Science.gov

Sample records for dominant electron trap

  1. Trapped-electron runaway effect

    NASA Astrophysics Data System (ADS)

    Nilsson, E.; Decker, J.; Fisch, N. J.; Peysson, Y.

    2015-08-01

    In a tokamak, trapped electrons subject to a strong electric field cannot run away immediately, because their parallel velocity does not increase over a bounce period. However, they do pinch toward the tokamak center. As they pinch toward the center, the trapping cone becomes more narrow, so eventually they can be detrapped and run away. When they run away, trapped electrons will have a very different signature from circulating electrons subject to the Dreicer mechanism. The characteristics of what are called trapped-electron runaways are identified and quantified, including their distinguishable perpendicular velocity spectrum and radial extent.

  2. Electron diffusion in the annular Penning trap

    NASA Astrophysics Data System (ADS)

    Robertson, Scott; Quraishi, Qudsia; Walch, Bob

    2002-11-01

    Transport by cross-field diffusion has been studied in the annular Penning trap in which a nonneutral plasma of electrons is contained between concentric cylinders. At densities sufficiently low (<10^5 cm-3) to suppress mobility transport arising from the space charge electric field, the dominant sources of transport are diffusion from collisions of electrons with added helium gas and asymmetry transport from stray fields. The collisional diffusivity is shown to scale linearly with collision frequency and inversely with the square of the axial magnetic field. The measured mean energy is initially 0.3 eV and the least energetic electrons are lost more slowly as a consequence of the energy dependence of the diffusivity. Decay constants are about a factor of four higher than calculated from the electron-helium momentum transfer collision frequency. Both the asymmetry transport and the collisional transport are shown to depend upon the cleanliness of the trap surfaces.

  3. Electron diffusion in the annular Penning trap

    NASA Astrophysics Data System (ADS)

    Quraishi, Qudsia; Robertson, Scott; Walch, Bob

    2002-08-01

    Transport by cross-field diffusion has been studied in the annular Penning trap in which a nonneutral plasma of electrons is contained between concentric cylinders. At densities sufficiently low (<105 cm-3) to suppress mobility transport arising from the space charge electric field, the dominant sources of transport are diffusion from collisions of electrons with added helium gas and asymmetry transport from stray fields. The collisional diffusivity is shown to scale linearly with collision frequency and inversely with the square of the axial magnetic field. The measured mean energy is initially 0.3 eV and the least energetic electrons are lost more slowly as a consequence of the energy dependence of the diffusivity. Decay constants are about a factor of four higher than calculated from the electron-helium momentum transfer collision frequency. Both the asymmetry transport and the collisional transport are shown to depend upon the cleanliness of the trap surfaces.

  4. Trapped Electron Precession Shear Induced Fluctuation Decorrelation

    SciTech Connect

    T.S. Hahm; P.H. Diamond; E.-J. Kim

    2002-07-29

    We consider the effects of trapped electron precession shear on the microturbulence. In a similar way the strong E x B shear reduces the radial correlation length of ambient fluctuations, the radial variation of the trapped electron precession frequency can reduce the radial correlation length of fluctuations associated with trapped electrons. In reversed shear plasmas, with the explicit dependence of the trapped electron precession shearing rate on B(subscript)theta, the sharp radial gradient of T(subscript)e due to local electron heating inside qmin can make the precession shearing mechanism more effective, and reduce the electron thermal transport constructing a positive feedback loop for the T(subscript)e barrier formation.

  5. Electron Traps at the Ice Surface

    NASA Astrophysics Data System (ADS)

    Bockstedte, Michel; Auburger, Philipp; Michl, Anja

    Water, water clusters and ice possess the fascinating ability to solvate electrons. On the surface of water cluster1 and thin crystalline ice structures on a metal substrate2 long-living solvated electron states were observed that evolve from pre-existing surface traps. The identification of such traps provides important insight into the electronic structure of the water or ice surface, and the dissociative interaction of electrons with adsorbates. Models2,3 based on the bilayer terminated Ih-(0001) surface related such traps to orientational defects or vacancies. So far, the understanding of the electronic structure of the ice surface with the electron traps is incomplete. Here we address this issue including also water ad-structures4 within hybrid density functional theory and many-body perturbation theory (G0W0). We identify a hierachy of traps with increasing vertical electron affinity, ranging from hexagon adrows to clusters of orientational defects and vacancies with dangling OH-groups. Siefermann and Abel, Angew. Chem. Int. Ed. 50, 5264 (2011). Bovensiepen et al., J. Chem. Phys. C 113, 979 (2013). Hermann et al., J. Phys.: cond. matter 20, 225003 (2008). Mehlhorn and Morgenstern, Phys. Rev. Lett. 99, 246101 (2007)

