Sample records for domain walls conduits

  1. Magnetic domain wall conduits for single cell applications.

    PubMed

    Donolato, M; Torti, A; Kostesha, N; Deryabina, M; Sogne, E; Vavassori, P; Hansen, M F; Bertacco, R

    2011-09-07

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls generated in micro- and nano-structures fabricated on a chip surface can be used to handle single yeast cells labeled with magnetic beads. In detail, first we show that the proposed approach maintains the microorganism viable, as proven by monitoring the division of labeled yeast cells trapped by domain walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain walls technology in lab-on-chip systems devoted to accurate individual cell trapping and manipulation.

  2. Geometrical control of pure spin current induced domain wall depinning.

    PubMed

    Pfeiffer, A; Reeve, R M; Voto, M; Savero-Torres, W; Richter, N; Vila, L; Attané, J P; Lopez-Diaz, L; Kläui, Mathias

    2017-03-01

    We investigate the pure spin-current assisted depinning of magnetic domain walls in half ring based Py/Al lateral spin valve structures. Our optimized geometry incorporating a patterned notch in the detector electrode, directly below the Al spin conduit, provides a tailored pinning potential for a transverse domain wall and allows for a precise control over the magnetization configuration and as a result the domain wall pinning. Due to the patterned notch, we are able to study the depinning field as a function of the applied external field for certain applied current densities and observe a clear asymmetry for the two opposite field directions. Micromagnetic simulations show that this can be explained by the asymmetry of the pinning potential. By direct comparison of the calculated efficiencies for different external field and spin current directions, we are able to disentangle the different contributions from the spin transfer torque, Joule heating and the Oersted field. The observed high efficiency of the pure spin current induced spin transfer torque allows for a complete depinning of the domain wall at zero external field for a charge current density of [Formula: see text] A m -2 , which is attributed to the optimal control of the position of the domain wall.

  3. Domain wall nanoelectronics

    NASA Astrophysics Data System (ADS)

    Catalan, G.; Seidel, J.; Ramesh, R.; Scott, J. F.

    2012-01-01

    Domains in ferroelectrics were considered to be well understood by the middle of the last century: They were generally rectilinear, and their walls were Ising-like. Their simplicity stood in stark contrast to the more complex Bloch walls or Néel walls in magnets. Only within the past decade and with the introduction of atomic-resolution studies via transmission electron microscopy, electron holography, and atomic force microscopy with polarization sensitivity has their real complexity been revealed. Additional phenomena appear in recent studies, especially of magnetoelectric materials, where functional properties inside domain walls are being directly measured. In this paper these studies are reviewed, focusing attention on ferroelectrics and multiferroics but making comparisons where possible with magnetic domains and domain walls. An important part of this review will concern device applications, with the spotlight on a new paradigm of ferroic devices where the domain walls, rather than the domains, are the active element. Here magnetic wall microelectronics is already in full swing, owing largely to the work of Cowburn and of Parkin and their colleagues. These devices exploit the high domain wall mobilities in magnets and their resulting high velocities, which can be supersonic, as shown by Kreines’ and co-workers 30 years ago. By comparison, nanoelectronic devices employing ferroelectric domain walls often have slower domain wall speeds, but may exploit their smaller size as well as their different functional properties. These include domain wall conductivity (metallic or even superconducting in bulk insulating or semiconducting oxides) and the fact that domain walls can be ferromagnetic while the surrounding domains are not.

  4. Skyrmion domain wall collision and domain wall-gated skyrmion logic

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-08-01

    Skyrmions and domain walls are significant spin textures of great technological relevance to magnetic memory and logic applications, where they can be used as carriers of information. The unique topology of skyrmions makes them display emergent dynamical properties as compared with domain walls. Some studies have demonstrated that the two topologically inequivalent magnetic objects could be interconverted by using cleverly designed geometric structures. Here, we numerically address the skyrmion domain wall collision in a magnetic racetrack by introducing relative motion between the two objects based on a specially designed junction. An electric current serves as the driving force that moves a skyrmion toward a trapped domain wall pair. We see different types of collision dynamics depending on the driving parameters. Most importantly, the modulation of skyrmion transport using domain walls is realized in this system, allowing a set of domain wall-gated logical NOT, NAND, and NOR gates to be constructed. This work provides a skyrmion-based spin-logic architecture that is fully compatible with racetrack memories.

  5. PREFACE: Domain wall dynamics in nanostructures Domain wall dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Marrows, C. H.; Meier, G.

    2012-01-01

    Domain structures in magnetic materials are ubiquitous and have been studied for decades. The walls that separate them are topological defects in the magnetic order parameter and have a wide variety of complex forms. In general, their investigation is difficult in bulk materials since only the domain structure on the surface of a specimen is visible. Cutting the sample to reveal the interior causes a rearrangement of the domains into a new form. As with many other areas of magnetism, the study of domain wall physics has been revitalised by the advent of nanotechnology. The ability to fabricate nanoscale structures has permitted the formation of simplified and controlled domain patterns; the development of advanced microscopy methods has permitted them to be imaged and then modelled; subjecting them to ultrashort field and current pulses has permitted their dynamics to be explored. The latest results from all of these advances are described in this special issue. Not only has this led to results of great scientific beauty, but also to concepts of great applicability to future information technologies. In this issue the reader will find the latest results for these domain wall dynamics and the high-speed processes of topological structures such as domain walls and magnetic vortices. These dynamics can be driven by the application of magnetic fields, or by flowing currents through spintronic devices using the novel physics of spin-transfer torque. This complexity has been studied using a wide variety of experimental techniques at the edge of the spatial and temporal resolution currently available, and can be described using sophisticated analytical theory and computational modelling. As a result, the dynamics can be engineered to give rise to finely controlled memory and logic devices with new functionality. Moreover, the field is moving to study not only the conventional transition metal ferromagnets, but also complex heterostructures, novel magnets and even other

  6. Laboratory analog and numerical study of groundwater flow and solute transport in a karst aquifer with conduit and matrix domains.

    PubMed

    Faulkner, Jonathan; Hu, Bill X; Kish, Stephen; Hua, Fei

    2009-11-03

    New mathematical and laboratory methods have been developed for simulating groundwater flow and solute transport in karst aquifers having conduits imbedded in a porous medium, such as limestone. The Stokes equations are used to model the flow in the conduits and the Darcy equation is used for the flow in the matrix. The Beavers-Joseph interface boundary conditions are adopted to describe the flow exchange at the interface boundary between the two domains. A laboratory analog is used to simulate the conduit and matrix domains of a karst aquifer. The conduit domain is located at the bottom of the transparent plexiglas laboratory analog and glass beads occupy the remaining space to represent the matrix domain. Water flows into and out of the two domains separately and each has its own supply and outflow reservoirs. Water and solute are exchanged through an interface between the two domains. Pressure transducers located within the matrix and conduit domains of the analog provide data that is processed and stored in digital format. Dye tracing experiments are recorded using time-lapse imaging. The data and images produced are analyzed by a spatial analysis program. The experiments provide not only hydraulic head distribution but also capture solute front images and mass exchange measurements between the conduit and matrix domains. In the experiment, we measure and record pressures, and quantify flow rates and solute transport. The results present a plausible argument that laboratory analogs can characterize groundwater water flow, solute transport, and mass exchange between the conduit and matrix domains in a karst aquifer. The analog validates the predictions of a numerical model and demonstrates the need of laboratory analogs to provide verification of proposed theories and the calibration of mathematical models.

  7. Topological domain walls in helimagnets

    NASA Astrophysics Data System (ADS)

    Schoenherr, P.; Müller, J.; Köhler, L.; Rosch, A.; Kanazawa, N.; Tokura, Y.; Garst, M.; Meier, D.

    2018-05-01

    Domain walls naturally arise whenever a symmetry is spontaneously broken. They interconnect regions with different realizations of the broken symmetry, promoting structure formation from cosmological length scales to the atomic level1,2. In ferroelectric and ferromagnetic materials, domain walls with unique functionalities emerge, holding great promise for nanoelectronics and spintronics applications3-5. These walls are usually of Ising, Bloch or Néel type and separate homogeneously ordered domains. Here we demonstrate that a wide variety of new domain walls occurs in the presence of spatially modulated domain states. Using magnetic force microscopy and micromagnetic simulations, we show three fundamental classes of domain walls to arise in the near-room-temperature helimagnet iron germanium. In contrast to conventional ferroics, the domain walls exhibit a well-defined inner structure, which—analogous to cholesteric liquid crystals—consists of topological disclination and dislocation defects. Similar to the magnetic skyrmions that form in the same material6,7, the domain walls can carry a finite topological charge, permitting an efficient coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new family of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.

  8. Conduit Stability and Collapse in Explosive Volcanic Eruptions: Coupling Conduit Flow and Failure Models

    NASA Astrophysics Data System (ADS)

    Mullet, B.; Segall, P.

    2017-12-01

    Explosive volcanic eruptions can exhibit abrupt changes in physical behavior. In the most extreme cases, high rates of mass discharge are interspaced by dramatic drops in activity and periods of quiescence. Simple models predict exponential decay in magma chamber pressure, leading to a gradual tapering of eruptive flux. Abrupt changes in eruptive flux therefore indicate that relief of chamber pressure cannot be the only control of the evolution of such eruptions. We present a simplified physics-based model of conduit flow during an explosive volcanic eruption that attempts to predict stress-induced conduit collapse linked to co-eruptive pressure loss. The model couples a simple two phase (gas-melt) 1-D conduit solution of the continuity and momentum equations with a Mohr-Coulomb failure condition for the conduit wall rock. First order models of volatile exsolution (i.e. phase mass transfer) and fragmentation are incorporated. The interphase interaction force changes dramatically between flow regimes, so smoothing of this force is critical for realistic results. Reductions in the interphase force lead to significant relative phase velocities, highlighting the deficiency of homogenous flow models. Lateral gas loss through conduit walls is incorporated using a membrane-diffusion model with depth dependent wall rock permeability. Rapid eruptive flux results in a decrease of chamber and conduit pressure, which leads to a critical deviatoric stress condition at the conduit wall. Analogous stress distributions have been analyzed for wellbores, where much work has been directed at determining conditions that lead to wellbore failure using Mohr-Coulomb failure theory. We extend this framework to cylindrical volcanic conduits, where large deviatoric stresses can develop co-eruptively leading to multiple distinct failure regimes depending on principal stress orientations. These failure regimes are categorized and possible implications for conduit flow are discussed, including

  9. Conduit enlargement in an eogenetic karst aquifer

    NASA Astrophysics Data System (ADS)

    Moore, Paul J.; Martin, Jonathan B.; Screaton, Elizabeth J.; Neuhoff, Philip S.

    2010-11-01

    SummaryMost concepts of conduit development have focused on telogenetic karst aquifers, where low matrix permeability focuses flow and dissolution along joints, fractures, and bedding planes. However, conduits also exist in eogenetic karst aquifers, despite high matrix permeability which accounts for a significant component of flow. This study investigates dissolution within a 6-km long conduit system in the eogenetic Upper Floridan aquifer of north-central Florida that begins with a continuous source of allogenic recharge at the Santa Fe River Sink and discharges from a first-magnitude spring at the Santa Fe River Rise. Three sources of water to the conduit include the allogenic recharge, diffuse recharge through epikarst, and mineralized water upwelling from depth. Results of sampling and inverse modeling using PHREEQC suggest that dissolution within the conduit is episodic, occurring only during 30% of 16 sampling times between March 2003 and April 2007. During low flow conditions, carbonate saturated water flows from the matrix to the conduit, restricting contact between undersaturated allogenic water with the conduit wall. When gradients reverse during high flow conditions, undersaturated allogenic recharge enters the matrix. During these limited periods, estimates of dissolution within the conduit suggest wall retreat averages about 4 × 10 -6 m/day, in agreement with upper estimates of maximum wall retreat for telogenetic karst. Because dissolution is episodic, time-averaged dissolution rates in the sink-rise system results in a wall retreat rate of about 7 × 10 -7 m/day, which is at the lower end of wall retreat for telogenetic karst. Because of the high permeability matrix, conduits in eogenetic karst thus enlarge not just at the walls of fractures or pre-existing conduits such as those in telogenetic karst, but also may produce a friable halo surrounding the conduits that may be removed by additional mechanical processes. These observations stress the

  10. Visualizing domain wall and reverse domain superconductivity.

    PubMed

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  11. Visualizing domain wall and reverse domain superconductivity

    PubMed Central

    Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.

    2014-01-01

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004

  12. Skyrmions from Instantons inside Domain Walls

    NASA Astrophysics Data System (ADS)

    Eto, Minoru; Nitta, Muneto; Ohashi, Keisuke; Tong, David

    2005-12-01

    Some years ago, Atiyah and Manton described a method to construct approximate Skyrmion solutions from Yang-Mills instantons. Here we present a dynamical realization of this construction using domain walls in a five-dimensional gauge theory. The non-Abelian gauge symmetry is broken in each vacuum but restored in the core of the domain wall, allowing instantons to nestle inside the wall. We show that the world volume dynamics of the wall is given by the Skyrme model, including the four-derivative term, and the instantons appear as domain wall Skyrmions.

  13. Curvature-induced domain wall pinning

    NASA Astrophysics Data System (ADS)

    Yershov, Kostiantyn V.; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri

    2015-09-01

    It is shown that a local bend of a nanowire is a source of pinning potential for a transversal head-to-head (tail-to-tail) domain wall. Eigenfrequency of the domain wall free oscillations at the pinning potential and the effective friction are determined as functions of the curvature and domain wall width. The pinning potential originates from the effective curvature-induced Dzyaloshinsky-like term in the exchange energy. The theoretical results are verified by means of micromagnetic simulations for the case of parabolic shape of the wire bend.

  14. Effective description of domain wall strings

    NASA Astrophysics Data System (ADS)

    Rodrigues, Davi R.; Abanov, Ar.; Sinova, J.; Everschor-Sitte, K.

    2018-04-01

    The analysis of domain wall dynamics is often simplified to one-dimensional physics. For domain walls in thin films, more realistic approaches require the description as two-dimensional objects. This includes the study of vortices and curvatures along the domain walls as well as the influence of boundary effects. Here we provide a theory in terms of soft modes that allows us to analytically study the physics of extended domain walls and their stability. By considering irregularly shaped skyrmions as closed domain walls, we analyze their plasticity and compare their dynamics with those of circular skyrmions. Our theory directly provides an analytical description of the excitation modes of magnetic skyrmions, previously accessible only through sophisticated micromagnetic numerical calculations and spectral analysis. These analytical expressions provide the scaling behavior of the different physics on parameters that experiments can test.

  15. Robust ferromagnetism carried by antiferromagnetic domain walls

    NASA Astrophysics Data System (ADS)

    Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji

    2017-02-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.

  16. Robust ferromagnetism carried by antiferromagnetic domain walls

    PubMed Central

    Hirose, Hishiro T.; Yamaura, Jun-ichi; Hiroi, Zenji

    2017-01-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics. PMID:28195565

  17. Design of barrier coatings on kink-resistant peripheral nerve conduits

    PubMed Central

    Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva; Ezra, Mindy; Pastore, Christopher M; Kohn, Joachim

    2016-01-01

    Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery. PMID:26977288

  18. Shear stress along the conduit wall as a plausible source of tilt at Soufrière Hills volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Green, D. N.; Neuberg, J.; Cayol, V.

    2006-05-01

    Surface deformations recorded in close proximity to the active lava dome at Soufrière Hills volcano, Montserrat, can be used to infer stresses within the uppermost 1000 m of the conduit system. Most deformation source models consider only isotropic pressurisation of the conduit. We show that tilt recorded during rapid magma extrusion in 1997 could have also been generated by shear stresses sustained along the conduit wall; these stresses are a consequence of pressure gradients that develop along the conduit. Numerical modelling, incorporating realistic topography, can reproduce both the morphology and half the amplitude of the measured deformation field using a realistic shear stress amplitude, equivalent to a pressure gradient of 3.5 × 104 Pa m-1 along a 1000 m long conduit with a 15 m radius. This shear stress model has advantages over the isotropic pressure models because it does not require either physically unattainable overpressures or source radii larger than 200 m to explain the same deformation.

  19. Velocity Enhancement by Synchronization of Magnetic Domain Walls

    NASA Astrophysics Data System (ADS)

    Hrabec, Aleš; Křižáková, Viola; Pizzini, Stefania; Sampaio, João; Thiaville, André; Rohart, Stanislas; Vogel, Jan

    2018-06-01

    Magnetic domain walls are objects whose dynamics is inseparably connected to their structure. In this Letter, we investigate magnetic bilayers, which are engineered such that a coupled pair of domain walls, one in each layer, is stabilized by a cooperation of Dzyaloshinskii-Moriya interaction and flux-closing mechanism. The dipolar field mediating the interaction between the two domain walls links not only their position but also their structure. We show that this link has a direct impact on their magnetic-field-induced dynamics. We demonstrate that in such a system the coupling leads to an increased domain wall velocity with respect to single domain walls. Since the domain wall dynamics is observed in a precessional regime, the dynamics involves the synchronization between the two walls to preserve the flux closure during motion. Properties of these coupled oscillating walls can be tuned by an additional in-plane magnetic field enabling a rich variety of states, from perfect synchronization to complete detuning.

  20. Magnetization reversal in ferromagnetic spirals via domain wall motion

    NASA Astrophysics Data System (ADS)

    Schumm, Ryan D.; Kunz, Andrew

    2016-11-01

    Domain wall dynamics have been investigated in a variety of ferromagnetic nanostructures for potential applications in logic, sensing, and recording. We present a combination of analytic and simulated results describing the reliable field driven motion of a domain wall through the arms of a ferromagnetic spiral nanowire. The spiral geometry is capable of taking advantage of the benefits of both straight and circular wires. Measurements of the in-plane components of the spirals' magnetization can be used to determine the angular location of the domain wall, impacting the magnetoresistive applications dependent on the domain wall location. The spirals' magnetization components are found to depend on the spiral parameters: the initial radius and spacing between spiral arms, along with the domain wall location. The magnetization is independent of the parameters of the rotating field used to move the domain wall, and therefore the model is valid for current induced domain wall motion as well. The speed of the domain wall is found to depend on the frequency of the rotating driving field, and the domain wall speeds can be reliably varied over several orders of magnitude. We further demonstrate a technique capable of injecting multiple domain walls and show the reliable and unidirectional motion of domain walls through the arms of the spiral.

  1. The formation and evolution of domain walls

    NASA Technical Reports Server (NTRS)

    Press, William H.; Ryden, Barbara S.; Spergel, David N.

    1991-01-01

    Domain walls are sheet-like defects produced when the low energy vacuum has isolated degenerate minima. The researchers' computer code follows the evolution of a scalar field, whose dynamics are determined by its Lagrangian density. The topology of the scalar field determines the evolution of the domain walls. This approach treats both wall dynamics and reconnection. The researchers investigated not only potentials that produce single domain walls, but also potentials that produce a network of walls and strings. These networks arise in axion models where the U(1) Peccei-Quinn symmetry is broken into Z sub N discrete symmetries. If N equals 1, the walls are bounded by strings and the network quickly disappears. For N greater than 1, the network of walls and strings behaved qualitatively just as the wall network shown in the figures given here. This both confirms the researchers' pessimistic view that domain walls cannot play an important role in the formation of large scale structure and implies that axion models with multiple minimum can be cosmologically disastrous.

  2. Functional electronic inversion layers at ferroelectric domain walls

    NASA Astrophysics Data System (ADS)

    Mundy, J. A.; Schaab, J.; Kumagai, Y.; Cano, A.; Stengel, M.; Krug, I. P.; Gottlob, D. M.; Doğanay, H.; Holtz, M. E.; Held, R.; Yan, Z.; Bourret, E.; Schneider, C. M.; Schlom, D. G.; Muller, D. A.; Ramesh, R.; Spaldin, N. A.; Meier, D.

    2017-06-01

    Ferroelectric domain walls hold great promise as functional two-dimensional materials because of their unusual electronic properties. Particularly intriguing are the so-called charged walls where a polarity mismatch causes local, diverging electrostatic potentials requiring charge compensation and hence a change in the electronic structure. These walls can exhibit significantly enhanced conductivity and serve as a circuit path. The development of all-domain-wall devices, however, also requires walls with controllable output to emulate electronic nano-components such as diodes and transistors. Here we demonstrate electric-field control of the electronic transport at ferroelectric domain walls. We reversibly switch from resistive to conductive behaviour at charged walls in semiconducting ErMnO3. We relate the transition to the formation--and eventual activation--of an inversion layer that acts as the channel for the charge transport. The findings provide new insight into the domain-wall physics in ferroelectrics and foreshadow the possibility to design elementary digital devices for all-domain-wall circuitry.

  3. Correlation between spin structure oscillations and domain wall velocities

    PubMed Central

    Bisig, André; Stärk, Martin; Mawass, Mohamad-Assaad; Moutafis, Christoforos; Rhensius, Jan; Heidler, Jakoba; Büttner, Felix; Noske, Matthias; Weigand, Markus; Eisebitt, Stefan; Tyliszczak, Tolek; Van Waeyenberge, Bartel; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2013-01-01

    Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. Here we use direct dynamic imaging of the nanoscale spin structure that allows us for the first time to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes. We show that the extrinsic pinning from imperfections in the nanowire only affects slow domain walls and we identify the magnetostatic energy, which scales with the domain wall velocity, as the energy reservoir for the domain wall to overcome the local pinning potential landscape. PMID:23978905

  4. Tunable inertia of chiral magnetic domain walls

    PubMed Central

    Torrejon, Jacob; Martinez, Eduardo; Hayashi, Masamitsu

    2016-01-01

    The time it takes to accelerate an object from zero to a given velocity depends on the applied force and the environment. If the force ceases, it takes exactly the same time to completely decelerate. A magnetic domain wall is a topological object that has been observed to follow this behaviour. Here we show that acceleration and deceleration times of chiral Neel walls driven by current are different in a system with low damping and moderate Dzyaloshinskii–Moriya exchange constant. The time needed to accelerate a domain wall with current via the spin Hall torque is much faster than the time it needs to decelerate once the current is turned off. The deceleration time is defined by the Dzyaloshinskii–Moriya exchange constant whereas the acceleration time depends on the spin Hall torque, enabling tunable inertia of chiral domain walls. Such unique feature of chiral domain walls can be utilized to move and position domain walls with lower current, key to the development of storage class memory devices. PMID:27882932

  5. Geometrical Dependence of Domain-Wall Propagation and Nucleation Fields in Magnetic-Domain-Wall Sensors

    NASA Astrophysics Data System (ADS)

    Borie, B.; Kehlberger, A.; Wahrhusen, J.; Grimm, H.; Kläui, M.

    2017-08-01

    We study the key domain-wall properties in segmented nanowire loop-based structures used in domain-wall-based sensors. The two reasons for device failure, namely, distribution of the domain-wall propagation field (depinning) and the nucleation field are determined with magneto-optical Kerr effect and giant-magnetoresistance (GMR) measurements for thousands of elements to obtain significant statistics. Single layers of Ni81 Fe19 , a complete GMR stack with Co90 Fe10 /Ni81Fe19 as a free layer, and a single layer of Co90 Fe10 are deposited and industrially patterned to determine the influence of the shape anisotropy, the magnetocrystalline anisotropy, and the fabrication processes. We show that the propagation field is influenced only slightly by the geometry but significantly by material parameters. Simulations for a realistic wire shape yield a curling-mode type of magnetization configuration close to the nucleation field. Nonetheless, we find that the domain-wall nucleation fields can be described by a typical Stoner-Wohlfarth model related to the measured geometrical parameters of the wires and fitted by considering the process parameters. The GMR effect is subsequently measured in a substantial number of devices (3000) in order to accurately gauge the variation between devices. This measurement scheme reveals a corrected upper limit to the nucleation fields of the sensors that can be exploited for fast characterization of the working elements.

  6. Axion domain wall baryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu, E-mail: daido@tuhep.phys.tohoku.ac.jp, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2015-07-01

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m ≅ 10{sup 8}–10{sup 13} GeV and f ≅ 10{sup 13}–10{sup 16} GeV . Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domainmore » wall annihilation and its implications for the future gravitational wave experiments.« less

  7. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Bai, Zi Long; Chen, Zhi Hui; He, Long; Zhang, David Wei; Zhang, Qing Hua; Shi, Jin An; Park, Min Hyuk; Scott, James F.; Hwang, Cheol Seong; Jiang, An Quan

    2018-01-01

    Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO3 thin films formed in mesa-geometry structures. Partially switched domains, which enable the formation of conductive walls during the read operation, spontaneously retract when the read voltage is removed, reducing the accumulation of mobile defects at the domain walls and potentially improving the device stability. Three-terminal memory devices produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 85 °C. The gap length can also be smaller than the film thickness, allowing the realization of ferroelectric memories with device dimensions far below 100 nm.

  8. Domain walls in single-chain magnets

    NASA Astrophysics Data System (ADS)

    Pianet, Vivien; Urdampilleta, Matias; Colin, Thierry; Clérac, Rodolphe; Coulon, Claude

    2017-12-01

    The topology and creation energy of domain walls in different magnetic chains (called Single-Chain Magnets or SCMs) are discussed. As these domain walls, that can be seen as "defects", are known to control both static and dynamic properties of these one-dimensional systems, their study and understanding are necessary first steps before a deeper discussion of the SCM properties at finite temperature. The starting point of the paper is the simple regular ferromagnetic chain for which the characteristics of the domain walls are well known. Then two cases will be discussed (i) the "mixed chains" in which isotropic and anisotropic classical spins alternate, and (ii) the so-called "canted chains" where two different easy axis directions are present. In particular, we show that "strictly narrow" domain walls no longer exist in these more complex cases, while a cascade of phase transitions is found for canted chains as the canting angle approaches 45∘. The consequence for thermodynamic properties is briefly discussed in the last part of the paper.

  9. Impact of Age and Aerobic Exercise Training on Conduit Artery Wall Thickness: Role of the Shear Pattern.

    PubMed

    Tanahashi, Koichiro; Kosaki, Keisei; Sawano, Yuriko; Yoshikawa, Toru; Tagawa, Kaname; Kumagai, Hiroshi; Akazawa, Nobuhiko; Maeda, Seiji

    2017-01-01

    Hemodynamic shear stress is the frictional force of blood on the arterial wall. The shear pattern in the conduit artery affects the endothelium and may participate in the development and progression of atherosclerosis. We investigated the role of the shear pattern in age- and aerobic exercise-induced changes in conduit artery wall thickness via cross-sectional and interventional studies. In a cross-sectional study, we found that brachial shear rate patterns and brachial artery intima-media thickness (IMT) correlated with age. Additionally, brachial artery shear rate patterns were associated with brachial artery IMT in 102 middle-aged and older individuals. In an interventional study, 39 middle-aged and older subjects were divided into 2 groups: control and exercise. The exercise group completed 12 weeks of aerobic exercise training. Aerobic exercise training significantly increased the antegrade shear rate and decreased the retrograde shear rate and brachial artery IMT. Moreover, changes in the brachial artery antegrade shear rate and the retrograde shear rate correlated with the change in brachial artery IMT. The results of the present study indicate that changes in brachial artery shear rate patterns may contribute to age- and aerobic exercise training-induced changes in brachial artery wall thickness. © 2017 S. Karger AG, Basel.

  10. Magnetic domain wall shift registers for data storage applications

    NASA Astrophysics Data System (ADS)

    Read, Dan; O'Brien, L.; Zeng, H. T.; Lewis, E. R.; Petit, D.; Sampaio, J.; Thevenard, L.; Cowburn, R. P.

    2009-03-01

    Data storage devices based on magnetic domain walls (DWs) propagating through permalloy (Py) nanowires have been proposed [Allwood et al. Science 309, 1688 (2005), S. S. Parkin, US Patent 6,834,005 (2004)] and have attracted a great deal of attention. We experimentally demonstrate such a device using shift registers constructed from magnetic NOT gates used in combination with a globally applied rotating magnetic field. We have demonstrated data writing, propagation, and readout in individually addressable Py nanowires 90 nm wide and 10 nm thick. Electrical data writing is achieved using the Oersted field due to current pulses in gold stripes (4 μm wide, 150 nm thick), patterned on top of and perpendicular to the nanowires. The conduit-like properties of the nanowires allow the propagation of data sequences over distances greater than 100 μm. Using spatially resolved magneto-optical Kerr effect (MOKE) measurements we can directly detect the propagation of single DWs in individual nanostructures without requiring data averaging. Electrical readout was demonstrated by detecting the presence of DWs at deliberately introduced pinning sites in the wire.

  11. Ferroelectric domain wall motion induced by polarized light

    PubMed Central

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F.

    2015-01-01

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO3 single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO3 at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918

  12. Domain wall conductivity in KTiOPO4 crystals

    NASA Astrophysics Data System (ADS)

    Lindgren, G.; Canalias, C.

    2017-07-01

    We study the local ionic conductivity of ferroelectric domain walls and domains in KTiOPO4 single-crystals. We show a fourfold increase in conductivity at the domain walls, compared to that of the domains, attributed to an increased concentration of defects. Our current-voltage measurements reveal memristive-like behavior associated with topographic changes and permanent charge displacement. This behavior is observed for all the voltage sweep-rates at the domain walls, while it only occurs for low frequencies at the domains. We attribute these findings to the redistribution of ions due to the applied bias and their effect on the tip-sample barrier.

  13. Domain wall remote pinning in magnetic nano wires

    NASA Astrophysics Data System (ADS)

    Read, Dan; Miguel, Jorge; Maccherozzi, Francesco; Cavill, Stuart; Dhesi, Sarnjeet; Cardiff University Collaboration; Diamond Light Source Collaboration

    2013-03-01

    In the current race for information storage media with ever increasing density the position of magnetic domain walls, the region in a magnetic system where the local magnetization continually rotates its direction between adjacent magnetic domains, is one of the most promising routes for future storage media devices. Information storage requires ultrafast read-out and writing operations, but domain walls need to be pinned so that the information is safely stored in the long term. Here we investigate the use of remote magnetostatic charges to trap domain walls. By using X-ray photoelectron emission microscopy we have followed the position of domain walls of opposite charge being pinned or repelled by pinning potentials of increasing strength. Micromagnetic simulations show an excellent agreement with the experimental results. We demonstrate the attractive or repulsive character of the interaction between domain wall and trap depending upon the sign of their magnetic charges. These quasi-static experiments are the antecedent to ultrafast time-resolved XMCD-PEEM experiments where the spin-transfer torque effect will be studied dynamically by applying picosecond-long current pulses across the magnetic nanowire.

  14. Domain walls and ferroelectric reversal in corundum derivatives

    NASA Astrophysics Data System (ADS)

    Ye, Meng; Vanderbilt, David

    2017-01-01

    Domain walls are the topological defects that mediate polarization reversal in ferroelectrics, and they may exhibit quite different geometric and electronic structures compared to the bulk. Therefore, a detailed atomic-scale understanding of the static and dynamic properties of domain walls is of pressing interest. In this work, we use first-principles methods to study the structures of 180∘ domain walls, both in their relaxed state and along the ferroelectric reversal pathway, in ferroelectrics belonging to the family of corundum derivatives. Our calculations predict their orientation, formation energy, and migration energy and also identify important couplings between polarization, magnetization, and chirality at the domain walls. Finally, we point out a strong empirical correlation between the height of the domain-wall-mediated polarization reversal barrier and the local bonding environment of the mobile A cations as measured by bond-valence sums. Our results thus provide both theoretical and empirical guidance for future searches for ferroelectric candidates in materials of the corundum derivative family.

  15. Domain wall formation in late-time phase transitions

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Wang, Yun

    1992-01-01

    We examine domain wall formulation in late time phase transitions. We find that in the invisible axion domain wall phenomenon, thermal effects alone are insufficient to drive different parts of the disconnected vacuum manifold. This suggests that domain walls do not form unless either there is some supplemental (but perhaps not unreasonable) dynamics to localize the scalar field responsible for the phase transition to the low temperature maximum (to an extraordinary precision) before the onset of the phase transition, or there is some non-thermal mechanism to produce large fluctuations in the scalar field. The fact that domain wall production is not a robust prediction of late time transitions may suggest future directions in model building.

  16. Domain walls and ferroelectric reversal in corundum derivatives

    NASA Astrophysics Data System (ADS)

    Ye, Meng; Vanderbilt, David

    Domain walls are the topological defects that mediate polarization reversal in ferroelectrics, and they may exhibit quite different geometric and electronic structures compared to the bulk. Therefore, a detailed atomic-scale understanding of the static and dynamic properties of domain walls is of pressing interest. In this work, we use first-principles methods to study the structures of 180° domain walls, both in their relaxed state and along the ferroelectric reversal pathway, in ferroelectrics belonging to the family of corundum derivatives. Our calculations predict their orientation, formation energy, and migration energy, and also identify important couplings between polarization, magnetization, and chirality at the domain walls. Finally, we point out a strong empirical correlation between the height of the domain-wall mediated polarization reversal barrier and the local bonding environment of the mobile A cations as measured by bond valence sums. Our results thus provide both theoretical and empirical guidance to further search for ferroelectric candidates in materials of the corundum derivative family. The work is supported by ONR Grant N00014-12-1-1035.

  17. Rise of a variable-viscosity fluid in a steadily spreading wedge-shaped conduit with accreting walls

    USGS Publications Warehouse

    Lachenbruch, Arthur H.; Nathenson, Manuel

    1976-01-01

    Relatively rigid plates making up the outer 50 to 100 km of the Earth are steadily separating from one another along narrow globe-circling zones of submarine volcanism, the oceanic spreading centers. Continuity requires that the viscous underlying material rise beneath spreading centers and accrete onto the steadily diverging plates. It is likely that during the rise the viscosity changes systematically and that the viscous tractions exerted on the plates contribute to the unique pattern of submarine mountains and earthquake faults observed at spreading centers. The process is modeled by viscous creep in a wedge-shaped conduit (with apex at the sea floor) in which the viscosity varies as rm where r is distance from the apex and m is a parameter. For these conditions, the governing differential equations take a simple form. The solution for the velocity is independent of r and of the sign of m. As viscous stresses vary as rm-1, the pattern of stress on the conduit wall is sensitive to viscosity variation. For negative m, the viscous pressure along the base of the conduit is quite uniform; for positive m, it falls toward zero in the axial region as the conduit base widens. For small opening angles, viscous forces push the plates apart, and for large ones, they oppose plate separation. Though highly idealized, the solution provides a tool for investigating tectonic processes at spreading centers.

  18. Field enhancement of electronic conductance at ferroelectric domain walls

    DOE PAGES

    Vasudevan, Rama K.; Cao, Ye; Laanait, Nouamane; ...

    2017-11-06

    Ferroelectric domain walls have continued to attract widespread attention due to both the novelty of the phenomena observed and the ability to reliably pattern them in nanoscale dimensions. But, the conductivity mechanisms remain in debate, particularly around nominally uncharged walls. Here, we posit a conduction mechanism relying on field-modification effect from polarization re-orientation and the structure of the reverse-domain nucleus. Through conductive atomic force microscopy measurements on an ultra-thin (001) BiFeO 3 thin film, in combination with phase-field simulations, we show that the field-induced twisted domain nucleus formed at domain walls results in local-field enhancement around the region of themore » atomic force microscope tip. In conjunction with slight barrier lowering, these two effects are sufficient to explain the observed emission current distribution. Our results suggest that different electronic properties at domain walls are not necessary to observe localized enhancement in domain wall currents.« less

  19. Investigation of Ferroelectric Domain Walls by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stone, Gregory A.

    Ferroelectric materials are characterized by an intrinsic spontaneous electric dipole moment that can be manipulated by the application of an electric field. Regions inside the crystal, known as domains, can have the spontaneous dipole moments oriented in a different direction than the surrounding crystal. Due to favorable piezoelectric, pyroelectric, electro-optic, and nonlinear optical properties, ferroelectric materials are attractive for commercial applications. Many devices, such as nonlinear frequency converters, require precisely engineered domain patterns. The properties of domains and their boundaries, known as domain walls, are vital to the performance and limitations of these devices. As a result, ferroelectric domains and the domain walls have been the focus of many scientific studies. Despite all this work, questions remain regarding their properties. This work is aimed at developing a better understanding of the properties of the domain wall using confocal Raman spectroscopy. Raman spectra taken from domain walls in Lithium Niobate and Lithium Tantalate reveal two distinct changes in the Raman spectra: (1) Shifts in frequency of the bulk Raman modes, which persists over a range of 0.2-0.5 mu m from the domain wall. The absence of this effect in defect free stoichiometric Lithium Tantalate indicates that the shifts are related to defects inside the crystal. (2) The presence of Raman modes corresponding to phonons propagating orthogonal to the laser beam axis, which are not collected in the bulk crystal. The phonons also preferential propagate normal to the domain wall. These modes are detected up to 0.35 mum from the domain wall. The observation and separation of these effects was made possible by the optimized spatial resolution (0.23 mum) of a home-built scanning confocal microscope and the fact that degeneracy of the transverse and longitudinal phonon polarization is lifted by polar phonons in Lithium Niobate and Lithium Tantalate. Raman

  20. Domain walls in the extensions of the Standard Model

    NASA Astrophysics Data System (ADS)

    Krajewski, Tomasz; Lalak, Zygmunt; Lewicki, Marek; Olszewski, Paweł

    2018-05-01

    Our main interest is the evolution of domain walls of the Higgs field in the early Universe. The aim of this paper is to understand how dynamics of Higgs domain walls could be influenced by yet unknown interactions from beyond the Standard Model. We assume that the Standard Model is valid up to certain, high, energy scale Λ and use the framework of the effective field theory to describe physics below that scale. Performing numerical simulations with different values of the scale Λ we are able to extend our previous analysis [1]. Our recent numerical simulations show that evolution of Higgs domain walls is rather insensitive to interactions beyond the Standard Model as long as masses of new particles are grater than 1012 GeV. For lower values of Λ the RG improved effective potential is strongly modified at field strengths crucial to the evolution of domain walls. However, we find that even for low values of Λ, Higgs domain walls decayed shortly after their formation for generic initial conditions. On the other hand, in simulations with specifically chosen initial conditions Higgs domain walls can live longer and enter the scaling regime. We also determine the energy spectrum of gravitational waves produced by decaying domain walls of the Higgs field. For generic initial field configurations the amplitude of the signal is too small to be observed in planned detectors.

  1. Resonant tunneling across a ferroelectric domain wall

    NASA Astrophysics Data System (ADS)

    Li, M.; Tao, L. L.; Velev, J. P.; Tsymbal, E. Y.

    2018-04-01

    Motivated by recent experimental observations, we explore electron transport properties of a ferroelectric tunnel junction (FTJ) with an embedded head-to-head ferroelectric domain wall, using first-principles density-functional theory calculations. We consider a FTJ with L a0.5S r0.5Mn O3 electrodes separated by a BaTi O3 barrier layer and show that an in-plane charged domain wall in the ferroelectric BaTi O3 can be induced by polar interfaces. The resulting V -shaped electrostatic potential profile across the BaTi O3 layer creates a quantum well and leads to the formation of a two-dimensional electron gas, which stabilizes the domain wall. The confined electronic states in the barrier are responsible for resonant tunneling as is evident from our quantum-transport calculations. We find that the resonant tunneling is an orbital selective process, which leads to sharp spikes in the momentum- and energy-resolved transmission spectra. Our results indicate that domain walls embedded in FTJs can be used to control the electron transport.

  2. Phase transition solutions in geometrically constrained magnetic domain wall models

    NASA Astrophysics Data System (ADS)

    Chen, Shouxin; Yang, Yisong

    2010-02-01

    Recent work on magnetic phase transition in nanoscale systems indicates that new physical phenomena, in particular, the Bloch wall width narrowing, arise as a consequence of geometrical confinement of magnetization and leads to the introduction of geometrically constrained domain wall models. In this paper, we present a systematic mathematical analysis on the existence of the solutions of the basic governing equations in such domain wall models. We show that, when the cross section of the geometric constriction is a simple step function, the solutions may be obtained by minimizing the domain wall energy over the constriction and solving the Bogomol'nyi equation outside the constriction. When the cross section and potential density are both even, we establish the existence of an odd domain wall solution realizing the phase transition process between two adjacent domain phases. When the cross section satisfies a certain integrability condition, we prove that a domain wall solution always exists which links two arbitrarily designated domain phases.

  3. Solute Migration from the Aquifer Matrix into a Solution Conduit and the Reverse.

    PubMed

    Li, Guangquan; Field, Malcolm S

    2016-09-01

    A solution conduit has a permeable wall allowing for water exchange and solute transfer between the conduit and its surrounding aquifer matrix. In this paper, we use Laplace Transform to solve a one-dimensional equation constructed using the Euler approach to describe advective transport of solute in a conduit, a production-value problem. Both nonuniform cross-section of the conduit and nonuniform seepage at the conduit wall are considered in the solution. Physical analysis using the Lagrangian approach and a lumping method is performed to verify the solution. Two-way transfer between conduit water and matrix water is also investigated by using the solution for the production-value problem as a first-order approximation. The approximate solution agrees well with the exact solution if dimensionless travel time in the conduit is an order of magnitude smaller than unity. Our analytical solution is based on the assumption that the spatial and/or temporal heterogeneity in the wall solute flux is the dominant factor in the spreading of spring-breakthrough curves, and conduit dispersion is only a secondary mechanism. Such an approach can lead to the better understanding of water exchange and solute transfer between conduits and aquifer matrix. Euler and Lagrangian approaches are used to solve transport in conduit. Two-way transfer between conduit and matrix is investigated. The solution is applicable to transport in conduit of persisting solute from matrix. © 2016, National Ground Water Association.

  4. On thick domain walls in general relativity

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    Planar scalar field configurations in general relativity differ considerably from those in flat space. It is shown that static domain walls of finite thickness in curved space-time do not possess a reflection symmetry. At infinity, the space-time tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum (Rindler space-time) on the other. Massive test particles are always accelerated towards the Minkowski side, i.e., domain walls are attractive on the Taub side, but repulsive on the Minkowski side (Taub-vacuum cleaner). It is also proved that the pressure in all directions is always negative. Finally, a brief comment is made concerning the possibility of infinite, i.e., bigger than horizon size, domain walls in our universe. All of the results are independent of the form of the potential V(phi) greater than or equal to 0 of the scalar field phi.

  5. Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence

    PubMed Central

    Koyanagi, Kazuo; Ozawa, Soji; Oguma, Junya; Kazuno, Akihito; Yamazaki, Yasushi; Ninomiya, Yamato; Ochiai, Hiroki; Tachimori, Yuji

    2016-01-01

    Abstract Anastomotic leakage is considered as an independent risk factor for postoperative mortality after esophagectomy, and an insufficient blood flow in the reconstructed conduit may be a risk factor of anastomotic leakage. We investigated the clinical significance of blood flow visualization by indocyanine green (ICG) fluorescence in the gastric conduit as a means of predicting the leakage of esophagogastric anastomosis after esophagectomy. Forty patients who underwent an esophagectomy with gastric conduit reconstruction were prospectively investigated. ICG fluorescence imaging of the gastric conduit was detected by a near-infrared camera system during esophagectomy and correlated with clinical parameters or surgical outcomes. In 25 patients, the flow speed of ICG fluorescence in the gastric conduit wall was simultaneous with that of the greater curvature vessels (simultaneous group), whereas in 15 patients this was slower than that of the greater curvature vessels (delayed group). The reduced speed of ICG fluorescence stream in the gastric conduit wall was associated with intraoperative blood loss (P = 0.008). Although anastomotic leakage was not found in the simultaneous group, it occurred in 7 patients of the delayed group (P < 0.001). A flow speed of ICG fluorescence in the gastric conduit wall of 1.76 cm/s or less was determined by a receiver operating characteristic (ROC) curve, identified as a significant independent predictor of anastomotic leakage after esophagectomy (P = 0.004). This preliminary study demonstrates that intraoperative evaluation of blood flow speed by ICG fluorescence in the gastric conduit wall is a useful means to predict the risk of anastomotic leakage after esophagectomy. PMID:27472732

  6. Driving chiral domain walls in antiferromagnets using rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Pan, Keming; Xing, Lingdi; Yuan, H. Y.; Wang, Weiwei

    2018-05-01

    We show theoretically and numerically that an antiferromagnetic domain wall can be moved by a rotating magnetic field in the presence of Dzyaloshinskii-Moriya interaction (DMI). Two motion modes are found: rigid domain wall motion at low frequency (corresponding to the perfect frequency synchronization) and the oscillating motion at high frequency. In the full synchronized region, the steady velocity of the domain wall is universal, in the sense that it depends only on the frequency of the rotating field and the ratio between DMI strength and exchange constant. The domain wall velocity is independent of the Gilbert damping and the rotating field strength. Moreover, a rotating field in megahertz is sufficient to move the antiferromagnetic domain wall.

  7. Dispersive Stiffness of Dzyaloshinskii Domain Walls

    NASA Astrophysics Data System (ADS)

    Pellegren, J. P.; Lau, D.; Sokalski, V.

    2017-07-01

    It is well documented that subjecting perpendicular magnetic films that exhibit the interfacial Dzyaloshinskii-Moriya interaction to an in-plane magnetic field results in a domain wall (DW) energy σ , which is highly anisotropic with respect to the orientation of the DW in the film plane Θ . We demonstrate that this anisotropy has a profound impact on the elastic response of the DW as characterized by the surface stiffness σ ˜ (Θ )=σ (Θ )+σ''(Θ ) and evaluate its dependence on the length scale of deformation. The influence of stiffness on DW mobility in the creep regime is assessed, with analytic and numerical calculations showing trends in σ ˜ that better represent experimental measurements of domain wall velocity in magnetic thin films compared to σ alone. Our treatment provides experimental support for theoretical models of the mobility of anisotropic elastic manifolds and makes progress toward a more complete understanding of magnetic domain wall creep.

  8. Conduction at domain walls in oxide multiferroics

    NASA Astrophysics Data System (ADS)

    Seidel, J.; Martin, L. W.; He, Q.; Zhan, Q.; Chu, Y.-H.; Rother, A.; Hawkridge, M. E.; Maksymovych, P.; Yu, P.; Gajek, M.; Balke, N.; Kalinin, S. V.; Gemming, S.; Wang, F.; Catalan, G.; Scott, J. F.; Spaldin, N. A.; Orenstein, J.; Ramesh, R.

    2009-03-01

    Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO3. The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.

  9. Conduction at domain walls in oxide multiferroics.

    PubMed

    Seidel, J; Martin, L W; He, Q; Zhan, Q; Chu, Y-H; Rother, A; Hawkridge, M E; Maksymovych, P; Yu, P; Gajek, M; Balke, N; Kalinin, S V; Gemming, S; Wang, F; Catalan, G; Scott, J F; Spaldin, N A; Orenstein, J; Ramesh, R

    2009-03-01

    Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO(3). The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.

  10. Domain Wall Formation in Ferromagnetic Layers: An Ab Initio Study

    NASA Astrophysics Data System (ADS)

    Herper, Heike C.

    Domain walls are an inherent feature of ferromagnetic (FM) films consisting of layers with different magnetic orientations. Since FM films are used in electrical devices the question of the influence of domain walls on, e.g., the magnetoresistance has attracted much interest. Besides discussing the resistance contribution of domain walls, it is appropriate to study different types of domain walls and their energy of formation. The behaviour of domain walls is usually discussed within model calculations. In the present paper it is done within an ab initio Green's function technique for layered systems, i.e., the fully relativistic, spin-polarized screened Korringa-Kohn Rostoker method. Results are presented for fcc Co layers covered by two semi-infinite fcc Pt(001) bulk systems or by bulk fcc Co(001), respectively. The resistance, which is caused by the different types of domain walls is discussed within a Kubo-Greenwood approach considering Co(001)/Co24/Co(001) as an example.

  11. Conduit margin heating and deformation during the AD 1886 basaltic Plinian eruption at Tarawera volcano, New Zealand.

    PubMed

    Schauroth, Jenny; Wadsworth, Fabian B; Kennedy, Ben; von Aulock, Felix W; Lavallée, Yan; Damby, David E; Vasseur, Jérémie; Scheu, Bettina; Dingwell, Donald B

    During explosive eruptions, a suspension of gas and pyroclasts rises rapidly within a conduit. Here, we have analysed textures preserved in the walls of a pyroclastic feeder dyke of the AD 1886 Tarawera basaltic Plinian fissure eruption. The samples examined consist of basaltic ash and scoria plastered onto a conduit wall of a coherent rhyolite dome and a welded rhyolitic dome breccia. We examine the textural evidence for the response of the wall material, built of ∼75 vol.% glass and ∼25 vol.% crystals (pore-free equivalent), to mass movement in the adjacent conduit. In the rhyolitic wall material, we quantify the orientation and aspect ratio of biotite crystals as strain markers of simple shear deformation, and interpret juxtaposed regions of vesiculation and vesicle collapse as evidence of conduit wall heating. Systematic changes occur close to the margin: (1) porosity is highly variable, with areas locally vesiculated or densified, (2) biotite crystals are oriented with their long axis parallel to the margin, (3) the biotites have greater aspect ratios close to the margin and (4) the biotite crystals are fractured. We interpret the biotite phenocryst deformation to result from crystal fracture, rotation and cleavage-parallel bookcase translation. These textural observations are inferred to indicate mechanical coupling between the hot gas-ash jet and the conduit wall and reheating of wall rock rhyolite. We couple these observations with a simple 1D conductive heating model to show what minimum temperature the conduit wall needs to reach in order to achieve a temperature above the glass transition throughout the texturally-defined deformed zone. We propose that conduit wall heating and resulting deformation influences conduit margin outgassing and may enhance the intensity of such large basaltic eruptions.

  12. Spin-wave-driven high-speed domain-wall motions in soft magnetic nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jaehak; Yoo, Myoung-Woo; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr

    We report on a micromagnetic simulation study of interactions between propagating spin waves and a head-to-head domain wall in geometrically confined magnetic nanotubes. We found that incident spin waves of specific frequencies can lead to sufficiently high-speed (on the order of a few hundreds of m/s or higher) domain-wall motions in the same direction as that of the incident spin-waves. The domain-wall motions and their speed vary remarkably with the frequency and the amplitude of the incident spin-waves. High-speed domain-wall motions originate from the transfer torque of spin waves' linear momentum to the domain wall, through the partial or completemore » reflection of the incident spin waves from the domain wall. This work provides a fundamental understanding of the interaction of the spin waves with a domain wall in the magnetic nanotubes as well as a route to all-magnetic control of domain-wall motions in the magnetic nanoelements.« less

  13. Magnetic domain walls as reconfigurable spin-wave nano-channels

    NASA Astrophysics Data System (ADS)

    Wagner, Kai

    Research efforts to utilize spin waves as information carriers for wave based logic in micro- and nano-structured ferromagnetic materials have increased tremendously over the recent years. However, finding efficient means of tailoring and downscaling guided spin-wave propagation in two dimensions, while maintaining energy efficiency and reconfigurability, still remains a delicate challenge. Here we target these challenges by spin-wave transport inside nanometer-scaled potential wells formed along magnetic domain walls. For this, we investigate the magnetization dynamics of a rectangular-like element in a Landau state exhibiting a so called 180° Néel wall along its center. By microwave antennae the rf-excitation is constricted to one end of the domain wall and the spin-wave intensities are recorded by means of Brillouin-Light Scattering microscopy revealing channeled transport. Additional micromagnetic simulations with pulsed as well as cw-excitation are performed to yield further insight into this class of modes. We find several spin-wave modes quantized along the width of the domain wall yet with well defined wave vectors along the wall, exhibiting positive dispersion. In a final step, we demonstrate the flexibility of these spin-wave nano-channels based on domain walls. In contrast to wave guides realised by fixed geometries, domain walls can be easily manipulated. Here we utilize small external fields to control its position with nanometer precision over a micrometer range, while still enabling transport. Domain walls thus, open the perspective for reprogrammable and yet non-volatile spin-wave waveguides of nanometer width. Financial support by the Deutsche Forschungsgemeinschaft within project SCHU2922/1-1 is gratefully acknowledged.

  14. Excitations of interface pinned domain walls in constrained geometries

    NASA Astrophysics Data System (ADS)

    Martins, S. M. S. B.; Oliveira, L. L.; Rebouças, G. O. G.; Dantas, Ana L.; Carriço, A. S.

    2018-05-01

    We report a theoretical investigation of the equilibrium pattern and the spectra of head-to-head and Neel domain walls of flat Fe and Py stripes, exchange coupled with a vicinal antiferromagnetic substrate. We show that the domain wall excitation spectrum is tunable by the strength of the interface field. Furthermore, strong interface coupling favors localized wall excitations.

  15. Ferroelectricity of domain walls in rare earth iron garnet films.

    PubMed

    Popov, A I; Zvezdin, K A; Gareeva, Z V; Mazhitova, F A; Vakhitov, R M; Yumaguzin, A R; Zvezdin, A K

    2016-11-16

    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  16. Hawking radiation from a Reisner-Nordström domain wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, Eric, E-mail: esg3@buffalo.edu

    2010-01-01

    We investigate the effect on the Hawking radiation given off during the time of collapse of a Reisner-Nordström domain wall. Using the functional Schrödinger formalism we are able to probe the time-dependent regime, which is out of the reach of the standard approximations like the Bogolyubov method. We calculate the occupation number of particles for a scalar field and complex scalar field. We demonstrate that the particles from the scalar field are unaffected by the charge of the Reisner-Nordström domain wall, as is expected since the scalar field doesn't carry any charge, which would couple to the charge of themore » Reisner-Nordström domain wall. Here the situation effectively reduces to the uncharged case, a spherically symmetric domain wall. To take the charge into account, we consider the complex scalar field which represents charged particles and anti-particles. Here investigate two different cases, first the non-extremal case and second the extremal case. In the non-extremal case we demonstrate that when the particle (anti-particle) carries charge opposite to that of the domain wall, the occupation number becomes suppressed during late times of the collapse. Therefore the dominate occupation number is when the particle (anti-particle) carries the same charge as the domain wall, as expected due to the Coulomb potential carried by the domain walls. In the extremal case we demonstrate that as time increases the temperature of the radiation decreases until when the domain wall reaches the horizon and the temperature then goes to zero. This is in agreement with the Hawking temperature for charged black holes.« less

  17. Textural domain walls in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Mizushima, Takeshi

    Owing to the richness of symmetry, the superfluid 3He serves as a rich repository of topological quantum phenomena. This includes the emergence of surface Majorana fermions and their quantum mass acquisition at the topological critical point. Furthermore, the marriage of the prototype topological superfluid with nanofabrication techniques brings about a rich variety of spontaneous symmetry breaking, such as the formation of the stripe order and nontrivial domain walls. In this work, we examine the possible formation of textural domain walls in the superfluid 3He-B confined to a thin slab with a sub-micron thickness. When an applied magnetic field is much higher than the dipolar field, two nearly degenerate ground states appear, which are characterized by the Ising order associated with the spontaneous breaking of a magnetic order-two symmetry, lcirc;z = + 1 and - 1 . We here discuss the structure of the textural domain wall formed by the spatial modulation of the Ising order, such as low-lying quasiparticle excitations and spontaneous spin current. We also report bosonic modes bound to the textural domain wall.

  18. Apparatus for controlling fluid flow in a conduit wall

    DOEpatents

    Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.

    2003-05-13

    A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

  19. The Mobius domain wall fermion algorithm

    DOE PAGES

    Brower, Richard C.; Neff, Harmut; Orginos, Kostas

    2017-07-22

    We present a review of the properties of generalized domain wall Fermions, based on a (real) Möbius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass (m res) and the Ward–Takahashi identities. The Möbius class interpolates between Shamir’s domain wall operator and Boriçi’s domain wall implementation of Neuberger’s overlap operator without increasing the number of Dirac applications per conjugate gradient iteration. A new scaling parameter (α) reduces chiral violations at finite fifth dimension (L s) but yields exactly the same overlap action in the limit L s →more » ∞ . Through the use of 4d Red/Black preconditioning and optimal tuning for the scaling α(L s), we show that chiral symmetry violations are typically reduced by an order of magnitude at fixed Ls . Here, we argue that the residual mass for a tuned Möbius algorithm with α = O(1/L s γ) for γ < 1 will eventually fall asymptotically as m res = O(1/L s 1+γ) in the case of a 5D Hamiltonian with out a spectral gap.« less

  20. The Mobius domain wall fermion algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, Richard C.; Neff, Harmut; Orginos, Kostas

    We present a review of the properties of generalized domain wall Fermions, based on a (real) Möbius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass (m res) and the Ward–Takahashi identities. The Möbius class interpolates between Shamir’s domain wall operator and Boriçi’s domain wall implementation of Neuberger’s overlap operator without increasing the number of Dirac applications per conjugate gradient iteration. A new scaling parameter (α) reduces chiral violations at finite fifth dimension (L s) but yields exactly the same overlap action in the limit L s →more » ∞ . Through the use of 4d Red/Black preconditioning and optimal tuning for the scaling α(L s), we show that chiral symmetry violations are typically reduced by an order of magnitude at fixed Ls . Here, we argue that the residual mass for a tuned Möbius algorithm with α = O(1/L s γ) for γ < 1 will eventually fall asymptotically as m res = O(1/L s 1+γ) in the case of a 5D Hamiltonian with out a spectral gap.« less

  1. Separated matter and antimatter domains with vanishing domain walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S.

    2015-10-01

    We present a model of spontaneous (or dynamical) C and CP violation where it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP) violation existed only in the early universe and later it disappeared with the only trace of generated baryonic and/or antibaryonic domains. So the problem of domain walls in this model does not exist. These features are achieved through a postulated form of interaction between inflaton and a new scalar field, realizing short time C(CP) violation.

  2. Minimization of Ohmic losses for domain wall motion in ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Abanov, Artem; Tretiakov, Oleg; Liu, Yang

    2011-03-01

    We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain wall velocity we find the time-dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic. This work was supported by the NSF Grant No. 0757992 and Welch Foundation (A-1678).

  3. Complex oxide ferroelectrics: Electrostatic doping by domain walls

    DOE PAGES

    Maksymovych, Petro

    2015-06-19

    Electrically conducting interfaces can form, rather unexpectedly, by breaking the translational symmetry of electrically insulating complex oxides. For example, a nanometre-thick heteroepitaxial interface between electronically insulating LaAlO 3 and SrTiO 3 supports a 2D electron gas1 with high mobility of >1,000 cm 2 V -1 s -1 (ref. 2). Such interfaces can exhibit magnetism, superconductivity and phase transitions that may form the functional basis of future electronic devices2. A peculiar conducting interface can be created within a polar ferroelectric oxide by breaking the translational symmetry of the ferroelectric order parameter and creating a so-called ferroelectric domain wall (Fig. 1a,b). Ifmore » the direction of atomic displacements changes at the wall in such a way as to create a discontinuity in the polarization component normal to the wall (Fig. 1a), the domain wall becomes electrostatically charged. It may then attract compensating mobile charges of opposite sign produced by dopant ionization, photoexcitation or other effects, thereby locally, electrostatically doping the host ferroelectric film. In contrast to conductive interfaces between epitaxially grown oxides, domain walls can be reversibly created, positioned and shaped by electric fields, enabling reconfigurable circuitry within the same volume of the material. Now, writing in Nature Nanotechnology, Arnaud Crassous and colleagues at EPFL and University of Geneva demonstrate control and stability of charged conducting domain walls in ferroelectric thin films of BiFeO 3 down to the nanoscale.« less

  4. Nanoscale Origins of Ferroelastic Domain Wall Mobility in Ferroelectric Multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hsin-Hui; Hong, Zijian; Xin, Huolin L.

    Here we investigate the nanoscale origins of ferroelastic domain wall motion in ferroelectric multilayer thin films that lead to giant electromechanical responses. We present direct evidence for complex underpinning factors that result in ferroelastic domain wall mobility using a combination of atomic-level aberration corrected scanning transmission electron microscopy and phase-field simulations in model epitaxial (001) tetragonal (T) PbZr xTi 1-xO 3 (PZT)/rhombohedral (R) PbZr xTi 1-xO 3 (PZT) bilayer heterostructures. The local electric dipole distribution is imaged on an atomic scale for a ferroelastic domain wall that nucleates in the R-layer and cuts through the composition breaking the T/R interface.more » Our studies reveal a highly complex polarization rotation domain structure that is nearly on the knife-edge at the vicinity of this wall. Induced phases, namely tetragonal-like and rhombohedral-like monoclinic were observed close to the interface, and exotic domain arrangements, such as a half-four-fold closure structure, are observed. Phase field simulations show this is due to the minimization of the excessive elastic and electrostatic energies driven by the enormous strain gradient present at the location of the ferroelastic domain walls. Thus, in response to an applied stimulus, such as an electric field, any polarization reorientation must minimize the elastic and electrostatic discontinuities due to this strain gradient, which would induce a dramatic rearrangement of the domain structure. This insight into the origins of ferroelastic domain wall motion will allow researchers to better “craft” such multilayered ferroelectric systems with precisely tailored domain wall functionality and enhanced sensitivity, which can be exploited for the next generation of integrated piezoelectric technologies.« less

  5. Nanoscale Origins of Ferroelastic Domain Wall Mobility in Ferroelectric Multilayers

    DOE PAGES

    Huang, Hsin-Hui; Hong, Zijian; Xin, Huolin L.; ...

