (sub-THz-FS) array. A static strain test was then conducted and linear sensor results were observed.

  12. Chaotic optical time-domain reflectometry using a distributed feedback laser diode modulated by an improved Colpitts oscillator

    NASA Astrophysics Data System (ADS)

    Li, Jing Xia; Xu, Hang; Liu, Li; Su, Peng Cheng; Zhang, Jian Guo

    2015-05-01

    We report a chaotic optical time-domain reflectometry for fiber fault location, where a chaotic probe signal is generated by driving a distributed feedback laser diode with an improved Colpitts chaotic oscillator. The results show that the unterminated fiber end, the loose connector, and the mismatch connector can be precisely located. A measurement range of approximately 91 km and a range independent resolution of 6 cm are achieved. This implementation method is easy to integrate and is cost effective, which gives it great potential for commercial applications.

  13. Dental optical coherence domain reflectometry explorer

    DOEpatents

    Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.

    2001-01-01

    A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.

  14. Reflectometry diagnostics on TCV

    NASA Astrophysics Data System (ADS)

    Molina Cabrera, Pedro; Coda, Stefano; Porte, Laurie; Offeddu, Nicola; Tcv Team

    2017-10-01

    Both profile reflectometer and Doppler back-scattering (DBS) diagnostics are being developed for the TCV Tokamak using a steerable quasi-optical launcher and universal polarizers. First results will be presented. A pulse reflectometer is being developed to complement Thomson Scattering measurements of electron density, greatly increasing temporal resolution and also effectively enabling fluctuation measurements. Pulse reflectometry consists of sending short pulses of varying frequency and measuring the roundtrip group-delay with precise chronometers. A fast arbitrary waveform generator is used as a pulse source feeding frequency multipliers that bring the pulses to V-band. A DBS diagnostic is currently operational in TCV. DBS may be used to infer the perpendicular velocity and wave number spectrum of electron density fluctuations in the 3-15 cm-1 wave-number range. Off-the-shelf transceiver modules, originally used for VNA measurements, are being used in a Doppler radar configuration. See author list of S. Coda et al., 2017 Nucl. Fusion 57 102011.

  15. Photonic microwave waveforms generation based on pulse carving and superposition in time-domain

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Jiang, Yang; Zi, Yuejiao; He, Yutong; Tian, Jing; Zhang, Xiaoyu; Luo, Hao; Dong, Ruyang

    2018-05-01

    A novel photonic approach for various microwave waveforms generation based on time-domain synthesis is theoretically analyzed and experimentally investigated. In this scheme, two single-drive Mach-Zehnder modulators are used for pulses shaping. After shifting the phase and implementing envelopes superposition of the pulses, desired waveforms can be achieved in time-domain. The theoretic analysis and simulations are presented. In the experimental demonstrations, a triangular waveform, square waveform, and half duty cycle sawtooth (or reversed-sawtooth) waveform are generated successfully. By utilizing time multiplexing technique, a frequency-doubled sawtooth (or reversed-sawtooth) waveform with 100% duty cycle can be obtained. In addition, a fundamental frequency sawtooth (or reversed-sawtooth) waveform with 100% duty cycle can also be achieved by the superposition of square waveform and frequency-doubled sawtooth waveform.

  16. Grating-assisted polarization optical time-domain reflectometry for distributed fiber-optic sensing.

    PubMed

    Han, Ming; Wang, Yunjing; Wang, Anbo

    2007-07-15

    We report a novel type of polarization optical time-domain reflectometry (POTDR) for fully distributed fiber-optic sensing, in which the reflected optical signal is from a series of fiber Bragg gratings that are uniformly distributed along the fiber. Compared with a conventional POTDR that uses the Rayleigh backscattering, this grating-assisted POTDR can have a much better signal-to-noise ratio and consequently a better measurement resolution and a larger measurement range of the fiber birefringence. Experimental results have shown that the measurement resolution of the grating-assisted POTDR is almost an order of magnitude better than that of a conventional POTDR.

  17. Waveform-based spaceborne GNSS-R wind speed observation: Demonstration and analysis using UK TechDemoSat-1 data

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Yang, Dongkai; Zhang, Bo; Li, Weiqiang

    2018-03-01

    This paper explores two types of mathematical functions to fit single- and full-frequency waveform of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R), respectively. The metrics of the waveforms, such as the noise floor, peak magnitude, mid-point position of the leading edge, leading edge slope and trailing edge slope, can be derived from the parameters of the proposed models. Because the quality of the UK TDS-1 data is not at the level required by remote sensing mission, the waveforms buried in noise or from ice/land are removed by defining peak-to-mean ratio, cosine similarity of the waveform before wind speed are retrieved. The single-parameter retrieval models are developed by comparing the peak magnitude, leading edge slope and trailing edge slope derived from the parameters of the proposed models with in situ wind speed from the ASCAT scatterometer. To improve the retrieval accuracy, three types of multi-parameter observations based on the principle component analysis (PCA), minimum variance (MV) estimator and Back Propagation (BP) network are implemented. The results indicate that compared to the best results of the single-parameter observation, the approaches based on the principle component analysis and minimum variance could not significantly improve retrieval accuracy, however, the BP networks obtain improvement with the RMSE of 2.55 m/s and 2.53 m/s for single- and full-frequency waveform, respectively.

  18. Detection and characterization of corrosion of bridge cables by time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Hunsperger, Robert G.; Folliard, Kevin; Chajes, Michael J.; Barot, Jignesh; Jhaveri, Darshan; Kunz, Eric

    1999-02-01

    In this paper, we develop and demonstrate a nondestructive evaluation technique for corrosion detection of embedded or encased steel cables. This technique utilizes time domain reflectometry (TDR), which has been traditionally used to detect electrical discontinuities in transmission lines. By applying a sensor wire along with the bridge cable, we can model the cable as an asymmetric, twin-conductor transmission line. Physical defects of the bridge cable will change the electromagnetic properties of the line and can be detected by TDR. Furthermore, different types of defects can be modeled analytically, and identified using TDR. TDR measurement results from several fabricated bridge cable sections with built-in defects are reported.

  19. Balanced PIN-TIA photoreceiver with integrated 3 dB fiber coupler for distributed fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Datta, Shubhashish; Rajagopalan, Sruti; Lemke, Shaun; Joshi, Abhay

    2014-06-01

    We report a balanced PIN-TIA photoreceiver integrated with a 3 dB fiber coupler for distributed fiber optic sensors. This detector demonstrates -3 dB bandwidth >15 GHz and coupled conversion gain >65 V/W per photodiode through either input port of the 3 dB coupler, and can be operated at local oscillator power of +17 dBm. The combined common mode rejection of the balanced photoreceiver and the integrated 3 dB coupler is >20 dB. We also present measurement results with various optical stimuli, namely impulses, sinusoids, and pseudo-random sequences, which are relevant for time domain reflectometry, frequency domain reflectometry, and code correlation sensors, respectively.

  20. Distributed fiber optical sensing of oxygen with optical time domain reflectometry.

    PubMed

    Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd

    2013-05-31

    In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements.

  1. Distributed Fiber Optical Sensing of Oxygen with Optical Time Domain Reflectometry

    PubMed Central

    Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd

    2013-01-01

    In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements. PMID:23727953

  2. Birefringence insensitive optical coherence domain reflectometry system

    DOEpatents

    Everett, Matthew J.; Davis, Joseph G.

    2002-01-01

    A birefringence insensitive fiber optic optical coherence domain reflectometry (OCDR) system is provided containing non-polarization maintaining (non-PM) fiber in the sample arm and the reference arm without suffering from signal degradation caused by birefringence. The use of non-PM fiber significantly reduces the cost of the OCDR system and provides a disposable or multiplexed section of the sample arm. The dispersion in the reference arm and sample arm of the OCDR system are matched to achieve high resolution imaging. This system is useful in medical applications or for non-medical in situ probes. The disposable section of non-PM fiber in the sample arm can be conveniently replaced when contaminated by a sample or a patient.

  3. Carbon Fiber TOW Angle Determination Using Microwave Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote inspection of angular orientation of the tow using microwave radiation. This work will present preliminary data demonstrating that frequency shifts in the reflection spectrum of a carbon fiber tow sample are indicative of the angle of the tow with respect to an interrogating antenna's linear polarized output.

  4. Phase-space topography characterization of nonlinear ultrasound waveforms.

    PubMed

    Dehghan-Niri, Ehsan; Al-Beer, Helem

    2018-03-01

    Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Investigation of the interpolation method to improve the distributed strain measurement accuracy in optical frequency domain reflectometry systems.

    PubMed

    Cui, Jiwen; Zhao, Shiyuan; Yang, Di; Ding, Zhenyang

    2018-02-20

    We use a spectrum interpolation technique to improve the distributed strain measurement accuracy in a Rayleigh-scatter-based optical frequency domain reflectometry sensing system. We demonstrate that strain accuracy is not limited by the "uncertainty principle" that exists in the time-frequency analysis. Different interpolation methods are investigated and used to improve the accuracy of peak position of the cross-correlation and, therefore, improve the accuracy of the strain. Interpolation implemented by padding zeros on one side of the windowed data in the spatial domain, before the inverse fast Fourier transform, is found to have the best accuracy. Using this method, the strain accuracy and resolution are both improved without decreasing the spatial resolution. The strain of 3 μϵ within the spatial resolution of 1 cm at the position of 21.4 m is distinguished, and the measurement uncertainty is 3.3 μϵ.

  6. Distributed strain measurement and possible breakage detection of optical-fiber-embedded composite structure using slope-assisted Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Lee, Heeyoung; Ochi, Yutaka; Matsui, Takahiro; Matsumoto, Yukihiro; Tanaka, Yosuke; Nakamura, Hitoshi; Mizuno, Yosuke; Nakamura, Kentaro

    2018-07-01

    Slope-assisted Brillouin optical correlation-domain reflectometry (SA-BOCDR) is a recently developed structural health monitoring technique for measurements of strain, temperature, and loss distributions along optical fibers. Although the basic operational principle of this method has been clarified, no measurements using optical fibers embedded in actual structures have been reported. As a first step towards such practical applications, in this study, we present an example of an SA-BOCDR-based diagnosis using a composite structure with carbon fiber-reinforced plastics. The system’s output agrees well with the actual strain distributions. We were also able to detect the breakage of the embedded fiber, thus demonstrating the promise of SA-BOCDR for practical applications.

  7. Detection of 2-mm-long strained section in silica fiber using slope-assisted Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Lee, Heeyoung; Mizuno, Yosuke; Nakamura, Kentaro

    2018-02-01

    Slope-assisted Brillouin optical correlation-domain reflectometry is a single-end-access distributed Brillouin sensing technique with high spatial resolution and high-speed operation. We have recently discovered its unique feature, that is, strained or heated sections even shorter than nominal resolution can be detected, but its detailed characterization has not been carried out. Here, after experimentally characterizing this “beyond-nominal-resolution” effect, we show its usefulness by demonstrating the detection of a 2-mm-long strained section along a silica fiber. We also demonstrate the detection of a 5-mm-long heated section along a polymer optical fiber. The lengths of these detected sections are smaller than those of the other demonstrations reported so far.

  8. Rapid updating of optical arbitrary waveforms via time-domain multiplexing.

    PubMed

    Scott, R P; Fontaine, N K; Yang, C; Geisler, D J; Okamoto, K; Heritage, J P; Yoo, S J B

    2008-05-15

    We demonstrate high-fidelity optical arbitrary waveform generation with 5 GHz waveform switching via time-domain multiplexing. Compact, integrated waveform shapers based on silica arrayed-waveguide grating pairs with 10 GHz channel spacing are used to shape (line-by-line) two different waveforms from the output of a 10-mode x 10 GHz optical frequency comb generator. Characterization of the time multiplexer's complex transfer function (amplitude and phase) by frequency-resolved optical gating permits compensation of its impact on the switched waveforms and matching of the measured and target waveforms to better than G'=5%.

  9. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review

    PubMed Central

    Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen

    2018-01-01

    Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on. PMID:29614024

  10. Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source.

    PubMed

    Wang, Zhaoyong; Pan, Zhengqing; Fang, Zujie; Ye, Qing; Lu, Bin; Cai, Haiwen; Qu, Ronghui

    2015-11-15

    A phase-sensitive optical time-domain reflectometry (Φ-OTDR) with a temporally sequenced multi-frequency (TSMF) source is proposed. This technique can improve the system detection bandwidth without the sensing range decreasing. Up to 0.5 MHz detection bandwidth over 9.6 km is experimentally demonstrated as an example. To the best of our knowledge, this is the first time that such a high detection bandwidth over such a long sensing range is reported in Φ-OTDR-based distributed vibration sensing. The technical issues of TSMF Φ-OTDR are discussed in this Letter. This technique will help Φ-OTDR find new important foreground in long-haul distributed broadband-detection applications, such as structural-health monitoring and partial-discharge online monitoring of high voltage power cables.

  11. Dielectric properties of benzylamine in 1,2,6-hexanetriol mixture using time domain reflectometry technique

    NASA Astrophysics Data System (ADS)

    Swami, M. B.; Hudge, P. G.; Pawar, V. P.

    The dielectric properties of binary mixtures of benzylamine-1,2,6-hexantriol mixtures at different volume fractions of 1,2,6-hexanetriol have been measured using Time Domain Reflectometry (TDR) technique in the frequency range of 10 MHz to 30 GHz. Complex permittivity spectra were fitted using Havriliak-Negami equation. By using least square fit method the dielectric parameters such as static dielectric constant (ɛ0), dielectric constant at high frequency (ɛ∞), relaxation time τ (ps) and relaxation distribution parameter (β) were extracted from complex permittivity spectra at 25∘C. The intramolecular interaction of different molecules has been discussed using the Kirkwood correlation factor, Bruggeman factor. The Kirkwood correlation factor (gf) and effective Kirkwood correlation factor (geff) indicate the dipole ordering of the binary mixtures.

  12. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review.

    PubMed

    Ding, Zhenyang; Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen

    2018-04-03

    Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.

  13. INNOVATIVE CONCEPTS FOR DETECTING AND LOCATING LEAKS IN WASTE IMPOUNDMENT LINER SYSTEMS: ACOUSTIC EMISSION MONITORING AND TIME DOMAIN REFLECTOMETRY

    EPA Science Inventory

    This project is part of a program to investigate the use of innovative techniques for detecting and locating leaks in waste impoundment liners. Laboratory and small scale field studies were undertaken to evaluate the potential of Acoustic Emission Monitoring (AEM) and Time Domain...

  14. Method for the measurement of forest duff moisture content

    Treesearch

    Peter R. Robichaud; Roger D. Hungerford; David S. Gasvoda

    2000-01-01

    An apparatus and method for the moisture content measurement of compressible materials using pressure to firmly hold surface probes against the material to be measured. The apparatus uses moisture measurement circuitry employed in frequency domain impedance or time domain reflectometry devices to obtain moisture content readings from materials. These moisture content...

  15. Apparatus and method for the measurement of forest duff moisture content

    Treesearch

    Peter R. Robichaud; Roger D. Hungerford; David S. Gasvoda

    1999-01-01

    An apparatus and method for the moisture content measurement of compressible materials using pressure to firmly hold surface probes against the marerial to be measured. The apparatus uses moisture measurement circuitry employed in frequency domain impedance or time domain reflectometry devices to obtain moisture content readings from materials. These moisture content...

  16. Model Based Inference for Wire Chafe Diagnostics

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan R.; Wheeler, Kevin R.; Timucin, Dogan A.; Wysocki, Philip F.; Kowalski, Marc Edward

    2009-01-01

    Presentation for Aging Aircraft conference covering chafing fault diagnostics using Time Domain Reflectometry. Laboratory setup and experimental methods are presented, along with initial results that summarize fault modeling and detection capabilities.

  17. Agricultural Geophysics

    USDA-ARS?s Scientific Manuscript database

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  18. Inclinometer--time-domain reflectometry comparative study : executive summary report.

    DOT National Transportation Integrated Search

    2004-10-01

    Slope stability is an ongoing issue in : hilly or mountainous terrains with clay : rich soil, constructed embankments, : fluctuating temperature, and changing : soil moisture conditions. Landslides : constitute a major geologic hazard, : occurring in...

  19. Inclinometer - Time Domain Reflectometry Comparative Study : Executive Summary Report

    DOT National Transportation Integrated Search

    2004-10-01

    Slope stability is an ongoing issue in : hilly or mountainous terrains with clay : rich soil, constructed embankments, : fluctuating temperature, and changing : soil moisture conditions. Landslides : constitute a major geologic hazard, : occurring in...

  20. Improved wavelength coded optical time domain reflectometry based on the optical switch.

    PubMed

    Zhu, Ninghua; Tong, Youwan; Chen, Wei; Wang, Sunlong; Sun, Wenhui; Liu, Jianguo

    2014-06-16

    This paper presents an improved wavelength coded time-domain reflectometry based on the 2 × 1 optical switch. In this scheme, in order to improve the signal-noise-ratio (SNR) of the beat signal, the improved system used an optical switch to obtain wavelength-stable, low-noise and narrow optical pulses for probe and reference. Experiments were set up to demonstrate a spatial resolution of 2.5m within a range of 70km and obtain the beat signal with line width narrower than 15 MHz within a range of 50 km in fiber break detection. A system for wavelength-division-multiplexing passive optical network (WDM-PON) monitoring was also constructed to detect the fiber break of different channels by tuning the current applied on the gating section of the distributed Bragg reflector (DBR) laser.

  1. LTPP Computed Parameter: Moisture Content

    DOT National Transportation Integrated Search

    2008-01-01

    A study was conducted to compute in situ soil parameters based on time domain reflectometry (TDR) traces obtained from Long Term Pavement Performance (LTPP) test sections instrumented for the seasonal monitoring program (SMP). Ten TDR sensors were in...

  2. Simulation of reflectometry Bragg backscattering spectral responses in the absence of a cutoff layer.

    PubMed

    da Silva, F; da Graça, S; Heuraux, S; Conway, G D

    2010-10-01

    Experimental reflectometry signals obtained in the absence of a cutoff layer, with the possibility of interferometric operation excluded, show a coherent and recurrent frequency spectrum signature similar to an Alfvén cascade signature. A possible explanation resides in the modulation of a resonant Bragg backscattering response by an Alfvén mode structure located at the center of the plasma whose frequency of oscillation modulates the backscattered signal in a conformable way. This situation is modeled and simulated using an O-mode full-wave Maxwell finite-difference time-domain code and the resulting signatures are discussed.

  3. Active Time Domain Reflectometry for Tamper Indication in Unattended Safeguards Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Smith, Leon E.; Tedeschi, Jonathan R.

    2015-07-14

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. In collaboration with the IAEA, tamper-indicating measures to address data-transmission authentication challenges with unattended safeguards systems are under investigation. Pacific Northwest National Laboratory is studying the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commerciallymore » available spread-spectrum TDR technology as one option for field implementation. This paper describes the TDR methods under investigation and the associated benchtop test-bed, tampering scenarios of interest,, and viability measurement results to date (e.g., comparison of relative sensitivity to tamper scenarios).« less

  4. Measurement of the acoustic response of a wind instrument with application to bore reconstruction

    NASA Astrophysics Data System (ADS)

    van Walstijn, Maarten; Campbell, Murray

    2002-11-01

    Reconstruction of a bore from measured acoustic response data has been shown to be very useful in studying wind instruments. Such data may be obtained in different ways; directly measuring the frequency-domain response of an acoustic bore has some distinct advantages over directly measuring time-domain data (for example, by pulse reflectometry), but so far has been unsuitable for producing input data for deterministic bore reconstruction algorithms, due to the limited accuracy at high frequencies. In this paper a method is presented for large-bandwidth measurement of the input impedance of a wind instrument using a cylindrical measurement head with multiple wall-mounted microphones. The influence of the number of microphones and the types of calibration impedance on the accuracy will be discussed, and bore reconstructions derived using this technique will be compared with reconstructions obtained using pulse reflectometry. [Work supported by EPSRC.

  5. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 < W X ≤ 0.7) in water. There are different models to explain the dielectric relaxation behaviour of binary mixtures, such as Debye, Cole-Cole or Cole-Davidson model. We have observed that the dielectric relaxation behaviour of binary mixtures of xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  6. A PC based time domain reflectometer for space station cable fault isolation

    NASA Technical Reports Server (NTRS)

    Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken

    1994-01-01

    Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).

  7. Rapid screening of fatty acid alkyl esters in olive oils by time domain reflectometry.

    PubMed

    Berardinelli, Annachiara; Ragni, Luigi; Bendini, Alessandra; Valli, Enrico; Conte, Lanfranco; Guarnieri, Adriano; Toschi, Tullia Gallina

    2013-11-20

    The main aim of the present research is to assess the possibility of quickly screening fatty acid alkyl esters (FAAE) in olive oils using time domain reflectometry (TDR) and partial least-squares (PLS) multivariate statistical analysis. Eighteen virgin olive oil samples with fatty acid alkyl ester contents and fatty acid ethyl ester/methyl ester ratios (FAEE/FAME) ranging from 3 to 100 mg kg(-1) and from 0.3 to 2.6, respectively, were submitted to tests with time domain resolution of 1 ps. The results obtained in test set validation demonstrated that this new and fast analytical approach is able to predict FAME, FAEE, and FAME + FAEE contents with R(2) values of 0.905, 0.923, and 0.927, respectively. Further measurements on mixtures between olive oil and FAAE standards confirmed that the prediction is based on a direct influence of fatty acid alkyl esters on the TDR signal. The suggested technique appeared potentially suitable for monitoring one of the most important quality attribute of the olive oil in the extraction process.

  8. Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry.

    PubMed

    Lu, Xin; Soto, Marcelo A; Thévenaz, Luc

    2017-07-10

    A method based on coherent Rayleigh scattering distinctly evaluating temperature and strain is proposed and experimentally demonstrated for distributed optical fiber sensing. Combining conventional phase-sensitive optical time-domain domain reflectometry (ϕOTDR) and ϕOTDR-based birefringence measurements, independent distributed temperature and strain profiles are obtained along a polarization-maintaining fiber. A theoretical analysis, supported by experimental data, indicates that the proposed system for temperature-strain discrimination is intrinsically better conditioned than an equivalent existing approach that combines classical Brillouin sensing with Brillouin dynamic gratings. This is due to the higher sensitivity of coherent Rayleigh scatting compared to Brillouin scattering, thus offering better performance and lower temperature-strain uncertainties in the discrimination. Compared to the Brillouin-based approach, the ϕOTDR-based system here proposed requires access to only one fiber-end, and a much simpler experimental layout. Experimental results validate the full discrimination of temperature and strain along a 100 m-long elliptical-core polarization-maintaining fiber with measurement uncertainties of ~40 mK and ~0.5 με, respectively. These values agree very well with the theoretically expected measurand resolutions.

  9. Field evaluations of "ShapeAccelArray" in-place MEMS inclinometer strings for subsurface deformation monitoring.

    DOT National Transportation Integrated Search

    2012-03-01

    Continuous monitoring of subsurface ground movements is accomplished with in-place instruments utilizing automated data acquisition methods. These typically include TDR (Time Domain Reflectometry) or assemblies of several servo-accelerometer-based, e...

  10. Long term pavement performance computed parameter : moisture content

    DOT National Transportation Integrated Search

    2008-01-01

    A study was conducted to compute in situ soil parameters based on time domain reflectometry (TDR) traces obtained from Long Term Pavement Performance (LTPP) test sections instrumented for the seasonal monitoring program (SMP). Ten TDR sensors were in...

  11. Full waveform inversion in the frequency domain using classified time-domain residual wavefields

    NASA Astrophysics Data System (ADS)

    Son, Woohyun; Koo, Nam-Hyung; Kim, Byoung-Yeop; Lee, Ho-Young; Joo, Yonghwan

    2017-04-01

    We perform the acoustic full waveform inversion in the frequency domain using residual wavefields that have been separated in the time domain. We sort the residual wavefields in the time domain according to the order of absolute amplitudes. Then, the residual wavefields are separated into several groups in the time domain. To analyze the characteristics of the residual wavefields, we compare the residual wavefields of conventional method with those of our residual separation method. From the residual analysis, the amplitude spectrum obtained from the trace before separation appears to have little energy at the lower frequency bands. However, the amplitude spectrum obtained from our strategy is regularized by the separation process, which means that the low-frequency components are emphasized. Therefore, our method helps to emphasize low-frequency components of residual wavefields. Then, we generate the frequency-domain residual wavefields by taking the Fourier transform of the separated time-domain residual wavefields. With these wavefields, we perform the gradient-based full waveform inversion in the frequency domain using back-propagation technique. Through a comparison of gradient directions, we confirm that our separation method can better describe the sub-salt image than the conventional approach. The proposed method is tested on the SEG/EAGE salt-dome model. The inversion results show that our algorithm is better than the conventional gradient based waveform inversion in the frequency domain, especially for deeper parts of the velocity model.

  12. Shielded-Twisted-Pair Cable Model for Chafe Fault Detection via Time-Domain Reflectometry

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.

    2012-01-01

    This report details the development, verification, and validation of an innovative physics-based model of electrical signal propagation through shielded-twisted-pair cable, which is commonly found on aircraft and offers an ideal proving ground for detection of small holes in a shield well before catastrophic damage occurs. The accuracy of this model is verified through numerical electromagnetic simulations using a commercially available software tool. The model is shown to be representative of more realistic (analytically intractable) cable configurations as well. A probabilistic framework is developed for validating the model accuracy with reflectometry data obtained from real aircraft-grade cables chafed in the laboratory.

  13. Measuring the Moisture Content of Green Wood Using Time Domain Reflectometry

    Treesearch

    Laurence Schimleck; Kim Love-Myers; Joe Sanders; Heath Raybon; Richard Daniels; Jerry Mahon; Edward Andrews; Erik Schilling

    2011-01-01

    The responsible usage of water by facilities that rely on wet log storage in the southern United States has become an issue of great importance as restrictions on water usage have grown in recent years. In order to learn about the dynamics of moisture content in wet-stored logs over time, it is necessary to conduct continuous monitoring of log piles. Time domain...

  14. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2006-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital one's or zero's. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental physical laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  15. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2004-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital ONEs or ZEROs. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental natural laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  16. Frequency-domain gravitational waveform models for inspiraling binary neutron stars

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kyohei; Kiuchi, Kenta; Kyutoku, Koutarou; Sekiguchi, Yuichiro; Shibata, Masaru; Taniguchi, Keisuke

    2018-02-01

    We develop a model for frequency-domain gravitational waveforms from inspiraling binary neutron stars. Our waveform model is calibrated by comparison with hybrid waveforms constructed from our latest high-precision numerical-relativity waveforms and the SEOBNRv2T waveforms in the frequency range of 10-1000 Hz. We show that the phase difference between our waveform model and the hybrid waveforms is always smaller than 0.1 rad for the binary tidal deformability Λ ˜ in the range 300 ≲Λ ˜ ≲1900 and for a mass ratio between 0.73 and 1. We show that, for 10-1000 Hz, the distinguishability for the signal-to-noise ratio ≲50 and the mismatch between our waveform model and the hybrid waveforms are always smaller than 0.25 and 1.1 ×10-5 , respectively. The systematic error of our waveform model in the measurement of Λ ˜ is always smaller than 20 with respect to the hybrid waveforms for 300 ≲Λ ˜≲1900 . The statistical error in the measurement of binary parameters is computed employing our waveform model, and we obtain results consistent with the previous studies. We show that the systematic error of our waveform model is always smaller than 20% (typically smaller than 10%) of the statistical error for events with a signal-to-noise ratio of 50.

  17. New optical frequency domain differential mode delay measurement method for a multimode optical fiber.

    PubMed

    Ahn, T; Moon, S; Youk, Y; Jung, Y; Oh, K; Kim, D

    2005-05-30

    A novel mode analysis method and differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.

  18. Frequency-domain ultrasound waveform tomography breast attenuation imaging

    NASA Astrophysics Data System (ADS)

    Sandhu, Gursharan Yash Singh; Li, Cuiping; Roy, Olivier; West, Erik; Montgomery, Katelyn; Boone, Michael; Duric, Neb

    2016-04-01

    Ultrasound waveform tomography techniques have shown promising results for the visualization and characterization of breast disease. By using frequency-domain waveform tomography techniques and a gradient descent algorithm, we have previously reconstructed the sound speed distributions of breasts of varying densities with different types of breast disease including benign and malignant lesions. By allowing the sound speed to have an imaginary component, we can model the intrinsic attenuation of a medium. We can similarly recover the imaginary component of the velocity and thus the attenuation. In this paper, we will briefly review ultrasound waveform tomography techniques, discuss attenuation and its relations to the imaginary component of the sound speed, and provide both numerical and ex vivo examples of waveform tomography attenuation reconstructions.

  19. Building professional capacity in ITS : guidelines on developing the future professional

    DOT National Transportation Integrated Search

    1999-07-01

    Time domain reflectometry (TDR) has become one of the most reliable methods for measuring in-situ soil moisture content. TDR sensors developed by the Federal Highway Administration (FHWA) are being used in the Long-Term Pavement Performance (LTPP) Se...

  20. Analysis of time domain reflectometry data from LTPP seasonal monitoring program test sections

    DOT National Transportation Integrated Search

    1996-07-01

    This report documents an approach for designing an Advanced Traffic Management System (ATMS) from a human factors perspective. In designing the ATMS from a human factors perspective, a user-centered top-down system analysis was conducted. Methodologi...

  1. Platform for Postprocessing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Don

    2008-01-01

    Taking advantage of the similarities that exist among all waveform-based non-destructive evaluation (NDE) methods, a common software platform has been developed containing multiple- signal and image-processing techniques for waveforms and images. The NASA NDE Signal and Image Processing software has been developed using the latest versions of LabVIEW, and its associated Advanced Signal Processing and Vision Toolkits. The software is useable on a PC with Windows XP and Windows Vista. The software has been designed with a commercial grade interface in which two main windows, Waveform Window and Image Window, are displayed if the user chooses a waveform file to display. Within these two main windows, most actions are chosen through logically conceived run-time menus. The Waveform Window has plots for both the raw time-domain waves and their frequency- domain transformations (fast Fourier transform and power spectral density). The Image Window shows the C-scan image formed from information of the time-domain waveform (such as peak amplitude) or its frequency-domain transformation at each scan location. The user also has the ability to open an image, or series of images, or a simple set of X-Y paired data set in text format. Each of the Waveform and Image Windows contains menus from which to perform many user actions. An option exists to use raw waves obtained directly from scan, or waves after deconvolution if system wave response is provided. Two types of deconvolution, time-based subtraction or inverse-filter, can be performed to arrive at a deconvolved wave set. Additionally, the menu on the Waveform Window allows preprocessing of waveforms prior to image formation, scaling and display of waveforms, formation of different types of images (including non-standard types such as velocity), gating of portions of waves prior to image formation, and several other miscellaneous and specialized operations. The menu available on the Image Window allows many further image processing and analysis operations, some of which are found in commercially-available image-processing software programs (such as Adobe Photoshop), and some that are not (removing outliers, Bscan information, region-of-interest analysis, line profiles, and precision feature measurements).

  2. Laplace-domain waveform modeling and inversion for the 3D acoustic-elastic coupled media

    NASA Astrophysics Data System (ADS)

    Shin, Jungkyun; Shin, Changsoo; Calandra, Henri

    2016-06-01

    Laplace-domain waveform inversion reconstructs long-wavelength subsurface models by using the zero-frequency component of damped seismic signals. Despite the computational advantages of Laplace-domain waveform inversion over conventional frequency-domain waveform inversion, an acoustic assumption and an iterative matrix solver have been used to invert 3D marine datasets to mitigate the intensive computing cost. In this study, we develop a Laplace-domain waveform modeling and inversion algorithm for 3D acoustic-elastic coupled media by using a parallel sparse direct solver library (MUltifrontal Massively Parallel Solver, MUMPS). We precisely simulate a real marine environment by coupling the 3D acoustic and elastic wave equations with the proper boundary condition at the fluid-solid interface. In addition, we can extract the elastic properties of the Earth below the sea bottom from the recorded acoustic pressure datasets. As a matrix solver, the parallel sparse direct solver is used to factorize the non-symmetric impedance matrix in a distributed memory architecture and rapidly solve the wave field for a number of shots by using the lower and upper matrix factors. Using both synthetic datasets and real datasets obtained by a 3D wide azimuth survey, the long-wavelength component of the P-wave and S-wave velocity models is reconstructed and the proposed modeling and inversion algorithm are verified. A cluster of 80 CPU cores is used for this study.

  3. Wavelet-Based Processing for Fiber Optic Sensing Systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J. (Inventor); Parker, Allen R., Jr. (Inventor)

    2016-01-01

    The present invention is an improved method of processing conglomerate data. The method employs a Triband Wavelet Transform that decomposes and decimates the conglomerate signal to obtain a final result. The invention may be employed to improve performance of Optical Frequency Domain Reflectometry systems.

  4. Pilot study on rugged fiber optic brillouin sensors for large-strain measurements to ensure the safety of transportation structures.

    DOT National Transportation Integrated Search

    2012-07-01

    Brillouin-scattering Optical Time Domain Reflectometry (BOTDR) is a viable technology for simultaneous, distributed : strain and temperature measurements for miles-long transportation structures. It is a promising tool to ensure the smooth : operatio...

  5. Novel Use of Time Domain Reflectometry in Infiltration-based Low Impact Development Practices

    EPA Science Inventory

    Low impact development (LID) practices are structures that intercept stormwater runoff and infiltrate it through a range of media types, including aggregate, rain garden media, and underlying soils. Hydrologic performance is typically evaluated by comparing inlet and underdrain o...

  6. Phase-detected Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro

    2018-05-01

    Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.

  7. Time-Domain Reflectometry for Tamper Indication in Unattended Monitoring Systems for Safeguards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedeschi, Jonathan R.; Smith, Leon E.; Moore, David E.

    2014-12-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended, remotely monitored measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Pacific Northwest National Laboratory (PNNL) leads a collaboration that is exploring various tamper-indicating (TI) measures that could help to address some of the long-standing detector and data-transmission authentication challenges with IAEA’s unattended systems. PNNL is investigating the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory goldmore » standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s progress and preliminary findings from the first year of the study, and describes the path forward.« less

  8. Microwave dielectric study of an oligomeric electrolyte gelator by time domain reflectometry.

    PubMed

    Kundu, Shyamal Kumar; Yagihara, Shin; Yoshida, Masaru; Shibayama, Mitsuhiro

    2009-07-30

    The dynamics of water molecules in aqueous solutions of an oligomeric electrolyte gelator, poly[pyridinium-1,4-diyliminocarbonyl-1,4-phenylene-methylene chloride] (1-Cl) was characterized by microwave dielectric measurements using the time domain reflectometry method. The dielectric dispersion and absorption curves related to the orientational motion of water molecules were described by the Cole-Cole equation. Discontinuities were observed in the concentration dependence of the dielectric relaxation strength, Deltaepsilonh, as well as in the Cole-Cole parameter, betah. These discontinuities were observed between the samples with concentrations of 6 and 7 g/L 1-Cl/water, which correspond to a change in the transparency. Such a discontinuity corresponds to the observation of the critical concentration of gelation. The interaction between water and 1-Cl molecules was discussed from the tauh-betah diagram. As 1-Cl carries an amide group, it could be expected that 1-Cl may interact hydrophilically with water, but the present result suggests that 1-Cl interact hydrophobically with water.

  9. Phase-detected Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro

    2018-06-01

    Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.

  10. Frequency Domain Reflectometry Modeling and Measurement for Nondestructive Evaluation of Nuclear Power Plant Cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.; Jones, Anthony M.

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and NDE is conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locatemore » and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. This work examines a physics-based model of a cable system and relates it to FDR measurements for a better understanding of specific damage influences on defect detectability.« less

  11. Catheter guided by optical coherence domain reflectometry

    DOEpatents

    Everett, Matthew; Colston, Billy W.; Da Silva, Luiz B.; Matthews, Dennis

    2002-01-01

    A guidance and viewing system based on multiplexed optical coherence domain reflectometry is incorporated into a catheter, endoscope, or other medical device to measure the location, thickness, and structure of the arterial walls or other intra-cavity regions at discrete points on the medical device during minimally invasive medical procedures. The information will be used both to guide the device through the body and to evaluate the tissue through which the device is being passed. Multiple optical fibers are situated along the circumference of the device. Light from the distal end of each fiber is directed onto the interior cavity walls via small diameter optics (such as gradient index lenses and mirrored corner cubes). Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers and multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The system may also be implemented in a nonmedical inspection device.

  12. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses.

    PubMed

    Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei

    2016-11-28

    We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

  13. Chirped-pulse coherent-OTDR with predistortion

    NASA Astrophysics Data System (ADS)

    Xiong, Ji; Jiang, Jialin; Wu, Yue; Chen, Yongxiang; Xie, Lianlian; Fu, Yun; Wang, Zinan

    2018-03-01

    In this paper, a novel method for generating high-quality chirped pulses with IQ modulator is studied theoretically and experimentally, which is a crucial building block for high-performance coherent optical time-domain reflectometry (COTDR). In order to compensate the nonlinearity of the modulator transfer function, we present a predistortion technique for chirped-pulse coherent optical time-domain reflectometry (CP-COTDR), the arcsin predistortion method and the single sideband with a suppressed carrier analog modulation used to generate the high quality chirped optical pulse. The high order sidebands, due to the large amplitude of the modulation signal and the nonlinear transfer function of the IQ modulator, can be relieved by the predistortion process, which means the power and the quality of the generated chirped pulse has been improved. In the experiment, this method increases the peak power of the chirped pulse by 4.2 dB compared to the case without predistortion process, as for the CP-COTDR system, this method increases the signal-to-noise ratio of the demodulated phase variation by 6.3 dB.

  14. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers.

    PubMed

    Parent, Francois; Loranger, Sebastien; Mandal, Koushik Kanti; Iezzi, Victor Lambin; Lapointe, Jerome; Boisvert, Jean-Sébastien; Baiad, Mohamed Diaa; Kadoury, Samuel; Kashyap, Raman

    2017-04-01

    We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.

  15. Sub-Nyquist Sampling and Moire-Like Waveform Distortions

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2000-01-01

    Investigations of aliasing effects in digital waveform sampling have revealed the existence of a mathematical field and a pseudo-alias domain lying to the left of a "Nyquist line" in a plane defining the boundary between two domains of sampling. To the right of the line lies the classic alias domain. For signals band-limited below the Nyquist limit, displayed output may show a false modulation envelope. The effect occurs whenever the sample rate and the signal frequency are related by ratios of mutually prime integers. Belying the principal of a 10:1 sampling ratio being "good enough", this distortion easily occurs in graphed one-dimensional waveforms and two-dimensional images and occurs daily on television.

  16. Nondestructive evaluation of composite materials by pulsed time domain methods in imbedded optical fibers

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Bennett, K. D.; Jackson, B. S.

    1986-01-01

    The application of fiber-optical time domain reflectometry (OTDR) to nondestructive quantitative measurements of distributed internal strain in graphite-epoxy composites, using optical fiber waveguides imbedded between plies, is discussed. The basic OTDR measurement system is described, together with the methods used to imbed optical fibers within composites. Measurement results, system limitations, and the effect of the imbedded fiber on the integrity of the host composite material are considered.

  17. The use of recycled concrete aggregate in a dense graded aggregate base course.

    DOT National Transportation Integrated Search

    2008-03-01

    The research project was broken up into 2 different parts. The first part involved evaluating the potential use of the Time : Domain Reflectometry, TDR (ASTM D6780), as a non-nuclear means for determining the dry density and moisture content of : gra...

  18. Effects of Multiple Crimps and Cable Length on Reflection Signatures from Long Cables

    DOT National Transportation Integrated Search

    2002-03-19

    The accuracy of time domain reflectometry (TDR) measurements of rock shearing with cable lengths greater than 60 m has not been adequately documented. This paper presents the results of controlled crimping and shearing of a 530 m long, 22.2mm diamete...

  19. Numerical results for near surface time domain electromagnetic exploration: a full waveform approach

    NASA Astrophysics Data System (ADS)

    Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.

    2015-12-01

    Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two layered models with half sine current waveform as examples. We find the on time responses are quite sensitive to resistivity or depth changes. The results show the potential use of full waveform responses in time domain electromagnetic surveys.

  20. Edge Triggered Apparatus and Method for Measuring Strain in Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Froggatt, Mark E. (Inventor)

    2003-01-01

    An apparatus and method for measuring strain of gratings written into an optical fiber. Optical radiation is transmitted over one or more contiguous predetermined wavelength ranges into a reference optical fiber network and an optical fiber network under test to produce a plurality of reference interference fringes and measurement interference fringes, respectively. The reference and measurement fringes are detected, and the reference fringes trigger the sampling of the measurement fringes. This results in the measurement fringes being sampled at 2(pi) increments of the reference fringes. Each sampled measurement fringe of each wavelength sweep is transformed into a spatial domain waveform. The spatial domain waveforms are summed to form a summation spatial domain waveform that is used to determine location of each grating with respect to a reference reflector. A portion of each spatial domain waveform that corresponds to a particular grating is determined and transformed into a corresponding frequency spectrum representation. The strain on the grating at each wavelength of optical radiation is determined by determining the difference between the current wavelength and an earlier, zero-strain wavelength measurement.

  1. Calibration and Use of B Dot Probes for Electromagnetic Measuring

    DTIC Science & Technology

    1977-08-09

    response. E. Time Domain Reflectometry Measurements Pulse impedance measurements for the 1.75-in. diameter double-gap probe design were first performed...Far Field (Radiation) Patterns of a B Dot Probe 1. Anechoic Chamber The facility utilized for the probe patterns was the NASA 120-ft chamber at

  2. Rome Air Development Center Air Force Technical Objective Document FY88

    DTIC Science & Technology

    1986-12-01

    resistant fiber ontic links. flotical time domain reflectometry , refractive index nrofiling, exhaustive measurements and analysis, and optical fi her cable...application. This technology ma/ be directly applied to other mission applications as has been shown by both NASA and the US Navy. A major thrust of the Al

  3. Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment

    EPA Science Inventory

    Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...

  4. Profiling soil water content sensor

    USDA-ARS?s Scientific Manuscript database

    A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...

  5. Design of access-tube TDR sensor for soil water content: Theory

    USDA-ARS?s Scientific Manuscript database

    The design of a cylindrical access-tube mounted waveguide was developed for in-situ soil water content sensing using time-domain reflectometry (TDR). To optimize the design with respect to sampling volume and losses, we derived the electromagnetic fields produced by a TDR sensor with cylindrical geo...

  6. Short, multi-needle FDR sensor suitable for measuring soil water content

    USDA-ARS?s Scientific Manuscript database

    Time domain reflectometry (TDR) is a well-established electromagnetic technique used to measure soil water content. TDR sensors have been combined with heat pulse sensors to produce thermo-TDR sensors. Thermo-TDR sensors are restricted to having relatively short needles in order to accurately measur...

  7. A complex permittivity model for field estimation of soil water contents using time domain reflectometry

    USDA-ARS?s Scientific Manuscript database

    Accurate electromagnetic sensing of soil water contents (') under field conditions is complicated by the dependence of permittivity on specific surface area, temperature, and apparent electrical conductivity, all which may vary across space or time. We present a physically-based mixing model to pred...

  8. Selected nursery projects at the Missoula Technology and Development Center

    Treesearch

    Brian Vachowski

    2007-01-01

    The USDA Forest Service Missoula Technology and Development Center (MTDC) offers technical expertise, technology transfer, and new equipment development to federal, state, and private forest nurseries. Current and recently completed projects at MTDC include a container block steam sterilizer, shielded herbicide sprayer, time-domain reflectometry (TDR) nursery soil...

  9. Electromagnetic Inverse Problems Involving Distributions of Dielectric Mechanisms and Parameters

    DTIC Science & Technology

    2005-08-17

    0220 and in part by the National Institute of Aerospace (NIA) and NASA under grant NIA/NCSU-03-01-2536-NC. The authors would like to thank Dr. Richard...Albanese of the AFRL, Brooks AFB, and Dr. William P. Winfree, NASA Langley Research Center, for their valuable comments and suggestions during the...foods investigated by time-domain reflectometry , J. Food Science 68 (2003), 1396-1403. [46] P.G. Petropoulos, On the time-domain response of Cole-Cole

  10. SNR and Standard Deviation of cGNSS-R and iGNSS-R Scatterometric Measurements.

    PubMed

    Alonso-Arroyo, Alberto; Querol, Jorge; Lopez-Martinez, Carlos; Zavorotny, Valery U; Park, Hyuk; Pascual, Daniel; Onrubia, Raul; Camps, Adriano

    2017-01-19

    This work addresses the accuracy of the Global Navigation Satellite Systems (GNSS)-Reflectometry (GNSS-R) scatterometric measurements considering the presence of both coherent and incoherent scattered components, for both conventional GNSS-R (cGNSS-R) and interferometric GNSS-R (iGNSS-R) techniques. The coherent component is present for some type of surfaces, and it has been neglected until now because it vanishes for the sea surface scattering case. Taking into account the presence of both scattering components, the estimated Signal-to-Noise Ratio (SNR) for both techniques is computed based on the detectability criterion, as it is done in conventional GNSS applications. The non-coherent averaging operation is considered from a general point of view, taking into account that thermal noise contributions can be reduced by an extra factor of 0.88 dB when using partially overlapped or partially correlated samples. After the SNRs are derived, the received waveform's peak variability is computed, which determines the system's capability to measure geophysical parameters. This theoretical derivations are applied to the United Kingdom (UK) TechDemoSat-1 (UK TDS-1) and to the future GNSS REflectometry, Radio Occultation and Scatterometry on board the International Space Station (ISS) (GEROS-ISS) scenarios, in order to estimate the expected scatterometric performance of both missions.

  11. Design and field tests of a directly coupled waveguide-on-access-tube soil water sensor

    USDA-ARS?s Scientific Manuscript database

    Sensor systems capable of monitoring soil water content can provide a useful tool for irrigation control. Current systems are limited by installation depth, labor, accuracy, and cost. Time domain reflectometry (TDR) is an approach for monitoring soil water content that relates the travel time of an ...

  12. Design and testing of access-tube TDR soil water sensor

    USDA-ARS?s Scientific Manuscript database

    We developed the design of a waveguide on the exterior of an access tube for use in time-domain reflectometry (TDR) for in-situ soil water content sensing. In order to optimize the design with respect to sampling volume and losses, we derived the electromagnetic (EM) fields produced by a TDR sensor...

  13. Field performance of three real-time moisture sensors in sandy loam and clay loam soils

    USDA-ARS?s Scientific Manuscript database

    The study was conducted to evaluate HydraProbe (HyP), Campbell Time Domain Reflectometry (TDR) and Watermarks (WM) moisture sensors for their ability to estimate water content based on calibrated neutron probe measurements. The three sensors were in-situ tested under natural weather conditions over ...

  14. Feasibility of using cone penetrometer truck (CPT) to install time domain reflectometry (TDR) and fiber optic slope failure detectors in pavement structures.

    DOT National Transportation Integrated Search

    2011-02-01

    A new method of cable installation using a heavy-duty Cone Penetration Test : (CPT) truck was developed and practiced successfully in this study. The coaxial and fiber : optic cables were pushed along with the cone rods by the hydraulic system integr...

  15. A TWO-PROBE METHOD FOR MEASURING WATER CONTENT OF THIN FOREST FLOOR LITTER LAYERS USING TIME DOMAIN REFLECTOMETRY

    EPA Science Inventory

    Few methods exist that allow non-destructive in situ measurement of the water content of forest floor litter layers (Oa,Oe, and Oi horizons). Continuous non-destructive measurement is needed in studies of ecosystem processes because of the relationship between physical structure ...

  16. Enhanced ν-optical time domain reflectometry using gigahertz sinusoidally gated InGaAs/InP single-photon avalanche detector

    NASA Astrophysics Data System (ADS)

    Zhang, Xuping; Shi, Yuanlei; Shan, Yuanyuan; Sun, Zhenhong; Qiao, Weiyan; Zhang, Yixin

    2016-09-01

    Optical time domain reflectometry (OTDR) is one of the most successful diagnostic tools for nondestructive attenuation measurement of a fiber link. To achieve better sensitivity, spatial resolution, and avoid dead-zone in conversional OTDR, a single-photon detector has been introduced to form the photon-counting OTDR (ν-OTDR). We have proposed a ν-OTDR system using a gigahertz sinusoidally gated InGaAs/InP single-photon avalanche detector (SPAD). Benefiting from the superior performance of a sinusoidal gated SPAD on dark count probability, gating frequency, and gate duration, our ν-OTDR system has achieved a dynamic range (DR) of 33.4 dB with 1 μs probe pulse width after an equivalent measurement time of 51 s. This obtainable DR corresponds to a sensing length over 150 km. Our system has also obtained a spatial resolution of 5 cm at the end of a 5-km standard single-mode fiber. By employing a sinusoidal gating technique, we have improved the ν-OTDR spatial resolution and significantly reduced the measurement time.

  17. Effect of temperature, high pressure and freezing/thawing of dry-cured ham slices on dielectric time domain reflectometry response.

    PubMed

    Rubio-Celorio, Marc; Garcia-Gil, Núria; Gou, Pere; Arnau, Jacint; Fulladosa, Elena

    2015-02-01

    Dielectric Time Domain Reflectometry (TDR) is a useful technique for the characterization and classification of dry-cured ham according to its composition. However, changes in the behavior of dielectric properties may occur depending on environmental factors and processing. The effect of temperature, high pressure (HP) and freezing/thawing of dry-cured ham slices on the obtained TDR curves and on the predictions of salt and water contents when using previously developed predictive models, was evaluated in three independent experiments. The results showed that at temperatures below 20 °C there is an increase of the predicted salt content error, being more important in samples with higher water content. HP treatment caused a decrease of the reflected signal intensity due to the major mobility of available ions promoting an increase of the predicted salt content. Freezing/thawing treatment caused an increase of the reflected signal intensity due to the microstructural damages and the loss of water and ions, promoting a decrease of the predicted salt content.

  18. Numerical Modelling of Electromagnetic Wave Propagation and Scattering: High-Order Schemes, Impedance Boundary Conditions and Cole-Cole Dielectrics

    DTIC Science & Technology

    2004-09-12

    Time-Domain Reflectometry (TDR) experiment could serve as a means to determine the most appropriate frequency-domain model for the data at hand. Time...CO. Title: "A review of the perfectly matched layer ABC and some new results." August 2002: NASA Langley Research Center (ICASE), Hampton, VA. Title...ICASE, NASA Langley Research Center, Hamp- ton, VA. July-August 2002. 4. Organized a mini-symposium at the May 2004 Frontiers in Applied and Computational

  19. A Simple and Efficient Computational Approach to Chafed Cable Time-Domain Reflectometry Signature Prediction

    NASA Technical Reports Server (NTRS)

    Kowalski, Marc Edward

    2009-01-01

    A method for the prediction of time-domain signatures of chafed coaxial cables is presented. The method is quasi-static in nature, and is thus efficient enough to be included in inference and inversion routines. Unlike previous models proposed, no restriction on the geometry or size of the chafe is required in the present approach. The model is validated and its speed is illustrated via comparison to simulations from a commercial, three-dimensional electromagnetic simulator.

  20. Full waveform time domain solutions for source and induced magnetotelluric and controlled-source electromagnetic fields using quasi-equivalent time domain decomposition and GPU parallelization

    NASA Astrophysics Data System (ADS)

    Imamura, N.; Schultz, A.

    2015-12-01

    Recently, a full waveform time domain solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations of non-zero wavenumber, the ability to operate in areas of high levels of source signal spatial complexity and non-stationarity, etc. This goal would not be obtainable if one were to adopt the finite difference time-domain (FDTD) approach for the forward problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across the large frequency bandwidth. It means that for FDTD simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a linear system that is computationally burdensome to solve. We have implemented our code that addresses this situation through the use of a fictitious wave domain method and GPUs to speed up the computation time. We also substantially reduce the size of the linear systems by applying concepts from successive cascade decimation, through quasi-equivalent time domain decomposition. By combining these refinements, we have made good progress toward implementing the core of a full waveform joint source field/earth conductivity inverse modeling method. From results, we found the use of previous generation of CPU/GPU speeds computations by an order of magnitude over a parallel CPU only approach. In part, this arises from the use of the quasi-equivalent time domain decomposition, which shrinks the size of the linear system dramatically.

  1. Efficient calculation of full waveform time domain inversion for electromagnetic problem using fictitious wave domain method and cascade decimation decomposition

    NASA Astrophysics Data System (ADS)

    Imamura, N.; Schultz, A.

    2016-12-01

    Recently, a full waveform time domain inverse solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion to solve simultaneously for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations, the ability to operate in areas of high levels of source signal spatial complexity, and non-stationarity. This goal would not be obtainable if one were to adopt the pure time domain solution for the inverse problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across a large frequency bandwidth. This means that for the forward simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a sensitivity matrix that is computationally burdensome to solve a model update. We have implemented a code that addresses this situation through the use of cascade decimation decomposition to reduce the size of the sensitivity matrix substantially, through quasi-equivalent time domain decomposition. We also use a fictitious wave domain method to speed up computation time of the forward simulation in the time domain. By combining these refinements, we have developed a full waveform joint source field/earth conductivity inverse modeling method. We found that cascade decimation speeds computations of the sensitivity matrices dramatically, keeping the solution close to that of the undecimated case. For example, for a model discretized into 2.6x105 cells, we obtain model updates in less than 1 hour on a 4U rack-mounted workgroup Linux server, which is a practical computational time for the inverse problem.