  6. Joint transform correlator employing electron trapping materials

    NASA Astrophysics Data System (ADS)

    Yu, Dong X.; Storti, George M.; Gregory, Don A.

    1992-07-01

    Quantex's electron trapping (ET) materials are investigated as an integrated spatial light modulator (SLM) at the filter plane in a joint transform correlator (JTC). The ET based spatial light modulator can detect visible incoherent light, store an image pattern, and modulate the incoming coherent infrared light. Such a JTC architecture eliminates the electronic-to-optical and optical-to-electronic conversion between the square law detector and the next SLM in a joint transform correlator.

  7. Electron trapping around a magnetic null

    NASA Astrophysics Data System (ADS)

    He, J.-S.; Zong, Q.-G.; Deng, X.-H.; Tu, C.-Y.; Xiao, C.-J.; Wang, X.-G.; Ma, Z.-W.; Pu, Z.-Y.; Lucek, E.; Pedersen, A.; Fazakerley, A.; Cornilleau-Wehrlin, N.; Dunlop, M. W.; Tian, H.; Yao, S.; Tan, B.; Fu, S.-Y.; Glassmeier, K.-H.; Reme, H.; Dandouras, I.; Escoubet, C. P.

    2008-07-01

    Magnetic reconnection is an important process in astrophysical, space and laboratory plasmas. The magnetic null pair structure is theoretically suggested to be a crucial feature of the three-dimensional magnetic reconnection. The physics around the null pair, however, has not been explored in combination with the magnetic field configuration deduced from in situ observations. Here, we report the identification of the configuration around a null pair and simultaneous electron dynamics near one null of the pair, observed by four Cluster spacecraft in the geo-magnetotail. Further, we propose a new scenario of electron dynamics in the null region, suggesting that electrons are temporarily trapped in the central reconnection region including electron diffusion region resulting in an electron density peak, accelerated possibly by parallel electric field and electron pressure gradient, and reflected from the magnetic cusp mirrors leading to the bi-directional energetic electron beams, which excite the observed high frequency electrostatic waves.

  8. Spin chains with electrons in Penning traps

    SciTech Connect

    Ciaramicoli, G.; Marzoli, I.; Tombesi, P.

    2007-03-15

    We demonstrate that spin chains are experimentally feasible using electrons confined in micro-Penning traps, supplemented with local magnetic field gradients. The resulting Heisenberg-like system is characterized by coupling strengths showing a dipolar decay. These spin chains can be used as a channel for short-distance quantum communication. Our scheme offers high accuracy in reproducing an effective spin chain with relatively large transmission rate.

  9. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect

    Becker, Reinard; Kester, Oliver

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  10. Effect of Single-Electron Interface Trapping in Decanano MOSFETs: A 3D Atomistic Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.

    2000-01-01

    We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random telegraph signal (RTS) amplitudes on the device dimensions and on the position of the trapped charge in the channel are studied in detail. Later, in full-scale, atomistic simulations assuming discrete charge for both randomly placed dopants and the trapped electron, we highlight the importance of current percolation and of traps with strategic position where the trapped electron blocks a dominant current path.

  11. Electron Trapping and Charge Transport by Large Amplitude Whistlers

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.; Cattell, C. A.; Goetz, K.; Monson, S. J.; Wilson, L. B., III

    2010-01-01

    Trapping of electrons by magnetospheric whistlers is investigated using data from the Waves experiment on Wind and the S/WAVES experiment on STEREO. Waveforms often show a characteristic distortion which is shown to be due to electrons trapped in the potential of the electrostatic part of oblique whistlers. The density of trapped electrons is significant, comparable to that of the unperturbed whistler. Transport of these trapped electrons to new regions can generate potentials of several kilovolts, Trapping and the associated potentials may play an important role in the acceleration of Earth's radiation belt electrons.