    2016-10-31

    Here we investigate the nanoscale origins of ferroelastic domain wall motion in ferroelectric multilayer thin films that lead to giant electromechanical responses. We present direct evidence for complex underpinning factors that result in ferroelastic domain wall mobility using a combination of atomic-level aberration corrected scanning transmission electron microscopy and phase-field simulations in model epitaxial (001) tetragonal (T) PbZr xTi 1-xO 3 (PZT)/rhombohedral (R) PbZr xTi 1-xO 3 (PZT) bilayer heterostructures. The local electric dipole distribution is imaged on an atomic scale for a ferroelastic domain wall that nucleates in the R-layer and cuts through the composition breaking the T/R interface.more » Our studies reveal a highly complex polarization rotation domain structure that is nearly on the knife-edge at the vicinity of this wall. Induced phases, namely tetragonal-like and rhombohedral-like monoclinic were observed close to the interface, and exotic domain arrangements, such as a half-four-fold closure structure, are observed. Phase field simulations show this is due to the minimization of the excessive elastic and electrostatic energies driven by the enormous strain gradient present at the location of the ferroelastic domain walls. Thus, in response to an applied stimulus, such as an electric field, any polarization reorientation must minimize the elastic and electrostatic discontinuities due to this strain gradient, which would induce a dramatic rearrangement of the domain structure. This insight into the origins of ferroelastic domain wall motion will allow researchers to better “craft” such multilayered ferroelectric systems with precisely tailored domain wall functionality and enhanced sensitivity, which can be exploited for the next generation of integrated piezoelectric technologies.« less

  6. Displacement Current in Domain Walls of Bismuth Ferrite

    NASA Astrophysics Data System (ADS)

    Prosandeev, Sergey; Yang, Yurong; Paillard, Charles; Bellaiche, L.

    2018-03-01

    In 1861, Maxwell conceived the idea of the displacement current, which then made laws of electrodynamics more complete and also resulted in the realization of devices exploiting such displacement current. Interestingly, it is presently unknown if such displacement current can result in large intrinsic ac current in ferroic systems possessing domains, despite the flurry of recent activities that have been devoted to domains and their corresponding conductivity in these compounds. Here, we report first-principles-based atomistic simulations that predict that the transverse (polarization-related) displacement currents of 71° and 109° domains in the prototypical BiFeO3 multiferroic material are significant at the walls of such domains and in the GHz regime, and, in fact, result in currents that are at least of the same order of magnitude than previously reported dc currents (that are likely extrinsic in nature and due to electrons). Such large, localized and intrinsic ac currents are found to originate from low-frequency vibrations at the domain walls, and may open the door to the design of novel devices functioning in the GHz or THz range and in which currents would be confined within the domain wall.

  7. Domain-wall trapping in a ferromagnetic nanowire network

    NASA Astrophysics Data System (ADS)

    Saitoh, E.; Tanaka, M.; Miyajima, H.; Yamaoka, T.

    2003-05-01

    The magnetic domain configuration in a submicron Ni81Fe19 wire network has been investigated by magnetic force microscopy. To improve the responsivity of the magnetic force microscope, an active quality factor autocontrol method was adopted. In the remanent state, domain walls were observed trapped firmly at the vertexes of the network. The magnetic domain configurations appear to minimize the exchange energy at the vertexes. These results indicate that the magnetic property of the ferromagnetic network can be described in terms of the uniform magnetic moments of the wires and interwire magnetic interactions at the vertexes. The observed structure of the domain walls is well reproduced by micromagnetic simulations.

  8. Microwave background distortions from domain walls

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1990-01-01

    Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. It was found that the maximal redshift distortion for both spherical and planar walls is of the order pi G sigma H(sup -1)(sub 0), where sigma is the surface energy density and H(sup -1)(sub 0) the Hubble parameter. It was also found that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e., the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor gamma the redshift distortion is enhanced by gamma cubed.

  9. Domain wall assisted GMR head with spin-Hall effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arun, R., E-mail: arunbdu@gmail.com; Sabareesan, P., E-mail: sendtosabari@gmail.com; Daniel, M., E-mail: danielcnld@gmail.com

    2016-05-06

    We theoretically study the dynamics of a field induced domain wall in the Py/Pt bi-layer structure in the presence of spin-Hall effect (SHE) by solving the Landau-Lifshitz-Gilbert (LLG) equation along with the adiabatic, nonadiabatic and SHE spin-transfer torques (STTs). It is observed that a weak magnetic field moves the domain wall with high velocity in the presence of SHE and the direction of the velocity is changed by changing the direction of the weak field. The numerical results show that the magnetization of the ferromagnetic layer can be reversed quickly through domain wall motion by changing the direction of amore » weak external field in the presence of SHE while the direction of current is fixed. The SHE reduces the magnetization reversal time of 1000 nm length strip by 14.7 ns. This study is extended to model a domain wall based GMR (Giant Magnetoresistance) read head with SHE.« less

  10. Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory

    DOE PAGES

    Belashchenko, K. D.; Tchernyshyov, O.; Kovalev, Alexey A.; ...

    2016-03-30

    Domain wall dynamics in a magnetoelectric antiferromagnet is analyzed, and its implications for magnetoelectric memory applications are discussed. Cr 2O 3 is used in the estimates of the materials parameters. It is found that the domain wall mobility has a maximum as a function of the electric field due to the gyrotropic coupling induced by it. In Cr 2O 3, the maximal mobility of 0.1 m/(s Oe) is reached at E≈0.06 V/nm. Fields of this order may be too weak to overcome the intrinsic depinning field, which is estimated for B-doped Cr 2O 3. These major drawbacks for device implementationmore » can be overcome by applying a small in-plane shear strain, which blocks the domain wall precession. Domain wall mobility of about 0.7 m/(s Oe) can then be achieved at E = 0.2 V/nm. Furthermore, a split-gate scheme is proposed for the domain-wall controlled bit element; its extension to multiple-gate linear arrays can offer advantages in memory density, programmability, and logic functionality.« less

  11. Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Tserkovnyak, Yaroslav

    2016-07-01

    We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.

  12. Minimization of Ohmic Losses for Domain Wall Motion in a Ferromagnetic Nanowire

    NASA Astrophysics Data System (ADS)

    Tretiakov, O. A.; Liu, Y.; Abanov, Ar.

    2010-11-01

    We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain-wall velocity we find the time dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic.

  13. Using TLS to Improve Models of Volcano Conduit Processes (Invited)

    NASA Astrophysics Data System (ADS)

    Connor, C.; Connor, L.

    2010-12-01

    In volcanology, diverse numerical models of conduit flow have been developed to relate the properties of these flows to processes that occur at the surface during eruptions. Conduit models incorporate varying degrees of complexity and account for the transport properties of magmas, steady-state or transient behavior, and conduit geometry (e.g., 1- to 1.5 D, variable width and erodable conduit walls). Improvement of these models is important if we are to work toward deployment of eruption models at active volcanoes, link these models to geophysical observations (seismic, deformation, gravity) and eventually forecast eruption magnitude. One conclusion of a recent comparison of many conduit models is that next generation models need to better account for interaction of the erupting mixture with surrounding wall rocks (accounting for melting, solidification, and erosion) and better account for the effects of conduit shape on flows. We made progress toward accounting for this interaction by using TLS to map basaltic conduits in a deeply eroded volcanic field, the San Rafael volcanic field, Utah. TLS data were collected with UNAVCO support during a field campaign in summer 2010. A region of approximately 1 x 1 km was imaged from 9 TLS stations. TLS data reveal the exact geometries of several exposed conduits, their relationship to sills and dikes, and dramatic change in reflectivity of the Entrada sandstone country rock with alteration. The TLS data are particularly good for (a) quantifying rapid change in conduit shape and area as a function of height, (b) differentiating breccias zones (complex mixing zones along conduit margins) from areas of late stage intrusion, (c) imaging complexity of sill geometry near conduits, illustrating the mechanical and perhaps geochemical interaction between sills and conduits in volcanic fields. Overall, application of TLS in this volcanic field has resulted in substantial improvement in our models of volcanic conduit formation, growth

  14. Electrically controlled pinning of Dzyaloshinskii-Moriya domain walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Koji; Tretiakov, Oleg A., E-mail: olegt@imr.tohoku.ac.jp; School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950

    We propose a method to all-electrically control a domain-wall position in a ferromagnetic nanowire with Dzyaloshinskii-Moriya interaction. The strength of this interaction can be controlled by an external electric field, which in turn allows a fine tuning of the pinning potential of a spin-spiral domain wall. It allows to create more mobile pinning sites and can also be advantageous for ultra-low power electronics.

  15. Domain walls of linear polarization in isotropic Kerr media

    NASA Astrophysics Data System (ADS)

    Louis, Y.; Sheppard, A. P.; Haelterman, M.

    1997-09-01

    We present a new type of domain-wall vector solitary waves in isotropic self-defocusing Kerr media. These domain walls consist of localized structures separating uniform field domains of orthogonal linear polarizations. They result from the interplay between diffraction, self-phase modulation and cross-phase modulation in cases where the nonlinear birefringence coefficient B = {χxyyx(3)}/{χxxxx(3)} is negative. Numerical simulations show that these new vector solitary waves are stable.

  16. Volcanic conduit failure as a trigger to magma fragmentation

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Benson, P. M.; Heap, M. J.; Flaws, A.; Hess, K.-U.; Dingwell, D. B.

    2012-01-01

    In the assessment of volcanic risk, it is often assumed that magma ascending at a slow rate will erupt effusively, whereas magma ascending at fast rate will lead to an explosive eruption. Mechanistically viewed, this assessment is supported by the notion that the viscoelastic nature of magma (i.e., the ability of magma to relax at an applied strain rate), linked via the gradient of flow pressure (related to discharge rate), controls the eruption style. In such an analysis, the physical interactions between the magma and the conduit wall are commonly, to a first order, neglected. Yet, during ascent, magma must force its way through the volcanic edifice/structure, whose presence and form may greatly affect the stress field through which the magma is trying to ascend. Here, we demonstrate that fracturing of the conduit wall via flow pressure releases an elastic shock resulting in fracturing of the viscous magma itself. We find that magma fragmentation occurred at strain rates seven orders of magnitude slower than theoretically anticipated from the applied axial strain rate. Our conclusion, that the discharge rate cannot provide a reliable indication of ascending magma rheology without knowledge of conduit wall stability, has important ramifications for volcanic hazard assessment. New numerical simulations are now needed in order to integrate magma/conduit interaction into eruption models.

  17. Tunable short-wavelength spin wave excitation from pinned magnetic domain walls

    PubMed Central

    Van de Wiele, Ben; Hämäläinen, Sampo J.; Baláž, Pavel; Montoncello, Federico; van Dijken, Sebastiaan

    2016-01-01

    Miniaturization of magnonic devices for wave-like computing requires emission of short-wavelength spin waves, a key feature that cannot be achieved with microwave antennas. In this paper, we propose a tunable source of short-wavelength spin waves based on highly localized and strongly pinned magnetic domain walls in ferroelectric-ferromagnetic bilayers. When driven into oscillation by a microwave spin-polarized current, the magnetic domain walls emit spin waves with the same frequency as the excitation current. The amplitude of the emitted spin waves and the range of attainable excitation frequencies depend on the availability of domain wall resonance modes. In this respect, pinned domain walls in magnetic nanowires are particularly attractive. In this geometry, spin wave confinement perpendicular to the nanowire axis produces a multitude of domain wall resonances enabling efficient spin wave emission at frequencies up to 100 GHz and wavelengths down to 20 nm. At high frequency, the emission of spin waves in magnetic nanowires becomes monochromatic. Moreover, pinning of magnetic domain wall oscillators onto the same ferroelectric domain boundary in parallel nanowires guarantees good coherency between spin wave sources, which opens perspectives towards the realization of Mach-Zehnder type logic devices and sensors. PMID:26883893

  18. Domain wall kinetics of lithium niobate single crystals near the hexagonal corner

    NASA Astrophysics Data System (ADS)

    Choi, Ju Won; Ko, Do-Kyeong; Yu, Nan Ei; Kitamura, Kenji; Ro, Jung Hoon

    2015-03-01

    A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic "asymmetric in-out domain wall motion" observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (Ec) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1Ec is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15Ec is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.

  19. The Möbius domain wall fermion algorithm

    NASA Astrophysics Data System (ADS)

    Brower, Richard C.; Neff, Harmut; Orginos, Kostas

    2017-11-01

    We present a review of the properties of generalized domain wall Fermions, based on a (real) Möbius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass (mres) and the Ward-Takahashi identities. The Möbius class interpolates between Shamir's domain wall operator and Boriçi's domain wall implementation of Neuberger's overlap operator without increasing the number of Dirac applications per conjugate gradient iteration. A new scaling parameter (α) reduces chiral violations at finite fifth dimension (Ls) but yields exactly the same overlap action in the limit Ls → ∞. Through the use of 4d Red/Black preconditioning and optimal tuning for the scaling α(Ls) , we show that chiral symmetry violations are typically reduced by an order of magnitude at fixed Ls. We argue that the residual mass for a tuned Möbius algorithm with α = O(1 /Lsγ) for γ < 1 will eventually fall asymptotically as mres = O(1 /Ls1+γ) in the case of a 5D Hamiltonian with out a spectral gap.

  20. Stress-based control of magnetic nanowire domain walls in artificial multiferroic systems

    NASA Astrophysics Data System (ADS)

    Dean, J.; Bryan, M. T.; Schrefl, T.; Allwood, D. A.

    2011-01-01

    Artificial multiferroic systems, which combine piezoelectric and piezomagnetic materials, offer novel methods of controlling material properties. Here, we use combined structural and magnetic finite element models to show how localized strains in a piezoelectric film coupled to a piezomagnetic nanowire can attract and pin magnetic domain walls. Synchronous switching of addressable contacts enables the controlled movement of pinning sites, and hence domain walls, in the nanowire without applied magnetic field or spin-polarized current, irrespective of domain wall structure. Conversely, domain wall-induced strain in the piezomagnetic material induces a local potential difference in the piezoelectric, providing a mechanism for sensing domain walls. This approach overcomes the problems in magnetic nanowire memories of domain wall structure-dependent behavior and high power consumption. Nonvolatile random access or shift register memories based on these effects can achieve storage densities >1 Gbit/In2, sub-10 ns switching times, and power consumption <100 keV per operation.

  1. Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves.

    PubMed

    Tsitoura, F; Gietz, U; Chabchoub, A; Hoffmann, N

    2018-06-01

    We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.

  2. Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves

    NASA Astrophysics Data System (ADS)

    Tsitoura, F.; Gietz, U.; Chabchoub, A.; Hoffmann, N.

    2018-06-01

    We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.

  3. Antiferromagnetic domain wall as spin wave polarizer

    NASA Astrophysics Data System (ADS)

    Lan, Jin; Yu, Weichao; Xiao, Jiang

    Spin waves are collective excitations of local magnetizations that can effectively propagate information even in magnetic insulators. In antiferromagnet, spin waves are endowed with additional polarization freedom. Here we propose that the antiferromagnetic domain wall can act as a spin wave polarizer, which perfectly passes one linearly polarized spin wave while substantially reflects the perpendicular one. We show that the polarizing effect lies in the suppression of one linear polarization inside domain wall, in close analogy to the wire-grid optical polarizer. Our finding opens up new possibilities in magnonic processing by harnessing spin wave polarization in antiferromagnet.

  4. Dynamical evolution of domain walls in an expanding universe

    NASA Technical Reports Server (NTRS)

    Press, William H.; Ryden, Barbara S.; Spergel, David N.

    1989-01-01

    Whenever the potential of a scalar field has two or more separated, degenerate minima, domain walls form as the universe cools. The evolution of the resulting network of domain walls is calculated for the case of two potential minima in two and three dimensions, including wall annihilation, crossing, and reconnection effects. The nature of the evolution is found to be largely independent of the rate at which the universe expands. Wall annihilation and reconnection occur almost as fast as causality allows, so that the horizon volume is 'swept clean' and contains, at any time, only about one, fairly smooth, wall. Quantitative statistics are given. The total area of wall per volume decreases as the first power of time. The relative slowness of the decrease and the smoothness of the wall on the horizon scale make it impossible for walls to both generate large-scale structure and be consistent with quadrupole microwave background anisotropy limits.

  5. Domain walls in supersymmetric QCD: The taming of the zoo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binosi, Daniele; ter Veldhuis, Tonnis

    We provide a unified picture of the domain wall spectrum in supersymmetric QCD with N{sub c} colors and N{sub f} flavors of quarks in the (anti) fundamental representation. Within the framework of the Veneziano-Yankielowicz-Taylor effective Lagrangian, we consider domain walls connecting chiral symmetry breaking vacua, and we take the quark masses to be degenerate. For N{sub f}/N{sub c}<1/2, there is one BPS saturated domain wall for any value of the quark mass m. For 1/2{<=}N{sub f}/N{sub c}<1 there are two critical masses m{sub *} and m{sub **} which depend on the number of colors and flavors only through the ratiomore » N{sub f}/N{sub c}. If mwalls; if m{sub *}wall; and if m>m{sub **}, there is no domain wall. We numerically determine m{sub *} and m{sub **} as a function of N{sub f}/N{sub c}, and we find that m{sub **} approaches a constant value in the limit that this ratio goes to 1.« less

  6. Comparison of Current and Field Driven Domain Wall Motion in Beaded Permalloy Nanowires

    NASA Astrophysics Data System (ADS)

    Lage, Enno; Dutta, Sumit; Ross, Caroline A.

    2015-03-01

    Domain wall based devices are promising candidates for non-volatile memory devices with no static power consumption. A common approach is the use of (field assisted) current driven domain wall motion in magnetic nanowires. In such systems local variations in linewidth act as obstacles for propagating domain walls. In this study we compare simulated field driven and current driven domain wall motion in permalloy nanowires with anti-notches. The simulations were obtained using the Object Oriented MicroMagnetics Framework (OOMMF). The wires with a constant thickness of 8 nm exhibit linewidths ranging from 40 nm to 300 nm. Circular shaped anti-notches extend the linewidth locally by 10% to 30% and raise information about the domain wall propagation in such beaded nanowires. The results are interpreted in terms of the observed propagation behavior and summarized in maps indicating ranges of different ability to overcome the pinning caused by anti-notches of different sizes. Furthermore, regimes of favored domain wall type (transverse walls or vortex walls) and complex propagation effects like walker breakdown behavior or dynamic change between domain wall structures are identified The authors thank the German Academic Exchange Service (DAAD) for funding.

  7. Current at domain walls, roughly speaking: nanoscales studies of disorder roughening and conduction

    NASA Astrophysics Data System (ADS)

    Paruch, Patrycja

    2013-03-01

    Domain walls in (multi)ferroic materials are the thin elastic interfaces separating regions with different orientations of magnetisation, electric polarisation, or spontaneous strain. Understanding their behaviour, and controlling domain size and stability, is key for their integration into applications, while fundamentally, domain walls provide an excellent model system in which the rich physics of disordered elastic interfaces can be accesses. In addition, domain walls can present novel properties, quite different from those of their parent materials, making them potentially useful as active components in future nano-devices. Here, we present our atomic force microscopy studies of ferroelectric domain walls in epitaxial Pb(Zr0.2Ti0.8)O3 and BiFeO3 thin films, in which we use piezorespose force microscopy to show unusual domain wall roughening behaviour, with very localised disorder regions in the sample leading to a complex, multi-affine scaling of the domain wall shape. We also show the effects of temperature, environmental conditions, and defects on switching dynamics and domain wall roughness. We combine these observations with parallel conductive-tip atomic force microscopy current measurements, which also show highly localised variations in conduction, and highlight the key role played by oxygen vacancies in the observed domain wall conduction.

  8. Large exchange-dominated domain wall velocities in antiferromagnetically coupled nanowires

    NASA Astrophysics Data System (ADS)

    Kuteifan, Majd; Lubarda, M. V.; Fu, S.; Chang, R.; Escobar, M. A.; Mangin, S.; Fullerton, E. E.; Lomakin, V.

    2016-04-01

    Magnetic nanowires supporting field- and current-driven domain wall motion are envisioned for methods of information storage and processing. A major obstacle for their practical use is the domain-wall velocity, which is traditionally limited for low fields and currents due to the Walker breakdown occurring when the driving component reaches a critical threshold value. We show through numerical and analytical modeling that the Walker breakdown limit can be extended or completely eliminated in antiferromagnetically coupled magnetic nanowires. These coupled nanowires allow for large domain-wall velocities driven by field and/or current as compared to conventional nanowires.

  9. Domain wall fermion and CP symmetry breaking

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo; Suzuki, Hiroshi

    2003-02-01

    We examine the CP properties of chiral gauge theory defined by a formulation of the domain wall fermion, where the light field variables q and q¯ together with Pauli-Villars fields Q and Q¯ are utilized. It is shown that this domain wall representation in the infinite flavor limit N=∞ is valid only in the topologically trivial sector, and that the conflict among lattice chiral symmetry, strict locality and CP symmetry still persists for finite lattice spacing a. The CP transformation generally sends one representation of lattice chiral gauge theory into another representation of lattice chiral gauge theory, resulting in the inevitable change of propagators. A modified form of lattice CP transformation motivated by the domain wall fermion, which keeps the chiral action in terms of the Ginsparg-Wilson fermion invariant, is analyzed in detail; this provides an alternative way to understand the breaking of CP symmetry at least in the topologically trivial sector. We note that the conflict with CP symmetry could be regarded as a topological obstruction. We also discuss the issues related to the definition of Majorana fermions in connection with the supersymmetric Wess-Zumino model on the lattice.

  10. Motion of a Spherical Domain Wall and the Large-Scale Structure Formation

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Tomita, K.

    1991-11-01

    The evolution of a wall-like structure in the universe is investigated by assuming a simplified model of a domain wall. The domain wall is approximated as a thin spherical shell with domain wall-like matter, which is assumed to interact with dust-like dark matter in an entirely inelastic manner, and its motion in an expanding universe is numerically studied in the general-relativistic treatment. We evaluate the lifetime of the wall, which is defined as the characteristic time for the wall to shrink due to its own tension. It is necessary that this time is not smaller than the cosmic age, in order that the walls avoid the collapse to the present time and play an important role in the structure formation of the universe. It is shown that, in spite of the above interaction, the strong restriction is imposed on the surface density of the domain walls and the allowed values are too small to have any influences on the background model.

  11. Thermomechanical milling of accessory lithics in volcanic conduits

    NASA Astrophysics Data System (ADS)

    Campbell, Michelle E.; Russell, James K.; Porritt, Lucy A.

    2013-09-01

    Accessory lithic clasts recovered from pyroclastic deposits commonly result from the failure of conduit wall rocks, and represent an underutilized resource for constraining conduit processes during explosive volcanic eruptions. The morphological features of lithic clasts provide distinctive 'textural fingerprints' of processes that have reshaped them during transport in the conduit. Here, we present the first study focused on accessory lithic clast morphology and show how the shapes and surfaces of these accessory pyroclasts can inform on conduit processes. We use two main types of accessory lithic clasts from pyroclastic fallout deposits of the 2360 B.P. subplinian eruption of Mount Meager, British Columbia, as a case study: (i) rough and subangular dacite clasts, and (ii) variably rounded and smoothed monzogranite clasts. The quantitative morphological data collected on these lithics include: mass, volume, density, 2-D image analysis of convexity (C), and 3-D laser scans for sphericity (Ψ) and smoothness (S). Shaping and comminution (i.e. milling) of clasts within the conduit are ascribed to three processes: (1) disruptive fragmentation due to high-energy impacts between clasts or between clasts and conduit walls, (2) ash-blasting of clasts suspended within the volcanic flux, and (3) thermal effects. We use a simplified conduit eruption model to predict ash-blasting velocities and lithic residence times as a function of clast size and source depth, thereby constraining the lithic milling processes. The extent of shape and surface modification (i.e. rounding and honing) is directly proportional to clast residence times within the conduit prior to evacuation. We postulate that the shallow-seated dacite clasts remain subangular and rough due to short (<2 min) residence times, whereas monzogranite clasts are much more rounded and smoothed due to deeper source depths and consequently longer residence times (up to ˜1 h). Larger monzogranite clasts are smoother than

  12. Strain induced parametric pumping of a domain wall and its depinning from a notch

    NASA Astrophysics Data System (ADS)

    Nepal, Rabindra; Gungordu, Utkan; Kovalev, Alexey

    Using Thiele's method and detailed micromagnetic simulations, we study resonant oscillation of a domain wall in a notch of a ferromagnetic nanowire due to the modulation of magnetic anisotropy by external AC strain. Such resonant oscillation results from the parametric pumping of domain wall by AC strain at frequency about double the free domain wall oscillation frequency, which is mainly determined by the perpendicular anisotropy and notch geometry. This effect leads to a substantial reduction in depinning field or current required to depin a domain wall from the notch, and offers a mechanism for efficient domain wall motion in a notched nanowire. Our theoretical model accounts for the pinning potential due to a notch by explicitly calculating ferromagnetic energy as a function of notch geometry parameters. We also find similar resonant domain wall oscillations and reduction in the domain wall depinning field or current due to surface acoustic wave in soft ferromagnetic nanowire without uniaxial anisotropy that energetically favors an in-plane domain wall. DOE Early Career Award DE-SC0014189 and DMR- 1420645.

  13. Oscillatory behavior of the domain wall dynamics in a curved cylindrical magnetic nanowire

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Carvalho-Santos, V. L.; Espejo, A. P.; Laroze, D.; Chubykalo-Fesenko, O.; Altbir, D.

    2017-11-01

    Understanding the domain wall dynamics is an important issue in modern magnetism. Here we present results of domain wall displacement in curved cylindrical nanowires at a constant magnetic field. We show that the average velocity of a transverse domain wall increases with curvature. Contrary to what is observed in stripes, in a curved wire the transverse domain wall oscillates along and rotates around the nanowire with the same frequency. These results open the possibility of new oscillation-based applications.

  14. Domain wall and isocurvature perturbation problems in a supersymmetric axion model

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Sonomoto, Eisuke

    2018-04-01

    The axion causes two serious cosmological problems, domain wall and isocurvature perturbation problems. Linde pointed out that the isocurvature perturbations are suppressed when the Peccei-Quinn (PQ) scalar field takes a large value ˜Mpl (Planck scale) during inflation. In this case, however, the PQ field with large amplitude starts to oscillate after inflation, and large fluctuations of the PQ field are produced through parametric resonance, which leads to the formation of domain walls. We consider a supersymmetric axion model and examine whether domain walls are formed by using lattice simulation. It is found that the domain wall problem does not appear in the SUSY axion model when the initial value of the PQ field is less than 1 03×v , where v is the PQ symmetry breaking scale.

  15. Dispersive elastic properties of Dzyaloshinskii domain walls

    NASA Astrophysics Data System (ADS)

    Pellegren, James; Lau, Derek; Sokalski, Vincent

    Recent studies on the asymmetric field-driven growth of magnetic bubble domains in perpendicular thin films exhibiting an interfacial Dzyaloshinskii-Moriya interaction (DMI) have provided a wealth of experimental evidence to validate models of creep phenomena, as key properties of the domain wall (DW) can be altered with the application of an external in-plane magnetic field. While asymmetric growth behavior has been attributed to the highly anisotropic DW energy, σ (θ) , which results from the combination of DMI and the in-plane field, many experimental results remain anomalous. In this work, we demonstrate that the anisotropy of DW energy alters the elastic response of the DW as characterized by the surface stiffness, σ (θ) = σ (θ) + σ (θ) , and evaluate the impact of this stiffness on the creep law. We find that at in-plane fields larger than and antiparallel to the effective field due to DMI, the DW stiffness decreases rapidly, suggesting that higher energy walls can actually become more mobile than their low energy counterparts. This result is consistent with experiments on CoNi multilayer films where velocity curves for domain walls with DMI fields parallel and antiparallel to the applied field cross over at high in-plane fields.

  16. Domain wall motion in ferroelectrics: Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Shur, V.; Rumyantsev, E.; Kozhevnikov, V.; Nikolaeva, E.; Shishkin, E.

    2002-03-01

    The switching current noise has been recorded during polarization reversal in single-crystalline gadolinium molybdate (GMO) and lithium tantalate (LT). Analysis of Barkhausen noise (BN) data allows to classify the noise types by determination of the critical indexes and fractal dimensions. BN is manifested as the short pulses during the polarization reversal. We have analyzed the BN data recorded in GMO and LT with various types of controlled domain structure. The data treatment in terms of probability distribution of duration, area and energy of individual pulses reveals the critical behavior typical for the fractal records in time. We used the Fourier transform and Hurst's rescaled range analysis for obtaining the Hurst factor, fractal dimension and classifying the noise types. We investigated by computer simulation the mechanism of sideways motion of 180O domain wall by nucleation at the wall taking into account the nuclei-nuclei interaction. It was shown that the moving domain walls display the fractal shape and their motion is accompanied by Flicker noise, which is in accord with experimental data. The research was made possible in part by Programs "Basic Research in Russian Universities" and "Priority Research in High School. Electronics", by Grant No. 01-02-17443 of RFBR, by Award No.REC-005 of CRDF.

  17. Domain walls and the C P anomaly in softly broken supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Draper, Patrick

    2018-04-01

    In ordinary QCD with light, degenerate, fundamental flavors, C P symmetry is spontaneously broken at θ =π , and domain wall solutions connecting the vacua can be constructed in chiral perturbation theory. In some cases the breaking of C P saturates a 't Hooft anomaly, and anomaly inflow requires nontrivial massless excitations on the domain walls. Analogously, C P can be spontaneously broken in supersymmetric QCD (SQCD) with light flavors and small soft breaking parameters. We study C P breaking and domain walls in softly broken SQCD with Nfwalls. Vanishing of the C P anomaly is associated with the existence of multiple domain wall trajectories through field space, including walls which support no nontrivial massless excitations. In cases with an anomaly such walls are forbidden, and their absence in the relevant SQCD theories can be seen directly from the geometry of the low energy field space. In the case Nf=N -1 , multiple approximately Bogomol'nyi-Prasad-Sommerfield walls connect the vacua. Corrections to their tensions can be computed at leading order in the soft breaking parameters, producing a phase diagram for the stable wall trajectory. We also comment on domain walls in the similar case of QCD with an adjoint and fundamental flavors, and on the impact of adding an axion in this theory.

  18. Magnetic domain wall creep and depinning: A scalar field model approach

    NASA Astrophysics Data System (ADS)

    Caballero, Nirvana B.; Ferrero, Ezequiel E.; Kolton, Alejandro B.; Curiale, Javier; Jeudy, Vincent; Bustingorry, Sebastian

    2018-06-01

    Magnetic domain wall motion is at the heart of new magnetoelectronic technologies and hence the need for a deeper understanding of domain wall dynamics in magnetic systems. In this context, numerical simulations using simple models can capture the main ingredients responsible for the complex observed domain wall behavior. We present a scalar field model for the magnetization dynamics of quasi-two-dimensional systems with a perpendicular easy axis of magnetization which allows a direct comparison with typical experimental protocols, used in polar magneto-optical Kerr effect microscopy experiments. We show that the thermally activated creep and depinning regimes of domain wall motion can be reached and the effect of different quenched disorder implementations can be assessed with the model. In particular, we show that the depinning field increases with the mean grain size of a Voronoi tessellation model for the disorder.

  19. Coupling between Current and Dynamic Magnetization : from Domain Walls to Spin Waves

    NASA Astrophysics Data System (ADS)

    Lucassen, M. E.

    2012-05-01

    So far, we have derived some general expressions for domain-wall motion and the spin motive force. We have seen that the β parameter plays a large role in both subjects. In all chapters of this thesis, there is an emphasis on the determination of this parameter. We also know how to incorporate thermal fluctuations for rigid domain walls, as shown above. In Chapter 2, we study a different kind of fluctuations: shot noise. This noise is caused by the fact that an electric current consists of electrons, and therefore has fluctuations. In the process, we also compute transmission and reflection coefficients for a rigid domain wall, and from them the linear momentum transfer. More work on fluctuations is done in Chapter 3. Here, we consider a (extrinsically pinned) rigid domain wall under the influence of thermal fluctuations that induces a current via spin motive force. We compute how the resulting noise in the current is related to the β parameter. In Chapter 4 we look into in more detail into the spin motive forces from field driven domain walls. Using micro magnetic simulations, we compute the spin motive force due to vortex domain walls explicitly. As mentioned before, this gives qualitatively different results than for a rigid domain wall. The final subject in Chapter 5 is the application of the general expression for spin motive forces to magnons. Although this might seem to be unrelated to domain-wall motion, this calculation allows us to relate the β parameter to macroscopic transport coefficients. This work was supported by Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC) under the Seventh Framework Program (FP7).

  20. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization.

    PubMed

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-08-04

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

  1. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization

    NASA Astrophysics Data System (ADS)

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-08-01

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

  2. Characteristic microwave background distortions from collapsing domain wall bubbles

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1990-01-01

    The magnitude and angular pattern of distortions of the microwave background are analyzed by collapsing spherical domain walls. A characteristic pattern of redshift distortions of red or blue spikes surrounded by blue discs was found. The width and height of a spike is related to the diameter and magnitude of the disc. A measurement of the relations between these quantities thus can serve as an unambiguous indicator for a collapsing spherical domain wall. From the redshift distortion in the blue discs an upper bound was found on the surface energy density of the walls sigma is less than or approximately 8 MeV cubed.

  3. Micromagnetic analysis of current-induced domain wall motion in a bilayer nanowire with synthetic antiferromagnetic coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komine, Takashi, E-mail: komine@mx.ibaraki.ac.jp; Aono, Tomosuke

    We demonstrate current-induced domain wall motion in bilayer nanowire with synthetic antiferromagnetic (SAF) coupling by modeling two body problems for motion equations of domain wall. The influence of interlayer exchange coupling and magnetostatic interactions on current-induced domain wall motion in SAF nanowires was also investigated. By assuming the rigid wall model for translational motion, the interlayer exchange coupling and the magnetostatic interaction between walls and domains in SAF nanowires enhances domain wall speed without any spin-orbit-torque. The enhancement of domain wall speed was discussed by energy distribution as a function of wall angle configuration in bilayer nanowires.

  4. Intrinsic domain wall flexing from current-induced spin torque

    NASA Astrophysics Data System (ADS)

    Golovatski, Elizabeth; Flatté, Michael

    2012-02-01

    Spin torque generated by coherent carrier transport in domain walls [1] is a major component in the development of spintronic devices [2]. We model spin torque in N'eel walls [3] using a piecewise linear transfer-matrix method [4] to calculate spin torque on interior wall segments. For a π wall with a total positive torque (current left-to-right), we find the largest positive and negative spin torques left of the central region, 4-5 orders of magnitude larger than the center. The wall's rightward push comes from the back of the wall; all other significant regions pull to the left. Adding a second wall (both walls with positive total torque) changes the first wall little, but produces spin torques in the second wall with large canceling torques on the left, and the push rightward from a smaller torque on the right. The gradient of torque across the wall generates an intrinsic domain wall flexing (distinct from extrinsic wall flexing from pinning centers [5]). Work supported by an ARO MURI.[4pt] [1] M. Yamanouchi et al., Nature 428, 539 (2004).[0pt] [2] S. Parkin et al., Science 320, 190 (2008)[0pt] [3] G. Vignale and M. Flatt'e, Phys. Rev. Lett. 89, 098302 (2002)[0pt] [4] E. Golovatski and M. Flatt'e, Phys. Rev. B, 84, 115210 (2011)[0pt] [5] A. Balk et al., Phys. Rev. Lett. 107, 077205 (2011).

  5. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    DOE PAGES

    Tselev, Alexander; Yu, Pu; Cao, Ye; ...

    2016-05-31

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphologicalmore » roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. Finally, this demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale.« less

  6. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    PubMed Central

    Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro

    2016-01-01

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale. PMID:27240997

  7. Characteristic microwave-background distortions from collapsing spherical domain walls

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Notzold, Dirk

    1990-01-01

    The redshift distortion induced by collapsing spherical domain walls is calculated. The most frequent microwave background distortions are found to occur at large angles in the form of blue disks. This is the angular region currently measured by the COBE satellite. COBE could therefore detect signals predicted here for domain walls with surface energy density of the order of MeV. Such values for sigma are proposed in the late-time phase-transition scenario of Hill et al. (1989).

  8. Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3.

    PubMed

    Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin

    2017-02-20

    Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO 3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors.

  9. Functional Properties at Domain Walls in BiFeO3: Electrical, Magnetic, and Structural investigations

    NASA Astrophysics Data System (ADS)

    He, Qing; Yang, C.-H.; Yu, P.; Gajek, M.; Seidel, J.; Ramesh, R.; Wang, F.; Chu, Y.-H.; Martin, L. W.; Spaldin, N.; Rother, A.

    2009-03-01

    BiFeO3 (BFO) is a widely studied robust ferroelectric, antiferromagnetic multiferroic. Conducting-atomic force microscopy studies reveal the presence of enhanced conductivity at certain types of domain walls in BFO. We have completed detailed TEM studies of the physical structure at these domain walls as well as in-depth DFT calculations of the evolution of electronic structure at these domain walls. These studies reveal two major contributions to the observed conduction: the formation of an electrostatic potential at the domain walls as well as a structurally-driven change in the electronic structure (i.e., a lower band gap locally) at the domain walls. We will discuss the use of optical characterization techniques as a way of probing this change in electronic structure at domain walls as well as detailed IV characterization both in atmospheric and UHV environments. Finally, the evolution of magnetism at these domain walls has been studied through the use of photoemission measurements. Initial findings point to a significant change in the magnetic order at these domain walls in BFO.

  10. Anomaly inflow on QCD axial domain-walls and vortices

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji; Imaki, Shota

    2018-06-01

    We study the chiral effective theory in the presence of quantum chromodynamics (QCD) vortices. Gauge invariance requires novel terms from vortex singularities in the gauged Wess-Zumino-Witten action, which incorporate anomaly-induced currents along the vortices. We examine these terms for systems with QCD axial domain-walls bounded by vortices (vortons) under magnetic fields. We discuss how the baryon and electric charge conservations are satisfied in these systems through interplay between domain-walls and vortices, manifesting Callan-Harvey's mechanism of anomaly inflow.

  11. Domain-wall excitations in the two-dimensional Ising spin glass

    NASA Astrophysics Data System (ADS)

    Khoshbakht, Hamid; Weigel, Martin

    2018-02-01

    The Ising spin glass in two dimensions exhibits rich behavior with subtle differences in the scaling for different coupling distributions. We use recently developed mappings to graph-theoretic problems together with highly efficient implementations of combinatorial optimization algorithms to determine exact ground states for systems on square lattices with up to 10 000 ×10 000 spins. While these mappings only work for planar graphs, for example for systems with periodic boundary conditions in at most one direction, we suggest here an iterative windowing technique that allows one to determine ground states for fully periodic samples up to sizes similar to those for the open-periodic case. Based on these techniques, a large number of disorder samples are used together with a careful finite-size scaling analysis to determine the stiffness exponents and domain-wall fractal dimensions with unprecedented accuracy, our best estimates being θ =-0.2793 (3 ) and df=1.273 19 (9 ) for Gaussian couplings. For bimodal disorder, a new uniform sampling algorithm allows us to study the domain-wall fractal dimension, finding df=1.279 (2 ) . Additionally, we also investigate the distributions of ground-state energies, of domain-wall energies, and domain-wall lengths.

  12. Theory of Current-Driven Domain Wall Motion

    NASA Astrophysics Data System (ADS)

    Tatara, Gen

    2004-03-01

    Current-induced motion of a domain wall is studied starting from a microscopic Hamiltonian with an exchange interaction between conduction electrons and spins of the wall [1]. With a key observation that the position X and the angle φ0 the wall magnetization forms with the easy plane are the proper collective coordinates to describe its dynamics, it follows straightforwardly that the electric current affects the wall motion in two different ways, in agreement with Berger's pioneering observations[2]. The first is as a force, or momentum transfer, due to the reflection of conduction electrons. This force is proportional to the charge current j and wall resistivity ρ_w, and hence becomes important in thin walls. The other is as a spin torque or spin transfer[3], which is dominant for thick walls where the spin of conduction electron follows the magnetization adiabatically. The motion of a domain wall under a steady current is studied in two limiting cases. In the adiabatic case, we show that even without a pinning force, there is a threshold spin current, j_s^cr∝ K_⊥λ, below which the wall does not move (K_⊥ and λ being the hard-axis magnetic anisotropy and wall thickness, respectively). Below the threshold, the transferred angular momentum is used to shift φ0 and not to the wall motion. The pinning potential V0 affects j_s^cr only if it is very strong, V0 > K_⊥/α, where α is the damping parameter in the Landau-Lifshits-Gilbert equation. Therefore, the critical current for the adiabatic wall does not suffer very much from weak pinning, which is consistent with experimental observations[4]. The wall velocity after depinning is found to be ∝[(j_s/j_s^cr)^2-1]^1/2. In the case of thin wall, driven by a force ∝ ρw j, the critical current density is given by j^cr∝ V_0/ρ_w. In nanocontacts, this is estimated to be ˜ 10^7[A/m^2]. This small critical current would be advantageous for device application. [1] G.Tatara and H.Kohno, cond-mat/0308464

  13. Domain wall and isocurvature perturbation problems in axion models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Masahiro; Yoshino, Kazuyoshi; Yanagida, Tsutomu T., E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: tsutomu.tyanagida@ipmu.jp, E-mail: yoshino@icrr.u-tokyo.ac.jp

    2013-11-01

    Axion models have two serious cosmological problems, domain wall and isocurvature perturbation problems. In order to solve these problems we investigate the Linde's model in which the field value of the Peccei-Quinn (PQ) scalar is large during inflation. In this model the fluctuations of the PQ field grow after inflation through the parametric resonance and stable axionic strings may be produced, which results in the domain wall problem. We study formation of axionic strings using lattice simulations. It is found that in chaotic inflation the axion model is free from both the domain wall and the isocurvature perturbation problems ifmore » the initial misalignment angle θ{sub a} is smaller than O(10{sup −2}). Furthermore, axions can also account for the dark matter for the breaking scale v ≅ 10{sup 12−16} GeV and the Hubble parameter during inflation H{sub inf}∼<10{sup 11−12} GeV in general inflation models.« less

  14. FRW and domain walls in higher spin gravity

    NASA Astrophysics Data System (ADS)

    Aros, R.; Iazeolla, C.; Noreña, J.; Sezgin, E.; Sundell, P.; Yin, Y.

    2018-03-01

    We present exact solutions to Vasiliev's bosonic higher spin gravity equations in four dimensions with positive and negative cosmological constant that admit an interpretation in terms of domain walls, quasi-instantons and Friedman-Robertson-Walker (FRW) backgrounds. Their isometry algebras are infinite dimensional higher-spin extensions of spacetime isometries generated by six Killing vectors. The solutions presented are obtained by using a method of holomorphic factorization in noncommutative twistor space and gauge functions. In interpreting the solutions in terms of Fronsdal-type fields in space-time, a field-dependent higher spin transformation is required, which is implemented at leading order. To this order, the scalar field solves Klein-Gordon equation with conformal mass in ( A) dS 4 . We interpret the FRW solution with de Sitter asymptotics in the context of inflationary cosmology and we expect that the domain wall and FRW solutions are associated with spontaneously broken scaling symmetries in their holographic description. We observe that the factorization method provides a convenient framework for setting up a perturbation theory around the exact solutions, and we propose that the nonlinear completion of particle excitations over FRW and domain wall solutions requires black hole-like states.

  15. Eavesdropping on spin waves inside the domain-wall nanochannel via three-magnon processes

    NASA Astrophysics Data System (ADS)

    Zhang, Beining; Wang, Zhenyu; Cao, Yunshan; Yan, Peng; Wang, X. R.

    2018-03-01

    One recent breakthrough in the field of magnonics is the experimental realization of reconfigurable spin-wave nanochannels formed by a magnetic domain wall with a width of 10-100 nm [Wagner et al., Nat. Nano. 11, 432 (2016), 10.1038/nnano.2015.339]. This remarkable progress enables an energy-efficient spin-wave propagation with a well-defined wave vector along its propagating path inside the wall. In the mentioned experiment, a microfocus Brillouin light scattering spectroscopy was taken in a line-scans manner to measure the frequency of the bounded spin wave. Due to their localization nature, the confined spin waves can hardly be detected from outside the wall channel, which guarantees the information security to some extent. In this work, we theoretically propose a scheme to detect/eavesdrop on the spin waves inside the domain-wall nanochannel via nonlinear three-magnon processes. We send a spin wave (ωi,ki) in one magnetic domain to interact with the bounded mode (ωb,kb) in the wall, where kb is parallel with the domain-wall channel defined as the z ̂ axis. Two kinds of three-magnon processes, i.e., confluence and splitting, are expected to occur. The confluence process is conventional: conservation of energy and momentum parallel with the wall indicates a transmitted wave in the opposite domain with ω (k ) =ωi+ωb and (ki+kb-k ) .z ̂=0 , while the momentum perpendicular to the domain wall is not necessary to be conserved due to the nonuniform internal field near the wall. We predict a stimulated three-magnon splitting (or "magnon laser") effect: the presence of a bound magnon propagating along the domain wall channel assists the splitting of the incident wave into two modes, one is ω1=ωb,k1=kb identical to the bound mode in the channel, and the other one is ω2=ωi-ωb with (ki-kb-k2) .z ̂=0 propagating in the opposite magnetic domain. Micromagnetic simulations confirm our theoretical analysis. These results demonstrate that one is able to uniquely

  16. Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3

    PubMed Central

    Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin

    2017-01-01

    Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors. PMID:28216672

  17. Spontaneous Symmetry Breaking of Domain Walls in Phase-Competing Regions

    NASA Astrophysics Data System (ADS)

    Ishizuka, Hiroaki; Yamada, Yasusada; Nagaosa, Naoto

    2018-05-01

    In this study, we investigate the nature of domain walls in an ordered phase in the phase-competing region of two Ising-type order parameters. We consider a two-component ϕ4 theory and show that the domain wall of the ground-state (primary) order parameter shows a second-order phase transition associated with the secondary order parameter of the competing phase; the effective theory of the phase transition is given by the Landau theory of an Ising-type phase transition. We find that the phase boundary of this phase transition is different from the spinodal line of the competing order. The phase transition is detected experimentally by the divergence of the susceptibility corresponding to the secondary order when the temperature is quenched to introduce the domain walls.

  18. Current-induced three-dimensional domain wall propagation in cylindrical NiFe nanowires

    NASA Astrophysics Data System (ADS)

    Wong, D. W.; Purnama, I.; Lim, G. J.; Gan, W. L.; Murapaka, C.; Lew, W. S.

    2016-04-01

    We report on the magnetization configurations in single NiFe cylindrical nanowires grown by template-assisted electrodeposition. Angular anisotropic magnetoresistance measurements reveal that a three-dimensional helical domain wall is formed naturally upon relaxation from a saturated state. Micromagnetic simulations support the helical domain wall properties and its reversal process, which involves a splitting of the clockwise and anticlockwise vortices. When a pulsed current is applied to the nanowire, the helical domain wall propagation is observed with a minimum current density needed to overcome its intrinsic pinning.

  19. Magnetic field control of 90°, 180°, and 360° domain wall resistance

    NASA Astrophysics Data System (ADS)

    Majidi, Roya

    2012-10-01

    In the present work, we have compared the resistance of the 90°, 180°, and 360° domain walls in the presence of external magnetic field. The calculations are based on the Boltzmann transport equation within the relaxation time approximation. One-dimensional Néel-type domain walls between two domains whose magnetization differs by angle of 90°, 180°, and 360° are considered. The results indicate that the resistance of the 360° DW is more considerable than that of the 90° and 180° DWs. It is also found that the domain wall resistance can be controlled by applying transverse magnetic field. Increasing the strength of the external magnetic field enhances the domain wall resistance. In providing spintronic devices based on magnetic nanomaterials, considering and controlling the effect of domain wall on resistivity are essential.

  20. Mobile metallic domain walls in an all-in-all-out magnetic insulator

    DOE PAGES

    Ma, Eric Yue; Cui, Yong -Tao; Ueda, Kentaro; ...

    2015-10-30

    Magnetic domain walls are boundaries between regions with different configurations of the same magnetic order. In a magnetic insulator, where the magnetic order is tied to its bulk insulating property, it has been postulated that electrical properties are drastically different along the domain walls, where the order is inevitably disturbed. Here we report the discovery of highly conductive magnetic domain walls in a magnetic insulator, Nd 2Ir 2O 7, that has an unusual all-in-all-out magnetic order, via transport and spatially resolved microwave impedance microscopy. The domain walls have a virtually temperature-independent sheet resistance of ~1 kilohm per square, show smoothmore » morphology with no preferred orientation, are free from pinning by disorders, and have strong thermal and magnetic field responses that agree with expectations for all-in-all-out magnetic order.« less

  1. QCD axion dark matter from long-lived domain walls during matter domination

    NASA Astrophysics Data System (ADS)

    Harigaya, Keisuke; Kawasaki, Masahiro

    2018-07-01

    The domain wall problem of the Peccei-Quinn mechanism can be solved if the Peccei-Quinn symmetry is explicitly broken by a small amount. Domain walls decay into axions, which may account for dark matter of the universe. This scheme is however strongly constrained by overproduction of axions unless the phase of the explicit breaking term is tuned. We investigate the case where the universe is matter-dominated around the temperature of the MeV scale and domain walls decay during this matter dominated epoch. We show how the viable parameter space is expanded.

  2. Subatomic movements of a domain wall in the Peierls potential.

    PubMed

    Novoselov, K S; Geim, A K; Dubonos, S V; Hill, E W; Grigorieva, I V

    2003-12-18

    The discrete nature of crystal lattices plays a role in virtually every material property. But it is only when the size of entities hosted by a crystal becomes comparable to the lattice period--as occurs for dislocations, vortices in superconductors and domain walls--that this discreteness is manifest explicitly. The associated phenomena are usually described in terms of a background Peierls 'atomic washboard' energy potential, which was first introduced for the case of dislocation motion in the 1940s. This concept has subsequently been invoked in many situations to describe certain features in the bulk behaviour of materials, but has to date eluded direct detection and experimental scrutiny at a microscopic level. Here we report observations of the motion of a single magnetic domain wall at the scale of the individual peaks and troughs of the atomic energy landscape. Our experiments reveal that domain walls can become trapped between crystalline planes, and that they propagate by distinct jumps that match the lattice periodicity. The jumps between valleys are found to involve unusual dynamics that shed light on the microscopic processes underlying domain-wall propagation. Such observations offer a means for probing experimentally the physics of topological defects in discrete lattices--a field rich in phenomena that have been subject to extensive theoretical study.

  3. Controlling depinning and propagation of single domain-walls in magnetic microwires

    NASA Astrophysics Data System (ADS)

    Jiménez, Alejandro; del Real, Rafael P.; Vázquez, Manuel

    2013-03-01

    The magnetization reversal in magnetostrictive amorphous microwires takes place by depinning and propagation of a single domain wall. This is a consequence of the particular domain structure determined by the strong uniaxial anisotropy from the reinforcement of magnetoelastic and shape contributions. In the present study, after an overview on the current state-of-the art on the topic, we introduce the general behaviour of single walls in 30 to 40 cm long Fe-base microwires propagating under homogeneous field. Depending on the way the walls are generated, we distinguish among three different walls namely, standard wall, DWst, depinned and propagating from the wire's end under homogeneous field which motion is the first one to switch on; reverse wall, DWrev, propagating from the opposite end under non-homogeneous field, and defect wall, DWdef, nucleated around local defect. Both, DWrev and DWdef are observed only under large enough applied field. In the subsequent section, we study the propagation of a wall under applied field smaller than the switching field. There, we conclude that a minimum field, Hdep,0, is needed to depin the DWst, as well as that a minimum field, Hprop,0, is required for the wall to propagate long distances. In the last section, we analyse the shape of induced signals in the pickup coils upon the crossing of the walls and its correlation to the domain walls shape. We conclude that length and shape of the wall are significantly distorted by the fact that the wall is typically as long as the measuring coils. Contribution to the Topical Issue "New Trends in Magnetism and Magnetic Materials", edited by Francesca Casoli, Massimo Solzi and Paola Tiberto.

  4. Scaling properties of multitension domain wall networks

    NASA Astrophysics Data System (ADS)

    Oliveira, M. F.; Martins, C. J. A. P.

    2015-02-01

    We study the asymptotic scaling properties of domain wall networks with three different tensions in various cosmological epochs. We discuss the conditions under which a scale-invariant evolution of the network (which is well established for simpler walls) still applies and also consider the limiting case where defects are locally planar and the curvature is concentrated in the junctions. We present detailed quantitative predictions for scaling densities in various contexts, which should be testable by means of future high-resolution numerical simulations.

  5. Evolution of thick domain walls in de Sitter universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S., E-mail: dolgov@fe.infn.it, E-mail: sgodunov@itep.ru, E-mail: a.s.rudenko@inp.nsk.su

    We consider thick domain walls in a de Sitter universe following paper by Basu and Vilenkin. However, we are interested not only in stationary solutions found therein, but also investigate the general case of domain wall evolution with time. When the wall thickness parameter, δ{sub 0}, is smaller than H {sup −1}/√2, where H is the Hubble parameter in de Sitter space-time, then the stationary solutions exist, and initial field configurations tend with time to the stationary ones. However, there are no stationary solutions for δ{sub 0} ≥ H {sup −1}/√2. We have calculated numerically the rate of the wallmore » expansion in this case and have found that the width of the wall grows exponentially fast for δ{sub 0} >> H {sup −1}. An explanation for the critical value δ{sub 0} {sub c} = H {sup −1}/√2 is also proposed.« less

  6. Annihilation of Domain Walls in a Ferromagnetic Wire

    NASA Astrophysics Data System (ADS)

    Ghosh, Anirban; Huang, Kevin; Tchernyshyov, Oleg

    We study the annihilation of topological solitons in one of the simplest systems that support them: a one-dimensional ferromagnetic wire with an easy axis along its length. In the presence of energy dissipation due to viscous losses, two solitons (domain walls) on the wire, when released from afar, approach each other and eventually annihilate to create a uniformly magnetized state. Starting from a class of exact solutions for stationary two-domain-wall configurations in the absence of dissipation, we develop an effective theory that describes this annihilation in terms of four collective coordinates: a) the two zero modes corresponding to the location of the center and the average azimuthal angle of the full structure and b) their two conjugate momenta which describe the relative twist and the relative separation of the two domain walls respectively. Comparison with micromagnetic simulation on OOOMF confirms that this theory captures well the essential physics of the process. We believe this work will be a good starting point for studying the annihilation of more complicated topological solitons like vortices and skyrmions in ferromagnetic thin films. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-08ER46544.

  7. Polarization domain walls in optical fibres as topological bits for data transmission

    PubMed Central

    Gilles, M.; Bony, P-Y.; Garnier, J.; Picozzi, A.; Guasoni, M.; Fatome, J.

    2016-01-01

    Domain walls are topological defects which occur at symmetry-breaking phase transitions. While domain walls have been intensively studied in ferromagnetic materials, where they nucleate at the boundary of neighbouring regions of oppositely aligned magnetic dipoles, their equivalent in optics have not been fully explored so far. Here, we experimentally demonstrate the existence of a universal class of polarization domain walls in the form of localized polarization knots in conventional optical fibres. We exploit their binding properties for optical data transmission beyond the Kerr limits of normally dispersive fibres. In particular, we demonstrate how trapping energy in well-defined train of polarization domain walls allows undistorted propagation of polarization knots at a rate of 28 GHz along a 10 km length of normally dispersive optical fibre. These results constitute the first experimental observation of kink-antikink solitary wave propagation in nonlinear fibre optics. PMID:28168000

  8. Mobile metallic domain walls in an all-in-all-out magnetic insulator.

    PubMed

    Ma, Eric Yue; Cui, Yong-Tao; Ueda, Kentaro; Tang, Shujie; Chen, Kai; Tamura, Nobumichi; Wu, Phillip M; Fujioka, Jun; Tokura, Yoshinori; Shen, Zhi-Xun

    2015-10-30

    Magnetic domain walls are boundaries between regions with different configurations of the same magnetic order. In a magnetic insulator, where the magnetic order is tied to its bulk insulating property, it has been postulated that electrical properties are drastically different along the domain walls, where the order is inevitably disturbed. Here we report the discovery of highly conductive magnetic domain walls in a magnetic insulator, Nd2Ir2O7, that has an unusual all-in-all-out magnetic order, via transport and spatially resolved microwave impedance microscopy. The domain walls have a virtually temperature-independent sheet resistance of ~1 kilohm per square, show smooth morphology with no preferred orientation, are free from pinning by disorders, and have strong thermal and magnetic field responses that agree with expectations for all-in-all-out magnetic order. Copyright © 2015, American Association for the Advancement of Science.

  9. Magnetoresistance of non-180° domain wall in the presence of electron-photon interaction

    NASA Astrophysics Data System (ADS)

    Majidi, Roya

    2013-04-01

    In the present paper, influence of photon on resistance of non-180° domain wall in metallic magnetic nanowires has been studied using the semiclassical approach. The analysis has been based on the Boltzmann transport equation, within the relaxation time approximation. The one-dimensional Néel-type domain wall between two ferromagnetic domains with relative magnetization angle less than 180° is considered. By increasing this angle, the contribution of the domain wall in the resistivity of the nanowire becomes considerable. It is also found that the fundamental contribution of the domain wall in resistivity can be controlled by propagating photon. These results are valuable in designing spintronic devices based on magnetic nanowires.

  10. Magnon-induced non-Markovian friction of a domain wall in a ferromagnet

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Tchernyshyov, Oleg; Galitski, Victor; Tserkovnyak, Yaroslav

    2018-05-01

    Motivated by the recent study on the quasiparticle-induced friction of solitons in superfluids, we theoretically study magnon-induced intrinsic friction of a domain wall in a one-dimensional ferromagnet. To this end, we start by obtaining the hitherto overlooked dissipative interaction of a domain wall and its quantum magnon bath to linear order in the domain-wall velocity and to quadratic order in magnon fields. An exact expression for the pertinent scattering matrix is obtained with the aid of supersymmetric quantum mechanics. We then derive the magnon-induced frictional force on a domain wall in two different frameworks: time-dependent perturbation theory in quantum mechanics and the Keldysh formalism, which yield identical results. The latter, in particular, allows us to verify the fluctuation-dissipation theorem explicitly by providing both the frictional force and the correlator of the associated stochastic Langevin force. The potential for magnons induced by a domain wall is reflectionless, and thus the resultant frictional force is non-Markovian similar to the case of solitons in superfluids. They share an intriguing connection to the Abraham-Lorentz force that is well known for its causality paradox. The dynamical responses of a domain wall are studied under a few simple circumstances, where the non-Markovian nature of the frictional force can be probed experimentally. Our work, in conjunction with the previous study on solitons in superfluids, shows that the macroscopic frictional force on solitons can serve as an effective probe of the microscopic degrees of freedom of the system.

  11. Free-electron gas at charged domain walls in insulating BaTiO3

    PubMed Central

    Sluka, Tomas; Tagantsev, Alexander K.; Bednyakov, Petr; Setter, Nava

    2013-01-01

    Hetero interfaces between metal-oxides display pronounced phenomena such as semiconductor-metal transitions, magnetoresistance, the quantum hall effect and superconductivity. Similar effects at compositionally homogeneous interfaces including ferroic domain walls are expected. Unlike hetero interfaces, domain walls can be created, displaced, annihilated and recreated inside a functioning device. Theory predicts the existence of 'strongly' charged domain walls that break polarization continuity, but are stable and conduct steadily through a quasi-two-dimensional electron gas. Here we show this phenomenon experimentally in charged domain walls of the prototypical ferroelectric BaTiO3. Their steady metallic-type conductivity, 109 times that of the parent matrix, evidence the presence of stable degenerate electron gas, thus adding mobility to functional interfaces. PMID:23651996

  12. Annealing effect on current-driven domain wall motion in Pt/[Co/Ni] wire

    NASA Astrophysics Data System (ADS)

    Furuta, Masaki; Liu, Yang; Sepehri-Amin, Hossein; Hono, Kazuhiro; Zhu, Jian-Gang Jimmy

    2017-09-01

    The annealing effect on the efficiency of current-driven domain wall motion governed by the spin Hall effect in perpendicularly magnetized Pt/[Co/Ni] wires is investigated experimentally. Important physical parameters, such as the Dzyaloshinskii-Moriya Interaction (DMI), spin Hall angle, and perpendicular anisotropy field strength, for the domain wall motion are all characterized at each annealing temperature. It is found that annealing of wires at temperatures over 120 °C causes significant reduction of the domain wall velocity. Energy dispersive X-ray spectroscopy analysis shows pronounced Co diffusion across the Pt/Co interface resulted from annealing at relatively high temperatures. The combined modeling study shows that the reduction of DMI caused by annealing is mostly responsible for the domain wall velocity reduction due to annealing.