  2. Detection of tunnel excavation using fiber optic reflectometry: experimental validation

    NASA Astrophysics Data System (ADS)

    Linker, Raphael; Klar, Assaf

    2013-06-01

    Cross-border smuggling tunnels enable unmonitored movement of people and goods, and pose a severe threat to homeland security. In recent years, we have been working on the development of a system based on fiber- optic Brillouin time domain reflectometry (BOTDR) for detecting tunnel excavation. In two previous SPIE publications we have reported the initial development of the system as well as its validation using small-scale experiments. This paper reports, for the first time, results of full-scale experiments and discusses the system performance. The results confirm that distributed measurement of strain profiles in fiber cables buried at shallow depth enable detection of tunnel excavation, and by proper data processing, these measurements enable precise localization of the tunnel, as well as reasonable estimation of its depth.

  3. Time-dependent phase error correction using digital waveform synthesis

    DOEpatents

    Doerry, Armin W.; Buskirk, Stephen

    2017-10-10

    The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.

  4. Massive gas insufflation without effect on esophageal reflectometry profiles

    NASA Astrophysics Data System (ADS)

    Raphael, David T.; Arnaudov, Dimiter; Benbassat, Maxim

    2003-10-01

    Time-domain acoustic reflectometry generates a ``one-dimensional'' image of the interior of a cavity in the form of an area-distance profile. After patient intubation with a breathing tube, the characteristic reflectometry profile consists of a constant-area segment corresponding to the length of the tube, followed either by a rapid increase in the area beyond the carina (lung) or by a sudden decrease in the area to zero (esophagus). In the cardiac arrest setting, during mistaken placement of the breathing tube into the esophagus, followed by aggressive manual ventilation, is it possible to markedly distend the esophagus, such that the esophageal profile looks like a tracheal profile? With approval of the USC IUCAC Committee, an animal study was conducted with anesthetized, tracheally intubated, and mechanically ventilated dogs. With a separate breathing tube in the esophagus, aggressive esophageal ventilation (comparable to that seen in the cardiopulmonary resuscitation setting) was accomplished with a manual resuscitation bag. A Benson Hood Labs two-microphone reflectometer was used to obtain esophageal profiles with and without the above ventilation. In this pilot study, there was no significant esophageal distention as a result of the above ventilation. [Research supported by the Alfred E. Mann Institute.

  5. Added value products for imaging remote sensing by processing actual GNSS reflectometry delay doppler maps

    NASA Astrophysics Data System (ADS)

    Schiavulli, Domenico; Frappart, Frédéric; Ramilien, Guillaume; Darrozes, José; Nunziata, Ferdinando; Migliaccio, Maurizio

    2016-04-01

    Global Navigation Satellite System Reflectometry (GNSS-R) is an innovative and promising tool for remote sensing. It is based on the exploitation of GNSS signals reflected off Earth's surface as signals of opportunity to infer geophysical information of the reflecting surface. The main advantages of GNSS-R with respect dedicated sensors are: the unprecedented spatial-temporal coverage due to the availability of a great amount of transmitting satellite, e.g. GPS, Galileo, Glonass, etc…, long term GNSS mission life and cost effectiveness. In fact only a simple receiver is needed. In the last years several works demonstrated the meaningful of this technique in several Earth Observation applications. All these applications presented results obtained by using a receiver mounted on an aircraft or on a fixed platform. Moreover, space borne missions have been launched or are planned: UK-DMC, TechDemoSat-1 (TDS-1), NASA CYGNSS, Geros ISS. Practically, GNSS-R can be seen as a bistatic radar system where the GNSS satellites continuously transmit the L-band all-weather night-and-day signals that are reflected off a surface, called Glistening Zone (GZ), and a receiver measures the scattered microwave signals in terms of Delay-Doppler maps (DDMs) or delay waveforms. These two products have been widely studied in the literature to extract compact parameters for different remote sensing applications. However, products measured in the Delay Doppler (DD) domain are not able to provide any spatial information of the scattering scene. This could represent a drawback for applications related to imaging remote sensing, e.g. target detection, sea/land and sea/ice transition, oil spill detection, etc…. To overcome these limitations some deconvolution techniques have been proposed in the state of the art aiming at the reconstruction of a radar image of the observed scene by processing the measured DDMs. These techniques have been tested on DDMs related to simulated marine scenario including areas with different wind speed, oil spill, non-homogeneous area and cyclone. In this work a deconvolution technique based on the 2-D Truncated Singular Value Decomposition (TSVD) approach is used to process, for the first time, a real DDM measured by the TDS-1 mission to generate a radar image of the observed scene. The considered DDMs are related to marine scenario including non-homogenous area, i.e. sea/land and sea/ice transition. These non-homogeneous area provide a strong scattering contribution in the DD domain but it is not possible to extract any other information by analyzing the DDM. In the other hand, after the 2-D TSVD technique application a radar image of the observed scenario is provided where the transition between sea and non-homogeneous elements is reconstructed and well located in the spatial domain. Finally, in this work we demonstrate the soundness of the proposed approach able to provide an added value product for imaging remote sensing to improve/complement dedicated sensors.

  6. Optical wet steam monitor

    DOEpatents

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  7. Optical wet steam monitor

    DOEpatents

    Maxey, Lonnie C.; Simpson, Marc L.

    1995-01-01

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  8. Frequency-domain elastic full waveform inversion using encoded simultaneous sources

    NASA Astrophysics Data System (ADS)

    Jeong, W.; Son, W.; Pyun, S.; Min, D.

    2011-12-01

    Currently, numerous studies have endeavored to develop robust full waveform inversion and migration algorithms. These processes require enormous computational costs, because of the number of sources in the survey. To avoid this problem, the phase encoding technique for prestack migration was proposed by Romero (2000) and Krebs et al. (2009) proposed the encoded simultaneous-source inversion technique in the time domain. On the other hand, Ben-Hadj-Ali et al. (2011) demonstrated the robustness of the frequency-domain full waveform inversion with simultaneous sources for noisy data changing the source assembling. Although several studies on simultaneous-source inversion tried to estimate P- wave velocity based on the acoustic wave equation, seismic migration and waveform inversion based on the elastic wave equations are required to obtain more reliable subsurface information. In this study, we propose a 2-D frequency-domain elastic full waveform inversion technique using phase encoding methods. In our algorithm, the random phase encoding method is employed to calculate the gradients of the elastic parameters, source signature estimation and the diagonal entries of approximate Hessian matrix. The crosstalk for the estimated source signature and the diagonal entries of approximate Hessian matrix are suppressed with iteration as for the gradients. Our 2-D frequency-domain elastic waveform inversion algorithm is composed using the back-propagation technique and the conjugate-gradient method. Source signature is estimated using the full Newton method. We compare the simultaneous-source inversion with the conventional waveform inversion for synthetic data sets of the Marmousi-2 model. The inverted results obtained by simultaneous sources are comparable to those obtained by individual sources, and source signature is successfully estimated in simultaneous source technique. Comparing the inverted results using the pseudo Hessian matrix with previous inversion results provided by the approximate Hessian matrix, it is noted that the latter are better than the former for deeper parts of the model. This work was financially supported by the Brain Korea 21 project of Energy System Engineering, by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0006155), by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2010T100200133).

  9. Simultaneous optical fibre strain and temperature measurements in a hybrid distributed sensor based on Rayleigh and Raman scatteringYjdjvj

    NASA Astrophysics Data System (ADS)

    Gorshkov, B. G.; Taranov, M. A.

    2018-02-01

    A new type of sensor for simultaneous measurements of strain and temperature changes in an optical fibre is proposed. Its operation builds on the use of Raman optical time-domain reflectometry and wavelength-tunable quasi-monochromatic Rayleigh reflectometry implemented using a microelectromechanical filter (MEMS). The sensor configuration includes independent Raman and Rayleigh scattering channels. Our experiments have demonstrated that, at a sensing fibre length near 8 km, spatial resolution of 1-2 m, and measurement time of 10 min, the noise level (standard deviation) is 1.1 μɛ (μm m-1) for the measured tension change (at small temperature deviations) and 0.04 °C for the measured temperature change, which allows for effective sensing of mechanical and temperature influences with improved accuracy.

  10. Time-domain full waveform inversion using instantaneous phase information with damping

    NASA Astrophysics Data System (ADS)

    Luo, Jingrui; Wu, Ru-Shan; Gao, Fuchun

    2018-06-01

    In time domain, the instantaneous phase can be obtained from the complex seismic trace using Hilbert transform. The instantaneous phase information has great potential in overcoming the local minima problem and improving the result of full waveform inversion. However, the phase wrapping problem, which comes from numerical calculation, prevents its application. In order to avoid the phase wrapping problem, we choose to use the exponential phase combined with the damping method, which gives instantaneous phase-based multi-stage inversion. We construct the objective functions based on the exponential instantaneous phase, and also derive the corresponding gradient operators. Conventional full waveform inversion and the instantaneous phase-based inversion are compared with numerical examples, which indicates that in the case without low frequency information in seismic data, our method is an effective and efficient approach for initial model construction for full waveform inversion.

  11. Assessment of GPS Reflectometry from TechDemoSat-1 for Scatterometry and Altimetry Applications

    NASA Astrophysics Data System (ADS)

    Shah, R.; Hajj, G. A.

    2015-12-01

    The value of GPS reflectometry for scatterometry and altimetry applications has been a topic of investigation for the past two decades. TechDemoSat-1 (TDS-1), a technology demonstration satellite launched in July of 2014, with an instrument to collect GPS reflections from 4 GPS satellites simultaneously, provide the first extensive data that allows for validation and evaluation of GPS reflectometry from space against more established techniques. TDS-1 uses a high gain (~13 dBi) L1 antenna pointing 6 degrees off nadir with a 60ohalf-beam width. Reflected GPS L1 signals are processed into Delay Doppler Maps (DDMs) inside the receiver and made available (through Level-1b) along with metadata describing the bistatic geometry, antenna gain, etc., on a second-by-second basis for each of the 4 GPS tracks recorded at any given time. In this paper we examine level-1b data from TDS-1 for thousands of tracks collected over the span of Jan.-Feb., 2015. This data corresponds to reflections from various types of surfaces throughout the globe including ice, deserts, forests, oceans, lakes, wetlands, etc. Our analysis will consider how the surface type manifests itself in the DDMs (e.g., coherence vs. non-coherence reflection) and derivable physical quantities. We will consider questions regarding footprint resolution, waveform rise time and corresponding bistatic range accuracy, and level of precision for altimetry (sea surface height) and scatterometry (significant wave height and sea surface wind). Tracks from TDS-1 that coincide with Jason-1 or 2 tracks will be analyzed, where the latter can be used as truth for comparison and validation. Where coincidences are found, vertical delay introduced by the media as measured by Jason will be mapped to bistatic propagation path to correct for neutral atmospheric and ionospheric delays.

  12. Impact Damage Detection of Toughened CFRP Laminates with Time Domain Reflectometry

    DTIC Science & Technology

    2013-01-30

    detect damage of the CFRP structures. 3. Experiments Material used for the experiments is IM600/133 highly toughened CFRP prepreg produced by Toho...Tenux Co. Ltd. The long specimen shown in Fig. 5 is made from the prepreg . The cure condition is 180°C×0.7MPa×2h. The specimen’s stacking sequence

  13. 2-μm optical time domain reflectometry measurements from novel Al-, Ge-, CaAlSi- doped and standard single-mode fibers

    NASA Astrophysics Data System (ADS)

    Rodriguez-Novelo, J. C.; Sanchez-Nieves, J. A.; Sierra-Calderon, A.; Sanchez-Lara, R.; Alvarez-Chavez, J. A.

    2017-08-01

    The development of novel Al-, Ge- doped and un-doped standard single mode fibers for future optical communication at 2μm requires the integration of, among other pieces of equipment, an optical time domain reflectometry (OTDR) technique for precise spectral attenuation characterization, including the well-known cut-back method. The integration of a state of the art OTDR at 2μm could provide valuable attenuation information from the aforementioned novel fibers. The proposed setup consists of a 1.7 mW, 1960nm pump source, a 30 dB gain Thulium doped fibre amplifier at 2μm, an 0.8mm focal length lens with a 0.5 NA, a 30 MHz acusto-optic modulator, a 3.1 focal length lens with a 0.68NA, an optical circulator at 2μm, an InGaAs photodetector for 1.2 nm-2.6 nm range, a voltage amplifier and an oscilloscope. The propagated pulse rate is 50 KHz, with 500 ns, 200 ns, 100 ns and 50 ns pulse widths. Attenuation versus novel fibers types for lengths ranging from 400- to 1000- meter samples were obtained using the proposed setup.

  14. Time domain reflectometry measured moisture content of sewage sludge compost across temperatures.

    PubMed

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Liu, Hong-Tao; Chen, Jun; Zheng, Guo-Di

    2013-01-01

    Time domain reflectometry (TDR) is a prospective measurement technology for moisture content of sewage sludge composting material; however, a significant dependence upon temperature has been observed. The objective of this study was to assess the impacts of temperature upon moisture content measurement and determine if TDR could be used to monitor moisture content in sewage sludge compost across a range of temperatures. We also investigated the combined effects of temperature and conductivity on moisture content measurement. The results revealed that the moisture content of composting material could be determined by TDR using coated probes, even when the measured material had a moisture content of 0.581 cm(3)cm(-3), temperature of 70°C and conductivity of 4.32 mS cm(-1). TDR probes were calibrated as a function of dielectric properties that included temperature effects. When the bulk temperature varied from 20°C to 70°C, composting material with 0.10-0.70 cm(3)cm(-3) moisture content could be measured by TDR using coated probes, and calibrations based on different temperatures minimized the errors. Copyright © 2012. Published by Elsevier Ltd.

  15. Active Time-Domain Reflectometry for Unattended Safeguards Systems: FY16 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedeschi, Jonathan R.; Smith, Leon E.; Conrad, Ryan C.

    2016-10-21

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Traditional data security measures, for example tamper-indicating (TI) conduit, are impractical for the long separation distances (often 100 meters or more) between unattended monitoring system (UMS) components. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) for the detection of cable tampering in unattended radiation detection systems. The instrument concept under investigation would allow formore » unmanned cable integrity measurements, remote surveillance reporting and locating of cable faults and/or tampers. This report describes PNNL’s FY16 progress and includes: an overview of the TDR methods under investigation; description of the TDR evaluation testbed developed by PNNL; development and testing of advanced signal processing algorithms to extract weak signals from relatively high noise levels; and initial testing of a laboratory prototype intended for IAEA UMS applications and based on a commercially available TDR module. Preliminary viability findings and recommendations for the next stage of development and testing are provided.« less

  16. Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates

    NASA Astrophysics Data System (ADS)

    Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.

    2016-10-01

    Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.

  17. Field Measurements and Numerical Simulations of Temperature and Moisture in Highway Engineering Using a Frequency Domain Reflectometry Sensor.

    PubMed

    Yao, Yong-Sheng; Zheng, Jian-Long; Chen, Zeng-Shun; Zhang, Jun-Hui; Li, Yong

    2016-06-10

    This paper presents a systematic pioneering study on the use of agricultural-purpose frequency domain reflectometry (FDR) sensors to monitor temperature and moisture of a subgrade in highway extension and reconstruction engineering. The principle of agricultural-purpose FDR sensors and the process for embedding this kind of sensors for subgrade engineering purposes are introduced. Based on field measured weather data, a numerical analysis model for temperature and moisture content in the subgrade's soil is built. Comparisons of the temperature and moisture data obtained from numerical simulation and FDR-based measurements are conducted. The results show that: (1) the embedding method and process, data acquisition, and remote transmission presented are reasonable; (2) the temperature and moisture changes are coordinated with the atmospheric environment and they are also in close agreement with numerical calculations; (3) the change laws of both are consistent at positions where the subgrade is compacted uniformly. These results suggest that the data measured by the agricultural-purpose FDR sensors are reliable. The findings of this paper enable a new and effective real-time monitoring method for a subgrade's temperature and moisture changes, and thus broaden the application of agricultural-purpose FDR sensors.

  18. High-resolution differential mode delay measurement for a multimode optical fiber using a modified optical frequency domain reflectometer.

    PubMed

    Ahn, T-J; Kim, D

    2005-10-03

    A novel differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry (OFDR) has been proposed. We have obtained a high-resolution DMD value of 0.054 ps/m for a commercial multimode optical fiber with length of 50 m by using a modified OFDR in a Mach-Zehnder interferometer structure with a tunable external cavity laser and a Mach-Zehnder interferometer instead of Michelson interferometer. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method. DMD resolution with our proposed OFDR technique is more than an order of magnitude better than a result obtainable with a conventional time-domain method.

  19. Detection of sinkholes or anomalies using full seismic wave fields.

    DOT National Transportation Integrated Search

    2013-04-01

    This research presents an application of two-dimensional (2-D) time-domain waveform tomography for detection of embedded sinkholes and anomalies. The measured seismic surface wave fields were inverted using a full waveform inversion (FWI) technique, ...

  20. Adaptive waveform optimization design for target detection in cognitive radar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Wang, Kaizhi; Liu, Xingzhao

    2017-01-01

    The problem of adaptive waveform design for target detection in cognitive radar (CR) is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended target with unknown target impulse response (TIR). In order to estimate the TIR accurately, the Kalman filter is used in target tracking. In each Kalman filtering iteration, a flexible online waveform spectrum optimization design taking both detection and range resolution into account is modeled in Fourier domain. Unlike existing CR waveform, the proposed waveform can be simultaneously updated according to the environment information fed back by receiver and radar performance demands. Moreover, the influence of waveform spectral phase to radar performance is analyzed. Simulation results demonstrate that CR with the proposed waveform performs better than a traditional radar system with a fixed waveform and offers more flexibility and suitability. In addition, waveform spectral phase will not influence tracking, detection, and range resolution performance but will greatly influence waveform forming speed and peak-to-average power ratio.

  1. EDDIE Seismology: Introductory spectral analysis for undergraduates

    NASA Astrophysics Data System (ADS)

    Soule, D. C.; Gougis, R.; O'Reilly, C.

    2016-12-01

    We present a spectral seismology lesson in which students use spectral analysis to describe the frequency of seismic arrivals based on a conceptual presentation of waveforms and filters. The goal is for students to surpass basic waveform terminology and relate a time domain signals to their conjugates in the frequency domain. Although seismology instruction commonly engages students in analysis of authentic seismological data, this is less true for lower-level undergraduate seismology instruction due to coding barriers to many seismological analysis tasks. To address this, our module uses Seismic Canvas (Kroeger, 2015; https://seiscode.iris.washington.edu/projects/seismiccanvas), a graphically interactive application for accessing, viewing and analyzing waveform data, which we use to plot earthquake data in the time domain. Once students are familiarized with the general components of the waveform (i.e. frequency, wavelength, amplitude and period), they use Seismic Canvas to transform the data into the frequency domain. Bypassing the mathematics of Fourier Series allows focus on conceptual understanding by plotting and manipulating seismic data in both time and frequency domains. Pre/post-tests showed significant improvements in students' use of seismograms and spectrograms to estimate the frequency content of the primary wave, which demonstrated students' understanding of frequency and how data on the spectrogram and seismogram are related. Students were also able to identify the time and frequency of the largest amplitude arrival, indicating understanding of amplitude and use of a spectrogram as an analysis tool. Students were also asked to compare plots of raw data and the same data filtered with a high-pass filter, and identify the filter used to create the second plot. Students demonstrated an improved understanding of how frequency content can be removed from a signal in the spectral domain.

  2. CORRTEX Diagnostic Deployment for the SPE-III experiment, 24 July 2012: Fielding Report and Preliminary Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, Thomas D.; Schultz-Fellenz, Emily S.

    2012-08-29

    The Continuous Reflectometry for Radius vs Time Experiments (CORRTEX) diagnostic system was deployed for the third explosives test in the Source Physics Experiment (SPE) sequence to monitor and verify several conditions of the experiment including the detonation velocity of the explosive package and functioning of explosive initiators. Six distance-marked coaxial cables were installed on the SPE-III explosives canister, and key locations documented through along-cable length measurements and photography. CORRTEX uses electrical-pulse time-domain reflectometry to continuously record the two-way transit time (TWTT) of the cables. As the shock front of the detonation advances, the coaxial cable is shorted or destroyed, andmore » the resulting TWTT also decreases. Interpretation of these changes as a function of TWTT can be converted to positional measurements using known parameters of the cables.« less

  3. Measuring optical fiber length by use of a short-pulse optical fiber ring laser in a self-injection seeding scheme.

    PubMed

    Wang, Yi-Ping; Wang, Dong Ning; Jin, Wei

    2006-09-01

    A method for measuring the length of an optical fiber by use of an optical fiber ring laser pulse source is proposed and demonstrated. The key element of the optical fiber ring laser is a gain-switched Fabry-Perot laser diode operated in a self-injection seeding scheme. This method is especially suitable for measuring a medium or long fiber, and a resolution of 0.1 m is experimentally achieved. The measurement is implemented by accurately determining the pulse frequency that can maximize the output power of the fiber ring laser. The measurement results depend only on the refractive index of the fiber corresponding to this single wavelength, instead of the group index of the fiber, which represents a great advantage over both optical time-domain reflectometry and optical low-coherence reflectometry methods.

  4. Distributed sensor for water and pH measurements using fiber optics and swellable polymeric systems

    NASA Astrophysics Data System (ADS)

    Michie, W. C.; Culshaw, B.; McKenzie, I.; Konstantakis, M.; Graham, N. B.; Moran, C.; Santos, F.; Bergqvist, E.; Carlstrom, B.

    1995-01-01

    We report on the design, construction and test of a generic form of sensor for making distributed measurements of a range of chemical parameters. The technique combines optical time-domain reflectometry with chemically sensitive water-swellable polymers (hydrogels). Initial experiments have concentrated on demonstrating a distributed water detector; however, gels have been developed that enable this sensor to be

  5. Salvus: A scalable software suite for full-waveform modelling & inversion

    NASA Astrophysics Data System (ADS)

    Afanasiev, M.; Boehm, C.; van Driel, M.; Krischer, L.; Fichtner, A.

    2017-12-01

    Full-waveform inversion (FWI), whether at the lab, exploration, or planetary scale, requires the cooperation of five principal components. (1) The geometry of the domain needs to be properly discretized and an initial guess of the model parameters must be projected onto it; (2) Large volumes of recorded waveform data must be collected, organized, and processed; (3) Synthetic waveform data must be efficiently and accurately computed through complex domains; (4) Suitable misfit functions and optimization techniques must be used to relate discrepancies in data space to perturbations in the model; and (5) Some form of workflow management must be employed to schedule and run (1) - (4) in the correct order. Each one of these components can represent a formidable technical challenge which redirects energy from the true task at hand: using FWI to extract new information about some underlying continuum.In this presentation we give an overview of the current status of the Salvus software suite, which was introduced to address the challenges listed above. Specifically, we touch on (1) salvus_mesher, which eases the discretization of complex Earth models into hexahedral meshes; (2) salvus_seismo, which integrates with LASIF and ObsPy to streamline the processing and preparation of seismic data; (3) salvus_wave, a high-performance and scalable spectral-element solver capable of simulating waveforms through general unstructured 2- and 3-D domains, and (4) salvus_opt, an optimization toolbox specifically designed for full-waveform inverse problems. Tying everything together, we also discuss (5) salvus_flow: a workflow package designed to orchestrate and manage the rest of the suite. It is our hope that these developments represent a step towards the automation of large-scale seismic waveform inversion, while also lowering the barrier of entry for new applications. We include several examples of Salvus' use in (extra-) planetary seismology, non-destructive testing, and medical imaging.

  6. Possible applications of time domain reflectometry in planetary exploration missions

    NASA Technical Reports Server (NTRS)

    Heckendorn, S.

    1982-01-01

    The use of a time domain reflectometer (TDR) for planetary exploration is considered. Determination of the apparent dielectric constant and hence, the volumetric water content of frozen and unfrozen soils using the TDR is described. Earth-based tests were performed on a New York state sandy soil and a Wyoming Bentonite. Use of both a cylindrical coaxial transmission line and a parallel transmission line as probes was evaluated. The water content of the soils was varied and the apparent dielectric constant measured in both frozen and unfrozen states. Advantages and disadvantages of the technique are discussed.

  7. Extracting Low-Frequency Information from Time Attenuation in Elastic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong

    2017-03-01

    Low-frequency information is crucial for recovering background velocity, but the lack of low-frequency information in field data makes inversion impractical without accurate initial models. Laplace-Fourier domain waveform inversion can recover a smooth model from real data without low-frequency information, which can be used for subsequent inversion as an ideal starting model. In general, it also starts with low frequencies and includes higher frequencies at later inversion stages, while the difference is that its ultralow frequency information comes from the Laplace-Fourier domain. Meanwhile, a direct implementation of the Laplace-transformed wavefield using frequency domain inversion is also very convenient. However, because broad frequency bands are often used in the pure time domain waveform inversion, it is difficult to extract the wavefields dominated by low frequencies in this case. In this paper, low-frequency components are constructed by introducing time attenuation into the recorded residuals, and the rest of the method is identical to the traditional time domain inversion. Time windowing and frequency filtering are also applied to mitigate the ambiguity of the inverse problem. Therefore, we can start at low frequencies and to move to higher frequencies. The experiment shows that the proposed method can achieve a good inversion result in the presence of a linear initial model and records without low-frequency information.

  8. Full-wave modeling of the time domain reflectometry signal in wetted sandy soils using a random microstructure discretization: Comparison with experiments

    NASA Astrophysics Data System (ADS)

    Rejiba, F.; Sagnard, F.; Schamper, C.

    2011-07-01

    Time domain reflectometry (TDR) is a proven, nondestructive method for the measurement of the permittivity and electrical conductivity of soils, using electromagnetic (EM) waves. Standard interpretation of TDR data leads to the estimation of the soil's equivalent electromagnetic properties since the wavelengths associated with the source signal are considerably greater than the microstructure of the soil. The aforementioned approximation tends to hide an important issue: the influence of the microstructure and phase configuration in the generation of a polarized electric field, which is complicated because of the presence of numerous length scales. In this paper, the influence of the microstructural distribution of each phase on the TDR signal has been studied. We propose a two-step EM modeling technique at a microscale range (?): first, we define an equivalent grain including a thin shell of free water, and second, we solve Maxwell's equations over the discretized, statistically distributed triphasic porous medium. Modeling of the TDR probe with the soil sample was performed using a three-dimensional finite difference time domain scheme. The effectiveness of this hybrid homogenization approach is tested on unsaturated Nemours sand with narrow granulometric fractions. The comparisons made between numerical and experimental results are promising, despite significant assumptions concerning (1) the TDR probe head and the coaxial cable and (2) the assumed effective medium theory homogenization associated with the electromagnetic processes arising locally between the liquid and solid phases at the grain scale.

  9. Basic analysis of reflectometry data software package for the analysis of multilayered structures according to reflectometry data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astaf'ev, S. B., E-mail: bard@ns.crys.ras.ru; Shchedrin, B. M.; Yanusova, L. G.

    2012-01-15

    The main principles of developing the Basic Analysis of Reflectometry Data (BARD) software package, which is aimed at obtaining a unified (standardized) tool for analyzing the structure of thin multilayer films and nanostructures of different nature based on reflectometry data, are considered. This software package contains both traditionally used procedures for processing reflectometry data and the authors' original developments on the basis of new methods for carrying out and analyzing reflectometry experiments. The structure of the package, its functional possibilities, examples of application, and prospects of development are reviewed.

  10. A square wave is the most efficient and reliable waveform for resonant actuation of micro switches

    NASA Astrophysics Data System (ADS)

    Ben Sassi, S.; Khater, M. E.; Najar, F.; Abdel-Rahman, E. M.

    2018-05-01

    This paper investigates efficient actuation methods of shunt MEMS switches and other parallel-plate actuators. We start by formulating a multi-physics model of the micro switch, coupling the nonlinear Euler-Bernoulli beam theory with the nonlinear Reynolds equation to describe the structural and fluidic domains, respectively. The model takes into account fringing field effects as well as mid-plane stretching and squeeze film damping nonlinearities. Static analysis is undertaken using the differential quadrature method (DQM) to obtain the pull-in voltage, which is verified by means of the finite element model and validated experimentally. We develop a reduced order model employing the Galerkin method for the structural domain and DQM for the fluidic domain. The proposed waveforms are intended to be more suitable for integrated circuit standards. The dynamic response of the micro switch to harmonic, square and triangular waveforms are evaluated and compared experimentally and analytically. Low voltage actuation is obtained using dynamic pull-in with the proposed waveforms. In addition, global stability analysis carried out for the three signals shows advantages of employing the square signal as the actuation method in enhancing the performance of the micro switch in terms of actuation voltage, switching time, and sensitivity to initial conditions.

  11. 100 GHz pulse waveform measurement based on electro-optic sampling

    NASA Astrophysics Data System (ADS)

    Feng, Zhigang; Zhao, Kejia; Yang, Zhijun; Miao, Jingyuan; Chen, He

    2018-05-01

    We present an ultrafast pulse waveform measurement system based on an electro-optic sampling technique at 1560 nm and prepare LiTaO3-based electro-optic modulators with a coplanar waveguide structure. The transmission and reflection characteristics of electrical pulses on a coplanar waveguide terminated with an open circuit and a resistor are investigated by analyzing the corresponding time-domain pulse waveforms. We measure the output electrical pulse waveform of a 100 GHz photodiode and the obtained rise times of the impulse and step responses are 2.5 and 3.4 ps, respectively.

  12. Analytic gravitational waveforms for generic precessing compact binaries

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolas

    2017-01-01

    Gravitational waves from compact binaries are subject to amplitude and phase modulations arising from interactions between the angular momenta of the system. Failure to account for such spin-precession effects in gravitational wave data analysis could hinder detection and completely ruin parameter estimation. In this talk I will describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals. The resulting waveforms can model spinning binaries of arbitrary spin magnitudes, spin orientations, and masses during the inspiral phase. I will also describe ongoing efforts to extend these inspiral waveforms to the merger and ringdown phases.

  13. Self-Sensing TDR with Micro-Strip Line

    DTIC Science & Technology

    2015-06-11

    detect impact damage of a CFRP plate in the second year (Todoroki A, et al., Impact damage detection of a carbon- fibre -reinforced-polymer plate...inspection methods is self-sensing technology that uses carbon fibres as sensors [1]-[11]. The self-sensing technology applies electric current to the...Time Domain Reflectometry (TDR) for damage detection [15]-[17]. Authors have developed a self-sensing TDR for detection of fibre breakages using a

  14. Distributed electrical time domain reflectometry (ETDR) structural sensors: design models and proof-of-concept experiments

    NASA Astrophysics Data System (ADS)

    Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen

    1993-07-01

    A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.

  15. Interdigital Capacitance Local Non-Destructive Examination of Nuclear Power Plant Cable for Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.; Bowler, Nicola

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of non-destructive test methods focusing on local cable insulation and jacket testing using an interdigital capacitance (IDC) approach. Earlier studies have assessed a number of non-destructive examination (NDE) methods for bulk, distributed, and local cable tests. A typical test strategy is to perform bulk assessments of the cable response using dielectric spectroscopy, Tan , or partial discharge followed by distributed tests like time domain reflectometry or frequency domain reflectometry to identify the most likely defect location followed by a local test that can include visual inspection,more » indenter modulus tests, or Fourier Transform Infrared Spectroscopy (FTIR) or Near Infrared Spectroscopy FTIR (FTNIR). If a cable is covered with an overlaying jacket, the jacket’s condition is likely to be more severely degraded than the underlying insulation. None of the above local test approaches can be used to evaluate insulation beneath a cable jacket. Since the jacket’s function is neither structural nor electrical, a degraded jacket may not have any significance regarding the cable’s performance or suitability for service. IDC measurements offer a promising alternative or complement to these local test approaches including the possibility to test insulation beneath an overlaying jacket.« less

  16. Active Time-Domain Reflectometry for Unattended Safeguards Systems FY15 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedeschi, Jonathan R.; Smith, Leon E.; Moore, David E.

    2015-09-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. In collaboration with the IAEA, tamper-indicating measures to address data-transmission authentication challenges with unattended safeguards systems are under investigation. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-costmore » commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s FY15 progress in the viability study including: an overview of the TDR methods under investigation; description of the testing configurations and mock tampering scenarios; results from a preliminary sensitivity comparison of the two TDR methods; demonstration of a quantitative metric for estimating field performance that acknowledges the need for high detection probability while minimizing false alarms. FY15 progress reported here sets the stage for a rigorous comparison of the candidate TDR methods, over a range of deployment scenarios and perturbing effects typical of IAEA unattended monitoring systems.« less

  17. Field Measurements and Numerical Simulations of Temperature and Moisture in Highway Engineering Using a Frequency Domain Reflectometry Sensor

    PubMed Central

    Yao, Yong-Sheng; Zheng, Jian-Long; Chen, Zeng-Shun; Zhang, Jun-Hui; Li, Yong

    2016-01-01

    This paper presents a systematic pioneering study on the use of agricultural-purpose frequency domain reflectometry (FDR) sensors to monitor temperature and moisture of a subgrade in highway extension and reconstruction engineering. The principle of agricultural-purpose FDR sensors and the process for embedding this kind of sensors for subgrade engineering purposes are introduced. Based on field measured weather data, a numerical analysis model for temperature and moisture content in the subgrade’s soil is built. Comparisons of the temperature and moisture data obtained from numerical simulation and FDR-based measurements are conducted. The results show that: (1) the embedding method and process, data acquisition, and remote transmission presented are reasonable; (2) the temperature and moisture changes are coordinated with the atmospheric environment and they are also in close agreement with numerical calculations; (3) the change laws of both are consistent at positions where the subgrade is compacted uniformly. These results suggest that the data measured by the agricultural-purpose FDR sensors are reliable. The findings of this paper enable a new and effective real-time monitoring method for a subgrade’s temperature and moisture changes, and thus broaden the application of agricultural-purpose FDR sensors. PMID:27294935

  18. Measurement of water pressure and deformation with time domain reflectometry cables

    NASA Astrophysics Data System (ADS)

    Dowding, Charles H.; Pierce, Charles E.

    1995-05-01

    Time domain reflectometry (TDR) techniques can be deployed to measure water pressures and relative dam abutment displacement with an array of coaxial cables either drilled and grouted or retrofitted through existing passages. Application of TDR to dam monitoring requires determination of appropriate cable types and methods to install these cables in existing dams or during new construction. This paper briefly discusses currently applied and developing TDR techniques and describes initial design considerations for TDR-based dam instrumentation. Water pressure at the base of or within the dam can be determined by measuring the water level within a hollow or air-filled coaxial cable. The ability to retrofit existing porous stone-tipped piezometers is an attractive attribute of the TDR system. Measurement of relative lateral movement can be accomplished by monitoring local shearing of a solid polyethylene-filled coaxial cable at the interface of the dam base and foundation materials or along adversely oriented joints. Uplift can be recorded by measuring cable extension as the dam displaces upward off its foundation. Since each monitoring technique requires measurements with different types of coaxial cables, a variety may be installed within the array. Multiplexing of these cables will allow monitoring from a single pulser, and measurements can be recorded on site or remotely via a modem at any time.

  19. Dielectric relaxation studies of binary mixture of β-picoline and methanol using time domain reflectometry at different temperatures

    NASA Astrophysics Data System (ADS)

    Trivedi, C. M.; Rana, V. A.; Hudge, P. G.; Kumbharkhane, A. C.

    2016-08-01

    Complex permittivity spectra of binary mixtures of varying concentrations of β-picoline and Methanol (MeOH) have been obtained using time domain reflectometry (TDR) technique over frequency range 10 MHz to 25 GHz at 283.15, 288.15, 293.15 and 298.15 K temperatures. The dielectric relaxation parameters namely static permittivity (ɛ0), high frequency limit permittivity (ɛ∞1) and the relaxation time (τ) were determined by fitting complex permittivity data to the single Debye/Cole-Davidson model. Complex nonlinear least square (CNLS) fitting procedure was carried out using LEVMW software. The excess permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E which contain information regarding molecular structure and interaction between polar-polar liquids were also determined. From the experimental data, parameters such as effective Kirkwood correlation factor (geff), Bruggeman factor (fB) and some thermo dynamical parameters have been calculated. Excess parameters were fitted to the Redlich-Kister polynomial equation. The values of static permittivity and relaxation time increase nonlinearly with increase in the mol-fraction of MeOH at all temperatures. The values of excess static permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E are negative for the studied β-picoline — MeOH system at all temperatures.

  20. Frequency domain, waveform inversion of laboratory crosswell radar data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2010-01-01

    A new waveform inversion for crosswell radar is formulated in the frequency-domain for a 2.5D model. The inversion simulates radar waves using the vector Helmholtz equation for electromagnetic waves. The objective function is minimized using a backpropagation method suitable for a 2.5D model. The inversion is tested by processing crosswell radar data collected in a laboratory tank. The estimated model is consistent with the known electromagnetic properties of the tank. The formulation for the 2.5D model can be extended to inversions of acoustic and elastic data.

  1. A support vector machine for predicting defibrillation outcomes from waveform metrics.

    PubMed

    Howe, Andrew; Escalona, Omar J; Di Maio, Rebecca; Massot, Bertrand; Cromie, Nick A; Darragh, Karen M; Adgey, Jennifer; McEneaney, David J

    2014-03-01

    Algorithms to predict shock success based on VF waveform metrics could significantly enhance resuscitation by optimising the timing of defibrillation. To investigate robust methods of predicting defibrillation success in VF cardiac arrest patients, by using a support vector machine (SVM) optimisation approach. Frequency-domain (AMSA, dominant frequency and median frequency) and time-domain (slope and RMS amplitude) VF waveform metrics were calculated in a 4.1Y window prior to defibrillation. Conventional prediction test validity of each waveform parameter was conducted and used AUC>0.6 as the criterion for inclusion as a corroborative attribute processed by the SVM classification model. The latter used a Gaussian radial-basis-function (RBF) kernel and the error penalty factor C was fixed to 1. A two-fold cross-validation resampling technique was employed. A total of 41 patients had 115 defibrillation instances. AMSA, slope and RMS waveform metrics performed test validation with AUC>0.6 for predicting termination of VF and return-to-organised rhythm. Predictive accuracy of the optimised SVM design for termination of VF was 81.9% (± 1.24 SD); positive and negative predictivity were respectively 84.3% (± 1.98 SD) and 77.4% (± 1.24 SD); sensitivity and specificity were 87.6% (± 2.69 SD) and 71.6% (± 9.38 SD) respectively. AMSA, slope and RMS were the best VF waveform frequency-time parameters predictors of termination of VF according to test validity assessment. This a priori can be used for a simplified SVM optimised design that combines the predictive attributes of these VF waveform metrics for improved prediction accuracy and generalisation performance without requiring the definition of any threshold value on waveform metrics. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. STRS Compliant FPGA Waveform Development

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer; Downey, Joseph; Mortensen, Dale

    2008-01-01

    The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. The extension of STRS to the SSP hardware will promote easier waveform reconfiguration and reuse. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. A FPGA-based transmit waveform implementation of the proposed standard interfaces on a laboratory breadboard SDR will be discussed.

  3. Non-destructive Analysis of Oil-Contaminated Soil Core Samples by X-ray Computed Tomography and Low-Field Nuclear Magnetic Resonance Relaxometry: a Case Study

    PubMed Central

    Mitsuhata, Yuji; Nishiwaki, Junko; Kawabe, Yoshishige; Utsuzawa, Shin; Jinguuji, Motoharu

    2010-01-01

    Non-destructive measurements of contaminated soil core samples are desirable prior to destructive measurements because they allow obtaining gross information from the core samples without touching harmful chemical species. Medical X-ray computed tomography (CT) and time-domain low-field nuclear magnetic resonance (NMR) relaxometry were applied to non-destructive measurements of sandy soil core samples from a real site contaminated with heavy oil. The medical CT visualized the spatial distribution of the bulk density averaged over the voxel of 0.31 × 0.31 × 2 mm3. The obtained CT images clearly showed an increase in the bulk density with increasing depth. Coupled analysis with in situ time-domain reflectometry logging suggests that this increase is derived from an increase in the water volume fraction of soils with depth (i.e., unsaturated to saturated transition). This was confirmed by supplementary analysis using high-resolution micro-focus X-ray CT at a resolution of ∼10 μm, which directly imaged the increase in pore water with depth. NMR transverse relaxation waveforms of protons were acquired non-destructively at 2.7 MHz by the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. The nature of viscous petroleum molecules having short transverse relaxation times (T2) compared to water molecules enabled us to distinguish the water-saturated portion from the oil-contaminated portion in the core sample using an M0–T2 plot, where M0 is the initial amplitude of the CPMG signal. The present study demonstrates that non-destructive core measurements by medical X-ray CT and low-field NMR provide information on the groundwater saturation level and oil-contaminated intervals, which is useful for constructing an adequate plan for subsequent destructive laboratory measurements of cores. PMID:21258437

  4. Novel scheme for rapid parallel parameter estimation of gravitational waves from compact binary coalescences

    NASA Astrophysics Data System (ADS)

    Pankow, C.; Brady, P.; Ochsner, E.; O'Shaughnessy, R.

    2015-07-01

    We introduce a highly parallelizable architecture for estimating parameters of compact binary coalescence using gravitational-wave data and waveform models. Using a spherical harmonic mode decomposition, the waveform is expressed as a sum over modes that depend on the intrinsic parameters (e.g., masses) with coefficients that depend on the observer dependent extrinsic parameters (e.g., distance, sky position). The data is then prefiltered against those modes, at fixed intrinsic parameters, enabling efficiently evaluation of the likelihood for generic source positions and orientations, independent of waveform length or generation time. We efficiently parallelize our intrinsic space calculation by integrating over all extrinsic parameters using a Monte Carlo integration strategy. Since the waveform generation and prefiltering happens only once, the cost of integration dominates the procedure. Also, we operate hierarchically, using information from existing gravitational-wave searches to identify the regions of parameter space to emphasize in our sampling. As proof of concept and verification of the result, we have implemented this algorithm using standard time-domain waveforms, processing each event in less than one hour on recent computing hardware. For most events we evaluate the marginalized likelihood (evidence) with statistical errors of ≲5 %, and even smaller in many cases. With a bounded runtime independent of the waveform model starting frequency, a nearly unchanged strategy could estimate neutron star (NS)-NS parameters in the 2018 advanced LIGO era. Our algorithm is usable with any noise curve and existing time-domain model at any mass, including some waveforms which are computationally costly to evolve.

  5. Frequency Domain Full-Waveform Inversion in Imaging Thrust Related Features

    NASA Astrophysics Data System (ADS)

    Jaiswal, P.; Zelt, C. A.

    2010-12-01

    Seismic acquisition in rough terrain such as mountain belts suffers from problems related to near-surface conditions such as statics, inconsistent energy penetration, rapid decay of signal, and imperfect receiver coupling. Moreover in the presence of weakly compacted soil, strong ground roll may obscure the reflection arrivals at near offsets further diminishing the scope of estimating a reliable near surface image though conventional processing. Traveltime and waveform inversion not only overcome the simplistic assumptions inherent in conventional processing such as hyperbolic moveout and convolution model, but also use parts of the seismic coda, such as the direct arrival and refractions, that are discarded in the latter. Traveltime and waveform inversion are model-based methods that honour the physics of wave propagation. Given the right set of preconditioned data and starting model, waveform inversion in particular has been realized as a powerful tool for velocity model building. This paper examines two case studies on waveform inversion using real data from the Naga Thrust Belt in the Northeast India. Waveform inversion in this paper is performed in the frequency domain and is multiscale in nature i.e., the inversion progressively ascends from the lower to the higher end of the frequency spectra increasing the wavenumber content of the recovered model. Since the real data are band limited, the success of waveform inversion depends on how well the starting model can account for the missing low wavenumbers. In this paper it is observed that the required starting model can be prepared using the regularized inversion of direct and reflected arrival times.

  6. Gravitational waves from plunges into Gargantua

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang

    2018-05-01

    We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.

  7. FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data—Part 1: Algorithm

    NASA Astrophysics Data System (ADS)

    Sourbier, Florent; Operto, Stéphane; Virieux, Jean; Amestoy, Patrick; L'Excellent, Jean-Yves

    2009-03-01

    This is the first paper in a two-part series that describes a massively parallel code that performs 2D frequency-domain full-waveform inversion of wide-aperture seismic data for imaging complex structures. Full-waveform inversion methods, namely quantitative seismic imaging methods based on the resolution of the full wave equation, are computationally expensive. Therefore, designing efficient algorithms which take advantage of parallel computing facilities is critical for the appraisal of these approaches when applied to representative case studies and for further improvements. Full-waveform modelling requires the resolution of a large sparse system of linear equations which is performed with the massively parallel direct solver MUMPS for efficient multiple-shot simulations. Efficiency of the multiple-shot solution phase (forward/backward substitutions) is improved by using the BLAS3 library. The inverse problem relies on a classic local optimization approach implemented with a gradient method. The direct solver returns the multiple-shot wavefield solutions distributed over the processors according to a domain decomposition driven by the distribution of the LU factors. The domain decomposition of the wavefield solutions is used to compute in parallel the gradient of the objective function and the diagonal Hessian, this latter providing a suitable scaling of the gradient. The algorithm allows one to test different strategies for multiscale frequency inversion ranging from successive mono-frequency inversion to simultaneous multifrequency inversion. These different inversion strategies will be illustrated in the following companion paper. The parallel efficiency and the scalability of the code will also be quantified.

  8. Robust spike classification based on frequency domain neural waveform features.

    PubMed

    Yang, Chenhui; Yuan, Yuan; Si, Jennie

    2013-12-01

    We introduce a new spike classification algorithm based on frequency domain features of the spike snippets. The goal for the algorithm is to provide high classification accuracy, low false misclassification, ease of implementation, robustness to signal degradation, and objectivity in classification outcomes. In this paper, we propose a spike classification algorithm based on frequency domain features (CFDF). It makes use of frequency domain contents of the recorded neural waveforms for spike classification. The self-organizing map (SOM) is used as a tool to determine the cluster number intuitively and directly by viewing the SOM output map. After that, spike classification can be easily performed using clustering algorithms such as the k-Means. In conjunction with our previously developed multiscale correlation of wavelet coefficient (MCWC) spike detection algorithm, we show that the MCWC and CFDF detection and classification system is robust when tested on several sets of artificial and real neural waveforms. The CFDF is comparable to or outperforms some popular automatic spike classification algorithms with artificial and real neural data. The detection and classification of neural action potentials or neural spikes is an important step in single-unit-based neuroscientific studies and applications. After the detection of neural snippets potentially containing neural spikes, a robust classification algorithm is applied for the analysis of the snippets to (1) extract similar waveforms into one class for them to be considered coming from one unit, and to (2) remove noise snippets if they do not contain any features of an action potential. Usually, a snippet is a small 2 or 3 ms segment of the recorded waveform, and differences in neural action potentials can be subtle from one unit to another. Therefore, a robust, high performance classification system like the CFDF is necessary. In addition, the proposed algorithm does not require any assumptions on statistical properties of the noise and proves to be robust under noise contamination.

  9. Central Pulsatile Pressure and Flow Relationship in the Time and Frequency Domain to Characterise Hydraulic Input to the Brain and Cerebral Vascular Impedance.

    PubMed

    Kim, Mi Ok; O'Rourke, Michael F; Adji, Audrey; Avolio, Alberto P

    2016-01-01

    In the time domain, pulsatile flow and pressure can be characterised as the ratio of the late systolic boost of flow or pressure to the pulse amplitude so as to estimate the hydraulic input to the brain. While vascular impedance has been widely used to represent the load presented to the heart by the systemic circulation, it has not been applied to the cerebral circulation.We set out to study the relationship between the pressure and the flow augmentation index (AIx) in the time domain and to determine cerebral vascular impedance using aortic blood pressure and cerebral blood flow waveforms in the frequency domain. Twenty-four young subjects (aged 21-39 years) were recruited; aortic pressure was derived using SphygmoCor from radial pressure. Flow waveforms were recorded from the middle cerebral artery. In three subjects, we performed the Valsalva manoeuvre to investigate their response to physiological intervention. There was a linear relationship between flow and pressure AIx, and cerebral impedance values were similar to those estimated for low resistance vascular beds. Substantial change in pressure and flow wave contour was observed during the Valsalva manoeuvre; however, the relationship in both the time and the frequency domains were unchanged. This confirms that aortic pressure and cerebral flow waveform can be used to study cerebral impedance.

  10. Recharge monitoring in an interplaya setting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scanlon, B.R.; Reedy, R.C.; Liang, J.

    1999-03-01

    The objective of this investigation is to monitor infiltration in response to precipitation events in an interplaya setting. The authors evaluated data gathered from the interplaya recharge monitoring installation at the Pantex Plant from March through December 1998. They monitored thermocouple psychrometer (TCP) instruments to measure water potential and time-domain reflectometry (TDR) probes to measure water content and bulk soil conductivity. Heat-dissipation sensor (HDS) instruments were monitored to supplement the TCP data.

  11. STRS Compliant FPGA Waveform Development

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer; Downey, Joseph

    2008-01-01

    The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. Current standards were researched and new standard interfaces were proposed. The implementation of the proposed standard interfaces on a laboratory breadboard SDR will be presented.

  12. Accurate inspiral-merger-ringdown gravitational waveforms for nonspinning black-hole binaries including the effect of subdominant modes

    NASA Astrophysics Data System (ADS)

    Mehta, Ajit Kumar; Mishra, Chandra Kant; Varma, Vijay; Ajith, Parameswaran

    2017-12-01

    We present an analytical waveform family describing gravitational waves (GWs) from the inspiral, merger, and ringdown of nonspinning black-hole binaries including the effect of several nonquadrupole modes [(ℓ=2 ,m =±1 ),(ℓ=3 ,m =±3 ),(ℓ=4 ,m =±4 ) apart from (ℓ=2 ,m =±2 )]. We first construct spin-weighted spherical harmonics modes of hybrid waveforms by matching numerical-relativity simulations (with mass ratio 1-10) describing the late inspiral, merger, and ringdown of the binary with post-Newtonian/effective-one-body waveforms describing the early inspiral. An analytical waveform family is constructed in frequency domain by modeling the Fourier transform of the hybrid waveforms making use of analytical functions inspired by perturbative calculations. The resulting highly accurate, ready-to-use waveforms are highly faithful (unfaithfulness ≃10-4- 10-2 ) for observation of GWs from nonspinning black-hole binaries and are extremely inexpensive to generate.

  13. Simplified signal processing for impedance spectroscopy with spectrally sparse sequences

    NASA Astrophysics Data System (ADS)

    Annus, P.; Land, R.; Reidla, M.; Ojarand, J.; Mughal, Y.; Min, M.

    2013-04-01

    Classical method for measurement of the electrical bio-impedance involves excitation with sinusoidal waveform. Sinusoidal excitation at fixed frequency points enables wide variety of signal processing options, most general of them being Fourier transform. Multiplication with two quadrature waveforms at desired frequency could be easily accomplished both in analogue and in digital domains, even simplest quadrature square waves can be considered, which reduces signal processing task in analogue domain to synchronous switching followed by low pass filter, and in digital domain requires only additions. So called spectrally sparse excitation sequences (SSS), which have been recently introduced into bio-impedance measurement domain, are very reasonable choice when simultaneous multifrequency excitation is required. They have many good properties, such as ease of generation and good crest factor compared to similar multisinusoids. Typically, the usage of discrete or fast Fourier transform in signal processing step is considered so far. Usage of simplified methods nevertheless would reduce computational burden, and enable simpler, less costly and less energy hungry signal processing platforms. Accuracy of the measurement with SSS excitation when using different waveforms for quadrature demodulation will be compared in order to evaluate the feasibility of the simplified signal processing. Sigma delta modulated sinusoid (binary signal) is considered to be a good alternative for a synchronous demodulation.

  14. Instrumentation techniques for monitoring shock and detonation waves

    NASA Astrophysics Data System (ADS)

    Dick, R. D.; Parrish, R. L.

    1985-09-01

    CORRTEX (Continuous Reflectometry for Radius Versus Time Experiments), SLIFER (Shorted Location Indication by Frequency of Electrical Resonance), and pin probes were used to monitor several conditions of blasting such as the detonation velocity of the explosive, the functioning of the stemming column confining the explosive, and rock mass motion. CORRTEX is a passive device that employs time-domain reflectometry to interrogate the two-way transit time of a coaxial cable. SLIFER is an active device that monitors the changing frequency resulting from a change in length of a coaxial cable forming an element of an oscillator circuit. Pin probes in this application consist of RG-174 coaxial cables, each with an open circuit, placed at several known locations within the material. Each cable is connected to a pulse-forming network and a voltage source. When the cables are shorted by the advancing wave, time-distance data are produced from which a velocity can be computed. Each technique, installation of the gauge, examples of the signals, and interpretation of the records are described.

  15. An Analytical Time–Domain Expression for the Net Ripple Produced by Parallel Interleaved Converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B.; Krein, Philip T.