  12. The AE-8 trapped electron model environment

    NASA Technical Reports Server (NTRS)

    Vette, James I.

    1991-01-01

    The machine sensible version of the AE-8 electron model environment was completed in December 1983. It has been sent to users on the model environment distribution list and is made available to new users by the National Space Science Data Center (NSSDC). AE-8 is the last in a series of terrestrial trapped radiation models that includes eight proton and eight electron versions. With the exception of AE-8, all these models were documented in formal reports as well as being available in a machine sensible form. The purpose of this report is to complete the documentation, finally, for AE-8 so that users can understand its construction and see the comparison of the model with the new data used, as well as with the AE-4 model.

  13. Emittance Measurements of Trapped Electrons from a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, N.; Berry, M.; Blumenfeld, I.; Decker, F.-J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.; Siemann, R.; Walz, D.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2007-06-28

    Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC showed trapping of plasma electrons. These trapped electrons appeared on an energy spectrometer with smaller transverse size than the beam driving the wake. A connection is made between transverse size and emittance; due to the spectrometer's resolution, this connection allows for placing an upper limit on the trapped electron emittance. The upper limit for the lowest normalized emittance measured in the experiment is 1 mm {center_dot} mrad.

  14. Nonextensive statistical mechanics approach to electron trapping in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Mebrouk, Khireddine; Gougam, Leila Ait; Tribeche, Mouloud

    2016-06-01

    The electron trapping in a weakly nondegenerate plasma is reformulated and re-examined by incorporating the nonextensive entropy prescription. Using the q-deformed Fermi-Dirac distribution function including the quantum as well as the nonextensive statistical effects, we derive a new generalized electron density with a new contribution proportional to the electron temperature T, which may dominate the usual thermal correction (∼T2) at very low temperatures. To make the physics behind the effect of this new contribution more transparent, we analyze the modifications arising in the propagation of ion-acoustic solitary waves. Interestingly, we find that due to the nonextensive correction, our plasma model allows the possibility of existence of quantum ion-acoustic solitons with velocity higher than the Fermi ion-sound velocity. Moreover, as the nonextensive parameter q increases, the critical temperature Tc beyond which coexistence of compressive and rarefactive solitons sets in, is shifted towards higher values.

  15. New electron trap in p-type Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    A new electron trap (acceptor level) was discovered in p-type Czochralski (CZ) silicon by current transient spectroscopy. The behavior of this trap was found to be similar to that of the oxygen thermal donors; thus, 450 C annealing increases the trap concentration while high-temperature annealing (1100-1200 C) leads to the virtual elimination of the trap. The new trap is not observed in either float-zone or n-type CZ silicon. Its energy level depends on the group III doping element in the sample. These findings suggest that the trap is related to oxygen, and probably to the acceptor impurity as well.

  16. Trapped electron effects on ηi-mode and trapped electron mode in RFP plasmas

    NASA Astrophysics Data System (ADS)

    Liu, S. F.; Guo, S. C.; Kong, W.; Dong, J. Q.

    2014-04-01

    The drift instabilities in the toroidal reversed field pinch (RFP) plasmas are numerically studied with gyrokinetic integral eigenmode equations, by taking into account the trapped electrons (TEs) and full ion kinetic effects. Both the collisionless and collisional plasmas are investigated. Two topics are addressed: the TE effects on the ion temperature gradient driven mode, and the instability of the trapped electron mode (TEM). A comparison with a circular tokamak configuration has been made. Although the TEs generally play a similar role in RFPs as they do in tokamaks, their effects become significant in RFPs only when very steep density/temperature profiles exist. Indeed, the instability of the TEM in RFP plasmas requires a much steeper density/temperature gradient and has a much narrower kθρs spectrum than in tokamak plasmas.

  17. Stability of Trapped Electrons in SiO(2)

    SciTech Connect

    Fleetwood, D.M.; Winokur, P.S.