  13. Thermal-induced domain wall motion of tip-inverted micro/nanodomains in near-stoichiometric LiNbO3 crystals

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Kitamura, K.; Liu, Y. M.; Ohuchi, F. S.; Li, J. Y.

    2011-09-01

    Thermal-induced domain wall motion of tip-inverted micro/nanodomains in near-stoichiometric LiNbO3 single crystals was investigated using piezoresponse force microscopy (PFM). The domain wall motion was observed in PFM phase and amplitude images at room temperature after the sample was subjected to a thermal process at a heating temperature higher than 100 °C. In hexagonal domains with only y walls, predetermined nucleation with layer-by-layer growth is the main mechanism for the domain wall motion. In the domains composed of both x walls and y walls, the x walls are more mobile than the y walls, and the domain wall motion starts from the random nucleation of steps along the x walls that finally grow into y walls. The domain wall motion in the near-stoichiometric LiNbO3 crystal is attributed to the energy-preferable domain wall orientation, the pyroelectric effect, and the screening charge variation caused by the thermal process.

  14. Local wall heat flux/temperature meter for convective flow and method of utilizing same

    DOEpatents

    Boyd, Ronald D.; Ekhlassi, Ali; Cofie, Penrose

    2004-11-30

    According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.

  15. Local wall heat flux/temperature meter for convective flow and method of utilizing same

    NASA Technical Reports Server (NTRS)

    Cofie, Penrose (Inventor); Ekhlassi, Ali (Inventor); Boyd, Ronald D. (Inventor)

    2004-01-01

    According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.

  16. Gapped fermionic spectrum from a domain wall in seven dimension

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Subir; Rai, Nishal

    2018-05-01

    We obtain a domain wall solution in maximally gauged seven dimensional supergravity, which interpolates between two AdS spaces and spontaneously breaks a U (1) symmetry. We analyse frequency dependence of conductivity and find power law behaviour at low frequency. We consider certain fermions of supergravity in the background of this domain wall and compute holographic spectral function of the operators in the dual six dimensional theory. We find fermionic operators involving bosons with non-zero expectation value lead to gapped spectrum.

  17. Local and global gravitational aspects of domain wall space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvetic, M.; Griffies, S.; Soleng, H.H.

    1993-09-15

    Local and global gravitational effects induced by eternal vacuum domain walls are studied. We concentrate on thin walls between nonequal and nonpositive cosmological constants on each side of the wall. The assumption of homogeneity, isotropy, and geodesic completeness of the space-time intrinsic to the wall as described in the comoving coordinate system and the constraint that the same symmetries hold in hypersurfaces parallel to the wall yield a general [ital Ansatz] for the line element of space-time. We restrict the problem further by demanding that the wall's surface energy density, [sigma], is positive and by requiring that the infinitely thinmore » wall represents a thin-wall limit of kinklike scalar field configuration. These vacuum domain walls fall in three classes depending on the value of their [sigma]: (1) extreme walls with [sigma]=[sigma][sub ext] are planar, static walls corresponding to supersymmetric configurations, (2) nonextreme walls with [sigma]=[sigma][sub non][gt][sigma][sub ext] correspond to expanding bubbles with observers on either side of the wall being [ital inside] the bubble, and (3) ultraextreme walls with [sigma]=[sigma][sub ultra][lt][sigma][sub ext] represent the bubbles of false vacuum decay. On the sides with less negative cosmological constant, the extreme, nonextreme, and ultraextreme walls exhibit no, repulsive, and attractive effective gravitational forces,'' respectively. These gravitational forces'' are global effects not caused by local curvature. Since the nonextreme wall encloses observers on both sides, the supersymmetric system has the lowest gravitational mass accessible to outside observers. It is conjectured that similar positive mass protection occurs in all physical systems and that no finite negative mass object can exist inside the universe.« less

  18. Preliminary findings on the effects of geometry on two-phase flow through volcanic conduits

    NASA Astrophysics Data System (ADS)

    Mitchell, K. L.; Wilson, L.; Lane, S. J.; James, M. R.

    2003-04-01

    We attempt to ascertain whether some of the geometrical assumptions utilised in modelling of flows through volcanic conduits are valid. Flow is often assumed to be through a vertical conduit, but some volcanoes, such as Pu'u 'O'o (Kilauea, Hawai'i) and Stromboli (Italy), are known to exhibit inclined or more complex conduit systems. Our numerical and experimental studies have revealed that conduit inclination is a first-order influence on flow properties and eruptive style. Even a few degrees of inclination from vertical can increase gas-liquid phase separation by locally enhancing the gas volume fraction on the upper surface of the conduit. We explore the consequences of phase separation and slug flow for styles of magmatic eruption, and consider how these apply to particular eruptions. Modellers also tend to assume a simple parallel-sided geometry for volcanic conduits. Some have used a pressure-balanced assumption allowing conduits to choke and flare, resulting in higher eruption velocities. The pressure-balanced assumption is flawed in that it does not deal with the effects of compressibility and associated shocks when the flow is supersonic. Both parallel-sided and pressure-balanced assumptions avoid addressing how conduit shape evolves from an initial dyke-shaped fracture. However, we assert that evolution of conduit shape is impossible to quantify accurately using a deterministic approach. Therefore we adopt a simplified approach, with the initial conduit shape as a blade-shaped dyke, and the potential end-member as a system that is pressure-balanced up to the supersonic choking point and undetermined beyond (flow is constrained by a narrow jet envelope and not by the walls). Intermediate geometries are assumed to change quasi-steadily at locations where conduit wall stresses are high, and the consequences of these geometries are explored. We find that quite small changes in conduit geometry, which are likely to occur in volcanic systems, can have a

  19. Wall mechanics and exocytosis define the shape of growth domains in fission yeast.

    PubMed

    Abenza, Juan F; Couturier, Etienne; Dodgson, James; Dickmann, Johanna; Chessel, Anatole; Dumais, Jacques; Carazo Salas, Rafael E

    2015-10-12

    The amazing structural variety of cells is matched only by their functional diversity, and reflects the complex interplay between biochemical and mechanical regulation. How both regulatory layers generate specifically shaped cellular domains is not fully understood. Here, we report how cell growth domains are shaped in fission yeast. Based on quantitative analysis of cell wall expansion and elasticity, we develop a model for how mechanics and cell wall assembly interact and use it to look for factors underpinning growth domain morphogenesis. Surprisingly, we find that neither the global cell shape regulators Cdc42-Scd1-Scd2 nor the major cell wall synthesis regulators Bgs1-Bgs4-Rgf1 are reliable predictors of growth domain geometry. Instead, their geometry can be defined by cell wall mechanics and the cortical localization pattern of the exocytic factors Sec6-Syb1-Exo70. Forceful re-directioning of exocytic vesicle fusion to broader cortical areas induces proportional shape changes to growth domains, demonstrating that both features are causally linked.

  20. Magnetoconductance signatures of chiral domain-wall bound states in magnetic topological insulators

    NASA Astrophysics Data System (ADS)

    Tiwari, Kunal L.; Coish, W. A.; Pereg-Barnea, T.

    2017-12-01

    Recent magnetoconductance measurements performed on magnetic topological insulator candidates have revealed butterfly-shaped hysteresis. This hysteresis has been attributed to the formation of gapless chiral domain-wall bound states during a magnetic-field sweep. We treat this phenomenon theoretically, providing a link between microscopic magnetization dynamics and butterfly hysteresis in magnetoconductance. Further, we illustrate how a spatially resolved conductance measurement can probe the most striking feature of the domain-wall bound states: their chirality. This work establishes a regime where a definitive link between butterfly hysteresis in longitudinal magneto-conductance and domain-wall bound states can be made. This analysis provides an important tool for the identification of magnetic topological insulators.

  1. Enhanced spin transfer torque effect for transverse domain walls in cylindrical nanowires

    NASA Astrophysics Data System (ADS)

    Franchin, Matteo; Knittel, Andreas; Albert, Maximilian; Chernyshenko, Dmitri S.; Fischbacher, Thomas; Prabhakar, Anil; Fangohr, Hans

    2011-09-01

    Recent studies have predicted extraordinary properties for transverse domain walls in cylindrical nanowires: zero depinning current, the absence of the Walker breakdown, and applications as domain wall oscillators. In order to reliably control the domain wall motion, it is important to understand how they interact with pinning centers, which may be engineered, for example, through modulations in the nanowire geometry (such as notches or extrusions) or in the magnetic properties of the material. In this paper we study the motion and depinning of transverse domain walls through pinning centers in ferromagnetic cylindrical nanowires. We use (i) magnetic fields and (ii) spin-polarized currents to drive the domain walls along the wire. The pinning centers are modelled as a section of the nanowire which exhibits a uniaxial crystal anisotropy where the anisotropy easy axis and the wire axis enclose a variable angle θP. Using (i) magnetic fields, we find that the minimum and the maximum fields required to push the domain wall through the pinning center differ by 30%. On the contrary, using (ii) spin-polarized currents, we find variations of a factor 130 between the minimum value of the depinning current density (observed for θP=0∘, i.e., anisotropy axis pointing parallel to the wire axis) and the maximum value (for θP=90∘, i.e., anisotropy axis perpendicular to the wire axis). We study the depinning current density as a function of the height of the energy barrier of the pinning center using numerical and analytical methods. We find that for an industry standard energy barrier of 40kBT, a depinning current of about 5μA (corresponding to a current density of 6×1010A/m2 in a nanowire of 10nm diameter) is sufficient to depin the domain wall. We reveal and explain the mechanism that leads to these unusually low depinning currents. One requirement for this depinning mechanism is for the domain wall to be able to rotate around its own axis. With the right barrier design

  2. The influence of annealing on domain wall propagation in bistable amorphous microwire with unidirectional effect

    NASA Astrophysics Data System (ADS)

    Onufer, Jozef; Ziman, Ján; Duranka, Peter; Kladivová, Mária

    2018-07-01

    The effect of gradual annealing on the domain wall mobility (velocity), nucleation, critical depinning and propagation fields in amorphous FeSiB microwires has been studied. A new experimental set-up, presented in this paper, allows measurement of average domain wall velocity for four different conditions and detection of the presence of unidirectional effect in wall propagation without manipulation of the microwire. The proposed interpretation is that a domain wall is considered as a relatively long object which can change its axial dimension due to inhomogeneity of damping forces acting on the wall during its propagation. It is demonstrated that unidirectional effect in domain wall propagation can be strongly reduced by annealing the wire at temperatures higher than 350 °C.

  3. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.

    2017-08-01

    We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO3 by means of conductive—atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.

  4. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization.

    PubMed

    Chiba, D; Kawaguchi, M; Fukami, S; Ishiwata, N; Shimamura, K; Kobayashi, K; Ono, T

    2012-06-06

    Controlling the displacement of a magnetic domain wall is potentially useful for information processing in magnetic non-volatile memories and logic devices. A magnetic domain wall can be moved by applying an external magnetic field and/or electric current, and its velocity depends on their magnitudes. Here we show that the applying an electric field can change the velocity of a magnetic domain wall significantly. A field-effect device, consisting of a top-gate electrode, a dielectric insulator layer, and a wire-shaped ferromagnetic Co/Pt thin layer with perpendicular anisotropy, was used to observe it in a finite magnetic field. We found that the application of the electric fields in the range of ± 2-3 MV cm(-1) can change the magnetic domain wall velocity in its creep regime (10(6)-10(3) m s(-1)) by more than an order of magnitude. This significant change is due to electrical modulation of the energy barrier for the magnetic domain wall motion.

  5. Proposal for a Domain Wall Nano-Oscillator driven by Non-uniform Spin Currents

    PubMed Central

    Sharma, Sanchar; Muralidharan, Bhaskaran; Tulapurkar, Ashwin

    2015-01-01

    We propose a new mechanism and a related device concept for a robust, magnetic field tunable radio-frequency (rf) oscillator using the self oscillation of a magnetic domain wall subject to a uniform static magnetic field and a spatially non-uniform vertical dc spin current. The self oscillation of the domain wall is created as it translates periodically between two unstable positions, one being in the region where both the dc spin current and the magnetic field are present, and the other, being where only the magnetic field is present. The vertical dc spin current pushes it away from one unstable position while the magnetic field pushes it away from the other. We show that such oscillations are stable under noise and can exhibit a quality factor of over 1000. A domain wall under dynamic translation, not only being a source for rich physics, is also a promising candidate for advancements in nanoelectronics with the actively researched racetrack memory architecture, digital and analog switching paradigms as candidate examples. Devising a stable rf oscillator using a domain wall is hence another step towards the realization of an all domain wall logic scheme. PMID:26420544

  6. Assessment of Hemodynamic Conditions in the Aorta Following Root Replacement with Composite Valve-Conduit Graft.

    PubMed

    Cheng, Zhuo; Kidher, Emaddin; Jarral, Omar A; O'Regan, Declan P; Wood, Nigel B; Athanasiou, Thanos; Xu, Xiao Yun

    2016-05-01

    This paper presents the analysis of detailed hemodynamics in the aortas of four patients following replacement with a composite bio-prosthetic valve-conduit. Magnetic resonance image-based computational models were set up for each patient with boundary conditions comprising subject-specific three-dimensional inflow velocity profiles at the aortic root and central pressure waveform at the model outlet. Two normal subjects were also included for comparison. The purpose of the study was to investigate the effects of the valve-conduit on flow in the proximal and distal aorta. The results suggested that following the composite valve-conduit implantation, the vortical flow structure and hemodynamic parameters in the aorta were altered, with slightly reduced helical flow index, elevated wall shear stress and higher non-uniformity in wall shear compared to normal aortas. Inter-individual analysis revealed different hemodynamic conditions among the patients depending on the conduit configuration in the ascending aorta, which is a key factor in determining post-operative aortic flow. Introducing a natural curvature in the conduit to create a smooth transition between the conduit and native aorta may help prevent the occurrence of retrograde and recirculating flow in the aortic arch, which is particularly important when a large portion or the entire ascending aorta needs to be replaced.

  7. Néel walls between tailored parallel-stripe domains in IrMn/CoFe exchange bias layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueltzhöffer, Timo, E-mail: timo.ueltzhoeffer@physik.uni-kassel.de; Schmidt, Christoph; Ehresmann, Arno

    Tailored parallel-stripe magnetic domains with antiparallel magnetizations in adjacent domains along the long stripe axis have been fabricated in an IrMn/CoFe Exchange Bias thin film system by 10 keV He{sup +}-ion bombardment induced magnetic patterning. Domain walls between these domains are of Néel type and asymmetric as they separate domains of different anisotropies. X-ray magnetic circular dichroism asymmetry images were obtained by x-ray photoelectron emission microscopy at the Co/Fe L{sub 3} edges at the synchrotron radiation source BESSY II. They revealed Néel-wall tail widths of 1 μm in agreement with the results of a model that was modified in order to describemore » such walls. Similarly obtained domain core widths show a discrepancy to values estimated from the model, but could be explained by experimental broadening. The rotation senses in adjacent walls were determined, yielding unwinding domain walls with non-interacting walls in this layer system.« less

  8. Cryovolcanic Conduit Evolution and Eruption on Icy Satellites

    NASA Astrophysics Data System (ADS)

    Mitchell, K. L.

    2014-12-01

    In silicate volcanism, such as on Earth or Io, eruptions typically result from fracture formation caused by interaction of tectonic stresses with inflating, pressurized magma sources, leading to transport of melt through an evolving conduit. On icy satellites the paradigm may be similar, resulting from some combination of tidal stresses and expansion of freezing water within, or near the base of, an ice shell. Such a fracture will result in eruption if mass continuity can be established, with buoyancy aided by exsolution and expansion of dissolved volatiles. After onset, conduit shape evolves due to: (1) shear-stresses or frictional erosional; (2) wallrock "bursting" due to massive wall stresses; (3) wall melting or condensation of particles due to heat transfer; or (4) changes in applied stresses. Preliminary thermodynamic and fluid mechanical analysis suggests some initial cooling during ascent resulting from exsolution and expansion of volatiles, thermally buffered by freezing, Conduit contraction may occur, and so evolution towards a deep, gas-filled plume chamber is difficult to accommodate without evoking a co-incidental process. Conduit flaring occurs near the surface where velocities are greatest, enhancing erosion. Here, viscous dissipative heating exceeds adiabatic cooling, and so some boiling (a few wt%) may occur. In contrast with silicate volcanism, decompression to below the triple point will occur within conduit, vent or jet, resulting in rapid freezing and boiling of the remaining water at a 6.8:1 ratio. Subsequent isentropic or adiabatic expansion within erupting jets may result in a few percent net of condensation or sublimation. These effects combined lead to ~4:1-7:1 solid:vapor ratios in the jet for most eruption conditions. These figures are consistent with the ~6:1 inferred in Enceladus' jets, supporting the hypothesis that the Enceladus plume draws from a subsurface body of liquids through a conduit. Similar results are anticipated if

  9. Direct observation of interlocked domain walls and topological four-state vortex-like domain patterns in multiferroic YMnO{sub 3} single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Lei; School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028; Wang, Yumei, E-mail: wangym@iphy.ac.cn

    2015-03-16

    Using the advanced spherical aberration-corrected high angle annular dark field scanning transmission electron microscope imaging techniques, we investigated atomic-scale structural features of domain walls and domain patterns in YMnO{sub 3} single crystal. Three different types of interlocked ferroelectric-antiphase domain walls and two abnormal topological four-state vortex-like domain patterns are identified. Each ferroelectric domain wall is accompanied by a translation vector, i.e., 1/6[210] or −1/6[210], demonstrating its interlocked nature. Different from the four-state vortex domain patterns caused by a partial edge dislocation, two four-state vortex-like domain configurations have been obtained at atomic level. These observed phenomena can further extend our understandingmore » of the fascinating vortex domain patterns in multiferroic hexagonal rare-earth manganites.« less

  10. Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films

    DOE PAGES

    Damodaran, Anoop; Okatan, M. B.; Kacher, J.; ...

    2016-02-15

    Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr 1-xTimore » xO 3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.« less

  11. Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damodaran, Anoop; Okatan, M. B.; Kacher, J.

    Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr 1-xTimore » xO 3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.« less

  12. Topological-charge-driven reversal of ferromagnetic rings via 360∘ domain-wall formation

    NASA Astrophysics Data System (ADS)

    Oyarce, A. L. Gonzalez; Trypiniotis, T.; Roy, P. E.; Barnes, C. H. W.

    2013-05-01

    We study the reversal mechanism between opposite closed flux states of ferromagnetic nanorings driven by an azimuthal magnetic field. The reversal proceeds via the formation of 360∘ domain walls, and we show that the role of interacting nucleation sites is essential for the process to take place. Such nucleation is seen to create domain walls with the right topological charge conditions for 360∘ domain-wall formation. Given the symmetry of the system, we utilize an energetic description as a function of the azimuthal field magnitude, which clearly reveals the different stages of this reversal process. The annihilation of the 360∘ domain walls that is necessary for the reversal process to complete is controlling the field value at the final stage of the process. Such a fundamental mechanism for ring reversal has several implications and will guide the design of the various data-storage-device proposals based on nanorings.

  13. Primordial black hole and wormhole formation by domain walls

    NASA Astrophysics Data System (ADS)

    Deng, Heling; Garriga, Jaume; Vilenkin, Alexander

    2017-04-01

    In theories with a broken discrete symmetry, Hubble sized spherical domain walls may spontaneously nucleate during inflation. These objects are subsequently stretched by the inflationary expansion, resulting in a broad distribution of sizes. The fate of the walls after inflation depends on their radius. Walls smaller than a critical radius fall within the cosmological horizon early on and collapse due to their own tension, forming ordinary black holes. But if a wall is large enough, its repulsive gravitational field becomes dominant much before the wall can fall within the cosmological horizon. In this ``supercritical'' case, a wormhole throat develops, connecting the ambient exterior FRW universe with an interior baby universe, where the exponential growth of the wall radius takes place. The wormhole pinches off in a time-scale comparable to its light-crossing time, and black holes are formed at its two mouths. As discussed in previous work, the resulting black hole population has a wide distribution of masses and can have significant astrophysical effects. The mechanism of black hole formation has been previously studied for a dust-dominated universe. Here we investigate the case of a radiation-dominated universe, which is more relevant cosmologically, by using numerical simulations in order to find the initial mass of a black hole as a function of the wall size at the end of inflation. For large supercritical domain walls, this mass nearly saturates the upper bound according to which the black hole cannot be larger than the cosmological horizon. We also find that the subsequent accretion of radiation satisfies a scaling relation, resulting in a mass increase by about a factor of 2.

  14. Primordial black hole and wormhole formation by domain walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Heling; Garriga, Jaume; Vilenkin, Alexander, E-mail: heling.deng@tufts.edu, E-mail: garriga@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu

    In theories with a broken discrete symmetry, Hubble sized spherical domain walls may spontaneously nucleate during inflation. These objects are subsequently stretched by the inflationary expansion, resulting in a broad distribution of sizes. The fate of the walls after inflation depends on their radius. Walls smaller than a critical radius fall within the cosmological horizon early on and collapse due to their own tension, forming ordinary black holes. But if a wall is large enough, its repulsive gravitational field becomes dominant much before the wall can fall within the cosmological horizon. In this ''supercritical'' case, a wormhole throat develops, connectingmore » the ambient exterior FRW universe with an interior baby universe, where the exponential growth of the wall radius takes place. The wormhole pinches off in a time-scale comparable to its light-crossing time, and black holes are formed at its two mouths. As discussed in previous work, the resulting black hole population has a wide distribution of masses and can have significant astrophysical effects. The mechanism of black hole formation has been previously studied for a dust-dominated universe. Here we investigate the case of a radiation-dominated universe, which is more relevant cosmologically, by using numerical simulations in order to find the initial mass of a black hole as a function of the wall size at the end of inflation. For large supercritical domain walls, this mass nearly saturates the upper bound according to which the black hole cannot be larger than the cosmological horizon. We also find that the subsequent accretion of radiation satisfies a scaling relation, resulting in a mass increase by about a factor of 2.« less

  15. Current-induced domain wall motion in permalloy nanowires with a rectangular cross-section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, J. H.; Miao, B. F.; Sun, L.

    2011-11-01

    We performed micromagnetic simulations of the current-induced domain wall motion in permalloy nanowires with rectangular cross-section. In the absence of the nonadiabatic spin-transfer term, a threshold current, J{sub c} is required to drive the domain wall moving continuously. We find that J{sub c} is proportional to the maximum cross product of the demagnetization field and magnetization orientation of the domain wall and the domain wall width. With varying both the wire thickness and width, a minimum threshold current in the order of 10{sup 6} A/cm{sup 2} is obtained when the thickness is equivalent to the wire width. With the nonadiabaticmore » spin-transfer term, the calculated domain wall velocity {nu} equals to the adiabatic spin transfer velocity u when the current is far above the Walker limit J{sub w}. Below J{sub w}, {nu}=({beta}/{alpha})u, where {beta} is the nonadiabatic parameter and {alpha} is the damping factor. For different {beta}, we find the Walker limit can be scaled as J{sub w}=({alpha}/{beta}-{alpha})J{sub c}. Our simulations agree well with the one dimensional analytical calculation, suggesting the findings are the general behaviors of the systems in this particular geometry.« less

  16. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

    DOE PAGES

    Chen, Gong; Kang, Sang Pyo; Ophus, Colin; ...

    2017-05-19

    Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to bemore » non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.« less

  17. Tachyon condensation due to domain-wall annihilation in Bose-Einstein condensates.

    PubMed

    Takeuchi, Hiromitsu; Kasamatsu, Kenichi; Tsubota, Makoto; Nitta, Muneto

    2012-12-14

    We show theoretically that a domain-wall annihilation in two-component Bose-Einstein condensates causes tachyon condensation accompanied by spontaneous symmetry breaking in a two-dimensional subspace. Three-dimensional vortex formation from domain-wall annihilations is considered a kink formation in subspace. Numerical experiments reveal that the subspatial dynamics obey the dynamic scaling law of phase-ordering kinetics. This model is experimentally feasible and provides insights into how the extra dimensions influence subspatial phase transition in higher-dimensional space.

  18. Excess velocity of magnetic domain walls close to the depinning field

    NASA Astrophysics Data System (ADS)

    Caballero, Nirvana B.; Fernández Aguirre, Iván; Albornoz, Lucas J.; Kolton, Alejandro B.; Rojas-Sánchez, Juan Carlos; Collin, Sophie; George, Jean Marie; Diaz Pardo, Rebeca; Jeudy, Vincent; Bustingorry, Sebastian; Curiale, Javier

    2017-12-01

    Magnetic field driven domain wall velocities in [Co/Ni] based multilayers thin films have been measured using polar magneto-optic Kerr effect microscopy. The low field results are shown to be consistent with the universal creep regime of domain wall motion, characterized by a stretched exponential growth of the velocity with the inverse of the applied field. Approaching the depinning field from below results in an unexpected excess velocity with respect to the creep law. We analyze these results using scaling theory to show that this speeding up of domain wall motion can be interpreted as due to the increase of the size of the deterministic relaxation close to the depinning transition. We propose a phenomenological model to accurately fit the observed excess velocity and to obtain characteristic values for the depinning field Hd, the depinning temperature Td, and the characteristic velocity scale v0 for each sample.

  19. Cosmic bubble and domain wall instabilities II: fracturing of colliding walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braden, Jonathan; Bond, J. Richard; Mersini-Houghton, Laura, E-mail: j.braden@ucl.ac.uk, E-mail: bond@cita.utoronto.ca, E-mail: mersini@physics.unc.edu

    2015-08-01

    We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. Wemore » find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.« less

  20. Cosmic bubble and domain wall instabilities II: fracturing of colliding walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braden, Jonathan; Department of Physics, University of Toronto,60 St. George Street, Toronto, ON, M5S 3H8; Department of Physics and Astronomy, University College London,Gower Street, London, WC1E 6BT

    2015-08-26

    We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. Wemore » find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.« less

  1. Evolution of light domain walls interacting with dark matter, part 1

    NASA Technical Reports Server (NTRS)

    Massarotti, Alessandro

    1990-01-01

    The evolution of domain walls generated in the early Universe is discussed considering an interaction between the walls and a major gaseous component of the dark matter. The walls are supposed able to reflect the particles elastically and with a reflection coefficient of unity. A toy Lagrangian that could give rise to such a phenomenon is discussed. In the simple model studied, highly non-relativistic and slowly varying speeds are obtained for the domain walls (approximately 10 (exp -2)(1+z)(exp -1)) and negligible distortions of the microwave background. In addition, these topological defects may provide a mechanism of forming the large scale structure of the Universe, by creating fluctuations in the dark matter (delta rho/rho approximately O(1)) on a scale comparable with the distance the walls move from the formation (in the model d less than 20 h(exp -1) Mpc). The characteristic scale of the wall separation can be easily chosen to be of the order of 100 Mpc instead of being restricted to the horizon scale, as usually obtained.

  2. Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes

    NASA Astrophysics Data System (ADS)

    Alija, A.; Pérez-Junquera, A.; Rodríguez-Rodríguez, G.; Vélez, M.; Marconi, V. I.; Kolton, A. B.; Anguita, J. V.; Alameda, J. M.; Parrondo, J. M. R.; Martín, J. I.

    2009-02-01

    Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 µm triangles, which is the characteristic length scale set by domain wall width.

  3. Molded Concrete Center Mine Wall

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  4. Remarkably enhanced current-driven 360° domain wall motion in nanostripe by tuning in-plane biaxial anisotropy.

    PubMed

    Su, Yuanchang; Weng, Lianghao; Dong, Wenjun; Xi, Bin; Xiong, Rui; Hu, Jingguo

    2017-10-17

    By micromagnetic simulations, we study the current-driven 360° domain wall (360DW) motion in ferromagnetic nanostripe with an in-plane biaxial anisotropy. We observe the critical annihilation current of 360° domain wall can be enhanced through such a type of anisotropy, the reason of which is the suppression of out-of-plane magnetic moments generated simultaneously with domain-wall motion. In details, We have found that the domain-wall width is only related to K y  - K x , with K x(y) the anisotropy constant in x(y) direction. Taking domain-wall width into consideration, a prior choice is to keep K y  ≈ K x with large enough K. The mode of domain-wall motion has been investigated as well. The traveling-wave-motion region increases with K, while the average DW velocity is almost unchanged. Another noteworthy feature is that a Walker-breakdown-like motion exists before annihilation. In this region, though domain wall moves with an oscillating behavior, the average velocity does not reduce dramatically, but even rise again for a large K.

  5. Domain wall dynamics driven by spin transfer torque and the spin-orbit field.

    PubMed

    Hayashi, Masamitsu; Nakatani, Yoshinobu; Fukami, Shunsuke; Yamanouchi, Michihiko; Mitani, Seiji; Ohno, Hideo

    2012-01-18

    We have studied current-driven dynamics of domain walls when an in-plane magnetic field is present in perpendicularly magnetized nanowires using an analytical model and micromagnetic simulations. We model an experimentally studied system, ultrathin magnetic nanowires with perpendicular anisotropy, where an effective in-plane magnetic field is developed when current is passed along the nanowire due to the Rashba-like spin-orbit coupling. Using a one-dimensional model of a domain wall together with micromagnetic simulations, we show that the existence of such in-plane magnetic fields can either lower or raise the threshold current needed to cause domain wall motion. In the presence of the in-plane field, the threshold current differs for positive and negative currents for a given wall chirality, and the wall motion becomes sensitive to out-of-plane magnetic fields. We show that large non-adiabatic spin torque can counteract the effect of the in-plane field.

  6. Electrical conduction at domain walls in multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Seidel, Jan; Martin, Lane; He, Qing; Zhan, Qian; Chu, Ying-Hao; Rother, Axel; Hawkridge, Michael; Maksymovych, Peter; Yu, Pu; Gajek, Martin; Balke, Nina; Kalinin, Sergei; Gemming, Sybille; Wang, Feng; Catalán, Gustau; Scott, James; Spaldin, Nicola; Orenstein, Joseph; Ramesh, Ramamoorthy

    2009-03-01

    We report the observation of room temperature electronic conductivity at ferroelectric domain walls in BiFeO3. The origin and nature of the observed conductivity is probed using a combination of conductive atomic force microscopy, high resolution transmission electron microscopy and first-principles density functional computations. We show that a structurally driven change in both the electrostatic potential and local electronic structure (i.e., a decrease in band gap) at the domain wall leads to the observed electrical conductivity. We estimate the conductivity in the wall to be several orders of magnitude higher than for the bulk material. Additionally we demonstrate the potential for device applications of such conducting nanoscale features.

  7. CorMatrix valved conduit in a porcine model: long-term remodelling and biomechanical characterization.

    PubMed

    Mosala Nezhad, Zahra; Poncelet, Alain; de Kerchove, Laurent; Fervaille, Caroline; Banse, Xavier; Bollen, Xavier; Dehoux, Jean-Paul; El Khoury, Gebrine; Gianello, Pierre

    2017-01-01

    Porcine small intestinal submucosa extracellular matrix (CorMatrix; CorMatrix Cardiovascular, Rosewell, GA) is a relatively novel tissue substitute used in cardiovascular applications. We investigated the biological reaction and remodelling of CorMatrix as a tri-leaflet valved conduit in a pig model. We hypothesized that CorMatrix maintains a durable architecture as a valved conduit and remodels to resemble surrounding tissues. We fashioned the valved conduit using a 7 × 10 cm 4-ply CorMatrix sheet and placed it in the thoracic aorta of seven landrace pigs for 3, 4, 5 and 6 months. Biodegradation, replacement by native tissue, strength and durability were examined by histology, immunohistochemistry and mechanical testing. Four pigs, one per time frame, completed the study. The conduit lost its original architecture as a tri-leaflet valve due to cusp immobility, subsequent attachment to the wall segment and consequent maintenance of a thick arterial wall-like structure. Scaffold resorption was incomplete, with disorganized inconsistent spatial and temporal degradation even at 6 months. Fibrosis, scarring and calcification started at 4 months and chronic inflammation persisted. The partially remodelled scaffold did not resemble the aortic wall, suggesting impaired remodelling. Mechanical testing showed progressive weakening of the tissues over time, which were liable to breakage. CorMatrix is biodegradable; however, it failed to remodel in a structured and anatomical fashion in an arterial environment. Progressive mechanical and remodelling failure in this scenario might be explained by the complexity of the conduit design and the host's chronic inflammatory response, leading to early fibrosis and calcification. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  8. Exact BPS domain walls at finite gauge coupling

    NASA Astrophysics Data System (ADS)

    Blaschke, Filip

    2017-01-01

    Bogomol'nyi-Prasad-Sommerfield solitons in models with spontaneously broken gauge symmetry have been intensively studied at the infinite gauge coupling limit, where the governing equation-the so-called master equation-is exactly solvable. Except for a handful of special solutions, the standing impression is that analytic results at finite coupling are generally unavailable. The aim of this paper is to demonstrate, using domain walls in Abelian-Higgs models as the simplest example, that exact solitons at finite gauge coupling can be readily obtained if the number of Higgs fields (NF ) is large enough. In particular, we present a family of exact solutions, describing N domain walls at arbitrary positions in models with at least NF≥2 N +1 . We have also found that adding together any pair of solutions can produce a new exact solution if the combined tension is below a certain limit.

  9. Reflection of antiferromagnetic vortices on a supersonic domain wall in yttrium orthoferrite

    NASA Astrophysics Data System (ADS)

    Chetkin, M. V.; Kurbatova, Yu. N.; Shapaeva, T. B.; Borschegovsky, O. A.

    2007-04-01

    Reflection of solitary flexural waves propagating in a supersonic domain wall of yttrium orthoferrite from the domain wall part moving with the transverse-sound velocity is observed experimentally. This observation confirms that such a reflection of a solitary flexural wave leads to a change in the sign of the topological charge of the antiferromagnetic vortex accompanied by this wave, which proves a direct relationship between these two objects.

  10. Influence of Joule heating on current-induced domain wall depinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moretti, Simone, E-mail: simone.moretti@usal.es; Raposo, Victor; Martinez, Eduardo

    2016-06-07

    The domain wall depinning from a notch in a Permalloy nanostrip on top of a SiO{sub 2}/Si substrate is studied theoretically under application of static magnetic fields and the injection of short current pulses. The influence of Joule heating on current-induced domain wall depinning is explored self-consistently by coupling the magnetization dynamics in the ferromagnetic strip to the heat transport throughout the system. Our results indicate that Joule heating plays a remarkable role in these processes, resulting in a reduction in the critical depinning field and/or in a temporary destruction of the ferromagnetic order for typically injected current pulses. Inmore » agreement with experimental observations, similar pinning-depinning phase diagrams can be deduced for both current polarities when the Joule heating is taken into account. These observations, which are incompatible with the sole contribution of spin transfer torques, provide a deeper understanding of the physics underlying these processes and establish the real scope of the spin transfer torque. They are also relevant for technological applications based on current-induced domain-wall motion along soft strips.« less

  11. The dynamics of domain walls and strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth; Haws, David; Garfinkle, David

    1989-01-01

    The leading order finite-width corrections to the equation of motion describing the motion of a domain wall are derived. The regime in which this equation of motion is invalid is discussed. Spherically and cylindrically symmetric solutions to this equation of motion are found. A misconception that has arisen in recent years regarding the rigidity (or otherwise) of cosmic strings is also clarified.

  12. Trajectory and chirality of vortex domain walls in ferromagnetic nanowires with an asymmetric Y-branch

    NASA Astrophysics Data System (ADS)

    Brandão, J.; Mello, A.; Garcia, F.; Sampaio, L. C.

    2017-03-01

    The motion and trajectory of vortex domain walls (VDWs) driven by magnetic field were investigated in Fe80Ni20 nanowires with an asymmetric Y-shape branch. By using the focused magneto-optical Kerr effect, we have probed the injection, pinning, and propagation of VDWs in the branch and in the wire beyond the branch entrance. Hysteresis cycles measured at these points show 3 and 4 jumps in the magnetization reversal, respectively. Micromagnetic simulations were carried out to obtain the number of jumps in the hysteresis cycles, and the magnetization process involved in each jump. Based on simulations and from the size of the jumps in the measured hysteresis cycles, one obtains the histogram of the domain wall type probability. While in the branch domain walls of different types are equiprobable, in the nanowire vortex domain walls with counter clockwise and clockwise chiralities and transverse-down domain walls are measured with probabilities of 65%, 25%, and 10%, respectively. These results provide an additional route to select the trajectory and chirality of VDWs in magnetic nanostructures.

  13. Notch-Boosted Domain Wall Propagation in Magnetic Nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Xiang Rong; Yuan, Hauiyang

    Magnetic domain wall (DW) motion along a nanowire underpins many proposals of spintronic devices. High DW propagation velocity is obviously important because it determines the device speed. Thus it is interesting to search for effective control knobs of DW dynamics. We report a counter-intuitive finding that notches in an otherwise homogeneous magnetic nanowire can boost current-induced domain wall (DW) propagation. DW motion in notch-modulated wires can be classified into three phases: 1) A DW is pinned around a notch when the current density is below the depinning current density. 2) DW propagation velocity above the depinning current density is boosted by notches when non-adiabatic spin-transfer torque strength is smaller than the Gilbert damping constant. The boost can be many-fold. 3) DW propagation velocity is hindered when non-adiabatic spin-transfer torque strength is larger than the Gilbert damping constant. This work was supported by Hong Kong GRF Grants (Nos. 163011151 and 605413) and the Grant from NNSF of China (No. 11374249).

  14. Portable conduit retention apparatus for releasably retaining a conduit therein

    DOEpatents

    Metzger, Richard H.

    1998-01-01

    Portable conduit retention apparatus for releasably retaining a conduit therein. The apparatus releasably retains the conduit out of the way of nearby personnel and equipment. The apparatus includes a portable support frame defining a slot therein having an open mouth portion in communication with the slot for receiving the conduit through the open mouth portion and into the slot. A retention bar is pivotally connected to the support frame adjacent the mouth portion for releasably retaining the conduit in the slot. The retention bar freely pivots to a first position, so that the mouth portion is unblocked in order that the conduit is received through the mouth portion and into the slot. In addition, the retention bar freely pivots to a second position, so that the mouth portion is blocked in order that the conduit is retained in the slot. The conduit is released from the slot by pivoting the retention bar to the first position to unblock the mouth portion and thereafter manipulating the conduit from the slot and through the mouth portion. The apparatus may further include a mounting member attached to the support frame for mounting the apparatus on a vertical support surface. Another embodiment of the apparatus includes a shoe assembly of predetermined weight removably connected to the support frame for resting the apparatus on a floor in such a manner that the apparatus is substantially stationary on the floor.

  15. Portable conduit retention apparatus for releasably retaining a conduit therein

    DOEpatents

    Metzger, R.H.

    1998-07-07

    Portable conduit retention apparatus is described for releasably retaining a conduit therein. The apparatus releasably retains the conduit out of the way of nearby personnel and equipment. The apparatus includes a portable support frame defining a slot therein having an open mouth portion in communication with the slot for receiving the conduit through the open mouth portion and into the slot. A retention bar is pivotally connected to the support frame adjacent the mouth portion for releasably retaining the conduit in the slot. The retention bar freely pivots to a first position, so that the mouth portion is unblocked in order that the conduit is received through the mouth portion and into the slot. In addition, the retention bar freely pivots to a second position, so that the mouth portion is blocked in order that the conduit is retained in the slot. The conduit is released from the slot by pivoting the retention bar to the first position to unblock the mouth portion and thereafter manipulating the conduit from the slot and through the mouth portion. The apparatus may further include a mounting member attached to the support frame for mounting the apparatus on a vertical support surface. Another embodiment of the apparatus includes a shoe assembly of predetermined weight removably connected to the support frame for resting the apparatus on a floor in such a manner that the apparatus is substantially stationary on the floor. 6 figs.

  16. Controlled motion of domain walls in submicron amorphous wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ţibu, Mihai; Lostun, Mihaela; Rotărescu, Cristian

    Results on the control of the domain wall displacement in cylindrical Fe{sub 77.5}Si{sub 7.5}B{sub 15} amorphous glass-coated submicron wires prepared by rapid quenching from the melt are reported. The control methods have relied on conical notches with various depths, up to a few tens of nm, made in the glass coating and in the metallic nucleus using a focused ion beam (FIB) system, and on the use of small nucleation coils at one of the sample ends in order to apply magnetic field pulses aimed to enhance the nucleation of reverse domains. The notch-based method is used for the firstmore » time in the case of cylindrical ultrathin wires. The results show that the most efficient technique of controlling the domain wall motion in this type of samples is the simultaneous use of notches and nucleation coils. Their effect depends on wire diameter, notch depth, its position on the wire length, and characteristics of the applied pulse.« less

  17. Effect of spin transfer torque on domain wall motion regimes in [Co/Ni] superlattice wires

    NASA Astrophysics Data System (ADS)

    Le Gall, S.; Vernier, N.; Montaigne, F.; Thiaville, A.; Sampaio, J.; Ravelosona, D.; Mangin, S.; Andrieu, S.; Hauet, T.

    2017-05-01

    The combined effect of magnetic field and current on domain wall motion is investigated in epitaxial [Co/Ni] microwires. Both thermally activated and flow regimes are found to be strongly affected by current. All experimental data can be understood by taking into account both adiabatic and nonadiabatic components of the spin transfer torque, the parameters of which are extracted. In the precessional flow regime, it is shown that the domain wall can move in the electron flow direction against a strong applied field, as previously observed. In addition, for a large range of applied magnetic field and injected current, a stochastic domain wall displacement after each pulse is observed. Two-dimensional micromagnetic simulations, including some disorder, show a random fluctuation of the domain wall position that qualitatively matches the experimental results.

  18. Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films

    NASA Astrophysics Data System (ADS)

    Chen, G.; Zhu, J.; Quesada, A.; Li, J.; N'Diaye, A. T.; Huo, Y.; Ma, T. P.; Chen, Y.; Kwon, H. Y.; Won, C.; Qiu, Z. Q.; Schmid, A. K.; Wu, Y. Z.

    2013-04-01

    Using spin-polarized low energy electron microscopy, we discovered a new type of domain wall structure in perpendicularly magnetized Fe/Ni bilayers grown epitaxially on Cu(100). Specifically, we observed unexpected Néel-type walls with fixed chirality in the magnetic stripe phase. Furthermore, we find that the chirality of the domain walls is determined by the film growth order with the chirality being right handed in Fe/Ni bilayers and left handed in Ni/Fe bilayers, suggesting that the underlying mechanism is the Dzyaloshinskii-Moriya interaction at the film interfaces. Our observations may open a new route to control chiral spin structures using interfacial engineering in transition metal heterostructures.

  19. Incorporating seismic observations into 2D conduit flow modeling

    NASA Astrophysics Data System (ADS)

    Collier, L.; Neuberg, J.

    2006-04-01

    Conduit flow modeling aims to understand the conditions of magma at depth, and to provide insight into the physical processes that occur inside the volcano. Low-frequency events, characteristic to many volcanoes, are thought to contain information on the state of magma at depth. Therefore, by incorporating information from low-frequency seismic analysis into conduit flow modeling a greater understanding of magma ascent and its interdependence on magma conditions and physical processes is possible. The 2D conduit flow model developed in this study demonstrates the importance of lateral pressure and parameter variations on overall magma flow dynamics, and the substantial effect bubbles have on magma shear viscosity and on magma ascent. The 2D nature of the conduit flow model developed here allows in depth investigation into processes which occur at, or close to the wall, such as magma cooling and brittle failure of melt. These processes are shown to have a significant effect on magma properties and therefore, on flow dynamics. By incorporating low-frequency seismic information, an advanced conduit flow model is developed including the consequences of brittle failure of melt, namely friction-controlled slip and gas loss. This model focuses on the properties and behaviour of magma at depth within the volcano, and their interaction with the formation of seismic events by brittle failure of melt.

  20. Domain wall dynamics along curved strips under current pulses: The influence of Joule heating

    NASA Astrophysics Data System (ADS)

    Raposo, Victor; Moretti, Simone; Hernandez, Maria Auxiliadora; Martinez, Eduardo

    2016-01-01

    The current-induced domain wall dynamics along curved ferromagnetic strips is studied by coupling the magnetization dynamics to the heat transport. Permalloy strips with uniform and non-uniform cross section are evaluated, taking into account the influence of the electrical contacts used to inject the current pulses and the substrate on top of which the ferromagnetic strip is sited. Micromagnetic simulations indicate that the geometry and the non-ferromagnetic materials in the system play a significant role in the current-induced domain wall dynamics. Due to the natural pinning, domain walls are hardly affected by the spin-transfer torques when placed in uniform cross section strips under current pulses with reduced magnitude. On the contrary, the current-induced domain wall displacement is significantly different in strips with non-uniform cross section, where thermal gradients emerge as due to the Joule heating. It is found that these thermal gradients can assist or act against the pure spin-transfer torques, in agreement with the recent experimental observations.

  1. Resistance of domain walls created by means of a magnetic force microscope in transversally magnetized epitaxial Fe wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassel, C.; Stienen, S.; Roemer, F. M.

    2009-07-20

    Magnetic domain walls are created in a controllable way in transversally magnetized epitaxial Fe wires on GaAs(110) by approaching a magnetic force microscope (MFM) tip. The electrical resistance-change due to the addition of these domain walls is measured. The anisotropic magnetoresistance as well as the intrinsic domain wall resistance contribute to the resistance-change. The efficiency of this procedure is proven by MFM images, which are obtained subsequent to the domain wall creation at a larger sample-to-probe distance. The contribution of the anisotropic magnetoresistance is calculated using micromagnetic calculations, thus making it possible to quantify the intrinsic domain wall resistance.

  2. Effects of biases in domain wall network evolution. II. Quantitative analysis

    NASA Astrophysics Data System (ADS)

    Correia, J. R. C. C. C.; Leite, I. S. C. R.; Martins, C. J. A. P.

    2018-04-01

    Domain walls form at phase transitions which break discrete symmetries. In a cosmological context, they often overclose the Universe (contrary to observational evidence), although one may prevent this by introducing biases or forcing anisotropic evolution of the walls. In a previous work [Correia et al., Phys. Rev. D 90, 023521 (2014), 10.1103/PhysRevD.90.023521], we numerically studied the evolution of various types of biased domain wall networks in the early Universe, confirming that anisotropic networks ultimately reach scaling while those with a biased potential or biased initial conditions decay. We also found that the analytic decay law obtained by Hindmarsh was in good agreement with simulations of biased potentials, but not of biased initial conditions, and suggested that the difference was related to the Gaussian approximation underlying the analytic law. Here, we extend our previous work in several ways. For the cases of biased potential and biased initial conditions, we study in detail the field distributions in the simulations, confirming that the validity (or not) of the Gaussian approximation is the key difference between the two cases. For anisotropic walls, we carry out a more extensive set of numerical simulations and compare them to the canonical velocity-dependent one-scale model for domain walls, finding that the model accurately predicts the linear scaling regime after isotropization. Overall, our analysis provides a quantitative description of the cosmological evolution of these networks.

  3. Energy-efficient writing scheme for magnetic domain-wall motion memory

    NASA Astrophysics Data System (ADS)

    Kim, Kab-Jin; Yoshimura, Yoko; Ham, Woo Seung; Ernst, Rick; Hirata, Yuushou; Li, Tian; Kim, Sanghoon; Moriyama, Takahiro; Nakatani, Yoshinobu; Ono, Teruo

    2017-04-01

    We present an energy-efficient magnetic domain-writing scheme for domain wall (DW) motion-based memory devices. A cross-shaped nanowire is employed to inject a domain into the nanowire through current-induced DW propagation. The energy required for injecting the magnetic domain is more than one order of magnitude lower than that for the conventional field-based writing scheme. The proposed scheme is beneficial for device miniaturization because the threshold current for DW propagation scales with the device size, which cannot be achieved in the conventional field-based technique.

  4. Hydraulic analysis of harmonic pumping tests in frequency and time domains for identifying the conduits networks in a karstic aquifer

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Jardani, A.; Cardiff, M.; Lecoq, N.; Jourde, H.

    2018-04-01

    In a karstic field, the flow paths are very complex as they globally follow the conduit network. The responses generated from an investigation in this type of aquifer can be spatially highly variable. Therefore, the aim of the investigation in this case is to define a degree of connectivity between points of the field, in order to understand these flow paths. Harmonic pumping tests represent a possible investigation method for characterizing the subsurface flow of groundwater. They have several advantages compared to a constant-rate pumping (more signal possibilities, ease of extracting the signal in the responses and possibility of closed loop investigation). We show in this work that interpreting the responses from a harmonic pumping test is very useful for delineating a degree of connectivity between measurement points. We have firstly studied the amplitude and phase offset of responses from a harmonic pumping test in a theoretical synthetic modeling case in order to define a qualitative interpretation method in the time and frequency domains. Three different type of responses have been separated: a conduit connectivity response, a matrix connectivity, and a dual connectivity (response of a point in the matrix, but close to a conduit). We have then applied this method to measured responses at a field research site. Our interpretation method permits a quick and easy reconstruction of the main flow paths, and the whole set of field responses appear to give a similar range of responses to those seen in the theoretical synthetic case.

  5. Δmix parameter in the overlap on domain-wall mixed action

    NASA Astrophysics Data System (ADS)

    Lujan, M.; Alexandru, A.; Chen, Y.; Draper, T.; Freeman, W.; Gong, M.; Lee, F. X.; Li, A.; Liu, K. F.; Mathur, N.

    2012-07-01

    A direct calculation of the mixed action parameter Δmix with valence overlap fermions on a domain-wall fermion sea is presented. The calculation is performed on four ensembles of the 2+1 flavor domain-wall gauge configurations: 243×64 (aml=0.005, a=0.114fm) and 323×64 (aml=0.004, 0.006, 0.008, a=0.085fm). For pion masses close to 300 MeV we find Δmix=0.030(6)GeV4 at a=0.114fm and Δmix=0.033(12)GeV4 at a=0.085fm. The results are quite independent of the lattice spacing and they are significantly smaller than the results for valence domain-wall fermions on asqtad sea or those of valence overlap fermions on clover sea. Combining the results extracted from these two ensembles, we get Δmix=0.030(6)(5)GeV4, where the first error is statistical and the second is the systematic error associated with the fitting method.

  6. Domain Wall Fermion Inverter on Pentium 4

    NASA Astrophysics Data System (ADS)

    Pochinsky, Andrew

    2005-03-01

    A highly optimized domain wall fermion inverter has been developed as part of the SciDAC lattice initiative. By designing the code to minimize memory bus traffic, it achieves high cache reuse and performance in excess of 2 GFlops for out of L2 cache problem sizes on a GigE cluster with 2.66 GHz Xeon processors. The code uses the SciDAC QMP communication library.

  7. Edge states in gated bilayer-monolayer graphene ribbons and bilayer domain walls

    NASA Astrophysics Data System (ADS)

    Mirzakhani, M.; Zarenia, M.; Peeters, F. M.

    2018-05-01

    Using the effective continuum model, the electron energy spectrum of gated bilayer graphene with a step-like region of decoupled graphene layers at the edge of the sample is studied. Different types of coupled-decoupled interfaces are considered, i.e., zigzag (ZZ) and armchair junctions, which result in significant different propagating states. Two non-valley-polarized conducting edge states are observed for ZZ type, which are mainly located around the ZZ-ended graphene layers. Additionally, we investigated both BA-BA and BA-AB domain walls in the gated bilayer graphene within the continuum approximation. Unlike the BA-BA domain wall, which exhibits gapped insulating behaviour, the domain walls surrounded by different stackings of bilayer regions feature valley-polarized edge states. Our findings are consistent with other theoretical calculations, such as from the tight-binding model and first-principles calculations, and agree with experimental observations.

  8. Domain-wall guided nucleation of superconductivity in hybrid ferromagnet-superconductor-ferromagnet layered structures.

    PubMed

    Gillijns, W; Aladyshkin, A Yu; Lange, M; Van Bael, M J; Moshchalkov, V V

    2005-11-25

    Domain-wall superconductivity is studied in a superconducting Nb film placed between two ferromagnetic Co/Pd multilayers with perpendicular magnetization. The parameters of top and bottom ferromagnetic films are chosen to provide different coercive fields, so that the magnetic domain structure of the ferromagnets can be selectively controlled. From the dependence of the critical temperature Tc on the applied magnetic field H, we have found evidence for domain-wall superconductivity in this three-layered F/S/F structure for different magnetic domain patterns. The phase boundary, calculated numerically for this structure from the linearized Ginzburg-Landau equation, is in good agreement with the experimental data.

  9. Evolution of domain walls in the early universe. Ph.D. Thesis - Chicago Univ.

    NASA Technical Reports Server (NTRS)

    Kawano, Lawrence

    1989-01-01

    The evolution of domain walls in the early universe is studied via 2-D computer simulation. The walls are initially configured on a triangular lattice and then released from the lattice, their evolution driven by wall curvature and by the universal expansion. The walls attain an average velocity of about 0.3c and their surface area per volume (as measured in comoving coordinates) goes down with a slope of -1 with respect to conformal time, regardless of whether the universe is matter or radiation dominated. The additional influence of vacuum pressure causes the energy density to fall away from this slope and steepen, thus allowing a situation in which domain walls can constitute a significant portion of the energy density of the universe without provoking an unacceptably large perturbation upon the microwave background.

  10. The stability of steady motion of magnetic domain wall: Role of higher-order spin-orbit torques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Peng-Bin, E-mail: hepengbin@hnu.edu.cn; Yan, Han; Cai, Meng-Qiu

    The steady motion of magnetic domain wall driven by spin-orbit torques is investigated analytically in the heavy/ferromagnetic metal nanowires for three cases with a current transverse to the in-plane and perpendicular easy axis, and along the in-plane easy axis. By the stability analysis of Walker wall profile, we find that if including the higher-order spin-orbit torques, the Walker breakdown can be avoided in some parameter regions of spin-orbit torques with a current transverse to or along the in-plane easy axis. However, in the case of perpendicular anisotropy, even considering the higher-order spin-orbit torques, the velocity of domain wall cannot bemore » efficiently enhanced by the current. Furthermore, the direction of wall motion is dependent on the configuration and chirality of domain wall with a current along the in-plane easy axis or transverse to the perpendicular one. Especially, the direction of motion can be controlled by the initial chirality of domain wall. So, if only involving the spin-orbit mechanism, it is preferable to adopt the scheme of a current along the in-plane easy axis for enhancing the velocity and controlling the direction of domain wall.« less

  11. Raman signatures of ferroic domain walls captured by principal component analysis.

    PubMed

    Nataf, G F; Barrett, N; Kreisel, J; Guennou, M

    2018-01-24

    Ferroic domain walls are currently investigated by several state-of-the art techniques in order to get a better understanding of their distinct, functional properties. Here, principal component analysis (PCA) of Raman maps is used to study ferroelectric domain walls (DWs) in LiNbO 3 and ferroelastic DWs in NdGaO 3 . It is shown that PCA allows us to quickly and reliably identify small Raman peak variations at ferroelectric DWs and that the value of a peak shift can be deduced-accurately and without a priori-from a first order Taylor expansion of the spectra. The ability of PCA to separate the contribution of ferroelastic domains and DWs to Raman spectra is emphasized. More generally, our results provide a novel route for the statistical analysis of any property mapped across a DW.

  12. Matter antimatter domains: A possible solution to the CP domain wall problem in the early universe

    NASA Technical Reports Server (NTRS)

    Mohanty, A. K.; Stecker, F. W.

    1984-01-01

    An SU(5) grand unified theory model is used to show how the degeneracy between vacua with different spontaneously broken charge parity can be dynamically lifted by a condensate of heavy fermion pairs. This drives a phase transition to a unique vacuum state with definite charge parity. The transition eliminates the domain walls in a matter antimatter symmetric domain cosmology.

  13. Stabilization of domain walls between traveling waves by nonlinear mode coupling in Taylor-Couette flow.

    PubMed

    Heise, M; Hoffmann, Ch; Abshagen, J; Pinter, A; Pfister, G; Lücke, M

    2008-02-15

    We present a new mechanism that allows the stable existence of domain walls between oppositely traveling waves in pattern-forming systems far from onset. It involves a nonlinear mode coupling that results directly from the nonlinearities in the underlying momentum balance. Our work provides the first observation and explanation of such strongly nonlinearly driven domain walls that separate structured states by a phase generating or annihilating defect. Furthermore, the influence of a symmetry breaking externally imposed flow on the wave domains and the domain walls is studied. The results are obtained for vortex waves in the Taylor-Couette system by combining numerical simulations of the full Navier-Stokes equations and experimental measurements.

  14. Method for braze-joining spirally wound tapes to inner walls of heat exchanger tubes

    DOEpatents

    Garrison, Melton E.

    1984-01-01

    The present invention is directed to a method of fabricating heat exchanger tubes in which twisted tapes are utilized for promoting turbulence and heat transfer. The method of the present invention provides for the brazing of the tapes to the inner walls of the tubes for enhancing heat transfer between the fluid within the conduit and a fluid medium outside of the conduit by conduction through the tape. The braze joint of the present invention is coextensive with the tape over the entire length thereof within the conduit. The practice of the present invention is achieved by placing a filler wire of brazing metal along the tape at a location removed from the side walls and then heating the conduit and tape sufficiently to effect the displacement of the filler metal by wicking to the contact point between the tape and the conduit wall to form a braze joint coextensive with the length of the tape within the conduit. This arrangement provides maximum heat transfer and assures that the tape is in contact with the conduit over the entire common length thereof.

  15. Method for braze-joining spirally wound tapes to inner walls of heat exchanger tubes

    DOEpatents

    Garrison, M.E.

    1982-09-03

    The present invention is directed to a method of fabricating heat exchanger tubes in which twisted tapes are utilized for promoting turbulence and heat transfer. The method of the present invention provides for the brazing of the tapes to the inner walls of the tubes for enhancing heat transfer between the fluid within the conduit and a fluid medium outside of the conduit by conduction through the tape. The braze joint of the present invention is coextensive with the tape over the entire length thereof within the conduit. The practice of the present invention is achieved by placing a filler wire of brazing metal along the tape at a location removed from the side walls and then heating the conduit and tape sufficiently to effect the displacement of the filler metal by wicking to the contact point between the tape and the conduit wall to form a braze joint coextensive with the length of the tape within the conduit. This arrangement provides maximum heat transfer and assures that the tape is in contact with the conduit over the entire common length thereof.

  16. Search for domain wall dark matter with atomic clocks on board global positioning system satellites.

    PubMed

    Roberts, Benjamin M; Blewitt, Geoffrey; Dailey, Conner; Murphy, Mac; Pospelov, Maxim; Rollings, Alex; Sherman, Jeff; Williams, Wyatt; Derevianko, Andrei

    2017-10-30

    Cosmological observations indicate that dark matter makes up 85% of all matter in the universe yet its microscopic composition remains a mystery. Dark matter could arise from ultralight quantum fields that form macroscopic objects. Here we use the global positioning system as a ~ 50,000 km aperture dark matter detector to search for such objects in the form of domain walls. Global positioning system navigation relies on precision timing signals furnished by atomic clocks. As the Earth moves through the galactic dark matter halo, interactions with domain walls could cause a sequence of atomic clock perturbations that propagate through the satellite constellation at galactic velocities ~ 300 km s -1 . Mining 16 years of archival data, we find no evidence for domain walls at our current sensitivity level. This improves the limits on certain quadratic scalar couplings of domain wall dark matter to standard model particles by several orders of magnitude.

  17. Spinmotive force due to domain wall motion in high field regime

    NASA Astrophysics Data System (ADS)

    Ieda, Jun'ichi; Yamane, Yuta; Maekawa, Sadamichi

    2012-02-01

    Spinmotive force associated with a moving vortex domain wall is investigated numerically. Dynamics of magnetization textures such as a domain wall exerts a non-conservative spin-force on conduction electrons [1], offering a new concept of magnetic devices [2]. This spinmotive force in permalloy nanowires has been detected by voltage measurement [3] where magnitude of the signal is limited less than 500 nV. Theoretically it is suggested that the spinmotive force signal increases as a function of external magnetic fields. At higher magnetic fields, however, the wall propagation mode becomes rather chaotic involving transformations of the wall structure and it remains to be seen how the spinmotive force appears. Numerical simulations show that the spinmotive force scales with the field even in a field range where the wall motion is no longer associated coherent precession. This feature has been tested in a recent experiment [4]. Further enhancement of the spinmotive force is explored by designing ferromagnetic nanostructures [5] and materials. [1] S. Barnes and S. Maekawa, PRL (2007). [2] S. Barnes, J. Ieda, and S. Maekawa, APL (2006). [3] S. A. Yang et al., PRL (2009). [4] M. Hayashi, J. Ieda et al., submitted. [5] Y. Yamane, J. Ieda et al., APEX (2011).