    We apply modular arithmetic and Fourier series to analyze the superposition of N interleaved triangular waveforms with identical amplitudes and duty-ratios. Here, interleaving refers to the condition when a collection of periodic waveforms with identical periods are each uniformly phase-shifted across one period. The main result is a time-domain expression which provides an exact representation of the summed and interleaved triangular waveforms, where the peak amplitude and parameters of the time-periodic component are all specified in closed-form. Analysis is general and can be used to study various applications in multi-converter systems. This model is unique not only in that itmore » reveals a simple and intuitive expression for the net ripple, but its derivation via modular arithmetic and Fourier series is distinct from prior approaches. The analytical framework is experimentally validated with a system of three parallel converters under time-varying operating conditions.« less

  16. Testing the validity of the phenomenological gravitational waveform models for nonspinning binary black hole searches at low masses

    NASA Astrophysics Data System (ADS)

    Cho, Hee-Suk

    2015-11-01

    The phenomenological gravitational waveform models, which we refer to as PhenomA, PhenomB, and PhenomC, generate full inspiral, merger, and ringdown (IMR) waveforms of coalescing binary back holes (BBHs). These models are defined in the Fourier domain, thus can be used for fast matched filtering in the gravitational wave search. PhenomA has been developed for nonspinning BBH waveforms, while PhenomB and PhenomC were designed to model the waveforms of BBH systems with nonprecessing (aligned) spins, but can also be used for nonspinning systems. In this work, we study the validity of the phenomenological models for nonspinning BBH searches at low masses, {m}{1,2}≥slant 4{M}⊙ and {m}1+{m}2\\equiv M≤slant 30{M}⊙ , with Advanced LIGO. As our complete signal waveform model, we adopt EOBNRv2, which is a time-domain IMR waveform model. To investigate the search efficiency of the phenomenological template models, we calculate fitting factors (FFs) by exploring overlap surfaces. We find that only PhenomC is valid to obtain FFs better than 0.97 in the mass range of M\\lt 15{M}⊙ . Above 15{M}⊙ , PhenomA is most efficient in symmetric mass region, PhenomB is most efficient in highly asymmetric mass region, and PhenomC is most efficient in the intermediate region. Specifically, we propose an effective phenomenological template family that can be constructed by employing the phenomenological models in four subregions individually. We find that FFs of the effective templates are better than 0.97 in our entire mass region and mostly greater than 0.99.

  17. Method and apparatus for distributed sensing of volatiles using a long period fiber grating sensor with modulated plastic coating for environmental monitoring

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor); Kossakovski, Dmitri A. (Inventor); Bearman, Gregory H. (Inventor)

    2010-01-01

    Optical time domain reflectometry caused by absorption of a volatile or analyte into the fiber optic cladding is used as an optical nose. The fiber optics (14) are covered with a gas permeable film (44) which is patterned to leave millimeter wide gas permeable notches (48a-48d). The notches contain a sensing polymer that responds to different gases by expanding or contracting.

  18. Optical coherence tomography and optical coherence domain reflectometry for deep brain stimulation probe guidance

    NASA Astrophysics Data System (ADS)

    Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David

    2005-04-01

    Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.

  19. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields.

    PubMed

    Noe, G Timothy; Katayama, Ikufumi; Katsutani, Fumiya; Allred, James J; Horowitz, Jeffrey A; Sullivan, David M; Zhang, Qi; Sekiguchi, Fumiya; Woods, Gary L; Hoffmann, Matthias C; Nojiri, Hiroyuki; Takeda, Jun; Kono, Junichiro

    2016-12-26

    We have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers in the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.

  20. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  1. Sparsity Aware Adaptive Radar Sensor Imaging in Complex Scattering Environments

    DTIC Science & Technology

    2015-06-15

    while meeting the requirement on the peak to average power ratio. Third, we study impact of waveform encoding on nonlinear electromagnetic tomographic...Enyue Lu. Time Domain Electromagnetic Tomography Using Propagation and Backpropagation Method, IEEE International Conference on Image Processing...Received Paper 3.00 4.00 Yuanwei Jin, Chengdon Dong, Enyue Lu. Waveform Encoding for Nonlinear Electromagnetic Tomographic Imaging, IEEE Global

  2. Pulsed Phase Lock Loop Device for Monitoring Intracranial Pressure During Space Flight

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    We have developed an ultrasonic device to monitor ICP waveforms non-invasively from cranial diameter oscillations using a NASA-developed pulsed phase lock loop (PPLL) technique. The purpose of this study was to attempt to validate the PPLL device for reliable recordings of ICP waveforms and analysis of ICP dynamics in vivo. METHODS: PPLL outputs were recorded in patients during invasive ICP monitoring at UCSD Medical Center (n=10). RESULTS: An averaged linear regression coefficient between ICP and PPLL waveform data during one cardiac cycle in all patients is 0.88 +/- 0.02 (mean +/- SE). Coherence function analysis indicated that ICP and PPLL waveforms have high correlation in the lst, 2nd, and 3rd harmonic waves associated with a cardiac cycle. CONCLUSIONS: PPLL outputs represent ICP waveforms in both frequency and time domains. PPLL technology enables in vivo evaluation of ICP dynamics non-invasively, and can acquire continuous ICP waveforms during spaceflight because of compactness and non-invasive nature.

  3. A Modified Normalization Technique for Frequency-Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Jeong, G.; Min, D. J.; KIM, S.; Heo, J. Y.

    2016-12-01

    Full waveform inversion (FWI) is a technique to estimate subsurface material properties minimizing the misfit function built with residuals between field and modeled data. To achieve computational efficiency, FWI has been performed in the frequency domain by carrying out modeling in the frequency domain, whereas observed data (time-series data) are Fourier-transformed.One of the main drawbacks of seismic FWI is that it easily gets stuck in local minima because of lacking of low-frequency data. To compensate for this limitation, damped wavefields are used, as in the Laplace-domain waveform inversion. Using damped wavefield in FWI plays a role in generating low-frequency components and help recover long-wavelength structures. With these newly generated low-frequency components, we propose a modified frequency-normalization technique, which has an effect of boosting contribution of low-frequency components to model parameter update.In this study, we introduce the modified frequency-normalization technique which effectively amplifies low-frequency components of damped wavefields. Our method is demonstrated for synthetic data for the SEG/EAGE salt model. AcknowledgementsThis work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20168510030830) and by the Dual Use Technology Program, granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea.

  4. Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, S. J.; See, A. M.; Keane, Z. K.

    2014-01-06

    Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However, these devices require a large top-gate, which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here, we demonstrate that rf reflectometry is possible in an undoped SET.

  5. Simulation of Transient Response of Ir-TES for Position-Sensitive TES with Waveform Domain Multiplexing

    NASA Astrophysics Data System (ADS)

    Minamikawa, Y.; Sato, H.; Mori, F.; Damayanthi, R. M. T.; Takahashi, H.; Ohno, M.

    2008-04-01

    We are developing a new x-ray microcalorimeter based on a superconducting transition edge sensor (TES) as an imaging sensor. Our measurement shows unique waveforms which we consider as an expression of thermal nonuniformity of TES films. This arises from the different thermal responses, so that response signal shapes would vary according to the position of the incident x-ray. This position dependency deteriorate the measured energy resolution, but with appropriate waveform analysis, this would be useful for imaging device. For more inspection, we have developed a simulation code which enables a dynamic simulation to obtain a transient response of the TES by finite differential method. Temperature and electric current distributions are calculated. As a result, we successfully obtained waveform signals. The calculated signal waveforms have similar characteristics to the measured signals. This simulation visualized the transition state of the device and will help to design better detector.

  6. Analysis and demonstration of vibration waveform reconstruction in distributed optical fiber vibration sensing system

    NASA Astrophysics Data System (ADS)

    Zhu, Hui; Shan, Xuekang; Sun, Xiaohan

    2017-10-01

    A method for reconstructing the vibration waveform from the optical time-domain backscattering pulses in the distributed optical fiber sensing system (DOFSS) is proposed, which allows for extracting and recovering the external vibration signal from the tested pulses by analog signal processing, so that can obtain vibration location and waveform simultaneously. We establish the response model of DOFSS to the external vibration and analyze the effects of system parameters on the operational performance. The main parts of the DOFSS are optimized, including delay fiber length and wavelength, to improve the sensitivity of the system. The experimental system is set up and the vibration amplitudes and reconstructed waveforms are fit well with the original driving signal. The experimental results demonstrate that the performance of vibration waveform reconstruction is good with SNR of 15 dB whenever the external vibrations with different intensities and frequencies exert on the sensing fiber.

  7. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique.

    PubMed

    Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio

    2016-09-01

    We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique.

  8. KSC-07pd3649

    NASA Image and Video Library

    2007-12-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the wiring is checked and validated before the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett

  9. KSC-07pd3644

    NASA Image and Video Library

    2007-12-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, a technician sets up wiring for the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett

  10. KSC-07pd3631

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician explains how test equipment -- the blue monitor -- will be used to validate the circuit on test wiring from the electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off system. The test wiring leads from the tail mast on the mobile launcher platform to the interior where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd3651

    NASA Image and Video Library

    2007-12-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the wiring is checked and validated before the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett

  12. KSC-07pd3648

    NASA Image and Video Library

    2007-12-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the wiring is checked and validated before the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett

  13. KSC-07pd3647

    NASA Image and Video Library

    2007-12-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the wiring is checked and validated before the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett

  14. KSC-07pd3632

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, technicians overlook wires and monitoring equipment that will be used to validate the circuit on the test wiring from the electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off system. The test wiring leads from the tail mast on the mobile launcher platform to the interior where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. Photo credit: NASA/Kim Shiflett

  15. KSC-07pd3650

    NASA Image and Video Library

    2007-12-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, the wiring is checked and validated before the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett

  16. KSC-07pd3645

    NASA Image and Video Library

    2007-12-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, a wiring board has been set up for the tanking test on space shuttle Atlantis' external tank set for Dec. 18. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett

  17. Fiber-Optic Sensing System: Overview, Development and Deployment in Flight at NASA

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man; Parker, Allen R.; Piazza, Anthony; Richards, W. Lance

    2015-01-01

    An overview of the research and technological development of the fiber-optic sensing system (FOSS) at the National Aeronautics and Space Administration Armstrong Flight Research Center (NASA AFRC) is presented. Theory behind fiber Bragg grating (FBG) sensors, as well as interrogation technique based on optical frequency domain reflectometry (OFDR) is discussed. Assessment and validation of FOSS as an accurate measurement tool for structural health monitoring is realized in the laboratory environment as well as large-scale flight deployment.

  18. Impulse propagation over a complex site: a comparison of experimental results and numerical predictions.

    PubMed

    Dragna, Didier; Blanc-Benon, Philippe; Poisson, Franck

    2014-03-01

    Results from outdoor acoustic measurements performed in a railway site near Reims in France in May 2010 are compared to those obtained from a finite-difference time-domain solver of the linearized Euler equations. During the experiments, the ground profile and the different ground surface impedances were determined. Meteorological measurements were also performed to deduce mean vertical profiles of wind and temperature. An alarm pistol was used as a source of impulse signals and three microphones were located along a propagation path. The various measured parameters are introduced as input data into the numerical solver. In the frequency domain, the numerical results are in good accordance with the measurements up to a frequency of 2 kHz. In the time domain, except a time shift, the predicted waveforms match the measured waveforms with a close agreement.

  19. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noe, II, G. Timothy; Katayama, Ikufumi; Katsutani, Fumiya

    Here, we have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers inmore » the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.« less

  20. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields

    DOE PAGES

    Noe, II, G. Timothy; Katayama, Ikufumi; Katsutani, Fumiya; ...

    2016-12-22

    Here, we have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers inmore » the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.« less

  1. Detection of an organic-non volatile compound in variable-contaminated volcanic soil samples via Time Domain Reflectometry (TDR) technique: Preliminary results

    NASA Astrophysics Data System (ADS)

    comegna, alessandro; coppola, antonio; dragonetti, giovanna; chaali, nesrine; sommella, angelo

    2014-05-01

    Hydrocarbons may be present in soils as non-aqueous phase liquids (NAPLs), which means that these organic compounds, exist as a separate and immiscible phase with respect to water and air commonly present in the soil. NAPLs, which can be accidentally introduced in the environment (for example by waste disposal sites, industrial spills, gasoline stations, etc), constitutes a serious geo-environmental problem, given the toxicity level and the high mobility. Time domain reflectometry (TDR) has became, over several decades, an important technique for water estimation in soils. In order to expand the potentiality of the TDR technique, the main objective of this study is to explore the capacity of dielectric response to detect the presence of NAPLs in volcanic soils. In laboratory, soil samples were oven dried at 105° C and passed through a 2 mm sieve. Known quantities of soil, water and NAPL (corn oil, a non-volatile and non-toxic organic compound) were mixed and repacked into plastic cylinders (16 cm high and 9.5 cm in diameter); in order to obtain forty different volumetric combinations of water and oil (i.e. θfg = θwater + θNAPL), with θNAPL varying from 0.05 to 0.40 by 0.05 cm3/cm3 increments. Data collected were employed to implement a multiphase mixing model which permitted conversion from a dielectric permittivity domain into a θf domain and vice versa. The results of this study show that, the TDR device is NAPL-sensitive, especially for θf values greater than 0.20. Further works will be built on this initial study, concentrating on improving the dielectric response-database, in order to: i) enhancing the model efficiency in terms of NAPL capability detention, and ii) validating the developed TDR interpretation tool with field results.

  2. Nonsinusoidal Beta Oscillations Reflect Cortical Pathophysiology in Parkinson's Disease.

    PubMed

    Cole, Scott R; van der Meij, Roemer; Peterson, Erik J; de Hemptinne, Coralie; Starr, Philip A; Voytek, Bradley

    2017-05-03

    Oscillations in neural activity play a critical role in neural computation and communication. There is intriguing new evidence that the nonsinusoidal features of the oscillatory waveforms may inform underlying physiological and pathophysiological characteristics. Time-domain waveform analysis approaches stand in contrast to traditional Fourier-based methods, which alter or destroy subtle waveform features. Recently, it has been shown that the waveform features of oscillatory beta (13-30 Hz) events, a prominent motor cortical oscillation, may reflect near-synchronous excitatory synaptic inputs onto cortical pyramidal neurons. Here we analyze data from invasive human primary motor cortex (M1) recordings from patients with Parkinson's disease (PD) implanted with a deep brain stimulator (DBS) to test the hypothesis that the beta waveform becomes less sharp with DBS, suggesting that M1 input synchrony may be decreased. We find that, in PD, M1 beta oscillations have sharp, asymmetric, nonsinusoidal features, specifically asymmetries in the ratio between the sharpness of the beta peaks compared with the troughs. This waveform feature is nearly perfectly correlated with beta-high gamma phase-amplitude coupling ( r = 0.94), a neural index previously shown to track PD-related motor deficit. Our results suggest that the pathophysiological beta generator is altered by DBS, smoothing out the beta waveform. This has implications not only for the interpretation of the physiological mechanism by which DBS reduces PD-related motor symptoms, but more broadly for our analytic toolkit in general. That is, the often-overlooked time-domain features of oscillatory waveforms may carry critical physiological information about neural processes and dynamics. SIGNIFICANCE STATEMENT To better understand the neural basis of cognition and disease, we need to understand how groups of neurons interact to communicate with one another. For example, there is evidence that parkinsonian bradykinesia and rigidity may arise from an oversynchronization of afferents to the motor cortex, and that these symptoms are treatable using deep brain stimulation. Here we show that the waveform shape of beta (13-30 Hz) oscillations, which may reflect input synchrony onto the cortex, is altered by deep brain stimulation. This suggests that mechanistic inferences regarding physiological and pathophysiological neural communication may be made from the temporal dynamics of oscillatory waveform shape. Copyright © 2017 the authors 0270-6474/17/374830-11$15.00/0.

  3. Evaluation of Waveform Structure Features on Time Domain Target Recognition under Cross Polarization

    NASA Astrophysics Data System (ADS)

    Selver, M. A.; Seçmen, M.; Zoral, E. Y.

    2016-08-01

    Classification of aircraft targets from scattered electromagnetic waves is a challenging application, which suffers from aspect angle dependency. In order to eliminate the adverse effects of aspect angle, various strategies were developed including the techniques that rely on extraction of several features and design of suitable classification systems to process them. Recently, a hierarchical method, which uses features that take advantage of waveform structure of the scattered signals, is introduced and shown to have effective results. However, this approach has been applied to the special cases that consider only a single planar component of electric field that cause no-cross polarization at the observation point. In this study, two small scale aircraft models, Boeing-747 and DC-10, are selected as the targets and various polarizations are used to analyse the cross-polarization effects on system performance of the aforementioned method. The results reveal the advantages and the shortcomings of using waveform structures in time-domain target identification.

  4. Frozen O 2 layer revealed by neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steffen, A.; Glavic, A.; Holderer, O.

    2016-05-27

    We investigated a 63 thick film originating from frozen air on a solid substrate via neutron reflectometry. Furthermore, the experiment shows that neutron reflectometry allows performing chemical surface analysis by quantifying the composition of this frozen layer and identifies the film to be frozen oxygen.

  5. Wavelet-domain de-noising technique for THz pulsed spectroscopy

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Zaytsev, Kirill I.; Gavdush, Arsenii A.; Fokina, Irina N.; Karasik, Valeriy E.; Reshetov, Igor V.; Kudrin, Konstantin G.; Nosov, Pavel A.; Yurchenko, Stanislav O.

    2014-09-01

    De-noising of terahertz (THz) pulsed spectroscopy (TPS) data is an essential problem, since a noise in the TPS system data prevents correct reconstruction of the sample spectral dielectric properties and to perform the sample internal structure studying. There are certain regions in TPS signal Fourier spectrum, where Fourier-domain signal-to-noise ratio is relatively small. Effective de-noising might potentially expand the range of spectrometer spectral sensitivity and reduce the time of waveform registration, which is an essential problem for biomedical applications of TPS. In this work, it is shown how the recent progress in signal processing in wavelet-domain could be used for TPS waveforms de-noising. It demonstrates the ability to perform effective de-noising of TPS data using the algorithm of the Fast Wavelet Transform (FWT). The results of the optimal wavelet basis selection and wavelet-domain thresholding technique selection are reported. Developed technique is implemented for reconstruction of in vivo healthy and deseased skin samplesspectral characteristics at THz frequency range.

  6. Robust estimation of pulse wave transit time using group delay.

    PubMed

    Meloni, Antonella; Zymeski, Heather; Pepe, Alessia; Lombardi, Massimo; Wood, John C

    2014-03-01

    To evaluate the efficiency of a novel transit time (Δt) estimation method from cardiovascular magnetic resonance flow curves. Flow curves were estimated from phase contrast images of 30 patients. Our method (TT-GD: transit time group delay) operates in the frequency domain and models the ascending aortic waveform as an input passing through a discrete-component "filter," producing the observed descending aortic waveform. The GD of the filter represents the average time delay (Δt) across individual frequency bands of the input. This method was compared with two previously described time-domain methods: TT-point using the half-maximum of the curves and TT-wave using cross-correlation. High temporal resolution flow images were studied at multiple downsampling rates to study the impact of differences in temporal resolution. Mean Δts obtained with the three methods were comparable. The TT-GD method was the most robust to reduced temporal resolution. While the TT-GD and the TT-wave produced comparable results for velocity and flow waveforms, the TT-point resulted in significant shorter Δts when calculated from velocity waveforms (difference: 1.8±2.7 msec; coefficient of variability: 8.7%). The TT-GD method was the most reproducible, with an intraobserver variability of 3.4% and an interobserver variability of 3.7%. Compared to the traditional TT-point and TT-wave methods, the TT-GD approach was more robust to the choice of temporal resolution, waveform type, and observer. Copyright © 2013 Wiley Periodicals, Inc.

  7. Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2003-01-01

    Wire integrity has become an area of concern to the aerospace community including DoD, NASA, FAA, and Industry. Over time and changing environmental conditions, wire insulation can become brittle and crack. The cracks expose the wire conductor and can be a source of equipment failure, short circuits, smoke, and fire. The technique of using the ultrasonic phase spectrum to extract material properties of the insulation is being examined. Ultrasonic guided waves will propagate in both the wire conductor and insulation. Assuming the condition of the conductor remains constant then the stiffness of the insulator can be determined by measuring the ultrasonic guided wave velocity. In the phase spectrum method the guided wave velocity is obtained by transforming the time base waveform to the frequency domain and taking the phase difference between two waveforms. The result can then be correlated with a database, derived by numerical model calculations, to extract material properties of the wire insulator. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. For each sample the flexural mode waveform was identified. That waveform was then transformed to the frequency domain and a phase spectrum was calculated from a pair of waveforms. Experimental results on the simple model compared well to numerical calculations. Further tests were conducted on aircraft or mil-spec wire samples, to see if changes in wire insulation stiffness can be extracted using the phase spectrum technique.

  8. Parameter Estimation for Gravitational-wave Bursts with the BayesWave Pipeline

    NASA Technical Reports Server (NTRS)

    Becsy, Bence; Raffai, Peter; Cornish, Neil; Essick, Reed; Kanner, Jonah; Katsavounidis, Erik; Littenberg, Tyson B.; Millhouse, Margaret; Vitale, Salvatore

    2017-01-01

    We provide a comprehensive multi-aspect study of the performance of a pipeline used by the LIGO-Virgo Collaboration for estimating parameters of gravitational-wave bursts. We add simulated signals with four different morphologies (sine-Gaussians (SGs), Gaussians, white-noise bursts, and binary black hole signals) to simulated noise samples representing noise of the two Advanced LIGO detectors during their first observing run. We recover them with the BayesWave (BW) pipeline to study its accuracy in sky localization, waveform reconstruction, and estimation of model-independent waveform parameters. BW localizes sources with a level of accuracy comparable for all four morphologies, with the median separation of actual and estimated sky locations ranging from 25.1deg to30.3deg. This is a reasonable accuracy in the two-detector case, and is comparable to accuracies of other localization methods studied previously. As BW reconstructs generic transient signals with SG wavelets, it is unsurprising that BW performs best in reconstructing SG and Gaussian waveforms. The BW accuracy in waveform reconstruction increases steeply with the network signal-to-noise ratio (S/N(sub net), reaching a 85% and 95% match between the reconstructed and actual waveform below S/N(sub net) approx. = 20 and S/N(sub net) approx. = 50, respectively, for all morphologies. The BW accuracy in estimating central moments of waveforms is only limited by statistical errors in the frequency domain, and is also affected by systematic errors in the time domain as BW cannot reconstruct low-amplitude parts of signals that are overwhelmed by noise. The figures of merit we introduce can be used in future characterizations of parameter estimation pipelines.

  9. Dark soliton synthesis using an optical pulse synthesizer and transmission through a normal-dispersion optical fiber.

    PubMed

    Kashiwagi, Ken; Mozawa, Kiyonobu; Tanaka, Yosuke; Kurokawa, Takashi

    2013-12-16

    We precisely generate dark solitons using an optical pulse synthesizer (OPS) at a repetition rate of 25 GHz and experimentally investigate soliton transmission through a normal-dispersion fiber. Because of their particular waveform, there are not many experimental studies. The OPS provides frequency-domain line-by-line modulation and produces arbitrary pulse waveforms. The soliton waveform has an intensity contrast greater than 20 dB. At certain input peak power, the pulse exhibits soliton transmission and maintains its initial waveform. The power agrees with soliton transmission theory. We confirm that the π phase shift at the center of the dark soliton is maintained after transmission through the fiber. We also investigate the influence of stimulated Brillouin scattering for long-distance transmission.

  10. Advancing Reflectrometry

    DTIC Science & Technology

    2013-05-21

    13. SUPPLEMENTARY NOTES 14. ABSTRACT Reflectometry , a microwave remote sensing technique to extract geophysical data from scattered satellite...transmissions, was first demonstrated using Global Navigation Satellite System (GNSS) reflections. Recently, reflectometry has been extended to digital...potential missions. a 15. SUBJECT TERMS Reflectometry , Ocean Winds, Global Navigation Satellites, Communication Satellites 16. SECURITY

  11. Multifunction waveform generator for EM receiver testing

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Jin, Sheng; Deng, Ming

    2018-01-01

    In many electromagnetic (EM) methods - such as magnetotelluric, spectral-induced polarization (SIP), time-domain-induced polarization (TDIP), and controlled-source audio magnetotelluric (CSAMT) methods - it is important to evaluate and test the EM receivers during their development stage. To assess the performance of the developed EM receivers, controlled synthetic data that simulate the observed signals in different modes are required. In CSAMT and SIP mode testing, the waveform generator should use the GPS time as the reference for repeating schedule. Based on our testing, the frequency range, frequency precision, and time synchronization of the currently available function waveform generators on the market are deficient. This paper presents a multifunction waveform generator with three waveforms: (1) a wideband, low-noise electromagnetic field signal to be used for magnetotelluric, audio-magnetotelluric, and long-period magnetotelluric studies; (2) a repeating frequency sweep square waveform for CSAMT and SIP studies; and (3) a positive-zero-negative-zero signal that contains primary and secondary fields for TDIP studies. In this paper, we provide the principles of the above three waveforms along with a hardware design for the generator. Furthermore, testing of the EM receiver was conducted with the waveform generator, and the results of the experiment were compared with those calculated from the simulation and theory in the frequency band of interest.

  12. [Application of time domain reflectometry for determination of wate content in Xiangsha Yangwei pills].

    PubMed

    Long, Feng-Lai; Sun, Xiao-Mei; Peng, Xiu-Juan; Liu, Peng; He, Fang-Hui

    2016-08-01

    Xiangsha Yangwei pill was selected as a model drug in this research, and time domain reflectometry (TDR) was used to determine the water content in the pill. The effects of five factors including the number of pill layers, pill packing density, atmospheric moisture, ambient temperature and the ratio of pill formula were investigated on water content. The results showed that the number of pill layers and ambient temperature had significant effects on water content of pills, while the pill packing density, atmospheric moisture and pill formula ratio had little effect on the determination of water content in pills. The reflection value was stable when 6 layers of pills were used. Under the condition of 25 ℃ and 45% relative humidity, the water content of pills ranged from 4.01% to 22.38%, showing good linear relationship between water content and reflection value, and the model equation was as follows: Y=0.279X-21.670 (R²=0.997 0). Verification experiment was used to explain the feasibility of this prediction model. The precision of the method complied with the methodology standard. It is concluded that TDR can be used in determination of water content in Xiangsha Yangwei pills. Additionally, TDR, as a new way to quickly and efficiently determine the water content, has a prospect application in the processing of traditional Chinese medicine pharmacy, especially for concentrated pill. Copyright© by the Chinese Pharmaceutical Association.

  13. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

    NASA Astrophysics Data System (ADS)

    Srivastava, R. K.; Panda, R. K.; Halder, Debjani

    2017-08-01

    The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

  14. Designing Waveform Sets with Good Correlation and Stopband Properties for MIMO Radar via the Gradient-Based Method

    PubMed Central

    Tang, Liang; Zhu, Yongfeng; Fu, Qiang

    2017-01-01

    Waveform sets with good correlation and/or stopband properties have received extensive attention and been widely used in multiple-input multiple-output (MIMO) radar. In this paper, we aim at designing unimodular waveform sets with good correlation and stopband properties. To formulate the problem, we construct two criteria to measure the correlation and stopband properties and then establish an unconstrained problem in the frequency domain. After deducing the phase gradient and the step size, an efficient gradient-based algorithm with monotonicity is proposed to minimize the objective function directly. For the design problem without considering the correlation weights, we develop a simplified algorithm, which only requires a few fast Fourier transform (FFT) operations and is more efficient. Because both of the algorithms can be implemented via the FFT operations and the Hadamard product, they are computationally efficient and can be used to design waveform sets with a large waveform number and waveform length. Numerical experiments show that the proposed algorithms can provide better performance than the state-of-the-art algorithms in terms of the computational complexity. PMID:28468308

  15. Designing Waveform Sets with Good Correlation and Stopband Properties for MIMO Radar via the Gradient-Based Method.

    PubMed

    Tang, Liang; Zhu, Yongfeng; Fu, Qiang

    2017-05-01

    Waveform sets with good correlation and/or stopband properties have received extensive attention and been widely used in multiple-input multiple-output (MIMO) radar. In this paper, we aim at designing unimodular waveform sets with good correlation and stopband properties. To formulate the problem, we construct two criteria to measure the correlation and stopband properties and then establish an unconstrained problem in the frequency domain. After deducing the phase gradient and the step size, an efficient gradient-based algorithm with monotonicity is proposed to minimize the objective function directly. For the design problem without considering the correlation weights, we develop a simplified algorithm, which only requires a few fast Fourier transform (FFT) operations and is more efficient. Because both of the algorithms can be implemented via the FFT operations and the Hadamard product, they are computationally efficient and can be used to design waveform sets with a large waveform number and waveform length. Numerical experiments show that the proposed algorithms can provide better performance than the state-of-the-art algorithms in terms of the computational complexity.

  16. Visco-elastic controlled-source full waveform inversion without surface waves

    NASA Astrophysics Data System (ADS)

    Paschke, Marco; Krause, Martin; Bleibinhaus, Florian

    2016-04-01

    We developed a frequency-domain visco-elastic full waveform inversion for onshore seismic experiments with topography. The forward modeling is based on a finite-difference time-domain algorithm by Robertsson that uses the image-method to ensure a stress-free condition at the surface. The time-domain data is Fourier-transformed at every point in the model space during the forward modeling for a given set of frequencies. The motivation for this approach is the reduced amount of memory when computing kernels, and the straightforward implementation of the multiscale approach. For the inversion, we calculate the Frechet derivative matrix explicitly, and we implement a Levenberg-Marquardt scheme that allows for computing the resolution matrix. To reduce the size of the Frechet derivative matrix, and to stabilize the inversion, an adapted inverse mesh is used. The node spacing is controlled by the velocity distribution and the chosen frequencies. To focus the inversion on body waves (P, P-coda, and S) we mute the surface waves from the data. Consistent spatiotemporal weighting factors are applied to the wavefields during the Fourier transform to obtain the corresponding kernels. We test our code with a synthetic study using the Marmousi model with arbitrary topography. This study also demonstrates the importance of topography and muting surface waves in controlled-source full waveform inversion.

  17. A Gauss-Newton full-waveform inversion in PML-truncated domains using scalar probing waves

    NASA Astrophysics Data System (ADS)

    Pakravan, Alireza; Kang, Jun Won; Newtson, Craig M.

    2017-12-01

    This study considers the characterization of subsurface shear wave velocity profiles in semi-infinite media using scalar waves. Using surficial responses caused by probing waves, a reconstruction of the material profile is sought using a Gauss-Newton full-waveform inversion method in a two-dimensional domain truncated by perfectly matched layer (PML) wave-absorbing boundaries. The PML is introduced to limit the semi-infinite extent of the half-space and to prevent reflections from the truncated boundaries. A hybrid unsplit-field PML is formulated in the inversion framework to enable more efficient wave simulations than with a fully mixed PML. The full-waveform inversion method is based on a constrained optimization framework that is implemented using Karush-Kuhn-Tucker (KKT) optimality conditions to minimize the objective functional augmented by PML-endowed wave equations via Lagrange multipliers. The KKT conditions consist of state, adjoint, and control problems, and are solved iteratively to update the shear wave velocity profile of the PML-truncated domain. Numerical examples show that the developed Gauss-Newton inversion method is accurate enough and more efficient than another inversion method. The algorithm's performance is demonstrated by the numerical examples including the case of noisy measurement responses and the case of reduced number of sources and receivers.

  18. A complete waveform model for compact binaries on eccentric orbits

    NASA Astrophysics Data System (ADS)

    George, Daniel; Huerta, Eliu; Kumar, Prayush; Agarwal, Bhanu; Schive, Hsi-Yu; Pfeiffer, Harald; Chu, Tony; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela

    2017-01-01

    We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are non-spinning, and which evolve on orbits with low to moderate eccentricity. We show that this inspiral-merger-ringdown waveform model reproduces the effective-one-body model for black hole binaries with mass-ratios between 1 to 15 in the zero eccentricity limit over a wide range of the parameter space under consideration. We use this model to show that the gravitational wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasicircular, spin-aligned waveforms if the eccentricity e0 of these systems when they enter the aLIGO band at a gravitational wave frequency of 14 Hz satisfies e0GW 150914 <= 0 . 15 and e0GW 151226 <= 0 . 1 .

  19. A minimax technique for time-domain design of preset digital equalizers using linear programming

    NASA Technical Reports Server (NTRS)

    Vaughn, G. L.; Houts, R. C.

    1975-01-01

    A linear programming technique is presented for the design of a preset finite-impulse response (FIR) digital filter to equalize the intersymbol interference (ISI) present in a baseband channel with known impulse response. A minimax technique is used which minimizes the maximum absolute error between the actual received waveform and a specified raised-cosine waveform. Transversal and frequency-sampling FIR digital filters are compared as to the accuracy of the approximation, the resultant ISI and the transmitted energy required. The transversal designs typically have slightly better waveform accuracy for a given distortion; however, the frequency-sampling equalizer uses fewer multipliers and requires less transmitted energy. A restricted transversal design is shown to use the least number of multipliers at the cost of a significant increase in energy and loss of waveform accuracy at the receiver.

  20. Radar echo processing with partitioned de-ramp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubbert, Dale F.; Tise, Bertice L.

    2013-03-19

    The spurious-free dynamic range of a wideband radar system is increased by apportioning de-ramp processing across analog and digital processing domains. A chirp rate offset is applied between the received waveform and the reference waveform that is used for downconversion to the intermediate frequency (IF) range. The chirp rate offset results in a residual chirp in the IF signal prior to digitization. After digitization, the residual IF chirp is removed with digital signal processing.

  1. Ventilation-Induced Modulation of Pulse Oximeter Waveforms: A Method for the Assessment of Early Changes in Intravascular Volume During Spinal Fusion Surgery in Pediatric Patients.

    PubMed

    Alian, Aymen A; Atteya, Gourg; Gaal, Dorothy; Golembeski, Thomas; Smith, Brian G; Dai, Feng; Silverman, David G; Shelley, Kirk

    2016-08-01

    Scoliosis surgery is often associated with substantial blood loss, requiring fluid resuscitation and blood transfusions. In adults, dynamic preload indices have been shown to be more reliable for guiding fluid resuscitation, but these indices have not been useful in children undergoing surgery. The aim of this study was to introduce frequency-analyzed photoplethysmogram (PPG) and arterial pressure waveform variables and to study the ability of these parameters to detect early bleeding in children during surgery. We studied 20 children undergoing spinal fusion. Electrocardiogram, arterial pressure, finger pulse oximetry (finger PPG), and airway pressure waveforms were analyzed using time domain and frequency domain methods of analysis. Frequency domain analysis consisted of calculating the amplitude density of PPG and arterial pressure waveforms at the respiratory and cardiac frequencies using Fourier analysis. This generated 2 measurements: The first is related to slow mean arterial pressure modulation induced by ventilation (also known as DC modulation when referring to the PPG), and the second corresponds to pulse pressure modulation (AC modulation or changes in the amplitude of pulse oximeter plethysmograph when referring to the PPG). Both PPG and arterial pressure measurements were divided by their respective cardiac pulse amplitude to generate DC% and AC% (normalized values). Standard hemodynamic data were also recorded. Data at baseline and after bleeding (estimated blood loss about 9% of blood volume) were presented as median and interquartile range and compared using Wilcoxon signed-rank tests; a Bonferroni-corrected P value <0.05 was considered statistically significant. There were significant increases in PPG DC% (median [interquartile range] = 359% [210 to 541], P = 0.002), PPG AC% (160% [87 to 251], P = 0.003), and arterial DC% (44% [19 to 84], P = 0.012) modulations, respectively, whereas arterial AC% modulations showed nonsignificant increase (41% [1 to 85], P = 0.12). The change in PPG DC% was significantly higher than that in PPG AC%, arterial DC%, arterial AC%, and systolic blood pressure with P values of 0.008, 0.002, 0.003, and 0.002, respectively. Only systolic blood pressure showed significant changes (11% [4 to 21], P = 0.003) between bleeding phase and baseline. Finger PPG and arterial waveform parameters (using frequency analysis) can track changes in blood volume during the bleeding phase, suggesting the potential for a noninvasive monitor for tracking changes in blood volume in pediatric patients. PPG waveform baseline modulation (PPG DC%) was more sensitive to changes in venous blood volume when compared with respiration-induced modulation seen in the arterial pressure waveform.

  2. Accurate calibration of waveform data measured by the Plasma Wave Experiment on board the ARASE satellite

    NASA Astrophysics Data System (ADS)

    Kitahara, M.; Katoh, Y.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Ozaki, M.; Yagitani, S.

    2017-12-01

    The Plasma Wave Experiment (PWE) is installed on board the ARASE satellite to measure the electric field in the frequency range from DC to 10 MHz, and the magnetic field in the frequency range from a few Hz to 100 kHz using two dipole wire-probe antennas (WPT) and three magnetic search coils (MSC), respectively. In particular, the Waveform Capture (WFC), one of the receivers of the PWE, can detect electromagnetic field waveform in the frequency range from a few Hz to 20 kHz. The Software-type Wave Particle Interaction Analyzer (S-WPIA) is installed on the ARASE satellite to measure the energy exchange between plasma waves and particles. Since S-WPIA uses the waveform data measured by WFC to calculate the relative phase angle between the wave magnetic field and velocity of energetic electrons, the high-accuracy is required to calibration of both amplitude and phase of the waveform data. Generally, the calibration procedure of the signal passed through a receiver consists of three steps; the transformation into spectra, the calibration by the transfer function of a receiver, and the inverse transformation of the calibrated spectra into the time domain. Practically, in order to reduce the side robe effect, a raw data is filtered by a window function in the time domain before applying Fourier transform. However, for the case that a first order differential coefficient of the phase transfer function of the system is not negligible, the phase of the window function convoluted into the calibrated spectra is shifted differently at each frequency, resulting in a discontinuity in the time domain of the calibrated waveform data. To eliminate the effect of the phase shift of a window function, we suggest several methods to calibrate a waveform data accurately and carry out simulations assuming simple sinusoidal waves as an input signal and using transfer functions of WPT, MSC, and WFC obtained in pre-flight tests. In consequence, we conclude that the following two methods can reduce an error contaminated through the calibration to less than 0.1 % of amplitude of input waves; (1) a Turkey-type window function with a flat top region of one-third of the window length and (2) modification of the window function for each frequency by referring the estimation of the phase shift due to the first order differential coefficient from the transfer functions.

  3. A direct temporal domain approach for ultrafast optical signal processing and its implementation using planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Xia, Bing

    Ultrafast optical signal processing, which shares the same fundamental principles of electrical signal processing, can realize numerous important functionalities required in both academic research and industry. Due to the extremely fast processing speed, all-optical signal processing and pulse shaping have been widely used in ultrafast telecommunication networks, photonically-assisted RFlmicro-meter waveform generation, microscopy, biophotonics, and studies on transient and nonlinear properties of atoms and molecules. In this thesis, we investigate two types of optical spectrally-periodic (SP) filters that can be fabricated on planar lightwave circuits (PLC) to perform pulse repetition rate multiplication (PRRM) and arbitrary optical waveform generation (AOWG). First, we present a direct temporal domain approach for PRRM using SP filters. We show that the repetition rate of an input pulse train can be multiplied by a factor N using an optical filter with a free spectral range that does not need to be constrained to an integer multiple of N. Furthermore, the amplitude of each individual output pulse can be manipulated separately to form an arbitrary envelope at the output by optimizing the impulse response of the filter. Next, we use lattice-form Mach-Zehnder interferometers (LF-MZI) to implement the temporal domain approach for PRRM. The simulation results show that PRRM with uniform profiles, binary-code profiles and triangular profiles can be achieved. Three silica based LF-MZIs are designed and fabricated, which incorporate multi-mode interference (MMI) couplers and phase shifters. The experimental results show that 40 GHz pulse trains with a uniform envelope pattern, a binary code pattern "1011" and a binary code pattern "1101" are generated from a 10 GHz input pulse train. Finally, we investigate 2D ring resonator arrays (RRA) for ultraf ast optical signal processing. We design 2D RRAs to generate a pair of pulse trains with different binary-code patterns simultaneously from a single pulse train at a low repetition rate. We also design 2D RRAs for AOWG using the modified direct temporal domain approach. To demonstrate the approach, we provide numerical examples to illustrate the generation of two very different waveforms (square waveform and triangular waveform) from the same hyperbolic secant input pulse train. This powerful technique based on SP filters can be very useful for ultrafast optical signal processing and pulse shaping.

  4. The detection error of thermal test low-frequency cable based on M sequence correlation algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Dongliang; Ge, Zheyang; Tong, Xin; Du, Chunlin

    2018-04-01

    The problem of low accuracy and low efficiency of off-line detecting on thermal test low-frequency cable faults could be solved by designing a cable fault detection system, based on FPGA export M sequence code(Linear feedback shift register sequence) as pulse signal source. The design principle of SSTDR (Spread spectrum time-domain reflectometry) reflection method and hardware on-line monitoring setup figure is discussed in this paper. Testing data show that, this detection error increases with fault location of thermal test low-frequency cable.

  5. Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array

    NASA Astrophysics Data System (ADS)

    Popov, S. M.; Butov, O. V.; Chamorovskiy, Y. K.; Isaev, V. A.; Kolosovskiy, A. O.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.; Mégret, P.; Odnoblyudov, M.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.

    2018-06-01

    A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG) inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration.

  6. Nondestructive distributed measurement of supercontinuum generation along highly nonlinear optical fibers.

    PubMed

    Hontinfinde, Régis; Coulibaly, Saliya; Megret, Patrice; Taki, Majid; Wuilpart, Marc

    2017-05-01

    Supercontinuum generation (SCG) in optical fibers arises from the spectral broadening of an intense light, which results from the interplay of both linear and nonlinear optical effects. In this Letter, a nondestructive optical time domain reflectometry method is proposed for the first time, to the best of our knowledge, to measure the spatial (longitudinal) evolution of the SC induced along an optical fiber. The method was experimentally tested on highly nonlinear fibers. The experimental results are in a good agreement with the optical spectra measured at the fiber outputs.

  7. KSC-07pd3646

    NASA Image and Video Library

    2007-12-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A at NASA's Kennedy Space Center, a technician checks the blue monitor that will be used to validate the circuit on test wiring during the tanking test on space shuttle Atlantis' external tank. The test wiring has been spliced into an electrical harness in the aft main engine compartment connected with the engine cut-off, or ECO, sensor system. The attached wiring leads to the interior of the mobile launcher platform where the time domain reflectometry, or TDR, test equipment is located. Photo credit: NASA/Kim Shiflett

  8. Distributed fiber optic vibration sensor with enhanced response bandwidth and high signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Chen, Dian; Liu, Qingwen; Fan, Xinyu; He, Zuyuan

    2017-04-01

    A novel distributed fiber-optic vibration sensor (DVS) is proposed based on multi-pulse time-gated digital optical frequency domain reflectometry (TGD-OFDR), which can solve both the trade-off between the maximum measurable distance and the spatial resolution, and the one between the measurement distance and the vibration response bandwidth. A 21-kHz vibration is detected experimentally over 10-kilometer-long fiber, with a signal-to-noise ratio approaching 25 dB and a spatial resolution of 10 m.

  9. Noise suppression in surface microseismic data

    USGS Publications Warehouse

    Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth S.; Davidson, Michael

    2012-01-01

    We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform. We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform.

  10. Measurement and analysis of time-domain characteristics of corona-generated radio interference from a single positive corona source

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Li, Dayong; Chen, Bo; Cui, Xiang; Lu, Tiebing; Li, Yinfei

    2018-04-01

    The corona-generated electromagnetic interference commonly known as radio interference (RI) has become a limiting factor for the design of high voltage direct current transmission lines. In this paper, a time-domain measurement system is developed to measure the time-domain characteristics of corona-generated RI from a single corona source under a positive corona source. In the experiments, the corona current pulses are synchronously measured through coupling capacitors. The one-to-one relationship between the corona current pulse and measured RI voltage pulse is observed. The statistical characteristics of pulse parameters are analyzed, and the correlations between the corona current pulse and RI voltage pulse in the time-domain and frequency-domain are analyzed. Depending on the measured corona current pulses, the time-domain waveform of corona-generated RI is calculated on the basis of the propagation model of corona current on the conductor, the dipolar model for electric field calculation, and the antenna model for inducing voltage calculation. The well matched results between measured and simulated waveforms of RI voltage can show the validity of the measurement and calculation method presented in this paper, which also further show the close correlation between corona current and corona-generated RI.

  11. Pseudo 2D elastic waveform inversion for attenuation in the near surface

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Zhang, Jie

    2017-08-01

    Seismic waveform propagation could be significantly affected by heterogeneities in the near surface zone (0 m-500 m depth). As a result, it is important to obtain as much near surface information as possible. Seismic attenuation, characterized by QP and QS factors, may affect seismic waveform in both phase and amplitude; however, it is rarely estimated and applied to the near surface zone for seismic data processing. Applying a 1D elastic full waveform modelling program, we demonstrate that such effects cannot be overlooked in the waveform computation if the value of the Q factor is lower than approximately 100. Further, we develop a pseudo 2D elastic waveform inversion method in the common midpoint (CMP) domain that jointly inverts early arrivals for QP and surface waves for QS. In this method, although the forward problem is in 1D, by applying 2D model regularization, we obtain 2D QP and QS models through simultaneous inversion. A cross-gradient constraint between the QP and Qs models is applied to ensure structural consistency of the 2D inversion results. We present synthetic examples and a real case study from an oil field in China.

  12. Distributed temperature and strain discrimination with stimulated brillouin scattering and rayleigh backscatter in an optical fiber.

    PubMed

    Zhou, Da-Peng; Li, Wenhai; Chen, Liang; Bao, Xiaoyi

    2013-01-31

    A distributed optical fiber sensor with the capability of simultaneously measuring temperature and strain is proposed using a large effective area non-zero dispersion shifted fiber (LEAF) with sub-meter spatial resolution. The Brillouin frequency shift is measured using Brillouin optical time-domain analysis (BOTDA) with differential pulse-width pair technique, while the spectrum shift of the Rayleigh backscatter is measured using optical frequency-domain reflectometry (OFDR). These shifts are the functions of both temperature and strain, and can be used as two independent parameters for the discrimination of temperature and strain. A 92 m measurable range with the spatial resolution of 50 cm is demonstrated experimentally, and accuracies of ±1.2 °C in temperature and ±15 με in strain could be achieved.

  13. Context-Dependent Piano Music Transcription With Convolutional Sparse Coding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt

    This study presents a novel approach to automatic transcription of piano music in a context-dependent setting. This approach employs convolutional sparse coding to approximate the music waveform as the summation of piano note waveforms (dictionary elements) convolved with their temporal activations (onset transcription). The piano note waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. During transcription, the note waveforms are fixed and their temporal activations are estimated and post-processed to obtain the pitch and onset transcription. This approach works in the time domain, models temporal evolution of piano notes, and estimates pitches and onsetsmore » simultaneously in the same framework. Finally, experiments show that it significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting, in both transcription accuracy and time precision, in various scenarios including synthetic, anechoic, noisy, and reverberant environments.« less

  14. Context-Dependent Piano Music Transcription With Convolutional Sparse Coding

    DOE PAGES

    Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt

    2016-08-04

    This study presents a novel approach to automatic transcription of piano music in a context-dependent setting. This approach employs convolutional sparse coding to approximate the music waveform as the summation of piano note waveforms (dictionary elements) convolved with their temporal activations (onset transcription). The piano note waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. During transcription, the note waveforms are fixed and their temporal activations are estimated and post-processed to obtain the pitch and onset transcription. This approach works in the time domain, models temporal evolution of piano notes, and estimates pitches and onsetsmore » simultaneously in the same framework. Finally, experiments show that it significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting, in both transcription accuracy and time precision, in various scenarios including synthetic, anechoic, noisy, and reverberant environments.« less

  15. Detection of Atmospheric Water Deposits in Porous Media Using the TDR Technique

    PubMed Central

    Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Janik, Grzegorz; Albert, Małgorzata; Skierucha, Wojciech

    2015-01-01

    Investigating the intensity of atmospheric water deposition and its diurnal distribution is essential from the ecological perspective, especially regarding dry geographic regions. It is also important in the context of monitoring the amount of moisture present within building materials in order to protect them from excessive humidity. The objective of this study was to test a constructed sensor and determine whether it could detect and track changes in the intensity of atmospheric water deposition. An operating principle of the device is based on the time-domain reflectometry technique. Two sensors of different plate volumes were manufactured. They were calibrated at several temperatures and tested during field measurements. The calibration turned out to be temperature independent. The outdoor measurements indicated that the upper limits of the measurement ranges of the sensors depended on the volumes of the plates and were equal to 1.2 and 2.8 mm H2O. The respective sensitivities were equal to 3.2 × 10−3 and 7.5 × 10−3 g·ps−1. The conducted experiments showed that the construction of the designed device and the time-domain reflectometry technique were appropriate for detecting and tracing the dynamics of atmospheric water deposition. The obtained outcomes were also collated with the readings taken in an actual soil sample. For this purpose, an open container sensor, which allows investigating atmospheric water deposition in soil, was manufactured. It turned out that the readings taken by the porous ceramic plate sensor reflected the outcomes of the measurements performed in a soil sample. PMID:25871717

  16. In situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems

    NASA Astrophysics Data System (ADS)

    Keeler, Gordon A.; Serkland, Darwin K.; Geib, Kent M.; Klem, John F.; Peake, Gregory M.

    2006-02-01

    Optical time-domain reflectometry (OTDR) is an effective technique for locating faults in fiber communication links. The fact that most OTDR measurements are performed manually is a significant drawback, because it makes them too costly for use in many short-distance networks and too slow for use in military avionic platforms. Here we describe and demonstrate an automated, low-cost, real-time approach to fault monitoring that can be achieved by integrating OTDR functionality directly into VCSEL-based transceivers. This built-in test capability is straightforward to implement and relevant to both multimode and single mode networks. In-situ OTDR uses the transmitter VCSEL already present in data transceivers. Fault monitoring is performed by emitting a brief optical pulse into the fiber and then turning the VCSEL off. If a fault exists, a portion of the optical pulse returns to the transceiver after a time equal to the round-trip delay through the fiber. In multimode OTDR, the signal is detected by an integrated photodetector, while in single mode OTDR the VCSEL itself can be used as a detector. Modified driver electronics perform the measurement and analysis. We demonstrate that VCSEL-based OTDR has sufficient sensitivity to determine the location of most faults commonly seen in short-haul networks (i.e., the Fresnel reflections from improperly terminated fibers and scattering from raggedly-broken fibers). Results are described for single mode and multimode experiments, at both 850 nm and 1.3 μm. We discuss the resolution and sensitivity that have been achieved, as well as expected limitations for this novel approach to network monitoring.

  17. New types of time domain reflectometry sensing waveguides for bridge scour monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ping; Wang, Kai; Chung, Chih-Chung; Weng, Yu-Wen

    2017-07-01

    Scour is a major threat to bridge safety, especially in harsh fluvial environments. Real-time monitoring of bridge scour is still very limited due to the lack of robust and economic scour monitoring device. Time domain reflectometry (TDR) is an emerging waveguide-based technique holding great promise to develop more durable scour monitoring devices. This study presents new types of TDR sensing waveguides in forms of either sensing rod or sensing wire, taking into account of the measurement range, durability, and ease of field installation. The sensing rod is composed of a hollow grooved steel rod paired up with a metal strip on the insulating groove, while the sensing wire consists of two steel strands with one of them coated with an insulating jacket. The measurement sensitivity is inevitably sacrificed when other properties such as the measurement range, field durability, and installation easiness are enhanced. Factors affecting the measurement sensitivity were identified and experimentally evaluated for better arranging the waveguide conductors. A data reduction method for scour-depth estimation without the need for identifying the sediment/water reflection and a two-step calibration procedure for rating propagation velocities were proposed to work with the new types of TDR sensing waveguides. Both the calibration procedure and the data reduction method were experimentally validated. The test results indicated that the new TDR sensing waveguide provides accurate scour depth measurements regardless of the sacrificed sensitivity. The insulating coating of the new TDR sensing waveguide was also demonstrated to be effective in extending the measurement range up to at least 15 m.

  18. Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm

    USGS Publications Warehouse

    Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.

    2011-01-01

    Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.

  19. Geometrical Effects on the Electromagnetic Radiation from Lightning Return Strokes

    NASA Technical Reports Server (NTRS)

    Willett, John C.; Smith, David A.; LeVine, David M.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Los Alamos National Laboratory (LANL) Sferic Array has recorded electric-field-change waveforms simultaneously at several stations surrounding the ground-strike points of numerous return strokes in cloud-to-ground lightning flashes. Such data are available from the five-station sub-networks in both Florida and New Mexico. With these data it has been possible for the first time to compare the waveforms radiated in different directions by a given stroke. Such comparisons are of interest to assess both the effects of channel geometry on the fine structure of subsequent-stroke radiation fields and the role of branches in the more jagged appearance of first-stroke waveforms. This paper presents multiple-station, time-domain waveforms with a 200 Hz to 500 kHz pass-band from both first and subsequent return strokes at ranges generally between 100 and 200 km. The differences among waveforms of the same stroke received at stations in different directions from the lightning channel are often obvious. These differences are illustrated and interpreted in the context of channel tortuosity and branches.

  20. Characteristics of return stroke electric fields produced by lightning flashes at distances of 1 to 15 kilometers

    NASA Technical Reports Server (NTRS)

    Hopf, CH.

    1991-01-01

    Electric field derivative signals from single and multiple lightning strokes are presented. For about 25 pct. of all acquired waveforms, produced by return strokes, stepped leaders or intracloud discharges, type and distance of the signal source are known from the observations by an all sky video camera system. The analysis of the electric field derivative waveforms in the time domain shows a significant difference in the impulse width between return stroke signals and those of stepped leaders and intracloud discharges. In addition, the computed amplitude density spectrum of return stroke waveforms lies by a factor of 10 above that of stepped leaders and intracloud discharges in the frequency range from 50 to 500 kHz.