    1999-01-29

    Thermally stimulated current and capacitance voltage methods are used to investigate the thermal stability of trapped electrons associated with radiation-induced trapped positive charge in metal-oxide-semiconductor capacitors. The density of deeply trapped electrons in radiation-hardened 45 nm oxides exceeds that of shallow electrons by a factor of {approximately}3 after radiation exposure, and by up to a factor of 10 or more during biased annealing. Shallow electron traps anneal faster than deep traps, and seem to be at least qualitatively consistent with the model of Lelis et al. Deeper traps maybe part of a fundamentally distinct dipole complex, and/or have shifted energy levels that inhibit charge exchange with the Si.

  18. Stability of trapped electrons in SiO{sub 2}

    SciTech Connect

    Fleetwood, D.M.; Winokur, P.S.; Flament, O.; Leray, J.L.

    1999-05-01

    Thermally stimulated current and capacitance voltage methods are used to investigate the thermal stability of trapped electrons associated with radiation-induced trapped positive charge in metal{endash}oxide{endash}semiconductor capacitors. The density of deeply trapped electrons in radiation-hardened 45 nm oxides exceeds that of shallow electrons by a factor of {approximately}3 after radiation exposure, and by up to a factor of 10 or more during biased annealing. Shallow electron traps anneal faster than deep traps, and exhibit response that is qualitatively consistent with existing models of compensated E{sub {gamma}}{sup {prime}} centers in SiO{sub 2}. Deeper traps may be part of a different dipole complex, and/or have shifted energy levels that inhibit charge exchange with the Si. {copyright} {ital 1999 American Institute of Physics.}

  19. Electronic Spectroscopy of Trapped PAH Photofragments

    NASA Astrophysics Data System (ADS)

    Joblin, Christine; Bonnamy, Anthony

    2016-06-01

    The PIRENEA set-up combines an ion cyclotron resonance cell mass spectrometer with cryogenic cooling in order to study the physical and chemical properties of polycyclic aromatic hydrocarbons (PAHs) of astrophysical interest. In space, PAHs are submitted to UV photons that lead to their dissociation. It is therefore of interest to study fragmentation pathways and search for species that might be good interstellar candidates because of their stability. Electronic spectroscopy can bring major insights into the structure of species formed by photofragmentation. This is also a way to identify new species in space as recently illustrated in the case of C60^+. In PIRENEA, the trapped ions are not cold enough, and thus we cannot use complexation with rare gas in order to record spectroscopy, as was nicely performed in the work by Campbell et al. on C60^+. We are therefore using the dissociation of the trapped ions themselves instead, which requires in general a multiple photon scheme. This leads to non-linear effects that affect the measured spectrum. We are working on improving this scheme in the specific case of the photofragment obtained by H-loss from 1-methylpyrene cation (CH_3-C16H9^+). A recent theoretical study has shown that a rearrangement can occur from 1-pyrenemethylium cation (CH_2-C16H9^+) to a system containing a seven membered ring (tropylium like pyrene system). This study also reports the calculated electronic spectra of both isomers, which are specific enough to distinguish them, and as a function of temperature. We will present experiments that have been performed to study the photophysics of these ions using the PIRENEA set-up and a two-laser scheme for the action spectroscopy. J. Montillaud, C. Joblin, D. Toublanc, Astron. & Astrophys. 552 (2013), id.A15 E.K. Campbell, M. Holz, D. Gerlich, and J.P. Maier, Nature 523 (2015), 322-323 F. Useli-Bacchitta, A. Bonnamy, G. Malloci, et al., Chem. Phys. 371 (2010), 16-23; J. Zhen, A. Bonnamy, G. Mulas, C

  20. Cyclotron Resonance of Electrons Trapped in a Microwave Cavity

    ERIC Educational Resources Information Center

    Elmore, W. C.

    1975-01-01

    Describes an experiment in which the free-electron cyclotron resonance of electrons trapped in a microwave cavity by a Penning trap is observed. The experiment constitutes an attractive alternative to one of the Gardner-Purcell variety. (Author/GS)

  1. Atomic physics measurements in an electron Beam Ion Trap

    SciTech Connect

    Marrs, R.E.; Beiersdorfer, P.; Bennett, C.; Chen, M.H.; Cowan, T.; Dietrich, D.; Henderson, J.R.; Knapp, D.A.; Osterheld, A.; Schneider, M.B.