  18. VLP seismicity from resonant modes of acoustic-gravity waves in a conduit-crack system filled with multiphase magma

    NASA Astrophysics Data System (ADS)

    Liang, C.; Prochnow, B. N.; OReilly, O. J.; Dunham, E. M.; Karlstrom, L.

    2016-12-01

    Oscillation of magma in volcanic conduits connected to cracks (dikes and sills) has been suggested as an explanation for very long period (VLP) seismic signals recorded at active basaltic volcanoes such as. Kilauea, Hawaii, and Erebus, Antarctica. We investigate the VLP seismicity using a linearized model for waves in and associated eigenmodes of a coupled conduit-crack system filled with multiphase magma, an extension of the Karlstrom and Dunham (2016) model for acoustic-gravity waves in volcanic conduits. We find that the long period surface displacement (as recorded on broadband seismometers) is dominated by opening/closing of the crack rather than the deformation of the conduit conduit walls. While the fundamental eigenmode is sensitive to the fluid properties and the geometry of the magma plumbing system, a closer scrutiny of various resonant modes reveals that the surface displacement is often more sensitive to higher modes. Here we present a systematic analysis of various long period acoustic-gravity wave resonant modes of a coupled conduit-crack system that the surface displacement is most sensitive to. We extend our previous work on a quasi-one-dimensional conduit model with inviscid magma to a more general axisymmetric conduit model that properly accounts for viscous boundary layers near the conduit walls, based on the numerical method developed by Prochnow et al. (submitted to Computers and Fluids, 2016). The surface displacement is dominated by either the fundamental or higher eigenmodes, depending on magma properties and the geometry of conduit and crack. An examination of the energetics of these modes reveals the complex interplay of different restoring forces (magma compressibility in the conduit, gravity, and elasticity of the crack) driving the VLP oscillations. Both nonequilibrium bubble growth and resorption and viscosity contribute to the damping of VLP signals. Our models thus provide a means to infer properties of open-vent basaltic volcanoes

  19. Current-induced instability of domain walls in cylindrical nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Zhang, Zhaoyang; Pepper, Ryan A.; Mu, Congpu; Zhou, Yan; Fangohr, Hans

    2018-01-01

    We study the current-driven domain wall (DW) motion in cylindrical nanowires using micromagnetic simulations by implementing the Landau-Lifshitz-Gilbert equation with nonlocal spin-transfer torque in a finite difference micromagnetic package. We find that in the presence of DW, Gaussian wave packets (spin waves) will be generated when the charge current is suddenly applied to the system. This effect is excluded when using the local spin-transfer torque. The existence of spin waves emission indicates that transverse domain walls can not move arbitrarily fast in cylindrical nanowires although they are free from the Walker limit. We establish an upper velocity limit for DW motion by analyzing the stability of Gaussian wave packets using the local spin-transfer torque. Micromagnetic simulations show that the stable region obtained by using nonlocal spin-transfer torque is smaller than that by using its local counterpart. This limitation is essential for multiple DWs since the instability of Gaussian wave packets will break the structure of multiple DWs.

  20. Temperature dependence of the domain wall magneto-Seebeck effect: avoiding artifacts of lead contributions

    NASA Astrophysics Data System (ADS)

    Fernández Scarioni, Alexander; Krzysteczko, Patryk; Sievers, Sibylle; Hu, Xiukun; Schumacher, Hans W.

    2018-06-01

    We study the resistive and thermopower signatures of a single domain wall in a magnetic nanowire in the temperature range from 4 K to 204 K. The results are compared to the anisotropic magnetoresistance (AMR) and anisotropic magneto-Seebeck (AMS) data of the whole permalloy nanowire. The AMS ratio of the nanowire reveals a sign change at a temperature of 98 K, while the AMR ratio is positive over the complete temperature range. This behavior is also observed for the domain wall, allowing an attribution of the measured signatures to the domain wall magneto-Seebeck and domain wall magnetoresistive contributions. However, the observed zero crossing of the AMS ratio, in both types of measurements is not expected for permalloy, since the Mott formula predicts a temperature dependency of the AMS identical to the AMR. We discuss the origin of this behavior and can attribute it to the contributions of the lead and the protective platinum layer used in our devices. A correction scheme is presented and applied. Such contributions could also play a role in the analysis of magneto-Seebeck effects in other nanoscale devices, such as the tunnel magneto-Seebeck effect of magnetic tunnel junctions.

  1. Domain Wall Evolution in Phase Transforming Oxides

    DTIC Science & Technology

    2015-01-14

    configumtions under driving forces (e.g. changes in temperature and electric fields) in an effort to: 1) understand the underlying linkage between -1...configurations under driving forces (e.g. changes in temperature and electric fields) in an effort to: 1) understand the underlying linkage between...Extensive domain wall motion and deaging resistance in morphotropic 0.55Bi(Ni1/2Ti1/2)O3–0.45PbTiO3 polycrystalline ferroelectrics, Applied Physics Letters

  2. Determination of domain wall chirality using in situ Lorentz transmission electron microscopy

    DOE PAGES

    Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.; ...

    2017-02-23

    Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less

  3. Determination of domain wall chirality using in situ Lorentz transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.

    Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less

  4. Segmental front line dynamics of randomly pinned ferroelastic domain walls

    NASA Astrophysics Data System (ADS)

    Puchberger, S.; Soprunyuk, V.; Schranz, W.; Carpenter, M. A.

    2018-01-01

    Dynamic mechanical analysis (DMA) measurements as a function of temperature, frequency, and dynamic force amplitude are used to perform a detailed study of the domain wall motion in LaAlO3. In previous DMA measurements Harrison et al. [Phys. Rev. B 69, 144101 (2004), 10.1103/PhysRevB.69.144101] found evidence for dynamic phase transitions of ferroelastic domain walls in LaAlO3. In the present work we focus on the creep-to-relaxation region of domain wall motion using two complementary methods. We determine, in addition to dynamic susceptibility data, waiting time distributions of strain jerks during slowly increasing stress. These strain jerks, which result from self-similar avalanches close to the depinning threshold, follow a power-law behavior with an energy exponent ɛ =1.7 ±0.1 . Also, the distribution of waiting times between events follows a power law N (tw) ∝tw-(n +1 ) with an exponent n =0.9 , which transforms to a power law of susceptibility S (ω ) ∝ω-n . The present dynamic susceptibility data can be well fitted with a power law, with the same exponent (n =0.9 ) up to a characteristic frequency ω ≈ω* , where a crossover from stochastic DW motion to the pinned regime is well described using the scaling function of Fedorenko et al. [Phys. Rev. B 70, 224104 (2004), 10.1103/PhysRevB.70.224104].

  5. Enhancement of exchange bias in ferromagnetic/antiferromagnetic core-shell nanoparticles through ferromagnetic domain wall formation

    NASA Astrophysics Data System (ADS)

    Wu, Rui; Ding, Shilei; Lai, Youfang; Tian, Guang; Yang, Jinbo

    2018-01-01

    The spin configuration in the ferromagnetic part during the magnetization reversal plays a crucial role in the exchange bias effect. Through Monte Carlo simulation, the exchange bias effect in ferromagnetic-antiferromagnetic core-shell nanoparticles is investigated. Magnetization reversals in the ferromagnetic core were controlled between the coherent rotation and the domain wall motion by modulating the ferromagnetic domain wall width with parameters of uniaxial anisotropy constant and exchange coupling strength. An anomalous monotonic dependence of exchange bias on the uniaxial anisotropy constant is found in systems with small exchange coupling, showing an obvious violation of classic Meiklejohn-Bean model, while domain walls are found to form close to the interface and propagate in the ferromagnetic core with larger uniaxial anisotropy in both branches of the hysteresis. The asymmetric magnetization reversal with the formation of a spherical domain wall dramatically reduces the coercive field in the ascending branch, leading to the enhancement of the exchange bias. The results provide another degree of freedom to optimize the magnetic properties of magnetic nanoparticles for applications.

  6. An exact solution for a thick domain wall in general relativity

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    An exact solution of the Einstein equations for a static, planar domain wall with finite thickness is presented. At infinity, density and pressure vanish and the space-time tends to the Minkowski vacuum on one side of the wall and to the Taub vacuum on the other side. A surprising feature of this solution is that the density and pressure distribution are symmetric about the central plane of the wall whereas the space-time metric and therefore also the gravitational field experienced by a test particle is asymmetric.

  7. Logic and memory concepts for all-magnetic computing based on transverse domain walls

    NASA Astrophysics Data System (ADS)

    Vandermeulen, J.; Van de Wiele, B.; Dupré, L.; Van Waeyenberge, B.

    2015-06-01

    We introduce a non-volatile digital logic and memory concept in which the binary data is stored in the transverse magnetic domain walls present in in-plane magnetized nanowires with sufficiently small cross sectional dimensions. We assign the digital bit to the two possible orientations of the transverse domain wall. Numerical proofs-of-concept are presented for a NOT-, AND- and OR-gate, a FAN-out as well as a reading and writing device. Contrary to the chirality based vortex domain wall logic gates introduced in Omari and Hayward (2014 Phys. Rev. Appl. 2 044001), the presented concepts remain applicable when miniaturized and are driven by electrical currents, making the technology compatible with the in-plane racetrack memory concept. The individual devices can be easily combined to logic networks working with clock speeds that scale linearly with decreasing design dimensions. This opens opportunities to an all-magnetic computing technology where the digital data is stored and processed under the same magnetic representation.

  8. Constraints on the Geometries and Compositions of Subvolcanic Conduits from Intrusions of the San Rafael Swell, Utah

    NASA Astrophysics Data System (ADS)

    Wetmore, P. H.; Connor, C.; Wilson, J.

    2010-12-01

    Conduit models incorporate varying degrees of complexity (or parsimony) and account for the transport properties of magmas, steady-state or transient behavior, and conduit geometry (e.g., 1- to 1.5 D, variable width and erodable conduit walls). Improvement of these models is important if we are to work toward deployment of eruption models at active volcanoes, link these models to geophysical observations (seismic, deformation, gravity) and eventually forecast eruption magnitude. One conclusion of a recent comparison of many conduit models (Sahagian, 2005 JVGR) is that next generation models need to better account for interaction of the erupting mixture with surrounding wall rocks (accounting for melting, solidification, and erosion) and better account for the effects of conduit shape on flows. In an effort to address these issues our research group has completed mapping of a suite of subvolcanic intrusions (dikes, sills, and conduits) from the west-central San Rafael Swell of central Utah. The results of this study demonstrate that vertical flow of melt through crust in this system of intrusion was dominated by dikes. Conduits form, in nearly all cases, as a result of localized flow along dikes. The conduits are commonly comprised of three distinct lithologic units: brecciated host rock (without any intrusive material), brecciated host rock mixed with brecciated and mechanically contaminated intrusive, and relatively clean (i.e. containing less than ~10% accidental material) intrusive. Contacts between all three of these units are typically discreet and traceable for several tens of meters. In some examples clasts within the unmixed breccia unit exhibit a strong alignment of clasts dipping into the core of the conduit. These observations suggests an evolutionary history that involves an early phase of brecciation and mixing, followed by confined flow with a fluidized mixed unit and an essentially uninvolved outer zone (i.e. the breccia). The final phase likely

  9. Magnetic domain wall engineering in a nanoscale permalloy junction

    NASA Astrophysics Data System (ADS)

    Wang, Junlin; Zhang, Xichao; Lu, Xianyang; Zhang, Jason; Yan, Yu; Ling, Hua; Wu, Jing; Zhou, Yan; Xu, Yongbing

    2017-08-01

    Nanoscale magnetic junctions provide a useful approach to act as building blocks for magnetoresistive random access memories (MRAM), where one of the key issues is to control the magnetic domain configuration. Here, we study the domain structure and the magnetic switching in the Permalloy (Fe20Ni80) nanoscale magnetic junctions with different thicknesses by using micromagnetic simulations. It is found that both the 90-° and 45-° domain walls can be formed between the junctions and the wire arms depending on the thickness of the device. The magnetic switching fields show distinct thickness dependencies with a broad peak varying from 7 nm to 22 nm depending on the junction sizes, and the large magnetic switching fields favor the stability of the MRAM operation.

  10. Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet.

    PubMed

    Korkusinski, M; Hawrylak, P; Liu, H W; Hirayama, Y

    2017-03-06

    The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means.

  11. Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet

    PubMed Central

    Korkusinski, M.; Hawrylak, P.; Liu, H. W.; Hirayama, Y.

    2017-01-01

    The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means. PMID:28262758

  12. Imaging domain walls between nematic quantum Hall phases on the surface of bismuth

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Randeria, Mallika T.; Feldman, Benjamin E.; Ji, Huiwen; Cava, Robert J.; Yazdani, Ali

    The sensitivity of nematic electronic phases to disorder results in short range ordering and the formation of domains. Local probes are required to investigate the character of these domains and the boundaries between them, which remain hidden in global measurements that average over microscopic configurations. In this talk, I will describe measurements performed with a scanning tunneling microscope to study local nematic order on the surface of bismuth at high magnetic field. By imaging individual anisotropic cyclotron orbit wavefunctions that are pinned to atomic-scale surface defects, we directly resolve local nematic behavior and study the evolution of nematic states across a domain wall. Through spectroscopic mapping, we explore how the broken-symmetry Landau levels disperse across the domain wall, the influence of exchange interactions at such a boundary, and the formation of one-dimensional edge states.

  13. Mapping the Landscape of Domain-Wall Pinning in Ferromagnetic Films Using Differential Magneto-Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Badea, Robert; Berezovsky, Jesse

    2016-06-01

    The propagation of domain walls in a ferromagnetic film is largely determined by domain-wall pinning at defects in the material. In this article, we map the effective potential landscape for domain-wall pinning in permalloy films by raster scanning a single ferromagnetic vortex and monitoring the hysteretic vortex displacement vs applied magnetic field. The measurement is carried out using a differential magneto-optical microscopy technique which yields spatial sensitivity of approximately 10 nm. We present a simple algorithm for extracting an effective pinning potential from the measurement of vortex displacement vs applied field. The resulting maps of the pinning potential reveal distinct types of pinning sites, which we attribute to quasi-zero-, one-, and two-dimensional defects in the permalloy film.

  14. Magnetic domain-wall tilting due to domain-wall speed asymmetry

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Yun; Park, Min-Ho; Park, Yong-Keun; Kim, Joo-Sung; Nam, Yoon-Seok; Hwang, Hyun-Seok; Kim, Duck-Ho; Je, Soong-Geun; Min, Byoung-Chul; Choe, Sug-Bong

    2018-04-01

    Broken symmetries in diverse systems generate a number of intriguing phenomena and the analysis on such broken symmetries often provides decisive clues for exploring underlying physics in the systems. Recently, in magnetic thin-film systems, the Dzyaloshinskii-Moriya interaction (DMI)—induced by the broken symmetry of structural inversion—accounts for various chiral phenomena, which are of timely issues in spintronics. Here, we report an experimental observation on unexpected tilting of magnetic domain walls (DWs) due to the broken symmetry under the application of the magnetic field transverse to the magnetic wire systems. It has been predicted that the DMI possibly causes such DW tilting in the direction of the energy minimization. However, very interestingly, experimental observation reveals that the DW tilting does not follow the prediction based on the energy minimization, even for the tilting direction. Instead, the DW tilting is governed by the DW speed asymmetry that is initiated by the DW pinning at wire edges. A simple analytic model is proposed in consideration of the DW speed asymmetry at wire edges, which successfully explains the experimental observation of the DW tilting directions and angles, as confirmed by numerical simulation. The present study manifests the decisive role of the DW pinning with the DW speed asymmetry, which determines the DW configuration and consequently, the dynamics.

  15. Conduit purging device and method

    NASA Technical Reports Server (NTRS)

    Wilks, Michael T. (Inventor)

    2011-01-01

    A device for purging gas comprises a conduit assembly defining an interior volume. The conduit assembly comprises a first conduit portion having an open first end and an open second end and a second conduit portion having an open first end and a closed second end. The open second end of the first conduit portion is disposed proximate to the open first end of the second conduit portion to define a weld region. The device further comprises a supply element supplying a gas to the interior volume at a substantially constant rate and a vent element venting the gas from the interior volume at a rate that maintains the gas in the interior volume within a pressure range suitable to hold a weld bead in the weld region in equilibrium during formation of a weld to join the first conduit portion and the second conduit portion.

  16. Rise of Racetrack Memory! Domain Wall Spin-Orbitronics

    NASA Astrophysics Data System (ADS)

    Parkin, Stuart

    Memory-storage devices based on the current controlled motion of a series of domain walls (DWs) in magnetic racetracks promise performance and reliability beyond that of conventional magnetic disk drives and solid state storage devices (1). Racetracks that are formed from atomically thin, perpendicularly magnetized nano-wires, interfaced with adjacent metal layers with high spin-orbit coupling, give rise to domain walls that exhibit a chiral Néel structure (2). These DWs can be moved very efficiently with current via chiral spin-orbit torques (2,3). Record-breaking current-induced DW speeds exceeding 1,000 m/sec are found in synthetic antiferromagnetic structures (3) in which the net magnetization of the DWs is tuned to almost zero, making them ``invisible''. Based on these recent discoveries, Racetrack Memory devices have the potential to operate on picosecond timescales and at densities more than 100 times greater than other memory technologies. (1) S.S.P. Parkin et al., Science 320, 5873 (2008); S.S.P. Parkin and S.-H. Yang, Nat. Nano. 10, 195 (2015). (2) K.-S. Ryu metal. Nat. Nano. 8, 527 (2013). (3) S.-H. Yang, K.-S. Ryu and S.S.P. Parkin, Nat. Nano. 10, 221 (2015). (4). S.S.P. Parkin, Phys. Rev. Lett. 67, 3598 (1991).

  17. Substrate clamping effects on irreversible domain wall dynamics in lead zirconate titanate thin films.

    PubMed

    Griggio, F; Jesse, S; Kumar, A; Ovchinnikov, O; Kim, H; Jackson, T N; Damjanovic, D; Kalinin, S V; Trolier-McKinstry, S

    2012-04-13

    The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.

  18. Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells

    DOEpatents

    Steinman, D.A.

    1980-05-30

    Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.

  19. Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells

    DOEpatents

    Steinman, David A.

    1982-01-01

    Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.

  20. Magnetoresistance due to domain walls in an epitaxial microfabricated Fe wire

    NASA Astrophysics Data System (ADS)

    Rüdiger, U.; Yu, J.; Kent, A. D.; Parkin, S. S. P.

    1998-08-01

    The domain wall (DW) contribution to magnetoresistance has been investigated using an epitaxial microfabricated bcc (110) Fe wires of 2 μm linewidth. A strong in-plane uniaxial component to the magnetic anisotropy perpendicular to the wire axis causes a regular stripe domain pattern with closure domains. The stripe domain width in zero-applied magnetic field is strongly affected by the magnetic history and can be continuously varied from 0.45 to 1.8 μm. This enables a measurement of the resistivity as a function of DW density in a single wire. Clear evidence is presented that the resistivity is reduced in the presence of DWs at low temperatures.

  1. Ratchet Effects and Domain Wall Energy Landscapes in Amorphous Magnetic Films with 2D Arrays of Asymmetric Holes

    NASA Astrophysics Data System (ADS)

    Martin, J. I.; Alija, A.; Sobrado, I.; Perez-Junquera, A.; Rodriguez-Rodriguez, G.; Velez, M.; Alameda, J. M.; Marconi, V. I.; Kolton, A. B.; Parrondo, J. M. R.

    2009-03-01

    The driven motion of domain walls in extended magnetic films patterned with 2D arrays of asymmetric holes has been found to be subject to two different crossed ratchet effects [1] which results in an inversion of the sign of domain wall motion rectification as a function of the applied magnetic field. This effect can be understood in terms of the competition between drive, elasticity and asymmetric pinning as revealed by a simple 4̂-model. In order to optimize the asymmetric hole design, the relevant energy landscapes for domain wall motion across the array of asymmetric holes have been calculated by micromagnetic simulations as a function of array geometrical characteristics. The effects of a transverse magnetic field on these two crossed ratchet effects will also be discussed in terms of the decrease in domain wall energy per unit area and of the modifications in the magnetostatic barriers for domain wall pinning at the asymmetric inclusions. Work supported by Spanish MICINN.[1] A. Perez-Junquera et al, Phys. Rev. Lett. 100 (2008) 037203

  2. Domain-wall superconductivity in superconductor-ferromagnet hybrids.

    PubMed

    Yang, Zhaorong; Lange, Martin; Volodin, Alexander; Szymczak, Ritta; Moshchalkov, Victor V

    2004-11-01

    Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor-ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor-ferromagnet hybrids using a niobium film on a BaFe(12)O(19) single crystal. We found that the critical temperature T(c) of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe(12)O(19). In accordance with the field-shift of the maximum value of T(c), pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor-ferromagnet hybrids.

  3. Insights into substrate specificity of NlpC/P60 cell wall hydrolases containing bacterial SH3 domains

    DOE PAGES

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; ...

    2015-09-15

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structuremore » consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes

  4. Insights into substrate specificity of NlpC/P60 cell wall hydrolases containing bacterial SH3 domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structuremore » consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes

  5. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.

    ABSTRACT Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consistingmore » of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation. IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling

  6. Thoracoscopic management of volvulus of the gastric conduit following minimally invasive Ivor-Lewis esophagectomy.

    PubMed

    Linson, Jeremy; Latzko, Michael; Ahmed, Bestoun; Awad, Ziad

    2016-07-01

    We present a case of emergent thoracoscopic management of volvulus of the gastric conduit following minimally invasive Ivor-Lewis esophagectomy. The patient is a 69-year-old Caucasian male with a history of adenocarcinoma of the lower third of the esophagus. Initial presentation was dysphagia with solid foods, which progressed in severity until he was unable to swallow anything. EUS demonstrated a partially obstructing mass at 33 cm; biopsy revealed poorly differentiated adenocarcinoma, stage T3N2Mx. PET scan did not reveal any metastatic disease. Preoperative management included neo-adjuvant chemoradiation therapy (5-FU and cisplatin) and early placement of a jejunal feeding tube. Intra-operative leak test was performed as a matter of routine following completion of the esophagogastric anastomosis. A nasogastric tube was placed intra-operatively and removed on POD2 according to our standard pathway. Postoperatively, the patient progressed without difficulty to POD4, when we routinely obtain an upper GI swallow study. This demonstrated a lack of transit of contrast through the distal neo-esophagus. Follow-up endoscopy revealed volvulus of the gastric conduit with obliteration of the lumen. We immediately took the patient to the OR for thoracoscopic detorsion, which we accomplished successfully by entering the existing trochar sites and using blunt dissection.␣Upon entering the thoracic cavity, the staple line that had been oriented anteriorly was now posterior. Attachments were gently teased away from the chest wall and the conduit was detorsed and anchored to the chest wall in the correct orientation with silk suture. Intra-operative endoscopy demonstrated a patent conduit. Postoperative upper GI fluoroscopy now showed good transit of contrast. The patient continued to improve and was eventually advanced to mechanical soft diet and discharged on postoperative day 9. Early intervention is indicated in cases of volvulus of the gastric conduit following Ivor

  7. A novel electrospun nerve conduit enhanced by carbon nanotubes for peripheral nerve regeneration

    NASA Astrophysics Data System (ADS)

    Yu, Wenwen; Jiang, Xinquan; Cai, Ming; Zhao, Wen; Ye, Dongxia; Zhou, Yong; Zhu, Chao; Zhang, Xiuli; Lu, Xiaofeng; Zhang, Zhiyuan

    2014-04-01

    For artificial nerve conduits, great improvements have been achieved in mimicking the structures and components of autologous nerves. However, there are still some problems in conduit construction, especially in terms of mechanical properties, biomimetic surface tomography, electrical conductivity and sustained release of neurotrophic factors or cells. In this study, we designed and fabricated a novel electrospun nerve conduit enhanced by multi-walled carbon nanotubes (MWNTs) on the basis of a collagen/poly(ɛ-caprolactone) (collagen/PCL) fibrous scaffold. Our aim was to provide further knowledge about the mechanical effects and efficacy of MWNTs on nerve conduits as well as the biocompatibility and toxicology of MWNTs when applied in vivo. The results showed that as one component, carboxyl MWNTs could greatly alter the composite scaffold’s hydrophilicity, mechanical properties and degradability. The electrospun fibers enhanced by MWNTs could support Schwann cell adhesion and elongation as a substrate in vitro. In vivo animal studies demonstrated that the MWNT-enhanced collagen/PCL conduit could effectively promote nerve regeneration of sciatic nerve defect in rats and prevent muscle atrophy without invoking body rejection or serious chronic inflammation. All of these results showed that this MWNT-enhanced scaffold possesses good biocompatibility and MWNTs might be excellent candidates as engineered nanocarriers for further neurotrophic factor delivery research.

  8. A novel electrospun nerve conduit enhanced by carbon nanotubes for peripheral nerve regeneration.

    PubMed

    Yu, Wenwen; Jiang, Xinquan; Cai, Ming; Zhao, Wen; Ye, Dongxia; Zhou, Yong; Zhu, Chao; Zhang, Xiuli; Lu, Xiaofeng; Zhang, Zhiyuan

    2014-04-25

    For artificial nerve conduits, great improvements have been achieved in mimicking the structures and components of autologous nerves. However, there are still some problems in conduit construction, especially in terms of mechanical properties, biomimetic surface tomography, electrical conductivity and sustained release of neurotrophic factors or cells. In this study, we designed and fabricated a novel electrospun nerve conduit enhanced by multi-walled carbon nanotubes (MWNTs) on the basis of a collagen/poly(ε-caprolactone) (collagen/PCL) fibrous scaffold. Our aim was to provide further knowledge about the mechanical effects and efficacy of MWNTs on nerve conduits as well as the biocompatibility and toxicology of MWNTs when applied in vivo.The results showed that as one component, carboxyl MWNTs could greatly alter the composite scaffold's hydrophilicity, mechanical properties and degradability. The electrospun fibers enhanced by MWNTs could support Schwann cell adhesion and elongation as a substrate in vitro. In vivo animal studies demonstrated that the MWNT-enhanced collagen/PCL conduit could effectively promote nerve regeneration of sciatic nerve defect in rats and prevent muscle atrophy without invoking body rejection or serious chronic inflammation. All of these results showed that this MWNT-enhanced scaffold possesses good biocompatibility and MWNTs might be excellent candidates as engineered nanocarriers for further neurotrophic factor delivery research.

  9. Direct observation of charged domain walls in hybrid improper ferroelectric (Ca,Sr)3Ti2O7

    NASA Astrophysics Data System (ADS)

    Kurushima, Kousuke; Yoshimoto, Wataru; Ishii, Yui; Cheong, Sang-Wook; Mori, Shigeo

    2017-10-01

    We investigated ferroelectric (FE) domain wall structures including “charged domain walls” of hybrid improper FE (Ca,Sr)3Ti2O7 at the subatomic resolution by dark-field transmission electron microscopy (TEM) and high-resolution state-of-the-art aberration-corrected high-angle annular-dark-field (HAADF) scanning transmission electron microscopy (STEM). Dark-field TEM and high-resolution HAADF-STEM images obtained in the FE phase of single crystals of Ca2.46Sr0.54Ti2O7 revealed the formation of abundant charged domain walls with the head-to-head and tail-to-tail configurations in the FE domain structure, in addition to the FE 180° domain structure. The charged domain walls with the head-to-head and tail-to-tail FE polarizations exist stably and can be characterized as the unique double arc-type displacement of Ca/Sr ions in a unit cell without charge accumulation.

  10. Mobius domain-wall fermions on gradient-flowed dynamical HISQ ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng

    Here, we report on salient features of a mixed lattice QCD action using valence M\\"{o}bius domain-wall fermions solved on the dynamicalmore » $$N_f=2+1+1$$ HISQ ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the HISQ configurations. The greater numerical cost of the M\\"{o}bius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings $$a \\simeq \\{0.15, 0.12, 0.09\\}$$ fm and pion masses $$m_\\pi \\simeq \\{310, 220,130\\}$$ MeV. We have additionally generated two new ensembles with $$a\\sim0.12$$ fm and $$m_\\pi\\sim\\{400, 350\\}$$ MeV. With a fixed flow-time of $$t_{gf}=1$$ in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10\\% of the light quark mass on all ensembles, $$m_{res} \\lesssim 0.1\\times m_l$$, with moderate values of the fifth dimension $$L_5$$ and a domain-wall height $$M_5 \\leq 1.3$$. As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of $$F_{K^\\pm}/F_{\\pi^\\pm}$$ and demonstrate our results are independent of flow-time, and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.« less

  11. Mobius domain-wall fermions on gradient-flowed dynamical HISQ ensembles

    DOE PAGES

    Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng; ...

    2017-09-25

    Here, we report on salient features of a mixed lattice QCD action using valence M\\"{o}bius domain-wall fermions solved on the dynamicalmore » $$N_f=2+1+1$$ HISQ ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the HISQ configurations. The greater numerical cost of the M\\"{o}bius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings $$a \\simeq \\{0.15, 0.12, 0.09\\}$$ fm and pion masses $$m_\\pi \\simeq \\{310, 220,130\\}$$ MeV. We have additionally generated two new ensembles with $$a\\sim0.12$$ fm and $$m_\\pi\\sim\\{400, 350\\}$$ MeV. With a fixed flow-time of $$t_{gf}=1$$ in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10\\% of the light quark mass on all ensembles, $$m_{res} \\lesssim 0.1\\times m_l$$, with moderate values of the fifth dimension $$L_5$$ and a domain-wall height $$M_5 \\leq 1.3$$. As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of $$F_{K^\\pm}/F_{\\pi^\\pm}$$ and demonstrate our results are independent of flow-time, and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.« less

  12. Optical, electrical and elastic properties of ferroelectric domain walls in lithium niobate and lithium titanate

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon

    Ferroelectric LiNbO3 and LiTaO3 crystals have developed, over the last 50 years as key materials for integrated and nonlinear optics due to their large electro-optic and nonlinear optical coefficients and a broad transparency range from 0.4 mum-4.5 mum wavelengths. Applications include high speed optical modulation and switching in 40GHz range, second harmonic generation, optical parametric amplification, pulse compression and so on. Ferroelectric domain microengineering has led to electro-optic scanners, dynamic focusing lenses, total internal reflection switches, and quasi-phase matched (QPM) frequency doublers. Most of these applications have so far been on non-stoichiometric compositions of these crystals. Recent breakthroughs in crystal growth have however opened up an entirely new window of opportunity from both scientific and technological viewpoint. The growth of stoichiometric composition crystals has led to the discovery of many fascinating effects arising from the presence or absence of atomic defects, such as an order of magnitude changes in coercive fields, internal fields, domain backswitching and stabilization phenomenon. On the nanoscale, unexpected features such as the presence of wide regions of optical contrast and strain have been discovered at 180° domain walls. Such strong influence of small amounts of nonstoichiometric defects on material properties has led to new device applications, particularly those involving domain patterning and shaping such as QPM devices in thick bulk crystals and improved photorefractive damage compositions. The central focus of this dissertation is to explore the role of nonstoichiometry and its precise influence on macroscale and nanoscale properties in lithium niobate and tantalate. Macroscale properties are studied using a combination of in-situ and high-speed electro-optic imaging microscopy and electrical switching experiments. Local static and dynamic strain properties at individual domain walls is studied

  13. Calcification resistance for photooxidatively crosslinked acellular bovine jugular vein conduits in right-side heart implantation.

    PubMed

    Lü, Wei-Dong; Wang, An-Ping; Wu, Zhong-Shi; Zhang, Ming; Hu, Tie-Hui; Lei, Guang-Yan; Hu, Ye-Rong

    2012-10-01

    This study aimed to investigate the effect of decellularization plus photooxidative crosslinking and ethanol pretreatment on bioprosthetic tissue calcification. Photooxidatively crosslinked acellular (PCA) bovine jugular vein conduits (BJVCs) and their photooxidized controls (n = 5 each) were sterilized in a graded concentration of ethanol solutions for 4 h, and used to reconstruct dog right ventricular outflow tracts. At 1-year implantation, echocardiography showed similar hemodynamic performance, but obvious calcification for the photooxidized BJVC walls. Further histological examination showed intense calcium deposition colocalized with slightly degraded elastic fibers in the photooxidized BJVC walls, with sparsely distributed punctate calcification in the valves and other areas of walls. But PCA BJVCs had apparent degradation of elastic fibers in the walls, with only sparsely distributed punctate calcification in the walls and valves. Content assay demonstrated comparable calcium content for the two groups at preimplantation, whereas less calcium for the PCA group in the walls and similar calcium in the valvular leaflets compared with the photooxidized group at 1-year retrieval. Elastin content assay presented the conduit walls of PCA group had less elastin content at preimplantation, but similar content at 1-year retrieval compared with the photooxidized group. Phospholipid analysis showed phospholipid extraction by ethanol for the PCA group was more efficacious than the photooxidized group. These results indicate that PCA BJVCs resist calcification in right-side heart implantation owing to decellularization, further photooxidative crosslinking, and subsequent phospholipid extraction by ethanol at preimplantation. Copyright © 2012 Wiley Periodicals, Inc.

  14. Low field domain wall dynamics in artificial spin-ice basis structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, J.; School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Goolaup, S.

    2015-10-28

    Artificial magnetic spin-ice nanostructures provide an ideal platform for the observation of magnetic monopoles. The formation of a magnetic monopole is governed by the motion of a magnetic charge carrier via the propagation of domain walls (DWs) in a lattice. To date, most experiments have been on the static visualization of DW propagation in the lattice. In this paper, we report on the low field dynamics of DW in a unit spin-ice structure measured by magnetoresistance changes. Our results show that reversible DW propagation can be initiated within the spin-ice basis. The initial magnetization configuration of the unit structure stronglymore » influences the direction of DW motion in the branches. Single or multiple domain wall nucleation can be induced in the respective branches of the unit spin ice by the direction of the applied field.« less

  15. Antiferromagnetic domain wall as spin wave polarizer and retarder.

    PubMed

    Lan, Jin; Yu, Weichao; Xiao, Jiang

    2017-08-02

    As a collective quasiparticle excitation of the magnetic order in magnetic materials, spin wave, or magnon when quantized, can propagate in both conducting and insulating materials. Like the manipulation of its optical counterpart, the ability to manipulate spin wave polarization is not only important but also fundamental for magnonics. With only one type of magnetic lattice, ferromagnets can only accommodate the right-handed circularly polarized spin wave modes, which leaves no freedom for polarization manipulation. In contrast, antiferromagnets, with two opposite magnetic sublattices, have both left and right-circular polarizations, and all linear and elliptical polarizations. Here we demonstrate theoretically and confirm by micromagnetic simulations that, in the presence of Dzyaloshinskii-Moriya interaction, an antiferromagnetic domain wall acts naturally as a spin wave polarizer or a spin wave retarder (waveplate). Our findings provide extremely simple yet flexible routes toward magnonic information processing by harnessing the polarization degree of freedom of spin wave.Spin waves are promising candidates as carriers for energy-efficient information processing, but they have not yet been fully explored application wise. Here the authors theoretically demonstrate that antiferromagnetic domain walls are naturally spin wave polarizers and retarders, two key components of magnonic devices.

  16. Spin-orbit-torque-induced magnetic domain wall motion in Ta/CoFe nanowires with sloped perpendicular magnetic anisotropy.

    PubMed

    Zhang, Yue; Luo, Shijiang; Yang, Xiaofei; Yang, Chang

    2017-05-17

    In materials with the gradient of magnetic anisotropy, spin-orbit-torque-induced magnetization behaviour has attracted attention because of its intriguing scientific principle and potential application. Most of the magnetization behaviours microscopically originate from magnetic domain wall motion, which can be precisely depicted using the standard cooperative coordinate method (CCM). However, the domain wall motion in materials with the gradient of magnetic anisotropy using the CCM remains lack of investigation. In this paper, by adopting CCM, we established a set of equations to quantitatively depict the spin-orbit-torque-induced motion of domain walls in a Ta/CoFe nanotrack with weak Dzyaloshinskii-Moriya interaction and magnetic anisotropy gradient. The equations were solved numerically, and the solutions are similar to those of a micromagnetic simulation. The results indicate that the enhanced anisotropy along the track acts as a barrier to inhibit the motion of the domain wall. In contrast, the domain wall can be pushed to move in a direction with reduced anisotropy, with the velocity being accelerated by more than twice compared with that for the constant anisotropy case. This substantial velocity manipulation by anisotropy engineering is important in designing novel magnetic information devices with high reading speeds.

  17. Control of domain wall pinning by localised focused Ga {sup +} ion irradiation on Au capped NiFe nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burn, D. M., E-mail: d.burn@imperial.ac.uk; Atkinson, D.

    2014-10-28

    Understanding domain wall pinning and propagation in nanowires are important for future spintronics and nanoparticle manipulation technologies. Here, the effects of microscopic local modification of the magnetic properties, induced by focused-ion-beam intermixing, in NiFe/Au bilayer nanowires on the pinning behavior of domain walls was investigated. The effects of irradiation dose and the length of the irradiated features were investigated experimentally. The results are considered in the context of detailed quasi-static micromagnetic simulations, where the ion-induced modification was represented as a local reduction of the saturation magnetization. Simulations show that domain wall pinning behavior depends on the magnitude of the magnetizationmore » change, the length of the modified region, and the domain wall structure. Comparative analysis indicates that reduced saturation magnetisation is not solely responsible for the experimentally observed pinning behavior.« less

  18. A Biosynthetic Nerve Guide Conduit Based on Silk/SWNT/Fibronectin Nanocomposite for Peripheral Nerve Regeneration

    PubMed Central

    Mottaghitalab, Fatemeh; Farokhi, Mehdi; Zaminy, Arash; Kokabi, Mehrdad; Soleimani, Masoud; Mirahmadi, Fereshteh

    2013-01-01

    As a contribution to the functionality of nerve guide conduits (NGCs) in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs) has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN) containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV) and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts. PMID:24098649

  19. Topological Luttinger liquids from decorated domain walls

    NASA Astrophysics Data System (ADS)

    Parker, Daniel E.; Scaffidi, Thomas; Vasseur, Romain

    2018-04-01

    We introduce a systematic construction of a gapless symmetry-protected topological phase in one dimension by "decorating" the domain walls of Luttinger liquids. The resulting strongly interacting phases provide a concrete example of a gapless symmetry-protected topological (gSPT) phase with robust symmetry-protected edge modes. Using boundary conformal field theory arguments, we show that while the bulks of such gSPT phases are identical to conventional Luttinger liquids, their boundary critical behavior is controlled by a different, strongly coupled renormalization group fixed point. Our results are checked against extensive density matrix renormalization group calculations.

  20. Bianchi type-I domain walls with negative constant deceleration parameter in Brans-Dicke theory

    NASA Astrophysics Data System (ADS)

    Katore, S. D.

    2011-04-01

    Bianchi type-I space-time is considered in the presence of a domain walls source in the scalar-tensor theory of gravitation proposed by Brans and Dicke (C.H. Brans and R.H. Dicke, Phys. Rev. 24, 925 (1961)). With the help of the special law of variation for Hubble's parameter proposed by Bermann (M.S. Berman, Nuovo Cimento B 74, 182 (1983)) a cosmological model with negative constant deceleration parameter is obtained in the presence of domain walls. Some physical properties of the model are also discussed.

  1. Lorentz force effect on mixed convection micropolar flow in a vertical conduit

    NASA Astrophysics Data System (ADS)

    Abdel-wahed, Mohamed S.

    2017-05-01

    The present work provides a simulation of control and filtration process of hydromagnetic blood flow with Hall current under the effect of heat source or sink through a vertical conduit (pipe). This work meets other engineering applications, such as nuclear reactors cooled during emergency shutdown, geophysical transport in electrically conducting and heat exchangers at low velocity conditions. The problem is modeled by a system of partial differential equations taking the effect of viscous dissipation, and these equations are simplified and solved analytically as a series solution using the Differential Transformation Method (DTM). The velocities and temperature profiles of the flow are plotted and discussed. Moreover, the conduit wall shear stress and heat flux are deduced and explained.

  2. Correlation between the viscoelastic heterogeneity and the domain wall motion of Fe-based metallic glass

    NASA Astrophysics Data System (ADS)

    Ouyang, S.; Song, L. J.; Liu, Y. H.; Huo, J. T.; Wang, J. Q.; Xu, W.; Li, J. L.; Wang, C. T.; Wang, X. M.; Li, R. W.

    2018-06-01

    The soft magnetic properties of Fe-based metallic glasses are reduced significantly by external and residual stresses, e.g., the susceptibility decreases and coercivity increases, which limits their application severely. Unraveling the micromechanism of how the stress influences the soft magnetic properties is of great help for enhancing the performance of Fe-based metallic glasses. In this work, we investigate the effect of viscoelastic heterogeneity on the motion of magnetic domain wall surrounding nanoindentations. Compared to the matrix, dissipation of the viscoelastic heterogeneity increases toward the nanoindentation. Meanwhile, the motion of domain wall under external magnetic field becomes more difficult toward the nanoindentations. A correlation between the viscoelastic dissipation and the moving ability of magnetic domain walls is observed, which can be well fitted using magnetoelastic coupling theory. This suggests that manipulating the microscale viscoelastic heterogeneity is probably a helpful strategy for enhancing the soft magnetic properties of metallic glasses.

  3. FAST TRACK COMMUNICATION Critical exponents of domain walls in the two-dimensional Potts model

    NASA Astrophysics Data System (ADS)

    Dubail, Jérôme; Lykke Jacobsen, Jesper; Saleur, Hubert

    2010-12-01

    We address the geometrical critical behavior of the two-dimensional Q-state Potts model in terms of the spin clusters (i.e. connected domains where the spin takes a constant value). These clusters are different from the usual Fortuin-Kasteleyn clusters, and are separated by domain walls that can cross and branch. We develop a transfer matrix technique enabling the formulation and numerical study of spin clusters even when Q is not an integer. We further identify geometrically the crossing events which give rise to conformal correlation functions. This leads to an infinite series of fundamental critical exponents h_{\\ell _1-\\ell _2,2\\ell _1}, valid for 0 <= Q <= 4, that describe the insertion of ell1 thin and ell2 thick domain walls.

  4. Trapping and Injecting Single Domain Walls in Magnetic Wire by Local Fields

    NASA Astrophysics Data System (ADS)

    Vázquez, Manuel; Basheed, G. A.; Infante, Germán; Del Real, Rafael P.

    2012-01-01

    A single domain wall (DW) moves at linearly increasing velocity under an increasing homogeneous drive magnetic field. Present experiments show that the DW is braked and finally trapped at a given position when an additional antiparallel local magnetic field is applied. That position and its velocity are further controlled by suitable tuning of the local field. In turn, the parallel local field of small amplitude does not significantly affect the effective wall speed at long distance, although it generates tail-to-tail and head-to-head pairs of walls moving along opposite directions when that field is strong enough.

  5. Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures

    PubMed Central

    Lei, Na; Devolder, Thibaut; Agnus, Guillaume; Aubert, Pascal; Daniel, Laurent; Kim, Joo-Von; Zhao, Weisheng; Trypiniotis, Theodossis; Cowburn, Russell P.; Chappert, Claude; Ravelosona, Dafiné; Lecoeur, Philippe

    2013-01-01

    The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices. PMID:23340418

  6. Seal between metal and ceramic conduits

    DOEpatents

    Underwood, Richard Paul; Tentarelli, Stephen Clyde

    2015-02-03

    A seal between a ceramic conduit and a metal conduit of an ion transport membrane device consisting of a sealing surface of ceramic conduit, a sealing surface of ceramic conduit, a single gasket body, and a single compliant interlayer.

  7. Indirect Coupling of Magnetic Layers via Domain Wall Fringing fields

    NASA Astrophysics Data System (ADS)

    Parkin, Stuart

    2001-03-01

    Ferromagnetic films separated by thin metallic spacer layers are usually coupled through an indirect exchange interaction which oscillates in sign between ferro and antiferromagnetic coupling as a function of the spacer layer thickness^1. For both such metallic systems, and for multilayered systems in which the ferromagnetic films are separated by thin insulating layers, correlated roughness of the magnetic layers gives rise to a weak ferromagnetic coupling via dipole fields. Another type of dipolar coupling mechanism, which has largely been ignored, is that arising from domain wall fringing fields. These fields can be locally very large^2 and can result in the demagnetization of ferromagnetic films which are nominally highly coercive ("hard") in sandwiches comprised of "hard" and "soft" ferromagnetic layers. When the moment of the soft layer is reversed back and forth in small magnetic fields, much too small to affect the moment of the hard layer, substantial local fringing fields from domain walls created in the soft film gradually result in the demagnetization of the hard film. In some cases the moment of the hard layer decays in an oscillatory manner as it is successively partially demagnetized and remagnetized. This process has been observed on both macroscopic and microscopic length scales using SQUID magnetometry and high resolution photoemission electron microscopy, respectively^3. Magnetic interactions from domain wall fringing fields may be very important for magnetic devices, especially, magnetoresistance sensors and memory elements. [1] S.S.P. Parkin, N. More and K.P. Roche, Phys. Rev. Lett. 64, 2304 (1990); S.S.P. Parkin, Phys. Rev. Lett., 67, 3598 (1991). [2] L. Thomas, M. Samant and S.S.P. Parkin, Phys. Rev. Lett. 84, 1816 (2000). [3] L. Thomas, J Lüning, A. Scholl, F. Nolting, S. Anders, J. Stöhr and S.S.P. Parkin, Phys. Rev. Lett. 84, 3462 (2000).

  8. Isospin Breaking Corrections to the HVP with Domain Wall Fermions

    NASA Astrophysics Data System (ADS)

    Boyle, Peter; Guelpers, Vera; Harrison, James; Juettner, Andreas; Lehner, Christoph; Portelli, Antonin; Sachrajda, Christopher

    2018-03-01

    We present results for the QED and strong isospin breaking corrections to the hadronic vacuum polarization using Nf = 2 + 1 Domain Wall fermions. QED is included in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. Results and statistical errors from both methods are directly compared with each other.

  9. G-structures and domain walls in heterotic theories

    NASA Astrophysics Data System (ADS)

    Lukas, Andre; Matti, Cyril

    2011-01-01

    We consider heterotic string solutions based on a warped product of a four-dimensional domain wall and a six-dimensional internal manifold, preserving two supercharges. The constraints on the internal manifolds with SU(3) structure are derived. They are found to be generalized half-flat manifolds with a particular pattern of torsion classes and they include half-flat manifolds and Strominger's complex non-Kahler manifolds as special cases. We also verify that previous heterotic compactifications on half-flat mirror manifolds are based on this class of solutions.

  10. Tunneling decay of false domain walls: The silence of the lambs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haberichter, Mareike, E-mail: M.Haberichter@kent.ac.uk; School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF; MacKenzie, Richard, E-mail: richard.mackenzie@umontreal.ca

    We study the decay of “false” domain walls, that is, metastable states of the quantum theory where the true vacuum is trapped inside the wall with the false vacuum outside. We consider a theory with two scalar fields, a shepherd field and a field of sheep. The shepherd field serves to herd the solitons of the sheep field so that they are nicely bunched together. However, quantum tunnelling of the shepherd field releases the sheep to spread out uncontrollably. We show how to calculate the tunnelling amplitude for such a disintegration.

  11. Transmission XMCD-PEEM imaging of an engineered vertical FEBID cobalt nanowire with a domain wall

    NASA Astrophysics Data System (ADS)

    Wartelle, A.; Pablo-Navarro, J.; Staňo, M.; Bochmann, S.; Pairis, S.; Rioult, M.; Thirion, C.; Belkhou, R.; de Teresa, J. M.; Magén, C.; Fruchart, O.

    2018-01-01

    Using focused electron-beam-induced deposition, we fabricate a vertical, platinum-coated cobalt nanowire with a controlled three-dimensional structure. The latter is engineered to feature bends along the height: these are used as pinning sites for domain walls, which are obtained at remanence after saturation of the nanostructure in a horizontally applied magnetic field. The presence of domain walls is investigated using x-ray magnetic circular dichroism (XMCD) coupled to photoemission electron microscopy (PEEM). The vertical geometry of our sample combined with the low incidence of the x-ray beam produce an extended wire shadow which we use to recover the wire’s magnetic configuration. In this transmission configuration, the whole sample volume is probed, thus circumventing the limitation of PEEM to surfaces. This article reports on the first study of magnetic nanostructures standing perpendicular to the substrate with XMCD-PEEM. The use of this technique in shadow mode enabled us to confirm the presence of a domain wall without direct imaging of the nanowire.

  12. Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls

    PubMed Central

    Currivan-Incorvia, J. A.; Siddiqui, S.; Dutta, S.; Evarts, E. R.; Zhang, J.; Bono, D.; Ross, C. A.; Baldo, M. A.

    2016-01-01

    Spintronic computing promises superior energy efficiency and nonvolatility compared to conventional field-effect transistor logic. But, it has proven difficult to realize spintronic circuits with a versatile, scalable device design that is adaptable to emerging material physics. Here we present prototypes of a logic device that encode information in the position of a magnetic domain wall in a ferromagnetic wire. We show that a single three-terminal device can perform inverter and buffer operations. We demonstrate one device can drive two subsequent gates and logic propagation in a circuit of three inverters. This prototype demonstration shows that magnetic domain wall logic devices have the necessary characteristics for future computing, including nonlinearity, gain, cascadability, and room temperature operation. PMID:26754412

  13. Steady motion of skyrmions and domains walls under diffusive spin torques

    NASA Astrophysics Data System (ADS)

    Elías, Ricardo Gabriel; Vidal-Silva, Nicolas; Manchon, Aurélien

    2017-03-01

    We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β'. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0) 2(1 +2 α β') .

  14. Atiyah-Patodi-Singer index theorem for domain-wall fermion Dirac operator

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Onogi, Tetsuya; Yamaguchi, Satoshi

    2018-03-01

    Recently, the Atiyah-Patodi-Singer(APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. Although it is widely applied to physics, the mathematical set-up in the original APS index theorem is too abstract and general (allowing non-trivial metric and so on) and also the connection between the APS boundary condition and the physical boundary condition on the surface of topological material is unclear. For this reason, in contrast to the Atiyah-Singer index theorem, derivation of the APS index theorem in physics language is still missing. In this talk, we attempt to reformulate the APS index in a "physicist-friendly" way, similar to the Fujikawa method on closed manifolds, for our familiar domain-wall fermion Dirac operator in a flat Euclidean space. We find that the APS index is naturally embedded in the determinant of domain-wall fermions, representing the so-called anomaly descent equations.

  15. Surface Features Parameterization and Equivalent Roughness Height Estimation of a Real Subglacial Conduit in the Arctic

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Liu, X.; Mankoff, K. D.; Gulley, J. D.

    2016-12-01

    The surfaces of subglacial conduits are very complex, coupling multi-scale roughness, large sinuosity, and cross-sectional variations together. Those features significantly affect the friction law and drainage efficiency inside the conduit by altering velocity and pressure distributions, thus posing considerable influences on the dynamic development of the conduit. Parameterizing the above surface features is a first step towards understanding their hydraulic influences. A Matlab package is developed to extract the roughness field, the conduit centerline, and associated area and curvature data from the conduit surface, acquired from 3D scanning. By using those data, the characteristic vertical and horizontal roughness scales are then estimated based on the structure functions. The centerline sinuosities, defined through three concepts, i.e., the traditional definition of a fluvial river, entropy-based sinuosity, and curvature-based sinuosity, are also calculated and compared. The cross-sectional area and equivalent circular diameter along the centerline are also calculated. Among those features, the roughness is especially important due to its pivotal role in determining the wall friction, and thus an estimation of the equivalent roughness height is of great importance. To achieve such a goal, the original conduit is firstly simplified into a straight smooth pipe with the same volume and centerline length, and the roughness field obtained above is then reconstructed into the simplified pipe. An OpenFOAM-based Large-eddy-simulation (LES) is then performed based on the reconstructed pipe. Considering that the Reynolds number is of the order 106, and the relative roughness is larger than 5% for 60% of the conduit, we test the validity of the resistance law for completely rough pipe. The friction factor is calculated based on the pressure drop and mean velocity in the simulation. Working together, the equivalent roughness height can be calculated. However, whether the

  16. Magnetic properties, domain-wall creep motion, and the Dzyaloshinskii-Moriya interaction in Pt/Co/Ir thin films

    NASA Astrophysics Data System (ADS)

    Shepley, Philippa M.; Tunnicliffe, Harry; Shahbazi, Kowsar; Burnell, Gavin; Moore, Thomas A.

    2018-04-01

    We study the magnetic properties of perpendicularly magnetized Pt/Co/Ir thin films and investigate the domain-wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultrathin films. Measurements of the Co layer thickness dependence of saturation magnetization, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e., DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain-wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain-wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter α , we find that both α and the velocity scaling parameter v0 change as a function of in-plane bias field.

  17. Möbius domain-wall fermions on gradient-flowed dynamical HISQ ensembles

    NASA Astrophysics Data System (ADS)

    Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng; Clark, M. A.; Joó, Bálint; Kurth, Thorsten; Monahan, Christopher; Nicholson, Amy; Orginos, Kostas; Rinaldi, Enrico; Vranas, Pavlos; Walker-Loud, André

    2017-09-01

    We report on salient features of a mixed lattice QCD action using valence Möbius domain-wall fermions solved on the dynamical Nf=2 +1 +1 highly improved staggered quark sea-quark ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the highly improved staggered quark configurations. The greater numerical cost of the Möbius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings a ≃{0.15 ,0.12 ,0.09 } fm and pion masses mπ≃{310 ,220 ,130 } MeV . We have additionally generated two new ensembles with a ˜0.12 fm and mπ˜{400 ,350 } MeV . With a fixed flow time of tg f=1 in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10% of the light quark mass on all ensembles, mres≲0.1 ×ml , with moderate values of the fifth dimension L5 and a domain-wall height M5≤1.3 . As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of FK±/Fπ± and demonstrate our results are independent of flow time and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.

  18. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles

    PubMed Central

    Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena; Schiøtz, Jakob; Kasama, Takeshi; Puntes, Victor F.; Frandsen, Cathrine

    2015-01-01

    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100–400 nm and lengths of up to some hundred microns. Lorenz microscopy and electron holography reveal collective magnetic ordering in these structures. However, in contrast to continuous ferromagnetic thin films of comparable dimensions, domain walls appear preferentially as longitudinal, i.e., oriented parallel to the long axis of the nanoparticle assemblies. We explain this unusual domain structure as the result of dipolar interactions and shape anisotropy, in the absence of inter-particle exchange coupling. PMID:26416297

  19. Nonlinear dielectric response and transient current: An effective potential for ferroelectric domain wall displacement

    NASA Astrophysics Data System (ADS)

    Placeres Jiménez, Rolando; Pedro Rino, José; Marino Gonçalves, André; Antonio Eiras, José

    2013-09-01

    Ferroelectric domain walls are modeled as rigid bodies moving under the action of a potential field in a dissipative medium. Assuming that the dielectric permittivity follows the dependence ɛ '∝1/(α+βE2), it obtained the exact expression for the effective potential. Simulations of polarization current correctly predict a power law. Such results could be valuable in the study of domain wall kinetic and ultrafast polarization processes. The model is extended to poled samples allowing the study of nonlinear dielectric permittivity under subswitching electric fields. Experimental nonlinear data from PZT 20/80 thin films and Fe+3 doped PZT 40/60 ceramic are reproduced.

  20. Universal depinning transition of domain walls in ultrathin ferromagnets

    NASA Astrophysics Data System (ADS)

    Diaz Pardo, R.; Savero Torres, W.; Kolton, A. B.; Bustingorry, S.; Jeudy, V.

    2017-05-01

    We present a quantitative and comparative study of magnetic-field-driven domain-wall depinning transition in different ferromagnetic ultrathin films over a wide range of temperature. We reveal a universal scaling function accounting for both drive and thermal effects on the depinning transition, including critical exponents. The consistent description we obtain for both the depinning and subthreshold thermally activated creep motion should shed light on the universal glassy dynamics of thermally fluctuating elastic objects pinned by disordered energy landscapes.

  1. Nucleon structure from 2+1-flavor domain-wall QCD

    NASA Astrophysics Data System (ADS)

    Ohta, Shigemi

    2018-03-01

    Nucleon-structure calculations of isovector vector-and axialvector-current form factors, transversity and scalar charge, and quark momentum and helicity fractions are reported from two recent 2+1-flavor dynamical domain-wall fermions lattice-QCD ensembles generated jointly by the RIKEN-BNL-Columbia and UKQCD Collaborations with Iwasaki × dislocation-suppressing-determinatn-ratio gauge action at inverse lattice spacing of 1.378(7) GeV and pion mass values of 249.4(3) and 172.3(3) MeV.

  2. The Most Abundant Glycoprotein of Amebic Cyst Walls (Jacob) Is a Lectin with Five Cys-Rich, Chitin-Binding Domains

    PubMed Central

    Frisardi, Marta; Ghosh, Sudip K.; Field, Jessica; Van Dellen, Katrina; Rogers, Rick; Robbins, Phillips; Samuelson, John

    2000-01-01

    The infectious stage of amebae is the chitin-walled cyst, which is resistant to stomach acids. In this study an extraordinarily abundant, encystation-specific glycoprotein (Jacob) was identified on two-dimensional protein gels of cyst walls purified from Entamoeba invadens. Jacob, which was acidic and had an apparent molecular mass of ∼100 kDa, contained sugars that bound to concanavalin A and ricin. The jacob gene encoded a 45-kDa protein with a ladder-like series of five Cys-rich domains. These Cys-rich domains were reminiscent of but not homologous to the Cys-rich chitin-binding domains of insect chitinases and peritrophic matrix proteins that surround the food bolus in the insect gut. Jacob bound purified chitin and chitin remaining in sodium dodecyl sulfate-treated cyst walls. Conversely, the E. histolytica plasma membrane Gal/GalNAc lectin bound sugars of intact cyst walls and purified Jacob. In the presence of galactose, E. invadens formed wall-less cysts, which were quadranucleate and contained Jacob and chitinase (another encystation-specific protein) in secretory vesicles. A galactose lectin was found to be present on the surface of wall-less cysts, which phagocytosed bacteria and mucin-coated beads. These results suggest that the E. invadens cyst wall forms when the plasma membrane galactose lectin binds sugars on Jacob, which in turn binds chitin via its five chitin-binding domains. PMID:10858239

  3. Current-driven second-harmonic domain wall resonance in ferromagnetic metal/nonmagnetic metal bilayers: A field-free method for spin Hall angle measurements

    NASA Astrophysics Data System (ADS)

    Hajiali, M. R.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. M.

    2017-10-01

    We study the ac current-driven domain wall motion in bilayer ferromagnetic metal (FM)/nonmagnetic metal (NM) nanowires. The solution of the modified Landau-Lifshitz-Gilbert equation including all the spin transfer torques is used to describe motion of the domain wall in the presence of the spin Hall effect. We show that the domain wall center has a second-harmonic frequency response in addition to the known first-harmonic excitation. In contrast to the experimentally observed second-harmonic response in harmonic Hall measurements of spin-orbit torque in magnetic thin films, this second-harmonic response directly originates from spin-orbit torque driven domain wall dynamics. Based on the spin current generated by domain wall dynamics, the longitudinal spin motive force generated voltage across the length of the nanowire is determined. The second-harmonic response introduces additionally a practical field-free and all-electrical method to probe the effective spin Hall angle for FM/NM bilayer structures that could be applied in experiments. Our results also demonstrate the capability of utilizing FM/NM bilayer structures in domain wall based spin-torque signal generators and resonators.