  1. Waveform control of orientation-dependent ionization of DCl in few-cycle laser fields.

    PubMed

    Znakovskaya, I; von den Hoff, P; Schirmel, N; Urbasch, G; Zherebtsov, S; Bergues, B; de Vivie-Riedle, R; Weitzel, K-M; Kling, M F

    2011-05-21

    Strong few-cycle light fields with stable electric field waveforms allow controlling electrons on time scales down to the attosecond domain. We have studied the dissociative ionization of randomly oriented DCl in 5 fs light fields at 720 nm in the tunneling regime. Momentum distributions of D(+) and Cl(+) fragments were recorded via velocity-map imaging. A waveform-dependent anti-correlated directional emission of D(+) and Cl(+) fragments is observed. Comparison of our results with calculations indicates that tailoring of the light field via the carrier envelope phase permits the control over the orientation of DCl(+) and in turn the directional emission of charged fragments upon the breakup of the molecular ion. © The Owner Societies 2011

  2. Waveform inversion in the frequency domain for the simultaneous determination of earthquake source mechanism and moment function

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Kumagai, H.; Inoue, H.

    2008-06-01

    We propose a method of waveform inversion to rapidly and routinely estimate both the moment function and the centroid moment tensor (CMT) of an earthquake. In this method, waveform inversion is carried out in the frequency domain to obtain the moment function more rapidly than when solved in the time domain. We assume a pure double-couple source mechanism in order to stabilize the solution when using data from a small number of seismic stations. The fault and slip orientations are estimated by a grid search with respect to the strike, dip and rake angles. The moment function in the time domain is obtained from the inverse Fourier transform of the frequency components determined by the inversion. Since observed waveforms used for the inversion are limited in a particular frequency band, the estimated moment function is a bandpassed form. We develop a practical approach to estimate the deconvolved form of the moment function, from which we can reconstruct detailed rupture history and the seismic moment. The source location is determined by a spatial grid search using adaptive grid spacings, which are gradually decreased in each step of the search. We apply this method to two events that occurred in Indonesia by using data from a broad-band seismic network in Indonesia (JISNET): one northeast of Sulawesi (Mw = 7.5) on 2007 January 21, and the other south of Java (Mw = 7.5) on 2006 July 17. The source centroid locations and mechanisms we estimated for both events are consistent with those determined by the Global CMT Project and the National Earthquake Information Center of the U.S. Geological Survey. The estimated rupture duration of the Sulawesi event is 16 s, which is comparable to a typical duration for earthquakes of this magnitude, while that of the Java event is anomalously long (176 s), suggesting that this event was a tsunami earthquake. Our application demonstrates that this inversion method has great potential for rapid and routine estimations of both the CMT and the moment function, and may be useful for identification of tsunami earthquakes.

  3. High-accuracy fiber-optic shape sensing

    NASA Astrophysics Data System (ADS)

    Duncan, Roger G.; Froggatt, Mark E.; Kreger, Stephen T.; Seeley, Ryan J.; Gifford, Dawn K.; Sang, Alexander K.; Wolfe, Matthew S.

    2007-04-01

    We describe the results of a study of the performance characteristics of a monolithic fiber-optic shape sensor array. Distributed strain measurements in a multi-core optical fiber interrogated with the optical frequency domain reflectometry technique are used to deduce the shape of the optical fiber; referencing to a coordinate system yields position information. Two sensing techniques are discussed herein: the first employing fiber Bragg gratings and the second employing the intrinsic Rayleigh backscatter of the optical fiber. We have measured shape and position under a variety of circumstances and report the accuracy and precision of these measurements. A discussion of error sources is included.

  4. KSC-07pd3633

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis' external tank and solid rocket boosters will be the subject of a tanking test with the Time Domain Reflectometry, or TDR, test equipment whose wiring is being calibrated Dec. 14. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  5. Optical Time Domain Reflectometry Fiber Studies.

    DTIC Science & Technology

    1982-11-01

    Rourke F19628-79- C -0172H.W. Yen 9. PERFORMING ORGANIZATION NAME AN AOORESS 10. PROGRAM ELEMENT. PROJECT. TASK Hughes...POLARIZER ’ ". .PIGTAI L /- SPATIAL l a o u L2 UNDER TEST PU LSED -’ NJ5ECTIONj: L """ LASE R Onl t het c DETECTOR t..red.signal..i..sent..to.the..detector...OTDR. 61 6 t OTOR SIGNATURE 0- Z OF WAVEGUIDE 791009-3a > O 0 C < 2 2 0 z 15 -- 10 co S 5 0 0 0 200 400 600 800 1000 POSITION ALONG WAEUDm Figure 20.

  6. Distributed fiber optic system for oil pipeline leakage detection

    NASA Astrophysics Data System (ADS)

    Paranjape, R.; Liu, N.; Rumple, C.; Hara, Elmer H.

    2003-02-01

    We present a novel approach for the detection of leakage in oil pipelines using methods of fiber optic distributed sensors, a presence-of-oil based actuator, and Optical Time Domain Reflectometry (OTDR). While the basic concepts of our approach are well understood, the integration of the components into a complete system is a real world engineering design problem. Our focus has been on the development of the actuator design and testing using installed dark fiber. Initial results are promising, however environmental studies into the long term effects of exposure to the environment are still pending.

  7. Verifying the Performance of RTDs in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Hashemian, H. M.

    2003-09-01

    This paper describes a number of techniques that have been developed for nuclear power plants to ensure that optimum steady-state and transient performance is achieved with the resistance temperature detectors (RTDs) that are used in the plant for critical temperature measurements. This includes precision laboratory calibration of RTDs, the Loop Current Step Response (LCSR) method for in-situ response time measurements, a cross calibration technique to verify the steady-state performance of RTDs as installed in the plant, and the Time Domain Reflectometry (TDR) test that is used to identify the location of a problem along RTD cables.

  8. 2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Brossier, R.; Virieux, J.; Operto, S.

    2008-12-01

    Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.

  9. Time domain dielectric spectroscopy of nanosecond pulsed electric field induced changes in dielectric properties of pig whole blood.

    PubMed

    Zhuang, Jie; Kolb, Juergen F

    2015-06-01

    The dielectric spectra of fresh pig whole blood in the β-dispersion range after exposure to 300-nanosecond pulsed electric fields (nsPEFs) with amplitude higher than the supra-electroporation threshold for erythrocytes were recorded by time domain reflectometry dielectric spectroscopy. The implications of the dielectric parameters on the dynamics of post-pulse pore development were discussed in light of the Cole-Cole relaxation model. The temporal development of the Cole-Cole parameters indicates that nsPEFs induced significant poration and swelling of erythrocytes within the first 5 min. The results also show that the majority of erythrocytes could not fully recover from supra-electroporation up to 30 min. The findings of this study suggest that time domain dielectric spectroscopy is a promising label-free and real-time physiological measuring technique for nsPEF-blood related biomedical applications, capable of following the conformational and morphological changes of cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. High-repetition-rate optical delay line using a micromirror array and galvanometer mirror for a terahertz system.

    PubMed

    Kitahara, Hideaki; Tani, Masahiko; Hangyo, Masanori

    2009-07-01

    We developed a high-repetition-rate optical delay line based on a micromirror array and galvanometer mirror for terahertz time-domain spectroscopy. The micromirror array is fabricated by using the x-ray lithographic technology. The measurement of terahertz time-domain waveforms with the new optical delay line is demonstrated successfully up to 25 Hz.

  11. Comparison of immersion ultrasound, partial coherence interferometry, and low coherence reflectometry for ocular biometry in cataract patients.

    PubMed

    Montés-Micó, Robert; Carones, Francesco; Buttacchio, Antonietta; Ferrer-Blasco, Teresa; Madrid-Costa, David

    2011-09-01

    To compare ocular biometry parameters measured with immersion ultrasound, partial coherence interferometry, and low coherence reflectometry in cataract patients. Measurements of axial length and anterior chamber depth were analyzed and compared using immersion ultrasound, partial coherence interferometry, and low coherence reflectometry. Keratometry (K), flattest axis, and white-to-white measurements were compared between partial coherence interferometry and low coherence reflectometry. Seventy-eight cataract (LOCS II range: 1 to 3) eyes of 45 patients aged between 42 and 90 years were evaluated. A subanalysis as a function of cataract degree was done for axial length and anterior chamber depth between techniques. No statistically significant differences were noted for the study cohort or within each cataract degree among the three techniques for axial length and anterior chamber depth (P>.05, ANOVA test). Measurements between techniques were highly correlated for axial length (R=0.99) and anterior chamber depth (R=0.90 to 0.96) for all methods. Keratometry, flattest axis, and white-to-white measurements were comparable (paired t test, P>.1) and correlated well between partial coherence interferometry and low coherence reflectometry (K1 [R=0.95), K2 [R=0.97], flattest axis [R=0.95], and white-to-white [R=0.92]). Immersion ultrasound, partial coherence interferometry, and low coherence reflectometry provided comparable ocular biometry measurements in cataractous eyes. Copyright 2011, SLACK Incorporated.

  12. Fast Algorithms for Designing Unimodular Waveform(s) With Good Correlation Properties

    NASA Astrophysics Data System (ADS)

    Li, Yongzhe; Vorobyov, Sergiy A.

    2018-03-01

    In this paper, we develop new fast and efficient algorithms for designing single/multiple unimodular waveforms/codes with good auto- and cross-correlation or weighted correlation properties, which are highly desired in radar and communication systems. The waveform design is based on the minimization of the integrated sidelobe level (ISL) and weighted ISL (WISL) of waveforms. As the corresponding optimization problems can quickly grow to large scale with increasing the code length and number of waveforms, the main issue turns to be the development of fast large-scale optimization techniques. The difficulty is also that the corresponding optimization problems are non-convex, but the required accuracy is high. Therefore, we formulate the ISL and WISL minimization problems as non-convex quartic optimization problems in frequency domain, and then simplify them into quadratic problems by utilizing the majorization-minimization technique, which is one of the basic techniques for addressing large-scale and/or non-convex optimization problems. While designing our fast algorithms, we find out and use inherent algebraic structures in the objective functions to rewrite them into quartic forms, and in the case of WISL minimization, to derive additionally an alternative quartic form which allows to apply the quartic-quadratic transformation. Our algorithms are applicable to large-scale unimodular waveform design problems as they are proved to have lower or comparable computational burden (analyzed theoretically) and faster convergence speed (confirmed by comprehensive simulations) than the state-of-the-art algorithms. In addition, the waveforms designed by our algorithms demonstrate better correlation properties compared to their counterparts.

  13. Planetary Transmission Diagnostics

    NASA Technical Reports Server (NTRS)

    Lewicki, David G. (Technical Monitor); Samuel, Paul D.; Conroy, Joseph K.; Pines, Darryll J.

    2004-01-01

    This report presents a methodology for detecting and diagnosing gear faults in the planetary stage of a helicopter transmission. This diagnostic technique is based on the constrained adaptive lifting algorithm. The lifting scheme, developed by Wim Sweldens of Bell Labs, is a time domain, prediction-error realization of the wavelet transform that allows for greater flexibility in the construction of wavelet bases. Classic lifting analyzes a given signal using wavelets derived from a single fundamental basis function. A number of researchers have proposed techniques for adding adaptivity to the lifting scheme, allowing the transform to choose from a set of fundamental bases the basis that best fits the signal. This characteristic is desirable for gear diagnostics as it allows the technique to tailor itself to a specific transmission by selecting a set of wavelets that best represent vibration signals obtained while the gearbox is operating under healthy-state conditions. However, constraints on certain basis characteristics are necessary to enhance the detection of local wave-form changes caused by certain types of gear damage. The proposed methodology analyzes individual tooth-mesh waveforms from a healthy-state gearbox vibration signal that was generated using the vibration separation (synchronous signal-averaging) algorithm. Each waveform is separated into analysis domains using zeros of its slope and curvature. The bases selected in each analysis domain are chosen to minimize the prediction error, and constrained to have the same-sign local slope and curvature as the original signal. The resulting set of bases is used to analyze future-state vibration signals and the lifting prediction error is inspected. The constraints allow the transform to effectively adapt to global amplitude changes, yielding small prediction errors. However, local wave-form changes associated with certain types of gear damage are poorly adapted, causing a significant change in the prediction error. The constrained adaptive lifting diagnostic algorithm is validated using data collected from the University of Maryland Transmission Test Rig and the results are discussed.

  14. Finite-difference time-domain modeling of transient infrasonic wavefields excited by volcanic explosions

    NASA Astrophysics Data System (ADS)

    Kim, K.; Lees, J. M.

    2011-03-01

    Numerical modeling of waveform diffractions along the rim of a volcano vent shows high correlation to observed explosion signals at Karymsky Volcano, Kamchatka, Russia. The finite difference modeling assumed a gaussian source time function and an axisymmetric geometry. A clear demonstration of the significant distortion of infrasonic wavefronts was caused by diffraction at the vent rim edge. Data collected at Karymsky in 1997 and 1998 were compared to synthetic waveforms and variations of vent geometry were determined via grid search. Karymsky exhibited a wide range of variation in infrasonic waveforms, well explained by the diffraction, and modeled as changing vent geometry. Rim diffraction of volcanic infrasound is shown to be significant and must be accounted for when interpreting source physics from acoustic observations.

  15. Three Dimensional Transient Analysis of Microstrip Circuits in Multilayered Anisotropic Media

    DTIC Science & Technology

    1994-01-18

    time fat rfVWh ifl~ttUktOnS. watching e..,ing| galai• fld t gatlwnq and maintaningn~ te data needed. an cems~l~lzn andI reuiewing 1h cOllection Of...noise on the passive via are derived. The coupling responses in the frequency domain and crosstalk waveforms in the time domain for some multilayered...source, developed across the module-backplane connector. The finite-difference time -domain (FD-TD) technique, which is based on the discretization of

  16. Viscoelastic assessment of anal canal function using acoustic reflectometry: a clinically useful technique.

    PubMed

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J; Hosker, Gordon L; Lose, Gunnar; Kiff, Edward S

    2012-02-01

    Anal acoustic reflectometry is a new reproducible technique that allows a viscoelastic assessment of anal canal function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, opening and closing elastance, and hysteresis. The aim of this study was to assess whether the parameters measured in anal acoustic reflectometry are clinically valid between continent and fecally incontinent subjects. This was an age- and sex-matched study of continent and incontinent women. The study was conducted at a university teaching hospital. One hundred women (50 with fecal incontinence and 50 with normal bowel control) were included in the study. Subjects were age matched to within 5 years. Parameters measured with anal acoustic reflectometry and manometry were compared between incontinent and continent groups using a paired t test. Diagnostic accuracy was assessed by the use of receiver operator characteristic curves. Four of the 5 anal acoustic reflectometry parameters at rest were significantly different between continent and incontinent women (eg, opening pressure in fecally incontinent subjects was 31.6 vs 51.5 cm H2O in continent subjects, p = 0.0001). Both anal acoustic reflectometry parameters of squeeze opening pressure and squeeze opening elastance were significantly reduced in the incontinent women compared with continent women (50 vs 99.1 cm H2O, p = 0.0001 and 1.48 vs 1.83 cm H2O/mm, p = 0.012). In terms of diagnostic accuracy, opening pressure at rest measured by reflectometry was significantly superior in discriminating between continent and incontinent women in comparison with resting pressure measured with manometry (p = 0.009). Anal acoustic reflectometry is a new, clinically valid technique in the assessment of continent and incontinent subjects. This technique, which assesses the response of the anal canal to distension and relaxation, provides a detailed viscoelastic assessment of anal canal function. This technique may not only aid the investigation of fecally incontinent subjects, but it may also improve our understanding of anal canal physiology during both the process of defecation and maintenance of continence.

  17. Computational Modeling of Blast Wave Transmission Through Human Ear.

    PubMed

    Leckness, Kegan; Nakmali, Don; Gan, Rong Z

    2018-03-01

    Hearing loss has become the most common disability among veterans. Understanding how blast waves propagate through the human ear is a necessary step in the development of effective hearing protection devices (HPDs). This article presents the first 3D finite element (FE) model of the human ear to simulate blast wave transmission through the ear. The 3D FE model of the human ear consisting of the ear canal, tympanic membrane, ossicular chain, and middle ear cavity was imported into ANSYS Workbench for coupled fluid-structure interaction analysis in the time domain. Blast pressure waveforms recorded external to the ear in human cadaver temporal bone tests were applied at the entrance of the ear canal in the model. The pressure waveforms near the tympanic membrane (TM) in the canal (P1) and behind the TM in the middle ear cavity (P2) were calculated. The model-predicted results were then compared with measured P1 and P2 waveforms recorded in human cadaver ears during blast tests. Results show that the model-derived P1 waveforms were in an agreement with the experimentally recorded waveforms with statistic Kurtosis analysis. The FE model will be used for the evaluation of HPDs in future studies.

  18. Approximation of Gas Volume in a Seafloor Sediment using Time Domain Reflectometry in the Okhotsk Sea

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Noborio, K.; Matsumoto, R.

    2013-12-01

    Global warming has accelerated in recent decades as the concentration of carbon dioxide has increased in the atmosphere due to fossil fuel burning. In addition, increases in consuming fossil fuels have led to their depletion in recent years. One practical measure to meet these two challenges is the conversion of energy resources to natural gas that has less environmental impact. Gas hydrates that contain natural gas have been discovered in the sea around Japan. They are expected to serve as a new non-conventional natural gas resource. To understand the mechanism of gas hydrate accumulation, the amount of free gas in sediments should be known. However, it is difficult to measure this non-destructively without affecting other properties. In this study we examined a technique for measuring the amount of free gas using Time Domain Reflectometry (TDR). TDR was a method of measuring the dielectric constant of the soil. This method is based on the relationship between the volumetric water content and dielectric constant, to estimate the volumetric water content indirectly. TDR has commonly been used to measure the moisture content of soil such as cultivation and paddy. In our study, we used TDR to estimate the gas ratio in the sea-bottom sediment obtained from the Sea of Okhotsk. Measurement by the TDR method was difficult in a high electrical conductivity solution such as seawater. Therefore, we blunted the measurement sensitivity by coating TDR probe with plastic, which makes it possible to measure. We found that the gas phase rates differed depending on the depth and location, so gas phase existed up to about 10%.

  19. A simple approach to determine reactive solute transport using time domain reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogeler, I.; Duwig, C.; Clothier, B.E.

    2000-02-01

    Time domain reflectometry (TDR) possesses potential for determining solute-transport parameters, such as dispersion coefficients and retardation factors for reactive solutes. The authors developed a simple method based on peak-to-peak measurements of water and solute velocities through the soil using TDR. The method was tested by carrying out unsaturated leaching experiments in the laboratory on two soil columns packed with a South Pacific soil from Mare, which is a ferrasol with variable surface charge. One column was left bare and the other was planted with mustard. Pulses of CaBr{sub 2} and Ca(NO{sub 3}){minus}{sub 2} were applied to the surface of eithermore » wet or dry soil and then leached by water from a rainfall simulator applied at a steady rate of between 30 and 45 mm h{sup {minus}1}. Water and solute transport were monitored by collecting the effluent. Contemporaneous in situ measurements of the water content and electrical conductivity were made using TDR. Transport parameters for the convection-dispersion equation, with a linear adsorption isotherm, were obtained from the flux concentration and the solute resident concentrations measured by TDR. Anion retardations between 1.2 and 1.7, and dispersivities between 1 and 9 mm, were found. Retardations also were calculated using the authors simple approach based on TDR-measured water and solute front velocities. These used TDR measurements of soil water content and bulk soil electrical conductivity with time, and were similar to those obtained from the effluent. The agreement suggests TDR could be a valuable in situ technique for obtaining the parameters relating to reactive solute transport through soil.« less

  20. Time domain reflectometry measurements of solute transport across a soil layer boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissen, H.H.; Moldrup, P.; Kachanoski, R.G.

    2000-02-01

    The mechanisms governing solute transport through layered soil are not fully understood. Solute transport at, above, and beyond the interface between two soil layers during quasi-steady-state soil water movement was investigated using time domain reflectometry (TDR). A 0.26-m sandy loam layer was packed on top of a 1.35-m fine sand layer in a soil column. Soil water content ({theta}) and bulk soil electrical conductivity (EC{sub b}) were measured by 50 horizontal and 2 vertical TDR probes. A new TDR calibration method that gives a detailed relationship between apparent relative dielectric permittivity (K{sub s}) and {theta} was applied. Two replicate solutemore » transport experiments were conducted adding a conservative tracer (CCl) to the surface as a short pulse. The convective lognormal transfer function model (CLT) was fitted to the TDR-measured time integral-normalized resident concentration breakthrough curves (BTCs). The BTCs and the average solute-transport velocities showed preferential flow occurred across the layer boundary. A nonlinear decrease in TDR-measured {theta} in the upper soil toward the soil layer boundary suggests the existence of a 0.10-m zone where water is confined towards fingered flow, creating lateral variations in the area-averaged water flux above the layer boundary. A comparison of the time integral-normalized flux concentration measured by vertical and horizontal TDR probes at the layer boundary also indicates a nonuniform solute transport. The solute dispersivity remained constant in the upper soil layer, but increased nonlinearly (and further down, linearly) with depth in the lower layer, implying convective-dispersive solute transport in the upper soil, a transition zone just below the boundary, and stochastic-convective solute transport in the remaining part of the lower soil.« less

  1. Microresonator-Based Optical Frequency Combs: A Time Domain Perspective

    DTIC Science & Technology

    2016-04-19

    optics; ultrafast optics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a...generation at frequency spacings down to 25 GHz, in the range where convenient electronic detection is possible. (c) Our best Purdue microrings had...time domain measurements of the generated combs, leading to observation of novel, ultrafast dark pulse waveforms, have introduced new structures such

  2. Towards seismic waveform inversion of long-offset Ocean-Bottom Seismic data for deep crustal imaging offshore Western Australia

    NASA Astrophysics Data System (ADS)

    Monnier, S.; Lumley, D. E.; Kamei, R.; Goncharov, A.; Shragge, J. C.

    2016-12-01

    Ocean Bottom Seismic datasets have become increasingly used in recent years to develop high-resolution, wavelength-scale P-wave velocity models of the lithosphere from waveform inversion, due to their recording of long-offset transmitted phases. New OBS surveys evolve towards novel acquisition geometries involving longer offsets (several hundreds of km), broader frequency content (1-100 Hz), while receiver sampling often remains sparse (several km). Therefore, it is critical to assess the effects of such geometries on the eventual success and resolution of waveform inversion velocity models. In this study, we investigate the feasibility of waveform inversion on the Bart 2D OBS profile acquired offshore Western Australia, to investigate regional crustal and Moho structures. The dataset features 14 broadband seismometers (0.01-100 Hz) from AuScope's national OBS fleet, offsets in excess of 280 km, and a sparse receiver sampling (18 km). We perform our analysis in four stages: (1) field data analysis, (2) 2D P-wave velocity model building, synthetic data (3) modelling, and (4) waveform inversion. Data exploration shows high-quality active-source signal down to 2Hz, and usable first arrivals to offsets greater than 100 km. The background velocity model is constructed by combining crustal and Moho information in continental reference models (e.g., AuSREM, AusMoho). These low-resolution studies suggest a crustal thickness of 20-25 km along our seismic line and constitute a starting point for synthetic modelling and inversion. We perform synthetic 2D time-domain modelling to: (1) evaluate the misfit between synthetic and field data within the usable frequency band (2-10 Hz); (2) validate our velocity model; and (3) observe the effects of sparse OBS interval on data quality. Finally, we apply 2D acoustic frequency-domain waveform inversion to the synthetic data to generate velocity model updates. The inverted model is compared to the reference model to investigate the improved crustal resolution and Moho boundary delineation that could be realized using waveform inversion, and to evaluate the effects of the acquisition parameters. The inversion strategies developed through the synthetic tests will help the subsequent inversion of sparse, long-offset OBS field data.

  3. Contrast in Terahertz Images of Archival Documents—Part II: Influence of Topographic Features

    NASA Astrophysics Data System (ADS)

    Bardon, Tiphaine; May, Robert K.; Taday, Philip F.; Strlič, Matija

    2017-04-01

    We investigate the potential of terahertz time-domain imaging in reflection mode to reveal archival information in documents in a non-invasive way. In particular, this study explores the parameters and signal processing tools that can be used to produce well-contrasted terahertz images of topographic features commonly found in archival documents, such as indentations left by a writing tool, as well as sieve lines. While the amplitude of the waveforms at a specific time delay can provide the most contrasted and legible images of topographic features on flat paper or parchment sheets, this parameter may not be suitable for documents that have a highly irregular surface, such as water- or fire-damaged documents. For analysis of such documents, cross-correlation of the time-domain signals can instead yield images with good contrast. Analysis of the frequency-domain representation of terahertz waveforms can also provide well-contrasted images of topographic features, with improved spatial resolution when utilising high-frequency content. Finally, we point out some of the limitations of these means of analysis for extracting information relating to topographic features of interest from documents.

  4. Binary black hole coalescence in the large-mass-ratio limit: The hyperboloidal layer method and waveforms at null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernuzzi, Sebastiano; Nagar, Alessandro; Zenginoglu, Anil

    2011-10-15

    We compute and analyze the gravitational waveform emitted to future null infinity by a system of two black holes in the large-mass-ratio limit. We consider the transition from the quasiadiabatic inspiral to plunge, merger, and ringdown. The relative dynamics is driven by a leading order in the mass ratio, 5PN-resummed, effective-one-body (EOB), analytic-radiation reaction. To compute the waveforms, we solve the Regge-Wheeler-Zerilli equations in the time-domain on a spacelike foliation, which coincides with the standard Schwarzschild foliation in the region including the motion of the small black hole, and is globally hyperboloidal, allowing us to include future null infinity inmore » the computational domain by compactification. This method is called the hyperboloidal layer method, and is discussed here for the first time in a study of the gravitational radiation emitted by black hole binaries. We consider binaries characterized by five mass ratios, {nu}=10{sup -2,-3,-4,-5,-6}, that are primary targets of space-based or third-generation gravitational wave detectors. We show significative phase differences between finite-radius and null-infinity waveforms. We test, in our context, the reliability of the extrapolation procedure routinely applied to numerical relativity waveforms. We present an updated calculation of the final and maximum gravitational recoil imparted to the merger remnant by the gravitational wave emission, v{sub kick}{sup end}/(c{nu}{sup 2})=0.04474{+-}0.00007 and v{sub kick}{sup max}/(c{nu}{sup 2})=0.05248{+-}0.00008. As a self-consistency test of the method, we show an excellent fractional agreement (even during the plunge) between the 5PN EOB-resummed mechanical angular momentum loss and the gravitational wave angular momentum flux computed at null infinity. New results concerning the radiation emitted from unstable circular orbits are also presented. The high accuracy waveforms computed here could be considered for the construction of template banks or for calibrating analytic models such as the effective-one-body model.« less

  5. Material parameter estimation with terahertz time-domain spectroscopy.

    PubMed

    Dorney, T D; Baraniuk, R G; Mittleman, D M

    2001-07-01

    Imaging systems based on terahertz (THz) time-domain spectroscopy offer a range of unique modalities owing to the broad bandwidth, subpicosecond duration, and phase-sensitive detection of the THz pulses. Furthermore, the possibility exists for combining spectroscopic characterization or identification with imaging because the radiation is broadband in nature. To achieve this, we require novel methods for real-time analysis of THz waveforms. This paper describes a robust algorithm for extracting material parameters from measured THz waveforms. Our algorithm simultaneously obtains both the thickness and the complex refractive index of an unknown sample under certain conditions. In contrast, most spectroscopic transmission measurements require knowledge of the sample's thickness for an accurate determination of its optical parameters. Our approach relies on a model-based estimation, a gradient descent search, and the total variation measure. We explore the limits of this technique and compare the results with literature data for optical parameters of several different materials.

  6. Signal digitizing system and method based on amplitude-to-time optical mapping

    DOEpatents

    Chou, Jason; Bennett, Corey V; Hernandez, Vince

    2015-01-13

    A signal digitizing system and method based on analog-to-time optical mapping, optically maps amplitude information of an analog signal of interest first into wavelength information using an amplitude tunable filter (ATF) to impress spectral changes induced by the amplitude of the analog signal onto a carrier signal, i.e. a train of optical pulses, and next from wavelength information to temporal information using a dispersive element so that temporal information representing the amplitude information is encoded in the time domain in the carrier signal. Optical-to-electrical conversion of the optical pulses into voltage waveforms and subsequently digitizing the voltage waveforms into a digital image enables the temporal information to be resolved and quantized in the time domain. The digital image may them be digital signal processed to digitally reconstruct the analog signal based on the temporal information with high fidelity.

  7. Differential reflectometry versus tactile sense detection of subgingival calculus in dentistry

    NASA Astrophysics Data System (ADS)

    Shakibaie, Fardad; Walsh, Laurence J.

    2012-10-01

    Detecting dental calculus is clinically challenging in dentistry. This study used typodonts with extracted premolar and molar teeth and simulated gingival tissue to compare the performance of differential reflectometry and periodontal probing. A total of 30 extracted teeth were set in an anatomical configuration in stone to create three typodonts. Clear polyvinyl siloxane impression material was placed to replicate the periodontal soft tissues. Pocket depths ranged from 10 to 15 mm. The three models were placed in a phantom head, and an experienced dentist assessed the presence of subgingival calculus first using the DetecTar (differential reflectometry) and then a periodontal probe. Scores from these two different methods were compared to the gold standard (direct examination of the root surface using 20× magnification) to determine the accuracy and reproducibility. Differential reflectometry was more accurate than tactile assessment (79% versus 60%), and its reproducibility was also higher (Cohen kappa 0.54 versus 0.39). Both methods performed better on single rooted premolar teeth than on multirooted teeth. These laboratory results indicate that differential reflectometry allows more accurate and reproducible detection of subgingival calculus than conventional probing, and supports its use for supplementing traditional periodontal examination methods in dental practice.

  8. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya

    2017-07-01

    All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.

  9. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors

    NASA Astrophysics Data System (ADS)

    Bohé, Alejandro; Shao, Lijing; Taracchini, Andrea; Buonanno, Alessandra; Babak, Stanislav; Harry, Ian W.; Hinder, Ian; Ossokine, Serguei; Pürrer, Michael; Raymond, Vivien; Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Lovelace, Geoffrey; Scheel, Mark A.; Szilágyi, Béla

    2017-02-01

    We improve the accuracy of the effective-one-body (EOB) waveforms that were employed during the first observing run of Advanced LIGO for binaries of spinning, nonprecessing black holes by calibrating them to a set of 141 numerical-relativity (NR) waveforms. The NR simulations expand the domain of calibration toward larger mass ratios and spins, as compared to the previous EOBNR model. Merger-ringdown waveforms computed in black-hole perturbation theory for Kerr spins close to extremal provide additional inputs to the calibration. For the inspiral-plunge phase, we use a Markov-chain Monte Carlo algorithm to efficiently explore the calibration space. For the merger-ringdown phase, we fit the NR signals with phenomenological formulae. After extrapolation of the calibrated model to arbitrary mass ratios and spins, the (dominant-mode) EOBNR waveforms have faithfulness—at design Advanced-LIGO sensitivity—above 99% against all the NR waveforms, including 16 additional waveforms used for validation, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling for these binary configurations. We find that future NR simulations at mass ratios ≳4 and double spin ≳0.8 will be crucial to resolving discrepancies between different ways of extrapolating waveform models. We also find that some of the NR simulations that already exist in such region of parameter space are too short to constrain the low-frequency portion of the models. Finally, we build a reduced-order version of the EOBNR model to speed up waveform generation by orders of magnitude, thus enabling intensive data-analysis applications during the upcoming observation runs of Advanced LIGO.

  10. Real-time Fourier transformation of lightwave spectra and application in optical reflectometry.

    PubMed

    Malacarne, Antonio; Park, Yongwoo; Li, Ming; LaRochelle, Sophie; Azaña, José

    2015-12-14

    We propose and experimentally demonstrate a fiber-optics scheme for real-time analog Fourier transform (FT) of a lightwave energy spectrum, such that the output signal maps the FT of the spectrum of interest along the time axis. This scheme avoids the need for analog-to-digital conversion and subsequent digital signal post-processing of the photo-detected spectrum, thus being capable of providing the desired FT processing directly in the optical domain at megahertz update rates. The proposed concept is particularly attractive for applications requiring FT analysis of optical spectra, such as in many optical Fourier-domain reflectrometry (OFDR), interferometry, spectroscopy and sensing systems. Examples are reported to illustrate the use of the method for real-time OFDR, where the target axial-line profile is directly observed in a single-shot oscilloscope trace, similarly to a time-of-flight measurement, but with a resolution and depth of range dictated by the underlying interferometry scheme.

  11. Frequency Domain Ultrasound Waveform Tomography: Breast Imaging Using a Ring Transducer

    PubMed Central

    Sandhu, G Y; Li, C; Roy, O; Schmidt, S; Duric, N

    2016-01-01

    Application of the frequency domain acoustic wave equation on data acquired from ultrasound tomography scans is shown to yield high resolution sound speed images on the order of the wavelength of the highest reconstructed frequency. Using a signal bandwidth of 0.4–1 MHz and an average sound speed of 1500 m/s, the resolution is approximately 1.5 mm. The quantitative sound speed values and morphology provided by these images have the potential to inform diagnosis and classification of breast disease. In this study, we present the formalism, practical application, and in vivo results of waveform tomography applied to breast data gathered by two different ultrasound tomography scanners that utilize ring transducers. The formalism includes a review of frequency domain modeling of the wave equation using finite difference operators as well as a review of the gradient descent method for the iterative reconstruction scheme. It is shown that the practical application of waveform tomography requires an accurate starting model, careful data processing, and a method to gradually incorporate higher frequency information into the sound speed reconstruction. Following these steps resulted in high resolution quantitative sound speed images of the breast. These images show marked improvement relative to commonly used ray tomography reconstruction methods. The robustness of the method is demonstrated by obtaining similar results from two different ultrasound tomography devices. We also compare our method to MRI to demonstrate concordant findings. The clinical data used in this work was obtained from a HIPAA compliant clinical study (IRB 040912M1F). PMID:26110909

  12. 3D frequency-domain ultrasound waveform tomography breast imaging

    NASA Astrophysics Data System (ADS)

    Sandhu, Gursharan Yash; West, Erik; Li, Cuiping; Roy, Olivier; Duric, Neb

    2017-03-01

    Frequency-domain ultrasound waveform tomography is a promising method for the visualization and characterization of breast disease. It has previously been shown to accurately reconstruct the sound speed distributions of breasts of varying densities. The reconstructed images show detailed morphological and quantitative information that can help differentiate different types of breast disease including benign and malignant lesions. The attenuation properties of an ex vivo phantom have also been assessed. However, the reconstruction algorithms assumed a 2D geometry while the actual data acquisition process was not. Although clinically useful sound speed images can be reconstructed assuming this mismatched geometry, artifacts from the reconstruction process exist within the reconstructed images. This is especially true for registration across different modalities and when the 2D assumption is violated. For example, this happens when a patient's breast is rapidly sloping. It is also true for attenuation imaging where energy lost or gained out of the plane gets transformed into artifacts within the image space. In this paper, we will briefly review ultrasound waveform tomography techniques, give motivation for pursuing the 3D method, discuss the 3D reconstruction algorithm, present the results of 3D forward modeling, show the mismatch that is induced by the violation of 3D modeling via numerical simulations, and present a 3D inversion of a numerical phantom.

  13. Precision cosmology from future lensed gravitational wave and electromagnetic signals.

    PubMed

    Liao, Kai; Fan, Xi-Long; Ding, Xuheng; Biesiada, Marek; Zhu, Zong-Hong

    2017-10-27

    The standard siren approach of gravitational wave cosmology appeals to the direct luminosity distance estimation through the waveform signals from inspiralling double compact binaries, especially those with electromagnetic counterparts providing redshifts. It is limited by the calibration uncertainties in strain amplitude and relies on the fine details of the waveform. The Einstein telescope is expected to produce 10 4 -10 5 gravitational wave detections per year, 50-100 of which will be lensed. Here, we report a waveform-independent strategy to achieve precise cosmography by combining the accurately measured time delays from strongly lensed gravitational wave signals with the images and redshifts observed in the electromagnetic domain. We demonstrate that just 10 such systems can provide a Hubble constant uncertainty of 0.68% for a flat lambda cold dark matter universe in the era of third-generation ground-based detectors.

  14. Constant-Envelope Waveform Design for Optimal Target-Detection and Autocorrelation Performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Satyabrata

    2013-01-01

    We propose an algorithm to directly synthesize in time-domain a constant-envelope transmit waveform that achieves the optimal performance in detecting an extended target in the presence of signal-dependent interference. This approach is in contrast to the traditional indirect methods that synthesize the transmit signal following the computation of the optimal energy spectral density. Additionally, we aim to maintain a good autocorrelation property of the designed signal. Therefore, our waveform design technique solves a bi-objective optimization problem in order to simultaneously improve the detection and autocorrelation performances, which are in general conflicting in nature. We demonstrate this compromising characteristics of themore » detection and autocorrelation performances with numerical examples. Furthermore, in the absence of the autocorrelation criterion, our designed signal is shown to achieve a near-optimum detection performance.« less

  15. 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer spin valve component investigated by polarized neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callori, S. J., E-mail: sara.callori@ansto.gov.au; Bertinshaw, J.; Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234

    2014-07-21

    We have observed 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer system using polarized neutron reflectometry. Magnetometry results show magnetic switching for both the biased and free NiFe layers, the latter of which reverses at low applied fields. As these measurements are only capable of providing information about the total magnetization within a sample, polarized neutron reflectometry was used to investigate the reversal behavior of the NiFe layers individually. Both the non-spin-flip and spin-flip neutron reflectometry signals were tracked around the free NiFe layer hysteresis loop and were used to detail the evolution of the magnetization during reversal. At lowmore » magnetic fields near the free NiFe coercive field, a large spin-flip signal was observed, indicating magnetization aligned perpendicular to both the applied field and pinned layer.« less

  16. Optical coherence tomography guided dental drill

    DOEpatents

    DaSilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

  17. Distributed measurement of polarization mode coupling in fiber ring based on P-OTDR complete polarization state detection.

    PubMed

    Huang, Zejia; Wu, Chongqing; Wang, Zhi; Wang, Jian; Liu, Lanlan

    2018-02-19

    Using a quaternion method, the polarization mode-coupling coefficient can be derived from three components of the Stokes vectors at three adjacent points along a fiber. A complete polarization optical time-domain reflectometry scheme for polarization mode coupling distributed measurement in polarization-maintaining fiber ring is proposed based on the above theoretical derivations. By comparing the measurement results of two opposite incident directions and two orthogonal polarization axes of polarization-maintaining fiber rings with different lengths, the feasibility and repeatability of the measurement scheme are verified experimentally with a positioning spatial resolution of 1 meter.

  18. Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge.

    PubMed

    Suchorab, Zbigniew; Barnat-Hunek, Danuta; Franus, Małgorzata; Łagód, Grzegorz

    2016-04-27

    This article is focused on lightweight aggregate-concrete modified by municipal sewage sludge and lightweight aggregate-concrete obtained from light aggregates. The article presents laboratory examinations of material physical parameters. Water absorptivity of the examined material was decreased by the admixture of water emulsion of reactive polysiloxanes. Water transport properties were determined using Time Domain Reflectometry, an indirect technique for moisture detection in porous media. Together with basic physical parameters, the heat conductivity coefficient λ was determined for both types of lightweight aggregate-concrete. Analysis of moisture and heat properties of the examined materials confirmed the usefulness of light aggregates supplemented with sewage sludge for prospective production.

  19. Exploiting EMI Signals During Active Transmission

    DTIC Science & Technology

    2010-08-12

    Surveys) fixed wing airborne EM system. (Center) AeroTEM (AeroQuest Surveys) helicopter-based airborne time-domain EM system, (Right) VTEM ( GeoTech Ltd...Center) AeroTEM (AeroQuest Surveys) helicopter-based airborne time-domain EM system, (Right) VTEM ( GeoTech Ltd.) helicopter-borne AEM system. All three...systems such as the UTEM (Lamontange Geophysics) and the SPECTREM AEM systems. Geotech Ltd. uses a complicated waveform which has been optimized to

  20. Improving waveform inversion using modified interferometric imaging condition

    NASA Astrophysics Data System (ADS)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong; Zhang, Zhen

    2017-12-01

    Similar to the reverse-time migration, full waveform inversion in the time domain is a memory-intensive processing method. The computational storage size for waveform inversion mainly depends on the model size and time recording length. In general, 3D and 4D data volumes need to be saved for 2D and 3D waveform inversion gradient calculations, respectively. Even the boundary region wavefield-saving strategy creates a huge storage demand. Using the last two slices of the wavefield to reconstruct wavefields at other moments through the random boundary, avoids the need to store a large number of wavefields; however, traditional random boundary method is less effective at low frequencies. In this study, we follow a new random boundary designed to regenerate random velocity anomalies in the boundary region for each shot of each iteration. The results obtained using the random boundary condition in less illuminated areas are more seriously affected by random scattering than other areas due to the lack of coverage. In this paper, we have replaced direct correlation for computing the waveform inversion gradient by modified interferometric imaging, which enhances the continuity of the imaging path and reduces noise interference. The new imaging condition is a weighted average of extended imaging gathers can be directly used in the gradient computation. In this process, we have not changed the objective function, and the role of the imaging condition is similar to regularization. The window size for the modified interferometric imaging condition-based waveform inversion plays an important role in this process. The numerical examples show that the proposed method significantly enhances waveform inversion performance.

  1. Improving waveform inversion using modified interferometric imaging condition

    NASA Astrophysics Data System (ADS)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong; Zhang, Zhen

    2018-02-01

    Similar to the reverse-time migration, full waveform inversion in the time domain is a memory-intensive processing method. The computational storage size for waveform inversion mainly depends on the model size and time recording length. In general, 3D and 4D data volumes need to be saved for 2D and 3D waveform inversion gradient calculations, respectively. Even the boundary region wavefield-saving strategy creates a huge storage demand. Using the last two slices of the wavefield to reconstruct wavefields at other moments through the random boundary, avoids the need to store a large number of wavefields; however, traditional random boundary method is less effective at low frequencies. In this study, we follow a new random boundary designed to regenerate random velocity anomalies in the boundary region for each shot of each iteration. The results obtained using the random boundary condition in less illuminated areas are more seriously affected by random scattering than other areas due to the lack of coverage. In this paper, we have replaced direct correlation for computing the waveform inversion gradient by modified interferometric imaging, which enhances the continuity of the imaging path and reduces noise interference. The new imaging condition is a weighted average of extended imaging gathers can be directly used in the gradient computation. In this process, we have not changed the objective function, and the role of the imaging condition is similar to regularization. The window size for the modified interferometric imaging condition-based waveform inversion plays an important role in this process. The numerical examples show that the proposed method significantly enhances waveform inversion performance.

  2. Emitter signal separation method based on multi-level digital channelization

    NASA Astrophysics Data System (ADS)

    Han, Xun; Ping, Yifan; Wang, Sujun; Feng, Ying; Kuang, Yin; Yang, Xinquan

    2018-02-01

    To solve the problem of emitter separation under complex electromagnetic environment, a signal separation method based on multi-level digital channelization is proposed in this paper. A two-level structure which can divide signal into different channel is designed first, after that, the peaks of different channels are tracked using the track filter and the coincident signals in time domain are separated in time-frequency domain. Finally, the time domain waveforms of different signals are acquired by reverse transformation. The validness of the proposed method is proved by experiment.

  3. Muscle contraction during electro-muscular incapacitation: A comparison between square-wave pulses and the TASER(®) X26 Electronic control device.

    PubMed

    Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A

    2011-01-01

    Electronic control devices (including the Advanced TASER(®) X26 model produced by TASER International) incapacitate individuals by causing muscle contractions. To provide information relevant to development of future potential devices, effects of monophasic square waves with different parameters were compared with those of the X26 electronic control device, using two animal models (frogs and swine). Pulse power, electrical pulse charge, pulse duration, and pulse repetition frequency affected muscle contraction. There was no difference in the charge required, between the square waveform and the X26 waveform, to cause approximately the same muscle-contraction response (in terms of the strength-duration curve). Thus, on the basis of these initial studies, the detailed shape of a waveform may not be important in terms of generating electro-muscular incapacitation. More detailed studies, however, may be required to thoroughly test all potential waveforms to be considered for future use in ECDs. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.

  4. On the use of higher order wave forms in the search for gravitational waves emitted by compact binary coalescences

    NASA Astrophysics Data System (ADS)

    McKechan, David J. A.

    2010-11-01

    This thesis concerns the use, in gravitational wave data analysis, of higher order wave form models of the gravitational radiation emitted by compact binary coalescences. We begin with an introductory chapter that includes an overview of the theory of general relativity, gravitational radiation and ground-based interferometric gravitational wave detectors. We then discuss, in Chapter 2, the gravitational waves emitted by compact binary coalescences, with an explanation of higher order waveforms and how they differ from leading order waveforms we also introduce the post-Newtonian formalism. In Chapter 3 the method and results of a gravitational wave search for low mass compact binary coalescences using a subset of LIGO's 5th science run data are presented and in the subsequent chapter we examine how one could use higher order waveforms in such analyses. We follow the development of a new search algorithm that incorporates higher order waveforms with promising results for detection efficiency and parameter estimation. In Chapter 5, a new method of windowing time-domain waveforms that offers benefit to gravitational wave searches is presented. The final chapter covers the development of a game designed as an outreach project to raise public awareness and understanding of the search for gravitational waves.

  5. The shift-invariant discrete wavelet transform and application to speech waveform analysis.

    PubMed

    Enders, Jörg; Geng, Weihua; Li, Peijun; Frazier, Michael W; Scholl, David J

    2005-04-01

    The discrete wavelet transform may be used as a signal-processing tool for visualization and analysis of nonstationary, time-sampled waveforms. The highly desirable property of shift invariance can be obtained at the cost of a moderate increase in computational complexity, and accepting a least-squares inverse (pseudoinverse) in place of a true inverse. A new algorithm for the pseudoinverse of the shift-invariant transform that is easier to implement in array-oriented scripting languages than existing algorithms is presented together with self-contained proofs. Representing only one of the many and varied potential applications, a recorded speech waveform illustrates the benefits of shift invariance with pseudoinvertibility. Visualization shows the glottal modulation of vowel formants and frication noise, revealing secondary glottal pulses and other waveform irregularities. Additionally, performing sound waveform editing operations (i.e., cutting and pasting sections) on the shift-invariant wavelet representation automatically produces quiet, click-free section boundaries in the resulting sound. The capabilities of this wavelet-domain editing technique are demonstrated by changing the rate of a recorded spoken word. Individual pitch periods are repeated to obtain a half-speed result, and alternate individual pitch periods are removed to obtain a double-speed result. The original pitch and formant frequencies are preserved. In informal listening tests, the results are clear and understandable.

  6. The shift-invariant discrete wavelet transform and application to speech waveform analysis

    NASA Astrophysics Data System (ADS)

    Enders, Jörg; Geng, Weihua; Li, Peijun; Frazier, Michael W.; Scholl, David J.

    2005-04-01

    The discrete wavelet transform may be used as a signal-processing tool for visualization and analysis of nonstationary, time-sampled waveforms. The highly desirable property of shift invariance can be obtained at the cost of a moderate increase in computational complexity, and accepting a least-squares inverse (pseudoinverse) in place of a true inverse. A new algorithm for the pseudoinverse of the shift-invariant transform that is easier to implement in array-oriented scripting languages than existing algorithms is presented together with self-contained proofs. Representing only one of the many and varied potential applications, a recorded speech waveform illustrates the benefits of shift invariance with pseudoinvertibility. Visualization shows the glottal modulation of vowel formants and frication noise, revealing secondary glottal pulses and other waveform irregularities. Additionally, performing sound waveform editing operations (i.e., cutting and pasting sections) on the shift-invariant wavelet representation automatically produces quiet, click-free section boundaries in the resulting sound. The capabilities of this wavelet-domain editing technique are demonstrated by changing the rate of a recorded spoken word. Individual pitch periods are repeated to obtain a half-speed result, and alternate individual pitch periods are removed to obtain a double-speed result. The original pitch and formant frequencies are preserved. In informal listening tests, the results are clear and understandable. .

  7. Polarization sensitive optical low-coherence reflectometry for blood glucose monitoring in human subjects

    NASA Astrophysics Data System (ADS)

    Solanki, Jitendra; Choudhary, Om Prakash; Sen, P.; Andrews, J. T.

    2013-07-01

    A device based on polarization sensitive optical low-coherence reflectometry is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the ellipticity obtainable from the home-made phase-sensitive optical low-coherence reflectometry device. The linearity obtained between glucose concentration and ellipticity are explained with theoretical calculations using Mie theory. A comparison of results with standard clinical methods establishes the utility of the present device for non-invasive glucose monitoring.

  8. Method and Apparatus of Multiplexing and Acquiring Data from Multiple Optical Fibers Using a Single Data Channel of an Optical Frequency-Domain Reflectometry (OFDR) System

    NASA Technical Reports Server (NTRS)

    Parker, Jr., Allen R (Inventor); Chan, Hon Man (Inventor); Piazza, Anthony (Nino) (Inventor); Richards, William Lance (Inventor)

    2014-01-01

    A method and system for multiplexing a network of parallel fiber Bragg grating (FBG) sensor-fibers to a single acquisition channel of a closed Michelson interferometer system via a fiber splitter by distinguishing each branch of fiber sensors in the spatial domain. On each branch of the splitter, the fibers have a specific pre-determined length, effectively separating each branch of fiber sensors spatially. In the spatial domain the fiber branches are seen as part of one acquisition channel on the interrogation system. However, the FBG-reference arm beat frequency information for each fiber is retained. Since the beat frequency is generated between the reference arm, the effective fiber length of each successive branch includes the entire length of the preceding branch. The multiple branches are seen as one fiber having three segments where the segments can be resolved. This greatly simplifies optical, electronic and computational complexity, and is especially suited for use in multiplexed or branched OFS networks for SHM of large and/or distributed structures which need a lot of measurement points.

  9. A numerically-stable algorithm for calibrating single six-ports for national microwave reflectometry

    NASA Astrophysics Data System (ADS)

    Hodgetts, T. E.

    1990-11-01

    A full description and analysis of the numerically stable algorithm currently used for calibrating single six ports or multi states for national microwave reflectometry, employing as standards four one port devices having known voltage reflection coefficients, is given.

  10. Permittivity and conductivity parameter estimations using full waveform inversion

    NASA Astrophysics Data System (ADS)

    Serrano, Jheyston O.; Ramirez, Ana B.; Abreo, Sergio A.; Sadler, Brian M.

    2018-04-01

    Full waveform inversion of Ground Penetrating Radar (GPR) data is a promising strategy to estimate quantitative characteristics of the subsurface such as permittivity and conductivity. In this paper, we propose a methodology that uses Full Waveform Inversion (FWI) in time domain of 2D GPR data to obtain highly resolved images of the permittivity and conductivity parameters of the subsurface. FWI is an iterative method that requires a cost function to measure the misfit between observed and modeled data, a wave propagator to compute the modeled data and an initial velocity model that is updated at each iteration until an acceptable decrease of the cost function is reached. The use of FWI with GPR are expensive computationally because it is based on the computation of the electromagnetic full wave propagation. Also, the commercially available acquisition systems use only one transmitter and one receiver antenna at zero offset, requiring a large number of shots to scan a single line.

  11. Dynamic Detection of Spinal Cord Position During Postural Changes Using Near-Infrared Reflectometry.

    PubMed

    Wolf, Erich W

    2015-08-01

    Motion of the spinal cord relative to a spinal cord stimulator epidural electrode array can cause suboptimal stimulation: either noxious, inefficient, or insufficient. Adaptive stimulation attempts to mitigate these effects by modulating stimulation parameters in a position-dependent fashion. Near-infrared (NIR) reflectometry is demonstrated to provide real-time direct measurement of spinal cord position at the site of stimulation, which can facilitate closed-loop adaptive stimulation during static and dynamic motion states. A miniature sensor array consisting of an NIR light emitting diode flanked by phototransistors potted in epoxy was placed in the dorsal epidural space of a human cadaver at the T8 level via laminotomy. Turgor of the subarachnoid space was maintained by intrathecal infusion of saline. NIR reflectance was measured as the cadaver was rotated about its longitudinal axis on a gantry. NIR reflectance was correlated with gantry position and velocity. NIR reflectometry suggests gravitational force is the primary determinant of cord position in static, ordinal positions. Under dynamic motion conditions, there was statistically significant cross-correlation between reflectometry data and the tangential velocity squared, suggesting that centripetal force was the primary determinant of cord position as the gantry was rotated. Reflectometry data strongly correlated with a simple geometric model of anticipated spinal cord precession within the spinal canal. Spinal cord position during dynamic motion has been shown to differ from static predictions due to additional influences such as centripetal force. These findings underscore limitations in extrapolating spinal cord position from surrogates such as body position or body acceleration at sites remote from the stimulating electrodes. NIR reflectometry offers a real-time direct measure of spinal cord position in both static and dynamic motion states, which may facilitate closed-loop adaptive stimulation applications. © 2015 International Neuromodulation Society.

  12. Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography

    NASA Astrophysics Data System (ADS)

    Pan, Yudi; Gao, Lingli; Bohlen, Thomas

    2018-05-01

    Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.