    1989-03-01

    An electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged ions (q less than or equal to 70/+/) for x-ray spectroscopy measurements. Recent measurements of transition energies and electron excitation cross sections for x-ray line emission are summarized. 13 refs., 10 figs.

  2. Electronic circuit provides automatic level control for liquid nitrogen traps

    NASA Technical Reports Server (NTRS)

    Turvy, R. R.

    1968-01-01

    Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.

  3. Electron trapping data storage system and applications

    NASA Technical Reports Server (NTRS)

    Brower, Daniel; Earman, Allen; Chaffin, M. H.

    1993-01-01

    The advent of digital information storage and retrieval has led to explosive growth in data transmission techniques, data compression alternatives, and the need for high capacity random access data storage. Advances in data storage technologies are limiting the utilization of digitally based systems. New storage technologies will be required which can provide higher data capacities and faster transfer rates in a more compact format. Magnetic disk/tape and current optical data storage technologies do not provide these higher performance requirements for all digital data applications. A new technology developed at the Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media is capable of storing as much as 14 gigabytes of uncompressed data on a single, double-sided 54 inch disk with a data transfer rate of up to 12 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out 100 percent photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated Write/Read/Erase cycling.

  4. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped electron

  5. Collisionless microtearing modes in hot tokamaks: Effect of trapped electrons

    SciTech Connect

    Swamy, Aditya K.; Ganesh, R.; Brunner, S.; Vaclavik, J.; Villard, L.

    2015-07-15

    Collisionless microtearing modes have recently been found linearly unstable in sharp temperature gradient regions of large aspect ratio tokamaks. The magnetic drift resonance of passing electrons has been found to be sufficient to destabilise these modes above a threshold plasma β. A global gyrokinetic study, including both passing electrons as well as trapped electrons, shows that the non-adiabatic contribution of the trapped electrons provides a resonant destabilization, especially at large toroidal mode numbers, for a given aspect ratio. The global 2D mode structures show important changes to the destabilising electrostatic potential. The β threshold for the onset of the instability is found to be generally downshifted by the inclusion of trapped electrons. A scan in the aspect ratio of the tokamak configuration, from medium to large but finite values, clearly indicates a significant destabilizing contribution from trapped electrons at small aspect ratio, with a diminishing role at larger aspect ratios.

  6. The Electronic McPhail Trap

    PubMed Central

    Potamitis, Ilyas; Rigakis, Iraklis; Fysarakis, Konstantinos

    2014-01-01

    Certain insects affect cultivations in a detrimental way. A notable case is the olive fruit fly (Bactrocera oleae (Rossi)), that in Europe alone causes billions of euros in crop-loss/per year. Pests can be controlled with aerial and ground bait pesticide sprays, the efficiency of which depends on knowing the time and location of insect infestations as early as possible. The inspection of traps is currently carried out manually. Automatic monitoring traps can enhance efficient monitoring of flying pests by identifying and counting targeted pests as they enter the trap. This work deals with the hardware setup of an insect trap with an embedded optoelectronic sensor that automatically records insects as they fly in the trap. The sensor responsible for detecting the insect is an array of phototransistors receiving light from an infrared LED. The wing-beat recording is based on the interruption of the emitted light due to the partial occlusion from insect's wings as they fly in the trap. We show that the recordings are of high quality paving the way for automatic recognition and transmission of insect detections from the field to a smartphone. This work emphasizes the hardware implementation of the sensor and the detection/counting module giving all necessary implementation details needed to construct it. PMID:25429412

  7. The electronic McPhail trap.

    PubMed

    Potamitis, Ilyas; Rigakis, Iraklis; Fysarakis, Konstantinos

    2014-01-01

    Certain insects affect cultivations in a detrimental way. A notable case is the olive fruit fly (Bactrocera oleae (Rossi)), that in Europe alone causes billions of euros in crop-loss/per year. Pests can be controlled with aerial and ground bait pesticide sprays, the efficiency of which depends on knowing the time and location of insect infestations as early as possible. The inspection of traps is currently carried out manually. Automatic monitoring traps can enhance efficient monitoring of flying pests by identifying and counting targeted pests as they enter the trap. This work deals with the hardware setup of an insect trap with an embedded optoelectronic sensor that automatically records insects as they fly in the trap. The sensor responsible for detecting the insect is an array of phototransistors receiving light from an infrared LED. The wing-beat recording is based on the interruption of the emitted light due to the partial occlusion from insect's wings as they fly in the trap. We show that the recordings are of high quality paving the way for automatic recognition and transmission of insect detections from the field to a smartphone. This work emphasizes the hardware implementation of the sensor and the detection/counting module giving all necessary implementation details needed to construct it. PMID:25429412