  4. Stochastic simulation of karst conduit networks

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, Eulogio; Dowd, Peter A.; Xu, Chaoshui; Durán-Valsero, Juan José

    2012-01-01

    Karst aquifers have very high spatial heterogeneity. Essentially, they comprise a system of pipes (i.e., the network of conduits) superimposed on rock porosity and on a network of stratigraphic surfaces and fractures. This heterogeneity strongly influences the hydraulic behavior of the karst and it must be reproduced in any realistic numerical model of the karst system that is used as input to flow and transport modeling. However, the directly observed karst conduits are only a small part of the complete karst conduit system and knowledge of the complete conduit geometry and topology remains spatially limited and uncertain. Thus, there is a special interest in the stochastic simulation of networks of conduits that can be combined with fracture and rock porosity models to provide a realistic numerical model of the karst system. Furthermore, the simulated model may be of interest per se and other uses could be envisaged. The purpose of this paper is to present an efficient method for conditional and non-conditional stochastic simulation of karst conduit networks. The method comprises two stages: generation of conduit geometry and generation of topology. The approach adopted is a combination of a resampling method for generating conduit geometries from templates and a modified diffusion-limited aggregation method for generating the network topology. The authors show that the 3D karst conduit networks generated by the proposed method are statistically similar to observed karst conduit networks or to a hypothesized network model. The statistical similarity is in the sense of reproducing the tortuosity index of conduits, the fractal dimension of the network, the direction rose of directions, the Z-histogram and Ripley's K-function of the bifurcation points (which differs from a random allocation of those bifurcation points). The proposed method (1) is very flexible, (2) incorporates any experimental data (conditioning information) and (3) can easily be modified when

  5. Domain wall motion in sub-100 nm magnetic wire

    NASA Astrophysics Data System (ADS)

    Siddiqui, Saima; Dutta, Sumit; Currivan, Jean Anne; Ross, Caroline; Baldo, Marc

    2015-03-01

    Nonvolatile memory devices such as racetrack memory rely on the manipulation of domain wall (DW) in magnetic nanowires, and scaling of these devices requires an understanding of domain wall behavior as a function of the wire width. Due to the increased importance of edge roughness and magnetostatic interaction, DW pinning increases dramatically as the wire dimensions decrease and stochastic behavior is expected depending on the distribution of pinning sites. We report on the field driven DW statistics in sub-100 nm wide nanowires made from Co films with very small edge roughness. The nanowires were patterned in the form of a set of concentric rings of 10 μm diameter. Two different width nanowires with two different spacings have been studied. The rings were first saturated in plane to produce onion states and then the DWs were translated in the wires using an orthogonal in-plane field. The position of the DWs in the nanowires was determined with magnetic force microscopy. From the positions of the DWs in the nanowires, the strength of the extrinsic pinning sites was identified and they follow two different distributions in two different types of nanowire rings. For the closely spaced wires, magnetostatic interactions led to correlated movement of DWs in neighboring wires. The implications of DW pinning and interaction in nanoscale DW devices will be discussed.

  6. A Physicochemically Optimized and Neuroconductive Biphasic Nerve Guidance Conduit for Peripheral Nerve Repair.

    PubMed

    Ryan, Alan J; Lackington, William A; Hibbitts, Alan J; Matheson, Austyn; Alekseeva, Tijna; Stejskalova, Anna; Roche, Phoebe; O'Brien, Fergal J

    2017-12-01

    Clinically available hollow nerve guidance conduits (NGCs) have had limited success in treating large peripheral nerve injuries. This study aims to develop a biphasic NGC combining a physicochemically optimized collagen outer conduit to bridge the transected nerve, and a neuroconductive hyaluronic acid-based luminal filler to support regeneration. The outer conduit is mechanically optimized by manipulating crosslinking and collagen density, allowing the engineering of a high wall permeability to mitigate the risk of neuroma formation, while also maintaining physiologically relevant stiffness and enzymatic degradation tuned to coincide with regeneration rates. Freeze-drying is used to seamlessly integrate the luminal filler into the conduit, creating a longitudinally aligned pore microarchitecture. The luminal stiffness is modulated to support Schwann cells, with laminin incorporation further enhancing bioactivity by improving cell attachment and metabolic activity. Additionally, this biphasic NGC is shown to support neurogenesis and gliogenesis of neural progenitor cells and axonal outgrowth from dorsal root ganglia. These findings highlight the paradigm that a successful NGC requires the concerted optimization of both a mechanical support phase capable of bridging a nerve defect and a neuroconductive phase with an architecture capable of supporting both Schwann cells and neurons in order to achieve functional regenerative outcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A small cellulose binding domain protein in Phytophtora is cell wall localized

    USDA-ARS?s Scientific Manuscript database

    Cellulose binding domains (CBD) are structurally conserved regions linked to catalytic regions of cellulolytic enzymes. While widespread amongst saprophytic fungi that subsist on plant cell wall polysaccharides, they are not generally present in plant pathogenic fungi. A genome wide survey of CBDs w...

  8. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    NASA Astrophysics Data System (ADS)

    Akosa, Collins Ashu; Kim, Won-Seok; Bisig, André; Kläui, Mathias; Lee, Kyung-Jin; Manchon, Aurélien

    2015-03-01

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ˜∇2[m ×(u .∇ ) m ] +ξ ∇2[(u .∇ ) m ] , where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  9. Depinning of the transverse domain wall trapped at magnetic impurities patterned in planar nanowires: Control of the wall motion using low-intensity and short-duration current pulses

    NASA Astrophysics Data System (ADS)

    Paixão, E. L. M.; Toscano, D.; Gomes, J. C. S.; Monteiro, M. G.; Sato, F.; Leonel, S. A.; Coura, P. Z.

    2018-04-01

    Understanding and controlling of domain wall motion in magnetic nanowires is extremely important for the development and production of many spintronic devices. It is well known that notches are able to pin domain walls, but their pinning potential strength are too strong and it demands high-intensity current pulses to achieve wall depinning in magnetic nanowires. However, traps of pinning can be also originated from magnetic impurities, consisting of located variations of the nanowire's magnetic properties, such as exchange stiffness constant, saturation magnetization, anisotropy constant, damping parameter, and so on. In this work, we have performed micromagnetic simulations to investigate the depinning mechanism of a transverse domain wall (TDW) trapped at an artificial magnetic defect using spin-polarized current pulses. In order to create pinning traps, a simplified magnetic impurity model, only based on a local reduction of the exchange stiffness constant, have been considered. In order to provide a background for experimental studies, we have varied the parameter related to the pinning potential strength of the magnetic impurity. By adjusting the pinning potential of magnetic impurities and choosing simultaneously a suitable current pulse, we have found that it is possible to obtain domain wall depinning by applying low-intensity and short-duration current pulses. Furthermore, it was considered a planar magnetic nanowire containing a linear distribution of equally-spaced magnetic impurities and we have demonstrated the position control of a single TDW by applying sequential current pulses; that means the wall movement from an impurity to another.

  10. Prediction and Experimental Evidence for Thermodynamically Stable Charged Orbital Domain Walls

    DOE PAGES

    Li, Qing’an; Gray, K. E.; Wilkins, S. B.; ...

    2014-08-18

    On theoretical grounds, we show that orbital domain walls (ODWs), which are known to exist in the charge and orbital ordered layered manganite LaSr 2Mn 2O 7, should be partially charged as a result of competition between orbital-induced strain and Coulomb repulsion. Furthermore, this unexpected result provides the necessary condition for the known thermodynamic stability of these ODWs, which are unlike the more typical domain walls that arise only from an external field. We offer experimental data consistent with this theoretical framework through a combined transport and x-ray-diffraction study. In particular, our transport data on this charge and orbital orderedmore » manganite exhibit abrupt transformations to higher conductance at a threshold electric field. As transport phenomena closely resemble effects found for sliding charge-density waves (SCDWs) in pseudo-one-dimensional (1D) materials, a SCDW along such pseudo-1D ODWs provides a natural explanation of our data. Importantly, x-ray-diffraction data eliminate heating and melting of charge order as tenable alternative explanations of our data.« less

  11. Method and apparatus for inspecting conduits

    DOEpatents

    Spisak, Michael J.; Nance, Roy A.

    1997-01-01

    An apparatus and method for ultrasonic inspection of a conduit are provided. The method involves directing a first ultrasonic pulse at a particular area of the conduit at a first angle, receiving the reflected sound from the first ultrasonic pulse, substantially simultaneously or subsequently in very close time proximity directing a second ultrasonic pulse at said area of the conduit from a substantially different angle than said first angle, receiving the reflected sound from the second ultrasonic pulse, and comparing the received sounds to determine if there is a defect in that area of the conduit. The apparatus of the invention is suitable for carrying out the above-described method. The method and apparatus of the present invention provide the ability to distinguish between sounds reflected by defects in a conduit and sounds reflected by harmless deposits associated with the conduit.

  12. A Novel Plasma Membrane-Anchored Protein Regulates Xylem Cell-Wall Deposition through Microtubule-Dependent Lateral Inhibition of Rho GTPase Domains.

    PubMed

    Sugiyama, Yuki; Wakazaki, Mayumi; Toyooka, Kiminori; Fukuda, Hiroo; Oda, Yoshihisa

    2017-08-21

    Spatial control of cell-wall deposition is essential for determining plant cell shape [1]. Rho-type GTPases, together with the cortical cytoskeleton, play central roles in regulating cell-wall patterning [2]. In metaxylem vessel cells, which are the major components of xylem tissues, active ROP11 Rho GTPases form oval plasma membrane domains that locally disrupt cortical microtubules, thereby directing the formation of oval pits in secondary cell walls [3-5]. However, the regulatory mechanism that determines the planar shape of active Rho of Plants (ROP) domains is still unknown. Here we show that IQD13 associates with cortical microtubules and the plasma membrane to laterally restrict the localization of ROP GTPase domains, thereby directing the formation of oval secondary cell-wall pits. Loss and overexpression of IQD13 led to the formation of abnormally round and narrow secondary cell-wall pits, respectively. Ectopically expressed IQD13 increased the presence of parallel cortical microtubules by promoting microtubule rescue. A reconstructive approach revealed that IQD13 confines the area of active ROP domains within the lattice of the cortical microtubules, causing narrow ROP domains to form. This activity required the interaction of IQD13 with the plasma membrane. These findings suggest that IQD13 positively regulates microtubule dynamics as well as their linkage to the plasma membrane, which synergistically confines the area of active ROP domains, leading to the formation of oval secondary cell-wall pits. This finding sheds light on the role of microtubule-plasma membrane linkage as a lateral fence that determines the planar shape of Rho GTPase domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Conduction at domain walls in insulating Pb(Zr0.2 Ti0.8)O3 thin films.

    PubMed

    Guyonnet, Jill; Gaponenko, Iaroslav; Gariglio, Stefano; Paruch, Patrycja

    2011-12-01

    Domain wall conduction in insulating Pb(Zr(0.2) Ti(0.8))O(3) thin films is demonstrated. The observed electrical conduction currents can be clearly differentiated from displacement currents associated with ferroelectric polarization switching. The domain wall conduction, nonlinear and highly asymmetric due to the specific local probe measurement geometry, shows thermal activation at high temperatures, and high stability over time. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Soliton-mediated conduit flow: Deep Hawaiian magma migration

    NASA Astrophysics Data System (ADS)

    Ryan, M.; Stanley, B.

    2006-12-01

    Solitons have first-order attributes that include shape- and volume-conserving packets of fluid that migrate with characteristic wavelengths, amplitudes, wave numbers, and pulse durations. For ascent in dike-like magma- filled fractures, the soliton pulse duration is directly proportional to the conduit wall region viscosity and inversely proportional to the density contrast that drives the flow. Second-order effects that modify pathways include heat loss to conduit wall rocks, and progressive crystallization episodes along conduit walls. Long-lived (and intermediate duration) historical eruption episodes of Kilauea volcano, Hawai'i, include the 1959 Kilauea summit series at Kilauea Iki, the 1969-1974 series at Mauna Ulu and the 1983-to-present series at Pu'u `O'o-Kupaianaha. For each locale, the eruptions display a variable time-series in their erupted volumes, as well as fountain heights and vent flow rates. Inter-episode repose periods, however, often show broad regularity over extended periods. We suggest that these dynamics represent serendipitous windows into the characteristic system dynamics of deep magma migration beneath Hawai'i: all made possible by the chance clearance of mechanical obstructions allowing virtually open-system behavior. The rhythmic `beat' of eruptive episodes within a long-lived series (and their roughly regular repose periods) arise directly from the soliton migration mechanism. For non-summit locales such as Mauna Ulu and Pu'u `O'o-Kupaianaha, the fluid contents of the sub-caldera reservoir and the shallow molten rift zone core modulate the observed intrusion- eruption dynamics as volumetric displacements transmit down-rift the pressure pulses first felt beneath Halemaumau and the summit caldera. Analytic calculations of wave speed, wave length, batch volume, parcel shapes and repose periods reveal the dependence on material properties appropriate for Kilauea intrusions and eruptions. Analogue laboratory experiments using stiff

  15. Melting of Domain Wall in Charge Ordered Dirac Electron of Organic Conductor α-(BEDT-TTF)2I3

    NASA Astrophysics Data System (ADS)

    Ohki, Daigo; Matsuno, Genki; Omori, Yukiko; Kobayashi, Akito

    2018-05-01

    The origin of charge order melting is identified by using the real space dependent mean-field theory in the extended Hubbard model describing an organic Dirac electron system α-(BEDT-TTF)2I3. In this model, the width of a domain wall which arises between different types of the charge ordered phase exhibits a divergent increase with decreasing the strength of electron-electron correlations. By analyzing the finite-size effect carefully, it is shown that the divergence coincides with a topological transition where a pair of Dirac cones merges in keeping with a finite gap. It is also clarified that the gap opening point and the topological transition point are different, which leads to the existence of an exotic massive Dirac electron phase with melted-type domain wall and gapless edge states. The present result also indicated that multiple metastable states are emerged in massive Dirac Electron phase. In the trivial charge ordered phase, the gapless domain-wall bound state takes place instead of the gapless edge states, accompanying with a form change of the domain wall from melted-type into hyperbolic-tangent-type.

  16. The Influence of Conduit Processes During Basaltic Plinian Eruptions.

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Sable, J. E.; Wilson, C. J.; Coltelli, M.; Del Carlo, P.

    2001-12-01

    Basaltic volcanism is most typically thought to produce effusion of lava, with the most explosive manifestations ranging from mild Strombolian activity to more energetic fire fountain eruptions. However, some basaltic eruptions are now recognized as extremely violent, i.e. generating widespread phreatomagmatic, subplinian and Plinian fall deposits. These eruptions are particularly dangerous because the ascent rate of basaltic magma prior to eruption can be very rapid (giving warning times as little as a few hours) and because their precursors may be ignored or misunderstood. The main question addressed in this talk is: what conditions in the conduit cause basaltic magma to adopt an eruption style more typical of chemically evolved, highly viscous magmas? Possible mechanisms (acting singly, or in concert) are: (1) interaction between magma and water, (ii) very rapid ascent producing a delayed onset of degassing then exceptionally rapid "runaway" vesiculation at shallow levels in the conduit, (iii) microlite crystallization and degassing of the magma during ascent leading to increased viscosity. We focus here on two examples of basaltic Plinian volcanism: the 1886 eruption of Tarawera, New Zealand, which is the youngest known basaltic Plinian eruption and the only one for which there are detailed written eyewitness accounts, and the well documented 122 BC eruption of Mount Etna, Italy. Field and laboratory evidence suggests that the Plinian phase of the 1886 eruption was a consequence of two processes. Firstly rheologic changes during magma ascent accompanied early (pre-fragmentation) interaction between the basaltic melt and water-bearing rhyolitic units forming the conduit walls and, secondly, late-stage magma:water interaction. In contrast, during the 122 BC eruption tectonic processes, such as slope failure or permanent displacement of a mobile flank of the volcano, appear to have triggered exceptionally rapid ascent, delayed onset of degassing and exceptionally

  17. Coarsening and persistence in a one-dimensional system of orienting arrowheads: Domain-wall kinetics with A+B→0.

    PubMed

    Khandkar, Mahendra D; Stinchcombe, Robin; Barma, Mustansir

    2017-01-01

    We demonstrate the large-scale effects of the interplay between shape and hard-core interactions in a system with left- and right-pointing arrowheads <> on a line, with reorientation dynamics. This interplay leads to the formation of two types of domain walls, >< (A) and <> (B). The correlation length in the equilibrium state diverges exponentially with increasing arrowhead density, with an ordered state of like orientations arising in the limit. In this high-density limit, the A domain walls diffuse, while the B walls are static. In time, the approach to the ordered state is described by a coarsening process governed by the kinetics of domain-wall annihilation A+B→0, quite different from the A+A→0 kinetics pertinent to the Glauber-Ising model. The survival probability of a finite set of walls is shown to decay exponentially with time, in contrast to the power-law decay known for A+A→0. In the thermodynamic limit with a finite density of walls, coarsening as a function of time t is studied by simulation. While the number of walls falls as t^{-1/2}, the fraction of persistent arrowheads decays as t^{-θ} where θ is close to 1/4, quite different from the Ising value. The global persistence too has θ=1/4, as follows from a heuristic argument. In a generalization where the B walls diffuse slowly, θ varies continuously, increasing with increasing diffusion constant.

  18. 30 CFR 18.38 - Leads through common walls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design... from one explosion-proof enclosure to another through conduit, tubing, piping, or other solid-wall...

  19. 30 CFR 18.38 - Leads through common walls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design... from one explosion-proof enclosure to another through conduit, tubing, piping, or other solid-wall...

  20. 30 CFR 18.38 - Leads through common walls.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design... from one explosion-proof enclosure to another through conduit, tubing, piping, or other solid-wall...

  1. 30 CFR 18.38 - Leads through common walls.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design... from one explosion-proof enclosure to another through conduit, tubing, piping, or other solid-wall...

  2. Turbulent and Laminar Flow in Karst Conduits Under Unsteady Flow Conditions: Interpretation of Pumping Tests by Discrete Conduit-Continuum Modeling

    NASA Astrophysics Data System (ADS)

    Giese, M.; Reimann, T.; Bailly-Comte, V.; Maréchal, J.-C.; Sauter, M.; Geyer, T.

    2018-03-01

    Due to the duality in terms of (1) the groundwater flow field and (2) the discharge conditions, flow patterns of karst aquifer systems are complex. Estimated aquifer parameters may differ by several orders of magnitude from local (borehole) to regional (catchment) scale because of the large contrast in hydraulic parameters between matrix and conduit, their heterogeneity and anisotropy. One approach to deal with the scale effect problem in the estimation of hydraulic parameters of karst aquifers is the application of large-scale experiments such as long-term high-abstraction conduit pumping tests, stimulating measurable groundwater drawdown in both, the karst conduit system as well as the fractured matrix. The numerical discrete conduit-continuum modeling approach MODFLOW-2005 Conduit Flow Process Mode 1 (CFPM1) is employed to simulate laminar and nonlaminar conduit flow, induced by large-scale experiments, in combination with Darcian matrix flow. Effects of large-scale experiments were simulated for idealized settings. Subsequently, diagnostic plots and analyses of different fluxes are applied to interpret differences in the simulated conduit drawdown and general flow patterns. The main focus is set on the question to which extent different conduit flow regimes will affect the drawdown in conduit and matrix depending on the hydraulic properties of the conduit system, i.e., conduit diameter and relative roughness. In this context, CFPM1 is applied to investigate the importance of considering turbulent conditions for the simulation of karst conduit flow. This work quantifies the relative error that results from assuming laminar conduit flow for the interpretation of a synthetic large-scale pumping test in karst.

  3. Comparison between spin-orbit torques measured by domain-wall motions and harmonic measurements

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Sung; Nam, Yune-Seok; Kim, Dae-Yun; Park, Yong-Keun; Park, Min-Ho; Choe, Sug-Bong

    2018-05-01

    Here we report the comparison of the spin torque efficiencies measured by three different experimental schemes for Pt/Co/X stacks with material X (= Pt, Ta, Ti, Al, Au, Pd, and Ru. 7 materials). The first two spin torque efficiencies ɛDW (1 ) and ɛDW (2 ) are quantified by the measurement of spin-torque-induced effective field for domain-wall depinning and creeping motions, respectively. The last one—longitudinal spin torque efficiency ɛL—is measured by harmonic signal measurement of the magnetization rotation with uniform magnetization configuration. The results confirm that, for all measured Pt/Co/X stacks, ɛDW (1 ) and ɛDW (2 ) are exactly consistent to each other and these two efficiencies are roughly proportional to ɛL with proportionality constant π/2, which comes from the integration over the domain-wall configuration.

  4. Domain wall roughness and creep in nanoscale crystalline ferroelectric polymers

    NASA Astrophysics Data System (ADS)

    Xiao, Z.; Poddar, Shashi; Ducharme, Stephen; Hong, X.

    2013-09-01

    We report piezo-response force microscopy studies of the static and dynamic properties of domain walls (DWs) in 11 to 36 nm thick films of crystalline ferroelectric poly(vinylidene-fluoride-trifluorethylene). The DW roughness exponent ζ ranges from 0.39 to 0.48 and the DW creep exponent μ varies from 0.20 to 0.28, revealing an unexpected effective dimensionality of ˜1.5 that is independent of film thickness. Our results suggest predominantly 2D ferroelectricity in the layered polymer and we attribute the fractal dimensionality to DW deroughening due to the correlations between the in-plane and out-of-plane polarization, an effect that can be exploited to achieve high lateral domain density for developing nanoscale ferroelectrics-based applications.

  5. Higher dimensional curved domain walls on Kähler surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id; Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id; Radjabaycolle, Flinn C.

    In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.

  6. Domain wall motion in magnetically frustrated nanorings

    NASA Astrophysics Data System (ADS)

    Lubarda, M. V.; Escobar, M. A.; Li, S.; Chang, R.; Fullerton, E. E.; Lomakin, V.

    2012-06-01

    We describe a magnetically frustrated nanoring (MFNR) configuration which is formed by introducing antiferromagnetic coupling across an interface orthogonal to the ring's circumferential direction. Such structures have the unique characteristic that only one itinerant domain wall (DW) can exist in the ring, which does not need to be nucleated or injected into the structure and can never escape making it analogous to a magnetic Möbius strip. Numerical simulations show that the DW in a MFNR can be driven consecutively around the ring with a prescribed cyclicity, and that the frequency of revolutions can be controlled by the applied field. The energy landscapes can be controlled to be flat allowing for low fields of operation or to have a barrier for thermal stability. Potential logic and memory applications of MFNRs are considered and discussed.

  7. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.

    2013-12-01

    Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product

  8. Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains

    NASA Astrophysics Data System (ADS)

    Sun, H. Y.; Hu, H. N.; Sun, Y. P.; Nie, X. F.

    2004-08-01

    Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains (IIDs) was investigated, and a critical in-plane field range [ Hip1, Hip2] of which vertical-Bloch lines (VBLs) annihilated in IIDs is found under rotating in-plane field ( Hip1 is the maximal critical in-plane-field of which hard domains remain stable, Hip2 is the minimal critical in-plane-field of which all of the hard domains convert to soft bubbles (SBs, without VBLs)). It shows that the in-plane field range [ Hip1, Hip2] changes with the change of the rotating angle Δ ϕ. Hip1 maintains stable, while Hip2 decreases with the decreasing of rotating angle Δ ϕ. Comparing it with the spontaneous shrinking experiment of IIDs under both bias field and in-plane field, we presume that under the application of in-plane field there exists a direction along which the VBLs in the domain walls annihilate most easily, and it is in the direction that domain walls are perpendicular to the in-plane field.

  9. Coarsening and persistence in a one-dimensional system of orienting arrowheads: Domain-wall kinetics with A +B →0

    NASA Astrophysics Data System (ADS)

    Khandkar, Mahendra D.; Stinchcombe, Robin; Barma, Mustansir

    2017-01-01

    We demonstrate the large-scale effects of the interplay between shape and hard-core interactions in a system with left- and right-pointing arrowheads <> on a line, with reorientation dynamics. This interplay leads to the formation of two types of domain walls, >< (A ) and <> (B ). The correlation length in the equilibrium state diverges exponentially with increasing arrowhead density, with an ordered state of like orientations arising in the limit. In this high-density limit, the A domain walls diffuse, while the B walls are static. In time, the approach to the ordered state is described by a coarsening process governed by the kinetics of domain-wall annihilation A +B →0 , quite different from the A +A →0 kinetics pertinent to the Glauber-Ising model. The survival probability of a finite set of walls is shown to decay exponentially with time, in contrast to the power-law decay known for A +A →0 . In the thermodynamic limit with a finite density of walls, coarsening as a function of time t is studied by simulation. While the number of walls falls as t-1/2, the fraction of persistent arrowheads decays as t-θ where θ is close to 1/4 , quite different from the Ising value. The global persistence too has θ =1/4 , as follows from a heuristic argument. In a generalization where the B walls diffuse slowly, θ varies continuously, increasing with increasing diffusion constant.

  10. Water exchange, mixing and transient storage between a saturated karstic conduit and the surrounding aquifer: Groundwater flow modeling and inputs from stable water isotopes

    NASA Astrophysics Data System (ADS)

    Binet, S.; Joigneaux, E.; Pauwels, H.; Albéric, P.; Fléhoc, Ch.; Bruand, A.

    2017-01-01

    Water exchanges between a karstic conduit and the surrounding aquifer are driven by hydraulic head gradient at the interface between these two domains. The case-study presented in this paper investigates the impact of the geometry and interface conditions around a conduit on the spatial distribution of these exchanges. Isotopic (δ18O and δD), discharge and water head measurements were conducted at the resurgences of a karst system with a strong allogenic recharge component (Val d'Orléans, France), to estimate the amounts of water exchanged and the mixings between a saturated karstic conduit and the surrounding aquifer. The spatio-temporal variability of the observed exchanges was explored using a 2D coupled continuum-conduit flow model under saturated conditions (Feflow®). The inputs from the water heads and stable water isotopes in the groundwater flow model suggest that the amounts of water flowing from the aquifer are significant if the conduit flow discharges are less than the conduit flow capacity. This condition creates a spatial distribution of exchanges from upstream where the aquifer feeds the conduit (recharge area) to downstream where the conduit reaches its maximum discharge capacity and can feed the aquifer (discharge area). In the intermediate transport zone no exchange between the two domains takes place that brings a new criterion to delineate the vulnerable zones to surface water. On average, 4% of the water comes from the local recharge, 80% is recent river water and 16% is old river water. During the November 2008 flood, both isotopic signatures and model suggest that exchanges fluctuate around this steady state, limited when the river water level increases and intensified when the river water level decreases. The existence of old water from the river suggests a transient storage at the aquifer/conduit interface that can be considered as an underground hyporheic zone.

  11. Collagen incorporation within electrospun conduits reduces lipid oxidation and impacts conduit mechanics.

    PubMed

    Birthare, Karamveer; Shojaee, Mozhgan; Jones, Carlos Gross; Brenner, James R; Bashur, Chris A

    2016-04-21

    Modulating the host response, including the accumulation of oxidized lipid species, is important for improving tissue engineered vascular graft (TEVG) viability. Accumulation of oxidized lipids promotes smooth muscle cell (SMC) hyper-proliferation and inhibits endothelial cell migration, which can lead to several of the current challenges for small-diameter TEVGs. Generating biomaterials that reduce lipid oxidation is important for graft survival and this assessment can provide a reliable correlation to clinical situations. In this study, we determined the collagen to poly(ε-caprolactone) (PCL) ratio required to limit the production of pro-inflammatory species, while maintaining the required mechanical strength for the graft. Electrospun conduits were prepared from 0%, 10%, and 25% blends of collagen/PCL (w/w) and implanted in the rat peritoneal cavity for four weeks. The results showed that adding collagen to the PCL conduits reduced the accumulation of oxidized lipid species within the implanted conduits. In addition, the ratio of collagen had a significant impact on the recruited cell phenotype and construct mechanics. All conduits exhibited greater than 44% yield strain and sufficient tensile strength post-implantation. In conclusion, these results demonstrate that incorporating collagen into synthetic electrospun scaffolds, both 10% and 25% blend conditions, appears to limit the pro-inflammatory characteristics after in vivo implantation.

  12. Parastomal hernias after radical cystectomy and ileal conduit diversion

    PubMed Central

    Donahue, Timothy F.

    2016-01-01

    Parastomal hernia, defined as an "incisional hernia related to an abdominal wall stoma", is a frequent complication after conduit urinary diversion that can negatively impact quality of life and present a clinically significant problem for many patients. Parastomal hernia (PH) rates may be as high as 65% and while many patients are asymptomatic, in some series up to 30% of patients require surgical intervention due to pain, leakage, ostomy appliance problems, urinary obstruction, and rarely bowel obstruction or strangulation. Local tissue repair, stoma relocation, and mesh repairs have been performed to correct PH, however, long-term results have been disappointing with recurrence rates of 30%–76% reported after these techniques. Due to high recurrence rates and the potential morbidity of PH repair, efforts have been made to prevent PH development at the time of the initial surgery. Randomized trials of circumstomal prophylactic mesh placement at the time of colostomy and ileostomy stoma formation have shown significant reductions in PH rates with acceptably low complication profiles. We have placed prophylactic mesh at the time of ileal conduit creation in patients at high risk for PH development and found it to be safe and effective in reducing the PH rates over the short-term. In this review, we describe the clinical and radiographic definitions of PH, the clinical impact and risk factors associated with its development, and the use of prophylactic mesh placement for patients undergoing ileal conduit urinary diversion with the intent of reducing PH rates. PMID:27437533

  13. Extrinsic pinning of magnetic domain walls in CoFeB-MgO nanowires with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Vernier, Nicolas; Zhao, Weisheng; Vila, Laurent; Ravelosona, Dafiné

    2018-05-01

    In this work, we have studied the mechanism of domain wall motion in 0.2-1.5 μm wide nanowires based on Ta/CoFeB/MgO films with perpendicular magnetic anisotropy. We show that domain wall propagation can be completely stopped due to the presence of strong pinning sites along the nanowires. From the analysis of the distribution of the strongest depinning fields as a function of the wire width, we evidence the presence of extrinsic pinning sites in nanowires, probably induced by edge damages, that dominate over the intrinsic pinning of the magnetic films even for these large wire widths.

  14. Domain wall oscillation in magnetic nanowire with a geometrically confined region

    NASA Astrophysics Data System (ADS)

    Sbiaa, R.; Bahri, M. Al; Piramanayagam, S. N.

    2018-06-01

    In conventional magnetic devices such as magnetic tunnel junctions, a steady oscillation of a soft layer magnetization could find its application in various electronic systems. However, these devices suffer from their low output signal and large spectral linewidth. A more elegant scheme based on domain wall oscillation could be a solution to these issues if DW dynamics could be controlled precisely in space and time. In fact, in DW devices, the magnetic configuration of domain wall and its position are strongly dependent on the device geometry and material properties. Here we show that in a constricted device with judiciously adjusted dimensions, a DW can be trapped within the central part and keep oscillating with a single frequency f. For 200 nm by 40 nm nanowire, f was found to vary from 2 GHz to 3 GHz for a current density between 4.8 × 1012 A/m2 and 5.6 × 1012 A/m2. More interestingly, the device fabrication is simply based on two long nanowires connected by adjusting the offset in both x and y directions. This new type of devices enables the conversion of dc-current to an ac-voltage in a controllable manner opening thus the possibility of a new nano-oscillators with better performance.

  15. Quality of life after radical cystectomy for bladder cancer in men with an ileal conduit or continent urinary diversion: A comparative study

    PubMed Central

    Asgari, M. A.; Safarinejad, M. R.; Shakhssalim, N.; Soleimani, M.; Shahabi, A.; Amini, E.

    2013-01-01

    Aim: To investigate quality of life (QoL) domains with three forms of urinary diversions, including ileal conduit, MAINZ pouch, and orthotopic ileal neobladder after radical cystectomy in men with muscle-invasive bladder cancer. Materials and Methods: In a prospective study, 149 men underwent radical cystectomy and urinary diversion (70 ileal conduit, 16 MAINZ pouch, and 63 orthotopic ileal neobladder). Different domains of QoL, including general and physical conditions, psychological status, social status, sexual life, diversion-related symptoms, and satisfaction with the treatment were assessed using an author constructed questionnaire. Assessment was performed at three months postoperatively. Results: In questions addressing psychological status, social status, and sexual life, patients with continent diversion had a more favorable outcome (P = 0.002, P = 0.01, and P = 0.002, respectively). The rate of erectile dysfunction did not differ significantly between the three groups (P = 0.21). The rate and global satisfaction was higher with the MAINZ pouch (68.7%) and ileal neobladder (76.2%) as compared with the ileal conduit group (52.8%) (P = 0.002). Conclusion: Continent urinary diversion after radical cystectomy provides better results in terms of QoL as compared with ileal conduit diversion. PMID:24049384

  16. Gravitational domain walls and the dynamics of the gravitational constant G

    NASA Astrophysics Data System (ADS)

    Bunster, Claudio; Gomberoff, Andrés

    2017-07-01

    From the point of view of elementary particle physics, the gravitational constant G is extraordinarily small. This has led to asking whether it could have decayed to its present value from an initial one commensurate with microscopical units. A mechanism that leads to such a decay is proposed herein. It is based on assuming that G may take different values within regions of the universe separated by a novel kind of domain wall, a "G -wall." The idea is implemented by introducing a gauge potential Aμ ν ρ, and its conjugate D , which determines the value of G as an integration constant rather than a fundamental constant. The value of G jumps when one goes through a G -wall. The procedure extends one previously developed for the cosmological constant, but the generalization is far from straightforward: (i) The intrinsic geometry of a G -wall is not the same as seen from its two sides because the second law of black hole thermodynamics mandates that the jump in G must cause a discontinuity in the scale of length. (ii) The size of the decay step in G is controlled by a function G (D ) which may be chosen so as to diminish the value of G towards the asymptote G =0 . It is shown that: (i) The dynamics of the gravitational field with G treated as a dynamical variable, coupled to G -walls and matter, follows from an action principle, which is given. (ii) A particle that impinges on a G -wall may be refracted or reflected. (iii) The various forces between two particles change when a G -wall is inserted in between them. (iv) G -walls may be nucleated trough tunneling and thermal effects, whose semiclassical probabilities are evaluated. (v) If the action principle is constructed properly, the entropy of a black hole increases when the value of the gravitational constant is changed through the absorption of a G-wall by the hole.

  17. Conduit Wall Failure as a Trigger for Transition From Strombolian to Phreatomagmatic Explosive Activity in the Cova de Paúl Crater Eruption on Santo Antão, Cape Verde Islands

    NASA Astrophysics Data System (ADS)

    Tarff, R. W.; Day, S. J.

    2011-12-01

    Episodes of hazardous phreatomagmatic explosive activity, including Surtseyan activity, occur within otherwise less dangerous effusive to mildly explosive magmatic eruptions at high-elevation vents on many oceanic island volcanoes. The water driving these explosions is sourced from freshwater aquifers within the volcanic edifices. Understanding volcanic and geophysical precursors to, and mechanisms of, the (frequently abrupt) transitions to explosive activity is required as a basis for effective warning and mitigation of the resulting hazards. Here we describe near-vent deposits around the large Cova de Paúl crater on the island of Santo Antão, Cape Verde Islands, which provide some insights into a transition from mild magmatic to violently explosive phreatomagmatic activity in one such eruption. This pre-historic but well-preserved crater formed in a single eruption that produced extensive low-temperature, lithic-rich phreatomagmatic pyroclastic flows and surge deposits; these are interbedded in proximal outcrops with airfall breccia and ash beds containing varying proportions of lithic and juvenile clasts, pointing to a series of climactic explosions within an extended period of milder explosive activity of broadly Surtseyan type. Prior to the transition to phreatomagmatic activity, the eruption had been characterized by mild Strombolian activity that produced scoria and spatter deposits of broadly tephritic composition. The Strombolian deposits contain a distinct population of strongly banded, low-vesicularity angular clasts with strongly prolate vesicles and a notably glassy appearance. These became markedly larger and more abundant just below the transition to the phreatomagmatic deposits. Comparisons of these clasts with the Strombolian scoria suggest that they are fragments of flow-banded chilled margins from the walls of the eruptive conduit. Thermal shattering of these margins to produce the angular glassy clasts may record the onset of groundwater flow

  18. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED - DOMAIN WALL FERMIONS AT TEN YEARS (VOLUME 84)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLUM,T.; SONI,A.

    The workshop was held to mark the 10th anniversary of the first numerical simulations of QCD using domain wall fermions initiated at BNL. It is very gratifying that in the intervening decade widespread use of domain wall and overlap fermions is being made. It therefore seemed appropriate at this stage for some ''communal introspection'' of the progress that has been made, hurdles that need to be overcome, and physics that can and should be done with chiral fermions. The meeting was very well attended, drawing about 60 registered participants primarily from Europe, Japan and the US. It was quite remarkablemore » that pioneers David Kaplan, Herbert Neuberger, Rajamani Narayanan, Yigal Shamir, Sinya Aoki, and Pavlos Vranas all attended the workshop. Comparisons between domain wall and overlap formulations, with their respective advantages and limitations, were discussed at length, and a broad physics program including pion and kaon physics, the epsilon regime, nucleon structure, and topology, among others, emerged. New machines and improved algorithms have played a key role in realizing realistic dynamical fermion lattice simulations (small quark mass, large volume, and so on), so much in fact that measurements are now as costly. Consequently, ways to make the measurements more efficient were also discussed. We were very pleased to see the keen and ever growing interest in chiral fermions in our community and the significant strides our colleagues have made in bringing chiral fermions to the fore of lattice QCD calculations. Their contributions made the workshop a success, and we thank them deeply for sharing their time and ideas. Finally, we must especially acknowledge Norman Christ and Bob Mawhinney for their early and continued collaboration without which the success of domain wall fermions would not have been possible.« less

  19. Incorporation of cooling-induced crystallization into a 2-dimensional axisymmetric conduit heat flow model

    NASA Astrophysics Data System (ADS)

    Heptinstall, David; Bouvet de Maisonneuve, Caroline; Neuberg, Jurgen; Taisne, Benoit; Collinson, Amy

    2016-04-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic 3 systems. We shall investigate the thermal processes and timescales in a crystallizing, static 4 magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/° C (runs 1 & 3) and 0.2MPa/° C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69E5 J/kg*K, 9.32E5 J/kg*K, and 9.49E5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the centre of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10m depth, it takes 4.1-9.2 years for the magma column to cool by 108-131oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and the dominant latent heat producing crystallizing phase, Albite-rich Plagioclase Feldspar. Run 1 is shown to cool fastest and run 3 cool the slowest, with surface emissivity having the strongest cooling

  20. Switching by Domain-Wall Automotion in Asymmetric Ferromagnetic Rings

    NASA Astrophysics Data System (ADS)

    Mawass, Mohamad-Assaad; Richter, Kornel; Bisig, Andre; Reeve, Robert M.; Krüger, Benjamin; Weigand, Markus; Stoll, Hermann; Krone, Andrea; Kronast, Florian; Schütz, Gisela; Kläui, Mathias

    2017-04-01

    Spintronic applications based on magnetic domain-wall (DW) motion, such as magnetic data storage, sensors, and logic devices, require approaches to reliably manipulate the magnetization in nanowires. In this paper, we report the direct dynamic experimental visualization of reliable switching from the onion to the vortex state by DW automotion at zero field in asymmetric ferromagnetic rings using a uniaxial field pulse. Employing time-resolved x-ray microscopy, we demonstrate that depending on the detailed spin structure of the DWs and the size and geometry of the rings, the automotive propagation can be tailored during the DW relaxation from the higher-energy onion state to the energetically favored vortex state, where both DWs annihilate. Our measurements show DW automotion with an average velocity of about 60 m /s , which is a significant speed for spintronic devices. Such motion is mostly governed by local forces resulting from the geometry variations in the device. A closer study of the annihilation process via micromagnetic simulations reveals that a new vortex is nucleated in between the two initial walls. We demonstrate that the annihilation of DWs through automotion in our scheme always occurs with the detailed topological nature of the walls influencing only the DW dynamics on a local scale. The simulations show good quantitative agreement with our experimental results. These findings shed light on a robust and reliable switching process of the onion state in ferromagnetic rings, which paves the way for further optimization of these devices.

  1. David Adler Lectureship Award in the Field of Materials Physics: Racetrack Memory - a high-performance, storage class memory using magnetic domain-walls manipulated by current

    NASA Astrophysics Data System (ADS)

    Parkin, Stuart

    2012-02-01

    Racetrack Memory is a novel high-performance, non-volatile storage-class memory in which magnetic domains are used to store information in a ``magnetic racetrack'' [1]. The magnetic racetrack promises a solid state memory with storage capacities and cost rivaling that of magnetic disk drives but with much improved performance and reliability: a ``hard disk on a chip''. The magnetic racetrack is comprised of a magnetic nanowire in which a series of magnetic domain walls are shifted to and fro along the wire using nanosecond-long pulses of spin polarized current [2]. We have demonstrated the underlying physics that makes Racetrack Memory possible [3,4] and all the basic functions - creation, and manipulation of a train of domain walls and their detection. The physics underlying the current induced dynamics of domain walls will also be discussed. In particular, we show that the domain walls respond as if they have mass, leading to significant inertial driven motion of the domain walls over long times after the current pulses are switched off [3]. We also demonstrate that in perpendicularly magnetized nanowires there are two independent current driving mechanisms: one derived from bulk spin-dependent scattering that drives the domain walls in the direction of electron flow, and a second interfacial mechanism that can drive the domain walls either along or against the electron flow, depending on subtle changes in the nanowire structure. Finally, we demonstrate thermally induced spin currents are large enough that they can be used to manipulate domain walls. [4pt] [1] S.S.P. Parkin, US Patent 6,834,005 (2004); S.S.P. Parkin et al., Science 320, 190 (2008); S.S.P. Parkin, Scientific American (June 2009). [0pt] [2] M. Hayashi, L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 320, 209 (2008). [0pt] [3] L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 330, 1810 (2010). [0pt] [4] X. Jiang et al. Nat. Comm. 1:25 (2010) and Nano Lett. 11, 96 (2011).

  2. EVALUATION OF BURIED CONDUITS AS PERSONNEL SHELTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, G.H.; LeDoux, J.C.; Mitchell, R.A.

    1960-07-14

    Supersedes ITR-1421. Twelve large-diameter buried conduit sections of various shapes were tested in the 60- to l49-psi overpressure region of Burst Priscilla to make an empirical determination of the degree of personnel protection afforded by commercially available steel and concrete conduits at depths of burial of 5, 7.5, and 10 feet below grade. Essentially, it was desired to assure that Repartment of Defense Class I, 100psi and comparable radiations, and Class II, 50-psi and comparable radiations, protection is afforded by use of such conduits of various configurations. Measurements were made of free-field overpressure at the ground surface above the structure;more » pressure inside the structures; acceleration of each structure; deflection of each structure; dust inside each structure; fragmentary missiles inside the concrete structures; and gamma and neutron radiation dose inside each structure. All buried conduit sections tested provided adequate Class I protection for the conditions under which the conduits were tested. Standard 8-foot concrete sewer pipe withstood 126-psi overpressure without significant damage, minor tension cracks observed; standard 10-gage corrugated-steel 8-foot circular conduit sections withstood 126- psi overpressure without significant damage; and standard 10-gage corrugated- steel cattle-pass conduits withstood 149-psi overpressure without significant damage. Durations of positive pressure were from 206 to 333 milliseconds. (auth)« less

  3. Investigation of domain walls in PPLN by confocal raman microscopy and PCA analysis

    NASA Astrophysics Data System (ADS)

    Shur, Vladimir Ya.; Zelenovskiy, Pavel; Bourson, Patrice

    2017-07-01

    Confocal Raman microscopy (CRM) is a powerful tool for investigation of ferroelectric domains. Mechanical stresses and electric fields existed in the vicinity of neutral and charged domain walls modify frequency, intensity and width of spectral lines [1], thus allowing to visualize micro- and nanodomain structures both at the surface and in the bulk of the crystal [2,3]. Stresses and fields are naturally coupled in ferroelectrics due to inverse piezoelectric effect and hardly can be separated in Raman spectra. PCA is a powerful statistical method for analysis of large data matrix providing a set of orthogonal variables, called principal components (PCs). PCA is widely used for classification of experimental data, for example, in crystallization experiments, for detection of small amounts of components in solid mixtures etc. [4,5]. In Raman spectroscopy PCA was applied for analysis of phase transitions and provided critical pressure with good accuracy [6]. In the present work we for the first time applied Principal Component Analysis (PCA) method for analysis of Raman spectra measured in periodically poled lithium niobate (PPLN). We found that principal components demonstrate different sensitivity to mechanical stresses and electric fields in the vicinity of the domain walls. This allowed us to separately visualize spatial distribution of fields and electric fields at the surface and in the bulk of PPLN.

  4. Light domain walls, massive neutrinos and the large scale structure of the Universe

    NASA Technical Reports Server (NTRS)

    Massarotti, Alessandro

    1991-01-01

    Domain walls generated through a cosmological phase transition are considered, which interact nongravitationally with light neutrinos. At a redshift z greater than or equal to 10(exp 4), the network grows rapidly and is virtually decoupled from the matter. As the friction with the matter becomes dominant, a comoving network scale close to that of the comoving horizon scale at z of approximately 10(exp 4) gets frozen. During the later phases, the walls produce matter wakes of a thickness d of approximately 10h(exp -1)Mpc, that may become seeds for the formation of the large scale structure observed in the Universe.

  5. Nanoscale control of stripe-ordered magnetic domain walls by vertical spin transfer torque in La0.67Sr0.33MnO3 film

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wu, Shizhe; Ma, Ji; Xie, Lishan; Wang, Chuanshou; Malik, Iftikhar Ahmed; Zhang, Yuelin; Xia, Ke; Nan, Ce-Wen; Zhang, Jinxing

    2018-02-01

    Stripe-ordered domains with perpendicular magnetic anisotropy have been intensively investigated due to their potential applications in high-density magnetic data-storage devices. However, the conventional control methods (e.g., epitaxial strain, local heating, magnetic field, and magnetoelectric effect) of the stripe-ordered domain walls either cannot meet the demands for miniaturization and low power consumption of spintronic devices or require high strength of the electric field due to the small value of the magnetoelectric effect at room temperature. Here, a domain-wall resistive effect of 0.1% was clarified in La0.67Sr0.33MnO3 thin films between the configurations of current in the plane and perpendicular to the plane of walls. Furthermore, a reversible nanoscale control of the domain-wall re-orientation by vertical spin transfer torque across the probe/film interface was achieved, where a probe voltage of 0.1 V was applied on a manganite-based capacitor. We also demonstrated that the stripe-ordered magnetic domain-wall re-orientation strongly depends on the AC frequency of the scanning probe voltage which was applied on the capacitor.

  6. Light induced kickoff of magnetic domain walls in Ising chains

    NASA Astrophysics Data System (ADS)

    Bogani, Lapo

    2012-02-01

    Controlling the speed at which systems evolve is a challenge shared by all disciplines, and otherwise unrelated areas use common theoretical frameworks towards this goal. A particularly widespread model is Glauber dynamics, which describes the time evolution of the Ising model and can be applied to any binary system. Here we show, using molecular nanowires under irradiation, that Glauber dynamics can be controlled by a novel domain-wall kickoff mechanism. Contrary to known processes, the kickoff has unambiguous fingerprints, slowing down the spin-flip attempt rate by several orders of magnitude, and following a scaling law. The required irradiation power is very low, a substantial improvement over present methods of magnetooptical switching: in our experimental demonstration we switched molecular nanowires with light, using powers thousands of times lower than in previous optical switching methods. This manipulation of stochastic dynamic processes is extremely clean, leading to fingerprint signatures and scaling laws. These observations can be used, in material science, to better study domain-wall displacements and solitons in discrete lattices. These results provide a new way to control and study stochastic dynamic processes. Being general for Glauber dynamics, they can be extended to different kinds of magnetic nanowires and to a myriad of fields, ranging from social evolution to neural networks and chemical reactivity. For nanoelectronics and molecular spintronics the kickoff affords external control of molecular spin-valves and a magnetic fingerprint in single molecule measurements. It can also be applied to the dynamics of mechanical switches and the related study of phasons and order-disorder transitions.

  7. The corkscrew instability of a Fréedericksz domain wall in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    de Lózar Muñoz, Alberto; Bock, Thomas; Müller, Matthias; Schöpf, Wolfgang; Rehberg, Ingo

    2003-06-01

    A liquid crystal with slightly positive dielectric anisotropy is investigated in the planar configuration. This system allows for competition between electroconvection and the homogeneous Fréedericksz transition, leading to a rather complicated bifurcation scenario. We report measurements of a novel instability leading to the `corkscrew' pattern. This state is closely connected to the Fréedericksz state as it manifests itself as a regular modulation along a Fréedericksz domain wall, although its frequency dependence indicates that electroconvection must play a crucial role. It can be understood in terms of a pitchfork bifurcation from a straight domain wall. Quantitative characterization is performed in terms of amplitude, wavelength and relaxation time. Its wavelength is of the order of the probe thickness, while its ondulation amplitude is an order of magnitude smaller. The relaxation time is comparable to the one obtained for electroconvection.

  8. Depinning transition of a domain wall in ferromagnetic films

    DOE PAGES

    Xi, Bin; Luo, Meng -Bo; Vinokur, Valerii M.; ...

    2015-09-14

    Here, we report first principle numerical study of domain wall (DW) depinning in two-dimensional magnetic film, which is modeled by 2D random-field Ising system with the dipole-dipole interaction. We observe non-conventional activation-type motion of DW and reveal the fractal structure of DW near the depinning transition. We determine scaling functions describing critical dynamics near the transition and obtain universal exponents establishing connection between thermal softening of pinning potential and critical dynamics. In addition, we observe that tuning the strength of the dipole-dipole interaction switches DW dynamics between two different universality classes, corresponding to two distinct dynamic regimes characterized by non-Arrheniusmore » and conventional Arrhenius-type DW motions.« less

  9. 47 CFR 32.2441 - Conduit systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Conduit systems. 32.2441 Section 32.2441 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2441 Conduit systems. (a...

  10. 47 CFR 32.2441 - Conduit systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Conduit systems. 32.2441 Section 32.2441 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2441 Conduit systems. (a...

  11. 47 CFR 32.2441 - Conduit systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Conduit systems. 32.2441 Section 32.2441 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2441 Conduit systems. (a...

  12. 47 CFR 32.2441 - Conduit systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Conduit systems. 32.2441 Section 32.2441 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2441 Conduit systems. (a...

  13. 47 CFR 32.2441 - Conduit systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Conduit systems. 32.2441 Section 32.2441 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2441 Conduit systems. (a...

  14. Incorporation of cooling-induced crystallisation into a 2-dimensional axisymmetric conduit heat flow model

    NASA Astrophysics Data System (ADS)

    Heptinstall, D. A.; Neuberg, J. W.; Bouvet de Maisonneuve, C.; Collinson, A.; Taisne, B.; Morgan, D. J.

    2015-12-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic systems. We shall investigate the thermal processes and timescales in a crystallizing, static magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/°C (runs 1 & 3) and 0.2MPa/°C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69e5 J/kg*K, 9.32e5 J/kg*K, and 9.49e5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the center of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10 m depth, it takes 4.1-9.2 years for the magma column to cool over 108-130oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and dominant latent heat producing crystallizing phases (Quartz), where run 1 cools fastest and run 3 cools slowest. Surface cooling by comparison has the strongest influence on the upper tens of meters in all

  15. Jamming Behavior of Domain Walls in an Antiferromagnetic Film

    NASA Astrophysics Data System (ADS)

    Sinha, Sunil

    2014-03-01

    Over the last few years, attempts have been made to unify many aspects of the freezing behavior of glasses, granular materials, gels, supercooled liquids, etc. into a general conceptual framework of what is called jamming behavior. This occurs when particles reach packing densities high enough that their motions become highly restricted. A general phase diagram has been proposed onto which various materials systems, e.g glasses or granular materials, can be mapped. We will discuss some recent applications of resonant and non-resonant soft X-ray Grazing Incidence Scattering to mesoscopic science, for example the study of magnetic domain wall fluctuations in thin films. For these studies, we use resonant magnetic x-ray scattering with a coherent photon beam and the technique of X-ray Photon Correlation Spectroscopy. find that at the ordering temperature the domains of an antiferromagnetic system, namely Dysprosium metal, behave very much also like a jammed system and their associated fluctuations exhibit behavior which exhibit some of the universal characteristics of jammed systems, such as non-exponential relaxation and Vogel-Fulcher type freezing. Work supported by Basic Energy Sciences, U.S. Dept. of Energy under Grant Number: DE-SC0003678.

  16. Universal Pinning Energy Barrier for Driven Domain Walls in Thin Ferromagnetic Films

    NASA Astrophysics Data System (ADS)

    Jeudy, V.; Mougin, A.; Bustingorry, S.; Savero Torres, W.; Gorchon, J.; Kolton, A. B.; Lemaître, A.; Jamet, J.-P.

    2016-07-01

    We report a comparative study of magnetic field driven domain wall motion in thin films made of different magnetic materials for a wide range of field and temperature. The full thermally activated creep motion, observed below the depinning threshold, is shown to be described by a unique universal energy barrier function. Our findings should be relevant for other systems whose dynamics can be modeled by elastic interfaces moving on disordered energy landscapes.

  17. Comparative analysis of the pressure profilometry of vesicocutaneous continent catheterizable conduits between patients with and without rectus abdominis neosphincter (Yachia principle).

    PubMed

    Rondon, Atila; Leslie, Bruno; Arcuri, Leonardo Javier; Ortiz, Valdemar; Macedo, Antonio

    2015-09-01

    To assess whether crossing rectus abdominis muscle strips, as proposed by Yachia, would change urinary catheterizable conduit's pressure profilometry, in static and dynamic conditions. Non-randomized selection of 20 continent patients that underwent Macedo's ileum-based reservoir, 10 including Yachia's technique (Study Group) and 10 without this mechanism of continence (Control Group). Demographics and cystometric data were assessed. Conduit's pressure profilometry was obtained by infusing saline through a multichannel catheter, at rest and during Valsalva maneuver. We assessed the pressure: (a) in the bladder; (b) in conduit's proximal segment; and (c) in conduit's distal segment, which is presumably the abdominal wall and crossed muscle strips site. Mean age at surgery was 6.1 years in the Control Group and 7.7 years in the Study Group. There was no statistically significant difference between groups regarding maximum cystometric bladder capacity and leakage point pressure. At rest, the pressure profilometry showed similar results between groups in all segments analyzed. During Valsalva maneuver, pressure profilometry showed similar results between groups in bladder and conduit's proximal segment pressure. In this condition, conduit's distal segment pressure in the Study Group (Mean = 72.9 and Peak = 128.7 cmH2 O) was significantly greater (P < 0.05) than conduit's distal segment pressure in the Control Group (Mean = 48.3 and Peak = 65.1 cmH2 O). Crossing muscle strips over the conduit significantly increases the pressure in its distal segment during contraction of the rectus abdominis muscle, which can be important in moments of sudden increase in abdominal pressure in order to keep continence. © 2014 Wiley Periodicals, Inc.

  18. Peripheral nerve conduits: technology update

    PubMed Central

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented. PMID:25489251

  19. Use of nerve conduits for peripheral nerve injury repair: A Web of Science-based literature analysis.

    PubMed

    Nan, Jinniang; Hu, Xuguang; Li, Hongxiu; Zhang, Xiaonong; Piao, Renjing

    2012-12-15

    To identify global research trends in the use of nerve conduits for peripheral nerve injury repair. Numerous basic and clinical studies on nerve conduits for peripheral nerve injury repair were performed between 2002-2011. We performed a bibliometric analysis of the institutions, authors, and hot topics in the field, from the Web of Science, using the key words peripheral nerve and conduit or tube. peer-reviewed published articles on nerve conduits for peripheral nerve injury repair, indexed in the Web of Science; original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items. articles requiring manual searching or telephone access; documents not published in the public domain; and several corrected papers. (a) Annual publication output; (b) publication type; (c) publication by research field; (d) publication by journal; (e) publication by funding agency; (f) publication by author; (g) publication by country and institution; (h) publications by institution in China; (i) most-cited papers. A total of 793 publications on the use of nerve conduits for peripheral nerve injury repair were retrieved from the Web of Science between 2002-2011. The number of publications gradually increased over the 10-year study period. Articles constituted the main type of publication. The most prolific journals were Biomaterials, Microsurgery, and Journal of Biomedical Materials Research Part A. The National Natural Science Foundation of China supported 27 papers, more than any other funding agency. Of the 793 publications, almost half came from American and Chinese authors and institutions. Nerve conduits have been studied extensively for peripheral nerve regeneration; however, many problems remain in this field, which are difficult for researchers to reach a consensus.

  20. Witten Effect and Fractional Charges on the Domain Wall and the D-Brane-Like Dot

    NASA Astrophysics Data System (ADS)

    Kanazawa, I.; Maeda, R.

    2018-04-01

    We have discussed the anomalous excitations such as dyons, Majorana fermions, and quark-like fermions on the domain wall in topological materials and the D-brane-like dot, and the relation to low-energy hadrons in QCD, from the viewpoint of a field-theoretical formula.

  1. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, Marcos German; Kidd, Terrel G.

    1999-01-01

    A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.

  2. Flexible cryogenic conduit

    DOEpatents

    Brindza, Paul Daniel; Wines, Robin Renee; Takacs, James Joseph

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  3. The evolution of a valved hepatoduodenal intestinal conduit.

    PubMed

    Kaufman, B H; Luck, S R; Raffensperger, J G

    1981-06-01

    Ascending cholangitis remains among the most serious complications following operations for biliary disorders. The bacterial count of refluxing intestinal contents can be reduced by using an enteric conduit from the biliary tract to the relatively sterile duodenum. A valvular conduit prohibits reflux of intestinal contents and permits unobstructed antegrade flow of bile. This can be created by intussuscepting approximately 1 cm of intestine in the midportion of the conduit. During the last 3 yr, valvular conduits were created in 11 patients. Seven of these children were treated for biliary atresia, and 4 had operations for choledochal duct cysts. There have been no deaths or morbidity resulting from the use of the valvular conduits. The postoperative courses in these patients indicate that the use of an intussusception valve may be beneficial in the prevention of ascending cholangitis.

  4. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, M.G.; Kidd, T.G.

    1999-05-18

    A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.

  5. [Method to make the tricuspid extracardiac conduit by heterogeneous pericardium].

    PubMed

    Yamagishi, M; Imai, Y; Koh, Y; Nagatsu, M; Matsuo, K; Kurosawa, H

    1992-07-01

    We described here, how to make tricuspid extracardiac conduit by heterogeneous pericardium for Rastelli procedure. We have developed some ingenious devices which allow to obtain good hemodynamics. One of the devices is large valvular leaflets as long as 130% of the circumference of the conduit. Another device is the commissural suture as figure of eight. We used 121 tricuspid extracardiac conduits between January 1985 and March 1991. There were two reoperations: One from stenosis at the suture with ventricle and the other from infective endocarditis. This hand-made conduit has the advantages of flexibility, fitness with the pulmonary artery, wide range of size and very little regurgitation. These advantages indicate that the tricuspid extracardiac conduit made by heterogeneous pericardium is a valved conduit substitute of choice for Rastelli procedure. The durability of the conduit is to be further evaluated.

  6. Axially symmetric non-static domain walls in scalar-tensor theories of gravitation

    NASA Astrophysics Data System (ADS)

    Adhav, K. S.; Nimkar, A. S.; Naidu, R. L.

    2007-12-01

    An axially symmetric non-static space-time is considered in the presence of thick domain walls in the scalar-tensor theories formulated by Brans and Dicke (Phys. Rev. 124:925, 1961) and Saez and Ballester (Phys. Lett. A 113:467, 1985). Exact cosmological models, in both the theories, are presented with the help of special law of variation proposed by Berman (Nuovo Cim. B 74:182, 1983), for Hubble’s parameter. Some physical and kinematical properties of the models are discussed.

  7. Long-term follow-up of autologous pericardial valved conduits.

    PubMed

    Schlichter, A J; Kreutzer, C; Mayorquim, R C; Simon, J L; Vazquez, H; Roman, M I; Kreutzer, G O

    1996-07-01

    The aim of this study was to evaluate the long-term results of the use of an autologous pericardial valved conduit in the outflow tract of the venous ventricle in congenital heart malformations. Fifty-one patients were followed up for a period of 12 to 120 months; 30 for more than 36 months and 13 for more than 72 months. All were evaluated clinically and by two-dimensional and Doppler echocardiography. Eight patients were recatheterized. Postoperative evaluation included serial measurement of pressure gradients and the conduit's diameter at the proximal, valvular, and distal levels. Reoperation because of stenosis was indicated when the gradient across the right ventricular outflow was greater than 50 mm Hg. The reoperation rate in relation with postoperative time, diameter of the autologous pericardial valved conduit at the time of implantation, and malformation was statistically analyzed. In 27 patients the conduit increased its diameter 1 to 7 mm. In 20 patients the diameter remained unchanged, whereas a reduction was noted in 4. Conduit survival free of reoperation for the whole group was 89.9% at 5 years. Conduit survival free of reoperation was 100% at 5 and 7 years for conduits larger than 16 mm at the time of implantation. It was 95% (standard deviation = 4.8%) at 5 years and 72.3% at 7 years for those 16 mm or less. For patients operated after January 1, 1986 (technical modification), conduit survival free of reoperation was 95.4% at 7 years postoperatively. These results compare favorably with those of other available conduits.