  13. Thermal stability of photovoltaic a-Si:H determined by neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qviller, A. J., E-mail: atlejq@ife.no; Haug, H.; You, C. C.

    2014-12-08

    Neutron and X-ray reflectometry were used to determine the layer structure and hydrogen content of thin films of amorphous silicon (a-Si:H) deposited onto crystalline silicon (Si) wafers for surface passivation in solar cells. The combination of these two reflectometry techniques is well suited for non-destructive probing of the structure of a-Si:H due to being able to probe buried interfaces and having sub-nanometer resolution. Neutron reflectometry is also unique in its ability to allow determination of density gradients of light elements such as hydrogen (H). The neutron scattering contrast between Si and H is strong, making it possible to determine themore » H concentration in the deposited a-Si:H. In order to correlate the surface passivation properties supplied by the a-Si:H thin films, as quantified by obtainable effective minority carrier lifetime, photoconductance measurements were also performed. It is shown that the minority carrier lifetime falls sharply when H has been desorbed from a-Si:H by annealing.« less

  14. First density profile measurements using frequency modulation of the continuous wave reflectometry on JETa)

    NASA Astrophysics Data System (ADS)

    Meneses, L.; Cupido, L.; Sirinelli, A.; Manso, M. E.; Jet-Efds Contributors

    2008-10-01

    We present the main design options and implementation of an X-mode reflectometer developed and successfully installed at JET using an innovative approach. It aims to prove the viability of measuring density profiles with high spatial and temporal resolution using broadband reflectometry operating in long and complex transmission lines. It probes the plasma with magnetic fields between 2.4 and 3.0 T using the V band [~(0-1.4)×1019 m-3]. The first experimental results show the high sensitivity of the diagnostic when measuring changes in the plasma density profile occurring ITER relevant regimes, such as ELMy H-modes. The successful demonstration of this concept motivated the upgrade of the JET frequency modulation of the continuous wave (FMCW) reflectometry diagnostic, to probe both the edge and core. This new system is essential to prove the viability of using the FMCW reflectometry technique to probe the plasma in next step devices, such as ITER, since they share the same waveguide complexity.

  15. Low Density ITB Studies Using the Upgraded C-Mod Reflectometry System

    NASA Astrophysics Data System (ADS)

    Dominguez, A.; Edlund, E.; Fiore, C. L.; Lin, L.; Marmar, E. S.; Snipes, J. A.; Porkolab, M.; Kramer, G. J.; Rowan, W. L.

    2007-11-01

    The Alcator C-Mod reflectometry system was recently upgraded in two ways: The low frequency channels were changed from amplitude modulation - in which two microwave signals, slightly separated in frequency, are injected into the plasma - to baseband, where a single frequency is used, in order to improve density fluctuation measurements. The second change, a variable frequency channel operating over the range from 122GHz to 140GHz (with corresponding density cutoffs of 1.84-2.43x10^20m-3) has been installed in collaboration with PPPL. Initial results from the upgraded system are presented, including the study of low density Internal Transport Barriers. Using O-mode waves, the reflectometry system is able to radially localize density fluctuations on the low field side along the tokamak midplane. It can, therefore, be used to probe the foot of low density ITBs. The corresponding reflectometry data will be compared to those of other fluctuation diagnostics, including Phase Contrast Imaging and magnetic pick-up coils.

  16. Full Waveform Inversion of Diving & Reflected Waves based on Scale Separation for Velocity and Impedance Imaging

    NASA Astrophysics Data System (ADS)

    Brossier, Romain; Zhou, Wei; Operto, Stéphane; Virieux, Jean

    2015-04-01

    Full Waveform Inversion (FWI) is an appealing method for quantitative high-resolution subsurface imaging (Virieux et al., 2009). For crustal-scales exploration from surface seismic, FWI generally succeeds in recovering a broadband of wavenumbers in the shallow part of the targeted medium taking advantage of the broad scattering-angle provided by both reflected and diving waves. In contrast, deeper targets are often only illuminated by short-spread reflections, which favor the reconstruction of the short wavelengths at the expense of the longer ones, leading to a possible notch in the intermediate part of the wavenumber spectrum. To update the velocity macromodel from reflection data, image-domain strategies (e.g., Symes & Carazzone, 1991) aim to maximize a semblance criterion in the migrated domain. Alternatively, recent data-domain strategies (e.g., Xu et al., 2012, Ma & Hale, 2013, Brossier et al., 2014), called Reflection FWI (RFWI), inspired by Chavent et al. (1994), rely on a scale separation between the velocity macromodel and prior knowledge of the reflectivity to emphasize the transmission regime in the sensitivity kernel of the inversion. However, all these strategies focus on reflected waves only, discarding the low-wavenumber information carried out by diving waves. With the current development of very long-offset and wide-azimuth acquisitions, a significant part of the recorded energy is provided by diving waves and subcritical reflections, and high-resolution tomographic methods should take advantage of all types of waves. In this presentation, we will first review the issues of classical FWI when applied to reflected waves and how RFWI is able to retrieve the long wavelength of the model. We then propose a unified formulation of FWI (Zhou et al., 2014) to update the low wavenumbers of the velocity model by the joint inversion of diving and reflected arrivals, while the impedance model is updated thanks to reflected wave only. An alternate inversion of high wavenumber impedance model and low wavenumber velocity model is performed to iteratively improve subsurface models. References : Brossier, R., Operto, S. & Virieux, J., 2014. Velocity model building from seismic reflection data by full waveform inversion, Geophysical Prospecting, doi:10.1111/1365-2478.12190 Chavent, G., Clément, F. & Gomez, S., 1994.Automatic determination of velocities via migration-based traveltime waveform inversion: A synthetic data example, SEG Technical Program Expanded Abstracts 1994, pp. 1179--1182. Ma, Y. & Hale, D., 2013. Wave-equation reflection traveltime inversion with dynamic warping and full waveform inversion, Geophysics, 78(6), R223--R233. Symes, W.W. & Carazzone, J.J., 1991. Velocity inversion by differential semblance optimization, Geophysics, 56, 654--663. Virieux, J. & Operto, S., 2009. An overview of full waveform inversion in exploration geophysics, Geophysics, 74(6), WCC1--WCC26. Xu, S., Wang, D., Chen, F., Lambaré, G. & Zhang, Y., 2012. Inversion on reflected seismic wave, SEG Technical Program Expanded Abstracts 2012, pp. 1--7. Zhou, W., Brossier, R., Operto, S., & Virieux, J., 2014. Acoustic multiparameter full-waveform inversion through a hierachical scheme, in SEG Technical Program Expanded Abstracts 2014, pp. 1249--1253

  17. Correlation of Electropenetrography Waveforms From Lygus lineolaris (Hemiptera: Miridae) Feeding on Cotton Squares With Chemical Evidence of Inducible Tannins.

    PubMed

    Cervantes, Felix A; Backus, Elaine A; Godfrey, Larry; Wallis, Christopher; Akbar, Waseem; Clark, Thomas L; Rojas, Maria G

    2017-10-01

    Probing behavior of Lygus lineolaris (Palisot de Beauvois) has previously been characterized with electropenetrography (EPG). Cell rupturing (CR) and ingestion (I) EPG waveforms were identified as the two main stylet-probing behaviors by adult L. lineolaris. However, characterization and identification of EPG waveforms are not complete until specific events of a particular waveform are correlated to insect probing. With the use of EPG, histology, microscopy, and chemical analysis, probing behavior of L. lineolaris on pin-head cotton squares was studied. Occurrences of waveforms CR and I were artificially terminated during the EPG recording. Histological samples of probed cotton squares were prepared and analyzed to correlate specific types and occurrences of feeding damage location and plant responses to insect feeding. Both CR and I occurred in the staminal column of the cotton square. Cell rupturing events elicited the production of dark-red deposits seen in histological staining that were demonstrated via chemical analysis to contain condensed tannins. We hypothesize that wounding and saliva secreted during CR triggered release of tannins, because tannin production was positively correlated with the number of probes with single CR events performed by L. lineolaris. Degraded plant tissue and tannins were removed from the staminal column during occurrence of waveform I. These results conclude the process of defining CR and I as probing waveforms performed by L. lineolaris on pin-head cotton squares. These biological definitions will now allow EPG to be used to quantitatively compare L. lineolaris feeding among different plant treatments, with the goal of improving pest management tactics against this pest. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    NASA Technical Reports Server (NTRS)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome losses in the ring. When mode locking is achieved, oscillation occurs in all the modes having the same phase and same polarization. The frequency interval between modes, often denoted the free spectral range (FSR), is given by c/nL, where c is the speed of light in vacuum, n is the effective index of refraction of the fiber, and L is the total length of optical path around the ring. Therefore, the length of the fiber-optic delay line, as part of the length around the ring, can be calculated from the FSRs measured with and without the delay line incorporated into the ring. For this purpose, the FSR measurements are made by use of the optical and radio-frequency spectrum analyzers. In experimentation on a 10-km-long fiber-optic delay line, it was found that this setup made it possible to measure the length to within a fractional error of about 3 10(exp -6), corresponding to a length error of 3 cm. In contrast, measurements by optical time-domain reflectometry and mechanical measurement were found to be much less precise: For optical time-domain reflectometry, the fractional error was found no less than 10(exp -4) (corresponding to a length error of 1 m) and for mechanical measurement, the fractional error was found to be about 10(exp -2) (corresponding to a length error of 100 m).

  19. A strategy for the application of frequency domain acoustic waveform tomography to marine Walkaway VSP data

    NASA Astrophysics Data System (ADS)

    Bouzidi, Y.; Takam Takougang, E. M.

    2016-12-01

    Two dimensional frequency domain acoustic waveform tomography was applied to walkaway VSP data from an oil field in a shallow water environment, offshore the United Arab Emirates, to form a high resolution velocity model of the subsurface around and away from the borehole. Five close parallel walkaway VSP lines were merged to form a 9 km line, with 1344 shots at 25 m shot interval and 4 m shot depth. Each line was recorded using a typical recording tool with 20 receivers at 15.1 m receiver intervals. The recording tool was deployed in a deviated borehole at different depths for each line (521-2742 m depth). Waveform tomography was performed following a specific inversion strategy to mitigate non-linearity. Three parameters were critical for the success of the inversion: the starting model obtained from traveltime tomography, the preconditioning of the input data used for amplitudes correction to remove of shear waves and noise, and a judicious selection of the time damping constant τ to suppress late arrivals in the Laplace-Fourier domain. Several values of the time damping constant were tested, and 2 values, 0.5 s and 0.8 s that suppress waveforms arriving after 1.2 s and 2 s respectively, were retained. The inversion was performed in 2 stages, with frequencies ranging from 5 Hz to 40 Hz. The values of the time damping term τ = 0.5 s and τ = 0.8 s were used in sequence for the frequencies 5-25 Hz, and τ = 0.8 s was used for the frequencies 25-40 Hz. A group of 5 frequencies at 0.5 Hz intervals were used and 6 iterations were performed. A velocity model that generally correlates well with the sonic log and estimated velocities from normal incidence VSP was obtained. The results confirmed the success of the inversion strategy. The velocity model shows zones with anomalous low velocities below 2000 m depth that correlate with known locations of hydrocarbons reservoirs. with known locations of hydrocarbon reservoirs. However, between 500 m and 1200 m depth, the velocity model appears to be slightly underestimated, which can be explained by possible elastic effects and out-of-plane structures not considered during the inversion. This result shows that acoustic waveform tomography can be successfully applied to walkaway VSP data when a good preconditioning of the input data and inversion strategy are used.

  20. One-dimensional terahertz imaging of surfactant-stabilized dodecane-brine emulsion

    NASA Astrophysics Data System (ADS)

    Nickel, Daniel Vincent

    Terahertz line-images of surfactant-stabilized dodecane(C12H 26)-brine emulsions are obtained by translating the emulsified region through the focus of a terahertz time-domain spectrometer, capturing a time-domain waveform at each vertical position. From these images, relative dodecane content, emulsion size, and stability can be extracted to evaluate the efficacy of the surfactant in solvating the dodecane. In addition, the images provide insight into the dynamics of concentrated emulsions after mixing.

  1. Chemical recognition of gases and gas mixtures with terahertz waves.

    PubMed

    Jacobsen, R H; Mittleman, D M; Nuss, M C

    1996-12-15

    A time-domain chemical-recognition system for classifying gases and analyzing gas mixtures is presented. We analyze the free induction decay exhibited by gases excited by far-infrared (terahertz) pulses in the time domain, using digital signal-processing techniques. A simple geometric picture is used for the classif ication of the waveforms measured for unknown gas species. We demonstrate how the recognition system can be used to determine the partial pressures of an ammonia-water gas mixture.

  2. Chemical recognition of gases and gas mixtures with terahertz waves

    NASA Astrophysics Data System (ADS)

    Jacobsen, R. H.; Mittleman, D. M.; Nuss, M. C.

    1996-12-01

    A time-domain chemical-recognition system for classifying gases and analyzing gas mixtures is presented. We analyze the free induction decay exhibited by gases excited by far-infrared (terahertz) pulses in the time domain, using digital signal-processing techniques. A simple geometric picture is used for the classification of the waveforms measured for unknown gas species. We demonstrate how the recognition system can be used to determine the partial pressures of an ammonia-water gas mixture.

  3. Helicity-Selective Enhancement and Polarization Control of Attosecond High Harmonic Waveforms Driven by Bichromatic Circularly Polarized Laser Fields.

    PubMed

    Dorney, Kevin M; Ellis, Jennifer L; Hernández-García, Carlos; Hickstein, Daniel D; Mancuso, Christopher A; Brooks, Nathan; Fan, Tingting; Fan, Guangyu; Zusin, Dmitriy; Gentry, Christian; Grychtol, Patrik; Kapteyn, Henry C; Murnane, Margaret M

    2017-08-11

    High harmonics driven by two-color counterrotating circularly polarized laser fields are a unique source of bright, circularly polarized, extreme ultraviolet, and soft x-ray beams, where the individual harmonics themselves are completely circularly polarized. Here, we demonstrate the ability to preferentially select either the right or left circularly polarized harmonics simply by adjusting the relative intensity ratio of the bichromatic circularly polarized driving laser field. In the frequency domain, this significantly enhances the harmonic orders that rotate in the same direction as the higher-intensity driving laser. In the time domain, this helicity-dependent enhancement corresponds to control over the polarization of the resulting attosecond waveforms. This helicity control enables the generation of circularly polarized high harmonics with a user-defined polarization of the underlying attosecond bursts. In the future, this technique should allow for the production of bright highly elliptical harmonic supercontinua as well as the generation of isolated elliptically polarized attosecond pulses.

  4. Frozen Gaussian approximation based domain decomposition methods for the linear Schrödinger equation beyond the semi-classical regime

    NASA Astrophysics Data System (ADS)

    Lorin, E.; Yang, X.; Antoine, X.

    2016-06-01

    The paper is devoted to develop efficient domain decomposition methods for the linear Schrödinger equation beyond the semiclassical regime, which does not carry a small enough rescaled Planck constant for asymptotic methods (e.g. geometric optics) to produce a good accuracy, but which is too computationally expensive if direct methods (e.g. finite difference) are applied. This belongs to the category of computing middle-frequency wave propagation, where neither asymptotic nor direct methods can be directly used with both efficiency and accuracy. Motivated by recent works of the authors on absorbing boundary conditions (Antoine et al. (2014) [13] and Yang and Zhang (2014) [43]), we introduce Semiclassical Schwarz Waveform Relaxation methods (SSWR), which are seamless integrations of semiclassical approximation to Schwarz Waveform Relaxation methods. Two versions are proposed respectively based on Herman-Kluk propagation and geometric optics, and we prove the convergence and provide numerical evidence of efficiency and accuracy of these methods.

  5. GRAVITATIONAL WAVE EXTRACTION FROM AN INSPIRALING CONFIGURATION OF MERGING BLACK HOLES

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Centrella, Joan; Dae-Il, Choi; Koppitz, Michael; van Meter, James

    2005-01-01

    We present new techniques for evolving binary black hole systems which allow the accurate determination of gravitational waveforms directly from the wave zone region of the numerical simulations. Rather than excising the black hole interiors, our approach follows the "puncture" treatment of black holes, but utilizing a new gauge condition which allows the black holes to move successfully through the computational domain. We apply these techniques to an inspiraling binary, modeling the radiation generated during the final plunge and ringdown. We demonstrate convergence of the waveforms and and good conservation of mass-energy, with just over 3% of the system s mass converted to gravitational radiation.

  6. FY15 Gravitational-Wave Mission Activities Project

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2014-01-01

    The Gravitational-Wave (GW) team at Goddard provides leadership to both the US and international research communities through science and conceptual design competencies. To sustain the US effort to either participate in the GW mission that ESA selected for the L3 opportunity or to initiate a NASA-led mission, the Goddard team will engage in the advancement of the science and the conceptual design of a future GW mission. We propose two tasks: (1) deliver new theoretical tools to help the external research community understand how GW observations can contribute to their science and (2) explore new implementations for laser metrology systems based on techniques from time-domain reflectometry and laser communications.

  7. Real-time monitoring implementation in a remote-pumped WDM PON

    NASA Astrophysics Data System (ADS)

    Liaw, S.-K.; Hong, K.-L.; Shei, Y.-S.

    2008-08-01

    We report on an improved configuration to monitor a passive optical network with high quality in service. This proposed system comprises fiber-Bragg gratings, a 1 × 4 optical switch, and an optical time-domain reflectometry to diagnose the broken point in real time. It could simultaneously detect multioptical network units in a WDM PON. The remote-pump integrated residual pumping reused function is implemented. Broken points in different optical paths can be detected simultaneously even when the distances to the central office are identical. The bit-error rate testing is verified with a small power penalty, making it an ideal solution for the real-time monitoring in a WDM PON.

  8. Fiber optic sensor technology - An opportunity for smart aerospace structures

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Rogowski, R. S.; Claus, R. O.

    1988-01-01

    Fiber optic sensors provide the opportunity for fabricating materials with internal sensors which can serve as lifetime health monitors, analogous to a central nervous system. The embedded fiber optic sensors can be interrogated by various techniques to measure internal strain, temperature, pressure, acoustic waves and other parameters indicative of structural integrity. Experiments have been conducted with composite samples with embedded sensors to measure strain using optical time domain reflectometry, modal interference and an optical phase locked loop. Fiber optic sensors have been developed to detect acoustic emission and impact damage and have been demonstrated for cure monitoring. These sensors have the potential for lifetime monitoring of structural properties, providing real time nondestructive evaluation.

  9. Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge

    PubMed Central

    Suchorab, Zbigniew; Barnat-Hunek, Danuta; Franus, Małgorzata; Łagód, Grzegorz

    2016-01-01

    This article is focused on lightweight aggregate-concrete modified by municipal sewage sludge and lightweight aggregate-concrete obtained from light aggregates. The article presents laboratory examinations of material physical parameters. Water absorptivity of the examined material was decreased by the admixture of water emulsion of reactive polysiloxanes. Water transport properties were determined using Time Domain Reflectometry, an indirect technique for moisture detection in porous media. Together with basic physical parameters, the heat conductivity coefficient λ was determined for both types of lightweight aggregate-concrete. Analysis of moisture and heat properties of the examined materials confirmed the usefulness of light aggregates supplemented with sewage sludge for prospective production. PMID:28773442

  10. Ultra-wideband directional sampler

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in "real time", and the other two ports operate at a slow millisecond-speed, in "equivalent time". A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus.

  11. Measurement of electron temperature and density of the edge plasma of JET by ECE and microwave reflectometry

    NASA Astrophysics Data System (ADS)

    Bartlett, D. V.; Costley, A. E.; Porte, L.; Prentice, R.; Salmon, N. A.; Sips, G.

    1990-12-01

    The potential of electron cyclotron emission and microwave reflectometry as techniques for measuring the electron temperature and density in the edge region of tokamak plasmas is investigated. Experiments to realize this potential on JET are described and some illustrative results presented.

  12. Modeling of an electrohydraulic lithotripter with the KZK equation.

    PubMed

    Averkiou, M A; Cleveland, R O

    1999-07-01

    The acoustic pressure field of an electrohydraulic extracorporeal shock wave lithotripter is modeled with a nonlinear parabolic wave equation (the KZK equation). The model accounts for diffraction, nonlinearity, and thermoviscous absorption. A numerical algorithm for solving the KZK equation in the time domain is used to model sound propagation from the mouth of the ellipsoidal reflector of the lithotripter. Propagation within the reflector is modeled with geometrical acoustics. It is shown that nonlinear distortion within the ellipsoidal reflector can play an important role for certain parameters. Calculated waveforms are compared with waveforms measured in a clinical lithotripter and good agreement is found. It is shown that the spatial location of the maximum negative pressure occurs pre-focally which suggests that the strongest cavitation activity will also be in front of the focus. Propagation of shock waves from a lithotripter with a pressure release reflector is considered and because of nonlinear propagation the focal waveform is not the inverse of the rigid reflector. Results from propagation through tissue are presented; waveforms are similar to those predicted in water except that the higher absorption in the tissue decreases the peak amplitude and lengthens the rise time of the shock.

  13. Digital coherent receiver based transmitter penalty characterization.

    PubMed

    Geisler, David J; Kaufmann, John E

    2016-12-26

    For optical communications links where receivers are signal-power-starved, such as through free-space, it is important to design transmitters and receivers that can operate as close as practically possible to theoretical limits. A total system penalty is typically assessed in terms of how far the end-to-end bit-error rate (BER) is from these limits. It is desirable, but usually difficult, to determine the division of this penalty between the transmitter and receiver. This paper describes a new rigorous and computationally based method that isolates which portion of the penalty can be assessed against the transmitter. There are two basic parts to this approach: (1) use of a coherent optical receiver to perform frequency down-conversion of a transmitter's optical signal waveform to the electrical domain, preserving both optical field amplitude and phase information, and (2): software-based analysis of the digitized electrical waveform. The result is a single numerical metric that quantifies how close a transmitter's signal waveform is to the ideal, based on its BER performance with a perfect software-defined matched-filter receiver demodulator. A detailed description of applying the proposed methodology to the waveform characterization of an optical burst-mode differential phase-shifted keying (DPSK) transmitter is experimentally demonstrated.

  14. Nondestructive Testing Information Analysis Center, 1979.

    DTIC Science & Technology

    1980-09-01

    transmission and reflectometry Ultrasonic imaging Spectrum analysis Acoustic emission * LIQUID PENETRANT TESTING Dye penetrants Fluorescent penetrants...OPTICAL TESTING Visual testing Optical reflectometry and transmission Holography * THERMAL TESTING Infrared radiometry The rmography 13 The present...on our surveillance effectiveness, we also scan Current Contents, NASA /SCAN, and the monthly Engineering Index and Science Abstracts. New books

  15. The Search for Nanobubbles by Using Specular and Off-Specular Neutron Reflectometry.

    PubMed

    Gutfreund, Philipp; Maccarini, Marco; Dennison, Andrew J C; Wolff, Max

    2016-09-06

    We apply specular and off-specular neutron reflection at the hydrophobic silicon/water interface to check for evidence of nanoscopic air bubbles whose presence is claimed after an ad hoc procedure of solvent exchange. Nanobubbles and/or a depletion layer at the hydrophobic/water interface have long been discussed and generated a plethora of controversial scientific results. By combining neutron reflectometry (NR), off-specular reflectometry (OSS), and grazing incidence small angle neutron scattering (GISANS), we studied the interface between hydrophobized silicon and heavy water before and after saturation with nitrogen gas. Our specular reflectometry results can be interpreted by assuming a submolecular sized depletion layer and the off-specular measurements show no change with nitrogen super saturated water. This picture is consistent with the assumption that, following the solvent exchange, no additional nanobubbles are introduced at significant concentrations (if present at all). Furthermore, we discuss the results in terms of the maximum surface coverage of nanobubbles that could be present on the hydrophobic surface compatibly with the sensitivity limit of these techniques.

  16. Study of multilayered SiGe semiconductor structures by X-ray diffractometry, grazing-incidence X-ray reflectometry, and secondary-ion mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunin, P. A., E-mail: yunin@ipmras.ru; Drozdov, Yu. N.; Drozdov, M. N.

    2013-12-15

    In this publication, we report the results of studying a multilayerd nonperiodic SiGe/Si structure by the methods of X-ray diffractometry, grazing-angle X-ray reflectometry, and secondary-ion mass spectrometry (SIMS). Special attention is paid to the processing of the component distribution profile using the SIMS method and to consideration of the most significant experimental distortions introduced by this method. A method for processing the measured composition distribution profile with subsequent consideration of the influence of matrix effects, variation in the etching rate, and remnants of ion sputtering is suggested. The results of such processing are compared with a structure model obtained uponmore » combined analysis of X-ray diffractometry and grazing-angle reflectometry data. Good agreement between the results is established. It is shown that the combined use of independent techniques makes it possible to improve the methods of secondary-ion mass spectrometry and grazing-incidence reflectometry as applied to an analysis of multilayered heteroepitaxial structures (to increase the accuracy and informativity of these methods)« less

  17. Assessment of the measurement performance of the in-vessel system of gap 6 of the ITER plasma position reflectometer using a finite-difference time-domain Maxwell full-wave code.

    PubMed

    da Silva, F; Heuraux, S; Ricardo, E; Quental, P; Ferreira, J

    2016-11-01

    We conducted a first assessment of the measurement performance of the in-vessel components at gap 6 of the ITER plasma position reflectometry with the aid of a synthetic Ordinary Mode (O-mode) broadband frequency-modulated continuous-wave reflectometer implemented with REFMUL, a 2D finite-difference time-domain full-wave Maxwell code. These simulations take into account the system location within the vacuum vessel as well as its access to the plasma. The plasma case considered is a baseline scenario from Fusion for Energy. We concluded that for the analyzed scenario, (i) the plasma curvature and non-equatorial position of the antenna have neglectable impact on the measurements; (ii) the cavity-like space surrounding the antenna can cause deflection and splitting of the probing beam; and (iii) multi-reflections on the blanket wall cause a substantial error preventing the system from operating within the required error margin.

  18. Structural features and lipid binding domain of tubulin on biomimetic mitochondrial membranes

    PubMed Central

    Hoogerheide, David P.; Noskov, Sergei Y.; Jacobs, Daniel; Bergdoll, Lucie; Silin, Vitalii; Worcester, David L.; Abramson, Jeff; Nanda, Hirsh; Rostovtseva, Tatiana K.; Bezrukov, Sergey M.

    2017-01-01

    Dimeric tubulin, an abundant water-soluble cytosolic protein known primarily for its role in the cytoskeleton, is routinely found to be associated with mitochondrial outer membranes, although the structure and physiological role of mitochondria-bound tubulin are still unknown. There is also no consensus on whether tubulin is a peripheral membrane protein or is integrated into the outer mitochondrial membrane. Here the results of five independent techniques—surface plasmon resonance, electrochemical impedance spectroscopy, bilayer overtone analysis, neutron reflectometry, and molecular dynamics simulations—suggest that α-tubulin’s amphipathic helix H10 is responsible for peripheral binding of dimeric tubulin to biomimetic “mitochondrial” membranes in a manner that differentiates between the two primary lipid headgroups found in mitochondrial membranes, phosphatidylethanolamine and phosphatidylcholine. The identification of the tubulin dimer orientation and membrane-binding domain represents an essential step toward our understanding of the complex mechanisms by which tubulin interacts with integral proteins of the mitochondrial outer membrane and is important for the structure-inspired design of tubulin-targeting agents. PMID:28420794

  19. Optical coherence domain reflectometry guidewire

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Da Silva, Luiz B.; Matthews, Dennis

    2001-01-01

    A guidewire with optical sensing capabilities is based on a multiplexed optical coherence domain reflectometer (OCDR), which allows it to sense location, thickness, and structure of the arterial walls or other intra-cavity regions as it travels through the body during minimally invasive medical procedures. This information will be used both to direct the guidewire through the body by detecting vascular junctions and to evaluate the nearby tissue. The guidewire contains multiple optical fibers which couple light from the proximal to distal end. Light from the fibers at the distal end of the guidewire is directed onto interior cavity walls via small diameter optics such as gradient index lenses and mirrored corner cubes. Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers, which are multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The guidewire can also be used in nonmedical applications.

  20. Time Domain Reflectometry (TDR) monitoring system for deep seated landslides

    NASA Astrophysics Data System (ADS)

    Singer, J.; Thuro, K.; Festl, J.

    2012-04-01

    In the 1980s Time Domain Reflectometry (TDR) has been introduced as a subsurface deformation monitoring system in boreholes, which allows identifying and localizing discrete deformation zones with high accuracy. While TDR offers several advantages as e.g. low costs and the possibility to continuously monitor deformation along the complete borehole,TDR was not used widespread due to the fact that the amount of deformation sometimes could not be determined accurately and in some cases no deformation was detected at all. By the definition of calibrated installation standards and the usage of advanced signal analysis methods, it is possible to overcome this and a reliable quantification of deformation using TDR is possible. In the ongoing research the attempt is made to define different TDR measuring system configurations (measuring cable and grout combinations), where each is designated for a specific geological environment. These set-ups are then calibrated in laboratory shear tests and finally tested in field, if possible by comparing them with inclinometer measurements. To date monitoring data of three different deep seated landslides in the European Alps (Gschliefgraben, Aggenalm and Triesenberg) have been collected. The field test results clearly show that the new TDR system can fulfill the expectations and the deformation can be determined with sub-centimeter accuracy if one basic prerequisite concerning the mode of deformation is fulfilled: TDR can only be used when localized shear deformation is present. Since TDR data easily can be acquired continuously as well as remotely, it is possible to use a TDR measuring system as a valuable part of a monitoring system for landslide early warning. Since 2008 such a monitoring system is in operation at the Aggenalm landslide, where the TDR subsurface deformation measurements supplement the information on surface deformation from geotechnical and geodetic measuring systems to a 3D early warning system for instable slopes.

  1. Frequency Domain Reflectometry NDE for Aging Cables in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Jones, Anthony M.; Fifield, Leonard S.

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool tomore » locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to minimize the end-shadow effect.« less

  2. Borehole Time Domain Reflectometry in Layered Sandstone: Impact of Measurement Technique on Vadose Zone Process Identification

    NASA Astrophysics Data System (ADS)

    West, J.; Truss, S. W.

    2004-12-01

    An investigation is reported into the hydraulic behaviour of the vadose zone of a layered sandstone aquifer using borehole-based Time Domain Reflectometry (TDR). TDR has been widely applied to shallow soils but has seen limited application at greater depth and in cemented lithologies due to the difficulty of installing conventional TDR probes in rock and from boreholes. Here, flat TDR probes that are simply in contact with, rather than inserted within the medium under investigation, have been developed and applied in a field study. Both a commercially available portable packer TDR system (TRIME-B3L Borehole Packer Probe) and specially designed TDR probes, permanently installed in boreholes on grouted-in packers were used to monitor seasonal fluctuations in moisture content in the vadose zone of a layered sandstone over one year under natural rainfall loading. The data show that the vadose zone contains seasonal perched water tables that form when downward percolating moisture reaches layers of fine grained sandstone and siltstone and causes local saturation. The formation of perched water tables is likely to lead to lateral flow bypassing the less permeable, finer layers. This contrasts with behaviour inferred from previous studies of the same aquifer that used borehole radar and resistivity, which suggested its vadose zone behaviour was characterized by uniform downwards migration of wetting fronts. To investigate the impact of measurement technique on observed response, the TDR data reported here were used to produce simulated zero offset profile (ZOP) borehole radar responses. This simulation confirmed the limited ability of ZOP borehole radar to detect key vadose zone processes, because the phenomenon of critical refraction minimizes the sensitivity of the results to high moisture content layers. The study illustrates that inappropriate technique selection results in hydrological process mis-identification, with serious consequences for the usefulness of data in hydrological modeling.

  3. Frequency domain reflectometry modeling for nondestructive evaluation of nuclear power plant cables

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Fifield, L. S.; Jones, A. M.; Hartman, T. S.

    2018-04-01

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to minimize the end-shadow effect.

  4. Algorithms for Determining Physical Responses of Structures Under Load

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance; Ko, William L.

    2012-01-01

    Ultra-efficient real-time structural monitoring algorithms have been developed to provide extensive information about the physical response of structures under load. These algorithms are driven by actual strain data to measure accurately local strains at multiple locations on the surface of a structure. Through a single point load calibration test, these structural strains are then used to calculate key physical properties of the structure at each measurement location. Such properties include the structure s flexural rigidity (the product of the structure's modulus of elasticity, and its moment of inertia) and the section modulus (the moment of inertia divided by the structure s half-depth). The resulting structural properties at each location can be used to determine the structure s bending moment, shear, and structural loads in real time while the structure is in service. The amount of structural information can be maximized through the use of highly multiplexed fiber Bragg grating technology using optical time domain reflectometry and optical frequency domain reflectometry, which can provide a local strain measurement every 10 mm on a single hair-sized optical fiber. Since local strain is used as input to the algorithms, this system serves multiple purposes of measuring strains and displacements, as well as determining structural bending moment, shear, and loads for assessing real-time structural health. The first step is to install a series of strain sensors on the structure s surface in such a way as to measure bending strains at desired locations. The next step is to perform a simple ground test calibration. For a beam of length l (see example), discretized into n sections and subjected to a tip load of P that places the beam in bending, the flexural rigidity of the beam can be experimentally determined at each measurement location x. The bending moment at each station can then be determined for any general set of loads applied during operation.

  5. TDR method for determine IC's parameters

    NASA Astrophysics Data System (ADS)

    Timoshenkov, V.; Rodionov, D.; Khlybov, A.

    2016-12-01

    Frequency domain simulation is a widely used approach for determine integrated circuits parameters. This approach can be found in most of software tools used in IC industry. Time domain simulation approach shows intensive usage last years due to some advantages. In particular it applicable for analysis of nonlinear and nonstationary systems where frequency domain is inapplicable. Resolution of time domain systems allow see heterogeneities on distance 1mm, determine it parameters and properties. Authors used approach based on detecting reflected signals from heterogeneities - time domain reflectometry (TDR). Field effect transistor technology scaling up to 30-60nm gate length and 10nm gate dielectric, heterojunction bi-polar transistors with 10-30nm base width allows fabricate digital IC's with 20GHz clock frequency and RF-IC's with tens GHz bandwidth. Such devices and operation speed suppose transit signal by use microwave lines. There are local heterogeneities can be found inside of the signal path due to connections between different parts of signal lines (stripe line-RF-connector pin, stripe line - IC package pin). These heterogeneities distort signals that cause bandwidth decrease for RF-devices. Time domain research methods of transmission and reflected signals give the opportunities to determine heterogeneities, it properties, parameters and built up equivalent circuits. Experimental results are provided and show possibility for inductance and capacitance measurement up to 25GHz. Measurements contains result of signal path research on IC and printed circuit board (PCB) used for 12GHz RF chips. Also dielectric constant versus frequency was measured up to 35GHz.

  6. Separation of Migration and Tomography Modes of Full-Waveform Inversion in the Plane Wave Domain

    NASA Astrophysics Data System (ADS)

    Yao, Gang; da Silva, Nuno V.; Warner, Michael; Kalinicheva, Tatiana

    2018-02-01

    Full-waveform inversion (FWI) includes both migration and tomography modes. The migration mode acts like a nonlinear least squares migration to map model interfaces with reflections, while the tomography mode behaves as tomography to build a background velocity model. The migration mode is the main response of inverting reflections, while the tomography mode exists in response to inverting both the reflections and refractions. To emphasize one of the two modes in FWI, especially for inverting reflections, the separation of the two modes in the gradient of FWI is required. Here we present a new method to achieve this separation with an angle-dependent filtering technique in the plane wave domain. We first transform the source and residual wavefields into the plane wave domain with the Fourier transform and then decompose them into the migration and tomography components using the opening angles between the transformed source and residual plane waves. The opening angles close to 180° contribute to the tomography component, while the others correspond to the migration component. We find that this approach is very effective and robust even when the medium is relatively complicated with strong lateral heterogeneities, highly dipping reflectors, and strong anisotropy. This is well demonstrated by theoretical analysis and numerical tests with a synthetic data set and a field data set.

  7. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Schubert, O.; Hohenleutner, M.; Langer, F.; Urbanek, B.; Lange, C.; Huttner, U.; Golde, D.; Meier, T.; Kira, M.; Koch, S. W.; Huber, R.

    2014-02-01

    Ultrafast charge transport in strongly biased semiconductors is at the heart of high-speed electronics, electro-optics and fundamental solid-state physics. Intense light pulses in the terahertz spectral range have opened fascinating vistas. Because terahertz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for terahertz amplitudes, reaching atomic field strengths. We exploit controlled (multi-)terahertz waveforms with peak fields of 72 MV cm-1 to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire terahertz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and intraband dynamics. Our results pave the way towards all-coherent terahertz-rate electronics.

  8. Expanding the frontiers of waveform imaging with Salvus

    NASA Astrophysics Data System (ADS)

    Afanasiev, M.; Boehm, C.; van Driel, M.; Krischer, L.; Fichtner, A.

    2017-12-01

    Mechanical waves are natural harbingers of information. From medical ultrasound to the normal modes of Sun, wave motion is often our best window into the character of some underlying continuum. For over a century, geophysicists have been using this window to peer deep into the Earth, developing techniques that have gone on to underlie much of world's energy economy. As computers and numerical techniques have become more powerful over the last several decades, seismologists have begun to scale back classical simplifying approximations of wave propagation physics. As a result, we are now approaching the ideal of `full-waveform inversion'; maximizing the aperture of our window by taking the full complexity of wave motion into account.Salvus is a modern high-performance software suite which aims to bring recent developments in geophysical waveform inversion to new and exciting domains. In this short presentation we will look at the connections between these applications, with examples from non-destructive testing, medical imaging, seismic exploration, and (extra-) planetary seismology.

  9. Gravitational-Wave Data Analysis with Spinning Merger-Ringdown Waveforms

    NASA Technical Reports Server (NTRS)

    Kelly Bernard J.

    2011-01-01

    The recent availability of high-quality, gravitational merger-ringdown waveforms from spinning black-hole systems has made possible the development of multi-mode GW templates for use in data-analysis studies of current and proposed interferometric GW detectors. We report on recent work at NASA Goddard, analyzing the most significant modes from aligned-spin black-hole-binary mergers. From these, we have developed time-domain merger-ringdown GW templates covering the aligned-spin portion of parameter space. We also discuss how using the full information content of aligned-spin mergers can significantly reduce uncertainties in some parameters, emphasizing the significant gains possible in the last stages of merger, inaccessible to inspiral-only post-Newtonian templates.

  10. Ultra-Long-Distance Hybrid BOTDA/Ф-OTDR

    PubMed Central

    Fu, Yun; Zhu, Richeng; Xue, Naitian; Lu, Chongyu; Zhang, Bin; Yang, Le; Atubga, David; Rao, Yunjiang

    2018-01-01

    In the distributed optical fiber sensing (DOFS) domain, simultaneous measurement of vibration and temperature/strain based on Rayleigh scattering and Brillouin scattering in fiber could have wide applications. However, there are certain challenges for the case of ultra-long sensing range, including the interplay of different scattering mechanisms, the interaction of two types of sensing signals, and the competition of pump power. In this paper, a hybrid DOFS system, which can simultaneously measure temperature/strain and vibration over 150 km, is elaborately designed via integrating the Brillouin optical time-domain analyzer (BOTDA) and phase-sensitive optical time-domain reflectometry (Ф-OTDR). Distributed Raman and Brillouin amplifications, frequency division multiplexing (FDM), wavelength division multiplexing (WDM), and time division multiplexing (TDM) are delicately fused to accommodate ultra-long-distance BOTDA and Ф-OTDR. Consequently, the sensing range of the hybrid system is 150.62 km, and the spatial resolution of BOTDA and Ф-OTDR are 9 m and 30 m, respectively. The measurement uncertainty of the BOTDA is ± 0.82 MHz. To the best of our knowledge, this is the first time that such hybrid DOFS is realized with a hundred-kilometer length scale. PMID:29587407

  11. Nondestructive Testing Information Analysis Center, 1982.

    DTIC Science & Technology

    1983-03-01

    RF Fields Microwaves Magnetic Flux Analysis Magnetic Particles * ULTRASONIC AND ACOUSTIC TESTING Ultrasonic Transmission and Reflectometry Ultrasonic... Reflectometry and Transmission Holography THERMAL TESTING Infrared Radiometry Thermography 3 The present organization and personnel of NTIAC are...the current core and secondary serials. As an added check on our surveillance effectiveness, we also scan Current Contents, NASA /SCAN, as well as the

  12. Studies of electrochemical interfaces by TOF neutron reflectometry at the IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Petrenko, V. I.; Gapon, I. V.; Rulev, A. A.; Ushakova, E. E.; Kataev, E. Yu; Yashina, L. V.; Itkis, D. M.; Avdeev, M. V.

    2018-03-01

    The operation performance of electrochemical energy conversion and storage systems such as supercapacitors and batteries depends on the processes occurring at the electrochemical interfaces, where charge separation and chemical reactions occur. Here, we report about the tests of the neutron reflectometry cells specially designed for operando studies of structural changes at the electrochemical interfaces between solid electrodes and liquid electrolytes. The cells are compatible with anhydrous electrolytes with organic solvents, which are employed today in all lithium ion batteries and most supercapacitors. The sensitivity of neutron reflectometry applied at the time-of-flight (TOF) reflectometer at the pulsed reactor IBR-2 is discussed regarding the effect of solid electrolyte interphase (SEI) formation on metal electrode surface.

  13. Multiresolution Approach for Noncontact Measurements of Arterial Pulse Using Thermal Imaging

    NASA Astrophysics Data System (ADS)

    Chekmenev, Sergey Y.; Farag, Aly A.; Miller, William M.; Essock, Edward A.; Bhatnagar, Aruni

    This chapter presents a novel computer vision methodology for noncontact and nonintrusive measurements of arterial pulse. This is the only investigation that links the knowledge of human physiology and anatomy, advances in thermal infrared (IR) imaging and computer vision to produce noncontact and nonintrusive measurements of the arterial pulse in both time and frequency domains. The proposed approach has a physical and physiological basis and as such is of a fundamental nature. A thermal IR camera was used to capture the heat pattern from superficial arteries, and a blood vessel model was proposed to describe the pulsatile nature of the blood flow. A multiresolution wavelet-based signal analysis approach was applied to extract the arterial pulse waveform, which lends itself to various physiological measurements. We validated our results using a traditional contact vital signs monitor as a ground truth. Eight people of different age, race and gender have been tested in our study consistent with Health Insurance Portability and Accountability Act (HIPAA) regulations and internal review board approval. The resultant arterial pulse waveforms exactly matched the ground truth oximetry readings. The essence of our approach is the automatic detection of region of measurement (ROM) of the arterial pulse, from which the arterial pulse waveform is extracted. To the best of our knowledge, the correspondence between noncontact thermal IR imaging-based measurements of the arterial pulse in the time domain and traditional contact approaches has never been reported in the literature.

  14. Data-analysis driven comparison of analytic and numerical coalescing binary waveforms: Nonspinning case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Yi; Buonanno, Alessandra; McWilliams, Sean T.

    2008-01-15

    We compare waveforms obtained by numerically evolving nonspinning binary black holes to post-Newtonian (PN) template families currently used in the search for gravitational waves by ground-based detectors. We find that the time-domain 3.5PN template family, which includes the inspiral phase, has fitting factors (FFs) {>=}0.96 for binary systems with total mass M=10-20M{sub {center_dot}}. The time-domain 3.5PN effective-one-body template family, which includes the inspiral, merger, and ring-down phases, gives satisfactory signal-matching performance with FFs {>=}0.96 for binary systems with total mass M=10-120M{sub {center_dot}}. If we introduce a cutoff frequency properly adjusted to the final black-hole ring-down frequency, we find that themore » frequency-domain stationary-phase-approximated template family at 3.5PN order has FFs {>=}0.96 for binary systems with total mass M=10-20M{sub {center_dot}}. However, to obtain high matching performances for larger binary masses, we need to either extend this family to unphysical regions of the parameter space or introduce a 4PN order coefficient in the frequency-domain gravitational wave (GW) phase. Finally, we find that the phenomenological Buonanno-Chen-Vallisneri family has FFs {>=}0.97 with total mass M=10-120M{sub {center_dot}}. The main analyses use the noise-spectral density of LIGO, but several tests are extended to VIRGO and advanced LIGO noise-spectral densities.« less

  15. The development of the miniaturized waveform receiver with the function measuring Antenna Impedance in space plasmas

    NASA Astrophysics Data System (ADS)

    Ishii, H.; Kojima, H.; Fukuhara, H.; Okada, S.; Yamakawa, H.

    2012-04-01

    Plasma wave is one of the most essential physical quantities in the solar terrestrial physics. The role of plasma wave receiver onboard satellites is to detect plasma waves in space with a good signal to noise ratio. There are two types of plasma wave receivers, the sweep frequency analyzer and the waveform capture. While the sweep frequency analyzer provides plasma wave spectra, the waveform capture obtains waveforms with phase information that is significant in studying nonlinear phenomena. Antenna sensors to observe electric fields of the plasma waves show different features in plasmas from in vacuum. The antenna impedances have specific characteristics in the frequency domain because of the dispersion of plasmas. These antenna impedances are expressed with complex number. We need to know not only the antenna impedances but also the transfer functions of plasma wave receiver's circuits in order to calibrate observed waveforms precisely. The impedances of the electric field antennas are affected by a state of surrounding plasmas. Since satellites run through various regions with different plasma parameters, we precisely should measure the antenna impedances onboard spacecraft. On the contrary, we can obtain the plasma density and by measuring the antenna impedances. Several formulas of the antenna impedance measurement system were proposed. A synchronous detection method is used on the BepiColombo Mercury Magnetospheric Orbiter (MMO), which will be launched in 2014. The digital data are stored in the onboard memory. They are read out and converted to the analog waveforms by D/A converter. They are fed into the input of the preamplifiers of antenna sensors through a resistor. We can calculate a transfer function of the circuit by applying the synchronous detection method to the output waveform from waveform receivers and digital data as a signal source. The size of this system is same as an A5 board. In recent years, Application Specific Integrated Circuit (ASIC) is in attention which is a technique to integrate large scale and complicated circuits. Lots of ASICs have been applied to high energy astrophysics. In this paper, we show our attempt to miniaturize the antennas impedances measurement system and Waveform Capture using the analogue ASIC. We design 8bits segment D/A converter that is implemented inside the waveform receiver ASIC chip. We improve input logic of the D/A converter to generate very weak signals accurately. The designed chip realizes the measurement of the antenna impedance as well as the waveform observation in the board size of business cards.

  16. Towards full waveform ambient noise inversion

    NASA Astrophysics Data System (ADS)

    Sager, Korbinian; Ermert, Laura; Boehm, Christian; Fichtner, Andreas

    2018-01-01

    In this work we investigate fundamentals of a method—referred to as full waveform ambient noise inversion—that improves the resolution of tomographic images by extracting waveform information from interstation correlation functions that cannot be used without knowing the distribution of noise sources. The fundamental idea is to drop the principle of Green function retrieval and to establish correlation functions as self-consistent observables in seismology. This involves the following steps: (1) We introduce an operator-based formulation of the forward problem of computing correlation functions. It is valid for arbitrary distributions of noise sources in both space and frequency, and for any type of medium, including 3-D elastic, heterogeneous and attenuating media. In addition, the formulation allows us to keep the derivations independent of time and frequency domain and it facilitates the application of adjoint techniques, which we use to derive efficient expressions to compute first and also second derivatives. The latter are essential for a resolution analysis that accounts for intra- and interparameter trade-offs. (2) In a forward modelling study we investigate the effect of noise sources and structure on different observables. Traveltimes are hardly affected by heterogeneous noise source distributions. On the other hand, the amplitude asymmetry of correlations is at least to first order insensitive to unmodelled Earth structure. Energy and waveform differences are sensitive to both structure and the distribution of noise sources. (3) We design and implement an appropriate inversion scheme, where the extraction of waveform information is successively increased. We demonstrate that full waveform ambient noise inversion has the potential to go beyond ambient noise tomography based on Green function retrieval and to refine noise source location, which is essential for a better understanding of noise generation. Inherent trade-offs between source and structure are quantified using Hessian-vector products.

  17. High spatial resolution fiber optical sensors for simultaneous temperature and chemical sensing for energy industries

    NASA Astrophysics Data System (ADS)

    Yan, Aidong; Huang, Sheng; Li, Shuo; Zaghloul, Mohamed; Ohodnicki, Paul; Buric, Michael; Chen, Kevin P.

    2017-05-01

    This paper demonstrates optical fibers as high-temperature sensor platforms. Through engineering and onfiber integration of functional metal oxide sensory materials, we report the development of an integrated sensor solution to perform temperature and chemical measurements for high-temperature energy applications. Using the Rayleigh optical frequency domain reflectometry (OFDR) distributed sensing scheme, the temperature and hydrogen concentration were measured along the fiber. To overcome the weak Rayleighbackscattering intensity exhibited by conventional optical fibers, an ultrafast laser was used to enhance the Rayleigh scattering by a direct laser writing method. Using the Rayleigh-enhanced fiber as sensor platform, both temperature and hydrogen reaction were monitored at high temperature up to 750°C with 4-mm spatial resolution.

  18. KSC-07pd3624

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks test wiring spliced into an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system. The test wiring leads to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  19. KSC-07pd3623

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks test wiring spliced into an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system. The test wiring leads to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  20. KSC-07pd3630

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks cables and wires that will be used in the Time Domain Reflectometry, or TDR, test on engine cut-off sensors, or ECO, in space shuttle Atlantis' external tank. The test equipment -- blue monitor at left-- will be used to validate the circuit on the test wiring before hooking it up to the test box. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  1. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  2. KSC-07pd3625

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks test wiring spliced into an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system. The test wiring leads to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  3. A Model-Based Probabilistic Inversion Framework for Wire Fault Detection Using TDR

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.

    2010-01-01

    Time-domain reflectometry (TDR) is one of the standard methods for diagnosing faults in electrical wiring and interconnect systems, with a long-standing history focused mainly on hardware development of both high-fidelity systems for laboratory use and portable hand-held devices for field deployment. While these devices can easily assess distance to hard faults such as sustained opens or shorts, their ability to assess subtle but important degradation such as chafing remains an open question. This paper presents a unified framework for TDR-based chafing fault detection in lossy coaxial cables by combining an S-parameter based forward modeling approach with a probabilistic (Bayesian) inference algorithm. Results are presented for the estimation of nominal and faulty cable parameters from laboratory data.

  4. Breaking through the bandwidth barrier in distributed fiber vibration sensing by sub-Nyquist randomized sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdong; Zhu, Tao; Zheng, Hua; Kuang, Yang; Liu, Min; Huang, Wei

    2017-04-01

    The round trip time of the light pulse limits the maximum detectable frequency response range of vibration in phase-sensitive optical time domain reflectometry (φ-OTDR). We propose a method to break the frequency response range restriction of φ-OTDR system by modulating the light pulse interval randomly which enables a random sampling for every vibration point in a long sensing fiber. This sub-Nyquist randomized sampling method is suits for detecting sparse-wideband- frequency vibration signals. Up to MHz resonance vibration signal with over dozens of frequency components and 1.153MHz single frequency vibration signal are clearly identified for a sensing range of 9.6km with 10kHz maximum sampling rate.

  5. Ultra-wideband directional sampler

    DOEpatents

    McEwan, T.E.

    1996-05-14

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in ``real time``, and the other two ports operate at a slow millisecond-speed, in ``equivalent time``. A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus. 3 figs.

  6. Teleseismic tomography for imaging Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Aktas, Kadircan

    Teleseismic tomography is an important imaging tool in earthquake seismology, used to characterize lithospheric structure beneath a region of interest. In this study I investigate three different tomographic techniques applied to real and synthetic teleseismic data, with the aim of imaging the velocity structure of the upper mantle. First, by applying well established traveltime tomographic techniques to teleseismic data from southern Ontario, I obtained high-resolution images of the upper mantle beneath the lower Great Lakes. Two salient features of the 3D models are: (1) a patchy, NNW-trending low-velocity region, and (2) a linear, NE-striking high-velocity anomaly. I interpret the high-velocity anomaly as a possible relict slab associated with ca. 1.25 Ga subduction, whereas the low-velocity anomaly is interpreted as a zone of alteration and metasomatism associated with the ascent of magmas that produced the Late Cretaceous Monteregian plutons. The next part of the thesis is concerned with adaptation of existing full-waveform tomographic techniques for application to teleseismic body-wave observations. The method used here is intended to be complementary to traveltime tomography, and to take advantage of efficient frequency-domain methodologies that have been developed for inverting large controlled-source datasets. Existing full-waveform acoustic modelling and inversion codes have been modified to handle plane waves impinging from the base of the lithospheric model at a known incidence angle. A processing protocol has been developed to prepare teleseismic observations for the inversion algorithm. To assess the validity of the acoustic approximation, the processing procedure and modelling-inversion algorithm were tested using synthetic seismograms computed using an elastic Kirchhoff integral method. These tests were performed to evaluate the ability of the frequency-domain full-waveform inversion algorithm to recover topographic variations of the Moho under a variety of realistic scenarios. Results show that frequency-domain full-waveform tomography is generally successful in recovering both sharp and discontinuous features. Thirdly, I developed a new method for creating an initial background velocity model for the inversion algorithm, which is sufficiently close to the true model so that convergence is likely to be achieved. I adapted a method named Deformable Layer Tomography (DLT), which adjusts interfaces between layers rather than velocities within cells. I applied this method to a simple model comprising a single uniform crustal layer and a constant-velocity mantle, separated by an irregular Moho interface. A series of tests was performed to evaluate the sensitivity of the DLT algorithm; the results show that my algorithm produces useful results within a realistic range of incident-wave obliquity, incidence angle and signal-to-noise level. Keywords. Teleseismic tomography, full waveform tomography, deformable layer tomography, lower Great Lakes, crust and upper mantle.