  8. Chapter 12: Trapped Electrons as Electrical (Quantum) Circuits

    NASA Astrophysics Data System (ADS)

    Verdú, José

    2014-01-01

    In this chapter, we present a detailed model of the equivalent electric circuit of a single trapped particle in a coplanar-waveguide (CPW) Penning trap. The CPW-trap, which is essentially a section of coplanar-waveguide transmission-line, is designed to make it compatible with circuit-quantum electrodynamic architectures. This will enable a single trapped electron, or geonium atom, as a potential building block of microwave quantum circuits. The model of the trapped electron as an electric circuit was first introduced by Hans Dehmelt in the 1960s. It is essential for the description of the electronic detection using resonant tank circuits. It is also the basis for the description of the interaction of a geonium atom with other distant quantum systems through electrical (microwave) signals.

  9. Ionization-Induced Electron Trapping inUltrarelativistic Plasma Wakes

    SciTech Connect

    Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; Barnes, C.D.; Blumenfeld, I.; Decker, F.J.; Emma, P.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.; Krejcik, P.; O'Connell, C.; Siemann, R.H.; Walz, D.; Auerbach, D.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; /UCLA

    2007-04-06

    The onset of trapping of electrons born inside a highly relativistic, 3D beam-driven plasma wake is investigated. Trapping occurs in the transition regions of a Li plasma confined by He gas. Li plasma electrons support the wake, and higher ionization potential He atoms are ionized as the beam is focused by Li ions and can be trapped. As the wake amplitude is increased, the onset of trapping is observed. Some electrons gain up to 7.6 GeV in a 30.5 cm plasma. The experimentally inferred trapping threshold is at a wake amplitude of 36 GV/m, in good agreement with an analytical model and PIC simulations.

  10. Glow Discharge with Confinement of Electrons in an Electrostatic Trap

    NASA Astrophysics Data System (ADS)

    Metel, Alexander

    2013-09-01

    Theory based on the concept of the gas ionization cost W is found to be in a good agreement with experimental study of the glow discharge with electrostatic trap in the gas pressure range 0.001-10 Pa. When the mean ionization length λ of emitted by the cathode electrons exceeds the trap width a = 4 V/ S, where Vis the trap volume and S is area of the trap boundary, and their energy relaxation length Λ = (eUc/ W) λ , where Uc is cathode fall of potential, is lower than the trap length L = 4 V/So, where So is output aperture of the trap, Uc is independent of the pressure p. In this middle pressure range due to multiplication of fast electrons in the cathode sheath Uc diminishes about 2 times from its maximum W/e γ, where γ is coefficient of ion-induced electron emission, with the discharge current reduction. At Λ > L the cathode fall Uc rises from hundreds to thousands of volts and p tends to the discharge extinction pressure pex, at which the ionization length λ of electrons with energy equal to the energy of electrons emitted by the cathode in the middle pressure range is equal to L.

  11. Global gyrokinetic simulations of trapped-electron mode and trapped-ion mode microturbulence

    NASA Astrophysics Data System (ADS)

    Drouot, T.; Gravier, E.; Reveille, T.; Sarrat, M.; Collard, M.; Bertrand, P.; Cartier-Michaud, T.; Ghendrih, P.; Sarazin, Y.; Garbet, X.

    2015-08-01

    This paper presents a reduced kinetic model, which describes simultaneously trapped-ion (TIM) and trapped-electron (TEM) driven modes. Interestingly, the model enables the study of a full f problem for ion and electron trapped particles at very low numerical cost. The linear growth rate obtained with the full f nonlinear code Trapped Element REduction in Semi Lagrangian Approach is successfully compared with analytical predictions. Moreover, nonlinear results show some basic properties of collisionless TEM and TIM turbulence in tokamaks. A competition between streamer-like structures and zonal flows is observed for TEM and TIM turbulence. Zonal flows are shown to play an important role in suppressing the nonlinear transport and strongly depend on the temperature ratio Te/Ti .