  8. Elastin Shapes Small Molecule Distribution in Lymph Node Conduits.

    PubMed

    Lin, Yujia; Louie, Dante; Ganguly, Anutosh; Wu, Dequan; Huang, Peng; Liao, Shan

    2018-05-01

    The spatial and temporal Ag distribution determines the subsequent T cell and B cell activation at the distinct anatomical locations in the lymph node (LN). It is well known that LN conduits facilitate small Ag distribution in the LN, but the mechanism of how Ags travel along LN conduits remains poorly understood. In C57BL/6J mice, using FITC as a fluorescent tracer to study lymph distribution in the LN, we found that FITC preferentially colocalized with LN capsule-associated (LNC) conduits. Images generated using a transmission electron microscope showed that LNC conduits are composed of solid collagen fibers and are wrapped with fibroblastic cells. Superresolution images revealed that high-intensity FITC is typically colocalized with elastin fibers inside the LNC conduits. Whereas tetramethylrhodamine isothiocyanate appears to enter LNC conduits as effectively as FITC, fluorescently-labeled Alexa-555-conjugated OVA labels significantly fewer LNC conduits. Importantly, injection of Alexa-555-conjugated OVA with LPS substantially increases OVA distribution along elastin fibers in LNC conduits, indicating immune stimulation is required for effective OVA traveling along elastin in LN conduits. Finally, elastin fibers preferentially surround lymphatic vessels in the skin and likely guide fluid flow to the lymphatic vessels. Our studies demonstrate that fluid or small molecules are preferentially colocalized with elastin fibers. Although the exact mechanism of how elastin fibers regulate Ag trafficking remains to be explored, our results suggest that elastin can be a potentially new target to direct Ag distribution in the LN during vaccine design. Copyright © 2018 by The American Association of Immunologists, Inc.

  9. Engineering Bi-Layer Nanofibrous Conduits for Peripheral Nerve Regeneration

    PubMed Central

    Zhu, Yiqian; Wang, Aijun; Patel, Shyam; Kurpinski, Kyle; Diao, Edward; Bao, Xuan; Kwong, George; Young, William L.

    2011-01-01

    Trauma injuries often cause peripheral nerve damage and disability. A goal in neural tissue engineering is to develop synthetic nerve conduits for peripheral nerve regeneration having therapeutic efficacy comparable to that of autografts. Nanofibrous conduits with aligned nanofibers have been shown to promote nerve regeneration, but current fabrication methods rely on rolling a fibrous sheet into the shape of a conduit, which results in a graft with inconsistent size and a discontinuous joint or seam. In addition, the long-term effects of nanofibrous nerve conduits, in comparison with autografts, are still unknown. Here we developed a novel one-step electrospinning process and, for the first time, fabricated a seamless bi-layer nanofibrous nerve conduit: the luminal layer having longitudinally aligned nanofibers to promote nerve regeneration, and the outer layer having randomly organized nanofibers for mechanical support. Long-term in vivo studies demonstrated that bi-layer aligned nanofibrous nerve conduits were superior to random nanofibrous conduits and had comparable therapeutic effects to autografts for nerve regeneration. In summary, we showed that the engineered nanostructure had a significant impact on neural tissue regeneration in situ. The results from this study will also lead to the scalable fabrication of engineered nanofibrous nerve conduits with designed nanostructure. This technology platform can be combined with drug delivery and cell therapies for tissue engineering. PMID:21501089

  10. Flexible ion conduit for use under rarefied atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Hars, Gyorgy; Meuzelaar, Henk LC.

    1997-09-01

    A tubular ion conduit has been constructed, which transports ions by convection by means of a carrier gas. Typical inlet pressures are in the 10-100 Torr range, with outlet pressures as low as 10-3 Torr. The 20-30 cm, 1-2-mm-i.d., capillary tube, made of an electrically insulating material, is surrounded by a specifically configured pair of helical electrodes ("helical dipole"), which are supplied with symmetrical voltages in the tens of volt amplitude and in 1 MHz frequency range. The vibrational average force field generated reduces the tendency of ions to hit the inner wall of the tube. This way ions can be transported with minimal loss. Previously, known ion guides are operated under molecular flow (high vacuum) conditions only, as opposed to the method described here, where the carrier gas enters under viscous flow conditions and exits as molecular flow. In addition, existing ion guides are stiff in contrast to the flexible construction described here, which can be easily and inexpensively manufactured. The ion conduit is expected to have important applications in connecting ambient or near-ambient pressure electrospray ionization or atmospheric pressure ionization type ion sources to mass spectrometers, while reducing pumping requirements, e.g., field portable equipment. Furthermore, the device may provide a means for connecting electron multiplier detectors to near ambient pressure analyzers such as ion mobility spectrometers.

  11. The dynamics of gas bubbles in conduits of vascular plants and implications for embolism repair.

    PubMed

    Konrad, W; Roth-Nebelsick, A

    2003-09-07

    Pressure-induced tensions in the xylem, the water conducting tissue of vascular plants, can lead to embolism in the water-conducting cells. The details and mechanisms of embolism repair in vascular plants are still not well understood. In particular, experimental results which indicate that embolism repair may occur during xylem tension cause great problems with respect to current paradigms of plant water transport. The present paper deals with a theoretical analysis of interfacial effects at the pits (pores in the conduit walls), because it was suggested that gas-water interfaces at the pit pores may be involved in the repair process by hydraulically isolating the embolized conduit. The temporal behaviour of bubbles at the pit pores was especially studied since the question of whether these pit bubbles are able to persist is of crucial importance for the suggested mechanism to work. The results indicate that (1) the physical preconditions which are necessary for the suggested mechanism appear to be satisfied, (2) pit bubbles can achieve temporal stability and therefore persist and (3) dissolving of bubbles in the conduit lumen may lead to the final breakdown of the hydraulic isolation. The whole process is, however, complex and strongly dependent on the detailed anatomy of the pit and the contact angle.

  12. Conduit stability effects on intensity and steadiness of explosive eruptions.

    PubMed

    Aravena, Álvaro; Cioni, Raffaello; de'Michieli Vitturi, Mattia; Neri, Augusto

    2018-03-07

    Conduit geometry affects magma ascent dynamics and, consequently, the style and evolution of volcanic eruptions. However, despite geological evidences support the occurrence of conduit widening during most volcanic eruptions, the factors controlling conduit enlargement are still unclear, and the effects of syn-eruptive variations of conduit geometry have not been investigated in depth yet. Based on numerical modeling and the application of appropriate stability criteria, we found out a strong relationship between magma rheology and conduit stability, with significant effects on eruptive dynamics. Indeed, in order to be stable, conduits feeding dacitic/rhyolitic eruptions need larger diameters respect to their phonolitic/trachytic counterparts, resulting in the higher eruption rates commonly observed in dacitic/rhyolitic explosive events. Thus, in addition to magma source conditions and viscosity-dependent efficiency for outgassing, we suggest that typical eruption rates for different magma types are also controlled by conduit stability. Results are consistent with a compilation of volcanological data and selected case studies. As stability conditions are not uniform along the conduit, widening is expected to vary in depth, and three axisymmetric geometries with depth-dependent radii were investigated. They are able to produce major modifications in eruptive parameters, suggesting that eruptive dynamics is influenced by syn-eruptive changes in conduit geometry.

  13. Domain wall suppression in trapped mixtures of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio

    2012-08-01

    The ground-state energy of a binary mixture of Bose-Einstein condensates can be estimated for large atomic samples by making use of suitably regularized Thomas-Fermi density profiles. By exploiting a variational method on the trial densities the energy can be computed by explicitly taking into account the normalization condition. This yields analytical results and provides the basis for further improvement of the approximation. As a case study, we consider a binary mixture of 87Rb atoms in two different hyperfine states in a double-well potential and discuss the energy crossing between density profiles with different numbers of domain walls, as the number of particles and the interspecies interaction vary.

  14. Brownian motion and entropic torque driven motion of domain walls in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Yan, Zhengren; Chen, Zhiyuan; Qin, Minghui; Lu, Xubing; Gao, Xingsen; Liu, Junming

    2018-02-01

    We study the spin dynamics in antiferromagnetic nanowire under an applied temperature gradient using micromagnetic simulations on a classical spin model with a uniaxial anisotropy. The entropic torque driven domain-wall motion and the Brownian motion are discussed in detail, and their competition determines the antiferromagnetic wall motion towards the hotter or colder region. Furthermore, the spin dynamics in an antiferromagnet can be well tuned by the anisotropy and the temperature gradient. Thus, this paper not only strengthens the main conclusions obtained in earlier works [Kim et al., Phys. Rev. B 92, 020402(R) (2015), 10.1103/PhysRevB.92.020402; Selzer et al., Phys. Rev. Lett. 117, 107201 (2016), 10.1103/PhysRevLett.117.107201], but more importantly gives the concrete conditions under which these conclusions apply, respectively. Our results may provide useful information on the antiferromagnetic spintronics for future experiments and storage device design.

  15. Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Tang, D. Y.; Zhao, L. M.; Wu, X.

    2009-08-01

    We report on the experimental observation of two types of phase-locked vector soliton in weakly birefringent cavity erbium-doped fiber lasers. While a phase-locked dark-dark vector soliton was only observed in fiber lasers of positive dispersion, a phase-locked dark-bright vector soliton was obtained in fiber lasers of either positive or negative dispersion. Numerical simulations confirmed the experimental observations and further showed that the observed vector solitons are the two types of phase-locked polarization domain wall solitons theoretically predicted.

  16. Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration.

    PubMed

    Cui, Tongkui; Yan, Yongnian; Zhang, Renji; Liu, Li; Xu, Wei; Wang, Xiaohong

    2009-03-01

    A new technique for preparing double-layer polyurethane (PU)-collagen nerve conduits for peripheral nerve repair via a double-nozzle, low-temperature, deposition manufacturing (DLDM) system has been developed. The DLDM system is based on a digital prototyping approach, and uses a combination of thermally induced phase separation and freeze-drying. With this system, two kinds of biomaterials with different properties can be combined to produce scaffold structures with good biocompatibility in the inner layer and with the desired mechanical strength protruded by the outer. The forming precision is high, the wall thickness can be controlled, and a tight connection between the two layers can be achieved. The effects of changing the processing parameters and the material temperature on the structure of the scaffolds have been investigated. Additionally, the effect of material concentration on the mechanical strength and hydrophilic properties of the scaffolds has also been studied. Ideal peripheral nerve repair conduits, comprising an outer microporous layer of PU and internal oriented filaments of collagen, have been manufactured through optimizing the processing parameters and the biomaterial concentrations.

  17. Hydraulic Roughness and Flow Resistance in a Subglacial Conduit

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Liu, X.; Mankoff, K. D.

    2017-12-01

    The hydraulic roughness significantly affects the flow resistance in real subglacial conduits, but has been poorly understood. To address this knowledge gap, this paper first proposes a procedure to define and quantify the geometry roughness, and then relates such a geometry roughness to the hydraulic roughness based on a series of computational fluid dynamics (CFD) simulations. The results indicate that by using the 2nd order structure function, the roughness field can be well quantified by the powers of the scaling-law, the vertical and horizontal length scales of the structure functions. The vertical length scale can be further chosen as the standard deviation of the roughness field σr. The friction factors calculated from either total drag force or the linear decreasing pressure agree very well with those calculated from traditional rough pipe theories when the equivalent hydraulic roughness height is corrected as ks = (1.1 ˜ 1.5)σr. This result means that the fully rough pipe resistance formula λ = [2 log(D0/2ks) + 1.74]-2, and the Moody diagram are still valid for the friction factor estimation in subglacial conduits when σr /D0<18% and ks/D0<22%. The results further show that when a proper hydraulic roughness is determined, the total flow resistance corresponding to the given hydraulic roughness height can be accurately modelled by using a rough wall function. This suggests that the flow resistance for the longer realistic subglacial conduits with large sinuosity and cross-sectional variations may be correctly predicted by CFD simulations. The results also show that the friction factors from CFD modeling are much larger than those determined from traditional rough pipe theories when σr /D0>20%.

  18. Water Flow in Karst Aquifer Considering Dynamically Variable Saturation Conduit

    NASA Astrophysics Data System (ADS)

    Tan, Chaoqun; Hu, Bill X.

    2017-04-01

    The karst system is generally conceptualized as dual-porosity system, which is characterized by low conductivity and high storage continuum matrix and high conductivity and quick flow conduit networks. And so far, a common numerical model for simulating flow in karst aquifer is MODFLOW2005-CFP, which is released by USGS in 2008. However, the steady-state approach for conduit flow in CFP is physically impractical when simulating very dynamic hydraulics with variable saturation conduit. So, we adopt the method proposed by Reimann et al. (2011) to improve current model, in which Saint-Venant equations are used to model the flow in conduit. Considering the actual background that the conduit is very big and varies along flow path and the Dirichlet boundary varies with rainfall in our study area in Southwest China, we further investigate the influence of conduit diameter and outflow boundary on numerical model. And we also analyze the hydraulic process in multi-precipitation events. We find that the numerical model here corresponds well with CFP for saturated conduit, and it could depict the interaction between matrix and conduit during very dynamic hydraulics pretty well compare with CFP.

  19. 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration

    NASA Astrophysics Data System (ADS)

    Hu, Yu; Wu, Yao; Gou, Zhiyuan; Tao, Jie; Zhang, Jiumeng; Liu, Qianqi; Kang, Tianyi; Jiang, Shu; Huang, Siqing; He, Jiankang; Chen, Shaochen; Du, Yanan; Gou, Maling

    2016-08-01

    Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed “lock and key” moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use.

  20. Bi-directional magnetic domain wall shift register

    NASA Astrophysics Data System (ADS)

    Read, D. E.; O'Brien, L.; Zeng, H. T.; Lewis, E. R.; Petit, D.; Cowburn, R. P.

    2010-03-01

    Data storage devices based on magnetic domain walls (DWs) propagating through ferromagnetic nanowires have attracted a great deal of attention in recent years [1,2]. Here we experimentally demonstrate a shift register based on an open-ended chain of ferromagnetic NOT gates. When used in combination with a globally applied magnetic field such devices can support bi-directional data flow [3]. We have demonstrated data writing, propagation, and readout in individually addressable NiFe nanowires 90 nm wide and 10 nm thick. Up to eight data bits are electrically input to the device, stored for extended periods without power supplied to the device, and then output using either a first in first out or a last in first out mode of operation. Compared to traditional electronic transistor-based circuits, the inherent bi-directionality afforded by these DW logic gates offers a range of devices that are reversible and not limited to only one mode of operation. [1] S. S. Parkin, US Patent 6,834,005 (2004) [2] D. A. Allwod, et al., Science 309 (5741), 1688 (2005) [3] L. O'Brien, et al. accepted for publication in APL (2009)

  1. Nucleon axial charge in (2+1)-flavor dynamical-lattice QCD with domain-wall fermions.

    PubMed

    Yamazaki, T; Aoki, Y; Blum, T; Lin, H W; Lin, M F; Ohta, S; Sasaki, S; Tweedie, R J; Zanotti, J M

    2008-05-02

    We present results for the nucleon axial charge g{A} at a fixed lattice spacing of 1/a=1.73(3) GeV using 2+1 flavors of domain wall fermions on size 16;{3} x 32 and 24;{3} x 64 lattices (L=1.8 and 2.7 fm) with length 16 in the fifth dimension. The length of the Monte Carlo trajectory at the lightest m_{pi} is 7360 units, including 900 for thermalization. We find finite volume effects are larger than the pion mass dependence at m{pi}=330 MeV. We also find a scaling with the single variable m{pi}L which can also be seen in previous two-flavor domain wall and Wilson fermion calculations. Using this scaling to eliminate the finite-volume effect, we obtain g{A}=1.20(6)(4) at the physical pion mass, m_{pi}=135 MeV, where the first and second errors are statistical and systematic. The observed finite-volume scaling also appears in similar quenched simulations, but disappear when V>or=(2.4 fm);{3}. We argue this is a dynamical quark effect.

  2. Magnetic domain wall tweezers: a new tool for mechanobiology studies on individual target cells.

    PubMed

    Monticelli, M; Conca, D V; Albisetti, E; Torti, A; Sharma, P P; Kidiyoor, G; Barozzi, S; Parazzoli, D; Ciarletta, P; Lupi, M; Petti, D; Bertacco, R

    2016-08-07

    In vitro tests are of fundamental importance for investigating cell mechanisms in response to mechanical stimuli or the impact of the genotype on cell mechanical properties. In particular, the application of controlled forces to activate specific bio-pathways and investigate their effects, mimicking the role of the cellular environment, is becoming a prominent approach in the emerging field of mechanobiology. Here, we present an on-chip device based on magnetic domain wall manipulators, which allows the application of finely controlled and localized forces on target living cells. In particular, we demonstrate the application of a magnetic force in the order of hundreds of pN on the membrane of HeLa cells cultured on-chip, via manipulation of 1 μm superparamagnetic beads. Such a mechanical stimulus produces a sizable local indentation of the cellular membrane of about 2 μm. Upon evaluation of the beads' position within the magnetic field originated by the domain wall, the force applied during the experiments is accurately quantified via micromagnetic simulations. The obtained value is in good agreement with that calculated by the application of an elastic model to the cellular membrane.

  3. Current-driven domain wall motion based memory devices: Application to a ratchet ferromagnetic strip

    NASA Astrophysics Data System (ADS)

    Sánchez-Tejerina, Luis; Martínez, Eduardo; Raposo, Víctor; Alejos, Óscar

    2018-04-01

    Ratchet memories, where perpendicular magnetocristalline anisotropy is tailored so as to precisely control the magnetic transitions, has been recently proven to be a feasible device to store and manipulate data bits. For such devices, it has been shown that the current-driven regime of domain walls can improve their performances with respect to the field-driven one. However, the relaxing time required by the traveling domain walls constitutes a certain drawback if the former regime is considered, since it results in longer device latencies. In order to speed up the bit shifting procedure, it is demonstrated here that the application of a current of inverse polarity during the DW relaxing time may reduce such latencies. The reverse current must be sufficiently high as to drive the DW to the equilibrium position faster than the anisotropy slope itself, but with an amplitude sufficiently low as to avoid DW backward shifting. Alternatively, it is possible to use such a reverse current to increase the proper range of operation for a given relaxing time, i.e., the pair of values of the current amplitude and pulse time that ensures single DW jumps for a certain latency time.

  4. Low-energy Structural Dynamics of Multiferroic Domain Walls in Hexagonal Rare-earth Manganites

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu; Petralanda, Urko; Zheng, Lu; Ren, Yuan; Hu, Rongwei; Cheong, Sang-Wook; Artyukhin, Sergey; Lai, Keji

    Multiferroic domain walls (DWs), the natural interfaces between domains with different order parameters, usually exhibit unconventional functionalities. For instance, recent discovery of the ferroelectric DW conduction highlights its extraordinary electronic structure that is absent in bulk domains. The structural dynamics of individual DWs in the microwave regime, however, have not been fully explored due to the lack of spatially resolved studies. Here, we report the broadband (106-1010 Hz) scanning impedance microscopy results on the interlocked anti-phase boundaries and ferroelectric DWs in hexagonal rare-earth manganites. Surprisingly, the effective conductivity of the (001) DWs displays a 106-fold increase from dc to GHz frequencies, while the effect is absent on surfaces with in-plane polarized domains. First-principles and model calculations indicate that the frequency range and selection rules are consistent with the periodic sliding of the DW around its equilibrium position. This DW acoustic-wave-like mode, which is associated with the synchronized oscillation of local polarization and apical oxygen atoms, is localized perpendicular to the DW but free to propagate along the DW plane. Our results break the ground to understand structural DW dynamics and exploit new interfacial phenomena for novel devices.

  5. Temperature limited heater with a conduit substantially electrically isolated from the formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinegar, Harold J; Sandberg, Chester Ledlie

    2009-07-14

    A system for heating a hydrocarbon containing formation is described. A conduit may be located in an opening in the formation. The conduit includes ferromagnetic material. An electrical conductor is positioned inside the conduit, and is electrically coupled to the conduit at or near an end portion of the conduit so that the electrical conductor and the conduit are electrically coupled in series. Electrical current flows in the electrical conductor in a substantially opposite direction to electrical current flow in the conduit during application of electrical current to the system. The flow of electrons is substantially confined to the insidemore » of the conduit by the electromagnetic field generated from electrical current flow in the electrical conductor so that the outside surface of the conduit is at or near substantially zero potential at 25.degree. C. The conduit may generate heat and heat the formation during application of electrical current.« less

  6. Local conductance: A means to extract polarization and depolarizing fields near domain walls in ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, A. M.; Kumar, A.; Gregg, J. M.

    Conducting atomic force microscopy images of bulk semiconducting BaTiO{sub 3} surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current-voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than thatmore » from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.« less

  7. Molecular dissection of Phaseolus vulgaris polygalacturonase-inhibiting protein 2 reveals the presence of hold/release domains affecting protein trafficking toward the cell wall

    PubMed Central

    De Caroli, Monica; Lenucci, Marcello S.; Manualdi, Francesca; Dalessandro, Giuseppe; De Lorenzo, Giulia; Piro, Gabriella

    2015-01-01

    The plant endomembrane system is massively involved in the synthesis, transport and secretion of cell wall polysaccharides and proteins; however, the molecular mechanisms underlying trafficking toward the apoplast are largely unknown. Besides constitutive, the existence of a regulated secretory pathway has been proposed. A polygalacturonase inhibitor protein (PGIP2), known to move as soluble cargo and reach the cell wall through a mechanism distinguishable from default, was dissected in its main functional domains (A, B, C, D), and C sub-fragments (C1–10), to identify signals essential for its regulated targeting. The secretion patterns of the fluorescent chimeras obtained by fusing different PGIP2 domains to the green fluorescent protein (GFP) were analyzed. PGIP2 N-terminal and leucine-rich repeat domains (B and C, respectively) seem to operate as holding/releasing signals, respectively, during PGIP2 transit through the Golgi. The B domain slows down PGIP2 secretion by transiently interacting with Golgi membranes. Its depletion leads, in fact, to the secretion via default (Sp2-susceptible) of the ACD-GFP chimera faster than PGIP2. Depending on its length (at least the first 5 leucine-rich repeats are required), the C domain modulates B interaction with Golgi membranes allowing the release of chimeras and their extracellular secretion through a Sp2 independent pathway. The addition of the vacuolar sorting determinant Chi to PGIP2 diverts the path of the protein from cell wall to vacuole, suggesting that C domain is a releasing rather than a cell wall sorting signal. PMID:26379688

  8. Wall of fundamental constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, Keith A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, 55455; Peloso, Marco

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of themore » constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.« less

  9. Coupling of bias-induced crystallographic shear planes with charged domain walls in ferroelectric oxide thin films

    DOE PAGES

    Han, Myung-Geun; Garlow, Joseph A.; Bugnet, Matthieu; ...

    2016-09-02

    Polar discontinuity at interfaces plays deterministic roles in charge transport, magnetism, and even superconductivity of functional oxides. To date, most polar discontinuity problems have been explored in hetero-interfaces between two dissimilar materials. Here, we show that charged domain walls (CDWs) in epitaxial thin films of ferroelectric PbZr 0.2Ti 0.8O 3 are strongly coupled to polar interfaces through the formation of ½<101>{h0l} type crystallographic shear planes (CSPs). Using atomic resolution imaging and spectroscopy we illustrate that the CSPs consist of both conservative and nonconservative segments when coupled to the CDWs, where necessary compensating charges for stabilizing the CDWs are associated withmore » vacancies at the CSPs. Lasly, the CDW/CSP coupling yields an atomically narrow domain walls, consisting of a single atomic layer of oxygen. This study shows that the CDW/CSP coupling is a fascinating venue to develop emergent material properties.« less

  10. A novel conduit-based coaptation device for primary nerve repair.

    PubMed

    Bamba, Ravinder; Riley, D Colton; Kelm, Nathaniel D; Cardwell, Nancy; Pollins, Alonda C; Afshari, Ashkan; Nguyen, Lyly; Dortch, Richard D; Thayer, Wesley P

    2018-06-01

    Conduit-based nerve repairs are commonly used for small nerve gaps, whereas primary repair may be performed if there is no tension on nerve endings. We hypothesize that a conduit-based nerve coaptation device will improve nerve repair outcomes by avoiding sutures at the nerve repair site and utilizing the advantages of a conduit-based repair. The left sciatic nerves of female Sprague-Dawley rats were transected and repaired using a novel conduit-based device. The conduit-based device group was compared to a control group of rats that underwent a standard end-to-end microsurgical repair of the sciatic nerve. Animals underwent behavioral assessments at weekly intervals post-operatively using the sciatic functional index (SFI) test. Animals were sacrificed at four weeks to obtain motor axon counts from immunohistochemistry. A sub-group of animals were sacrificed immediately post repair to obtain MRI images. SFI scores were superior in rats which received conduit-based repairs compared to the control group. Motor axon counts distal to the injury in the device group at four weeks were statistically superior to the control group. MRI tractography was used to demonstrate repair of two nerves using the novel conduit device. A conduit-based nerve coaptation device avoids sutures at the nerve repair site and leads to improved outcomes in a rat model. Conduit-based nerve repair devices have the potential to standardize nerve repairs while improving outcomes.

  11. A 3D-engineered porous conduit for peripheral nerve repair

    PubMed Central

    Tao, Jie; Hu, Yu; Wang, Shujuan; Zhang, Jiumeng; Liu, Xuan; Gou, Zhiyuan; Cheng, Hao; Liu, Qianqi; Zhang, Qianqian; You, Shenglan; Gou, Maling

    2017-01-01

    End-to-end neurorrhaphy is the most commonly used method for treating peripheral nerve injury. However, only 50% of patients can regain useful function after treating with neurorrhaphy. Here, we constructed a 3D-engineered porous conduit to promote the function recovery of the transected peripheral nerve after neurorrhaphy. The conduit that consisted of a gelatin cryogel was prepared by molding with 3D-printed moulds. Due to its porous structure and excellent mechanical properties, this conduit could be collapsed by the mechanical force and resumed its original shape after absorption of normal saline. This shape-memory property allowed a simply surgery process for installing the conduits. Moreover, the biodegradable conduit could prevent the infiltration of fibroblasts and reduce the risk of scar tissue, which could provide an advantageous environment for nerve regeneration. The efficiency of the conduits in assisting peripheral nerve regeneration after neurorrhaphy was evaluated in a rat sciatic nerve transected model. Results indicated that conduits significantly benefitted the recovery of the transected peripheral nerve after end-to-end neurorrhaphy on the static sciatic index (SSI), electrophysiological results and the re-innervation of the gastrocnemius muscle. This work demonstrates a biodegradable nerve conduit that has potentially clinical application in promoting the neurorrhaphy. PMID:28401914

  12. 18 CFR 358.6 - No conduit rule.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false No conduit rule. 358.6 Section 358.6 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY STANDARDS OF CONDUCT FOR TRANSMISSION PROVIDERS STANDARDS OF CONDUCT § 358.6 No conduit...

  13. Conduits and dike distribution analysis in San Rafael Swell, Utah

    NASA Astrophysics Data System (ADS)

    Kiyosugi, K.; Connor, C.; Wetmore, P. H.; Ferwerda, B. P.; Germa, A.

    2011-12-01

    Volcanic fields generally consist of scattered monogenetic volcanoes, such as cinder cones and maars. The temporal and spatial distribution of monogenetic volcanoes and probability of future activity within volcanic fields is studied with the goals of understanding the origins of these volcano groups, and forecasting potential future volcanic hazards. The subsurface magmatic plumbing systems associated with volcanic fields, however, are rarely observed or studied. Therefore, we investigated a highly eroded and exposed magmatic plumbing system on the San Rafael Swell (UT) that consists of dikes, volcano conduits and sills. San Rafael Swell is part of the Colorado Plateau and is located east of the Rocky Mountain seismic belt and the Basin and Range. The overburden thickness at the time of mafic magma intrusion (Pliocene; ca. 4 Ma) into Jurassic sandstone is estimated to be ~800 m based on paleotopographical reconstructions. Based on a geologic map by P. Delaney and colleagues, and new field research, a total of 63 conduits are mapped in this former volcanic field. The conduits each reveal features of root zone and / or lower diatremes, including rapid dike expansion, peperite and brecciated intrusive and host rocks. Recrystallized baked zone of host rock is also observed around many conduits. Most conduits are basaltic or shonkinitic with thickness of >10 m and associated with feeder dikes intruded along N-S trend joints in the host rock, whereas two conduits are syenitic and suggesting development from underlying cognate sills. Conduit distribution, which is analyzed by a kernel function method with elliptical bandwidth, illustrates a N-S elongate higher conduit density area regardless of the azimuth of closely distributed conduits alignment (nearest neighbor distance <200 m). In addition, dike density was calculated as total dike length in unit area (km/km^2). Conduit and sill distribution is concordant with the high dike density area. Especially, the distribution

  14. Dynamics of chiral domain wall under the spin-orbit torques in heavy metal/ferromagnet bilayers with in-plane anisotropy

    NASA Astrophysics Data System (ADS)

    Yan, Han; He, Peng-Bin; Cai, Meng-Qiu; Li, Zai-Dong

    2017-11-01

    The dynamics of domain wall driven by the spin-orbit torques is theoretically studied in the heavy metal/ferromagnet bilayer with Dzyaloshinskii-Moriya interaction (DMI) and in-plane magnetic anisotropy. Based on the Walker profile, we infer that DMI has a selectivity for the chirality of head-to-head (tail-to-tail) static wall. By analyzing the dynamic equations obtained from the collective coordinates methods, we find that there exists a switching or a hysteresis of the polarity of wall in the low-current regime. In the presence of DMI, the wall can keep sustained propagation which velocity saturates for high current and is proportional to the strength of DMI. Furthermore, the DMI makes the adjacent walls possess the same chirality and move in the same direction.

  15. Imaging and tuning polarity at SrTiO3 domain walls

    NASA Astrophysics Data System (ADS)

    Frenkel, Yiftach; Haham, Noam; Shperber, Yishai; Bell, Christopher; Xie, Yanwu; Chen, Zhuoyu; Hikita, Yasuyuki; Hwang, Harold Y.; Salje, Ekhard K. H.; Kalisky, Beena

    2017-12-01

    Electrostatic fields tune the ground state of interfaces between complex oxide materials. Electronic properties, such as conductivity and superconductivity, can be tuned and then used to create and control circuit elements and gate-defined devices. Here we show that naturally occurring twin boundaries, with properties that are different from their surrounding bulk, can tune the LaAlO3/SrTiO3 interface 2DEG at the nanoscale. In particular, SrTiO3 domain boundaries have the unusual distinction of remaining highly mobile down to low temperatures, and were recently suggested to be polar. Here we apply localized pressure to an individual SrTiO3 twin boundary and detect a change in LaAlO3/SrTiO3 interface current distribution. Our data directly confirm the existence of polarity at the twin boundaries, and demonstrate that they can serve as effective tunable gates. As the location of SrTiO3 domain walls can be controlled using external field stimuli, our findings suggest a novel approach to manipulate SrTiO3-based devices on the nanoscale.

  16. Innovative and effective techniques for locating underground conduits.

    DOT National Transportation Integrated Search

    2011-06-01

    The New Jersey Department of Transportation (NJDOT) operates and maintains a network of : thousands of miles of conduits, many carrying fiber optic cables, that is vital to the States : communication system. These conduits frequently must be locat...

  17. Magnetoresistive sensors based on the elasticity of domain walls.

    PubMed

    Zhang, Xueying; Vernier, Nicolas; Cao, Zhiqiang; Leng, Qunwen; Cao, Anni; Ravelosona, Dafine; Zhao, Weisheng

    2018-06-19

    Magnetic sensors based on the magnetoresistance effects have a promising application prospect due to their excellent sensitivity and advantages in terms of the integration. However, competition between higher sensitivity and larger measuring range remains a problem. Here, we propose a novel mechanism for the design of magnetoresistive sensors: probing the perpendicular field by detecting the expansion of the elastic magnetic Domain Wall (DW) in the free layer of a spin valve or a magnetic tunnel junction. Performances of devices based on this mechanism, such as the sensitivity and the measuring range can be tuned by manipulating the geometry of the device, without changing the intrinsic properties of the material, thus promising a higher integration level and a better performance. The mechanism is theoretically explained based on the experimental results. Two examples are proposed and their functionality and performances are verified via micromagnetic simulation. © 2018 IOP Publishing Ltd.

  18. Microwave fields driven domain wall motions in antiferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Yan, Z. R.; Zhang, Y. L.; Qin, M. H.; Fan, Z.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2018-06-01

    In this work, we study the microwave field driven domain wall (DW) motion in an antiferromagnetic nanowire, using the numerical calculations based on a classical Heisenberg spin model with the biaxial magnetic anisotropy. We show that a proper combination of a static magnetic field plus an oscillating field perpendicular to the nanowire axis is sufficient to drive the DW propagation along the nanowire. More importantly, the drift velocity at the resonance frequency is comparable to that induced by temperature gradients, suggesting that microwave field can be a very promising tool to control DW motions in antiferromagnetic nanostructures. The dependences of resonance frequency and drift velocity on the static and oscillating fields, the axial anisotropy, and the damping constant are discussed in details. Furthermore, the optimal orientations of the field are also numerically determined and explained. This work provides useful information for the spin dynamics in antiferromagnetic nanostructures for spintronics applications.

  19. Expandable right ventricular-to-pulmonary artery conduit: an animal study.

    PubMed

    Boudjemline, Younes; Laborde, François; Pineau, Emmanuelle; Mollet, Alix; Abadir, Sylvia; Borenstein, Nicolas; Behr, Luc; Bonhoeffer, Philipp

    2006-06-01

    This study was performed to assess a new vascular stent graft as an expandable valved conduit for right ventricular outflow tract (RVOT) reconstruction in sheep. Conduits were constructed by sewing an 18-mm valved conduit inside a stent. Crimped to 16 mm, they were implanted either under or without extracorporeal circulation in seven (group A) and in five (group B) sheep, respectively. Six weeks and 3 mo after their insertion, conduits were dilated intraluminally. A valved stent was implanted percutaneously into conduits before they were killed. Two animals from group A recovered normally, whereas five animals had a complicated postoperative course. In group B, one died acutely due to kinking of the conduit. Balloon dilatations were performed in all surviving animals. First dilatations had a slight impact on valvular function in all animals but one, whereas second dilatations led to significant PR in all. Transcatheter valve implantation was performed successfully. When animals were killed, no bleeding was found around the surgically implanted device. In conclusion, we designed a biologic valved conduit for RVOT reconstruction that can be dilated sequentially to follow animal growth. This new device can have tremendous applications in children with congenital heart diseases involving the RVOT.

  20. Domain Walls and Strings in Dense Quark Matter

    NASA Astrophysics Data System (ADS)

    Zhitnitsky, Ariel R.

    2002-12-01

    I discuss several types of domain walls and global strings which occur in colour superconducting quark matter due to the spontaneous violation of relevant U(1) and discrete symmetries. These include the baryon U(1)B, approximate axial U(1)A symmetries as well as an approximate U(1)Y symmetry arising from kaon condensation in colour-flavour locking phase. In this talk I concentrate on discussions of K strings due to their interesting internal structures. Specifically, I demonstrate that under some conditions the global U(1)Y symmetry may not be restored inside the string, in contrast with the standard expectations. Instead, K+ condensation occurs inside the core of the string if a relevant parameter \\cos θ K0 ≡ mK0^2 /μ eff2 is larger than some critical value θK0 ≥ θcrit. If this phenomenon happens, the U(1)Y strings become superconducting and may considerably influence the magnetic properties of dense quark matter, in particular in neutron stars.

  1. Dynamical implications of sample shape for avalanches in 2-dimensional random-field Ising model with saw-tooth domain wall

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka

    2018-03-01

    We study dynamics of a built-in domain wall (DW) in 2-dimensional disordered ferromagnets with different sample shapes using random-field Ising model on a square lattice rotated by 45 degrees. The saw-tooth DW of the length Lx is created along one side and swept through the sample by slow ramping of the external field until the complete magnetisation reversal and the wall annihilation at the open top boundary at a distance Ly. By fixing the number of spins N =Lx ×Ly = 106 and the random-field distribution at a value above the critical disorder, we vary the ratio of the DW length to the annihilation distance in the range Lx /Ly ∈ [ 1 / 16 , 16 ] . The periodic boundary conditions are applied in the y-direction so that these ratios comprise different samples, i.e., surfaces of cylinders with the changing perimeter Lx and height Ly. We analyse the avalanches of the DW slips between following field updates, and the multifractal structure of the magnetisation fluctuation time series. Our main findings are that the domain-wall lengths materialised in different sample shapes have an impact on the dynamics at all scales. Moreover, the domain-wall motion at the beginning of the hysteresis loop (HLB) probes the disorder effects resulting in the fluctuations that are significantly different from the large avalanches in the central part of the loop (HLC), where the strong fields dominate. Specifically, the fluctuations in HLB exhibit a wide multi-fractal spectrum, which shifts towards higher values of the exponents when the DW length is reduced. The distributions of the avalanches in this segments of the loops obey power-law decay and the exponential cutoffs with the exponents firmly in the mean-field universality class for long DW. In contrast, the avalanches in the HLC obey Tsallis density distribution with the power-law tails which indicate the new categories of the scale invariant behaviour for different ratios Lx /Ly. The large fluctuations in the HLC, on the other

  2. Cardiovascular effects of right ventricle-pulmonary artery valved conduit implantation in experimental pulmonic stenosis.

    PubMed

    Saida, Yuuto; Tanaka, Ryou; Fukushima, Ryuji; Hoshi, Katsuichiro; Hira, Satoshi; Soda, Aiko; Iizuka, Tomoya; Ishikawa, Taisuke; Nishimura, Taiki; Yamane, Yoshihisa

    2009-04-01

    Right ventricle (RV)-pulmonary artery (PA) valved conduit (RPVC) implantation decreases RV systolic pressure in pulmonic stenosis (PS) by forming a bypass route between the RV and the PA. The present study evaluates valved conduits derived from canine aortae in a canine model of PS produced by pulmonary artery banding (PAB). Pulmonary stenosis was elicited using PAB in 10 conditioned beagles aged 8 months. Twelve weeks after PAB, the dogs were assigned to one group that did not undergo surgical intervention and another that underwent RPVC using denacol-treated canine aortic valved grafts (PAB+RPVC). Twelve weeks later, the rate of change in the RV-PA systolic pressure gradient was significantly decreased in the PAB+RPVC, compared with the PAB group (60.5 +/- 16.7% vs. 108.9 +/- 22.9%; p<0.01). In addition, the end-diastolic RV free wall thickness (RVFWd) was significantly reduced in the PAB+RPVC, compared with the PAB group (8.2 +/- 0.2 vs. 9.4 +/- 0.7 mm; p<0.05). Thereafter, regurgitation was not evident beyond the conduit valve and the decrease in RV pressure overload induced by RPVC was confirmed. The present results indicate that RPVC can be performed under a beating heart without cardiopulmonary bypass and adapted to dogs with various types of PS, including "supra valvular" PS or PS accompanied by dysplasia of the pulmonary valve. Therefore, we consider that this method is useful for treating PS in small animals.

  3. Experimental investigations of aeration efficiency in high-head gated circular conduits.

    PubMed

    Cihat Tuna, M; Ozkan, Fahri; Baylar, Ahmet

    2014-01-01

    The primary purpose of water aeration is to increase the oxygen saturation of the water. This can be achieved by using hydraulic structures because of substantial air bubble entrainment at these structures. Closed conduit aeration is a particular instance of this. While there has been a great deal of research on air-demand ratio within closed conduit, very little research has specifically addressed aeration efficiency of closed conduit. In the present work an experimental study was conducted to investigate the aeration efficiency of high-head gated circular conduits. Results showed that high-head gated circular conduits were effective for oxygen transfer. The effects of Froude number and ratio of the water cross-sectional flow area to the conduit cross-sectional area on aeration efficiency were particularly significant, whereas the effect of conduit length was only moderate. Further, a design formula for the aeration efficiency was presented relating the aeration efficiency to ratio of water cross-sectional flow area to conduit cross-sectional area and Froude number. The obtained results will be useful in future modeling processes and aid the practicing engineer in predicting aeration efficiency for design purposes.

  4. Measurements of ultrafast spin-profiles and spin-diffusion properties in the domain wall area at a metal/ferromagnetic film interface.

    PubMed

    Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Manfredda, M; Kiskinova, M; Zabel, H; Kläui, M; Lüning, J; Pietsch, U; Gutt, C

    2017-11-08

    Exciting a ferromagnetic material with an ultrashort IR laser pulse is known to induce spin dynamics by heating the spin system and by ultrafast spin diffusion processes. Here, we report on measurements of spin-profiles and spin diffusion properties in the vicinity of domain walls in the interface region between a metallic Al layer and a ferromagnetic Co/Pd thin film upon IR excitation. We followed the ultrafast temporal evolution by means of an ultrafast resonant magnetic scattering experiment in surface scattering geometry, which enables us to exploit the evolution of the domain network within a 1/e distance of 3 nm to 5 nm from the Al/FM film interface. We observe a magnetization-reversal close to the domain wall boundaries that becomes more pronounced closer to the Al/FM film interface. This magnetization-reversal is driven by the different transport properties of majority and minority carriers through a magnetically disordered domain network. Its finite lateral extension has allowed us to measure the ultrafast spin-diffusion coefficients and ultrafast spin velocities for majority and minority carriers upon IR excitation.

  5. Lattice QCD with two dynamical flavors of domain wall fermions

    NASA Astrophysics Data System (ADS)

    Aoki, Y.; Blum, T.; Christ, N.; Dawson, C.; Hashimoto, K.; Izubuchi, T.; Laiho, J. W.; Levkova, L.; Lin, M.; Mawhinney, R.; Noaki, J.; Ohta, S.; Orginos, K.; Soni, A.

    2005-12-01

    We present results from the first large-scale study of two-flavor QCD using domain wall fermions (DWF), a chirally symmetric fermion formulation which has been proven to be very effective in the quenched approximation. We work on lattices of size 163×32, with a lattice cutoff of a-1≈1.7GeV and dynamical (or sea) quark masses in the range mstrange/2≲msea≲mstrange. After discussing the algorithmic and implementation issues involved in simulating dynamical DWF, we report on the low-lying hadron spectrum, decay constants, static quark potential, and the important kaon weak matrix element describing indirect CP violation in the standard model, BK. In the latter case we include the effect of nondegenerate quark masses (ms≠mu=md), finding BKM Smacr (2GeV)=0.495(18).

  6. Aneurysm of the right ventricular outflow following bovine valved venous conduit insertion.

    PubMed

    Boudjemline, Younes; Bonnet, Damien; Agnoletti, Gabriella; Vouhé, Pascal

    2003-01-01

    A case of aneurysm of the right ventricular outflow tract is described after repair of tetralogy of Fallot using a Contegra supported conduit. Angiograms revealed that the aneurysm was located between the ventricular anastomosis and the proximal ring of the conduit confirming echocardiographic data. Because the conduit between the rings was not dilated, the valve was perfectly functioning. Pulmonary anastomosis was severely stenosed explaining the dilatation seen below. Conduit replacement with resection of the aneurysmal part of the failing conduit was performed. Supported conduits do not eliminate the risk of secondary dilatation below the artificial ring but preserve valvular function.

  7. Homograft conduit failure in infants is not due to somatic outgrowth.

    PubMed

    Wells, Winfield J; Arroyo, Hector; Bremner, Ross M; Wood, John; Starnes, Vaughn A

    2002-07-01

    It has been assumed that the need for homograft replacement is due to somatic outgrowth, but this has not been adequately studied. Our objective was to identify reasons for homograft conduit failure. The records and imaging studies of 40 patients undergoing homograft conduit replacement of the right ventricular outflow tract from 1996 to 2000 were retrospectively reviewed. The majority of patients had a diagnosis of tetralogy of Fallot (n = 20) and truncus arteriosus (n = 13). The median age at the initial operation was 8 months (0.25-108 months). The initial homograft sizes ranged from 9 to 22 mm, and 28 conduits were of pulmonary origin. When comparing size of the initial homograft with patients' expected pulmonary valve diameter (z = 0), oversizing was noted to be +3 (range, 0.83-5.4). Median interval to conduit failure was 5.3 years (0.83-11.3 years). At homograft replacement, only 12 patients had an existing conduit that was 1 SD below the homograft conduit size needed (z < or = -1). Most conduits had important regurgitation, but this was rarely a primary reason for reintervention (n = 1). Reoperation was usually required for stenosis, with a median gradient of 53 mm Hg (20-140 mm Hg). Stenosis was further categorized angiographically as follows: homograft valvular stenosis (shrinkage; 21/40 [53%]), distal anastomotic stenosis (4/40 [10%]), conduit kinking (3/40 [8%]), sternal compression (3/40 [8%]), posterior shelf impingement (2/40 [5%]), and somatic outgrowth (3/40 [8%]). Replacement in 2 patients was for proximal hood aneurysm. Several patients (7/40 [18%]) had stenosis at multiple levels. The average decrease in conduit diameter was 47% (28%-73%). Somatic outgrowth is seldom a primary reason for homograft conduit replacement of the right ventricular outflow tract. The most common cause for failure is conduit obstruction with thickening and shrinkage at the annular area. Conduit stenosis was responsible for failure in 53% of patients, technical issues

  8. Curvature perturbation and domain wall formation with pseudo scaling scalar dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ema, Yohei; Nakayama, Kazunori; Takimoto, Masahiro, E-mail: ema@hep-th.phys.s.u-tokyo.ac.jp, E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp, E-mail: takimoto@hep-th.phys.s.u-tokyo.ac.jp

    2016-02-01

    Cosmological dynamics of scalar field with a monomial potential φ{sup n} with a general background equation of state is revisited. It is known that if n is smaller than a critical value, the scalar field exhibits a coherent oscillation and if n is larger it obeys a scaling solution without oscillation. We study in detail the case where n is equal to the critical value, and find a peculiar scalar dynamics which is neither oscillating nor scaling solution, and we call it a pseudo scaling solution. We also discuss cosmological implications of a pseudo scaling scalar dynamics, such as themore » curvature perturbation and the domain wall problem.« less

  9. CONDUIT: A New Multidisciplinary Integration Environment for Flight Control Development

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Colbourne, Jason D.; Morel, Mark R.; Biezad, Daniel J.; Levine, William S.; Moldoveanu, Veronica

    1997-01-01

    A state-of-the-art computational facility for aircraft flight control design, evaluation, and integration called CONDUIT (Control Designer's Unified Interface) has been developed. This paper describes the CONDUIT tool and case study applications to complex rotary- and fixed-wing fly-by-wire flight control problems. Control system analysis and design optimization methods are presented, including definition of design specifications and system models within CONDUIT, and the multi-objective function optimization (CONSOL-OPTCAD) used to tune the selected design parameters. Design examples are based on flight test programs for which extensive data are available for validation. CONDUIT is used to analyze baseline control laws against pertinent military handling qualities and control system specifications. In both case studies, CONDUIT successfully exploits trade-offs between forward loop and feedback dynamics to significantly improve the expected handling, qualities and minimize the required actuator authority. The CONDUIT system provides a new environment for integrated control system analysis and design, and has potential for significantly reducing the time and cost of control system flight test optimization.

  10. Urinary conduits in gynecologic oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancock, K.C.; Copeland, L.J.; Gershenson, D.M.

    1986-05-01

    Over an 11-year period (1971 to 1981), 212 urinary conduit surgeries were performed by the Department of Gynecology at the University of Texas, M. D. Anderson Hospital and Tumor Institute at Houston. The urinary diversions were performed as part of the pelvic exenteration operation in 154 patients, for radiation injury in 48 patients, and for palliation of disease recurrence in ten patients. Ninety-three percent had prior pelvic radiotherapy. Various segments of the gastrointestinal tract were used, including the ileum (102), sigmoid colon (99), transverse colon (four), jejunum (four), and others (three). Fifty percent of abnormal preoperative intravenous pyelograms reverted tomore » normal after urinary diversion. Revision of the stoma was required in 6%. Other complications included infection (18%), renal loss (17%), and urinary leaks and fistulae (3%). The overall perioperative mortality was 7%, decreasing from 11% in the first five years to 3% during the last six years. Ureteral stents were routinely used. When selecting a segment of bowel for a urinary conduit, both tissue quality and mobility are important. Mortality and morbidity of urinary conduit surgery continues to decrease with experience.« less

  11. Charged magnetic domain walls as observed in nanostructured thin films: dependence on both film thickness and anisotropy.

    PubMed

    Favieres, C; Vergara, J; Madurga, V

    2013-02-13

    The magnetic domain configurations of soft magnetic, nanostructured, pulsed laser-deposited Co films were investigated. Their dependence on both the thickness t (20 nm ≤ t ≤ 200 nm) and the anisotropy was studied. Charged zigzag walls, with a characteristic saw-tooth vertex angle θ, were observed. θ changed with t from θ ≈ 17° to ≈25°, presenting an intermediate sharp maximum that has not been described before. The reduced length of the zigzag walls also exhibited a peak at t ≈ 70 nm. The relationship between the total reduced length and the density energy of the magnetic wall allowed us to establish a change from a Néel-type to a Bloch-type core of the zigzag walls at this thickness, t ≈ 70 nm. We also accounted for the magnetic energy arising from the surface roughness of the thinner films after imaging the film surface morphologies. Moreover, this distinctive behaviour of the zigzag walls of these low-anisotropy films was compared to that of high-anisotropy films.

  12. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration

    NASA Astrophysics Data System (ADS)

    Rutkowski, Gregory E.; Miller, Cheryl A.; Jeftinija, Srdija; Mallapragada, Surya K.

    2004-09-01

    This paper describes a novel biodegradable conduit that provides a combination of physical, chemical and biological cues at the cellular level to facilitate peripheral nerve regeneration. The conduit consists of a porous poly(D,L-lactic acid) (PDLLA) tubular support structure with a micropatterned inner lumen. Schwann cells were pre-seeded into the lumen to provide additional trophic support. Conduits with micropatterned inner lumens pre-seeded with Schwann cells (MS) were fabricated and compared with three types of conduits used as controls: M (conduits with micropatterned inner lumens without pre-seeded Schwann cells), NS (conduits without micropatterned inner lumens pre-seeded with Schwann cells) and N (conduits without micropatterned inner lumens, without pre-seeded Schwann cells). The conduits were implanted in rats with 1 cm sciatic nerve transections and the regeneration and functional recovery were compared in the four different cases. The number or size of regenerated axons did not vary significantly among the different conduits. The time of recovery, and the sciatic function index, however, were significantly enhanced using the MS conduits, based on qualitative observations as well as quantitative measurements using walking track analysis. This demonstrates that biodegradable micropatterned conduits pre-seeded with Schwann cells that provide a combination of physical, chemical and biological guidance cues for regenerating axons at the cellular level offer a better alternative for repairing sciatic nerve transactions than conventional biodegradable conduits.

  13. The contribution of 180° domain wall motion to dielectric properties quantified from in situ X-ray diffraction

    DOE PAGES

    Fancher, C. M.; Brewer, S.; Chung, C. C.; ...

    2016-12-27

    Here, the contribution of 180° domain wall motion to polarization and dielectric properties of ferroelectric materials has yet to be determined experimentally. In this paper, an approach for estimating the extent of (180°) domain reversal during application of electric fields is presented. We demonstrate this method by determining the contribution of domain reversal to polarization in soft lead zirconate titanate during application of strong electric fields. At the maximum applied field, domain reversal was determined to account for >80% of the measured macroscopic polarization. We also apply the method to quantify the contribution of domain reversal to the weak-field dielectricmore » permittivity of BaTiO 3. The results of this analysis determined that domain reversal accounts for up to ~70% of the macroscopic dielectric permittivity in BaTiO 3. These results demonstrate the predominance of domain reversal to high and low-field dielectric response in ferroelectric polycrystalline materials.« less

  14. The contribution of 180° domain wall motion to dielectric properties quantified from in situ X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fancher, C. M.; Brewer, S.; Chung, C. C.

    2017-03-01

    The contribution of 180° domain wall motion to polarization and dielectric properties of ferroelectric materials has yet to be determined experimentally. In this paper, an approach for estimating the extent of (180°) domain reversal during application of electric fields is presented. We demonstrate this method by determining the contribution of domain reversal to polarization in soft lead zirconate titanate during application of strong electric fields. At the maximum applied field, domain reversal was determined to account for >80% of the measured macroscopic polarization. We also apply the method to quantify the contribution of domain reversal to the weak-field dielectric permittivitymore » of BaTiO 3. The results of this analysis determined that domain reversal accounts for up to ~70% of the macroscopic dielectric permittivity in BaTiO 3. These results demonstrate the predominance of domain reversal to high and low-field dielectric response in ferroelectric polycrystalline materials.« less

  15. In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits.

    PubMed

    Zhang, Yahui; Yu, Yin; Akkouch, Adil; Dababneh, Amer; Dolati, Farzaneh; Ozbolat, Ibrahim T

    2015-01-01

    The ability to create three dimensional (3D) thick tissues is still a major tissue engineering challenge. It requires the development of a suitable vascular supply for an efficient media exchange. An integrated vasculature network is particularly needed when building thick functional tissues and/or organs with high metabolic activities, such as the heart, liver and pancreas. In this work, human umbilical vein smooth muscle cells (HUVSMCs) were encapsulated in sodium alginate and printed in the form of vasculature conduits using a coaxial deposition system. Detailed investigations were performed to understand the dehydration, swelling and degradation characteristics of printed conduits. In addition, because perfusional, permeable and mechanical properties are unique characteristics of natural blood vessels, for printed conduits these properties were also explored in this work. The results show that cells encapsulated in conduits had good proliferation activities and that their viability increased during prolonged in vitro culture. Deposition of smooth muscle matrix and collagen was observed around the peripheral and luminal surface in long-term cultured cellular vascular conduit through histology studies.

  16. Engineering a multimodal nerve conduit for repair of injured peripheral nerve

    NASA Astrophysics Data System (ADS)

    Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.

    2013-02-01

    Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate

  17. Conduit Processes Driving Pre-explosive Harmonic Tremor in the 2009 Redoubt Volcano Eruption

    NASA Astrophysics Data System (ADS)

    Summers, P.; Dunham, E. M.

    2013-12-01

    During the 2009 eruption of Redoubt Volcano, Alaska, gliding harmonic tremor was observed before many vulcanian explosions. Though harmonic tremor is relatively common at volcanoes, the high fundamental frequency of these tremors (up to 30 Hz) is unique and of particular interest. Hotovec et al. (JVGR, 2013) linked this tremor to rapidly repeating magnitude ~1 earthquakes located a few kilometers beneath the vent. These events might be occurring as brittle failure of the magma or as slip along the margins of an obstruction within the conduit. Using a frictional faulting model, Dmitrieva et al. (Nature Geoscience, 2013) converted the seismicity and tremor signals into an estimate of the history of shear stresses acting on the fault surface and causing slip. Stressing rates increased, in a nonlinear manner, from less than 1 MPa/s to about 20 MPa/s over the final ten minutes before the explosions. Here we investigate what conduit processes could plausibly be responsible for such high stressing rates. One possibility is that a blockage develops in the conduit prior to each explosion, perhaps from a crystal-rich magma plug or collapse of the conduit walls. This obstacle temporarily prevents upward flow of magma, while deeper influx from below thus compresses and pressurizes magma in the conduit beneath the blockage. This compression largely occurs between the base of the obstruction and the H2O exsolution depth, which petrologic estimates of volatile content and standard solubility laws suggest is nominally located about a kilometer or two deeper than the blockage. We solve the unsteady conduit flow equations (mass and momentum balance for a compressible, viscous mixture of gas and liquid). Gas exsolution is treated with Henry's law, and in our present models exsolution begins abruptly below a critical pressure. No flow is permitted past the blockage and the system is driven by steady influx at depth. We find that as magma accumulates within the conduit beneath the

  18. Low temperature and high field regimes of connected kagome artificial spin ice: the role of domain wall topology.

    PubMed

    Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F; Branford, Will R

    2016-07-22

    Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.

  19. Acute postoperative obstruction of extracardiac conduit due to separation of thin fibrous peel.

    PubMed

    Agarwal, K C; Edwards, W D; Puga, F J; Mair, D D

    1982-03-01

    Late postoperative obstruction of extracardiac conduits may occur in some patients and may result from one of several mechanisms. Severe intraoperative or early postoperative obstruction of such conduits is very rare. Herein we describe a case of acute, severe, early postoperative obstruction of an extracardiac conduit; this followed partial excision and replacement of a Hancock conduit in which late postoperative calcific valvular stenosis had occurred. Unexpectedly elevated right ventricular pressure should suggest the possibility of acute conduit obstruction. In cases with partial conduit replacement, the remaining segment should be carefully inspected for the presence of a peel; if a peel is present, it should be removed from the conduit even if it is considered thin and nonobstructive.

  20. Magnetic bead detection using domain wall-based nanosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corte-León, H., E-mail: hector.corte@npl.co.uk; Royal Holloway University of London, Egham TW20 0EX; Krzysteczko, P.

    2015-05-07

    We investigate the effect of a single magnetic bead (MB) on the domain wall (DW) pinning/depinning fields of a DW trapped at the corner of an L-shaped magnetic nanodevice. DW propagation across the device is investigated using magnetoresistance measurements. DW pinning/depinning fields are characterized in as-prepared devices and after placement of a 1 μm-sized MB (Dynabeads{sup ®} MyOne{sup ™}) at the corner. The effect of the MB on the DW dynamics is seen as an increase in the depinning field for specific orientations of the device with respect to the external magnetic field. The shift of the depinning field, ΔB{sub dep} = 4.5–27.0 mT,more » is highly stable and reproducible, being significantly above the stochastic deviation which is about 0.5 mT. The shift in the deppinning field is inversely proportional to the device width and larger for small negative angles between the device and the external magnetic field. Thus, we demonstrate that DW-based devices can be successfully used for detection of single micron size MB.« less

  1. Momentum transfer conduits -- A new microscopic look at porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moaveni, S.

    In this paper, the flow of fluid through porous media is investigated on a microscopic scale by representing a porous medium by an assemblage of hypothetical conduits through which the fluid momentum is transferred across the medium. It is shown that the rate of transfer of fluid momentum depends on the geometrical structure of the conduits such as the number density of momentum transfer conduits (MTCs), the length distribution and the directional distribution of these hypothetical conduits. In addition an expression for the total number of momentum transfer conduits reaching an arbitrary areal element is developed. Finally, an average heightmore » normal to an arbitrary areal element at which the MTCs were last discharged is formulated. This idea leads to definition of momentum thickness, which in turn may be used to define an effective (pseudo) viscosity for a given porous medium.« less

  2. Current induced domain wall dynamics in the presence of spin orbit torques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulle, O., E-mail: Olivier.boulle@cea.fr; Buda-Prejbeanu, L. D.; Jué, E.

    2014-05-07

    Current induced domain wall (DW) motion in perpendicularly magnetized nanostripes in the presence of spin orbit torques is studied. We show using micromagnetic simulations that the direction of the current induced DW motion and the associated DW velocity depend on the relative values of the field like torque (FLT) and the Slonczewski like torques (SLT). The results are well explained by a collective coordinate model which is used to draw a phase diagram of the DW dynamics as a function of the FLT and the SLT. We show that a large increase in the DW velocity can be reached bymore » a proper tuning of both torques.« less

  3. General purpose graphics-processing-unit implementation of cosmological domain wall network evolution.

    PubMed

    Correia, J R C C C; Martins, C J A P

    2017-10-01

    Topological defects unavoidably form at symmetry breaking phase transitions in the early universe. To probe the parameter space of theoretical models and set tighter experimental constraints (exploiting the recent advances in astrophysical observations), one requires more and more demanding simulations, and therefore more hardware resources and computation time. Improving the speed and efficiency of existing codes is essential. Here we present a general purpose graphics-processing-unit implementation of the canonical Press-Ryden-Spergel algorithm for the evolution of cosmological domain wall networks. This is ported to the Open Computing Language standard, and as a consequence significant speedups are achieved both in two-dimensional (2D) and 3D simulations.

  4. Architecture of an in vivo-tissue engineered autologous conduit "Biovalve".

    PubMed

    Hayashida, Kyoko; Kanda, Keiichi; Oie, Tomonori; Okamoto, Yoshihiro; Ishibashi-Ueda, Hatsue; Onoyama, Masaaki; Tajikawa, Tsutomu; Ohba, Kenkichi; Yaku, Hitoshi; Nakayama, Yasuhide

    2008-07-01

    As a practical concept of regenerative medicine, we have focused on in vivo tissue engineering utilizing the foreign body reaction. Plastic substrates for valvular leaflet organization, consisting of two pieces assembled with a small aperture were inserted into a microporous polyurethane conduit scaffold. The assembly was placed in the subcutaneous spaces of Japanese white rabbits for 1 month. After the substrates were pulled out from the harvested implant, valve leaflet-shaped membranous tissue was formed inside the tubular scaffold as designed. The valve leaflet was composed of the same collagen-rich tissue, with the absence of any elastic fiber, as that which had ingrown or covered the scaffold. No abnormal collection or infiltration of inflammatory cells in the leaflet and the scaffold could be demonstrated. According to the immunohistochemical staining, the leaflet was comprised of numerous vimentin- or alpha-SMA-positive cells, corresponding to fibroblasts or myofibroblats, but contained no desmin-positive cells. The analysis of the video data of the valve movement showed that, in synchronization with the backward flow in the diastolic phase, the valve closed rapidly and tightly and, in the transition phase of the flow direction, the valve opened smoothly without flapping or hitting the scaffold wall. Using mold designs, consisting of two different plastic substrates and the tubular scaffold, in conjunction with "in body tissue architecture," the complex 3-dimensional autologous conduit-typed Biovalve was developed for the first time. 2007 Wiley Periodicals, Inc.