  7. The Modularized Software Package ASKI - Full Waveform Inversion Based on Waveform Sensitivity Kernels Utilizing External Seismic Wave Propagation Codes

    NASA Astrophysics Data System (ADS)

    Schumacher, F.; Friederich, W.

    2015-12-01

    We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion.

  8. The signatures of acoustic emission waveforms from fatigue crack advancing in thin metallic plates

    NASA Astrophysics Data System (ADS)

    Yeasin Bhuiyan, Md; Giurgiutiu, Victor

    2018-01-01

    The acoustic emission (AE) waveforms from a fatigue crack advancing in a thin metallic plate possess diverse and complex spectral signatures. In this article, we analyze these waveform signatures in coordination with the load level during cyclic fatigue. The advancing fatigue crack may generate numerous AE hits while it grows under fatigue loading. We found that these AE hits can be sorted into various groups based on their AE waveform signatures. Each waveform group has a particular time-domain signal pattern and a specific frequency spectrum. This indicates that each group represents a certain AE event related to the fatigue crack growth behavior. In situ AE-fatigue experiments were conducted to monitor the fatigue crack growth with simultaneous measurement of AE signals, fatigue loading, and optical crack growth measurement. An in situ microscope was installed in the load-frame of the mechanical testing system (MTS) to optically monitor the fatigue crack growth and relate the AE signals with the crack growth measurement. We found the AE signal groups at higher load levels (75%-85% of maximum load) were different from the AE signal groups that happened at lower load levels (below 60% of load level). These AE waveform groups are highly related to the fatigue crack-related AE events. These AE signals mostly contain the higher frequency peaks (100 kHz, 230 kHz, 450 kHz, 550 kHz). Some AE signal groups happened as a clustered form that relates a sequence of small AE events within the fatigue crack. They happened at relatively lower load level (50%-60% of the maximum load). These AE signal groups may be related to crack friction and micro-fracture during the friction process. These AE signals mostly contain the lower frequency peaks (60 kHz, 100 kHz, 200 kHz). The AE waveform based analysis may give us comprehensive information of the metal fatigue.

  9. 2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India

    NASA Astrophysics Data System (ADS)

    Jaiswal, Priyank; Zelt, Colin A.; Bally, Albert W.; Dasgupta, Rahul

    2008-05-01

    Exploration along the Naga Thrust and Fold Belt in the Assam province of Northeast India encounters geological as well as logistic challenges. Drilling for hydrocarbons, traditionally guided by surface manifestations of the Naga thrust fault, faces additional challenges in the northeast where the thrust fault gradually deepens leaving subtle surface expressions. In such an area, multichannel 2-D seismic data were collected along a line perpendicular to the trend of the thrust belt. The data have a moderate signal-to-noise ratio and suffer from ground roll and other acquisition-related noise. In addition to data quality, the complex geology of the thrust belt limits the ability of conventional seismic processing to yield a reliable velocity model which in turn leads to poor subsurface image. In this paper, we demonstrate the application of traveltime and waveform inversion as supplements to conventional seismic imaging and interpretation processes. Both traveltime and waveform inversion utilize the first arrivals that are typically discarded during conventional seismic processing. As a first step, a smooth velocity model with long wavelength characteristics of the subsurface is estimated through inversion of the first-arrival traveltimes. This velocity model is then used to obtain a Kirchhoff pre-stack depth-migrated image which in turn is used for the interpretation of the fault. Waveform inversion is applied to the central part of the seismic line to a depth of ~1 km where the quality of the migrated image is poor. Waveform inversion is performed in the frequency domain over a series of iterations, proceeding from low to high frequency (11-19 Hz) using the velocity model from traveltime inversion as the starting model. In the end, the pre-stack depth-migrated image and the waveform inversion model are jointly interpreted. This study demonstrates that a combination of traveltime and waveform inversion with Kirchhoff pre-stack depth migration is a promising approach for the interpretation of geological structures in a thrust belt.

  10. Real-time correction of tsunami site effect by frequency-dependent tsunami-amplification factor

    NASA Astrophysics Data System (ADS)

    Tsushima, H.

    2017-12-01

    For tsunami early warning, I developed frequency-dependent tsunami-amplification factor and used it to design a recursive digital filter that can be applicable for real-time correction of tsunami site response. In this study, I assumed that a tsunami waveform at an observing point could be modeled by convolution of source, path and site effects in time domain. Under this assumption, spectral ratio between offshore and the nearby coast can be regarded as site response (i.e. frequency-dependent amplification factor). If the amplification factor can be prepared before tsunamigenic earthquakes, its temporal convolution to offshore tsunami waveform provides tsunami prediction at coast in real time. In this study, tsunami waveforms calculated by tsunami numerical simulations were used to develop frequency-dependent tsunami-amplification factor. Firstly, I performed numerical tsunami simulations based on nonlinear shallow-water theory from many tsuanmigenic earthquake scenarios by varying the seismic magnitudes and locations. The resultant tsunami waveforms at offshore and the nearby coastal observing points were then used in spectral-ratio analysis. An average of the resulted spectral ratios from the tsunamigenic-earthquake scenarios is regarded as frequency-dependent amplification factor. Finally, the estimated amplification factor is used in design of a recursive digital filter that can be applicable in time domain. The above procedure is applied to Miyako bay at the Pacific coast of northeastern Japan. The averaged tsunami-height spectral ratio (i.e. amplification factor) between the location at the center of the bay and the outside show a peak at wave-period of 20 min. A recursive digital filter based on the estimated amplification factor shows good performance in real-time correction of tsunami-height amplification due to the site effect. This study is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant 15K16309.

  11. Laplace-Fourier-domain dispersion analysis of an average derivative optimal scheme for scalar-wave equation

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Bo

    2014-06-01

    By using low-frequency components of the damped wavefield, Laplace-Fourier-domain full waveform inversion (FWI) can recover a long-wavelength velocity model from the original undamped seismic data lacking low-frequency information. Laplace-Fourier-domain modelling is an important foundation of Laplace-Fourier-domain FWI. Based on the numerical phase velocity and the numerical attenuation propagation velocity, a method for performing Laplace-Fourier-domain numerical dispersion analysis is developed in this paper. This method is applied to an average-derivative optimal scheme. The results show that within the relative error of 1 per cent, the Laplace-Fourier-domain average-derivative optimal scheme requires seven gridpoints per smallest wavelength and smallest pseudo-wavelength for both equal and unequal directional sampling intervals. In contrast, the classical five-point scheme requires 23 gridpoints per smallest wavelength and smallest pseudo-wavelength to achieve the same accuracy. Numerical experiments demonstrate the theoretical analysis.

  12. A Pulsed Thermographic Imaging System for Detection and Identification of Cotton Foreign Matter

    PubMed Central

    Kuzy, Jesse; Li, Changying

    2017-01-01

    Detection of foreign matter in cleaned cotton is instrumental to accurately grading cotton quality, which in turn impacts the marketability of the cotton. Current grading systems return estimates of the amount of foreign matter present, but provide no information about the identity of the contaminants. This paper explores the use of pulsed thermographic analysis to detect and identify cotton foreign matter. The design and implementation of a pulsed thermographic analysis system is described. A sample set of 240 foreign matter and cotton lint samples were collected. Hand-crafted waveform features and frequency-domain features were extracted and analyzed for statistical significance. Classification was performed on these features using linear discriminant analysis and support vector machines. Using waveform features and support vector machine classifiers, detection of cotton foreign matter was performed with 99.17% accuracy. Using frequency-domain features and linear discriminant analysis, identification was performed with 90.00% accuracy. These results demonstrate that pulsed thermographic imaging analysis produces data which is of significant utility for the detection and identification of cotton foreign matter. PMID:28273848

  13. Viscoacoustic anisotropic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Qu, Yingming; Li, Zhenchun; Huang, Jianping; Li, Jinli

    2017-01-01

    A viscoacoustic vertical transverse isotropic (VTI) quasi-differential wave equation, which takes account for both the viscosity and anisotropy of media, is proposed for wavefield simulation in this study. The finite difference method is used to solve the equations, for which the attenuation terms are solved in the wavenumber domain, and all remaining terms in the time-space domain. To stabilize the adjoint wavefield, robust regularization operators are applied to the wave equation to eliminate the high-frequency component of the numerical noise produced during the backward propagation of the viscoacoustic wavefield. Based on these strategies, we derive the corresponding gradient formula and implement a viscoacoustic VTI full waveform inversion (FWI). Numerical tests verify that our proposed viscoacoustic VTI FWI can produce accurate and stable inversion results for viscoacoustic VTI data sets. In addition, we test our method's sensitivity to velocity, Q, and anisotropic parameters. Our results show that the sensitivity to velocity is much higher than that to Q and anisotropic parameters. As such, our proposed method can produce acceptable inversion results as long as the Q and anisotropic parameters are within predefined thresholds.

  14. Seismpol_ a visual-basic computer program for interactive and automatic earthquake waveform analysis

    NASA Astrophysics Data System (ADS)

    Patanè, Domenico; Ferrari, Ferruccio

    1997-11-01

    A Microsoft Visual-Basic computer program for waveform analysis of seismic signals is presented. The program combines interactive and automatic processing of digital signals using data recorded by three-component seismic stations. The analysis procedure can be used in either an interactive earthquake analysis or an automatic on-line processing of seismic recordings. The algorithm works in the time domain using the Covariance Matrix Decomposition method (CMD), so that polarization characteristics may be computed continuously in real time and seismic phases can be identified and discriminated. Visual inspection of the particle motion in hortogonal planes of projection (hodograms) reduces the danger of misinterpretation derived from the application of the polarization filter. The choice of time window and frequency intervals improves the quality of the extracted polarization information. In fact, the program uses a band-pass Butterworth filter to process the signals in the frequency domain by analysis of a selected signal window into a series of narrow frequency bands. Significant results supported by well defined polarizations and source azimuth estimates for P and S phases are also obtained for short-period seismic events (local microearthquakes).

  15. Discriminating Induced-Microearthquakes Using New Seismic Features

    NASA Astrophysics Data System (ADS)

    Mousavi, S. M.; Horton, S.

    2016-12-01

    We studied characteristics of induced-microearthquakes on the basis of the waveforms recorded on a limited number of surface receivers using machine-learning techniques. Forty features in the time, frequency, and time-frequency domains were measured on each waveform, and several techniques such as correlation-based feature selection, Artificial Neural Networks (ANNs), Logistic Regression (LR) and X-mean were used as research tools to explore the relationship between these seismic features and source parameters. The results show that spectral features have the highest correlation to source depth. Two new measurements developed as seismic features for this study, spectral centroids and 2D cross-correlations in the time-frequency domain, performed better than the common seismic measurements. These features can be used by machine learning techniques for efficient automatic classification of low energy signals recorded at one or more seismic stations. We applied the technique to 440 microearthquakes-1.7Reference: Mousavi, S.M., S.P. Horton, C. A. Langston, B. Samei, (2016) Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression, Geophys. J. Int. doi: 10.1093/gji/ggw258.

  16. Operando Measurement of Solid Electrolyte Interphase Formation at Working Electrode of Li-Ion Battery by Time-Slicing Neutron Reflectometry.

    PubMed

    Kawaura, Hiroyuki; Harada, Masashi; Kondo, Yasuhito; Kondo, Hiroki; Suganuma, Yoshitake; Takahashi, Naoko; Sugiyama, Jun; Seno, Yoshiki; Yamada, Norifumi L

    2016-04-20

    We report the first operando measurement of solid electrolyte interphase (SEI) formation at an electrode using in situ neutron reflectometry. The results revealed the growth of the SEI and intercalation of ions during the charge reaction. Furthermore, we propose a way of evaluating the charge used for the SEI formation.

  17. Using Neutron Reflectometry to Discern the Structure of Fibrinogen Adsorption at the Stainless Steel/Aqueous Interface.

    PubMed

    Wood, Mary H; Browning, Kathryn L; Barker, Robert D; Clarke, Stuart M

    2016-06-23

    Neutron reflectometry has been successfully used to study adsorption on a stainless steel surface by means of depositing a thin steel film on silicon. The film was characterized using XPS (X-ray photoelectron spectroscopy), TOF-SIMS (time-of-flight secondary ion mass spectrometry), and GIXRD (grazing incidence X-ray diffraction), demonstrating the retention both of the austenitic phase and of the required composition for 316L stainless steel. The adsorption of fibrinogen from a physiologically-relevant solution onto the steel surface was studied using neutron reflectometry and QCM (quartz crystal microbalance) and compared to that on a deposited chromium oxide surface. It was found that the protein forms an irreversibly bound layer at low concentrations, with maximum protein concentration a distance of around 20 Å from the surface. Evidence for a further diffuse reversibly-bound layer forming at higher concentrations was also observed. Both the structure of the layer revealed by the neutron reflectometry data and the high water retention predicted by the QCM data suggest that there is a significant extent of protein unfolding upon adsorption. A lower extent of adsorption was seen on the chromium surfaces, although the adsorbed layer structures were similar, suggesting comparable adsorption mechanisms.

  18. Common-path conoscopic interferometry for enhanced picosecond ultrasound detection

    NASA Astrophysics Data System (ADS)

    Liu, Liwang; Guillet, Yannick; Audoin, Bertrand

    2018-05-01

    We report on a common-path implementation of conoscopic interferometry in picosecond pump-probe reflectometry for simple and efficient detection of picosecond ultrasounds. The interferometric configuration proposed here is greatly simplified, involving only the insertion of a birefringent crystal in a standard reflectometry setup. Our approach is demonstrated by the optical detection of coherent acoustic phonons propagating through thin metal films under two representative geometries, one a particular case where the crystal slab is part of a sample as substrate of a metal film, and the other a more general case where the crystal slab is independent of the sample as part of the detection system. We first illustrate the former with a 300 nm thin film of polycrystalline titanium, deposited by physical vapor deposition on top of a 1 mm-thick uniaxial (0001) sapphire crystal. A signal-to-noise ratio (SNR) enhancement of more than 15 dB is achieved compared to conventional reflectometry. Next, the general case is demonstrated with a 900 nm-tungsten film sputtered on a silicon wafer substrate. More echoes can be discriminated by using the reported approach compared to standard reflectometry, which confirms the improvement in SNR and suggests broad applications for the reported method.

  19. Application of stored waveform ion modulation 2D-FTICR MS/MS to the analysis of complex mixtures.

    PubMed

    Ross, Charles W; Simonsick, William J; Aaserud, David J

    2002-09-15

    Component identification of complex mixtures, whether they are from polymeric formulations or combinatorial synthesis, by conventional MS/MS techniques generally requires component separation by chromatography or mass spectrometry. An automated means of acquiring simultaneous MS/MS data from a complex mixture without prior separation is obtained from stored waveform ion modulation (SWIM) two-dimensional FTICR MS/MS. The technique applies a series of SWIFT excitation waveforms whose frequency domain magnitude spectrum is a sinusoid increasing in frequency from one waveform to the next. The controlled dissociation of the precursor ions produces an associated modulation of the product ion abundances. Fourier transformation of these abundances reveals the encoded modulation frequency from which connectivities of precursor and product ions are observed. The final result is total assignment of product ions for each precursor ion in a mixture from one automated experiment. We demonstrated the applicability of SWIM 2D-FTICR MS/MS to two diverse samples of industrial importance. We characterized structured polyester oligomers and products derived from combinatorial synthesis. Fragmentation pathways identified in standard serial ion isolation MS/MS experiments were observed for trimethylolpropane/methyl hexahydrophthalic anhydride. A 20-component sample derived from combinatorial synthesis was fragmented, and the template ion along with another key fragment ion was identified for each of the 20 components.

  20. Global seismic attenuation imaging using full-waveform inversion: a comparative assessment of different choices of misfit functionals

    NASA Astrophysics Data System (ADS)

    Karaoǧlu, Haydar; Romanowicz, Barbara

    2018-02-01

    We present the results of synthetic tests that aim at evaluating the relative performance of three different definitions of misfit functionals in the context of 3-D imaging of shear wave attenuation in the earth's upper mantle at the global scale, using long-period full-waveform data. The synthetic tests are conducted with simple hypothetical upper-mantle models that contain Qμ anomalies centred at different depths and locations, with or without additional seismic velocity anomalies. To build synthetic waveform data sets, we performed simulations of 50 events in the hypothetical (target) models, using the spectral element method, filtered in the period range 60-400 s. The selected events are chosen among 273 events used in the development of radially anisotropic model SEMUCB-WM1 and recorded at 495 stations worldwide. The synthetic Z-component waveforms correspond to paths and time intervals (fundamental mode and overtone Rayleigh waves) that exist in the real waveform data set. The inversions for shear attenuation structure are carried out using a Gauss-Newton optimization scheme in which the gradient and Hessian are computed using normal mode perturbation theory. The three different misfit functionals considered are based on time domain waveform (WF) and waveform envelope (E-WF) differences, as well as spectral amplitude ratios (SA), between observed and predicted waveforms. We evaluate the performance of the three misfit functional definitions in the presence of seismic noise and unresolved S-wave velocity heterogeneity and discuss the relative importance of physical dispersion effects due to 3-D Qμ structure. We observed that the performance of WF is poorer than the other two misfit functionals in recovering attenuation structure, unless anelastic dispersion effects are taken into account in the calculation of partial derivatives. WF also turns out to be more sensitive to seismic noise than E-WF and SA. Overall, SA performs best for attenuation imaging. Our tests show that it is important to account for 3-D elastic effects (focusing) before inverting for Qμ. Additionally, we show that including high signal-to-noise ratio overtone wave packets is necessary to resolve Qμ structure at depths greater than 250 km.

  1. Time-domain wavefield reconstruction inversion

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Chun; Lin, Yu-Zhao; Zhang, Kai; Li, Yuan-Yuan; Yu, Zhen-Nan

    2017-12-01

    Wavefield reconstruction inversion (WRI) is an improved full waveform inversion theory that has been proposed in recent years. WRI method expands the searching space by introducing the wave equation into the objective function and reconstructing the wavefield to update model parameters, thereby improving the computing efficiency and mitigating the influence of the local minimum. However, frequency-domain WRI is difficult to apply to real seismic data because of the high computational memory demand and requirement of time-frequency transformation with additional computational costs. In this paper, wavefield reconstruction inversion theory is extended into the time domain, the augmented wave equation of WRI is derived in the time domain, and the model gradient is modified according to the numerical test with anomalies. The examples of synthetic data illustrate the accuracy of time-domain WRI and the low dependency of WRI on low-frequency information.

  2. The use of linear programming techniques to design optimal digital filters for pulse shaping and channel equalization

    NASA Technical Reports Server (NTRS)

    Houts, R. C.; Burlage, D. W.

    1972-01-01

    A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.

  3. A developed nearly analytic discrete method for forward modeling in the frequency domain

    NASA Astrophysics Data System (ADS)

    Liu, Shaolin; Lang, Chao; Yang, Hui; Wang, Wenshuai

    2018-02-01

    High-efficiency forward modeling methods play a fundamental role in full waveform inversion (FWI). In this paper, the developed nearly analytic discrete (DNAD) method is proposed to accelerate frequency-domain forward modeling processes. We first derive the discretization of frequency-domain wave equations via numerical schemes based on the nearly analytic discrete (NAD) method to obtain a linear system. The coefficients of numerical stencils are optimized to make the linear system easier to solve and to minimize computing time. Wavefield simulation and numerical dispersion analysis are performed to compare the numerical behavior of DNAD method with that of the conventional NAD method. The results demonstrate the superiority of our proposed method. Finally, the DNAD method is implemented in frequency-domain FWI, and high-resolution inverse results are obtained.

  4. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    NASA Astrophysics Data System (ADS)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with collocated measurement of biomass and soil moisture ground truth in order to better characterize the instrument sensitivity to geophysical parameters. The instrument will be improved in the meanwhile including the optimization of data processing and the better integration of external data (GPS commercial receiver, Attitude) into the receiver. M.Martin-Neira. A Passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA J., 17:331-355, 1993 Hauser, D.; Caudal, G.; Le Gac, C.; Valentin, R.; Delaye, L.; Tison, C., "KuROS: A new airborne Ku-band Doppler radar for observation of the ocean surface," Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International , vol., no., pp.282,285, 13-18 July 2014 Egido, A.; Paloscia, S.; Motte, E.; Guerriero, L.; Pierdicca, N.; Caparrini, M.; Santi, E.; Fontanelli, G.; Floury, N., "Airborne GNSS-R Polarimetric Measurements for Soil Moisture and Above-Ground Biomass Estimation," Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of , vol.7, no.5, pp.1522,1532, May 2014

  5. An improved sensor for precision detection of in situ stem water content using a frequency domain fringing capacitor.

    PubMed

    Zhou, Haiyang; Sun, Yurui; Tyree, Melvin T; Sheng, Wenyi; Cheng, Qiang; Xue, Xuzhang; Schumann, Henrik; Schulze Lammers, Peter

    2015-04-01

    One role of stems is that of water storage. The water content of stems increases and decreases as xylem water potential increases and decreases, respectively. Hence, a nondestructive method to measure stem water content (StWC) = (volume of water) : (volume of stem), could be useful in monitoring the drought stress status of plants. We introduce a frequency domain inner fringing capacitor-sensor for measuring StWC which operates at 100 MHz frequency. The capacitor-sensor consists of two wave guides (5-mm-wide braided metal) that snugly fit around the surface of a stem with a spacing of 4-5 mm between guides. Laboratory measurements on analog stems reveals that the DC signal output responds linearly to the relative dielectric constant of the analog stem, is most sensitive to water content between the waveguides to a depth of c. 3 mm from the stem surface, and calibrations based on the gravimetric water loss of excised stems of plants revealed a resolution in StWC of < ± 0.001 v/ v. The sensor performed very well on whole plants with a 100-fold increased resolution compared with previous frequency domain and time domain reflectometry methods and, hence, may be very useful for future research requiring nondestructive measurements of whole plants. © European Union 2014. New Phytologist © 2014 New Phytologist Trust.

  6. Surface Reflectometry and Ionosphere Sounding from the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)

    NASA Astrophysics Data System (ADS)

    Grima, C.; Blankenship, D. D.; Schroeder, D. M.; Moussessian, A.; Soderlund, K. M.; Gim, Y.; Plaut, J. J.; Greenbaum, J. S.; Lopez Garcia, E.; Campbell, B. A.; Putzig, N. E.; Patterson, G.

    2015-12-01

    The Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) has been selected for the scientific payload of a NASA's multiple flyby mission to explore the icy moon Europa. REASON is an active dual-frequency (9/60 MHz) instrument led by the University of Texas Institute for Geophysics (UTIG). It is designed to achieve multi-disciplinary measurements to investigate subsurface waters and the ice shell structure (Sounding), the surface elevation and tides (Altimetry), the surface physical properties (Reflectometry), and the ionospheric environment (Plasma/Particles). We will present the concepts behind the "Reflectometry" and "Plasma/Particles" measurements, demonstrate their efficiency with planetary analogs, and anticipate their capabilities for the exploration of Europa. We will also highlight the potential synergies with other instruments selected for the Europa mission payload.The "Reflectometry" compares the statistical behavior of the surface echo amplitudes with theoretical stochastic models to separate the reflected and scattered contributions to the signal. Once those two components are deduced they are used in a backscattering model to invert surface properties such as roughness, density, and/or impurity load. "Reflectometry" measurements will contribute to the statistical characterization of the surface over ~ 10-km-long areas with a ~ 10 m skin depth for geological investigation, near-surface brine detection, plume-deposited snow characterization, and landing site reconnaissance. The "Plasma/Particles" measurement relies on the dispersive signal delays induced by the ionospheric content integrated along the radio propagation path. Correction of this delay with existing techniques provides the total electron content below the spacecraft. "Plasma/Particles" measurements will constrain the ionosphere's shape and variability along the acquisition track and might detect transient plume-induced ionosphere when active.

  7. Modularized seismic full waveform inversion based on waveform sensitivity kernels - The software package ASKI

    NASA Astrophysics Data System (ADS)

    Schumacher, Florian; Friederich, Wolfgang; Lamara, Samir; Gutt, Phillip; Paffrath, Marcel

    2015-04-01

    We present a seismic full waveform inversion concept for applications ranging from seismological to enineering contexts, based on sensitivity kernels for full waveforms. The kernels are derived from Born scattering theory as the Fréchet derivatives of linearized frequency-domain full waveform data functionals, quantifying the influence of elastic earth model parameters and density on the data values. For a specific source-receiver combination, the kernel is computed from the displacement and strain field spectrum originating from the source evaluated throughout the inversion domain, as well as the Green function spectrum and its strains originating from the receiver. By storing the wavefield spectra of specific sources/receivers, they can be re-used for kernel computation for different specific source-receiver combinations, optimizing the total number of required forward simulations. In the iterative inversion procedure, the solution of the forward problem, the computation of sensitivity kernels and the derivation of a model update is held completely separate. In particular, the model description for the forward problem and the description of the inverted model update are kept independent. Hence, the resolution of the inverted model as well as the complexity of solving the forward problem can be iteratively increased (with increasing frequency content of the inverted data subset). This may regularize the overall inverse problem and optimizes the computational effort of both, solving the forward problem and computing the model update. The required interconnection of arbitrary unstructured volume and point grids is realized by generalized high-order integration rules and 3D-unstructured interpolation methods. The model update is inferred solving a minimization problem in a least-squares sense, resulting in Gauss-Newton convergence of the overall inversion process. The inversion method was implemented in the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion), which provides a generalized interface to arbitrary external forward modelling codes. So far, the 3D spectral-element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework are supported. The creation of interfaces to further forward codes is planned in the near future. ASKI is freely available under the terms of the GPL at www.rub.de/aski . Since the independent modules of ASKI must communicate via file output/input, large storage capacities need to be accessible conveniently. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion. In the presentation, we will show some aspects of the theory behind the full waveform inversion method and its practical realization by the software package ASKI, as well as synthetic and real-data applications from different scales and geometries.

  8. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4

    2015-12-28

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarizationmore » as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg:LN in combination with suitable metal electrodes that allow for further tailoring of conductivity.« less

  9. Application of time–frequency wavelet analysis in the reflectometry of thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astaf’ev, S. B., E-mail: bard@crys.ras.ru; Shchedrin, B. M.; Yanusova, L. G.

    2017-03-15

    The application of time–frequency wavelet analysis for solving the reflectometry inverse problem is considered. It is shown that a simultaneous transform of specular intensity curve, depending on the grazing angle and spatial frequency, allows one to determine not only the thickness but also the alteration order of individual regions (layers) with characteristic behavior of electron density. This information makes it possible to reconstruct the electron density profile in the film cross section as a whole (i.e., to solve the inverse reflectometry problem). The application of the time–frequency transform is illustrated by examples of reconstructing (based on X-ray reflectivity data) themore » layer alternation order in models of two-layer films with inverted arrangement of layers and a four-layer film on a solid substrate.« less

  10. Infrasound Waveform Inversion and Mass Flux Validation from Sakurajima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Fee, D.; Kim, K.; Yokoo, A.; Izbekov, P. E.; Lopez, T. M.; Prata, F.; Ahonen, P.; Kazahaya, R.; Nakamichi, H.; Iguchi, M.

    2015-12-01

    Recent advances in numerical wave propagation modeling and station coverage have permitted robust inversion of infrasound data from volcanic explosions. Complex topography and crater morphology have been shown to substantially affect the infrasound waveform, suggesting that homogeneous acoustic propagation assumptions are invalid. Infrasound waveform inversion provides an exciting tool to accurately characterize emission volume and mass flux from both volcanic and non-volcanic explosions. Mass flux, arguably the most sought-after parameter from a volcanic eruption, can be determined from the volume flux using infrasound waveform inversion if the volcanic flow is well-characterized. Thus far, infrasound-based volume and mass flux estimates have yet to be validated. In February 2015 we deployed six infrasound stations around the explosive Sakurajima Volcano, Japan for 8 days. Here we present our full waveform inversion method and volume and mass flux estimates of numerous high amplitude explosions using a high resolution DEM and 3-D Finite Difference Time Domain modeling. Application of this technique to volcanic eruptions may produce realistic estimates of mass flux and plume height necessary for volcanic hazard mitigation. Several ground-based instruments and methods are used to independently determine the volume, composition, and mass flux of individual volcanic explosions. Specifically, we use ground-based ash sampling, multispectral infrared imagery, UV spectrometry, and multigas data to estimate the plume composition and flux. Unique tiltmeter data from underground tunnels at Sakurajima also provides a way to estimate the volume and mass of each explosion. In this presentation we compare the volume and mass flux estimates derived from the different methods and discuss sources of error and future improvements.

  11. Isotope-Identifying neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru; Petrenko, A. V.; Gundorin, N. A.

    2015-07-15

    The possibilities of an isotope-indentifying study of layered structures in different regimes of a neutron wave field are considered. The detection of specularly reflected neutrons and secondary radiation (caused by neutron capture) in the form of charged particles, γ quanta, and nuclear fission fragments, as well as neutrons spin-flipped in a noncollinear magnetic field and on nuclei of elements with spin, makes it possible to implement isotope-indentifying neutron reflectometry.

  12. Application of reflectometry power flow for magnetic field pitch angle measurements in tokamak plasmas (invited).

    PubMed

    Gourdain, P-A; Peebles, W A

    2008-10-01

    Reflectometry has successfully demonstrated measurements of many important parameters in high temperature tokamak fusion plasmas. However, implementing such capabilities in a high-field, large plasma, such as ITER, will be a significant challenge. In ITER, the ratio of plasma size (meters) to the required reflectometry source wavelength (millimeters) is significantly larger than in existing fusion experiments. This suggests that the flow of the launched reflectometer millimeter-wave power can be realistically analyzed using three-dimensional ray tracing techniques. The analytical and numerical studies presented will highlight the fact that the group velocity (or power flow) of the launched microwaves is dependent on the direction of wave propagation relative to the internal magnetic field. It is shown that this dependence strongly modifies power flow near the cutoff layer in a manner that embeds the local magnetic field direction in the "footprint" of the power returned toward the launch antenna. It will be shown that this can potentially be utilized to locally determine the magnetic field pitch angle at the cutoff location. The resultant beam drift and distortion due to magnetic field and relativistic effects also have significant consequences on the design of reflectometry systems for large, high-field fusion experiments. These effects are discussed in the context of the upcoming ITER burning plasma experiment.

  13. Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry.

    PubMed

    Dong, Junliang; Locquet, Alexandre; Melis, Marcello; Citrin, D S

    2017-11-08

    The process by which art paintings are produced typically involves the successive applications of preparatory and paint layers to a canvas or other support; however, there is an absence of nondestructive modalities to provide a global mapping of the stratigraphy, information that is crucial for evaluation of its authenticity and attribution, for insights into historical or artist-specific techniques, as well as for conservation. We demonstrate sparsity-based terahertz reflectometry can be applied to extract a detailed 3D mapping of the layer structure of the 17th century easel painting Madonna in Preghiera by the workshop of Giovanni Battista Salvi da Sassoferrato, in which the structure of the canvas support, the ground, imprimatura, underpainting, pictorial, and varnish layers are identified quantitatively. In addition, a hitherto unidentified restoration of the varnish has been found. Our approach unlocks the full promise of terahertz reflectometry to provide a global and detailed account of an easel painting's stratigraphy by exploiting the sparse deconvolution, without which terahertz reflectometry in the past has only provided a meager tool for the characterization of paintings with paint-layer thicknesses smaller than 50 μm. The proposed modality can also be employed across a broad range of applications in nondestructive testing and biomedical imaging.

  14. Effects of dwell time of excitation waveform on meniscus movements for a tubular piezoelectric print-head: experiments and model

    NASA Astrophysics Data System (ADS)

    Chang, Jiaqing; Liu, Yaxin; Huang, Bo

    2017-07-01

    In inkjet applications, it is normal to search for an optimal drive waveform when dispensing a fresh fluid or adjusting a newly fabricated print-head. To test trial waveforms with different dwell times, a camera and a strobe light were used to image the protruding or retracting liquid tongues without ejecting any droplets. An edge detection method was used to calculate the lengths of the liquid tongues to draw the meniscus movement curves. The meniscus movement is determined by the time-domain response of the acoustic pressure at the nozzle of the print-head. Starting at the inverse piezoelectric effect, a mathematical model which considers the liquid viscosity in acoustic propagation is constructed to study the acoustic pressure response at the nozzle of the print-head. The liquid viscosity retards the propagation speed and dampens the harmonic amplitude. The pressure response, which is the combined effect of the acoustic pressures generated during the rising time and the falling time and after their propagations and reflections, explains the meniscus movements well. Finally, the optimal dwell time for droplet ejections is discussed.

  15. Symmetry of the gradient profile as second experimental dimension in the short-time expansion of the apparent diffusion coefficient as measured with NMR diffusometry.

    PubMed

    Laun, Frederik Bernd; Kuder, Tristan Anselm; Zong, Fangrong; Hertel, Stefan; Galvosas, Petrik

    2015-10-01

    The time-dependent apparent diffusion coefficient as measured by pulsed gradient NMR can be used to estimate parameters of porous structures including the surface-to-volume ratio and the mean curvature of pores. In this work, the short-time diffusion limit and in particular the influence of the temporal profile of diffusion gradients on the expansion as proposed by Mitra et al. (1993) is investigated. It is shown that flow-compensated waveforms, i.e. those whose first moment is zero, are blind to the term linear in observation time, which is the term that is proportional to mean curvature and surface permeability. A gradient waveform that smoothly interpolates between flow-compensated and bipolar waveform is proposed and the degree of flow-compensation is used as a second experimental dimension. This two-dimensional ansatz is shown to yield an improved precision when characterizing the confining domain. This technique is demonstrated with simulations and in experiments performed with cylindrical capillaries of 100 μm radius. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Topographic effects on infrasound propagation.

    PubMed

    McKenna, Mihan H; Gibson, Robert G; Walker, Bob E; McKenna, Jason; Winslow, Nathan W; Kofford, Aaron S

    2012-01-01

    Infrasound data were collected using portable arrays in a region of variable terrain elevation to quantify the effects of topography on observed signal amplitude and waveform features at distances less than 25 km from partially contained explosive sources during the Frozen Rock Experiment (FRE) in 2006. Observed infrasound signals varied in amplitude and waveform complexity, indicating propagation effects that are due in part to repeated local maxima and minima in the topography on the scale of the dominant wavelengths of the observed data. Numerical simulations using an empirically derived pressure source function combining published FRE accelerometer data and historical data from Project ESSEX, a time-domain parabolic equation model that accounted for local terrain elevation through terrain-masking, and local meteorological atmospheric profiles were able to explain some but not all of the observed signal features. Specifically, the simulations matched the timing of the observed infrasound signals but underestimated the waveform amplitude observed behind terrain features, suggesting complex scattering and absorption of energy associated with variable topography influences infrasonic energy more than previously observed. © 2012 Acoustical Society of America.

  17. Optical detection dental disease using polarized light

    DOEpatents

    Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.; Fried, Daniel

    2003-01-01

    A polarization sensitive optical imaging system is used to detect changes in polarization in dental tissues to aid the diagnosis of dental disease such as caries. The degree of depolarization is measured by illuminating the dental tissue with polarized light and measuring the polarization state of the backscattered light. The polarization state of this reflected light is analyzed using optical polarimetric imaging techniques. A hand-held fiber optic dental probe is used in vivo to direct the incident beam to the dental tissue and collect the reflected light. To provide depth-resolved characterization of the dental tissue, the polarization diagnostics may be incorporated into optical coherence domain reflectometry and optical coherence tomography (OCDR/OCT) systems, which enables identification of subsurface depolarization sites associated with demineralization of enamel or bone.

  18. Performance comparison of TDR-based systems for permanent and diffused detection of water content and leaks

    NASA Astrophysics Data System (ADS)

    Cataldo, A.; De Benedetto, E.; Cannazza, G.; Huebner, C.; Trebbels, D.

    2017-01-01

    In this work, the performance of three time domain reflectometry (TDR) instruments (with different hardware architectures, specifications and costs) is comparatively assessed. The goal is to evaluate the performance of low-cost TDR instrumentation, in view of the development of a completely permanent TDR-based monitoring solution, wherein the costs of the instrument is so low, that it can be left on-site, even unguarded, and controlled remotely. Without losing generality, the applications considered for the comparative experiments are the TDR-based detection of leaks in underground pipes and, more in general, of soil water content variations. For this reason, both laboratory and in-the-field experiments are carried out by comparatively using three TDR instruments, in conjunction with wire-like sensing elements (SEs).

  19. KSC-07pd3643

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  20. KSC-07pd3639

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  1. KSC-07pd3640

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  2. KSC-07pd3641

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  3. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines.

    PubMed

    Peng, Fei; Wu, Han; Jia, Xin-Hong; Rao, Yun-Jiang; Wang, Zi-Nan; Peng, Zheng-Pu

    2014-06-02

    An ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution. Furthermore, the feasibility of applying such an ultra-long Φ-OTDR to pipeline security monitoring is demonstrated and the features of intrusion signal can be extracted with improved SNR by using the wavelet detrending/denoising method proposed.

  4. High resolution, high sensitivity, dynamic distributed structural monitoring using optical frequency domain reflectometry

    NASA Astrophysics Data System (ADS)

    Kreger, Stephen T.; Sang, Alex K.; Garg, Naman; Michel, Julia

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  5. KSC-07pd3629

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician prepares a cable from an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system leading into the tail mast. The test wiring leads from the tail mast to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  6. KSC-07pd3628

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, cables lead from an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system into the tail mast. The test wiring leads from the tail mast to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  7. KSC-07pd3627

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, cables lead from an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system into the tail mast. The test wiring leads from the tail mast to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  8. Early detection of skin cancer via terahertz spectral profiling and 3D imaging.

    PubMed

    Rahman, Anis; Rahman, Aunik K; Rao, Babar

    2016-08-15

    Terahertz scanning reflectometry, terahertz 3D imaging and terahertz time-domain spectroscopy have been used to identify features in human skin biopsy samples diagnosed for basal cell carcinoma (BCC) and compared with healthy skin samples. It was found from the 3D images that the healthy skin samples exhibit regular cellular pattern while the BCC skin samples indicate lack of regular cell pattern. The skin is a highly layered structure organ; this is evident from the thickness profile via a scan through the thickness of the healthy skin samples, where, the reflected intensity of the terahertz beam exhibits fluctuations originating from different skin layers. Compared to the healthy skin samples, the BCC samples' profiles exhibit significantly diminished layer definition; thus indicating a lack of cellular order. In addition, terahertz time-domain spectroscopy reveals significant and quantifiable differences between the healthy and BCC skin samples. Thus, a combination of three different terahertz techniques constitutes a conclusive route for detecting the BCC condition on a cellular level compared to the healthy skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. 151-km single-end phase-sensitive optical time-domain reflectometer assisted by optical repeater

    NASA Astrophysics Data System (ADS)

    Song, Muping; Zhu, Weiji; Xia, Qiaolan; Yin, Cong; Lu, Yan; Wu, Ying; Zhuang, Shouwang

    2018-02-01

    A phase-sensitive optical time-domain reflectometry (ϕOTDR) system that can detect intrusion over 150 km is presented. The ϕOTDR system uses nonbalanced optical repeaters to extend the sensing distance. The repeater consists of two erbium-doped optical fiber amplifiers (EDFAs) and one Raman amplifier (RA). One EDFA power amplifier amplifies the forward-transmitting pulse, and one EDFA preamplifier is used for the backscattering signal, respectively. The RA helps keeping the power along the fiber stable. The optical repeater is installed at the connection of two adjacent fibers to compensate the power decline due to fiber loss. It is easy to install the repeater midway among the fiber links in the system for longer-distance sensing since there is no need of modifying the original sensing system. The theoretical analysis of the repeater is given to describe its effect on the distributed sensing. In experiments, several ϕOTDR traces show a good agreement with theoretical results. Using the optical repeater, 35-Hz vibration at 151 km is successfully measured with signal-to-noise ratio of 8 dB without extra signal processing.

  10. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    NASA Technical Reports Server (NTRS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  11. Feasibility study of the automated detection and localization of underground tunnel excavation using Brillouin optical time domain reflectometer

    NASA Astrophysics Data System (ADS)

    Klar, Assaf; Linker, Raphael

    2009-05-01

    Cross-borders smuggling tunnels enable unmonitored movement of people, drugs and weapons and pose a very serious threat to homeland security. Recent advances in strain measurements using optical fibers allow the development of smart underground security fences that could detect the excavation of smuggling tunnels. This paper presents the first stages in the development of such a fence using Brillouin Optical Time Domain Reflectometry (BOTDR). In the simulation study, two different ground displacement models are used in order to evaluate the robustness of the system against imperfect modeling. In both cases, soil-fiber interaction is considered. Measurement errors, and surface disturbances (obtained from a field test) are also included in the calibration and validation stages of the system. The proposed detection system is based on wavelet decomposition of the BOTDR signal, followed by a neural network that is trained to recognize the tunnel signature in the wavelet coefficients. The results indicate that the proposed system is capable of detecting even small tunnel (0.5m diameter) as deep as 20 meter.

  12. Using 3D Simulation of Elastic Wave Propagation in Laplace Domain for Electromagnetic-Seismic Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Petrov, P.; Newman, G. A.

    2010-12-01

    Quantitative imaging of the subsurface objects is essential part of modern geophysical technology important in oil and gas exploration and wide-range engineering applications. A significant advancement in developing a robust, high resolution imaging technology is concerned with using the different geophysical measurements (gravity, EM and seismic) sense the subsurface structure. A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data (electromagnetic and seismic) due to their differing physical nature - diffusive and attenuated propagation of electromagnetic energy and nonlinear, multiple scattering wave propagation of seismic energy. Recent progress has been reported in the solution of this problem by reducing the complexity of seismic wave field. Works formed by Shin and Cha (2009 and 2008) suggests that low-pass filtering the seismic trace via Laplace-Fourier transformation can be an effective approach for obtaining seismic data that has similar spatial resolution to EM data. The effect of Laplace- Fourier transformation on the low-pass filtered trace changes the modeling of the seismic wave field from multi-wave propagation to diffusion. The key benefit of transformation is that diffusive wave-field inversion works well for both data sets seismic (Shin and Cha, 2008) and electromagnetic (Commer and Newman 2008, Newman et al., 2010). Moreover the different data sets can also be matched for similar and consistent resolution. Finally, the low pass seismic image is also an excellent choice for a starting model when analyzing the entire seismic waveform to recover the high spatial frequency components of the seismic image; its reflectivity (Shin and Cha, 2009). Without a good starting model full waveform seismic imaging and migration can encounter serious difficulties. To produce seismic wave fields consistent for joint imaging in the Laplace-Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.

  13. Characterization of human scalp hairs by optical low-coherence reflectometry

    NASA Astrophysics Data System (ADS)

    Wang, X. J.; Milner, T. E.; Dhond, R. P.; Sorin, W. V.; Newton, S. A.; Nelson, J. S.

    1995-03-01

    Optical low-coherence reflectometry is used to investigate the internal structure and optical properties of human scalp hair. Regardless of hair color, the refractive index of the cortical region remains within the range of 1.56-1.59. The amplitude of the backscattered infrared light coupled into different-colored hair confirms the relative melanin content. Discontinuities in the refractive index permit identification of distinct structural layers within the hair shaft.

  14. Distributed strain measurements using fiber Bragg gratings in small-diameter optical fiber and low-coherence reflectometry.

    PubMed

    Coric, Dragan; Lai, Marco; Botsis, John; Luo, Aiping; Limberger, Hans G

    2010-12-06

    Optical low coherence reflectometry and fiber Bragg gratings written in small diameter (50 micrometer) optical fibers were used for measurements of non-homogenous internal strain fields inside an epoxy specimen with sub-grating length resolution. The results were compared with measurements using Fiber Bragg gratings in standard size (125 micrometer) single mode fibers and show that smaller fibers are less intrusive at stress heterogeneities.

  15. Pulse reflectometry as an acoustical inverse problem: Regularization of the bore reconstruction

    NASA Astrophysics Data System (ADS)

    Forbes, Barbara J.; Sharp, David B.; Kemp, Jonathan A.

    2002-11-01

    The theoretical basis of acoustic pulse reflectometry, a noninvasive method for the reconstruction of an acoustical duct from the reflections measured in response to an input pulse, is reviewed in terms of the inversion of the central Fredholm equation. It is known that this is an ill-posed problem in the context of finite-bandwidth experimental signals. Recent work by the authors has proposed the truncated singular value decomposition (TSVD) in the regularization of the transient input impulse response, a non-measurable quantity from which the spatial bore reconstruction is derived. In the present paper we further emphasize the relevance of the singular system framework to reflectometry applications, examining for the first time the transient bases of the system. In particular, by varying the truncation point for increasing condition numbers of the system matrix, it is found that the effects of out-of-bandwidth singular functions on the bore reconstruction can be systematically studied.

  16. New signal processing technique for density profile reconstruction using reflectometry.

    PubMed

    Clairet, F; Ricaud, B; Briolle, F; Heuraux, S; Bottereau, C

    2011-08-01

    Reflectometry profile measurement requires an accurate determination of the plasma reflected signal. Along with a good resolution and a high signal to noise ratio of the phase measurement, adequate data analysis is required. A new data processing based on time-frequency tomographic representation is used. It provides a clearer separation between multiple components and improves isolation of the relevant signals. In this paper, this data processing technique is applied to two sets of signals coming from two different reflectometer devices used on the Tore Supra tokamak. For the standard density profile reflectometry, it improves the initialization process and its reliability, providing a more accurate profile determination in the far scrape-off layer with density measurements as low as 10(16) m(-1). For a second reflectometer, which provides measurements in front of a lower hybrid launcher, this method improves the separation of the relevant plasma signal from multi-reflection processes due to the proximity of the plasma.

  17. Estimation of sea level variations with GPS/GLONASS-reflectometry technique

    NASA Astrophysics Data System (ADS)

    Padokhin, A. M.; Kurbatov, G. A.; Andreeva, E. S.; Nesterov, I. A.; Nazarenko, M. O.; Berbeneva, N. A.; Karlysheva, A. V.

    2017-11-01

    In the present paper we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSSreceiver, which are based on the multipath propagation effects caused by the reflection of navigational signals from the sea surface. Such multipath propagation results in the appearance of the interference pattern in the Signal-to-Noise Ratio (SNR) of GNSS signals at small satellite elevation angles, which parameters are determined by the wavelength of the navigational signal and height of the antenna phase center above the reflecting sea surface. In current work we used GPS and GLONASS signals and measurements at two working frequencies of both systems to study sea level variations which almost doubles the amount of observations compared to GPS-only tide gauge. For UNAVCO sc02 station and collocated Friday Harbor NOAA tide gauge we show good agreement between GNSS-reflectometry and traditional mareograph sea level data.

  18. Frequency modulation television analysis: Distortion analysis

    NASA Technical Reports Server (NTRS)

    Hodge, W. H.; Wong, W. H.

    1973-01-01

    Computer simulation is used to calculate the time-domain waveform of standard T-pulse-and-bar test signal distorted in passing through an FM television system. The simulator includes flat or preemphasized systems and requires specification of the RF predetection filter characteristics. The predetection filters are modeled with frequency-symmetric Chebyshev (0.1-db ripple) and Butterworth filters. The computer was used to calculate distorted output signals for sixty-four different specified systems, and the output waveforms are plotted for all sixty-four. Comparison of the plotted graphs indicates that a Chebyshev predetection filter of four poles causes slightly more signal distortion than a corresponding Butterworth filter and the signal distortion increases as the number of poles increases. An increase in the peak deviation also increases signal distortion. Distortion also increases with the addition of preemphasis.

  19. Applying MDA to SDR for Space to Model Real-time Issues

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2007-01-01

    NASA space communications systems have the challenge of designing SDRs with highly-constrained Size, Weight and Power (SWaP) resources. A study is being conducted to assess the effectiveness of applying the MDA Platform-Independent Model (PIM) and one or more Platform-Specific Models (PSM) specifically to address NASA space domain real-time issues. This paper will summarize our experiences with applying MDA to SDR for Space to model real-time issues. Real-time issues to be examined, measured, and analyzed are: meeting waveform timing requirements and efficiently applying Real-time Operating System (RTOS) scheduling algorithms, applying safety control measures, and SWaP verification. Real-time waveform algorithms benchmarked with the worst case environment conditions under the heaviest workload will drive the SDR for Space real-time PSM design.

  20. Wavelet transformation to determine impedance spectra of lithium-ion rechargeable battery

    NASA Astrophysics Data System (ADS)

    Hoshi, Yoshinao; Yakabe, Natsuki; Isobe, Koichiro; Saito, Toshiki; Shitanda, Isao; Itagaki, Masayuki

    2016-05-01

    A new analytical method is proposed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) from time domain data by wavelet transformation (WT). The WT is a waveform analysis method that can transform data in the time domain to the frequency domain while retaining time information. In this transformation, the frequency domain data are obtained by the convolution integral of a mother wavelet and original time domain data. A complex Morlet mother wavelet (CMMW) is used to obtain the complex number data in the frequency domain. The CMMW is expressed by combining a Gaussian function and sinusoidal term. The theory to select a set of suitable conditions for variables and constants related to the CMMW, i.e., band, scale, and time parameters, is established by determining impedance spectra from wavelet coefficients using input voltage to the equivalent circuit and the output current. The impedance spectrum of LIRB determined by WT agrees well with that measured using a frequency response analyzer.

  1. Frequency domain and full waveform time domain inversion of ground based magnetometer, electrometer and incoherent scattering radar arrays to image strongly heterogenous 3-D Earth structure, ionospheric structure, and to predict the intensity of GICs in the power grid

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Imamura, N.; Bonner, L. R., IV; Cosgrove, R. B.

    2016-12-01

    Ground-based magnetometer and electrometer arrays provide the means to probe the structure of the Earth's interior, the interactions of space weather with the ionosphere, and to anticipate the intensity of geomagnetically induced currents (GICs) in power grids. We present a local-to-continental scale view of a heterogeneous 3-D crust and mantle as determined from magnetotelluric (MT) observations across arrays of ground-based electric and magnetic field sensors. MT impedance tensors describe the relationship between electric and magnetic fields at a given site, thus implicitly they contain all known information on the 3-D electrical resistivity structure beneath and surrounding that site. By using multivariate transfer functions to project real-time magnetic observatory network data to areas surrounding electric power grids, and by projecting those magnetic fields through MT impedance tensors, the projected magnetic field can be transformed into predictions of electric fields along the path of the transmission lines, an essential element of predicting the intensity of GICs in the grid. Finally, we explore GICs, i.e. Earth-ionosphere coupling directly in the time-domain. We consider the fully coupled EM system, where we allow for a non-stationary ionospheric source field of arbitrary complexity above a 3-D Earth. We solve the simultaneous inverse problem for 3-D Earth conductivity and source field structure directly in the time domain. In the present work, we apply this method to magnetotelluric data obtained from a synchronously operating array of 25 MT stations that collected continuous MT waveform data in the interior of Alaska during the autumn and winter of 2015 under the footprint of the Poker Flat (Alaska) Incoherent Scattering Radar (PFISR). PFISR data yield functionals of the ionospheric electric field and ionospheric conductivity that constrain the MT source field. We show that in this region conventional robust MT processing methods struggle to produce reliable MT response functions at periods much greater than about 2,000 s, a consequence, we believe, of the complexity of the ionospheric source fields in this high latitude setting. This provides impetus for direct waveform inversion methods that dispense with typical parametric assumptions made about the MT source fields.

  2. Short-Period, Anelastic and Anisotropic, Waveform-Based 3D Middle East Model to Improve Nuclear Explosion Monitoring

    DTIC Science & Technology

    2014-08-30

    initial wave speed model, M00, was used while model iteration 13, M13 , was used within. This expansion of the model does not significantly alter the...total misfit between M13 and M14. The increase in events, stations, and ray-based path coverage is displayed in Figure 4. Expanding the model domain

  3. Acceleration for 2D time-domain elastic full waveform inversion using a single GPU card

    NASA Astrophysics Data System (ADS)

    Jiang, Jinpeng; Zhu, Peimin

    2018-05-01

    Full waveform inversion (FWI) is a challenging procedure due to the high computational cost related to the modeling, especially for the elastic case. The graphics processing unit (GPU) has become a popular device for the high-performance computing (HPC). To reduce the long computation time, we design and implement the GPU-based 2D elastic FWI (EFWI) in time domain using a single GPU card. We parallelize the forward modeling and gradient calculations using the CUDA programming language. To overcome the limitation of relatively small global memory on GPU, the boundary saving strategy is exploited to reconstruct the forward wavefield. Moreover, the L-BFGS optimization method used in the inversion increases the convergence of the misfit function. A multiscale inversion strategy is performed in the workflow to obtain the accurate inversion results. In our tests, the GPU-based implementations using a single GPU device achieve >15 times speedup in forward modeling, and about 12 times speedup in gradient calculation, compared with the eight-core CPU implementations optimized by OpenMP. The test results from the GPU implementations are verified to have enough accuracy by comparing the results obtained from the CPU implementations.