  5. Conduit dynamics in transitional rhyolitic activity recorded by tuffisite vein textures from the 2008-2009 Chaitén eruption

    NASA Astrophysics Data System (ADS)

    Saubin, Elodie; Tuffen, Hugh; Gurioli, Lucia; Owen, Jacqueline; Castro, Jonathan; Berlo, Kim; McGowan, Ellen; Schipper, C.; Wehbe, Katia

    2016-05-01

    The mechanisms of hazardous silicic eruptions are controlled by complex, poorly-understood conduit processes. Observations of recent Chilean rhyolite eruptions have revealed the importance of hybrid activity, involving simultaneous explosive and effusive emissions from a common vent. Such behaviour hinges upon the ability of gas to decouple from magma in the shallow conduit. Tuffisite veins are increasingly suspected to be a key facilitator of outgassing, as they repeatedly provide a transient permeable escape route for volcanic gases. Intersection of foam domains by tuffisite veins appears critical to efficient outgassing. However, knowledge is currently lacking into textural heterogeneities within shallow conduits, their relationship with tuffisite vein propagation, and the implications for fragmentation and degassing processes. Similarly, the magmatic vesiculation response to upper conduit pressure perturbations, such as those related to the slip of dense magma plugs, remains largely undefined. Here we provide a detailed characterization of an exceptionally large tuffisite vein within a rhyolitic obsidian bomb ejected during transitional explosive-effusive activity at Chaitén, Chile in May 2008. Vein textures and chemistry provide a time-integrated record of the invasion of a dense upper conduit plug by deeper fragmented magma. Quantitative textural analysis reveals diverse vesiculation histories of various juvenile clast types. Using vesicle size distributions, bubble number densities, zones of diffusive water depletion, and glass H2O concentrations, we propose a multi-step degassing/fragmentation history, spanning deep degassing to explosive bomb ejection. Rapid decompression events of ~3-4 MPa are associated with fragmentation of foam and dense magma at ~200-350 metres depth in the conduit, permitting vertical gas and pyroclast mobility over hundreds of metres. Permeable pathway occlusion in the dense conduit plug by pyroclast accumulation and sintering

  6. Domain shape instabilities and dendrite domain growth in uniaxial ferroelectrics

    NASA Astrophysics Data System (ADS)

    Shur, Vladimir Ya.; Akhmatkhanov, Andrey R.

    2018-01-01

    The effects of domain wall shape instabilities and the formation of nanodomains in front of moving walls obtained in various uniaxial ferroelectrics are discussed. Special attention is paid to the formation of self-assembled nanoscale and dendrite domain structures under highly non-equilibrium switching conditions. All obtained results are considered in the framework of the unified kinetic approach to domain structure evolution based on the analogy with first-order phase transformation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  7. Vacancies and holes in bulk and at 180° domain walls in lead titanate

    NASA Astrophysics Data System (ADS)

    Paillard, Charles; Geneste, Grégory; Bellaiche, Laurent; Dkhil, Brahim

    2017-12-01

    Domain walls (DWs) in ferroic materials exhibit a plethora of unexpected properties that are different from the adjacent ferroic domains. Still, the intrinsic/extrinsic origin of these properties remains an open question. Here, density functional theory calculations are used to investigate the interaction between vacancies and 180° DWs in the prototypical ferroelectric PbTiO3, with a special emphasis on cationic vacancies and released holes. All vacancies are more easily formed within the DW than in the domains. This is interpreted, using a phenomenological model, as the partial compensation of an extra-tensile stress when the defect is created inside the DW. Oxygen vacancies are found to be always fully ionized, independently of the thermodynamic conditions, while cationic vacancies can be either neutral or partially ionized (oxygen-rich conditions), or fully ionized (oxygen-poor conditions). Therefore, in oxidizing conditions, holes are induced by neutral and partially ionized Pb vacancies. In the bulk PbTiO3, these holes are more stable as delocalized rather than small polarons, but at DWs, the two forms are found to be possible.

  8. Corrections to the thin wall approximation in general relativity

    NASA Technical Reports Server (NTRS)

    Garfinkle, David; Gregory, Ruth

    1989-01-01

    The question is considered whether the thin wall formalism of Israel applies to the gravitating domain walls of a lambda phi(exp 4) theory. The coupled Einstein-scalar equations that describe the thick gravitating wall are expanded in powers of the thickness of the wall. The solutions of the zeroth order equations reproduce the results of the usual Israel thin wall approximation for domain walls. The solutions of the first order equations provide corrections to the expressions for the stress-energy of the wall and to the Israel thin wall equations. The modified thin wall equations are then used to treat the motion of spherical and planar domain walls.

  9. [Experimental studies of original valved conduit using glutaraldehyde-preserved equine pericardium (Xenomedica)].

    PubMed

    Murakami, T

    1989-05-01

    Extracardiac conduits, such as Dacron or homo-graft, have been utilized for the operative management of many patients with congenital right ventricular outflow obstruction. However, they have been recognized to become obstructed or calcified with time. As a new material for extracardiac conduit, an original valved conduit using glutaraldehyde-preserved equine pericardium (Xenomedica) was investigated. Various types of valved conduit were evaluated for the hydrodynamics by a circulation system. A flow-pressure gradient Lissajous was used for the evaluation. The conduit of 10 mm in diameter had a high resistance to flow. The monocusp-valved conduit had a diastolic regurgitation (DR) at any given pressures and heart rates. The bicusp-valved conduit had a DR at higher heart rates (greater than 153/min). In this experiment, the tricusp-valved conduit with a valvular vertical versus horizontal length ratio of 2:3 had utmost favorable results under any given conditions. The valved conduits were also evaluated using sixteen mongrel dogs in which the conduit were used for the reconstruction of continuity between right ventricle and pulmonary artery. Five dogs died of bacterial infection or thrombotic obstruction. Following hemodynamic studies, which were performed in eleven dogs 1, 6, and 12 months after the operation, the dogs were sacrificed to evaluate the histological changes in the conduits. The valvular function had been satisfactory until one month, however, it was lost in 6 months because the valvular leaflets were covered with neointimae grown over them. Thin neointimae were observed both at the sites of anastomosis and at the base of the valves in dogs sacrificed at one month. They spread from the proximal anastomotic site to distal one. They were organized and it was hard to remove them manually. Thrombi were found in six dogs at the proximal anastomotic site with intimal hyperplasia. There was no calcification in Xenomedica and its degenerative change was

  10. Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.

    Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less

  11. Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites

    DOE PAGES

    Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.

    2017-05-16

    Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. Here, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. Furthermore, by tuning the flexoelectric strengths in a reasonable range from first-principles calculations, wemore » found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. And as polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.« less

  12. Domain topology and domain switching kinetics in a hybrid improper ferroelectric

    PubMed Central

    Huang, F. -T.; Xue, F.; Gao, B.; Wang, L. H.; Luo, X.; Cai, W.; Lu, X. -Z.; Rondinelli, J. M.; Chen, L. Q.; Cheong, S. -W.

    2016-01-01

    Charged polar interfaces such as charged ferroelectric walls or heterostructured interfaces of ZnO/(Zn,Mg)O and LaAlO3/SrTiO3, across which the normal component of electric polarization changes suddenly, can host large two-dimensional conduction. Charged ferroelectric walls, which are energetically unfavourable in general, were found to be mysteriously abundant in hybrid improper ferroelectric (Ca,Sr)3Ti2O7 crystals. From the exploration of antiphase boundaries in bilayer-perovskites, here we discover that each of four polarization-direction states is degenerate with two antiphase domains, and these eight structural variants form a Z4 × Z2 domain structure with Z3 vortices and five distinct types of domain walls, whose topology is directly relevant to the presence of abundant charged walls. We also discover a zipper-like nature of antiphase boundaries, which are the reversible creation/annihilation centres of pairs of two types of ferroelectric walls (and also Z3-vortex pairs) in 90° and 180° polarization switching. Our results demonstrate the unexpectedly rich nature of hybrid improper ferroelectricity. PMID:27215944

  13. A one-dimensional heat-transport model for conduit flow in karst aquifers

    USGS Publications Warehouse

    Long, Andrew J.; Gilcrease, P.C.

    2009-01-01

    A one-dimensional heat-transport model for conduit flow in karst aquifers is presented as an alternative to two or three-dimensional distributed-parameter models, which are data intensive and require knowledge of conduit locations. This model can be applied for cases where water temperature in a well or spring receives all or part of its water from a phreatic conduit. Heat transport in the conduit is simulated by using a physically-based heat-transport equation that accounts for inflow of diffuse flow from smaller openings and fissures in the surrounding aquifer during periods of low recharge. Additional diffuse flow that is within the zone of influence of the well or spring but has not interacted with the conduit is accounted for with a binary mixing equation to proportion these different water sources. The estimation of this proportion through inverse modeling is useful for the assessment of contaminant vulnerability and well-head or spring protection. The model was applied to 7 months of continuous temperature data for a sinking stream that recharges a conduit and a pumped well open to the Madison aquifer in western South Dakota. The simulated conduit-flow fraction to the well ranged from 2% to 31% of total flow, and simulated conduit velocity ranged from 44 to 353 m/d.

  14. Superconducting cable-in-conduit low resistance splice

    DOEpatents

    Artman, Thomas A.

    2003-06-24

    A low resistance splice connects two cable-in-conduit superconductors to each other. Dividing collars for arranging sub-cable units from each conduit are provided, along with clamping collars for mating each sub-cable wire assembly to form mated assemblies. The mated assemblies ideally can be accomplished by way of splicing collar. The mated assemblies are cooled by way of a flow of coolant, preferably helium. A method for implementing such a splicing is also described.

  15. Understanding Volcanic Conduit Dynamics: from Experimental Fragmentation to Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, A.; Alatorre-Ibarguengoitia, M. A.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The investigation of conduit dynamics at high pressure, under controlled laboratory conditions is a powerful tool to understand the physics behind volcanic processes before an eruption. In this work, we analyze the characteristics of the seismic response of an "experimental volcano" focusing on the dynamics of the conduit behavior during the fragmentation process of volcanic rocks. The "experimental volcano" is represented by a shock tube apparatus, which consists of a low-pressure voluminous tank (3 x 0.40 m), for sample recovery; and a high-pressure pipe-like conduit (16.5 x 2,5 cm), which represents the volcanic source mechanism, where rock samples are pressurized and fragmented. These two serial steel pipes are connected and sealed by a set of diaphragms that bear pressures in a range of 4 to 20 MPa. The history of the overall process of an explosion consists of four steps: 1) the slow pressurization of the pipe-like conduit filled with solid pumice and gas, 2) the sudden removal of the diaphragms, 3) the rapid decompression of the system and 4) the ejection of the gas-particle mixture. Each step imprints distinctive features on the microseismic records, reflecting the conduit dynamics during the explosion. In this work we show how features such as waveform characteristics, the three components of the force system acting on the conduit, the independent components of the moment tensor, the volumetric change of the source mechanism, the arrival time of the shock wave and its velocity, are quantified from the experimental microseismic data. Knowing these features, each step of the eruptive process, the conduit conditions and the source mechanism characteristics can be determined. The procedure applied in this experimental approach allows the use of seismic field data to estimate volcanic conduit conditions before an eruption takes place. We state on the hypothesis that the physics behind the pressurization and depressurization process of any conduit is the same

  16. Virtual Surgery for Conduit Reconstruction of the Right Ventricular Outflow Tract.

    PubMed

    Ong, Chin Siang; Loke, Yue-Hin; Opfermann, Justin; Olivieri, Laura; Vricella, Luca; Krieger, Axel; Hibino, Narutoshi

    2017-05-01

    Virtual surgery involves the planning and simulation of surgical reconstruction using three-dimensional (3D) modeling based upon individual patient data, augmented by simulation of planned surgical alterations including implantation of devices or grafts. Here we describe a case in which virtual cardiac surgery aided us in determining the optimal conduit size to use for the reconstruction of the right ventricular outflow tract. The patient is a young adolescent male with a history of tetralogy of Fallot with pulmonary atresia, requiring right ventricle-to-pulmonary artery (RV-PA) conduit replacement. Utilizing preoperative magnetic resonance imaging data, virtual surgery was undertaken to construct his heart in 3D and to simulate the implantation of three different sizes of RV-PA conduit (18, 20, and 22 mm). Virtual cardiac surgery allowed us to predict the ability to implant a conduit of a size that would likely remain adequate in the face of continued somatic growth and also allow for the possibility of transcatheter pulmonary valve implantation at some time in the future. Subsequently, the patient underwent uneventful conduit change surgery with implantation of a 22-mm Hancock valved conduit. As predicted, the intrathoracic space was sufficient to accommodate the relatively large conduit size without geometric distortion or sternal compression. Virtual cardiac surgery gives surgeons the ability to simulate the implantation of prostheses of different sizes in relation to the dimensions of a specific patient's own heart and thoracic cavity in 3D prior to surgery. This can be very helpful in predicting optimal conduit size, determining appropriate timing of surgery, and patient education.

  17. Jugular venous valved conduit (Contegra) matches allograft performance in infant truncus arteriosus repair.

    PubMed

    Hickey, Edward J; McCrindle, Brian W; Blackstone, Eugene H; Yeh, Thomas; Pigula, Frank; Clarke, David; Tchervenkov, Christo I; Hawkins, John

    2008-05-01

    Limited availability and durability of allograft conduits require that alternatives be considered. We compared bovine jugular venous valved (JVV) and allograft conduit performance in 107 infants who survived truncus arteriosus repair. Children were prospectively recruited between 2003 and 2007 from 17 institutions. The median z-score for JVV (n=27, all 12 mm) was +2.1 (range +1.2 to +3.2) and allograft (n=80, 9-15mm) was +1.7 (range -0.4 to +3.6). Propensity-adjusted comparison of conduit survival was undertaken using parametric risk-hazard analysis and competing risks techniques. All available echocardiograms (n=745) were used to model deterioration of conduit function in regression equations adjusted for repeated measures. Overall conduit survival was 64+/-9% at 3 years. Conduit replacement was for conduit stenosis (n=16) and/or pulmonary artery stenosis (n=18) or regurgitation (n=1). The propensity-adjusted 3-year freedom from replacement for in-conduit stenosis was 96+/-4% for JVV and 69+/-8% for allograft (p=0.05). The risk of intervention or replacement for branch pulmonary artery stenosis was similar for JVV and allograft. Smaller conduit z-score predicted poor conduit performance (p<0.01) with best outcome between +1 and +3. Although JVV conduits were a uniform diameter, their z-score more consistently matched this ideal. JVV exhibited a non-significant trend towards slower progression of conduit regurgitation and peak right ventricular outflow tract (RVOT) gradient. In addition, catheter intervention was more successful at slowing subsequent gradient progression in children with JVV versus those with allograft (p<0.01). JVV does match allograft performance and may be advantageous. It is an appropriate first choice for repair of truncus arteriosus, and perhaps other small infants requiring RVOT reconstruction.

  18. Environmental tracers as indicators of karst conduits in groundwater in South Dakota, USA

    USGS Publications Warehouse

    Long, Andrew J.; Sawyer, J.F.; Putnam, L.D.

    2008-01-01

    Environmental tracers sampled from the carbonate Madison aquifer on the eastern flank of the Black Hills, South Dakota, USA indicated the approximate locations of four major karst conduits. Contamination issues are a major concern because these conduits are characterized by direct connections to sinking streams, high groundwater velocities, and proximity to public water supplies. Objectives of the study were to estimate approximate conduit locations and assess possible anthropogenic influences associated with conduits. Anomalies of young groundwater based on chlorofluorocarbons (CFCs), tritium, and electrical conductivity (EC) indicated fast moving, focused flow and thus the likely presence of conduits. ??18O was useful for determining sources of recharge for each conduit, and nitrate was a useful tracer for assessing flow paths for anthropogenic influences. Two of the four conduits terminate at or near a large spring complex. CFC apparent ages ranged from 15 years near conduits to >50 years in other areas. Nitrate-N concentrations >0.4 mg/L in groundwater were associated with each of the four conduits compared with concentrations ranging from <0.1 to 0.4 mg/L in other areas. These higher nitrate-N concentrations probably do not result from sinking streams but rather from other areas of infiltration. ?? Springer-Verlag 2007.

  19. The secondary cell wall polysaccharide of Bacillus anthracis provides the specific binding ligand for the C-terminal cell wall-binding domain of two phage endolysins, PlyL and PlyG

    PubMed Central

    Ganguly, Jhuma; Low, Lieh Y; Kamal, Nazia; Saile, Elke; Forsberg, L Scott; Gutierrez-Sanchez, Gerardo; Hoffmaster, Alex R; Liddington, Robert; Quinn, Conrad P; Carlson, Russell W; Kannenberg, Elmar L

    2013-01-01

    Endolysins are bacteriophage enzymes that lyse their bacterial host for phage progeny release. They commonly contain an N-terminal catalytic domain that hydrolyzes bacterial peptidoglycan (PG) and a C-terminal cell wall-binding domain (CBD) that confers enzyme localization to the PG substrate. Two endolysins, phage lysin L (PlyL) and phage lysin G (PlyG), are specific for Bacillus anthracis. To date, the cell wall ligands for their C-terminal CBD have not been identified. We recently described structures for a number of secondary cell wall polysaccharides (SCWPs) from B. anthracis and B. cereus strains. They are covalently bound to the PG and are comprised of a -ManNAc-GlcNAc-HexNAc- backbone with various galactosyl or glucosyl substitutions. Surface plasmon resonance (SPR) showed that the endolysins PlyL and PlyG bind to the SCWP from B. anthracis (SCWPBa) with high affinity (i.e. in the μM range with dissociation constants ranging from 0.81 × 10−6 to 7.51 × 10−6 M). In addition, the PlyL and PlyG SCWPBa binding sites reside with their C-terminal domains. The dissociation constants for the interactions of these endolysins and their derived C-terminal domains with the SCWPBa were in the range reported for other protein–carbohydrate interactions. Our findings show that the SCWPBa is the ligand that confers PlyL and PlyG lysin binding and localization to the PG. PlyL and PlyG also bound the SCWP from B. cereus G9241 with comparable affinities to SCWPBa. No detectable binding was found to the SCWPs from B. cereus ATCC (American Type Culture Collection) 10987 and ATCC 14579, thus demonstrating specificity of lysin binding to SCWPs. PMID:23493680

  20. Results and analysis of the hot-spot temperature experiment for a cable-in-conduit conductor with thick conduit

    NASA Astrophysics Data System (ADS)

    Sedlak, Kamil; Bruzzone, Pierluigi

    2015-12-01

    In the design of future DEMO fusion reactor a long time constant (∼23 s) is required for an emergency current dump in the toroidal field (TF) coils, e.g. in case of a quench detection. This requirement is driven mainly by imposing a limit on forces on mechanical structures, namely on the vacuum vessel. As a consequence, the superconducting cable-in-conduit conductors (CICC) of the TF coil have to withstand heat dissipation lasting tens of seconds at the section where the quench started. During that time, the heat will be partially absorbed by the (massive) steel conduit and electrical insulation, thus reducing the hot-spot temperature estimated strictly from the enthalpy of the strand bundle. A dedicated experiment has been set up at CRPP to investigate the radial heat propagation and the hot-spot temperature in a CICC with a 10 mm thick steel conduit and a 2 mm thick glass epoxy outer electrical insulation. The medium size, ∅ = 18 mm, NbTi CICC was powered by the operating current of up to 10 kA. The temperature profile was monitored by 10 temperature sensors. The current dump conditions, namely the decay time constant and the quench detection delay, were varied. The experimental results show that the thick conduit significantly contributes to the overall enthalpy balance, and consequently reduces the amount of copper required for the quench protection in superconducting cables for fusion reactors.

  1. Modified Ross procedure using a conduit with a synthetic valve.

    PubMed

    Takabayashi, Shin; Kado, Hideaki; Shiokawa, Yuichi; Fukae, Kouji; Nakano, Toshihide

    2004-12-01

    In the Ross procedure, a homograft conduit is commonly used in place of an autotransplanted pulmonary valve. Homograft availability may be a problem and has resulted in a search for alternatives. We performed a modified Ross procedure for right ventricular outflow tract reconstruction with a synthetic valved conduit as an alternative to homograft. Our early results of valvular and right ventricular function were evaluated in patients who used a conduit with a synthetic valve. Subjects consisted of 11 patients, who ranged in age from 5 to 22 years (12.0+/-4.9), and whose body weight ranged from 15.1 to 52.5 (34.3+/-14.4) kg. Indications for surgery were aortic stenosis (n=3), aortic stenosis and regurgitation (n=4), and aortic regurgitation (n=4). Right ventricular outflow tract reconstruction was performed using a hand-fashioned valved conduit prepared by sewing a 0.1 mm thick polytetrafluoroethylene sheet onto the luminal cavity of the 20-28 mm conduit. A conduit made with polytetrafluoroethylene was used in 8 patients, and a Dacron graft was used in 3 patients. There was no in-hospital or late mortality and angiocardiography at discharge revealed that all artificial valves remained active. The mean right atrial pressure and right ventricular end-diastolic pressure were not statistically different from preoperative values. The latest echocardiography (mean interval, 12.6 months) revealed that a mean pressure gradient across the synthetic valve was 11.4+/-11.1 mmHg and none of the patients had moderate or severe regurgitation. We demonstrated that a modified Ross procedure for right ventricular outflow tract reconstruction using a conduit with an appropriate synthetic valve is particularly effective in older children.

  2. Nonperturbative renormalization of quark bilinear operators and B{sub K} using domain wall fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Y.; Dawson, C.; Brookhaven National Laboratory, Upton, New York 11973

    2008-09-01

    We present a calculation of the renormalization coefficients of the quark bilinear operators and the K-K mixing parameter B{sub K}. The coefficients relating the bare lattice operators to those in the RI/MOM scheme are computed nonperturbatively and then matched perturbatively to the MS scheme. The coefficients are calculated on the RBC/UKQCD 2+1 flavor dynamical lattice configurations. Specifically we use a 16{sup 3}x32 lattice volume, the Iwasaki gauge action at {beta}=2.13 and domain wall fermions with L{sub s}=16.

  3. Current driven dynamics of magnetic domain walls in permalloy nanowires

    NASA Astrophysics Data System (ADS)

    Hayashi, Masamitsu

    The significant advances in micro-fabrication techniques opened the door to access interesting properties in solid state physics. With regard to magnetic materials, geometrical confinement of magnetic structures alters the defining parameters that govern magnetism. For example, development of single domain nano-pillars made from magnetic multilayers led to the discovery of electrical current controlled magnetization switching, which revealed the existence of spin transfer torque. Magnetic domain walls (DWs) are boundaries in magnetic materials that divide regions with distinct magnetization directions. DWs play an important role in the magnetization reversal processes of both bulk and thin film magnetic materials. The motion of DW is conventionally controlled by magnetic fields. Recently, it has been proposed that spin polarized current passed across the DW can also control the motion of DWs. Current in most magnetic materials is spin-polarized, due to spin-dependent scattering of the electrons, and thus can deliver spin angular momentum to the DW, providing a "spin transfer" torque on the DW which leads to DW motion. In addition, owing to the development of micro-fabrication techniques, geometrical confinement of magnetic materials enables creation and manipulation of a "single" DW in magnetic nanostructures. New paradigms for DW-based devices are made possible by the direct manipulation of DWs using spin polarized electrical current via spin transfer torque. This dissertation covers research on current induced DW motion in magnetic nanowires. Fascinating effects arising from the interplay between DWs with spin polarized current will be revealed.

  4. Conduit Coating Abrasion Testing

    NASA Technical Reports Server (NTRS)

    Sullivan, Mary K.

    2013-01-01

    During my summer internship at NASA I have been working alongside the team members of the RESTORE project. Engineers working on the RESTORE project are creating ·a device that can go into space and service satellites that no longer work due to gas shortage or other technical difficulties. In order to complete the task of refueling the satellite a hose needs to be used and covered with a material that can withstand effects of space. The conduit coating abrasion test will help the researchers figure out what type of thermal coating to use on the hose that will be refueling the satellites. The objective of the project is to determine whether or not the conduit coating will withstand the effects of space. For the RESTORE project I will help with various aspects of the testing that needed to be done in order to determine which type of conduit should be used for refueling the satellite. During my time on the project I will be assisting with wiring a relay board that connected to the test set up by soldering, configuring wires and testing for continuity. Prior to the testing I will work on creating the testing site and help write the procedure for the test. The testing will take place over a span of two weeks and lead to an informative conclusion. Working alongside various RESTORE team members I will assist with the project's documentation and records. All in all, throughout my internship at NASA I hope to learn a number of valuable skills and be a part of a hard working team of engineers.

  5. Direct Observation of Domain-Wall Surface Tension by Deflating or Inflating a Magnetic Bubble

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Vernier, Nicolas; Zhao, Weisheng; Yu, Haiming; Vila, Laurent; Zhang, Yue; Ravelosona, Dafiné

    2018-02-01

    The surface energy of a magnetic domain wall (DW) strongly affects its static and dynamic behaviors. However, this effect is seldom directly observed, and some of the related phenomena are not well understood. Moreover, a reliable method to quantify the DW surface energy is still absent. Here, we report a series of experiments in which the DW surface energy becomes a dominant parameter. We observe that a semicircular magnetic domain bubble can spontaneously collapse under the Laplace pressure induced by DW surface energy. We further demonstrate that the surface energy can lead to a geometrically induced pinning when the DW propagates in a Hall cross or from a nanowire into a nucleation pad. Based on these observations, we develop two methods to quantify the DW surface energy, which can be very helpful in the estimation of intrinsic parameters such as Dzyaloshinskii-Moriya interactions or exchange stiffness in magnetic ultrathin films.

  6. Magneto-optic gradient effect in domain-wall images: At the crossroads of magneto-optics and micromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kambersky, V.; Schaefer, R.; Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069 Dresden

    2011-07-15

    An anomalous symmetry of magneto-optical images of ferromagnetic domain walls was reported by Schaefer and Hubert [Phys. Status Solidi A 118, 271 (1990)] and interpreted in terms of light amplitudes proportional to the magnetization gradient. We present analytic and numerical calculations supporting such proportionality under additional conditions implied by classical rules of micromagnetics and address some objections presented by Banno [Phys. Rev. A 77, 033818 (2008)] against such proportionality.

  7. Manipulation of domain-wall solitons in bi- and trilayer graphene

    NASA Astrophysics Data System (ADS)

    Jiang, Lili; Wang, Sheng; Shi, Zhiwen; Jin, Chenhao; Utama, M. Iqbal Bakti; Zhao, Sihan; Shen, Yuen-Ron; Gao, Hong-Jun; Zhang, Guangyu; Wang, Feng

    2018-01-01

    Topological dislocations and stacking faults greatly affect the performance of functional crystalline materials1-3. Layer-stacking domain walls (DWs) in graphene alter its electronic properties and give rise to fascinating new physics such as quantum valley Hall edge states4-10. Extensive efforts have been dedicated to the engineering of dislocations to obtain materials with advanced properties. However, the manipulation of individual dislocations to precisely control the local structure and local properties of bulk material remains an outstanding challenge. Here we report the manipulation of individual layer-stacking DWs in bi- and trilayer graphene by means of a local mechanical force exerted by an atomic force microscope tip. We demonstrate experimentally the capability to move, erase and split individual DWs as well as annihilate or create closed-loop DWs. We further show that the DW motion is highly anisotropic, offering a simple approach to create solitons with designed atomic structures. Most artificially created DW structures are found to be stable at room temperature.

  8. Imaging and tuning polarity at SrTiO 3 domain walls

    DOE PAGES

    Frenkel, Yiftach; Haham, Noam; Shperber, Yishai; ...

    2017-09-18

    Electrostatic fields tune the ground state of interfaces between complex oxide materials. Electronic properties, such as conductivity and superconductivity, can be tuned and then used to create and control circuit elements and gate-defined devices. Here in this paper, we show that naturally occurring twin boundaries, with properties that are different from their surrounding bulk, can tune the LaAlO 3/SrTiO 3 interface 2DEG at the nanoscale. In particular, SrTiO 3 domain boundaries have the unusual distinction of remaining highly mobile down to low temperatures, and were recently suggested to be polar. Here we apply localized pressure to an individual SrTiO 3more » twin boundary and detect a change in LaAlO 3/SrTiO 3 interface current distribution. Our data directly confirm the existence of polarity at the twin boundaries, and demonstrate that they can serve as effective tunable gates. As the location of SrTiO 3 domain walls can be controlled using external field stimuli, our findings suggest a novel approach to manipulate SrTiO 3-based devices on the nanoscale.« less

  9. The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122 BC

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Wilson, C. J. N.; Del Carlo, P.; Coltelli, M.; Sable, J. E.; Carey, R.

    2004-09-01

    Basaltic volcanism is most typically thought to produce effusion of lava, with the most explosive manifestations ranging from mild Strombolian activity to more energetic fire fountain eruptions. However, some basaltic eruptions are now recognized as extremely violent, i.e., generating widespread phreatomagmatic, subplinian and Plinian fall deposits. We focus here on the influence of conduit processes, especially partial open-system degassing, in triggering abrupt changes in style and intensity that occurred during two examples of basaltic Plinian volcanism. We use the 1886 eruption of Tarawera, New Zealand, the youngest known basaltic Plinian eruption and the only one for which there are detailed written eyewitness accounts, and the well-documented 122 BC eruption of Mount Etna, Italy, and present new grain size and vesicularity data from the proximal deposits. These data show that even during extremely powerful basaltic eruptions, conduit processes play a critical role in modifying the form of the eruptions. Even with very high discharge, and presumably ascent, rates, partial open-system behaviour of basaltic melts becomes a critical factor that leads to development of domains of largely stagnant and outgassed melt that restricts the effective radius of the conduit. The exact path taken in the waning stages of the eruptions varied, in response to factors which included conduit geometry, efficiency and extent of outgassing and availability of ground water, but a relatively abrupt cessation to sustained high-intensity discharge was an inevitable consequence of the degassing processes.

  10. Thermal gradients for the stabilization of a single domain wall in magnetic nanowires.

    PubMed

    Mejía-López, J; Velásquez, E A; Mazo-Zuluaga, J; Altbir, D

    2018-08-24

    By means of Monte Carlo simulations we studied field driven nucleation and propagation of transverse domain walls (DWs) in magnetic nanowires subjected to temperature gradients. Simulations identified the existence of critical thermal gradients that allow the existence of reversal processes driven by a single DW. Critical thermal gradients depend on external parameters such as temperature, magnetic field and wire length, and can be experimentally obtained through the measurement of the mean velocity of the magnetization reversal as a function of the temperature gradient. Our results show that temperature gradients provide a high degree of control over DW propagation, which is of great importance for technological applications.

  11. Small-sized conduits in the right ventricular outflow tract in young children: bicuspidalized homografts are a good alternative to standard conduits.

    PubMed

    François, Katrien; De Groote, Katya; Vandekerckhove, Kristof; De Wilde, Hans; De Wolf, Daniel; Bové, Thierry

    2017-10-03

    Downsizing a homograft (HG) through bicuspidalization has been used for more than 2 decades to overcome the shortage of small-sized conduits for reconstruction of the right ventricular outflow tract (RVOT) in young children. Our goal was to investigate the durability of bicuspidalized HGs compared with other small HGs. A retrospective analysis of 93 conduits ≤20 mm, implanted over 23 years, was performed. The end-points were survival, structural valve degeneration and conduit replacement. The conduits comprised 40 pulmonary HGs, 12 aortic HGs, 17 bicuspidalized HGs and 24 xenografts. The median age, mean conduit diameter and z-value at implantation were 1.4 (interquartile range 0.3-3) years, 16.5 ± 2.7 mm and 2.8 ± 1.3, respectively. Valve position was heterotopic in 59 patients and orthotopic in 34 patients. At a mean follow-up period of 7.6 ± 5.9 years, the hospital survival rate was 89%. Freedom from explant at 5 and 10 years was 83 ± 5% and 52 ± 6%, respectively. Freedom from structural valve degeneration was 79 ± 5% at 5 years and 47 ± 6% at 10 years [68 ± 8% for pulmonary HG, 42 ± 16% for bicuspidalized HG, 31 ± 15% for aortic HG and 20 ± 9% for xenografts (log rank P < 0.001)]. Multivariable analysis indicated an increased risk for structural valve degeneration with smaller conduit size (hazard ratio 0.79, 95% confidence interval 0.67-0.94; P < 0.008), extra-anatomic position (hazard ratio 2.71, 95% confidence interval 1.33-5.50; P = 0.006) and the use of xenografts compared with non-downsized pulmonary HGs (hazard ratio 4.90, 95% confidence interval 2.23-10.76; P < 0.001). Appropriately sized pulmonary HGs remain the most durable option for a right ventricular outflow tract conduit in young children. However, when a small pulmonary HG is unavailable, bicuspidalization offers a valid alternative, preferable to xenograft conduits, at mid-term follow-up. © The Author

  12. Mesoscopic Metal-Insulator Transition at Ferroelastic Domain Walls in VO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Keith M; Kalinin, Sergei V; Kolmakov, Andrei

    2010-01-01

    The novel phenomena induced by symmetry breaking at homointerfaces between ferroic variants in ferroelectric and ferroelastic materials have attracted recently much attention. Using variable temperature scanning microwave microscopy, we demonstrate the mesoscopic strain-induced metal-insulator phase transitions in the vicinity of ferroelastic domain walls in the semiconductive VO2 that nucleated at temperatures as much as 10-12 C below bulk transition, resulting in the formation of conductive channels in the material. Density functional theory is used to rationalize the process low activation energy. This behavior, linked to the strain inhomogeneity inherent in ferroelastic materials, can strongly affect interpretation of phase-transition studies inmore » VO2 and similar materials with symmetry-lowering transitions, and can also be used to enable new generations of electronic devices though strain engineering of conductive and semiconductive regions.« less

  13. Controlling Wavebreaking in a Viscous Fluid Conduit

    NASA Astrophysics Data System (ADS)

    Anderson, Dalton; Maiden, Michelle; Hoefer, Mark

    2015-11-01

    This poster will present a new technique in the experimental investigation of dispersive hydrodynamics. In shallow water flows, internal ocean waves, superfluids, and optical media, wave breaking can be resolved by a dispersive shock wave (DSW). In this work, an experimental method to control the location of DSW formation (gradient catastrophe) is explained. The central idea is to convert an initial value problem (Riemann problem) into an equivalent boundary value problem. The system to which this technique is applied is a fluid conduit resulting from high viscosity contrast between a buoyant interior and heavier exterior fluid. The conduit cross-sectional area is modeled by a nonlinear, conservative, dispersive, third order partial differential equation. Using this model, the aim is to predict the breaking location of a DSW by controlling one boundary condition. An analytical expression for this boundary condition is derived by solving the dispersionless equation backward in time from the desired step via the method of characteristics. This is used in experiment to generate an injection rate profile for a high precision piston pump. This translates to the desired conduit shape. Varying the jump height and desired breaking location indicates good control of DSW formation. This result can be improved by deriving a conduit profile by numerical simulation of the full model equation. Controlling the breaking location of a DSW allows for the investigation of dynamics independent of the boundary. Support provided by NSF CAREER DMS-1255422 , NSF EXTREEMS.

  14. Novel technique for airless connection of artificial heart to vascular conduits.

    PubMed

    Karimov, Jamshid H; Gao, Shengqiang; Dessoffy, Raymond; Sunagawa, Gengo; Sinkewich, Martin; Grady, Patrick; Sale, Shiva; Moazami, Nader; Fukamachi, Kiyotaka

    2017-12-01

    Successful implantation of a total artificial heart relies on multiple standardized procedures, primarily the resection of the native heart, and exacting preparation of the atrial and vascular conduits for pump implant and activation. Achieving secure pump connections to inflow/outflow conduits is critical to a successful outcome. During the connection process, however, air may be introduced into the circulation, traveling to the brain and multiple organs. Such air emboli block blood flow to these areas and are detrimental to long-term survival. A correctly managed pump-to-conduit connection prevents air from collecting in the pump and conduits. To further optimize pump-connection techniques, we have developed a novel connecting sleeve that enables airless connection of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) to the conduits. In this brief report, we describe the connecting sleeve design and our initial results from two acute in vivo implantations using a scaled-down version of the CFTAH.

  15. Generation of Complex Karstic Conduit Networks with a Hydro-chemical Model

    NASA Astrophysics Data System (ADS)

    De Rooij, R.; Graham, W. D.

    2016-12-01

    The discrete-continuum approach is very well suited to simulate flow and solute transport within karst aquifers. Using this approach, discrete one-dimensional conduits are embedded within a three-dimensional continuum representative of the porous limestone matrix. Typically, however, little is known about the geometry of the karstic conduit network. As such the discrete-continuum approach is rarely used for practical applications. It may be argued, however, that the uncertainty associated with the geometry of the network could be handled by modeling an ensemble of possible karst conduit networks within a stochastic framework. We propose to generate stochastically realistic karst conduit networks by simulating the widening of conduits as caused by the dissolution of limestone over geological relevant timescales. We illustrate that advanced numerical techniques permit to solve the non-linear and coupled hydro-chemical processes efficiently, such that relatively large and complex networks can be generated in acceptable time frames. Instead of specifying flow boundary conditions on conduit cells to recharge the network as is typically done in classical speleogenesis models, we specify an effective rainfall rate over the land surface and let model physics determine the amount of water entering the network. This is advantageous since the amount of water entering the network is extremely difficult to reconstruct, whereas the effective rainfall rate may be quantified using paleoclimatic data. Furthermore, we show that poorly known flow conditions may be constrained by requiring a realistic flow field. Using our speleogenesis model we have investigated factors that influence the geometry of simulated conduit networks. We illustrate that our model generates typical branchwork, network and anastomotic conduit systems. Flow, solute transport and water ages in karst aquifers are simulated using a few illustrative networks.

  16. Domain wall structure and interactions in 50 nm wide Cobalt nanowires

    NASA Astrophysics Data System (ADS)

    Tu, Kun-Hua; Ojha, Shuchi; Ross, Caroline A.

    2018-05-01

    Arrays of cobalt nanowires with widths of 50 nm, thickness of 5 and 20 nm and periodicity of 70 nm were fabricated by pattern transfer from a self-assembled block copolymer film. Transverse domain walls (DWs) were imaged by magnetic force microscopy, indicating repulsive interactions between DWs of the same sign in the 20 nm thick wires. Micromagnetic simulations were used to identify the interactions in the six distinct cases of a pair of transverse DWs in adjacent wires, considering all the possible combinations of head-to-head and tail-to-tail DWs and the orientation of the core magnetization. The boundary between repulsive and attractive DW interactions is mapped out for wires as a function of thickness, width and interwire spacing.

  17. Transcript Profiling Identifies NAC-Domain Genes Involved in Regulating Wall Ingrowth Deposition in Phloem Parenchyma Transfer Cells of Arabidopsis thaliana

    PubMed Central

    Wu, Yuzhou; Hou, Jiexi; Yu, Fen; Nguyen, Suong T. T.; McCurdy, David W.

    2018-01-01

    Transfer cells (TCs) play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP) cells of Arabidopsis leaf veins trans-differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC) complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018, as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC-domain family in Arabidopsis play important roles in regulating wall ingrowth

  18. Transcript Profiling Identifies NAC-Domain Genes Involved in Regulating Wall Ingrowth Deposition in Phloem Parenchyma Transfer Cells of Arabidopsis thaliana.

    PubMed

    Wu, Yuzhou; Hou, Jiexi; Yu, Fen; Nguyen, Suong T T; McCurdy, David W

    2018-01-01

    Transfer cells (TCs) play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP) cells of Arabidopsis leaf veins trans -differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC) complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018 , as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC-domain family in Arabidopsis play important roles in regulating wall

  19. Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit.

    PubMed

    Kalbermatten, D F; Kingham, P J; Mahay, D; Mantovani, C; Pettersson, J; Raffoul, W; Balcin, H; Pierer, G; Terenghi, G

    2008-06-01

    Peripheral nerve injury presents with specific problems of neuronal reconstructions, and from a clinical viewpoint a tissue engineering approach would facilitate the process of repair and regeneration. We have previously used artificial nerve conduits made from bioresorbable poly-3-hydroxybutyrate (PHB) in order to refine the ways in which peripheral nerves are repaired and reconnected to the target muscles and skin. The addition of Schwann cells (SC) or differentiated mesenchymal stem cells (dMSC) to the conduits enhances regeneration. In this study, we have used a matrix based on fibrin (Tisseel) to fill optimally the nerve-conduits with cells. In vitro analysis showed that both SC and MSC adhered significantly better to PHB in the presence of fibrin and cells continued to maintain their differentiated state. Cells were more optimally distributed throughout the conduit when seeded in fibrin than by delivery in growth medium alone. Transplantation of the nerve conduits in vivo showed that cells in combination with fibrin matrix significantly increased nerve regeneration distance (using PGP9.5 and S100 distal and proximal immunohistochemistry) when compared with empty PHB conduits. This study shows the beneficial combinatory effect of an optimised matrix, cells and conduit material as a step towards bridging nerve gaps which should ultimately lead to improved functional recovery following nerve injury.

  20. Domain walls and Dzyaloshinskii-Moriya interaction in epitaxial Co/Ir(111) and Pt/Co/Ir(111)

    NASA Astrophysics Data System (ADS)

    Perini, Marco; Meyer, Sebastian; Dupé, Bertrand; von Malottki, Stephan; Kubetzka, André; von Bergmann, Kirsten; Wiesendanger, Roland; Heinze, Stefan

    2018-05-01

    We use spin-polarized scanning tunneling microscopy and density functional theory (DFT) to study domain walls (DWs) and the Dzyaloshinskii-Moriya interaction (DMI) in epitaxial films of Co/Ir(111) and Pt/Co/Ir(111). Our measurements reveal DWs with fixed rotational sense for one monolayer of Co on Ir, with a wall width around 2.7 nm. With Pt islands on top, we observe that the DWs occur mostly in the uncovered Co/Ir areas, suggesting that the wall energy density is higher in Pt/Co/Ir(111). From DFT we find an interfacial DMI that stabilizes Néel-type DWs with clockwise rotational sense. The calculated DW widths are in good agreement with the experimental observations. The calculated total DMI nearly doubles from Co/Ir(111) to Pt/Co/Ir(111); however, in the latter case the DMI is almost entirely due to the Pt with only a minor Ir contribution. Therefore a simple additive effect, in which both interfaces contribute significantly to the total DMI, is not observed for one atomic Co layer sandwiched between Ir and Pt.

  1. Correlation between impurity distribution and location of ferroelectric domain walls in Nd : Mg : LiNbO 3 single crystal

    NASA Astrophysics Data System (ADS)

    Naumova, I. I.; Evlanova, N. F.; Blokhin, S. A.; Lavrishchev, S. V.

    1998-04-01

    Using selective chemical etching, scanning electron microscope (SEM) and wave dispersive X-ray (WDX) microanalysis we showed that the ferroelectric domain walls coincide with the maxima and minima Nd-impurity modulation in a periodically poled Nd : Mg : LiNbO 3 crystal grown by the Czochralski method along the normal to the (0 1 1¯ 2) face. Asymmetric form of the Nd-modulation produces nonequal positive and negative domains for one period. Variations of instantaneous rate of growth were estimated for facet and nonfacet crystal region in the framework of Burton-Prim-Slichter theory.

  2. Domain wall and interphase boundary motion in (1-x)Bi(Mg 0.5 Ti 0.5 )O 3 –xPbTiO 3 near the morphotropic phase boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tutuncu, Goknur; Chen, Jun; Fan, Longlong

    Electric field-induced changes in the domain wall motion of (1-x)Bi(Mg 0.5Ti 0.5)O 3–xPbTiO 3 (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x =0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phasesmore » for BMT-37PT is larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.« less

  3. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration.

    PubMed

    Hadlock, T; Sundback, C; Hunter, D; Cheney, M; Vacanti, J P

    2000-04-01

    Alternatives to autografts have long been sought for use in bridging neural gaps. Many entubulation materials have been studied, although with generally disappointing results in comparison with autografts. The purpose of this study was to design a more effective neural guidance conduit, to introduce Schwann cells into the conduit, and to determine regenerative capability through it in an in vivo model. A novel, fully biodegradable polymer conduit was designed and fabricated for use in peripheral nerve repair, which approximates the macro- and microarchitecture of native peripheral nerves. It comprised a series of longitudinally aligned channels, with diameters ranging from 60 to 550 microns. The lumenal surfaces promoted the adherence of Schwann cells, whose presence is known to play a key role in nerve regeneration. This unique channel architecture increased the surface area available for Schwann cell adherence up to five-fold over that available through a simple hollow conduit. The conduit was composed of a high-molecular-weight copolymer of lactic and glycolic acids (PLGA) (MW 130,000) in an 85:15 monomer ratio. A novel foam-processing technique, employing low-pressure injection molding, was used to create highly porous conduits (approximately 90% pore volume) with continuous longitudinal channels. Using this technique, conduits were constructed containing 1, 5, 16, 45, or more longitudinally aligned channels. Prior to cellular seeding of these conduits, the foams were prewet with 50% ethanol, flushed with physiologic saline, and coated with laminin solution (10 microg/mL). A Schwann cell suspension was dynamically introduced into these processed foams at a concentration of 5 X 10(5) cells/mL, using a simple bioreactor flow loop. In vivo regeneration studies were carried out in which cell-laden five-channel polymer conduits (individual channel ID 500 microm, total conduit OD 2.3 mm) were implanted across a 7-mm gap in the rat sciatic nerve (n = 4), and midgraft

  4. D meson semileptonic form factors in Nf = 3 QCD with Möbius domain-wall quarks

    NASA Astrophysics Data System (ADS)

    Kaneko, Takashi; Colquhoun, Brian; Fukaya, Hidenori; Hashimoto, Shoji

    2018-03-01

    e present our calculation of D → π and D → K semileptonic form factors in Nf = 2 + 1 lattice QCD. We simulate three lattice cutoffs a-1 ≃ 2.5, 3.6 and 4.5 GeV with pion masses as low as 230 MeV. The Möbius domain-wall action is employed for both light and charm quarks. We present our results for the vector and scalar form factors and discuss their dependence on the lattice spacing, light quark masses and momentum transfer.

  5. 30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. [Statutory Provisions] All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically...

  6. 30 CFR 77.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conduits enclosing power conductors. 77.700 Section 77.700 Mineral Resources MINE SAFETY AND HEALTH..., and conduits enclosing power conductors. Metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout and shall be grounded by methods approved by an...

  7. 30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. [Statutory Provisions] All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically...

  8. 30 CFR 77.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conduits enclosing power conductors. 77.700 Section 77.700 Mineral Resources MINE SAFETY AND HEALTH..., and conduits enclosing power conductors. Metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout and shall be grounded by methods approved by an...

  9. First-Principles Calculations of Current-Induced Spin-Transfer Torques in Magnetic Domain Walls

    NASA Astrophysics Data System (ADS)

    Tang, Ling; Xu, Zhijun; Yang, Zejin

    2013-05-01

    Current-induced spin-transfer torques (STTs) have been studied in Fe, Co and Ni domain walls (DWs) by the method based on the first-principles noncollinear calculations of scattering wavefunctions expanded in the tight-binding linearized muffin-tin orbital (TB-LMTO) basis. The results show that the out-of-plane component of nonadiabatic STT in Fe DW has localized form, which is in contrast to the typical nonlocal oscillating nonadiabatic torques obtained in Co and Ni DWs. Meanwhile, the degree of nonadiabaticity in STT is also much greater for Fe DW. Further, our results demonstrate that compared to the well-known first-order nonadiabatic STT, the torque in the third-order spatial derivative of local spin can better describe the distribution of localized nonadiabatic STT in Fe DW. The dynamics of local spin driven by this third-order torques in Fe DW have been investigated by the Landau-Lifshitz-Gilbert (LLG) equation. The calculated results show that with the same amplitude of STTs the DW velocity induced by this third-order term is about half of the wall speed for the case of the first-order nonadiabatic STT.

  10. Reverse Saphenous Conduit Flap in 19 Dogs and 1 Cat.

    PubMed

    Cavalcanti, Jacqueline V J; Barry, Sabrina L; Lanz, Otto I; Barnes, Katherine; Coutin, Julia V

    2018-05-14

    The purpose of this retrospective study was to report the outcomes of 19 dogs and 1 cat undergoing reverse saphenous conduit flap between 1999 and 2016. Reverse saphenous conduit flap was used to treat traumatic wounds and wounds resulting from tumor excision in the hind limb; the majority of cases had medial shearing injuries. All animals had complete flap survival. In five animals (20%), minor donor site dehiscence occurred, which did not require surgery. Other postoperative complications included signs of severe venous congestion in one dog. Reverse saphenous conduit flap is a useful technique to repair skin defects of the distal hind limb.

  11. Orbicules and Comb Layers: Igneous Layering in Shallow Plutons as a Result of Mineral Growth in Subvolcanic Conduits

    NASA Astrophysics Data System (ADS)

    McCarthy, A. J.; Müntener, O.

    2017-12-01

    Different processes have been proposed to explain the variety of igneous layering in plutonic rocks. Vertical layering in particular has been described as resulting from various processes such as Ostwald ripening, oscillatory crystallization or reactive mush infiltration in cooling plutons. Comb layers and orbicules are formed by the growth of elongated, feather-like minerals growing ±perpendicular to the layering and nucleating either on dyke walls (comb layers) or on xenoliths (orbicules) at the contact between homogenous plutons. Through a detailed study of the mineralogy, bulk chemistry and the size-frequency distribution of representative comb layers and orbicules of the 110Ma Fisher Lake Pluton (Sierra Nevada, USA), we show that comb layers and orbicules show no evidence of forming through a self-organizing, oscillatory crystallization process, but represent crystallization fronts resulting from in-situ crystallization and extraction of evolved melt fractions during decompression-driven crystallization of superheated melts in subvolcanic conduits. The microstructures are dominated by the formation of a plagioclase-dominated cres-cumulate at the mm- to m-scale. We propose that the crystal content of the melt and the dynamics of the magmatic system control the mechanisms responsible for vertical igneous layering in shallow reservoirs. Moreover, the mineralogical and compositional variation of orbicules rims and comb layers can be ascribed to variations in pressure, temperature and cooling rates within the subvolcanic conduit, with estimated growth timescales of mm- to m-thick orbicules and comb layers ranging from weeks to years. Moreover, though plagioclase-glomerocrysts found in erupted volcanic products are generally interpreted as remobilized crystal-mush, we propose that some glomerocrysts might represent "failed" orbicules forming within vertical conduits upon eruption. Such glomerocrysts, as well as orbicules found in erupted volcanic products, might

  12. Optimal spin current pattern for fast domain wall propagation in nanowires

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Sun, Zhouzhou; Schliemann, John; Wang, Xiangrong

    2011-03-01

    One of the important issues in nanomagnetism is to lower the current needed for a technologically useful domain wall (DW) propagation speed. Based on the modified Landau-Lifshitz-Gilbert (LLG) equation with both Slonczewski spin-transfer torque and the field-like torque, we derive an optimal temporally and spatially varying spin current pattern for fast DW propagation along nanowires. Under such conditions, the DW velocity in biaxial wires can be enhanced as much as tens of times higher than that achieved in experiments so far. Moreover, the fast variation of spin polarization can efficiently help DW depinning. Possible experimental realizations are discussed. This work is supported by Hong Kong RGC grants (#603508, 604109, RPC10SC05 and HKU10/CRF/08-HKUST17/CRF/08), and by Deutsche Forschungsgemeinschaft via SFB 689. ZZS thanks the Alexander von Humboldt Foundation (Germany) for a grant.

  13. Non-Debye domain-wall-induced dielectric response in Sr0.61-xCexBa0.39Nb2O6

    NASA Astrophysics Data System (ADS)

    Kleemann, W.; Dec, J.; Miga, S.; Woike, Th.; Pankrath, R.

    2002-06-01

    Two different non-Debye dielectric spectra are observed in a polydomain relaxor-ferroelectric Sr0.61-xBa0.39Nb2O6:Ce3+x single crystal in the vicinity of its transition temperature, Tc~320 K. At infralow frequencies the susceptibility varies as χ*~ω-β, β~0.2, and is attributed to an irreversible creep-like viscous motion of domain walls, while logarithmic dispersion due to reversible wall relaxation [T. Nattermann, Y. Shapir, and I. Vilfan, Phys. Rev. B 42, 8577 (1990)] occurs at larger ω.

  14. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits.

    PubMed

    Wang, Chunyang; Jia, Yachao; Yang, Weichao; Zhang, Cheng; Zhang, Kuihua; Chai, Yimin

    2018-07-01

    Silk fibroin (SF)-based nerve conduits have been widely used to bridge peripheral nerve defects. Our previous study showed that nerve regeneration in a SF-blended poly (l-lactide-co-ɛ-caprolactone) [P(LLA-CL)] nerve conduit is better than that in a P(LLA-CL) conduit. However, the involved mechanisms remain unclarified. Because angiogenesis within a nerve conduit plays an important role in nerve regeneration, vascularization of SF/P(LLA-CL) and P(LLA-CL) conduits was compared both in vitro and in vivo. In the present study, we observed that SF/P(LLA-CL) nanofibers significantly promoted fibroblast proliferation, and vascular endothelial growth factor secreted by fibroblasts seeded in SF/P(LLA-CL) nanofibers was more than seven-fold higher than that in P(LLA-CL) nanofibers. Conditioned medium of fibroblasts in the SF/P(LLA-CL) group stimulated more human umbilical vein endothelial cells (HUVEC) to form capillary-like networks and promoted faster HUVEC migration. The two kinds of nerve conduits were used to bridge 10-mm-length nerve defects in rats. At 3 weeks of reparation, the blood vessel area in the SF/P(LLA-CL) group was significantly larger than that in the P(LLA-CL) group. More regenerated axons and Schwann cells were also observed in the SF/P(LLA-CL) group, which was consistent with the results of blood vessels. Collectively, our data revealed that the SF/P(LLA-CL) nerve conduit enhances peripheral nerve regeneration by improving angiogenesis within the conduit. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2070-2077, 2018. © 2018 Wiley Periodicals, Inc.

  15. Substructure hybrid testing of reinforced concrete shear wall structure using a domain overlapping technique

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Pan, Peng; Gong, Runhua; Wang, Tao; Xue, Weichen

    2017-10-01

    An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.

  16. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve.

    PubMed

    Xie, Hongjian; Yang, Wen; Chen, Jianghai; Zhang, Jinxiang; Lu, Xiaochen; Zhao, Xiaobo; Huang, Kun; Li, Huili; Chang, Panpan; Wang, Zheng; Wang, Lin

    2015-10-28

    Peripheral nerve gap defects lead to significant loss of sensory or motor function. Tissue engineering has become an important alternative to nerve repair. Sericin, a major component of silk, is a natural protein whose value in tissue engineering has just begun to be explored. Here, the first time use of sericin in vivo is reported as a long-term implant for peripheral nerve regeneration. A sericin nerve guidance conduit is designed and fabricated. This conduit is highly porous with mechanical strength matching peripheral nerve tissue. It supports Schwann cell proliferation and is capable of up-regulating the transcription of glial cell derived neurotrophic factor and nerve growth factor in Schwann cells. The sericin conduit wrapped with a silicone conduit (sericin/silicone double conduits) is used for bridging repair of a 5 mm gap in a rat sciatic nerve transection model. The sericin/silicone double conduits achieve functional recovery comparable to that of autologous nerve grafting as evidenced by drastically improved nerve function and morphology. Importantly, this improvement is mainly attributed to the sericin conduit as the silicone conduit alone only produces marginal functional recovery. This sericin/silicone-double-conduit strategy offers an efficient and valuable alternative to autologous nerve grafting for repairing damaged peripheral nerve. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The origin of dispersion of magnetoresistance of a domain wall spin valve

    NASA Astrophysics Data System (ADS)

    Sato, Jun; Matsushita, Katsuyoshi; Imamura, Hiroshi

    2010-01-01

    We theoretically study the current-perpendicular-to-plane magnetoresistance of a domain wall confined in a nanocontact which is experimentally fabricated as current-confined-path (CCP) structure in a nano-oxide-layer (NOL). We solve the non-collinear spin diffusion equation by using the finite element method and calculate the MR ratio by evaluating the additional voltage drop due to the spin accumulation. We investigate the origin of dispersion of magnetoresistance by considering the effect of randomness of the size and distribution of the nanocontacts in the NOL. It is observed that the effect of randomness of the contact size is much larger than that of the contact distribution. Our results suggest that the origin of dispersion of magnetoresistance observed in the experiments is the randomness of the size of the nanocontacts in the NOL.

  18. Control of vortex state in cobalt nanorings with domain wall pinning centers

    NASA Astrophysics Data System (ADS)

    Lal, Manohar; Sakshath, S.; Mohanan Parakkat, Vineeth; Anil Kumar, P. S.

    2018-05-01

    Magnetic rings at the mesoscopic scale exhibit new spin configuration states and switching behavior, which can be controlled via geometrical structure, material composition and applied field. Vortex states in magnetic nanorings ensure flux closure, which is necessary for low stray fields in high packing density in memory devices. We performed magnetoresistance measurements on cobalt nanoring devices and show that by attaching nanowires to the ring, the vortex state can be stabilized. When a square pad is attached to the free end of the wire, the domain wall nucleation field in the nanowire is reduced. In addition, the vortex state persists over a larger range of magnetic fields, and exists at all in-plane orientations of the magnetic field. These experimental findings are well supported by our micromagnetic simulations.

  19. The performance of Hancock porcine-valved Dacron conduit for right ventricular outflow tract reconstruction.

    PubMed

    Belli, Emre; Salihoğlu, Ece; Leobon, Bertrand; Roubertie, François; Ly, Mohammed; Roussin, Régine; Serraf, Alain

    2010-01-01

    The surgical reconstruction of right ventricle outflow tract (RVOT) often requires the implantation of a valved conduit. Homografts are lacking availability and are associated with limited durability in children. Our experience with the Hancock porcine-valved Dacron (DuPont, Wilmington, DE) conduit (Medtronic, Minneapolis, MN) was retrospectively assessed. Follow-up was studied in 214 survivors who underwent 247 conduit implants between January 1990 and January 2007. Pulmonary atresia/ventricular septal defect was present in 86 (40.2%) and truncus arteriosus in 62 (29%). Conduit implantation was associated with anatomic repair in 136, conduit replacement in 96, and secondary pulmonary valve insertion in 15. Median age at operation was 62.5 months (range, 1 week to 50 years), including 14 neonates (6%). Median conduit size was 17.4 mm because of routine over-sizing. Pulmonary bifurcation patch augmentation was necessary in 26 patients. Periodic echocardiography studies were performed for a median follow-up of 98 months (range, 13 to 142 months). Three (1.4%) late deaths occurred. No conduit-related deaths or complications occurred. Conduit degeneration was associated with increase in valvular gradient. Valve regurgitation was absent or mild. Higher RVOT systolic pressure gradient at discharge did not influence conduit longevity. Conduit reoperation was delayed due to percutaneous balloon dilatation in 14 patients, associated with stenting in 7. Survival with freedom from conduit reoperation was 98% (95% confidence interval [CI], 97% to 100%) at 1 year, 81% (95% CI, 75% to 87%) at 5 years, and 32% (95% CI, 22% to 42%) at 10 years. The Hancock valved conduit is a safe and reliable alternative to homografts. It appears to be appropriate in patients with limited pulmonary vascular bed and high pulmonary artery pressures. Caution is required in neonates because of the rigidity of the Dacron housing. Initial results with secondary percutaneous procedures are encouraging

  20. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-11-10

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  1. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  2. Linking Volcano Infrasound Observations to Conduit Processes for Vulcanian Eruptions

    NASA Astrophysics Data System (ADS)

    Watson, L. M.; Dunham, E. M.; Almquist, M.; Mattsson, K.; Ampong, K.

    2016-12-01

    Volcano infrasound observations have been used to infer a range of eruption parameters, such as volume flux and exit velocity, with the majority of work focused on subaerial processes. Here, we propose using infrasound observations to investigate the subsurface processes of the volcanic system. We develop a one-dimensional model of the volcanic system, coupling an unsteady conduit model to a description of a volcanic jet with sound waves generated by the expansion of the jet. The conduit model describes isothermal two-phase flow with no relative motion between the phases. We are currently working on including crystals and adding conservation of energy to the governing equations. The model captures the descent of the fragmentation front into the conduit and approaches a steady state solution with choked flow at the vent. The descending fragmentation front influences the time history of mass discharge from the vent, which is linked to the infrasound signal through the volcanic jet model. The jet model is coupled to the conduit by conservation of mass, momentum, and energy. We compare simulation results for a range of models of the volcanic jet, ranging in complexity from assuming conservation of volume, as has been done in some previous infrasound studies, to solving the Euler equations for the surrounding compressible atmosphere and accounting for entrainment. Our model is designed for short-lived, impulsive Vulcanian eruptions, such as those seen at Sakurajima Volcano, with activity triggered by a sudden drop in pressure at the top of the conduit. The intention is to compare the simulated signals to observations and to devise an inverse procedure to enable inversion for conduit properties.