  4. Comparison of weighting techniques for acoustic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Jeong, Gangwon; Hwang, Jongha; Min, Dong-Joo

    2017-12-01

    To reconstruct long-wavelength structures in full waveform inversion (FWI), the wavefield-damping and weighting techniques have been used to synthesize and emphasize low-frequency data components in frequency-domain FWI. However, these methods have some weak points. The application of wavefield-damping method on filtered data fails to synthesize reliable low-frequency data; the optimization formula obtained introducing the weighting technique is not theoretically complete, because it is not directly derived from the objective function. In this study, we address these weak points and present how to overcome them. We demonstrate that the source estimation in FWI using damped wavefields fails when the data used in the FWI process does not satisfy the causality condition. This phenomenon occurs when a non-causal filter is applied to data. We overcome this limitation by designing a causal filter. Also we modify the conventional weighting technique so that its optimization formula is directly derived from the objective function, retaining its original characteristic of emphasizing the low-frequency data components. Numerical results show that the newly designed causal filter enables to recover long-wavelength structures using low-frequency data components synthesized by damping wavefields in frequency-domain FWI, and the proposed weighting technique enhances the inversion results.

  5. Waveform inversion of volcano-seismic signals for an extended source

    USGS Publications Warehouse

    Nakano, M.; Kumagai, H.; Chouet, B.; Dawson, P.

    2007-01-01

    We propose a method to investigate the dimensions and oscillation characteristics of the source of volcano-seismic signals based on waveform inversion for an extended source. An extended source is realized by a set of point sources distributed on a grid surrounding the centroid of the source in accordance with the source geometry and orientation. The source-time functions for all point sources are estimated simultaneously by waveform inversion carried out in the frequency domain. We apply a smoothing constraint to suppress short-scale noisy fluctuations of source-time functions between adjacent sources. The strength of the smoothing constraint we select is that which minimizes the Akaike Bayesian Information Criterion (ABIC). We perform a series of numerical tests to investigate the capability of our method to recover the dimensions of the source and reconstruct its oscillation characteristics. First, we use synthesized waveforms radiated by a kinematic source model that mimics the radiation from an oscillating crack. Our results demonstrate almost complete recovery of the input source dimensions and source-time function of each point source, but also point to a weaker resolution of the higher modes of crack oscillation. Second, we use synthetic waveforms generated by the acoustic resonance of a fluid-filled crack, and consider two sets of waveforms dominated by the modes with wavelengths 2L/3 and 2W/3, or L and 2L/5, where W and L are the crack width and length, respectively. Results from these tests indicate that the oscillating signature of the 2L/3 and 2W/3 modes are successfully reconstructed. The oscillating signature of the L mode is also well recovered, in contrast to results obtained for a point source for which the moment tensor description is inadequate. However, the oscillating signature of the 2L/5 mode is poorly recovered owing to weaker resolution of short-scale crack wall motions. The triggering excitations of the oscillating cracks are successfully reconstructed. Copyright 2007 by the American Geophysical Union.

  6. Frequency domain reflectometry NDE for aging cables in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Jones, A. M.; Fifield, L. S.; Hartman, T. S.

    2017-02-01

    Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. Although system tests verify cable function under normal loads, demonstration of some cable's ability to perform under exceptional loads associated with design-basis events is essential to assuring plant integrity. The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program that includes condition monitoring to justify cable performance under normal operation as well as accident conditions. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none are suitable for all cable configurations nor does any single test confirm all features of interest. One particularly promising test that is beginning to be used more and more by utilities is frequency domain reflectometry (FDR). FDR is a nondestructive electrical inspection technique used to detect and localize faults in power and communication system conductors along the length of a cable from a single connection point. FDR detects discontinuities in the electrical impedance that arise due to cable splices or similar changes along the path of the conductor pair. In addition, FDR has the potential to provide sensitivity to insulation degradation by detecting small changes in impedance between the cable conductors being examined. The technique is also sensitive to cable bends, the particular lay of the cable in tray, proximity to other cable, and other factors that bear consideration when interpreting the test results. This paper examines various influences on the FDR approach and compares results of three different instruments to assess accelerated aging damage among several NPP representative cables.

  7. Assessment of soil water use by grassland by frequency domain reflectometry in the humid area of Spain

    NASA Astrophysics Data System (ADS)

    Mestas Valero, R. M.; Báez Bernal, D.; García Pomar, M. I.; Paz González, A.

    2009-04-01

    Frequency domain reflectometry (FDR) is becoming increasingly used for indirect water content determination in soils. In Galica, located in NW Spain, the humid region of this country, annual precipitation exceeds evapotranspiration. However, the yearly distribution of rainfall is irregular, so that supplementary irrigation during the dry warm summer is required often. This study aims to evaluate soil water use by grasslands and soil water regime patterns during the warm season from soil moisture measured at successive depths using FDR. The study sity is located at the experimental field of the Centre for Agricultural Research (CIAM) in Mabegondo, latitude 43°14' N and longitude 08°15' W. Soil moisture was monitored at six experimental plots from July to October 2008 two times per week using a portable FDR sensor. Measurements were made from 10 to 160 cm depth at 10 cm intervals. Moreover one of the plots was equipped with a continuous recording FDR-EnviroSCAN probe. Crop potential evapotranspiration (ETc) was estimated according to the of FAO version of the Penman-Monteith equation and the meteorological information required to apply this method was provided by a station located in the place experimental field. Cumulative rainfall along the study period was 195 mm, which is above the long-term mean and cumulative potential evapotranspiration was 264.7 mm. Using the water balance method the total value of actual evapotranspiration was estimated at 205.2 mm. Analysis of soil moisture content profiles allowed a description of soil water regime and main soil water withdrawal patterns under grassland. In general, grassland roots extracted most soil water from the 0-40 cm depth. In contrast, moisture content at the bottom of the profile was close to saturation, even the driest weeks of the study period. Continuous monitoring of soil water content allowed a more detailed characterization of dry and wet periods during the study season. The study data set may be useful for assessing draught risks and supplementary irrigation needs.

  8. Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements

    NASA Astrophysics Data System (ADS)

    Dragonetti, Giovanna; Comegna, Alessandro; Ajeel, Ali; Piero Deidda, Gian; Lamaddalena, Nicola; Rodriguez, Giuseppe; Vignoli, Giulio; Coppola, Antonio

    2018-02-01

    This paper deals with the issue of monitoring the spatial distribution of bulk electrical conductivity, σb, in the soil root zone by using electromagnetic induction (EMI) sensors under different water and salinity conditions. To deduce the actual distribution of depth-specific σb from EMI apparent electrical conductivity (ECa) measurements, we inverted the data by using a regularized 1-D inversion procedure designed to manage nonlinear multiple EMI-depth responses. The inversion technique is based on the coupling of the damped Gauss-Newton method with truncated generalized singular value decomposition (TGSVD). The ill-posedness of the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to enhance the spatial resolution of the EMI results in the presence of sharp boundaries (otherwise smeared out after the application of more standard Occam-like regularization strategies searching for smooth solutions). Time-domain reflectometry (TDR) data are used as ground-truth data for calibration of the inversion results. An experimental field was divided into four transects 30 m long and 2.8 m wide, cultivated with green bean, and irrigated with water at two different salinity levels and using two different irrigation volumes. Clearly, this induces different salinity and water contents within the soil profiles. For each transect, 26 regularly spaced monitoring soundings (1 m apart) were selected for the collection of (i) Geonics EM-38 and (ii) Tektronix reflectometer data. Despite the original discrepancies in the EMI and TDR data, we found a significant correlation of the means and standard deviations of the two data series; in particular, after a low-pass spatial filtering of the TDR data. Based on these findings, this paper introduces a novel methodology to calibrate EMI-based electrical conductivities via TDR direct measurements. This calibration strategy consists of a linear mapping of the original inversion results into a new conductivity spatial distribution with the coefficients of the transformation uniquely based on the statistics of the two original measurement datasets (EMI and TDR conductivities).

  9. An improved thermo-time domain reflectometry method for determination of ice contents in partially frozen soils

    NASA Astrophysics Data System (ADS)

    Tian, Zhengchao; Ren, Tusheng; Kojima, Yuki; Lu, Yili; Horton, Robert; Heitman, Joshua L.

    2017-12-01

    Measuring ice contents (θi) in partially frozen soils is important for both engineering and environmental applications. Thermo-time domain reflectometry (thermo-TDR) probes can be used to determine θi based on the relationship between θi and soil heat capacity (C). This approach, however, is accurate in partially frozen soils only at temperatures below -5 °C, and it performs poorly on clayey soils. In this study, we present and evaluate a soil thermal conductivity (λ)-based approach to determine θi with thermo-TDR probes. Bulk soil λ is described with a simplified de Vries model that relates λ to θi. From this model, θi is estimated using inverse modeling of thermo-TDR measured λ. Soil bulk density (ρb) and thermo-TDR measured liquid water content (θl) are also needed for both C-based and λ-based approaches. A theoretical analysis is performed to quantify the sensitivity of C-based and λ-based θi estimates to errors in these input parameters. The analysis indicates that the λ-based approach is less sensitive to errors in the inputs (C, λ, θl, and ρb) than is the C-based approach when the same or the same percentage errors occur. Further evaluations of the C-based and λ-based approaches are made using experimentally determined θi at different temperatures on eight soils with various textures, total water contents, and ρb. The results show that the λ-based thermo-TDR approach significantly improves the accuracy of θi measurements at temperatures ≤-5 °C. The root mean square errors of λ-based θi estimates are only half those of C-based θi. At temperatures of -1 and -2 °C, the λ-based thermo-TDR approach also provides reasonable θi, while the C-based approach fails. We conclude that the λ-based thermo-TDR method can reliably determine θi even at temperatures near the freezing point of water (0 °C).

  10. OFDM inspired waveforms for 5G

    DOE PAGES

    Farhang-Boroujeny, Behrouz; Moradi, Hussein

    2016-05-12

    As the standardization activities are being formed to lay the foundation of 5G wireless networks, there is a common consensus on the need to replace the celebrated OFDM by a more effective air interface that better serves the challenging needs of 5G. The main reason that has made OFDM popular in the past is related to the fact that information symbols are carried over a number of pure tones/sinusoidal signals. Moreover, with the use of cyclic prefix (CP), it is assured that the information carrying tones are only affected by the channel (complex) gains at the respective frequencies. Accordingly, themore » channel effect can be trivially compensated for (equalized) in the frequency domain through a single complex tap per subcarrier. However, as network air interfaces become more complex and the demand for multiuser services grows, OFDM is found to be incapable of handling the inevitable loss of synchronization among users. In the recent past, two novel waveforms (namely, GFDM and C-FBMC) have been discussed in the literature to overcome this and other drawbacks of OFDM. Interestingly, and at the same time not surprising, these methods share a common fundamental property with OFDM: each data packet is made up of a number of tones that are modulated by information symbols. In this tutorial article, we build a common framework based on the said OFDM principle and derive GFDM and C-FBMC waveforms from this point of view. This derivation provides a new prospective that facilitates straightforward understanding of channel equalization and the application of these new waveforms to MIMO channels. As a result, it also facilitates derivation of new structures for more efficient synthesis/analysis of these waveforms than those that have been reported in the literature.« less

  11. A Joint Method of Envelope Inversion Combined with Hybrid-domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    CUI, C.; Hou, W.

    2017-12-01

    Full waveform inversion (FWI) aims to construct high-precision subsurface models by fully using the information in seismic records, including amplitude, travel time, phase and so on. However, high non-linearity and the absence of low frequency information in seismic data lead to the well-known cycle skipping problem and make inversion easily fall into local minima. In addition, those 3D inversion methods that are based on acoustic approximation ignore the elastic effects in real seismic field, and make inversion harder. As a result, the accuracy of final inversion results highly relies on the quality of initial model. In order to improve stability and quality of inversion results, multi-scale inversion that reconstructs subsurface model from low to high frequency are applied. But, the absence of very low frequencies (< 3Hz) in field data is still bottleneck in the FWI. By extracting ultra low-frequency data from field data, envelope inversion is able to recover low wavenumber model with a demodulation operator (envelope operator), though the low frequency data does not really exist in field data. To improve the efficiency and viability of the inversion, in this study, we proposed a joint method of envelope inversion combined with hybrid-domain FWI. First, we developed 3D elastic envelope inversion, and the misfit function and the corresponding gradient operator were derived. Then we performed hybrid-domain FWI with envelope inversion result as initial model which provides low wavenumber component of model. Here, forward modeling is implemented in the time domain and inversion in the frequency domain. To accelerate the inversion, we adopt CPU/GPU heterogeneous computing techniques. There were two levels of parallelism. In the first level, the inversion tasks are decomposed and assigned to each computation node by shot number. In the second level, GPU multithreaded programming is used for the computation tasks in each node, including forward modeling, envelope extraction, DFT (discrete Fourier transform) calculation and gradients calculation. Numerical tests demonstrated that the combined envelope inversion + hybrid-domain FWI could obtain much faithful and accurate result than conventional hybrid-domain FWI. The CPU/GPU heterogeneous parallel computation could improve the performance speed.

  12. Multi-scale Slip Inversion Based on Simultaneous Spatial and Temporal Domain Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Liu, W.; Yao, H.; Yang, H. Y.

    2017-12-01

    Finite fault inversion is a widely used method to study earthquake rupture processes. Some previous studies have proposed different methods to implement finite fault inversion, including time-domain, frequency-domain, and wavelet-domain methods. Many previous studies have found that different frequency bands show different characteristics of the seismic rupture (e.g., Wang and Mori, 2011; Yao et al., 2011, 2013; Uchide et al., 2013; Yin et al., 2017). Generally, lower frequency waveforms correspond to larger-scale rupture characteristics while higher frequency data are representative of smaller-scale ones. Therefore, multi-scale analysis can help us understand the earthquake rupture process thoroughly from larger scale to smaller scale. By the use of wavelet transform, the wavelet-domain methods can analyze both the time and frequency information of signals in different scales. Traditional wavelet-domain methods (e.g., Ji et al., 2002) implement finite fault inversion with both lower and higher frequency signals together to recover larger-scale and smaller-scale characteristics of the rupture process simultaneously. Here we propose an alternative strategy with a two-step procedure, i.e., firstly constraining the larger-scale characteristics with lower frequency signals, and then resolving the smaller-scale ones with higher frequency signals. We have designed some synthetic tests to testify our strategy and compare it with the traditional one. We also have applied our strategy to study the 2015 Gorkha Nepal earthquake using tele-seismic waveforms. Both the traditional method and our two-step strategy only analyze the data in different temporal scales (i.e., different frequency bands), while the spatial distribution of model parameters also shows multi-scale characteristics. A more sophisticated strategy is to transfer the slip model into different spatial scales, and then analyze the smooth slip distribution (larger scales) with lower frequency data firstly and more detailed slip distribution (smaller scales) with higher frequency data subsequently. We are now implementing the slip inversion using both spatial and temporal domain wavelets. This multi-scale analysis can help us better understand frequency-dependent rupture characteristics of large earthquakes.

  13. Generation of narrowband elastic waves with a fiber laser and its application to the imaging of defects in a plate.

    PubMed

    Hayashi, Takahiro; Ishihara, Ken

    2017-05-01

    Pulsed laser equipment can be used to generate elastic waves through the instantaneous reaction of thermal expansion or ablation of the material; however, we cannot control the waveform generated by the laser in the same manner that we can when piezoelectric transducers are used as exciters. This study investigates the generation of narrowband tone-burst waves using a fiber laser of the type that is widely used in laser beam machining. Fiber lasers can emit laser pulses with a high repetition rate on the order of MHz, and the laser pulses can be modulated to a burst train by external signals. As a consequence of the burst laser emission, a narrowband tone-burst elastic wave is generated. We experimentally confirmed that the elastic waves agreed well with the modulation signals in time domain waveforms and their frequency spectra, and that waveforms can be controlled by the generation technique. We also apply the generation technique to defect imaging with a scanning laser source. In the experiments, with small laser emission energy, we were not able to obtain defect images from the signal amplitude due to low signal-to-noise ratio, whereas using frequency spectrum peaks of the tone-burst signals gave clear defect images, which indicates that the signal-to-noise ratio is improved in the frequency domain by using this technique for the generation of narrowband elastic waves. Moreover, even for defect imaging at a single receiving point, defect images were enhanced by taking an average of distributions of frequency spectrum peaks at different frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Resolving the fine-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Davy, R. G.; Morgan, J. V.; Minshull, T. A.; Bayrakci, G.; Bull, J. M.; Klaeschen, D.; Reston, T. J.; Sawyer, D. S.; Lymer, G.; Cresswell, D.

    2018-01-01

    Continental hyperextension during magma-poor rifting at the Deep Galicia Margin is characterized by a complex pattern of faulting, thin continental fault blocks and the serpentinization, with local exhumation, of mantle peridotites along the S-reflector, interpreted as a detachment surface. In order to understand fully the evolution of these features, it is important to image seismically the structure and to model the velocity structure to the greatest resolution possible. Traveltime tomography models have revealed the long-wavelength velocity structure of this hyperextended domain, but are often insufficient to match accurately the short-wavelength structure observed in reflection seismic imaging. Here, we demonstrate the application of 2-D time-domain acoustic full-waveform inversion (FWI) to deep-water seismic data collected at the Deep Galicia Margin, in order to attain a high-resolution velocity model of continental hyperextension. We have used several quality assurance procedures to assess the velocity model, including comparison of the observed and modeled waveforms, checkerboard tests, testing of parameter and inversion strategy and comparison with the migrated reflection image. Our final model exhibits an increase in the resolution of subsurface velocities, with particular improvement observed in the westernmost continental fault blocks, with a clear rotation of the velocity field to match steeply dipping reflectors. Across the S-reflector, there is a sharpening in the velocity contrast, with lower velocities beneath S indicative of preferential mantle serpentinization. This study supports the hypothesis that normal faulting acts to hydrate the upper-mantle peridotite, observed as a systematic decrease in seismic velocities, consistent with increased serpentinization. Our results confirm the feasibility of applying the FWI method to sparse, deep-water crustal data sets.

  15. A novel approach for studying submarine faults: the FOCUS project (FOCUS = Fiber Optic Cable Use for Seafloor studies of earthquake hazard and deformation)

    NASA Astrophysics Data System (ADS)

    Gutscher, M. A.; Royer, J. Y.; Graindorge, D.; Murphy, S.; Klingelhoefer, F.; Cattaneo, A.; Barreca, G.; Quetel, L.; Petersen, F.; Riccobene, G.; Urlaub, M.; Krastel, S.; Gross, F.; Kopp, H.

    2017-12-01

    Two-thirds of the earth's surface is covered by water and thus largely inaccessible to modern networks of seismological instruments. A novel use of fiber optic cables could help improve hazard assessment and increase early warning capability. Laser reflectometry using BOTDR (Brillouin Optical Time Domain Reflectometry), commonly used for structural health monitoring of large-scale engineering structures (e.g. - bridges, dams, pipelines, etc.) can measure very small strains (< 1 mm) at very large distances (10 - 200 km). This technique has never been used to monitor deformation caused by active faults on the seafloor. The objective of the FOCUS project is to demonstrate that this technique can measure small (1 - 2 cm) displacements on a primary test site offshore Sicily where the recently mapped North Alfeo Fault crosses the Catania EMSO seafloor observatory, 28 km long fiber optic cable. Two other EMSO test sites with fiber optic cables, the 100 km long Capo Passero (SE Sicily) and the 2 km long cable off Molene Island (W France) will also be studied. Initial reflectometry tests were performed on these three cables using a Febus BOTDR interrogator in June and July 2017. Unexpectedly high dynamic noise levels (corresponding to strains of 200 - 500 mm/m) were observed on the Molene cable, likely due to the high-energy, shallow water, open ocean environment. The tests on the EMSO infrastructure in Sicily indicated low experimental noise levels (20 - 30 mm/m) out to a distance of 15 km. BOTDR observations will have to be calibrated by other independent measurements. Therefore, targeted marine geophysical surveys of the seafloor along the trace of the cable and faults are planned, with the use of seafloor geodetic instruments to quantify fault displacement. Once the BOTDR fault-monitoring technique has been tested, demonstrated and calibrated offshore Eastern Sicily, the goal is to expand it to other fiber optic cable networks, either existing research networks in earthquake hazard zones (Japan, Cascadia) or to the Mediterranean region through access to retired (decommissioned) telecommunication cables or development of dual-use cables (two of the anticipated outcomes of the FOCUS project). This represents a potentially tremendous breakthrough in seismology, tectonics and natural hazard early warning capability.

  16. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    DOE PAGES

    Neumayer, Sabine M.; Strelcov, Evgheni; Manzo, Michele; ...

    2015-12-28

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarizationmore » as well as atmospheric conditions. Additionally, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. In polarization dependent current flow, attributed to charged domain walls and band bending, it the rectifying ability of Mg: LN in combination with suitable metal electrodes that allow for further tailoring of conductivity is demonstrated.« less

  17. Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills.

    PubMed

    Patil, Bhagwan Shamrao; C, Agnes Anto; Singh, Devendra Narain

    2017-03-01

    Municipal solid waste generation is huge in growing cities of developing nations such as India, owing to the rapid industrial and population growth. In addition to various methods for treatment and disposal of municipal solid waste (landfills, composting, bio-methanation, incineration and pyrolysis), aerobic/anaerobic bioreactor landfills are gaining popularity for economical and effective disposal of municipal solid waste. However, efficiency of municipal solid waste bioreactor landfills primarily depends on the municipal solid waste decomposition rate, which can be accelerated through monitoring moisture content and temperature by using the frequency domain reflectometry probe and thermocouples, respectively. The present study demonstrates that these landfill physical properties of the heterogeneous municipal solid waste mass can be monitored using these instruments, which facilitates proper scheduling of the leachate recirculation for accelerating the decomposition rate of municipal solid waste.

  18. KSC-07pd3642

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, technicians monitor readings during a test exposing Time Domain Reflectometry, or TDR, instrumentation to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  19. Dielectric relaxation measurement and analysis of restricted water structure in rice kernels

    NASA Astrophysics Data System (ADS)

    Yagihara, Shin; Oyama, Mikio; Inoue, Akio; Asano, Megumi; Sudo, Seiichi; Shinyashiki, Naoki

    2007-04-01

    Dielectric relaxation measurements were performed for rice kernels by time domain reflectometry (TDR) with flat-end coaxial electrodes. Difficulties in good contact between the surfaces of the electrodes and the kernels are eliminated by a TDR set-up with a sample holder for a kernel, and the water content could be evaluated from relaxation curves. Dielectric measurements were performed for rice kernels, rice flour and boiled rice with various water contents, and the water amount and dynamic behaviour of water molecules were explained from restricted dynamics of water molecules and also from the τ-β (relaxation time versus the relaxation-time distribution parameter of the Cole-Cole equation) diagram. In comparison with other aqueous systems, the dynamic structure of water in moist rice is more similar to aqueous dispersion systems than to aqueous solutions.

  20. Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Qian, Ya; Zhang, Wei; Tang, Chenghao

    2017-12-01

    High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Φ-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.

  1. Performance of a distributed simultaneous strain and temperature sensor based on a Fabry-Perot laser diode and a dual-stage FBG optical demultiplexer.

    PubMed

    Kim, Suhwan; Kwon, Hyungwoo; Yang, Injae; Lee, Seungho; Kim, Jeehyun; Kang, Shinwon

    2013-11-12

    A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD) and a dual-stage fiber Bragg grating (FBG) optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR). By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  2. Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdong; Zheng, Hua; Zhu, Tao; Yin, Guolu; Liu, Min; Bai, Yongzhong; Qu, Dingrong; Qiu, Feng; Huang, Xianbing

    2018-05-01

    The round trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry ({\\phi}-OTDR). Unlike the uniform laser pulse interval in conventional {\\phi}-OTDR, we randomly modulate the pulse interval, so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For an {\\phi}-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wide-band spars signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of {\\phi}-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection, such as rail track monitoring and metal defect detection.

  3. Magnetic Yoking and Tunable Interactions in FePt-Based Hard/Soft Bilayers

    PubMed Central

    Gilbert, Dustin A.; Liao, Jung-Wei; Kirby, Brian J.; Winklhofer, Michael; Lai, Chih-Huang; Liu, Kai

    2016-01-01

    Magnetic interactions in magnetic nanostructures are critical to nanomagnetic and spintronic explorations. Here we demonstrate an extremely sensitive magnetic yoking effect and tunable interactions in FePt based hard/soft bilayers mediated by the soft layer. Below the exchange length, a thin soft layer strongly exchange couples to the perpendicular moments of the hard layer; above the exchange length, just a few nanometers thicker, the soft layer moments turn in-plane and act to yoke the dipolar fields from the adjacent hard layer perpendicular domains. The evolution from exchange to dipolar-dominated interactions is experimentally captured by first-order reversal curves, the ΔM method, and polarized neutron reflectometry, and confirmed by micromagnetic simulations. These findings demonstrate an effective yoking approach to design and control magnetic interactions in wide varieties of magnetic nanostructures and devices. PMID:27604428

  4. Materials on the International Space Station Experiment (MISSE): Optical Analysis of Molecular Contamination on PEC1 Tray 2

    DTIC Science & Technology

    2007-02-20

    ellipsome- try and reflectometry were employed to show that the silicon wafers gained about a 420-A-thick layer of a silica-like con- taminant with BRDF...under Contract No. FA8802-04-C-0001. 111°. Contents I. Introduction .1 2. Ellipsometry and Reflectometry ... NASA ) I ;d~ ~ ---- ! Y Figure 2. MISSE I PECI Tray 2 facing away from Soyuz. (Courtesy NASA ) Among the samples mounted in PEC I Tray 2 were several

  5. On the Analysis of Fingertip Photoplethysmogram Signals

    PubMed Central

    Elgendi, Mohamed

    2012-01-01

    Photoplethysmography (PPG) is used to estimate the skin blood flow using infrared light. Researchers from different domains of science have become increasingly interested in PPG because of its advantages as non-invasive, inexpensive, and convenient diagnostic tool. Traditionally, it measures the oxygen saturation, blood pressure, cardiac output, and for assessing autonomic functions. Moreover, PPG is a promising technique for early screening of various atherosclerotic pathologies and could be helpful for regular GP-assessment but a full understanding of the diagnostic value of the different features is still lacking. Recent studies emphasise the potential information embedded in the PPG waveform signal and it deserves further attention for its possible applications beyond pulse oximetry and heart-rate calculation. Therefore, this overview discusses different types of artifact added to PPG signal, characteristic features of PPG waveform, and existing indexes to evaluate for diagnoses. PMID:22845812

  6. Effects of Vibrations on Metal Forming Process: Analytical Approach and Finite Element Simulations

    NASA Astrophysics Data System (ADS)

    Armaghan, Khan; Christophe, Giraud-Audine; Gabriel, Abba; Régis, Bigot

    2011-01-01

    Vibration assisted forming is one of the most recent and beneficial technique used to improve forming process. Effects of vibration on metal forming processes can be attributed to two causes. First, the volume effect links lowering of yield stress with the influence of vibration on the dislocation movement. Second, the surface effect explains lowering of the effective coefficient of friction by periodic reduction contact area. This work is related to vibration assisted forming process in viscoplastic domain. Impact of change in vibration waveform has been analyzed. For this purpose, two analytical models have been developed for two different types of vibration waveforms (sinusoidal and triangular). These models were developed on the basis of Slice method that is used to find out the required forming force for the process. Final relationships show that application of triangular waveform in forming process is more beneficial as compare to sinusoidal vibrations in terms of reduced forming force. Finite Element Method (FEM) based simulations were performed using Forge2008®and these confirmed the results of analytical models. The ratio of vibration speed to upper die speed is a critical factor in the reduction of the forming force.

  7. FDTD Modeling of LEMP Propagation in the Earth-Ionosphere Waveguide With Emphasis on Realistic Representation of Lightning Source

    NASA Astrophysics Data System (ADS)

    Tran, Thang H.; Baba, Yoshihiro; Somu, Vijaya B.; Rakov, Vladimir A.

    2017-12-01

    The finite difference time domain (FDTD) method in the 2-D cylindrical coordinate system was used to compute the nearly full-frequency-bandwidth vertical electric field and azimuthal magnetic field waveforms produced on the ground surface by lightning return strokes. The lightning source was represented by the modified transmission-line model with linear current decay with height, which was implemented in the FDTD computations as an appropriate vertical phased-current-source array. The conductivity of atmosphere was assumed to increase exponentially with height, with different conductivity profiles being used for daytime and nighttime conditions. The fields were computed at distances ranging from 50 to 500 km. Sky waves (reflections from the ionosphere) were identified in computed waveforms and used for estimation of apparent ionospheric reflection heights. It was found that our model reproduces reasonably well the daytime electric field waveforms measured at different distances and simulated (using a more sophisticated propagation model) by Qin et al. (2017). Sensitivity of model predictions to changes in the parameters of atmospheric conductivity profile, as well as influences of the lightning source characteristics (current waveshape parameters, return-stroke speed, and channel length) and ground conductivity were examined.

  8. Rupture process of the September 12, 2007 Southern Sumatra earthquake from tsunami waveform inversion

    NASA Astrophysics Data System (ADS)

    Lorito, S.; Romano, F.; Piatanesi, A.

    2007-12-01

    The aim of this work is to infer the slip distribution and mean rupture velocity along the rupture zone of the 12 September 2007 Southern Sumatra, Indonesia from available tide-gauge records of the tsunami. We select waveforms from 12 stations, distributed along the west coast of Sumatra and in the whole Indian Ocean (11 GLOSS stations and 1 DART buoy). We assume the fault plane and the slip direction to be consistent with both the geometry of the subducting plate and the early focal mechanism solutions. Then we subdivide the fault plane into several subfaults (both along strike and down dip) and compute the corresponding Green's functions by numerical solution of the shallow water equations through a finite difference method. The slip distribution and rupture velocity are determined simultaneously by means of a simulated annealing technique. We compare the recorded and synthetic waveforms in the time domain, using a cost function that is a trade-off between the L1 and L2 norms. Preliminary synthetic checkerboard tests, using the station coverage and the sampling interval of the available data, indicate that the main features of the rupture process may be robustly inverted.

  9. Modulation of distributed feedback (DFB) laser diode with the autonomous Chua's circuit: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Talla Mbé, Jimmi Hervé; Woafo, Paul

    2018-03-01

    We report on a simple way to generate complex optical waveforms with very cheap and accessible equipments. The general idea consists in modulating a laser diode with an autonomous electronic oscillator, and in the case of this study, we use a distributed feedback (DFB) laser diode pumped with an electronic Chua's circuit. Based on the adiabatic P-I characteristics of the laser diode at low frequencies, we show that when the total pump is greater than the laser threshold, it is possible to convert the electrical waveforms of the Chua's circuit into optical carriers. But, if that is not the case, the on-off dynamical behavior of the laser permits to obtain many other optical waveform signals, mainly pulses. Our numerical results are consistent with experimental measurements. The work presents the advantage of extending the range of possible chaotic dynamics of the laser diodes in the time domains (millisecond) where it is not usually expected with conventional modulation techniques. Moreover, this new technique of laser diodes modulation brings a general benefit in the physical equipment, reduces their cost and congestion so that, it can constitute a step towards photonic integrated circuits.

  10. Infrasound propagation in tropospheric ducts and acoustic shadow zones.

    PubMed

    de Groot-Hedlin, Catherine D

    2017-10-01

    Numerical computations of the Navier-Stokes equations governing acoustic propagation are performed to investigate infrasound propagation in the troposphere and into acoustic shadow zones. An existing nonlinear finite-difference, time-domain (FDTD) solver that constrains input sound speed models to be axisymmetric is expanded to allow for advection and rigid, stair-step topography. The FDTD solver permits realistic computations along a given azimuth. It is applied to several environmental models to examine the effects of nonlinearity, topography, advection, and two-dimensional (2D) variations in wind and sound speeds on the penetration of infrasound into shadow zones. Synthesized waveforms are compared to a recording of a rocket motor fuel elimination event at the Utah Test and Training Range. Results show good agreement in the amplitude, duration, and spectra of synthesized and recorded waveforms for propagation through 2D atmospheric models whether or not topography, advection, or nonlinearity is explicitly included. However, infrasound propagation through a one-dimensional, range-averaged, atmospheric model yields waveforms with lower amplitudes and frequencies, suggesting that small-scale atmospheric variability causes significant scatter within the troposphere, leading to enhanced infrasound penetration into shadow zones. Thus, unresolved fine-scale atmospheric dynamics are not required to explain infrasound propagation into shadow zones.

  11. Communications for unattended sensor networks

    NASA Astrophysics Data System (ADS)

    Nemeroff, Jay L.; Angelini, Paul; Orpilla, Mont; Garcia, Luis; DiPierro, Stefano

    2004-07-01

    The future model of the US Army's Future Combat Systems (FCS) and the Future Force reflects a combat force that utilizes lighter armor protection than the current standard. Survival on the future battlefield will be increased by the use of advanced situational awareness provided by unattended tactical and urban sensors that detect, identify, and track enemy targets and threats. Successful implementation of these critical sensor fields requires the development of advanced sensors, sensor and data-fusion processors, and a specialized communications network. To ensure warfighter and asset survivability, the communications must be capable of near real-time dissemination of the sensor data using robust, secure, stealthy, and jam resistant links so that the proper and decisive action can be taken. Communications will be provided to a wide-array of mission-specific sensors that are capable of processing data from acoustic, magnetic, seismic, and/or Chemical, Biological, Radiological, and Nuclear (CBRN) sensors. Other, more powerful, sensor node configurations will be capable of fusing sensor data and intelligently collect and process data images from infrared or visual imaging cameras. The radio waveform and networking protocols being developed under the Soldier Level Integrated Communications Environment (SLICE) Soldier Radio Waveform (SRW) and the Networked Sensors for the Future Force Advanced Technology Demonstration are part of an effort to develop a common waveform family which will operate across multiple tactical domains including dismounted soldiers, ground sensor, munitions, missiles and robotics. These waveform technologies will ultimately be transitioned to the JTRS library, specifically the Cluster 5 requirement.

  12. Modeling Gravitational Radiation Waveforms from Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, J. G.; Centrelia, J. M.; Choi, D.; Koppitz, M.; VanMeter, J.

    2006-01-01

    Gravitational radiation from merging binary black hole systems is anticipated as a key source for gravitational wave observations. Ground-based instruments, such as the Laser Interferometer Gravitational-wave Observatory (LIGO) may observe mergers of stellar-scale black holes, while the space-based Laser Interferometer Space Antenna (LISA) observatory will be sensitive to mergers of massive galactic-center black holes over a broad range of mass scales. These cataclysmic events may emit an enormous amount of energy in a brief time. Gravitational waves from comparable mass mergers carry away a few percent of the system's mass-energy in just a few wave cycles, with peak gravitational wave luminosities on the order of 10^23 L_Sun. Optimal analysis and interpretation of merger observation data will depend on developing a detailed understanding, based on general relativistic modeling, of the radiation waveforms. We discuss recent progress in modeling radiation from equal mass mergers using numerical simulations of Einstein's gravitational field equations, known as numerical relativity. Our simulations utilize Adaptive Mesh Refinement (AMR) to allow high-resolution near the black holes while simultaneously keeping the outer boundary of the computational domain far from the black holes, and making it possible to read out gravitational radiation waveforms in the weak-field wave zone. We discuss the results from simulations beginning with the black holes orbiting near the system's innermost stable orbit, comparing the recent simulations with earlier "Lazarus" waveform estimates based on an approximate hybrid numerical/perturbative technique.

  13. Simulation of ultrasonic and EMAT arrays using FEM and FDTD.

    PubMed

    Xie, Yuedong; Yin, Wuliang; Liu, Zenghua; Peyton, Anthony

    2016-03-01

    This paper presents a method which combines electromagnetic simulation and ultrasonic simulation to build EMAT array models. For a specific sensor configuration, Lorentz forces are calculated using the finite element method (FEM), which then can feed through to ultrasonic simulations. The propagation of ultrasound waves is numerically simulated using finite-difference time-domain (FDTD) method to describe their propagation within homogenous medium and their scattering phenomenon by cracks. Radiation pattern obtained with Hilbert transform on time domain waveforms is proposed to characterise the sensor in terms of its beam directivity and field distribution along the steering angle. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Analysis of automobile engine cylinder pressure and rotation speed from engine body vibration signal

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Cheng, Xiang; Tan, Haishu

    2016-01-01

    In order to improve the engine vibration signal process method for the engine cylinder pressure and engine revolution speed measurement instrument, the engine cylinder pressure varying with the engine working cycle process has been regarded as the main exciting force for the engine block forced vibration. The forced vibration caused by the engine cylinder pressure presents as a low frequency waveform which varies with the cylinder pressure synchronously and steadily in time domain and presents as low frequency high energy discrete humorous spectrum lines in frequency domain. The engine cylinder pressure and the rotation speed can been extract form the measured engine block vibration signal by low-pass filtering analysis in time domain or by FFT analysis in frequency domain, the low-pass filtering analysis in time domain is not only suitable for the engine in uniform revolution condition but also suitable for the engine in uneven revolution condition. That provides a practical and convenient way to design motor revolution rate and cylinder pressure measurement instrument.

  15. A parallel algorithm for 2D visco-acoustic frequency-domain full-waveform inversion: application to a dense OBS data set

    NASA Astrophysics Data System (ADS)

    Sourbier, F.; Operto, S.; Virieux, J.

    2006-12-01

    We present a distributed-memory parallel algorithm for 2D visco-acoustic full-waveform inversion of wide-angle seismic data. Our code is written in fortran90 and use MPI for parallelism. The algorithm was applied to real wide-angle data set recorded by 100 OBSs with a 1-km spacing in the eastern-Nankai trough (Japan) to image the deep structure of the subduction zone. Full-waveform inversion is applied sequentially to discrete frequencies by proceeding from the low to the high frequencies. The inverse problem is solved with a classic gradient method. Full-waveform modeling is performed with a frequency-domain finite-difference method. In the frequency-domain, solving the wave equation requires resolution of a large unsymmetric system of linear equations. We use the massively parallel direct solver MUMPS (http://www.enseeiht.fr/irit/apo/MUMPS) for distributed-memory computer to solve this system. The MUMPS solver is based on a multifrontal method for the parallel factorization. The MUMPS algorithm is subdivided in 3 main steps: a symbolic analysis step that performs re-ordering of the matrix coefficients to minimize the fill-in of the matrix during the subsequent factorization and an estimation of the assembly tree of the matrix. Second, the factorization is performed with dynamic scheduling to accomodate numerical pivoting and provides the LU factors distributed over all the processors. Third, the resolution is performed for multiple sources. To compute the gradient of the cost function, 2 simulations per shot are required (one to compute the forward wavefield and one to back-propagate residuals). The multi-source resolutions can be performed in parallel with MUMPS. In the end, each processor stores in core a sub-domain of all the solutions. These distributed solutions can be exploited to compute in parallel the gradient of the cost function. Since the gradient of the cost function is a weighted stack of the shot and residual solutions of MUMPS, each processor computes the corresponding sub-domain of the gradient. In the end, the gradient is centralized on the master processor using a collective communation. The gradient is scaled by the diagonal elements of the Hessian matrix. This scaling is computed only once per frequency before the first iteration of the inversion. Estimation of the diagonal terms of the Hessian requires performing one simulation per non redondant shot and receiver position. The same strategy that the one used for the gradient is used to compute the diagonal Hessian in parallel. This algorithm was applied to a dense wide-angle data set recorded by 100 OBSs in the eastern Nankai trough, offshore Japan. Thirteen frequencies ranging from 3 and 15 Hz were inverted. Tweny iterations per frequency were computed leading to 260 tomographic velocity models of increasing resolution. The velocity model dimensions are 105 km x 25 km corresponding to a finite-difference grid of 4201 x 1001 grid with a 25-m grid interval. The number of shot was 1005 and the number of inverted OBS gathers was 93. The inversion requires 20 days on 6 32-bits bi-processor nodes with 4 Gbytes of RAM memory per node when only the LU factorization is performed in parallel. Preliminary estimations of the time required to perform the inversion with the fully-parallelized code is 6 and 4 days using 20 and 50 processors respectively.

  16. Development of a real time bistatic radar receiver using signals of opportunity

    NASA Astrophysics Data System (ADS)

    Rainville, Nicholas

    Passive bistatic radar remote sensing offers a novel method of monitoring the Earth's surface by observing reflected signals of opportunity. The Global Positioning System (GPS) has been used as a source of signals for these observations and the scattering properties of GPS signals from rough surfaces are well understood. Recent work has extended GPS signal reflection observations and scattering models to include communications signals such as XM radio signals. However the communication signal reflectometry experiments to date have relied on collecting raw, high data-rate signals which are then post-processed after the end of the experiment. This thesis describes the development of a communication signal bistatic radar receiver which computes a real time correlation waveform, which can be used to retrieve measurements of the Earth's surface. The real time bistatic receiver greatly reduces the quantity of data that must be stored to perform the remote sensing measurements, as well as offering immediate feedback. This expands the applications for the receiver to include space and bandwidth limited platforms such as aircraft and satellites. It also makes possible the adjustment of flight plans to the observed conditions. This real time receiver required the development of an FGPA based signal processor, along with the integration of commercial Satellite Digital Audio Radio System (SDARS) components. The resulting device was tested both in a lab environment as well on NOAA WP-3D and NASA WB-57 aircraft.

  17. Signal-adapted tomography as a tool for dust devil detection

    NASA Astrophysics Data System (ADS)

    Aguirre, C.; Franzese, G.; Esposito, F.; Vázquez, Luis; Caro-Carretero, Raquel; Vilela-Mendes, Rui; Ramírez-Nicolás, María; Cozzolino, F.; Popa, C. I.

    2017-12-01

    Dust devils are important phenomena to take into account to understand the global dust circulation of a planet. On Earth, their contribution to the injection of dust into the atmosphere seems to be secondary. Elsewhere, there are many indications that the dust devil's role on other planets, in particular on Mars, could be fundamental, impacting the global climate. The ability to identify and study these vortices from the acquired meteorological measurements assumes a great importance for planetary science. Here we present a new methodology to identify dust devils from the pressure time series testing the method on the data acquired during a 2013 field campaign performed in the Tafilalt region (Morocco) of the North-Western Sahara Desert. Although the analysis of pressure is usually studied in the time domain, we prefer here to follow a different approach and perform the analysis in a time signal-adapted domain, the relation between the two being a bilinear transformation, i.e. a tomogram. The tomographic technique has already been successfully applied in other research fields like those of plasma reflectometry or the neuronal signatures. Here we show its effectiveness also in the dust devils detection. To test our results, we compare the tomography with a phase picker time domain analysis. We show the level of agreement between the two methodologies and the advantages and disadvantages of the tomographic approach.

  18. Line-source simulation for shallow-seismic data. Part 2: full-waveform inversion—a synthetic 2-D case study

    NASA Astrophysics Data System (ADS)

    Schäfer, M.; Groos, L.; Forbriger, T.; Bohlen, T.

    2014-09-01

    Full-waveform inversion (FWI) of shallow-seismic surface waves is able to reconstruct lateral variations of subsurface elastic properties. Line-source simulation for point-source data is required when applying algorithms of 2-D adjoint FWI to recorded shallow-seismic field data. The equivalent line-source response for point-source data can be obtained by convolving the waveforms with √{t^{-1}} (t: traveltime), which produces a phase shift of π/4. Subsequently an amplitude correction must be applied. In this work we recommend to scale the seismograms with √{2 r v_ph} at small receiver offsets r, where vph is the phase velocity, and gradually shift to applying a √{t^{-1}} time-domain taper and scaling the waveforms with r√{2} for larger receiver offsets r. We call this the hybrid transformation which is adapted for direct body and Rayleigh waves and demonstrate its outstanding performance on a 2-D heterogeneous structure. The fit of the phases as well as the amplitudes for all shot locations and components (vertical and radial) is excellent with respect to the reference line-source data. An approach for 1-D media based on Fourier-Bessel integral transformation generates strong artefacts for waves produced by 2-D structures. The theoretical background for both approaches is presented in a companion contribution. In the current contribution we study their performance when applied to waves propagating in a significantly 2-D-heterogeneous structure. We calculate synthetic seismograms for 2-D structure for line sources as well as point sources. Line-source simulations obtained from the point-source seismograms through different approaches are then compared to the corresponding line-source reference waveforms. Although being derived by approximation the hybrid transformation performs excellently except for explicitly back-scattered waves. In reconstruction tests we further invert point-source synthetic seismograms by a 2-D FWI to subsurface structure and evaluate its ability to reproduce the original structural model in comparison to the inversion of line-source synthetic data. Even when applying no explicit correction to the point-source waveforms prior to inversion only moderate artefacts appear in the results. However, the overall performance is best in terms of model reproduction and ability to reproduce the original data in a 3-D simulation if inverted waveforms are obtained by the hybrid transformation.

  19. Comparison of the Cut-and-Paste and Full Moment Tensor Methods for Estimating Earthquake Source Parameters

    NASA Astrophysics Data System (ADS)

    Templeton, D.; Rodgers, A.; Helmberger, D.; Dreger, D.

    2008-12-01

    Earthquake source parameters (seismic moment, focal mechanism and depth) are now routinely reported by various institutions and network operators. These parameters are important for seismotectonic and earthquake ground motion studies as well as calibration of moment magnitude scales and model-based earthquake-explosion discrimination. Source parameters are often estimated from long-period three- component waveforms at regional distances using waveform modeling techniques with Green's functions computed for an average plane-layered models. One widely used method is waveform inversion for the full moment tensor (Dreger and Helmberger, 1993). This method (TDMT) solves for the moment tensor elements by performing a linearized inversion in the time-domain that minimizes the difference between the observed and synthetic waveforms. Errors in the seismic velocity structure inevitably arise due to either differences in the true average plane-layered structure or laterally varying structure. The TDMT method can account for errors in the velocity model by applying a single time shift at each station to the observed waveforms to best match the synthetics. Another method for estimating source parameters is the Cut-and-Paste (CAP) method. This method breaks the three-component regional waveforms into five windows: vertical and radial component Pnl; vertical and radial component Rayleigh wave; and transverse component Love waves. The CAP method performs a grid search over double-couple mechanisms and allows the synthetic waveforms for each phase (Pnl, Rayleigh and Love) to shift in time to account for errors in the Green's functions. Different filtering and weighting of the Pnl segment relative to surface wave segments enhances sensitivity to source parameters, however, some bias may be introduced. This study will compare the TDMT and CAP methods in two different regions in order to better understand the advantages and limitations of each method. Firstly, we will consider the northeastern China/Korean Peninsula region where average plane-layered structure is well known and relatively laterally homogenous. Secondly, we will consider the Middle East where crustal and upper mantle structure is laterally heterogeneous due to recent and ongoing tectonism. If time allows we will investigate the efficacy of each method for retrieving source parameters from synthetic data generated using a three-dimensional model of seismic structure of the Middle East, where phase delays are known to arise from path-dependent structure.

  20. Analytic family of post-merger template waveforms

    NASA Astrophysics Data System (ADS)

    Del Pozzo, Walter; Nagar, Alessandro

    2017-06-01

    Building on the analytical description of the post-merger (ringdown) waveform of coalescing, nonprecessing, spinning binary black holes introduced by Damour and Nagar [Phys. Rev. D 90, 024054 (2014), 10.1103/PhysRevD.90.024054], we propose an analytic, closed form, time-domain, representation of the ℓ=m =2 gravitational radiation mode emitted after merger. This expression is given as a function of the component masses and dimensionless spins (m1 ,2,χ1 ,2) of the two inspiraling objects, as well as of the mass MBH and (complex) frequency σ1 of the fundamental quasinormal mode of the remnant black hole. Our proposed template is obtained by fitting the post-merger waveform part of several publicly available numerical relativity simulations from the Simulating eXtreme Spacetimes (SXS) catalog and then suitably interpolating over (symmetric) mass ratio and spins. We show that this analytic expression accurately reproduces (˜0.01 rad ) the phasing of the post-merger data of other data sets not used in its construction. This is notably the case of the spin-aligned run SXS:BBH:0305, whose intrinsic parameters are consistent with the 90% credible intervals reported in the parameter-estimation followup of GW150914 by B.P. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016), 10.1103/PhysRevLett.116.241102]. Using SXS waveforms as "experimental" data, we further show that our template could be used on the actual GW150914 data to perform a new measure of the complex frequency of the fundamental quasinormal mode so as to exploit the complete (high signal-to-noise-ratio) post-merger waveform. We assess the usefulness of our proposed template by analyzing, in a realistic setting, SXS full inspiral-merger-ringdown waveforms and constructing posterior probability distribution functions for the central frequency damping time of the first overtone of the fundamental quasinormal mode as well as for the physical parameters of the systems. We also briefly explore the possibility opened by our waveform model to test the second law of black hole dynamics. Our model will help improve current tests of general relativity, in particular the general-relativistic no-hair theorem, and allow for novel tests, such as that of the area theorem.

  1. Imaging Faults in Carbonate Reservoir using Full Waveform Inversion and Reverse Time Migration of Walkaway VSP Data

    NASA Astrophysics Data System (ADS)

    Takam Takougang, E. M.; Bouzidi, Y.

    2016-12-01

    Multi-offset Vertical Seismic Profile (walkaway VSP) data were collected in an oil field located in a shallow water environment dominated by carbonate rocks, offshore the United Arab Emirates. The purpose of the survey was to provide structural information of the reservoir, around and away from the borehole. Five parallel lines were collected using an air gun at 25 m shot interval and 4 m source depth. A typical recording tool with 20 receivers spaced every 15.1 m, and located in a deviated borehole with an angle varying between 0 and 24 degree from the vertical direction, was used to record the data. The recording tool was deployed at different depths for each line, from 521 m to 2742 m depth. Smaller offsets were used for shallow receivers and larger offsets for deeper receivers. The lines merged to form the input dataset for waveform tomography. The total length of the combined lines was 9 km, containing 1344 shots and 100 receivers in the borehole located half-way down. Acoustic full waveform inversion was applied in the frequency domain to derive a high resolution velocity model. The final velocity model derived after the inversion using the frequencies 5-40 Hz, showed good correlation with velocities estimated from vertical incidence VSP and sonic log, confirming the success of the inversion. The velocity model showed anomalous low values in areas that correlate with known location of hydrocarbon reservoir. Pre-stack depth Reverse time migration was then applied using the final velocity model from waveform inversion and the up-going wavefield from the input data. The final estimated source signature from waveform inversion was used as input source for reverse time migration. To save computational memory and time, every 3 shots were used during reverse time migration and the data were low-pass filtered to 30 Hz. Migration artifacts were attenuated using a second order derivative filter. The final migration image shows a good correlation with the waveform tomography velocity model, and highlights a complex network of faults in the reservoir, that could be useful in understanding fluid and hydrocarbon movements. This study shows that the combination of full waveform tomography and reverse time migration can provide high resolution images that can enhance interpretation and characterization of oil reservoirs.

  2. Signal Processing and Interpretation Using Multilevel Signal Abstractions.

    DTIC Science & Technology

    1986-06-01

    mappings expressed in the Fourier domain. Pre- viously proposed causal analysis techniques for diagnosis are based on the analysis of intermediate data ...can be processed either as individual one-dimensional waveforms or as multichannel data 26 I P- - . . . ." " ." h9. for source detection and direction...microphone data . The signal processing for both spectral analysis of microphone signals and direc- * tion determination of acoustic sources involves

  3. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics.

    PubMed

    Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai

    2016-01-01

    Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid.

  4. Effect of surface-related Rayleigh and multiple waves on velocity reconstruction with time-domain elastic FWI

    NASA Astrophysics Data System (ADS)

    Fang, Jinwei; Zhou, Hui; Zhang, Qingchen; Chen, Hanming; Wang, Ning; Sun, Pengyuan; Wang, Shucheng

    2018-01-01

    It is critically important to assess the effectiveness of elastic full waveform inversion (FWI) algorithms when FWI is applied to real land seismic data including strong surface and multiple waves related to the air-earth boundary. In this paper, we review the realization of the free surface boundary condition in staggered-grid finite-difference (FD) discretization of elastic wave equation, and analyze the impact of the free surface on FWI results. To reduce inputs/outputs (I/O) operations in gradient calculation, we adopt the boundary value reconstruction method to rebuild the source wavefields during the backward propagation of the residual data. A time-domain multiscale inversion strategy is conducted by using a convolutional objective function, and a multi-GPU parallel programming technique is used to accelerate our elastic FWI further. Forward simulation and elastic FWI examples without and with considering the free surface are shown and analyzed, respectively. Numerical results indicate that no free surface incorporated elastic FWI fails to recover a good inversion result from the Rayleigh wave contaminated observed data. By contrast, when the free surface is incorporated into FWI, the inversion results become better. We also discuss the dependency of the Rayleigh waveform incorporated FWI on the accuracy of initial models, especially the accuracy of the shallow part of the initial models.

  5. A new OTDR based on probe frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Lu, Lidong; Liang, Yun; Li, Binglin; Guo, Jinghong; Zhang, Xuping

    2013-12-01

    Two signal multiplexing methods are proposed and experimentally demonstrated in optical time domain reflectometry (OTDR) for fault location of optical fiber transmission line to obtain high measurement efficiency. Probe signal multiplexing is individually obtained by phase modulation for generation of multi-frequency and time sequential frequency probe pulses. The backscattered Rayleigh light of the multiplexing probe signals is transferred to corresponding heterodyne intermediate frequency (IF) through heterodyning with the single frequency local oscillator (LO). Then the IFs are simultaneously acquired by use of a data acquisition card (DAQ) with sampling rate of 100Msps, and the obtained data are processed by digital band pass filtering (BPF), digital down conversion (DDC) and digital low pass filtering (BPF) procedure. For each probe frequency of the detected signals, the extraction of the time domain reflecting signal power is performed by parallel computing method. For a comprehensive performance comparison with conventional coherent OTDR on the probe frequency multiplexing methods, the potential for enhancement of dynamic range, spatial resolution and measurement time are analyzed and discussed. Experimental results show that by use of the probe frequency multiplexing method, the measurement efficiency of coherent OTDR can be enhanced by nearly 40 times.

  6. The hydrogen epoch of reionization array dish III: measuring chromaticity of prototype element with reflectometry

    NASA Astrophysics Data System (ADS)

    Patra, Nipanjana; Parsons, Aaron R.; DeBoer, David R.; Thyagarajan, Nithyanandan; Ewall-Wice, Aaron; Hsyu, Gilbert; Leung, Tsz Kuk; Day, Cherie K.; de Lera Acedo, Eloy; Aguirre, James E.; Alexander, Paul; Ali, Zaki S.; Beardsley, Adam P.; Bowman, Judd D.; Bradley, Richard F.; Carilli, Chris L.; Cheng, Carina; Dillon, Joshua S.; Fadana, Gcobisa; Fagnoni, Nicolas; Fritz, Randall; Furlanetto, Steve R.; Glendenning, Brian; Greig, Bradley; Grobbelaar, Jasper; Hazelton, Bryna J.; Jacobs, Daniel C.; Julius, Austin; Kariseb, MacCalvin; Kohn, Saul A.; Lebedeva, Anna; Lekalake, Telalo; Liu, Adrian; Loots, Anita; MacMahon, David; Malan, Lourence; Malgas, Cresshim; Maree, Matthys; Martinot, Zachary; Mathison, Nathan; Matsetela, Eunice; Mesinger, Andrei; Morales, Miguel F.; Neben, Abraham R.; Pieterse, Samantha; Pober, Jonathan C.; Razavi-Ghods, Nima; Ringuette, Jon; Robnett, James; Rosie, Kathryn; Sell, Raddwine; Smith, Craig; Syce, Angelo; Tegmark, Max; Williams, Peter K. G.; Zheng, Haoxuan

    2018-04-01

    Spectral structures due to the instrument response is the current limiting factor for the experiments attempting to detect the redshifted 21 cm signal from the Epoch of Reionization (EoR). Recent advances in the delay spectrum methodology for measuring the redshifted 21 cm EoR power spectrum brought new attention to the impact of an antenna's frequency response on the viability of making this challenging measurement. The delay spectrum methodology provides a somewhat straightforward relationship between the time-domain response of an instrument that can be directly measured and the power spectrum modes accessible to a 21 cm EoR experiment. In this paper, we derive the explicit relationship between antenna reflection coefficient ( S 11) measurements made by a Vector Network Analyzer (VNA) and the extent of additional foreground contaminations in delay space. In the light of this mathematical framework, we examine the chromaticity of a prototype antenna element that will constitute the Hydrogen Epoch of Reionization Array (HERA) between 100 and 200 MHz. These reflectometry measurements exhibit additional structures relative to electromagnetic simulations, but we find that even without any further design improvement, such an antenna element will support measuring spatial k modes with line-of-sight components of k ∥ > 0.2 h Mpc- 1. We also find that when combined with the powerful inverse covariance weighting method used in optimal quadratic estimation of redshifted 21 cm power spectra the HERA prototype elements can successfully measure the power spectrum at spatial modes as low as k ∥ > 0.1 h Mpc- 1. This work represents a major step toward understanding the HERA antenna element and highlights a straightforward method for characterizing instrument response for future experiments designed to detect the 21 cm EoR power spectrum.

  7. Birefringence in anisotropic optical fibres studied by polarised light Brillouin reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, A S; Burdin, V V; Konstantinov, Yu A

    2015-01-31

    Modal birefringence (the difference between the effective refractive indices of orthogonal polarisation modes) is one of the key parameters of anisotropic single-mode fibres, characterising their ability to preserve a linearly polarised state of input light. This parameter is commonly measured using short pieces of fibre, but such procedures are destructive and allow the birefringence to be determined only at the ends of long fibres. In this study, polarised light Brillouin reflectometry is used to assess birefringence uniformity throughout the length of an anisotropic fibre. (optical fibres)

  8. On chip frequency comb: Characterization and optical arbitrary waveform generation

    NASA Astrophysics Data System (ADS)

    Ferdous, Fahmida

    Recently, on-chip comb generation methods based on nonlinear optical modulation in ultrahigh quality factor monolithic micro-resonators have been demonstrated. In these methods, two pump photons are transformed into sideband photons in a four wave mixing process mediated by the Kerr nonlinearity. The essential advantages of these methods are simplicity, small size, very high repetition rates and sometimes CMOS compatibility. We investigate line-by-line pulse shaping of such combs generated in silicon nitride ring resonators. We demonstrate a simple example of optical arbitrary waveform generation (OAWG) from Kerr comb. We observe two distinct paths to comb formation which exhibit strikingly different time domain behaviors. For combs formed as a cascade of sidebands spaced by a single free spectral range (FSR) that spread from the pump, we are able to compress to nearly bandwidth limited pulses. This indicates high coherence across the spectra and provides new data on the high passive stability of the spectral phase. For combs where the initial sidebands are spaced by multiple FSRs which then fill in to give combs with single FSR spacing, the time domain data reveal partially coherent behavior. We also investigate the behaviors of a few sub-families of the partially coherent combs selected by a pulse shaper. We observe different coherence properties for different groups of comb lines. Furthermore we will discuss an ultrafast characterization techniques called dual comb electric eld cross correlation. This linear technique will provide both low optical power and broader bandwidth capability for full time domain characterization of OAWG from Kerr comb.

  9. Dispersive Fourier transformation for megahertz detection of coherent stokes and anti-stokes Raman spectra

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Patterson, Brian D.; Kliewer, Christopher J.

    2017-11-01

    In many fields of study, from coherent Raman microscopy on living cells to time-resolved coherent Raman spectroscopy of gas-phase turbulence and combustion reaction dynamics, the need for the capability to time-resolve fast dynamical and nonrepetitive processes has led to the continued development of high-speed coherent Raman methods and new high-repetition rate laser sources, such as pulse-burst laser systems. However, much less emphasis has been placed on our ability to detect shot to shot coherent Raman spectra at equivalently high scan rates, across the kilohertz to megahertz regime. This is beyond the capability of modern scientific charge coupled device (CCD) cameras, for instance, as would be employed with a Czerny-Turner type spectrograph. As an alternative detection strategy with megahertz spectral detection rate, we demonstrate dispersive Fourier transformation detection of pulsed (∼90 ps) coherent Raman signals in the time-domain. Instead of reading the frequency domain signal out using a spectrometer and CCD, the signal is transformed into a time-domain waveform through dispersive Fourier transformation in a long single-mode fiber and read-out with a fast sampling photodiode and oscilloscope. Molecular O- and S-branch rotational sideband spectra from both N2 and H2 were acquired employing this scheme, and the waveform is fitted to show highly quantitative agreement with a molecular model. The total detection time for the rotational spectrum was 20 ns, indicating an upper limit to the detection frequency of ∼50 MHz, significantly faster than any other reported spectrally-resolved coherent anti-Stokes Raman detection strategy to date.

  10. Self-referenced single-shot THz detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Brandon K.; Ofori-Okai, Benjamin K.; Chen, Zhijiang

    We demonstrate a self-referencing method to reduce noise in a single-shot terahertz detection scheme. By splitting a single terahertz pulse and using a reflective echelon, both the signal and reference terahertz time-domain waveforms were measured using one laser pulse. Simultaneous acquisition of these waveforms significantly reduces noise originating from shot-to-shot fluctuations. Here, we show that correlation function based referencing, which is not limited to polarization dependent measurements, can achieve a noise floor that is comparable to state-of-the-art polarization-gated balanced detection. Lastly, we extract the DC conductivity of a 30 nm free-standing gold film using a single THz pulse. The measuredmore » value of σ 0 = 1.3 ± 0.4 × 10 7 S m -1 is in good agreement with the value measured by four-point probe, indicating the viability of this method for measuring dynamical changes and small signals.« less

  11. Self-referenced single-shot THz detection

    DOE PAGES

    Russell, Brandon K.; Ofori-Okai, Benjamin K.; Chen, Zhijiang; ...

    2017-06-29

    We demonstrate a self-referencing method to reduce noise in a single-shot terahertz detection scheme. By splitting a single terahertz pulse and using a reflective echelon, both the signal and reference terahertz time-domain waveforms were measured using one laser pulse. Simultaneous acquisition of these waveforms significantly reduces noise originating from shot-to-shot fluctuations. Here, we show that correlation function based referencing, which is not limited to polarization dependent measurements, can achieve a noise floor that is comparable to state-of-the-art polarization-gated balanced detection. Lastly, we extract the DC conductivity of a 30 nm free-standing gold film using a single THz pulse. The measuredmore » value of σ 0 = 1.3 ± 0.4 × 10 7 S m -1 is in good agreement with the value measured by four-point probe, indicating the viability of this method for measuring dynamical changes and small signals.« less

  12. Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs

    NASA Astrophysics Data System (ADS)

    Ritter, Patxi; Aoudia, Sofiane; Spallicci, Alessandro D. A. M.; Cordier, Stéphane

    2016-12-01

    The Regge-Wheeler-Zerilli (RWZ) wave-equation describes Schwarzschild-Droste black hole perturbations. The source term contains a Dirac distribution and its derivative. We have previously designed a method of integration in time domain. It consists of a finite difference scheme where analytic expressions, dealing with the wave-function discontinuity through the jump conditions, replace the direct integration of the source and the potential. Herein, we successfully apply the same method to the geodesic generic orbits of EMRI (Extreme Mass Ratio Inspiral) sources, at second order. An EMRI is a Compact Star (CS) captured by a Super-Massive Black Hole (SMBH). These are considered the best probes for testing gravitation in strong regime. The gravitational wave-forms, the radiated energy and angular momentum at infinity are computed and extensively compared with other methods, for different orbits (circular, elliptic, parabolic, including zoom-whirl).

  13. Improvement on Gabor order tracking and objective comparison with Vold Kalman filtering order tracking

    NASA Astrophysics Data System (ADS)

    Pan, Min-Chun; Liao, Shiu-Wei; Chiu, Chun-Chin

    2007-02-01

    The waveform-reconstruction schemes of order tracking (OT) such as the Gabor and the Vold-Kalman filtering (VKF) techniques can extract specific order and/or spectral components in addition to characterizing the processed signal in rpm-frequency domain. The study first improves the Gabor OT (GOT) technique to handle the order-crossing problem, and then objectively compares the features of the improved GOT scheme and the angular-displacement VKF OT technique. It is numerically observed the improved method performs less accurately than the VKF_OT scheme at the crossing occurrences, but without end effect in the reconstructed waveform. As OT is not exact science, it may well be that the decrease in computation time can justify the reduced accuracy. The characterisation and discrimination of riding noise with crossing orders emitted by an electrical scooter are conducted as an example of the application.

  14. Advantages and Challenges of 10-Gbps Transmission on High-Density Interconnect Boards

    NASA Astrophysics Data System (ADS)

    Yee, Chang Fei; Jambek, Asral Bahari; Al-Hadi, Azremi Abdullah

    2016-06-01

    This paper provides a brief introduction to high-density interconnect (HDI) technology and its implementation on printed circuit boards (PCBs). The advantages and challenges of implementing 10-Gbps signal transmission on high-density interconnect boards are discussed in detail. The advantages (e.g., smaller via dimension and via stub removal) and challenges (e.g., crosstalk due to smaller interpair separation) of HDI are studied by analyzing the S-parameter, time-domain reflectometry (TDR), and transmission-line eye diagrams obtained by three-dimensional electromagnetic modeling (3DEM) and two-dimensional electromagnetic modeling (2DEM) using Mentor Graphics HyperLynx and Keysight Advanced Design System (ADS) electronic computer-aided design (ECAD) software. HDI outperforms conventional PCB technology in terms of signal integrity, but proper routing topology should be applied to overcome the challenge posed by crosstalk due to the tight spacing between traces.

  15. Intrinsic Fabry-Perot optical fiber sensors and their multiplexing

    DOEpatents

    Wang, Anbo

    2007-12-11

    An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

  16. Quantum states of neutrons in the gravitational and centrifugal potentials in a new GRANIT spectrometer

    ScienceCinema

    Nesvizhevsky, Valery

    2018-05-14

    We will discuss the scientific program to be studied in a new gravitational spectrometer GRANIT in a broad context of quantum states (quantum behaviour) of ultracold neutrons (UCN) in gravitational [1] and centrifugal [2] potentials, as well as applications of these phenomena/spectrometer to various domains of physics, ranging from studies of fundamental short-range interactions and symmetries to neutron quantum optics and reflectometry using UCN. All these topics, as well as related instrumental and methodical developments have been discussed during dedicated GRANIT-2010 Workshop [3]. The GRANIT spectrometer has been recently installed at the Institut Laue-Langevin, Grenoble, France [4] and could become operational in near future. 1. V.V. Nesvizhevsky et al (2002), Nature 415, 297. 2. V.V. Nesvizhevsky et al (2010), Nature Physics 6, 114. 3. GRANIT-2010, Les Houches, 14-19 february 2010. 4. M. Kreuz et al (2009), NIM 611, 326.

  17. Molecular interactions in ethyl acetate-chlorobenzene binary solution: Dielectric, spectroscopic studies and quantum chemical calculations.

    PubMed

    Karthick, N K; Kumbharkhane, A C; Joshi, Y S; Mahendraprabu, A; Shanmugam, R; Elangovan, A; Arivazhagan, G

    2017-05-05

    Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13 C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) CH⋯OC (EA), (EA) methylene CH⋯π electrons (CBZ) and (EA) methyl CH⋯Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (ε E ) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Molecular interactions in ethyl acetate-chlorobenzene binary solution: Dielectric, spectroscopic studies and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karthick, N. K.; Kumbharkhane, A. C.; Joshi, Y. S.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-05-01

    Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) Csbnd H ⋯ Odbnd C (EA), (EA) methylene Csbnd H ⋯ π electrons (CBZ) and (EA) methyl Csbnd H ⋯ Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (εE) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association.

  19. Detection of Local Temperature Change on HTS Cables via Time-Frequency Domain Reflectometry

    NASA Astrophysics Data System (ADS)

    Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Ji, Gyeong Hwan; Sohn, Songho; Park, Kijun; Shin, Yong-June

    2017-07-01

    High temperature superconducting (HTS) cables are drawing attention as transmission and distribution cables in future grid, and related researches on HTS cables have been conducted actively. As HTS cables have come to the demonstration stage, failures of cooling systems inducing quench phenomenon of the HTS cables have become significant. Several diagnosis of the HTS cables have been developed but there are still some limitations of the experimental setup. In this paper, a non-destructive diagnostic technique for the detection of the local temperature change point is proposed. Also, a simulation model of HTS cables with a local temperature change point is suggested to verify the proposed diagnosis. The performance of the diagnosis is checked by comparative analysis between the proposed simulation results and experiment results of a real-world HTS cable. It is expected that the suggested simulation model and diagnosis will contribute to the commercialization of HTS cables in the power grid.

  20. Amplified OTDR systems for multipoint corrosion monitoring.

    PubMed

    Nascimento, Jehan F; Silva, Marcionilo J; Coêlho, Isnaldo J S; Cipriano, Eliel; Martins-Filho, Joaquim F

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations.

  1. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    PubMed Central

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  2. Systems, methods, and software for determining spatially variable distributions of the dielectric properties of a heterogeneous material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, Stephen P.

    Systems, methods, and software for measuring the spatially variable relative dielectric permittivity of materials along a linear or otherwise configured sensor element, and more specifically the spatial variability of soil moisture in one dimension as inferred from the dielectric profile of the soil matrix surrounding a linear sensor element. Various methods provided herein combine advances in the processing of time domain reflectometry data with innovations in physical sensing apparatuses. These advancements enable high temporal (and thus spatial) resolution of electrical reflectance continuously along an insulated waveguide that is permanently emplaced in contact with adjacent soils. The spatially resolved reflectance ismore » directly related to impedance changes along the waveguide that are dominated by electrical permittivity contrast due to variations in soil moisture. Various methods described herein are thus able to monitor soil moisture in profile with high spatial resolution.« less

  3. Potential to Detect Hydrogen Concentration Gradients with Palladium Infused Mesoporous-Titania on D-Shaped Optical Fiber.

    PubMed

    Poole, Zsolt L; Ohodnicki, Paul R; Yan, Aidong; Lin, Yuankun; Chen, Kevin P

    2017-01-27

    A distributed sensing capable high temperature D-shaped optical fiber modified with a palladium nanoparticle sensitized mesoporous (∼5 nm) TiO 2 film, is demonstrated. The refractive index of the TiO 2 film was reduced using block copolymer templating in order to realize a mesoporous matrix, accommodating integration with optical fiber. The constructed sensor was analyzed by performing direct transmission loss measurements, and by analyzing the behavior of an integrated fiber Bragg grating. The inscribed grating should reveal whether the refractive index of the composite film experiences changes upon exposure to hydrogen. In addition, with frequency domain reflectometry the distributed sensing potential of the developed sensor for hydrogen concentrations of up to 10% is examined. The results show the possibility of detecting chemical gradients with sub-cm resolution at temperatures greater than 500 °C.

  4. Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors.

    PubMed

    Chiuchiolo, Antonella; Palmieri, Luca; Consales, Marco; Giordano, Michele; Borriello, Anna; Bajas, Hugues; Galtarossa, Andrea; Bajko, Marta; Cusano, Andrea

    2015-10-01

    This contribution presents distributed and multipoint fiber-optic monitoring of cryogenic temperatures along a superconducting power transmission line down to 30 K and over 20 m distance. Multipoint measurements were conducted using fiber Bragg gratings sensors coated with two different functional overlays (epoxy and poly methyl methacrylate (PMMA)) demonstrating cryogenic operation in the range 300-4.2 K. Distributed measurements exploited optical frequency-domain reflectometry to analyze the Rayleigh scattering along two concatenated fibers with different coatings (acrylate and polyimide). The integrated system has been placed along the 20 m long cryostat of a superconducting power transmission line, which is currently being tested at the European Organization for Nuclear Research (CERN). Cool-down events from 300-30 K have been successfully measured in space and time, confirming the viability of these approaches to the monitoring of cryogenic temperatures along a superconducting transmission line.

  5. Electronic multi-purpose material level sensor

    DOEpatents

    McEwan, T.E.

    1997-03-11

    The present electronic multi-purpose material level sensor is based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line that is partially immersed in a liquid, powder, or other substance such as grain in a silo. The time difference of the reflections at the start of the transmission line and the air/liquid interface are used to determine levels to better than 0.01 inch. The sensor is essentially independent of circuit element and temperature variations, and can be mass produced at an extremely low price. The transmission line may be a Goubau line, microstrip, coaxial cable, twin lead, CPS or CPW, and may typically be a strip placed along the inside wall of a tank. The reflected pulses also contain information about strata within the liquid such as sludge-build-up at the bottom of an oil tank. 9 figs.

  6. Electronic multi-purpose material level sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    The present electronic multi-purpose material level sensor is based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line that is partially immersed in a liquid, powder, or other substance such as grain in a silo. The time difference of the reflections at the start of the transmission line and the air/liquid interface are used to determine levels to better than 0.01 inch. The sensor is essentially independent of circuit element and temperature variations, and can be mass produced at an extremely low price. The transmission line may be a Goubau line, microstrip, coaxial cable, twin lead, CPS or CPW, and may typically be a strip placed along the inside wall of a tank. The reflected pulses also contain information about strata within the liquid such as sludge-build-up at the bottom of an oil tank.

  7. Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems.

    PubMed

    Cho, Ming-Yuan; Hoang, Thi Thom

    2017-01-01

    Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.

  8. Distributed optical fibre sensing for early detection of shallow landslides triggering.

    PubMed

    Schenato, Luca; Palmieri, Luca; Camporese, Matteo; Bersan, Silvia; Cola, Simonetta; Pasuto, Alessandro; Galtarossa, Andrea; Salandin, Paolo; Simonini, Paolo

    2017-10-31

    A distributed optical fibre sensing system is used to measure landslide-induced strains on an optical fibre buried in a large scale physical model of a slope. The fibre sensing cable is deployed at the predefined failure surface and interrogated by means of optical frequency domain reflectometry. The strain evolution is measured with centimetre spatial resolution until the occurrence of the slope failure. Standard legacy sensors measuring soil moisture and pore water pressure are installed at different depths and positions along the slope for comparison and validation. The evolution of the strain field is related to landslide dynamics with unprecedented resolution and insight. In fact, the results of the experiment clearly identify several phases within the evolution of the landslide and show that optical fibres can detect precursory signs of failure well before the collapse, paving the way for the development of more effective early warning systems.

  9. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun

    2017-08-01

    A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.

  10. Validation of a BOTDR-based system for the detection of smuggling tunnels

    NASA Astrophysics Data System (ADS)

    Elkayam, Itai; Klar, Assaf; Linker, Raphael; Marshall, Alec M.

    2010-04-01

    Cross-border smuggling tunnels enable unmonitored movement of people, drugs and weapons and pose a very serious threat to homeland security. Recently, Klar and Linker (2009) [SPIE paper No. 731603] presented an analytical study of the feasibility of a Brillouin Optical Time Domain Reflectometry (BOTDR) based system for the detection of small sized smuggling tunnels. The current study extends this work by validating the analytical models against real strain measurements in soil obtained from small scale experiments in a geotechnical centrifuge. The soil strains were obtained using an image analysis method that tracked the displacement of discrete patches of soil through a sequence of digital images of the soil around the tunnel during the centrifuge test. The results of the present study are in agreement with those of a previous study which was based on synthetic signals generated using empirical and analytical models from the literature.

  11. Ultrawideband radar; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1992

    NASA Astrophysics Data System (ADS)

    Lahaie, Ivan J.

    1992-05-01

    The present conference discusses a canonical representation of the radar range equation in the time domain, two-way beam patterns fron ultrawideband arrays, modeling of ultrawideband sea clutter, the analysis of time-domain ultrawideband radar signals, a frequency-agile ultrawideband microwave source, and the performance of ultrawideband antennas. Also discussed are the diffraction of ultrawideband radar pulses, sea-clutter measurements with an ultrawideband X-band radar having variable resolution, results from a VHF-impulse SAR, an ultrawideband differential radar, the development of 2D target images from ultrawideband radar systems, ultrawideband generators, and the radiated waveform of a monolithic photoconductive GaAs pulser. (For individual items see A93-28202 to A93-28223)

  12. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    PubMed Central

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-01-01

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations. PMID:27314352

  13. Full Waveform Inversion of Reflection Seismic Data for Ocean Temperature Profiles

    DTIC Science & Technology

    2008-01-01

    ographic processes and properties, such as internal-wave spectra [Holbrook and Fer, 2005; Krahmann et al, 2006] and temperature contrasts [ Paramo and...contribute little to the reflectance in the Norwegian Sea data set used here [ Paramo and Holbrook, 2005], so we assume for this study that all...bathyther- mograph) profiles presented by Paramo and Holbrook [2005], displayed here in the intercept time-slowness (Tau-p) domain, rather than the

  14. Analysis of Soldier Radio Waveform Performance in Operational Test

    DTIC Science & Technology

    2015-05-01

    different frequencies based on carrier, uplink/downlink, and generation. In general, 2G and 3G cellular phones operate at 850 MHz uplink, and 1,900 MHz...spectrum management that may not be operationally feasible. These issues are not unique to SRW, but rather have plagued the mobile ad-hoc network... mobile ad-hoc network (MANET), enabling communication through a self-configuring, infrastructure-less network of mobile nodes. In the SS domain, these

  15. Diverse long Period tremors and their implications on degassing and heating inside Aso volcano

    NASA Astrophysics Data System (ADS)

    Niu, Jieming; Song, Teh-Ru Alex

    2017-04-01

    Long-period tremors (LPTs) are frequently observed and documented in many active volcanoes around the world, Typically, LPTs are in the period range of 2-100 seconds and total duration of 300 seconds or less. In many instances, LPTs in different volcanic settings are repetitive, but time-invariant in their location, frequency content and waveform shape, suggesting a nondestructive source and providing critical insights into the fluid-dynamic processes operating inside a volcanic system. However, the diversities of LPTs in a single volcanic system are not necessarily well understood and they could potentially provide a clue on the interplay between volcanic degassing, magmatic heating and the style of upcoming eruption. To explore possible diverse LPT behavior in a volcanic system, we investigate LPTs in Aso-san, one of the most well studied and active volcanoes in the southwest Kyushu, Japan. We carry out systematic analysis of continuous seismic data (2010-2016) operated at V-net by NIED and Japan Meterogeolgical Agency (JMA) Volcanic Seismic Network, covering the interval where Aso-san experiences diverse behaviors, including long period of quiescence (2010-2013), phreatic eruption (2013-2014), Strombolian-type eruption (2014-2015) and phreatomagmatic eruption (2016). We use LPT waveforms identified in previous studies as templates and cross-correlate them against the entire dataset in the wavelet domain to construct LPTs catalog. However, LPTs with different phase, but similar frequency content and location are also retained to examine possible temporal changes in the characteristics of LPTs. Through waveform cross-correlation and stacking, we identify four types of LPTs that are located in close proximity as those identified in prior studies, but they display diverse waveform polarity and shape. We will present waveform semblance analysis and moment tensor inversion of these LPTs and discuss how their frequency, amplitude and energetics may be indicative of the state of degassing and magmatic heating inside the Aso volcano.

  16. Improved time-frequency analysis of ASDEX Upgrade reflectometry data using the reassigned spectrogram technique.

    PubMed

    Varela, P; Silva, A; da Silva, F; da Graça, S; Manso, M E; Conway, G D

    2010-10-01

    The spectrogram is one of the best-known time-frequency distributions suitable to analyze signals whose energy varies both in time and frequency. In reflectometry, it has been used to obtain the frequency content of FM-CW signals for density profile inversion and also to study plasma density fluctuations from swept and fixed frequency data. Being implemented via the short-time Fourier transform, the spectrogram is limited in resolution, and for that reason several methods have been developed to overcome this problem. Among those, we focus on the reassigned spectrogram technique that is both easily automated and computationally efficient requiring only the calculation of two additional spectrograms. In each time-frequency window, the technique reallocates the spectrogram coordinates to the region that most contributes to the signal energy. The application to ASDEX Upgrade reflectometry data results in better energy concentration and improved localization of the spectral content of the reflected signals. When combined with the automatic (data driven) window length spectrogram, this technique provides improved profile accuracy, in particular, in regions where frequency content varies most rapidly such as the edge pedestal shoulder.

  17. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Hao; Zhang, Tao; Han, Xiang

    2015-08-15

    An X-mode polarized V band (50 GHz–75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz–19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured bymore » the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from −1 km/s to −3 km/s.« less

  18. The SGR-ReSI and its application for GNSS reflectometry on the NASA EV-2 CYGNSS mission

    NASA Astrophysics Data System (ADS)

    Unwin, M.; Jales, P.; Blunt, P.; Duncan, S.; Brummitt, M.; Ruf, C.

    As part of the EV-2 Cyclone Global Navigation Satellite System (CYGNSS) mission team, Surrey will be providing the Delay Doppler Mapping Instrument (DDMI) for eight Observatories designed and built by the University of Michigan and Southwest Research Institute (SwRI). Following the success of the GPS Reflectometry Experiment on the UK-DMC 1 satellite launched in 2003, Surrey has developed the SGR-ReSI as a move towards operational reflectometry and other applications. The Space GPS Receiver Remote Sensing Instrument (SGR-ReSI) is a COTS-electronics based GNSS receiver which can support up to eight programmable front-ends. It allows collection of raw sampled data but also is capable of processing the reflections into Delay Doppler Maps in real time. The first flight of the SGR-ReSI will be on the UK TechDemoSat-1 to prove the instrument and its various applications. The SGR-ReSI on CYGNSS has a different configuration to that on TechDemoSat-1 which is needed to focus on the requirements for operational cyclone sensing.

  19. Effects of strain and buffer layer on interfacial magnetization in Sr 2 CrReO 6 films determined by polarized neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yaohua; Lucy, J. M.; Glavic, A.

    2014-09-01

    We have determined the depth-resolved magnetization structures of a series of highly orderedSr2CrReO6 (SCRO) ferrimagnetic epitaxial films via combined studies of x-ray reflectometry, polarized neutron reflectometry and SQUID magnetometry. The SCRO films deposited directly on (LaAlO3)0:3(Sr2AlTaO6)0:7 or SrTiO3 substrates show reduced magnetization of similar width near the interfaces with the substrates, despite having different degrees of strain. When the SCRO film is deposited on a Sr2CrNbO6 (SCNO) double perovskite buffer layer, the width the interfacial region with reduced magnetization is reduced, agreeing with an improved Cr/Re ordering. However, the relative reduction of the magnetization averaged over the interfacial regions aremore » comparable among the three samples. Interestingly, we found that the magnetization suppression region is wider than the Cr/Re antisite disorder region at the interface between SCRO and SCNO.« less

  20. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.

    2016-11-01

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  1. X-Ray Reflectometry of DMPS Monolayers on a Water Substrate

    NASA Astrophysics Data System (ADS)

    Tikhonov, A. M.; Asadchikov, V. E.; Volkov, Yu. O.; Roshchin, B. S.; Ermakov, Yu. A.

    2017-12-01

    The molecular structure of dimyristoyl phosphatidylserine (DMPS) monolayers on a water substrate in different phase states has been investigated by X-ray reflectometry with a photon energy of 8 keV. According to the experimental data, the transition from a two-dimensional expanded liquid state to a solid gel state (liquid crystal) accompanied by the ordering of the hydrocarbon tails C14H27 of the DMPS molecule occurs in the monolayer as the surface pressure rises. The monolayer thickness is 20 ± 3 and 28 ± 2 Å in the liquid and solid phases, respectively, with the deflection angle of the molecular tail axis from the normal to the surface in the gel phase being 26° ± 8°. At least a twofold decrease in the degree of hydration of the polar lipid groups also occurs under two-dimensional monolayer compression. The reflectometry data have been analyzed using two approaches: under the assumption about the presence of two layers with different electron densities in the monolayer and without any assumptions about the transverse surface structure. Both approaches demonstrate satisfactory agreement between themselves in describing the experimental results.

  2. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry.

    PubMed

    Tobias, B; Domier, C W; Luhmann, N C; Luo, C; Mamidanna, M; Phan, T; Pham, A-V; Wang, Y

    2016-11-01

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  3. Separation and correlation of structural and magnetic roughness in a Ni thin film by polarized off-specular neutron reflectometry.

    PubMed

    Singh, Surendra; Basu, Saibal

    2009-02-04

    Diffuse (off-specular) neutron and x-ray reflectometry has been used extensively for the determination of interface morphology in solids and liquids. For neutrons, a novel possibility is off-specular reflectometry with polarized neutrons to determine the morphology of a magnetic interface. There have been few such attempts due to the lower brilliance of neutron sources, though magnetic interaction of neutrons with atomic magnetic moments is much easier to comprehend and easily tractable theoretically. We have obtained a simple and physically meaningful expression, under the Born approximation, for analyzing polarized diffuse (off-specular) neutron reflectivity (PDNR) data. For the first time PDNR data from a Ni film have been analyzed and separate chemical and magnetic morphologies have been quantified. Also specular polarized neutron reflectivity measurements have been carried out to measure the magnetic moment density profile of the Ni film. The fit to PDNR data results in a longer correlation length for in-plane magnetic roughness than for chemical (structural) roughness. The magnetic interface is smoother than the chemical interface.

  4. Surface physics with cold and thermal neutron reflectometry. Progress report, April 1, 1991--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steyerl, A.

    1993-09-01

    Within the past two and one half years of the project ``Surface Physics With Cold and Thermal Neutron Reflectometry`` a new thermal neutron reflectometer was constructed at the Rhode Island Nuclear Science Center (RINSC). It was used to study various liquid and solid surfaces. Furthermore, neutron reflection experiments were be un at different laboratories in collaboration with Dr. G.P. Fetcher (at Argonne National Laboratory), Dr. T. Russell (IBM Almaden) and Drs. S.K. Satija and A. Karim (at the National Institute for Standards and Technology). The available resources allowed partial construction of an imaging system for ultracold neutrons. It is expectedmore » to provide an extremely high resolution in momentum and energy transfer in surface studies using neutron reflectometry. Much of the work reported here was motivated by the possibility of later implementation at the planned Advanced Neutron Source at Oak Ridge. In a separate project the first concrete plans for an intense source of ultracold neutrons for the Advanced Neutron Source were developed.« less

  5. Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry

    NASA Astrophysics Data System (ADS)

    Pflug, T.; Wang, J.; Olbrich, M.; Frank, M.; Horn, A.

    2018-02-01

    To increase the comprehension of ultrafast laser ablation, the ablation process has to be portrayed with sufficient temporal resolution. For example, the temporal modification of the complex refractive index {\\tilde{n}} and the relative reflectance of a sample material after irradiation with ultrafast single-pulsed laser radiation can be measured with a pump-probe setup. This work describes the construction and validation of a pump-probe setup enabling spatially, temporally, and spectroscopically resolved Brewster angle microscopy, reflectometry, ellipsometry, and shadow photography. First pump-probe reflectometry and ellipsometry measurements are performed on gold at λ _{probe}= 440 nm and three fluences of the single-pulsed pump radiation at λ _{pump}= 800 nm generating no, gentle, and strong ablation. The relative reflectance overall increases at no and gentle ablation. At strong ablation, the relative reflectance locally decreases, presumable caused by emitted thermal electrons, ballistic electrons, and ablating material. The refractive index n is slightly decreasing after excitation, while the extinction coefficient k is increasing.

  6. Signal Construction-Based Dispersion Compensation of Lamb Waves Considering Signal Waveform and Amplitude Spectrum Preservation

    PubMed Central

    Cai, Jian; Yuan, Shenfang; Wang, Tongguang

    2016-01-01

    The results of Lamb wave identification for the aerospace structures could be easily affected by the nonlinear-dispersion characteristics. In this paper, dispersion compensation of Lamb waves is of particular concern. Compared with the similar research works on the traditional signal domain transform methods, this study is based on signal construction from the viewpoint of nonlinear wavenumber linearization. Two compensation methods of linearly-dispersive signal construction (LDSC) and non-dispersive signal construction (NDSC) are proposed. Furthermore, to improve the compensation effect, the influence of the signal construction process on the other crucial signal properties, including the signal waveform and amplitude spectrum, is considered during the investigation. The linear-dispersion and non-dispersion effects are firstly analyzed. Then, after the basic signal construction principle is explored, the numerical realization of LDSC and NDSC is discussed, in which the signal waveform and amplitude spectrum preservation is especially regarded. Subsequently, associated with the delay-and-sum algorithm, LDSC or NDSC is employed for high spatial resolution damage imaging, so that the adjacent multi-damage or quantitative imaging capacity of Lamb waves can be strengthened. To verify the proposed signal construction and damage imaging methods, the experimental and numerical validation is finally arranged on the aluminum plates. PMID:28772366

  7. Signal Construction-Based Dispersion Compensation of Lamb Waves Considering Signal Waveform and Amplitude Spectrum Preservation.

    PubMed

    Cai, Jian; Yuan, Shenfang; Wang, Tongguang

    2016-12-23

    The results of Lamb wave identification for the aerospace structures could be easily affected by the nonlinear-dispersion characteristics. In this paper, dispersion compensation of Lamb waves is of particular concern. Compared with the similar research works on the traditional signal domain transform methods, this study is based on signal construction from the viewpoint of nonlinear wavenumber linearization. Two compensation methods of linearly-dispersive signal construction (LDSC) and non-dispersive signal construction (NDSC) are proposed. Furthermore, to improve the compensation effect, the influence of the signal construction process on the other crucial signal properties, including the signal waveform and amplitude spectrum, is considered during the investigation. The linear-dispersion and non-dispersion effects are firstly analyzed. Then, after the basic signal construction principle is explored, the numerical realization of LDSC and NDSC is discussed, in which the signal waveform and amplitude spectrum preservation is especially regarded. Subsequently, associated with the delay-and-sum algorithm, LDSC or NDSC is employed for high spatial resolution damage imaging, so that the adjacent multi-damage or quantitative imaging capacity of Lamb waves can be strengthened. To verify the proposed signal construction and damage imaging methods, the experimental and numerical validation is finally arranged on the aluminum plates.

  8. A post-processing algorithm for time domain pitch trackers

    NASA Astrophysics Data System (ADS)

    Specker, P.

    1983-01-01

    This paper describes a powerful post-processing algorithm for time-domain pitch trackers. On two successive passes, the post-processing algorithm eliminates errors produced during a first pass by a time-domain pitch tracker. During the second pass, incorrect pitch values are detected as outliers by computing the distribution of values over a sliding 80 msec window. During the third pass (based on artificial intelligence techniques), remaining pitch pulses are used as anchor points to reconstruct the pitch train from the original waveform. The algorithm produced a decrease in the error rate from 21% obtained with the original time domain pitch tracker to 2% for isolated words and sentences produced in an office environment by 3 male and 3 female talkers. In a noisy computer room errors decreased from 52% to 2.9% for the same stimuli produced by 2 male talkers. The algorithm is efficient, accurate, and resistant to noise. The fundamental frequency micro-structure is tracked sufficiently well to be used in extracting phonetic features in a feature-based recognition system.

  9. Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR).

    PubMed

    Mehta, S; Antich, P

    1997-01-01

    There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.

  10. Structure analysis of aqueous ferrofluids at interface with silicon: neutron reflectometry data

    NASA Astrophysics Data System (ADS)

    Gapon, I. V.; Petrenko, V. I.; Bulavin, L. A.; Balasoiu, M.; Kubovcikova, M.; Zavisova, V.; Koneracka, M.; Kopcansky, P.; Chiriac, H.; Avdeev, M. V.

    2017-05-01

    Adsorption of nanoparticles from aqueous ferrofluids (FFs) on solid surface (crystalline silicon) was studied by neutron reflectometry (NR). Two kinds of FFs were considered. First kind was heavy water-based ferrofluids with magnetite nanoparticles coated by double layer of sodium oleate. Second one FF was cobalt ferrite nanoparticles stabilized by lauric acid/sodium n-dodecylsulphate layer and dispersed in water. It was obtained only a single adsorption layer for two types of ferrofluids. The impact of the magnetic nanoparticles concentration and geometry was considered in frame of the adsorption characteristic of FFs.

  11. Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)

    NASA Technical Reports Server (NTRS)

    Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.

  12. Calibration of a geophysically based model using soil moisture measurements in mountainous terrains

    NASA Astrophysics Data System (ADS)

    Pellet, Cécile; Hilbich, Christin; Marmy, Antoine; Hauck, Christian

    2016-04-01

    The use of geophysical methods in the field of permafrost research is well established and crucial since it is the only way to infer the composition of the subsurface material. Since geophysical measurements are indirect, ambiguities in the interpretation of the results can arise, hence the simultaneous use of several methods (e.g. electrical resistivity tomography and refraction seismics) is often necessary. The so-called four-phase model, 4PM (Hauck et al., 2011) constitutes a further step towards clarification of interpretation from geophysical measurements. It uses two well-known petrophysical relationships, namely Archie's law and an extension of Timur's time-averaged equation for seismic P-wave velocities, to quantitatively estimate the different phase contents (air, water and ice) in the ground from tomographic electric and seismic measurements. In this study, soil moisture measurements were used to calibrate the 4PM in order to assess the spatial distribution of water, ice and air content in the ground at three high elevation sites with different ground properties and thermal regimes. The datasets used here were collected as part of the SNF-project SOMOMOUNT. Within the framework of this project a network of six entirely automated soil moisture stations was installed in Switzerland along an altitudinal gradient ranging from 1'200 m. a.s.l. to 3'400 m. a.s.l. The standard instrumentation of each station comprises the installation of Frequency Domain Reflectometry (FDR) and Time Domain Reflectometry (TDR) sensors for long term monitoring coupled with repeated Electrical Resistivity Tomography (ERT) and Refraction Seismic Tomography (RST) as well as spatial FDR (S-FDR) measurements. The use of spatially distributed soil moisture data significantly improved the 4PM calibration process and a semi-automatic calibration scheme was developed. This procedure was then tested at three different locations, yielding satisfactory two dimensional distributions of water-, ice- and air content (Pellet et al., 2016). REFERENCES Hauck, C., Böttcher, M., & Maurer, H. 2011: A new model for estimating subsurface ice content based on combined electrical and seismic data sets, The Cryosphere, 5(2), 453-468. Pellet, C., Hilbich, C., Marmy, A., & Hauck, C. 2016: Soil moisture data for the validation of permafrost models using direct and indirect measurement approaches at three alpine sites, Front. Earth Sci., 3(91).

  13. Time-domain seismic modeling in viscoelastic media for full waveform inversion on heterogeneous computing platforms with OpenCL

    NASA Astrophysics Data System (ADS)

    Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Giroux, Bernard

    2017-03-01

    Full Waveform Inversion (FWI) aims at recovering the elastic parameters of the Earth by matching recordings of the ground motion with the direct solution of the wave equation. Modeling the wave propagation for realistic scenarios is computationally intensive, which limits the applicability of FWI. The current hardware evolution brings increasing parallel computing power that can speed up the computations in FWI. However, to take advantage of the diversity of parallel architectures presently available, new programming approaches are required. In this work, we explore the use of OpenCL to develop a portable code that can take advantage of the many parallel processor architectures now available. We present a program called SeisCL for 2D and 3D viscoelastic FWI in the time domain. The code computes the forward and adjoint wavefields using finite-difference and outputs the gradient of the misfit function given by the adjoint state method. To demonstrate the code portability on different architectures, the performance of SeisCL is tested on three different devices: Intel CPUs, NVidia GPUs and Intel Xeon PHI. Results show that the use of GPUs with OpenCL can speed up the computations by nearly two orders of magnitudes over a single threaded application on the CPU. Although OpenCL allows code portability, we show that some device-specific optimization is still required to get the best performance out of a specific architecture. Using OpenCL in conjunction with MPI allows the domain decomposition of large models on several devices located on different nodes of a cluster. For large enough models, the speedup of the domain decomposition varies quasi-linearly with the number of devices. Finally, we investigate two different approaches to compute the gradient by the adjoint state method and show the significant advantages of using OpenCL for FWI.

  14. Salvus: A flexible open-source package for waveform modelling and inversion from laboratory to global scales

    NASA Astrophysics Data System (ADS)

    Afanasiev, M.; Boehm, C.; van Driel, M.; Krischer, L.; May, D.; Rietmann, M.; Fichtner, A.

    2016-12-01

    Recent years have been witness to the application of waveform inversion to new and exciting domains, ranging from non-destructive testing to global seismology. Often, each new application brings with it novel wave propagation physics, spatial and temporal discretizations, and models of variable complexity. Adapting existing software to these novel applications often requires a significant investment of time, and acts as a barrier to progress. To combat these problems we introduce Salvus, a software package designed to solve large-scale full-waveform inverse problems, with a focus on both flexibility and performance. Based on a high order finite (spectral) element discretization, we have built Salvus to work on unstructured quad/hex meshes in both 2 or 3 dimensions, with support for P1-P3 bases on triangles and tetrahedra. A diverse (and expanding) collection of wave propagation physics are supported (i.e. coupled solid-fluid). With a focus on the inverse problem, functionality is provided to ease integration with internal and external optimization libraries. Additionally, a python-based meshing package is included to simplify the generation and manipulation of regional to global scale Earth models (quad/hex), with interfaces available to external mesh generators for complex engineering-scale applications (quad/hex/tri/tet). Finally, to ensure that the code remains accurate and maintainable, we build upon software libraries such as PETSc and Eigen, and follow modern software design and testing protocols. Salvus bridges the gap between research and production codes with a design based on C++ mixins and Python wrappers that separates the physical equations from the numerical core. This allows domain scientists to add new equations using a high-level interface, without having to worry about optimized implementation details. Our goal in this presentation is to introduce the code, show several examples across the scales, and discuss some of the extensible design points.

  15. Salvus: A flexible high-performance and open-source package for waveform modelling and inversion from laboratory to global scales

    NASA Astrophysics Data System (ADS)

    Afanasiev, Michael; Boehm, Christian; van Driel, Martin; Krischer, Lion; May, Dave; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Recent years have been witness to the application of waveform inversion to new and exciting domains, ranging from non-destructive testing to global seismology. Often, each new application brings with it novel wave propagation physics, spatial and temporal discretizations, and models of variable complexity. Adapting existing software to these novel applications often requires a significant investment of time, and acts as a barrier to progress. To combat these problems we introduce Salvus, a software package designed to solve large-scale full-waveform inverse problems, with a focus on both flexibility and performance. Currently based on an abstract implementation of high order finite (spectral) elements, we have built Salvus to work on unstructured quad/hex meshes in both 2 or 3 dimensions, with support for P1-P3 bases on triangles and tetrahedra. A diverse (and expanding) collection of wave propagation physics are supported (i.e. viscoelastic, coupled solid-fluid). With a focus on the inverse problem, functionality is provided to ease integration with internal and external optimization libraries. Additionally, a python-based meshing package is included to simplify the generation and manipulation of regional to global scale Earth models (quad/hex), with interfaces available to external mesh generators for complex engineering-scale applications (quad/hex/tri/tet). Finally, to ensure that the code remains accurate and maintainable, we build upon software libraries such as PETSc and Eigen, and follow modern software design and testing protocols. Salvus bridges the gap between research and production codes with a design based on C++ template mixins and Python wrappers that separates the physical equations from the numerical core. This allows domain scientists to add new equations using a high-level interface, without having to worry about optimized implementation details. Our goal in this presentation is to introduce the code, show several examples across the scales, and discuss some of the extensible design points.

  16. Full-waveform inversion of GPR data for civil engineering applications

    NASA Astrophysics Data System (ADS)

    van der Kruk, Jan; Kalogeropoulos, Alexis; Hugenschmidt, Johannes; Klotzsche, Anja; Busch, Sebastian; Vereecken, Harry

    2014-05-01

    Conventional GPR ray-based techniques are often limited in their capability to image complex structures due to the pertaining approximations. Due to the increased computational power, it is becoming more easy to use modeling and inversion tools that explicitly take into account the detailed electromagnetic wave propagation characteristics. In this way, new civil engineering application avenues are opening up that enable an improved high resolution imaging of quantitative medium properties. In this contribution, we show recent developments that enable the full-waveform inversion of off-ground, on-ground and crosshole GPR data. For a successful inversion, a proper start model must be used that generates synthetic data that overlaps the measured data with at least half a wavelength. In addition, the GPR system must be calibrated such that an effective wavelet is obtained that encompasses the complexity of the GPR source and receiver antennas. Simple geometries such as horizontal layers can be described with a limited number of model parameters, which enable the use of a combined global and local search using the Simplex search algorithm. This approach has been implemented for the full-waveform inversion of off-ground and on-ground GPR data measured over horizontally layered media. In this way, an accurate 3D frequency domain forward model of Maxwell's equation can be used where the integral representation of the electric field is numerically evaluated. The full-waveform inversion (FWI) for a large number of unknowns uses gradient-based optimization methods where a 3D to 2D conversion is used to apply this method to experimental data. Off-ground GPR data, measured over homogeneous concrete specimens, were inverted using the full-waveform inversion. In contrast to traditional ray-based techniques we were able to obtain quantitative values for the permittivity and conductivity and in this way distinguish between moisture and chloride effects. For increasing chloride content increasing frequency-dependent conductivity values were obtained. The off-ground full-waveform inversion was extended to invert for positive and negative gradients in conductivity and the conductivity gradient direction could be correctly identified. Experimental specimen containing gradients were generated by exposing a concrete slab to controlled wetting-drying cycles using a saline solution. Full-waveform inversion of the measured data correctly identified the conductivity gradient direction which was confirmed by destructive analysis. On-ground CMP GPR data measured over a concrete layer overlying a metal plate show interfering multiple reflections, which indicates that the structure acts as a waveguide. Calculation of the phase-velocity spectrum shows the presence of several higher order modes. Whereas the dispersion inversion returns the thickness and layer height, the full-waveform inversion was also able to estimate quantitative conductivity values. This abstract is a contribution to COST Action TU1208

  17. Waveform-Diverse Multiple-Input Multiple-Output Radar Imaging Measurements

    NASA Astrophysics Data System (ADS)

    Stewart, Kyle B.

    Multiple-input multiple-output (MIMO) radar is an emerging set of technologies designed to extend the capabilities of multi-channel radar systems. While conventional radar architectures emphasize the use of antenna array beamforming to maximize real-time power on target, MIMO radar systems instead attempt to preserve some degree of independence between their received signals and to exploit this expanded matrix of target measurements in the signal-processing domain. Specifically the use of sparse “virtual” antenna arrays may allow MIMO radars to achieve gains over traditional multi-channel systems by post-processing diverse received signals to implement both transmit and receive beamforming at all points of interest within a given scene. MIMO architectures have been widely examined for use in radar target detection, but these systems may yet be ideally suited to real and synthetic aperture radar imaging applications where their proposed benefits include improved resolutions, expanded area coverage, novel modes of operation, and a reduction in hardware size, weight, and cost. While MIMO radar's theoretical benefits have been well established in the literature, its practical limitations have not received great attention thus far. The effective use of MIMO radar techniques requires a diversity of signals, and to date almost all MIMO system demonstrations have made use of time-staggered transmission to satisfy this requirement. Doing so is reliable but can be prohibitively slow. Waveform-diverse systems have been proposed as an alternative in which multiple, independent waveforms are broadcast simultaneously over a common bandwidth and separated on receive using signal processing. Operating in this way is much faster than its time-diverse equivalent, but finding a set of suitable waveforms for this technique has proven to be a difficult problem. In light of this, many have questioned the practicality of MIMO radar imaging and whether or not its theoretical benefits may be extended to real systems. Work in this writing focuses specifically on the practical aspects of MIMO radar imaging systems and provides performance data sourced from experimental measurements made using a four-channel software-defined MIMO radar platform. Demonstrations of waveform-diverse imaging data products are provided and compared directly against time-diverse equivalents in order to assess the performance of prospective MIMO waveforms. These are sourced from the pseudo-noise, short-term shift orthogonal, and orthogonal frequency multiplexing signal families while experimental results demonstrate waveform-diverse measurements of polarimetric radar cross section, top-down stationary target images, and finally volumetric MIMO synthetic aperture radar imagery. The data presented represents some of the first available concerning the overall practicality of waveform-diverse MIMO radar architectures, and results suggest that such configurations may achieve a reasonable degree of performance even in the presence of significant practical limitations.

  18. Numerical Solution of the Kzk Equation for Pulsed Finite Amplitude Sound Beams in Thermoviscous Fluids

    NASA Astrophysics Data System (ADS)

    Lee, Yang-Sub

    A time-domain numerical algorithm for solving the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is developed for pulsed, axisymmetric, finite amplitude sound beams in thermoviscous fluids. The KZK equation accounts for the combined effects of diffraction, absorption, and nonlinearity at the same order of approximation. The accuracy of the algorithm is established via comparison with analytical solutions for several limiting cases, and with numerical results obtained from a widely used algorithm for solving the KZK equation in the frequency domain. The time domain algorithm is used to investigate waveform distortion and shock formation in directive sound beams radiated by pulsed circular piston sources. New results include predictions for the entire process of self-demodulation, and for the effect of frequency modulation on pulse envelope distortion. Numerical results are compared with measurements, and focused sources are investigated briefly.

  19. Automated Processing Workflow for Ambient Seismic Recordings

    NASA Astrophysics Data System (ADS)

    Girard, A. J.; Shragge, J.

    2017-12-01

    Structural imaging using body-wave energy present in ambient seismic data remains a challenging task, largely because these wave modes are commonly much weaker than surface wave energy. In a number of situations body-wave energy has been extracted successfully; however, (nearly) all successful body-wave extraction and imaging approaches have focused on cross-correlation processing. While this is useful for interferometric purposes, it can also lead to the inclusion of unwanted noise events that dominate the resulting stack, leaving body-wave energy overpowered by the coherent noise. Conversely, wave-equation imaging can be applied directly on non-correlated ambient data that has been preprocessed to mitigate unwanted energy (i.e., surface waves, burst-like and electromechanical noise) to enhance body-wave arrivals. Following this approach, though, requires a significant preprocessing effort on often Terabytes of ambient seismic data, which is expensive and requires automation to be a feasible approach. In this work we outline an automated processing workflow designed to optimize body wave energy from an ambient seismic data set acquired on a large-N array at a mine site near Lalor Lake, Manitoba, Canada. We show that processing ambient seismic data in the recording domain, rather than the cross-correlation domain, allows us to mitigate energy that is inappropriate for body-wave imaging. We first develop a method for window selection that automatically identifies and removes data contaminated by coherent high-energy bursts. We then apply time- and frequency-domain debursting techniques to mitigate the effects of remaining strong amplitude and/or monochromatic energy without severely degrading the overall waveforms. After each processing step we implement a QC check to investigate improvements in the convergence rates - and the emergence of reflection events - in the cross-correlation plus stack waveforms over hour-long windows. Overall, the QC analyses suggest that automated preprocessing of ambient seismic recordings in the recording domain successfully mitigates unwanted coherent noise events in both the time and frequency domain. Accordingly, we assert that this method is beneficial for direct wave-equation imaging with ambient seismic recordings.

  20. Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma

    NASA Astrophysics Data System (ADS)

    Liu, Jingle; Zhang, X.-C.

    2009-12-01

    We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.

Top