  3. Fast switching and signature of efficient domain wall motion driven by spin-orbit torques in a perpendicular anisotropy magnetic insulator/Pt bilayer

    NASA Astrophysics Data System (ADS)

    Avci, Can Onur; Rosenberg, Ethan; Baumgartner, Manuel; Beran, Lukáš; Quindeau, Andy; Gambardella, Pietro; Ross, Caroline A.; Beach, Geoffrey S. D.

    2017-08-01

    We report fast and efficient current-induced switching of a perpendicular anisotropy magnetic insulator thulium iron garnet by using spin-orbit torques (SOT) from the Pt overlayer. We first show that, with quasi-DC (10 ms) current pulses, SOT-induced switching can be achieved with an external field as low as 2 Oe, making TmIG an outstanding candidate to realize efficient switching in heterostructures that produce moderate stray fields without requiring an external field. We then demonstrate deterministic switching with fast current pulses (≤20 ns) with an amplitude of ˜1012 A/m2, similar to all-metallic structures. We reveal that, in the presence of an initially nucleated domain, the critical switching current is reduced by up to a factor of five with respect to the fully saturated initial state, implying efficient current-driven domain wall motion in this system. Based on measurements with 2 ns-long pulses, we estimate the domain wall velocity of the order of ˜400 m/s per j = 1012 A/m2.

  4. Morbidity and mortality after use of iliac conduits for endovascular aortic aneurysm repair.

    PubMed

    Gupta, Prateek K; Sundaram, Abhishek; Kent, K Craig

    2015-07-01

    Although placement of an open iliac conduit for endovascular aortic aneurysm repair (EVAR) is generally felt to result in higher morbidity and mortality, published literature is scarce. Our objective was to assess 30-day outcomes after elective EVAR with an open iliac conduit using a multi-institutional database. Patients who underwent elective EVAR (n = 14,339) for abdominal aortic aneurysm were identified from the American College of Surgeons National Surgical Quality Improvement Program 2005 to 2011 database. Univariable and multivariable logistic regression analyses were performed. An open iliac conduit was used in 231 patients (1.6%), and the remainder had femoral exposure or percutaneous EVAR. Women comprised 32% of patients with iliac conduits in contrast to 17% of those without iliac conduits. Patients with iliac conduits were older and had a lower body mass index. Univariable analysis showed patients with open iliac conduits had a higher incidence of postoperative pneumonia (3.0% vs 1.1%), ventilator dependence (4.8% vs 1.0%), renal failure (3.0% vs 0.7%), cardiac arrest or myocardial infarction (5.2% vs 1.1%), return to the operating room (9.1% vs 3.7%), major morbidity (16.0 vs 6.6%), and death (3.0% vs 0.9%). On multivariable analysis, the use of open iliac conduits was associated with higher risk of 30-day mortality (odds ratio, 2.7; 95% confidence interval, 1.2-6.0) and 30-day major morbidity (odds ratio, 2.3; 95% confidence interval, 1.6-3.3). Patients with open iliac conduits for EVAR are more likely to be female and have higher postoperative morbidity and mortality. For patients with complex iliac artery disease, conduits are a viable alternative after EVAR to be performed, albeit at an increased risk. These data do suggest the need for lower-profile grafts and other alternative strategies for navigating complex iliac artery disease. Copyright © 2015 Society for Vascular Surgery. All rights reserved.

  5. Midterm performance of a novel restorative pulmonary valved conduit: preclinical results.

    PubMed

    Soliman, Osama I; Miyazaki, Yosuke; Abdelghani, Mohammad; Brugmans, Marieke; Witsenburg, Maarten; Onuma, Yoshinobu; Cox, Martijn; Serruys, Patrick W

    2017-12-08

    The Xeltis bioabsorbable pulmonary valved conduit (XPV), designed to guide functional restoration of patients' own tissue, is potentially more durable than current pulmonary bioprosthetic valves/valved conduits. The aim of this study was to assess the haemodynamic performance of the novel XPV implanted in an ovine model. The XPV was surgically implanted in adult sheep under general anaesthesia and cardiopulmonary bypass (XPV group, n=20). Sheep that received a Hancock bioprosthetic pulmonary valved conduit served as a control group (HPV group, n=3). Transthoracic echocardiograms from VARC-2 recommended time points at 3, 6, 9, 12, 18 and 24 months (XPV group) and at 3 and 6 months (HPV group) after the procedure were analysed in an independent core laboratory. The primary endpoint was favourable valved conduit performance, defined as peak systolic pressure gradient <40 mmHg, no severe pulmonary regurgitation (PR), and a maximum conduit patency index of -20%. In the latter, negative values denote luminal narrowing and vice versa. The valvular peak systolic pressure gradient (mmHg) was 25.6±9.7 (3 months), 19.6±7.1 (6 months), 10.0±9.2 (24 months) in the XPV group and 18.4±6.6 (3 months), 17.7±4.6 (6 months) in the HPV group. The patency index (%) of the conduit at the valvular level was +30.3±13.6 (6 months) and +64.1±1.4 (24 months) in the XPV group and +2.0±15.9 (6 months) in the HPV group. PR was trace or mild at all visits, except in one animal with persistent moderate PR in the XPV group, up to 24 months. The XPV showed a favourable and durable haemodynamic performance (up to two years after implantation), without conduit narrowing/obstruction or severe regurgitation.

  6. Walls, anomalies, and deconfinement in quantum antiferromagnets

    NASA Astrophysics Data System (ADS)

    Komargodski, Zohar; Sulejmanpasic, Tin; Ünsal, Mithat

    2018-02-01

    We consider the Abelian-Higgs model in 2 +1 dimensions with instanton-monopole defects. This model is closely related to the phases of quantum antiferromagnets. In the presence of Z2 preserving monopole operators, there are two confining ground states in the monopole phase, corresponding to the valence bond solid (VBS) phase of quantum magnets. We show that the domain wall carries a 't Hooft anomaly in this case. The anomaly can be saturated by, e.g., charge-conjugation breaking on the wall or by the domain wall theory becoming gapless (a gapless model that saturates the anomaly is S U (2) 1 WZW). Either way the fundamental scalar particles (i.e., spinons) which are confined in the bulk are deconfined on the domain wall. This Z2 phase can be realized either with spin-1/2 on a rectangular lattice or spin-1 on a square lattice. In both cases the domain wall contains spin-1/2 particles (which are absent in the bulk). We discuss the possible relation to recent lattice simulations of domain walls in VBS. We further generalize the discussion to Abrikosov-Nielsen-Olsen (ANO) vortices in a dual superconductor of the Abelian-Higgs model in 3 +1 dimensions and to the easy-plane limit of antiferromagnets. In the latter case the wall can undergo a variant of the BKT transition (consistent with the anomalies) while the bulk is still gapped. The same is true for the easy-axis limit of antiferromagnets. We also touch upon some analogies to Yang-Mills theory.

  7. Development and evaluation of a pliable biological valved conduit. Part II: Functional and hemodynamic evaluation.

    PubMed

    Sung, H W; Witzel, T H; Hata, C; Tu, R; Shen, S H; Lin, D; Noishiki, Y; Tomizawa, Y; Quijano, R C

    1993-04-01

    Many congenital cardiac malformations may require a valved conduit for the reconstruction of the right ventricular outflow tract. In spite of many endeavors made in the last 25 years, the clinical results of right ventricular outflow tract reconstruction with currently available valved conduits are still not satisfactory. Specific problems encountered clinically include suboptimal hemodynamic performance, conduit kinking or compression, and fibrous peeling from the luminal surface. To address these deficiencies, we undertook the development of a biological valved conduit: a bovine external jugular vein graft with a retained native valve cross-linked with a diglycidyl ether (DE). This study, using a canine model, was to evaluate the functional and hemodynamic performance of this newly developed valved conduit. Three 14 mm conduits, implanted as bypass grafts, right ventricle to pulmonary artery, were evaluated. The evaluation was conducted with a noninvasive color Doppler flow mapping system at pre-implantation, immediately post implantation, one- and three-months post implantation, and prior to retrieval (five-months post implantation). The two-dimensional tomographic inspection of the leaflet motion at various periods post implantation showed that the valvular leaflets in the DE treated conduit was quite pliable. No cardiac failure or valvular dysfunction was observed in any of the studied cases. The color Doppler flow mapping study demonstrated that the valve in the DE treated conduit was competent, with no conduit kinking or compression observed in any of the three cases. The spectral Doppler velocity study evidenced that the transvalvular pressure gradients of the DE treated conduit were minimal as compared to those of the currently available conduits. In conclusion, from the functional and hemodynamic performance points of view, this newly developed valved conduit is superior to those currently available.

  8. The effects of conduit length and acoustic velocity on conduit resonance: Implications for low-frequency events

    NASA Astrophysics Data System (ADS)

    Sturton, Susan; Neuberg, Jürgen

    2006-03-01

    Low-frequency seismic events at volcanoes are modelled as the seismic wavefield from a magma-filled conduit embedded in a solid country rock using a finite difference method. The effects of varying the conduit length and the impedance contrast between the magma and the country rock are examined, generating a range of possible signals. Short-windowed spectrograms are used to look at the time-frequency relationships within the events in detail, and some of the possible variations are identified using a series of schematic spectrograms. The numerical results are compared to examples of observed seismic data from Soufrière Hills Volcano, Montserrat. While the spectra of the observed events are often different to the spectra of the numerical results, the spectrograms have similar features and show that the low-frequency events from Montserrat are composed of discrete subevents.

  9. Dynamic control of magnetic nanowires by light-induced domain-wall kickoffs

    NASA Astrophysics Data System (ADS)

    Heintze, Eric; El Hallak, Fadi; Clauß, Conrad; Rettori, Angelo; Pini, Maria Gloria; Totti, Federico; Dressel, Martin; Bogani, Lapo

    2013-03-01

    Controlling the speed at which systems evolve is a challenge shared by all disciplines, and otherwise unrelated areas use common theoretical frameworks towards this goal. A particularly widespread model is Glauber dynamics, which describes the time evolution of the Ising model and can be applied to any binary system. Here we show, using molecular nanowires under irradiation, that Glauber dynamics can be controlled by a novel domain-wall kickoff mechanism. In contrast to known processes, the kickoff has unambiguous fingerprints, slowing down the spin-flip attempt rate by several orders of magnitude, and following a scaling law. The required irradiance is very low, a substantial improvement over present methods of magneto-optical switching. These results provide a new way to control and study stochastic dynamic processes. Being general for Glauber dynamics, they can be extended to different kinds of magnetic nanowires and to numerous fields, ranging from social evolution to neural networks and chemical reactivity.

  10. Atiyah-Patodi-Singer index from the domain-wall fermion Dirac operator

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Onogi, Tetsuya; Yamaguchi, Satoshi

    2017-12-01

    The Atiyah-Patodi-Singer (APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. The mathematical setup for this theorem is, however, not directly related to the physical fermion system, as it imposes on the fermion fields a nonlocal boundary condition known as the "APS boundary condition" by hand, which is unlikely to be realized in the materials. In this work, we attempt to reformulate the APS index in a "physicist-friendly" way for a simple setup with U (1 ) or S U (N ) gauge group on a flat four-dimensional Euclidean space. We find that the same index as APS is obtained from the domain-wall fermion Dirac operator with a local boundary condition, which is naturally given by the kink structure in the mass term. As the boundary condition does not depend on the gauge fields, our new definition of the index is easy to compute with the standard Fujikawa method.

  11. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration

    NASA Technical Reports Server (NTRS)

    Widmer, M. S.; Gupta, P. K.; Lu, L.; Meszlenyi, R. K.; Evans, G. R.; Brandt, K.; Savel, T.; Gurlek, A.; Patrick, C. W. Jr; Mikos, A. G.; hide

    1998-01-01

    We have fabricated porous, biodegradable tubular conduits for guided tissue regeneration using a combined solvent casting and extrusion technique. The biodegradable polymers used in this study were poly(DL-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA). A polymer/salt composite was first prepared by a solvent casting process. After drying, the composite was extruded to form a tubular construct. The salt particles in the construct were then leached out leaving a conduit with an open-pore structure. PLGA was studied as a model polymer to analyze the effects of salt weight fraction, salt particle size, and processing temperature on porosity and pore size of the extruded conduits. The porosity and pore size were found to increase with increasing salt weight fraction. Increasing the salt particle size increased the pore diameter but did not affect the porosity. High extrusion temperatures decreased the pore diameter without altering the porosity. Greater decrease in molecular weight was observed for conduits manufactured at higher temperatures. The mechanical properties of both PLGA and PLLA conduits were tested after degradation in vitro for up to 8 weeks. The modulus and failure strength of PLLA conduits were approximately 10 times higher than those of PLGA conduits. Failure strain was similar for both conduits. After degradation for 8 weeks, the molecular weights of the PLGA and PLLA conduits decreased to 38% and 43% of the initial values, respectively. However, both conduits maintained their shape and did not collapse. The PLGA also remained amorphous throughout the time course, while the crystallinity of PLLA increased from 5.2% to 11.5%. The potential of seeding the conduits with cells for transplantation or with biodegradable polymer microparticles for drug delivery was also tested with dyed microspheres. These porous tubular structures hold great promise for the regeneration of tissues which require tubular scaffolds such as peripheral nerve

  12. Current induced domain wall motion and tilting in Pt/Co/Ta structures with perpendicular magnetic anisotropy in the presence of the Dyzaloshinskii–Moriya interaction

    NASA Astrophysics Data System (ADS)

    Yun, Jijun; Li, Dong; Cui, Baoshan; Guo, Xiaobin; Wu, Kai; Zhang, Xu; Wang, Yupei; Mao, Jian; Zuo, Yalu; Xi, Li

    2018-04-01

    Current induced domain wall motion (CIDWM) was studied in Pt/Co/Ta structures with perpendicular magnetic anisotropy and the Dyzaloshinskii–Moriya interaction (DMI) by the spin-orbit torque (SOT). We measured the strength of DMI and SOT efficiency in Pt/Co/Ta with the variation of the thickness of Ta using a current induced hysteresis loop shift method. The results indicate that the DMI stabilizes a chiral Néel-type domain wall (DW), and the DW motion can be driven by the enhanced large SOT generated from Pt and Ta with opposite signs of spin Hall angle in Pt/Co/Ta stacks. The CIDWM velocity, which is 104 times larger than the field driven DW velocity, obeys a creep law, and reaches around tens of meters per second with current density of ~106 A cm‑2. We also found that the Joule heating accompanied with current also accelerates the DW motion. Meanwhile, a domain wall tilting was observed, which increases with current density increasing. These results can be explained by the spin Hall effect generated from both heavy metals Pt and Ta, inherent DMI, and the current accompanying Joule heating effect. Our results could provide some new designing prospects to move multiple DWs by SOT for achieving racetrack memories.

  13. Totally biological composite aortic stentless valved conduit for aortic root replacement: 10-year experience

    PubMed Central

    2011-01-01

    Objectives To retrospectively analyze the clinical outcome of a totally biological composite stentless aortic valved conduit (No-React® BioConduit) implanted using the Bentall procedure over ten years in a single centre. Methods Between 27/10/99 and 19/01/08, the No-React® BioConduit composite graft was implanted in 67 patients. Data on these patients were collected from the in-hospital database, from patient notes and from questionnaires. A cohort of patients had 2D-echocardiogram with an average of 4.3 ± 0.45 years post-operatively to evaluate valve function, calcification, and the diameter of the conduit. Results Implantation in 67 patients represented a follow-up of 371.3 patient-year. Males were 60% of the operated population, with a mean age of 67.9 ± 1.3 years (range 34.1-83.8 years), 21 of them below the age of 65. After a mean follow-up of 7.1 ± 0.3 years (range of 2.2-10.5 years), more than 50% of the survivors were in NYHA I/II and more than 60% of the survivors were angina-free (CCS 0). The overall 10-year survival following replacement of the aortic valve and root was 51%. During this period, 88% of patients were free from valved-conduit related complications leading to mortality. Post-operative echocardiography studies showed no evidence of stenosis, dilatation, calcification or thrombosis. Importantly, during the 10-year follow-up period no failures of the valved conduit were reported, suggesting that the tissue of the conduit does not structurally change (histology of one explant showed normal cusp and conduit). Conclusions The No-React® BioConduit composite stentless aortic valved conduit provides excellent long-term clinical results for aortic root replacement with few prosthesis-related complications in the first post-operative decade. PMID:21699696

  14. Pulse dynamics of dual-wavelength dissipative soliton resonances and domain wall solitons in a Tm fiber laser with fiber-based Lyot filter.

    PubMed

    Wang, Pan; Zhao, Kangjun; Xiao, Xiaosheng; Yang, Changxi

    2017-11-27

    We report on the first demonstration of dual-wavelength square-wave pulses in a thulium-doped fiber laser. Under appropriate cavity parameters, dual-wavelength dissipative soliton resonances (DSRs) and domain wall solitons (DWSs) are successively obtained. Meanwhile, dark pulses generation is achieved at the dual-wavelength DWSs region due to the overlap of the two domain wall pulses. The fiber-based Lyot filter, conducted by inserting PMF between an in-line PBS and a PD-ISO, facilitates the generation of dual-wavelength operation. The polarization-resolved investigation suggests that the cross coupling between two orthogonal polarization components in the high nonlinear fiber plays an important role in the square-wave pulses formation. The investigation may be helpful for further understanding the square-wave pulse formation and has potential in application filed of multi-wavelength pulsed fiber lasers.

  15. In search of the best xenogeneic material for a paediatric conduit: an experimental study.

    PubMed

    Zhuravleva, Irina Y; Nichay, Nataliya R; Kulyabin, Yuriy Y; Timchenko, Tatyana P; Korobeinikov, Alexander A; Polienko, Yuliya F; Shatskaya, Svetlana S; Kuznetsova, Elena V; Voitov, Alexey V; Bogachev-Prokophiev, Alexander V; Karaskov, Alexander M

    2018-05-01

    demonstrates a high mineralization-blocking efficacy for the bovine pericardium and should be employed to further develop the paediatric pericardial conduit. Aortic wall calcification cannot be blocked completely using this strategy.

  16. High speed turbogenerator for power recovery from fluid flow within conduit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, M. D.

    1985-11-26

    A high speed turbogenerator functionally combining, in one machine, an electrical generator and an expansion turbine. The electrical generator itself has a shaft supported on two bearings and the expansion turbine comprises an expander wheel overhung on the generator shaft and which rotates as a high pressure gas is let down in the expansion turbine to a lower pressure at a minimum predetermined flow rate and pressure drop. The shaft operates at speeds of about 6,000 rpm to 32,000 rpm, preferably at the higher end of such range, i.e. 20,000 to 24,000 rpm. The unit is sufficiently compact that amore » new use for the electrical generator is to modify the same such that the entire high speed turbogenerator is contained within the conduit carrying the gas to be let down in pressure and only electrical wires need be led through the conduit. The integrity of the conduit is thus retained to the extent possible and only a high pressure cable fitting extends through the conduit. In the preferred embodiment, the high speed turbogenerator is entirely fitted within a natural gas conduit in a gas distribution station, thereby achieving the pressure letdown and also obtaining useful electrical power.« less

  17. System and method for bidirectional flow and controlling fluid flow in a conduit

    DOEpatents

    Ortiz, Marcos German

    1999-01-01

    A system for measuring bidirectional flow, including backflow, of fluid in a conduit. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit.

  18. System and method for bidirectional flow and controlling fluid flow in a conduit

    DOEpatents

    Ortiz, M.G.

    1999-03-23

    A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.

  19. Bubble suspension rheology and implications for conduit flow

    NASA Astrophysics Data System (ADS)

    Llewellin, E. W.; Manga, M.

    2005-05-01

    Bubbles are ubiquitous in magma during eruption and influence the rheology of the suspension. Despite this, bubble-suspension rheology is routinely ignored in conduit-flow and eruption models, potentially impairing accuracy and resulting in the loss of important phenomenological richness. The omission is due, in part, to a historical confusion in the literature concerning the effect of bubbles on the rheology of a liquid. This confusion has now been largely resolved and recently published studies have identified two viscous regimes: in regime 1, the viscosity of the two-phase (magma-gas) suspension increases as gas volume fraction ϕ increases; in regime 2, the viscosity of the suspension decreases as ϕ increases. The viscous regime for a deforming bubble suspension can be determined by calculating two dimensionless numbers, the capillary number Ca and the dynamic capillary number Cd. We provide a didactic explanation of how to include the effect of bubble-suspension rheology in continuum, conduit-flow models. Bubble-suspension rheology is reviewed and a practical rheological model is presented, followed by an algorithmic, step-by-step guide to including the rheological model in conduit-flow models. Preliminary results from conduit-flow models which have implemented the model presented are discussed and it is concluded that the effect of bubbles on magma rheology may be important in nature and results in a decrease of at least 800 m in calculated fragmentation-depth and an increase of between 40% and 250% in calculated eruption-rate compared with the assumption of Newtonian rheology.

  20. Treatment of right ventricle to pulmonary artery conduit stenosis in infants with hypoplastic left heart syndrome.

    PubMed

    Münsterer, Andrea; Kasnar-Samprec, Jelena; Hörer, Jürgen; Cleuziou, Julie; Eicken, Andreas; Malcic, Ivan; Lange, Rüdiger; Schreiber, Christian

    2013-09-01

    To determine the incidence of right ventricle-to-pulmonary artery (RV-PA) conduit stenosis after the Norwood I operation in patients with hypoplastic left heart syndrome (HLHS), and to determine whether the treatment strategy of RV-PA conduit stenosis has an influence on interstage and overall survival. Ninety-six patients had a Norwood operation with RV-PA conduit between 2002 and 2011. Details of reoperations/interventions due to conduit obstruction prior to bidirectional superior cavopulmonary anastomosis (BSCPA) were collected. Overall pre-BSCPA mortality was 17%, early mortality after Norwood, 6%. Early angiography was performed in 34 patients due to desaturation at a median of 8 days after the Norwood operation. Fifteen patients (16%) were diagnosed with RV-PA conduit stenosis that required treatment. The location of the conduit stenosis was significantly different in the patients with non-ringed (proximal) and the patients with ring-enforced conduit (distal), P = 0.004. In 6 patients, a surgical revision of the conduit was performed; 3 of them died prior to BSCPA. Another 6 patients had a stent implantation and 3 were treated with balloon dilatation followed by a BSCPA in the subsequent 2 weeks. All patients who were treated interventionally for RV-PA conduit obstruction had a successful BSCPA. Patients who received a surgical RV-PA conduit revision had a significantly higher interstage (P = 0.044) and overall mortality (P = 0.011) than those who received a stent or balloon dilatation of the stenosis followed by an early BSCPA. RV-PA conduit obstruction after Norwood I procedure in patients with HLHS can be safely and effectively treated by stent implantation, balloon dilatation and early BSCPA. Surgical revision of the RV-PA conduit can be reserved for patients in whom an interventional approach fails, and an early BSCPA is not an option.

  1. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires

    NASA Astrophysics Data System (ADS)

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-02-01

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.

  2. Is the great attractor really a great wall

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert; Turner, Michael S.

    1988-01-01

    Some of the cosmological consequences are discussed of a late time phase transition which produces light domain walls. The observed peculiar velocity field of the Universe and the observed isotropy of the microwave background radiation severely constrain the wall surface density in such a scenario. The most interesting consequence of such a phase transition is the possibility that the local, coherent streaming motion reported by the Seven Samurai could be explained by the repulsive effect of a relic domain wall with the Hubble volume (the Great Wall).

  3. Development of a comprehensive inventory management system for underground fiber optic conduits.

    DOT National Transportation Integrated Search

    2013-03-01

    Major State Departments of Transportation operate and maintain networks of thousands of miles of conduits, many : carrying fiber optic cables that are vital to State communication systems. These conduits are located alongside or : across highways and...

  4. Return probability after a quench from a domain wall initial state in the spin-1/2 XXZ chain

    NASA Astrophysics Data System (ADS)

    Stéphan, Jean-Marie

    2017-10-01

    We study the return probability and its imaginary (τ) time continuation after a quench from a domain wall initial state in the XXZ spin chain, focusing mainly on the region with anisotropy \\vert Δ\\vert < 1 . We establish exact Fredholm determinant formulas for those, by exploiting a connection to the six-vertex model with domain wall boundary conditions. In imaginary time, we find the expected scaling for a partition function of a statistical mechanical model of area proportional to τ2 , which reflects the fact that the model exhibits the limit shape phenomenon. In real time, we observe that in the region \\vert Δ\\vert <1 the decay for long time t is nowhere continuous as a function of anisotropy: it is Gaussian at roots of unity and exponential otherwise. We also determine that the front moves as x_f(t)=t\\sqrt{1-Δ^2} , by the analytic continuation of known arctic curves in the six-vertex model. Exactly at \\vert Δ\\vert =1 , we find the return probability decays as e-\\zeta(3/2) \\sqrt{t/π}t1/2O(1) . It is argued that this result provides an upper bound on spin transport. In particular, it suggests that transport should be diffusive at the isotropic point for this quench.

  5. Monte Carlo simulation of ferroelectric domain growth

    NASA Astrophysics Data System (ADS)

    Li, B. L.; Liu, X. P.; Fang, F.; Zhu, J. L.; Liu, J.-M.

    2006-01-01

    The kinetics of two-dimensional isothermal domain growth in a quenched ferroelectric system is investigated using Monte Carlo simulation based on a realistic Ginzburg-Landau ferroelectric model with cubic-tetragonal (square-rectangle) phase transitions. The evolution of the domain pattern and domain size with annealing time is simulated, and the stability of trijunctions and tetrajunctions of domain walls is analyzed. It is found that in this much realistic model with strong dipole alignment anisotropy and long-range Coulomb interaction, the powerlaw for normal domain growth still stands applicable. Towards the late stage of domain growth, both the average domain area and reciprocal density of domain wall junctions increase linearly with time, and the one-parameter dynamic scaling of the domain growth is demonstrated.

  6. Stability of volcanic conduits: insights from magma ascent modelling and possible consequences on eruptive dynamics

    NASA Astrophysics Data System (ADS)

    Aravena, Alvaro; de'Michieli Vitturi, Mattia; Cioni, Raffaello; Neri, Augusto

    2017-04-01

    Geological evidences of changes in volcanic conduit geometry (i.e. erosive processes) are common in the volcanic record, as revealed by the occurrence of lithic fragments in most pyroclastic deposits. However, the controlling factors of conduit enlargement mechanisms are still partially unclear, as well as the influence of conduit geometry in the eruptive dynamics. Despite physical models have been systematically used for studying volcanic conduits, their mechanical stability has been poorly addressed. In order to study the mechanical stability of volcanic conduits during explosive eruptions, we present a 1D steady-state model which considers the main processes experimented by ascending magmas, such as crystallization, drag forces, fragmentation, outgassing and degassing; and the application of the Mogi-Coulomb collapse criterion, using a set of constitutive equations for studying typical cases of rhyolitic and trachytic explosive volcanism. From our results emerge that conduit stability is mainly controlled by magma rheology and conduit dimensions. Indeed, in order to be stable, feeding conduits of rhyolitic eruptions need larger radii respect to their trachytic counterparts, which is manifested in the higher eruption rates usually observed in rhyolitic explosive eruptions, as confirmed by a small compilation of global data. Additionally, for both magma compositions, we estimated a minimum magma flux for developing stable conduits (˜3ṡ106 kg/s for trachytic magmas and ˜8ṡ107 kg/s for rhyolitic magmas), which is consistent with the unsteady character commonly observed in low-mass flux events (e.g. sub-Plinian eruptions), which would be produced by episodic collapse events of the volcanic conduit, opposite to the mainly stationary high-mass flux events (e.g. Plinian eruptions), characterized by stable conduits. For a given magma composition, a minimum radius for reaching stable conditions can be computed, as a function of inlet overpressure and water content

  7. Evaluating MRI based vascular wall motion as a biomarker of Fontan hemodynamic performance

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad G.; Hong, Haifa

    2015-03-01

    The Fontan procedure for single-ventricle heart disease involves creation of pathways to divert venous blood from the superior & inferior venacavae (SVC, IVC) directly into the pulmonary arteries (PA), bypassing the right ventricle. For optimal surgical outcomes, venous flow energy loss in the resulting vascular construction must be minimized and ensuring close to equal flow distribution from the Fontan conduit connecting IVC to the left & right PA is paramount. This requires patient-specific hemodynamic evaluation using computational fluid dynamics (CFD) simulations which are often time and resource intensive, limiting applicability for real-time patient management in the clinic. In this study, we report preliminary efforts at identifying a new non-invasive imaging based surrogate for CFD simulated hemodynamics. We establish correlations between computed hemodynamic criteria from CFD modeling and cumulative wall displacement characteristics of the Fontan conduit quantified from cine cardiovascular MRI segmentations over time (i.e. 20 cardiac phases gated from the start of ventricular systole), in 5 unique Fontan surgical connections. To focus our attention on diameter variations while discounting side-to-side swaying motion of the Fontan conduit, the difference between its instantaneous regional expansion and inward contraction (averaged across the conduit) was computed and analyzed. Maximum Fontan conduit-average expansion over the cardiac cycle correlated with the anatomy-specific diametric offset between the axis of the IVC and SVC (r2=0.13, p=0.55) - a known factor correlated with Fontan energy loss and IVC-to-PA flow distribution. Investigation in a larger study cohort is needed to establish stronger statistical correlations.

  8. Modelling the Effects of Magma Properties, Pressure and Conduit Dimensions on the Seismic Signature

    NASA Astrophysics Data System (ADS)

    Sturton, S.; Neuberg, J.

    2002-12-01

    A finite-difference scheme is used to model the seismic radiation pattern for a fluid filled conduit surrounded by a solid medium. Seismic waves travel slower than the acoustic velocity inside the conduit and the propagation velocity is frequency dependent. At the ends of the conduit the waves are partly reflected back along the conduit and also leak into the solid medium. The seismometer signal obtained is therefore composed of a series of events released from the ends of the conduit. Each signal can be characterised by the repeat time of the events and the dispersion seen within each event. These characteristics are dependent on the seismic parameters and the conduit dimensions. For a gas-charged magma, increasing the pressure with depth reduces the volume of gas exsolved, thereby increasing the seismic velocity lower in the conduit. From the volume of gas exsolved, profiles of seismic parameters within the conduit and their evolution with time can be obtained. The differences between a varying velocity with depth and a constant velocity with depth are seen in the synthetic seismograms and spectrograms. At Soufriere Hills Volcano, Montserrat, single hybrid events merge into tremor and occasionally gliding lines are observed in the spectra indicating changes in the seismic parameters with time or varying triggering rates of single events. The synthetic seismograms are compared to the observational data and used to constrain the magnitude of pressure changes necessary to produce the gliding lines. Further constraints are obtained from the dispersion patterns in both the synthetic seismograms and the observed data.

  9. The bovine jugular vein: a totally integrated valved conduit to repair the right ventricular outflow.

    PubMed

    Carrel, Thierry; Berdat, Pascal; Pavlovic, Mladen; Pfammatter, Jean-Pierre

    2002-07-01

    Current techniques to correct valvular anomalies of the right ventricular outflow tract (RVOT) include repair and replacement of the pulmonary valve. However, the performance of currently used conduits has been less than ideal because of unfavorable hemodynamics and mid- to long-term complications. An early experience with a totally integrated Contegra valved conduit derived from a bovine jugular vein is reported; this conduit has the advantage that there is no discontinuity between its lumen and the valve it incorporates. Between October 1999 and October 2001, a total of 22 Contegra valved conduits (12-22 mm) was implanted in 21 children aged <5 years, and in one patient aged 21 years. Diagnosis included tetralogy of Fallot (n = 13), pulmonary atresia (n = 3), double outlet right ventricle with pulmonary stenosis (PS) (n = 3), transposition of the great arteries, ventricular septal defect and PS (n = 2) and truncus arteriosus (n = 1). In 15 of these patients, distal and proximal anastomoses were performed on the beating heart. There was no mortality and no valved-conduit-related early morbidity. Intraoperative invasive assessment demonstrated excellent hemodynamic characteristics: mean peak pressure increase was 8.5+/-6.3 mmHg (varying between 4 mmHg in the 20-mm conduit and 18 mmHg in the 14-mm conduit). These values were confirmed by pre-discharge transthoracic pulsed-wave Doppler echocardiography. Because of endocarditis, one conduit was explanted after 11 months and replaced with a pulmonary homograft. Two patients required reintervention. The Contegra valved conduit is an excellent immediate substitute in the treatment of RVOT lesion when a pulmonary valve has to be inserted. Both systolic and diastolic valve functions are promising. Further data are required to confirm the favorable hemodynamics, as well as the durability and efficacy of this conduit in the long term.

  10. Ash production by attrition in volcanic conduits and plumes.

    PubMed

    Jones, T J; Russell, J K

    2017-07-17

    Tephra deposits result from explosive volcanic eruption and serve as indirect probes into fragmentation processes operating in subsurface volcanic conduits. Primary magmatic fragmentation creates a population of pyroclasts through volatile-driven decompression during conduit ascent. In this study, we explore the role that secondary fragmentation, specifically attrition, has in transforming primary pyroclasts upon transport in volcanic conduits and plumes. We utilize total grain size distributions from a suite of natural and experimentally produced tephra to show that attrition is likely to occur in all explosive volcanic eruptions. Our experimental results indicate that fine ash production and surface area generation is fast (<15 min) thereby rapidly raising the fractal dimension of tephra deposits. Furthermore, a new metric, the Entropy of Information, is introduced to quantify the degree of attrition (secondary fragmentation) from grain size data. Attrition elevates fine ash production which, in turn, has consequences for eruption column stability, tephra dispersal, aggregation, volcanic lightening generation, and has concomitant effects on aviation safety and Earth's climate.

  11. Current polarity-dependent manipulation of antiferromagnetic domains

    NASA Astrophysics Data System (ADS)

    Wadley, Peter; Reimers, Sonka; Grzybowski, Michal J.; Andrews, Carl; Wang, Mu; Chauhan, Jasbinder S.; Gallagher, Bryan L.; Campion, Richard P.; Edmonds, Kevin W.; Dhesi, Sarnjeet S.; Maccherozzi, Francesco; Novak, Vit; Wunderlich, Joerg; Jungwirth, Tomas

    2018-05-01

    Antiferromagnets have several favourable properties as active elements in spintronic devices, including ultra-fast dynamics, zero stray fields and insensitivity to external magnetic fields1. Tetragonal CuMnAs is a testbed system in which the antiferromagnetic order parameter can be switched reversibly at ambient conditions using electrical currents2. In previous experiments, orthogonal in-plane current pulses were used to induce 90° rotations of antiferromagnetic domains and demonstrate the operation of all-electrical memory bits in a multi-terminal geometry3. Here, we demonstrate that antiferromagnetic domain walls can be manipulated to realize stable and reproducible domain changes using only two electrical contacts. This is achieved by using the polarity of the current to switch the sign of the current-induced effective field acting on the antiferromagnetic sublattices. The resulting reversible domain and domain wall reconfigurations are imaged using X-ray magnetic linear dichroism microscopy, and can also be detected electrically. Switching by domain-wall motion can occur at much lower current densities than those needed for coherent domain switching.

  12. Topological susceptibility of QCD with dynamical Möbius domain-wall fermions

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Cossu, G.; Fukaya, H.; Hashimoto, S.; Kaneko, T.

    2018-04-01

    We compute the topological susceptibility χ_t of lattice QCD with 2+1 dynamical quark flavors described by the Möbius domain-wall fermion. Violation of chiral symmetry as measured by the residual mass is kept at ˜1 MeV or smaller. We measure the fluctuation of the topological charge density in a "slab" sub-volume of the simulated lattice using the method proposed by W. Bietenholz, P. de Forcrand, and U. Gerber, J. High Energy Phys. 12, 070 (2015) and W. Bietenholz, K. Cichy, P. de Forcrand, A. Dromard, and U. Gerber, PoS LATTICE 2016, 321 (2016). The quark mass dependence of χ_t is consistent with the prediction of chiral perturbation theory, from which the chiral condensate is extracted as Σ^{\\overlineMS}(2 GeV) = [274(13)(29) MeV]^3, where the first error is statistical and the second one is systematic. Combining the results for the pion mass M_π and decay constant F_π, we obtain χ_t = 0.229(03)(13)M_π^2F_π^2 at the physical point.

  13. RI/MOM and RI/SMOM renormalization of overlap quark bilinears on domain wall fermion configurations

    NASA Astrophysics Data System (ADS)

    Bi, Yujiang; Cai, Hao; Chen, Ying; Gong, Ming; Liu, Keh-Fei; Liu, Zhaofeng; Yang, Yi-Bo; χ QCD Collaboration

    2018-05-01

    Renormalization constants (RCs) of overlap quark bilinear operators on 2 +1 -flavor domain wall fermion configurations are calculated by using the RI/MOM and RI/SMOM schemes. The scale independent RC for the axial vector current is computed by using a Ward identity. Then the RCs for the quark field and the vector, tensor, scalar, and pseudoscalar operators are calculated in both the RI/MOM and RI/SMOM schemes. The RCs are converted to the MS ¯ scheme and we compare the numerical results from using the two intermediate schemes. The lattice size is 4 83×96 and the inverse spacing 1 /a =1.730 (4 ) GeV .

  14. Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.; Giles, R. C.; Patterson, G.

    1991-01-01

    Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated.

  15. On two-point boundary correlations in the six-vertex model with domain wall boundary conditions

    NASA Astrophysics Data System (ADS)

    Colomo, F.; Pronko, A. G.

    2005-05-01

    The six-vertex model with domain wall boundary conditions on an N × N square lattice is considered. The two-point correlation function describing the probability of having two vertices in a given state at opposite (top and bottom) boundaries of the lattice is calculated. It is shown that this two-point boundary correlator is expressible in a very simple way in terms of the one-point boundary correlators of the model on N × N and (N - 1) × (N - 1) lattices. In alternating sign matrix (ASM) language this result implies that the doubly refined x-enumerations of ASMs are just appropriate combinations of the singly refined ones.

  16. Biodegradable Bisvinyl Sulfonemethyl-crosslinked Gelatin Conduit Promotes Regeneration after Peripheral Nerve Injury in Adult Rats.

    PubMed

    Ko, Chien-Hsin; Shie, Ming-You; Lin, Jia-Horng; Chen, Yi-Wen; Yao, Chun-Hsu; Chen, Yueh-Sheng

    2017-12-13

    In our previous study, we found that gelatin-based materials exhibit good conductivity and are non-cytotoxic. In this study, gelatin was cross-linked with bisvinyl sulfonemethyl (BVSM) to fabricate a biodegradable conduit for peripheral nerve repair. First, BVSM on the prepared conduit was characterized to determine its mechanical properties and contact angle. The maximum tensile strength and water contact angle of the gelatin-BVSM conduits were 23 ± 4.8 MPa and 74.7 ± 9°, which provided sufficient mechanical strength to resist muscular contraction; additionally, the surface was hydrophilic. Cytotoxicity and apoptosis assays using Schwann cells demonstrated that the gelatin-BVSM conduits are non-cytotoxic. Next, we examined the neuronal electrophysiology, animal behavior, neuronal connectivity, macrophage infiltration, calcitonin gene-related peptide localization and expression, as well as the expression levels of nerve regeneration-related proteins. The number of fluorogold-labelled cells and histological analysis of the gelatin-BVSM nerve conduits was similar to that observed with the clinical use of silicone rubber conduits after 8 weeks of repair. Therefore, our results demonstrate that gelatin-BVSM conduits are promising substrates for application as bioengineered grafts for nerve tissue regeneration.

  17. Magma Vesiculation and Infrasonic Activity in Open Conduit Volcanoes

    NASA Astrophysics Data System (ADS)

    Colo', L.; Baker, D. R.; Polacci, M.; Ripepe, M.

    2007-12-01

    At persistently active basaltic volcanoes such as Stromboli, Italy degassing of the magma column can occur in "passive" and "active" conditions. Passive degassing is generally understood as a continuous, non explosive release of gas mainly from the open summit vents and subordinately from the conduit's wall or from fumaroles. In passive degassing generally gas is in equilibrium with atmospheric pressure, while in active degassing the gas approaches the surface at overpressurized conditions. During active degassing (or puffing), the magma column is interested by the bursting of small gas bubbles at the magma free surface and, as a consequence, the active degassing process generates infrasonic signals. We postulated, in this study, that the rate and the amplitude of infrasonic activity is somehow linked to the rate and the volume of the overpressured gas bubbles, which are generated in the magma column. Our hypothesis is that infrasound is controlled by the quantities of gas exsolved in the magma column and then, that a relationship between infrasound and the vesiculation process should exist. In order to achieve this goal, infrasonic records and bubble size distributions of scoria samples from normal explosive activity at Stromboli processed via X ray tomography have been compared. We observed that the cumulative distribution for both data sets follow similar power laws, indicating that both processes are controlled by a scale invariant phenomenon. However the power law is not stable but changes in different scoria clasts, reflecting when gas bubble nucleation is predominant over bubbles coalescence and viceversa. The power law also changes for the infrasonic activity from time to time, suggesting that infrasound may be controlled also by a different gas exsolution within the magma column. Changes in power law distributions are the same for infrasound and scoria indicating that they are linked to the same process acting in the magmatic system. We suggest that

  18. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.

    PubMed

    Zhong, Ruiqin; Ye, Zheng-Hua

    2015-02-01

    Secondary walls are mainly composed of cellulose, hemicelluloses (xylan and glucomannan) and lignin, and are deposited in some specialized cells, such as tracheary elements, fibers and other sclerenchymatous cells. Secondary walls provide strength to these cells, which lend mechanical support and protection to the plant body and, in the case of tracheary elements, enable them to function as conduits for transporting water. Formation of secondary walls is a complex process that requires the co-ordinated expression of secondary wall biosynthetic genes, biosynthesis and targeted secretion of secondary wall components, and patterned deposition and assembly of secondary walls. Here, we provide a comprehensive review of genes involved in secondary wall biosynthesis and deposition. Most of the genes involved in the biosynthesis of secondary wall components, including cellulose, xylan, glucomannan and lignin, have been identified and their co-ordinated activation has been shown to be mediated by a transcriptional network encompassing the secondary wall NAC and MYB master switches and their downstream transcription factors. It has been demonstrated that cortical microtubules and microtubule-associated proteins play important roles in the targeted secretion of cellulose synthase complexes, the oriented deposition of cellulose microfibrils and the patterned deposition of secondary walls. Further investigation of many secondary wall-associated genes with unknown functions will provide new insights into the mechanisms controlling the formation of secondary walls that constitute the bulk of plant biomass. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Visualization of conduit-matrix conductivity differences in a karst aquifer using time-lapse electrical resistivity

    NASA Astrophysics Data System (ADS)

    Meyerhoff, Steven B.; Karaoulis, Marios; Fiebig, Florian; Maxwell, Reed M.; Revil, André; Martin, Jonathan B.; Graham, Wendy D.

    2012-12-01

    In the karstic upper Floridan aquifer, surface water flows into conduits of the groundwater system and may exchange with water in the aquifer matrix. This exchange has been hypothesized to occur based on differences in discharge at the Santa Fe River Sink-Rise system, north central Florida, but has yet to be visualized using any geophysical techniques. Using electrical resistivity tomography, we conducted a time-lapse study at two locations with mapped conduits connecting the Santa Fe River Sink to the Santa Fe River Rise to study changes of electrical conductivity during times of varying discharge over a six-week period. Our results show conductivity differences between matrix, conduit changes in resistivity occurring through time at the locations of mapped karst conduits, and changes in electrical conductivity during rainfall infiltration. These observations provide insight into time scales and matrix conduit conductivity differences, illustrating how surface water flow recharged to conduits may flow in a groundwater system in a karst aquifer.

  20. Functional and structural characterization of a novel putative cysteine protease cell wall-modifying multi-domain enzyme selected from a microbial metagenome.

    PubMed

    Faheem, Muhammad; Martins-de-Sa, Diogo; Vidal, Julia F D; Álvares, Alice C M; Brandão-Neto, José; Bird, Louise E; Tully, Mark D; von Delft, Frank; Souto, Betulia M; Quirino, Betania F; Freitas, Sonia M; Barbosa, João Alexandre R G

    2016-12-09

    A current metagenomics focus is to interpret and transform collected genomic data into biological information. By combining structural, functional and genomic data we have assessed a novel bacterial protein selected from a carbohydrate-related activity screen in a microbial metagenomic library from Capra hircus (domestic goat) gut. This uncharacterized protein was predicted as a bacterial cell wall-modifying enzyme (CWME) and shown to contain four domains: an N-terminal, a cysteine protease, a peptidoglycan-binding and an SH3 bacterial domain. We successfully cloned, expressed and purified this putative cysteine protease (PCP), which presented autoproteolytic activity and inhibition by protease inhibitors. We observed cell wall hydrolytic activity and ampicillin binding capacity, a characteristic of most bacterial CWME. Fluorimetric binding analysis yielded a K b of 1.8 × 10 5  M -1 for ampicillin. Small-angle X-ray scattering (SAXS) showed a maximum particle dimension of 95 Å with a real-space R g of 28.35 Å. The elongated molecular envelope corroborates the dynamic light scattering (DLS) estimated size. Furthermore, homology modeling and SAXS allowed the construction of a model that explains the stability and secondary structural changes observed by circular dichroism (CD). In short, we report a novel cell wall-modifying autoproteolytic PCP with insight into its biochemical, biophysical and structural features.

  1. Effects of dynamically variable saturation and matrix-conduit coupling of flow in karst aquifers

    USGS Publications Warehouse

    Reimann, T.; Geyer, T.; Shoemaker, W.B.; Liedl, R.; Sauter, M.

    2011-01-01

    Well-developed karst aquifers consist of highly conductive conduits and a relatively low permeability fractured and/or porous rock matrix and therefore behave as a dual-hydraulic system. Groundwater flow within highly permeable strata is rapid and transient and depends on local flow conditions, i.e., pressurized or nonpressurized flow. The characterization of karst aquifers is a necessary and challenging task because information about hydraulic and spatial conduit properties is poorly defined or unknown. To investigate karst aquifers, hydraulic stresses such as large recharge events can be simulated with hybrid (coupled discrete continuum) models. Since existing hybrid models are simplifications of the system dynamics, a new karst model (ModBraC) is presented that accounts for unsteady and nonuniform discrete flow in variably saturated conduits employing the Saint-Venant equations. Model performance tests indicate that ModBraC is able to simulate (1) unsteady and nonuniform flow in variably filled conduits, (2) draining and refilling of conduits with stable transition between free-surface and pressurized flow and correct storage representation, (3) water exchange between matrix and variably filled conduits, and (4) discharge routing through branched and intermeshed conduit networks. Subsequently, ModBraC is applied to an idealized catchment to investigate the significance of free-surface flow representation. A parameter study is conducted with two different initial conditions: (1) pressurized flow and (2) free-surface flow. If free-surface flow prevails, the systems is characterized by (1) a time lag for signal transmission, (2) a typical spring discharge pattern representing the transition from pressurized to free-surface flow, and (3) a reduced conduit-matrix interaction during free-surface flow. Copyright 2011 by the American Geophysical Union.

  2. 30 CFR 18.39 - Hose conduit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hose conduit. 18.39 Section 18.39 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements...

  3. Vortex Ring Dynamics in Radially Confined Domains

    NASA Astrophysics Data System (ADS)

    Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos

    2010-11-01

    Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.

  4. The CWB2 Cell Wall-Anchoring Module Is Revealed by the Crystal Structures of the Clostridium difficile Cell Wall Proteins Cwp8 and Cwp6.

    PubMed

    Usenik, Aleksandra; Renko, Miha; Mihelič, Marko; Lindič, Nataša; Borišek, Jure; Perdih, Andrej; Pretnar, Gregor; Müller, Uwe; Turk, Dušan

    2017-03-07

    Bacterial cell wall proteins play crucial roles in cell survival, growth, and environmental interactions. In Gram-positive bacteria, cell wall proteins include several types that are non-covalently attached via cell wall binding domains. Of the two conserved surface-layer (S-layer)-anchoring modules composed of three tandem SLH or CWB2 domains, the latter have so far eluded structural insight. The crystal structures of Cwp8 and Cwp6 reveal multi-domain proteins, each containing an embedded CWB2 module. It consists of a triangular trimer of Rossmann-fold CWB2 domains, a feature common to 29 cell wall proteins in Clostridium difficile 630. The structural basis of the intact module fold necessary for its binding to the cell wall is revealed. A comparison with previously reported atomic force microscopy data of S-layers suggests that C. difficile S-layers are complex oligomeric structures, likely composed of several different proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Heon Kim, Tae; Yoon, Jong-Gul; Hyub Baek, Seung; Park, Woong-Kyu; Mo Yang, Sang; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Won Noh, Tae

    2015-07-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.

  6. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films.

    PubMed

    Kim, Tae Heon; Yoon, Jong-Gul; Baek, Seung Hyub; Park, Woong-kyu; Yang, Sang Mo; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Noh, Tae Won

    2015-07-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.

  7. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films

    PubMed Central

    Heon Kim, Tae; Yoon, Jong-Gul; Hyub Baek, Seung; Park, Woong-kyu; Mo Yang, Sang; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Won Noh, Tae

    2015-01-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields. PMID:26130159

  8. Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy

    DOE PAGES

    Ihlefeld, Jon F.; Michael, Joseph R.; McKenzie, Bonnie B.; ...

    2016-09-16

    We report that ferroelastic domain walls provide opportunities for deterministically controlling mechanical, optical, electrical, and thermal energy. Domain wall characterization in micro- and nanoscale systems, where their spacing may be of the order of 100 nm or less is presently limited to only a few techniques, such as piezoresponse force microscopy and transmission electron microscopy. These respective techniques cannot, however, independently characterize domain polarization orientation and domain wall motion in technologically relevant capacitor structures or in a non-destructive manner, thus presenting a limitation of their utility. In this work, we show how backscatter scanning electron microscopy utilizing channeling contrast yieldmore » can image the ferroelastic domain structure of ferroelectric films with domain wall spacing as narrow as 10 nm.« less

  9. Peripheral nerve regeneration with conduits: use of vein tubes

    PubMed Central

    Sabongi, Rodrigo Guerra; Fernandes, Marcela; dos Santos, João Baptista Gomes

    2015-01-01

    Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the complexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the autologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit. PMID:26170802

  10. Peripheral nerve regeneration with conduits: use of vein tubes.

    PubMed

    Sabongi, Rodrigo Guerra; Fernandes, Marcela; Dos Santos, João Baptista Gomes

    2015-04-01

    Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the complexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the autologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit.

  11. Preoperative imaging and prediction of oesophageal conduit necrosis after oesophagectomy for cancer.

    PubMed

    Lainas, P; Fuks, D; Gaujoux, S; Machroub, Z; Fregeville, A; Perniceni, T; Mal, F; Dousset, B; Gayet, B

    2017-09-01

    Oesophageal conduit necrosis following oesophagectomy is a rare but life-threatening complication. The present study aimed to assess the impact of coeliac axis stenosis on outcomes after oesophagectomy for cancer. The study included consecutive patients who had an Ivor Lewis procedure with curative intent for middle- and lower-third oesophageal cancer at two tertiary referral centres. All patients underwent preoperative multidetector CT with arterial phase to detect coeliac axis stenosis. The coeliac artery was classified as normal, with extrinsic stenosis due to a median arcuate ligament or with intrinsic stenosis caused by atherosclerosis. Some 481 patients underwent an Ivor Lewis procedure. Of these, ten (2·1 per cent) developed oesophageal conduit necrosis after surgery. Coeliac artery evaluation revealed a completely normal artery in 431 patients (91·5 per cent) in the group without conduit necrosis and in one (10 per cent) with necrosis (P < 0·001). Extrinsic stenosis of the coeliac artery due to a median arcuate ligament was found in two patients (0·4 per cent) without conduit necrosis and five (50 per cent) with necrosis (P < 0·001). Intrinsic stenosis of the coeliac artery was found in 11 (2·3 per cent) and eight (80 per cent) patients respectively (P < 0·001). Eight patients without (1·7 per cent) and five (50 per cent) with conduit necrosis had a single and thin left gastric artery (P < 0·001). This study suggests that oesophageal conduit necrosis after oesophagectomy for cancer may be due to pre-existing coeliac axis stenosis. © 2017 BJS Society Ltd Published by John Wiley & Sons Ltd.

  12. High temperature lined conduits, elbows and tees

    DOEpatents

    De Feo, Angelo; Drewniany, Edward

    1982-01-01

    A high temperature lined conduit comprising, a liner, a flexible insulating refractory blanket around and in contact with the liner, a pipe member around the blanket and spaced therefrom, and castable rigid refractory material between the pipe member and the blanket. Anchors are connected to the inside diameter of the pipe and extend into the castable material. The liner includes male and female slip joint ends for permitting thermal expansion of the liner with respect to the castable material and the pipe member. Elbows and tees of the lined conduit comprise an elbow liner wrapped with insulating refractory blanket material around which is disposed a spaced elbow pipe member with castable refractory material between the blanket material and the elbow pipe member. A reinforcing band is connected to the elbow liner at an intermediate location thereon from which extend a plurality of hollow tubes or pins which extend into the castable material to anchor the lined elbow and permit thermal expansion. A method of fabricating the high temperature lined conduit, elbows and tees is also disclosed which utilizes a polyethylene layer over the refractory blanket after it has been compressed to maintain the refractory blanket in a compressed condition until the castable material is in place. Hot gases are then directed through the interior of the liner for evaporating the polyethylene and setting the castable material which permits the compressed blanket to come into close contact with the castable material.

  13. A novel balloon assisted two-stents telescoping technique for repositioning an embolized stent in the pulmonary conduit.

    PubMed

    Kobayashi, Daisuke; Gowda, Srinath T; Forbes, Thomas J

    2014-08-01

    A 9-year-old male, with history of pulmonary atresia and ventricular septal defect, status post complete repair with a 16 mm pulmonary homograft in the right ventricular outflow tract (RVOT) underwent 3110 Palmaz stent placement for conduit stenosis. Following deployment the stent embolized proximally into the right ventricle (RV). We undertook the choice of repositioning the embolized stent into the conduit with a transcatheter approach. Using a second venous access, the embolized stent was carefully maneuvered into the proximal part of conduit with an inflated Tyshak balloon catheter. A second Palmaz 4010 stent was deployed in the distal conduit telescoping through the embolized stent. The Tyshak balloon catheter was kept inflated in the RV to stabilize the embolized stent in the proximal conduit until it was successfully latched up against the conduit with the deployment of the overlapping second stent. One year later, he underwent Melody valve implantation in the pre-stented conduit relieving conduit insufficiency. This novel balloon assisted two-stents telescoping technique is a feasible transcatheter option to secure an embolized stent from the RV to the RVOT. © 2014 Wiley Periodicals, Inc.

  14. Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene.

    PubMed

    Yao, L; Daly, W; Newland, B; Yao, S; Wang, W; Chen, B K K; Madigan, N; Windebank, A; Pandit, A

    2013-12-01

    Functionalized biomaterial scaffolds targeted at improving axonal regeneration by enhancing guided axonal growth provide a promising approach for the repair of spinal cord injury. Collagen neural conduits provide structural guidance for neural tissue regeneration, and in this study it is shown that these conduits can also act as a reservoir for sustained gene delivery. Either a G-luciferase marker gene or a neurotrophin-3-encoding gene, complexed to a non-viral, cyclized, PEGylated transfection vector, was loaded within a multichannel collagen conduit. The complexed genes were then released in a controlled fashion using a dual release system both in vitro and in vivo. For evaluation of their biological performance, the loaded conduits were implanted into the completely transected rat thoracic spinal cord (T8-T10). Aligned axon regeneration through the channels of conduits was observed one month post-surgery. The conduits delivering neurotrophin-3 polyplexes resulted in significantly increased neurotrophin-3 levels in the surrounding tissue and a statistically higher number of regenerated axons versus the control conduits (P<0.05). This study suggests that collagen neural conduits delivering a highly effective non-viral therapeutic gene may hold promise for repair of the injured spinal cord.

  15. Immobile defects in ferroelastic walls: Wall nucleation at defect sites

    NASA Astrophysics Data System (ADS)

    He, X.; Salje, E. K. H.; Ding, X.; Sun, J.

    2018-02-01

    Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.

  16. Extracardiac conduit obstruction: initial experience in the use of Doppler echocardiography for noninvasive estimation of pressure gradient.

    PubMed

    Reeder, G S; Currie, P J; Fyfe, D A; Hagler, D J; Seward, J B; Tajik, A J

    1984-11-01

    Extracardiac valved conduits are often employed in the repair of certain complex congenital heart defects; late obstruction is a well recognized problem that usually requires catheterization for definitive diagnosis. A reliable noninvasive method for detecting conduit stenosis would be clinically useful in identifying the small proportion of patients who develop this problem. Continuous wave Doppler echocardiography has been used successfully to estimate cardiac valvular obstructive lesions noninvasively. Twenty-three patients with prior extracardiac conduit placement for complex congenital heart disease underwent echocardiographic and continuous wave Doppler echocardiographic examinations to determine the presence and severity of conduit stenosis. In 20 of the 23 patients, an adequate conduit flow velocity profile was obtained, and in 10 an abnormally increased conduit flow velocity was present. All but one patient had significant obstruction proven at surgery and in one patient, surgery was planned. In three patients, an adequate conduit flow velocity profile could not be obtained but obstruction was still suspected based on high velocity tricuspid regurgitant Doppler signals. In these three patients, subsequent surgery also proved that conduit stenosis was present. Doppler-predicted gradients and right ventricular pressures showed an overall good correlation (r = 0.90) with measurements at subsequent cardiac catheterization. Continuous wave Doppler echocardiography appears to be a useful noninvasive tool for the detection and semiquantitation of extracardiac conduit stenosis.

  17. An Oscillation of the Crack-like Conduit at Nevado del Ruiz Volcano, Colombia, Inferred from Multi-band Analyses of Very Long Period Seismic Events

    NASA Astrophysics Data System (ADS)

    Maeda, Y.; Kumagai, H.; Londono, J. M.; Lopez, C. M.; Castaño, L. M.; Beatriz, B.; García, L.

    2017-12-01

    Nevado del Ruiz is an active volcano in Colombia, which continues eruption activity and has been monitored by 13 broadband and 3 short-period seismic stations. In 2015-2016, a joint Japan-Colombia team installed an automatic event detection and location system based on the amplitude source location (ASL) method. Kumagai et al. (IAVCEI, 2017) indicated the existence of a magma conduit extending from the NW flank to the summit based on ASL analyses of various seismic signals including long-period (LP) and very long period (VLP) events and tremors in a 5-10 Hz frequency band. In this study, we analyzed the VLP events by waveform inversion using eight summit stations in a frequency band of 0.3-0.7 Hz. We selected 14 VLP events from May to December 2016 based on signal-to-noise ratios and simplicity of the waveforms. We assumed a homogeneous P-wave velocity of 3.5 km/s with topography in the calculation of the Green functions. We conducted frequency-domain waveform inversion assuming a tensile crack source and investigated the best location and orientation of the crack by a grid search. The inversion results pointed to a low-angle ( 30°) NW-dipping crack near the top of the conduit (approximately 1 km below the summit). The estimated source time functions displayed two or three cycles of oscillations with the seismic moment of order of 1010-1011 N m. For these 14 events, the ASLs from the 5-10 Hz frequency band were also near the top of the conduit. These results suggest the VLP and high-frequency signals are generated by an oscillation of the crack-like conduit near the summit, which may be triggered by a volume change of magma ascending in the conduit.

  18. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  19. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, Marcos German

    1998-01-01

    A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  20. A nerve guidance conduit with topographical and biochemical cues: potential application using human neural stem cells

    NASA Astrophysics Data System (ADS)

    Jenkins, Phillip M.; Laughter, Melissa R.; Lee, David J.; Lee, Young M.; Freed, Curt R.; Park, Daewon

    2015-06-01

    Despite major advances in the pathophysiological understanding of peripheral nerve damage, the treatment of nerve injuries still remains an unmet medical need. Nerve guidance conduits present a promising treatment option by providing a growth-permissive environment that 1) promotes neuronal cell survival and axon growth and 2) directs axonal extension. To this end, we designed an electrospun nerve guidance conduit using a blend of polyurea and poly-caprolactone with both biochemical and topographical cues. Biochemical cues were integrated into the conduit by functionalizing the polyurea with RGD to improve cell attachment. Topographical cues that resemble natural nerve tissue were incorporated by introducing intraluminal microchannels aligned with nanofibers. We determined that electrospinning the polymer solution across a two electrode system with dissolvable sucrose fibers produced a polymer conduit with the appropriate biomimetic properties. Human neural stem cells were cultured on the conduit to evaluate its ability to promote neuronal growth and axonal extension. The nerve guidance conduit was shown to enhance cell survival, migration, and guide neurite extension.