  12. Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas

    SciTech Connect

    Wang, W. X.; Hahm, T. S.; Ethier, S.; Zakharov, L. E.

    2011-02-07

    Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode. __________________________________________________

  13. Electrons trapped in single crystals of sucrose: Induced spin densities

    SciTech Connect

    Box, H.C.; Budzinski, E.E.; Freund, H.G. )

    1990-07-01

    Electrons are trapped at intermolecular sites in single crystals of sucrose {ital X} irradiated at 4.2 K. The coupling tensors for the hyperfine couplings between the electron and surrounding protons have been deduced from electron-nuclear double resonance (ENDOR) data. Electron spin densities at nearby hydroxy protons are positive, whereas spin densities at the more remote protons of carbon-bound hydrogen atoms are negative. The origin of these negative spin densities is discussed.

  14. Electrons trapped in single crystals of sucrose: Induced spin densities

    NASA Astrophysics Data System (ADS)

    Box, Harold C.; Budzinski, Edwin E.; Freund, Harold G.

    1990-07-01

    Electrons are trapped at intermolecular sites in single crystals of sucrose X irradiated at 4.2 K. The coupling tensors for the hyperfine couplings between the electron and surrounding protons have been deduced from electron-nuclear double resonance (ENDOR) data. Electron spin densities at nearby hydroxy protons are positive, whereas spin densities at the more remote protons of carbon-bound hydrogen atoms are negative. The origin of these negative spin densities is discussed.

  15. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-12-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  16. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  17. Threshold for electron trapping nonlinearity in Langmuir waves

    SciTech Connect

    Strozzi, D. J.; Williams, E. A.; Hinkel, D. E.; Langdon, A. B.; Banks, J. W.; Rose, H. A.

    2012-11-15

    We assess when electron trapping nonlinearity is expected to be important in Langmuir waves. The basic criterion is that the inverse of the detrapping rate {nu}{sub d} of electrons in the trapping region of velocity space must exceed the bounce period of deeply trapped electrons, {tau}{sub B}{identical_to}(n{sub e}/{delta}n){sup 1/2}2{pi}/{omega}{sub pe}. A unitless figure of merit, the 'bounce number'N{sub B}{identical_to}1/{nu}{sub d}{tau}{sub B}, encapsulates this condition and defines a trapping threshold amplitude for which N{sub B}=1. The detrapping rate is found for convective loss (transverse and longitudinal) out of a spatially finite Langmuir wave. Simulations of driven waves with a finite transverse profile, using the 2D-2V Vlasov code LOKI, show trapping nonlinearity increases continuously with N{sub B} for transverse loss, and is significant for N{sub B} Almost-Equal-To 1. The detrapping rate due to Coulomb collisions (both electron-electron and electron-ion) is also found, with pitch-angle scattering and parallel drag and diffusion treated in a unified manner. A simple way to combine convective and collisional detrapping is given. Application to underdense plasma conditions in inertial confinement fusion targets is presented. The results show that convective transverse loss is usually the most potent detrapping process in a single f/8 laser speckle. For typical plasma and laser conditions on the inner laser cones of the National Ignition Facility, local reflectivities {approx}3% are estimated to produce significant trapping effects.

  18. Flavin Electron Shuttles Dominate Extracellular Electron Transfer by Shewanella oneidensis

    PubMed Central

    Kotloski, Nicholas J.; Gralnick, Jeffrey A.

    2013-01-01

    ABSTRACT Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneidensis. To determine the contribution of flavin electron shuttles in extracellular electron transfer, a transposon mutagenesis screen was performed with S. oneidensis to identify mutants unable to secrete flavins. A multidrug and toxin efflux transporter encoded by SO_0702 was identified and renamed bfe (bacterial flavin adenine dinucleotide [FAD] exporter) based on phenotypic characterization. Deletion of bfe resulted in a severe decrease in extracellular flavins, while overexpression of bfe increased the concentration of extracellular flavins. Strains lacking bfe had no defect in reduction of soluble Fe(III), but these strains were deficient in the rate of insoluble Fe(III) oxide reduction, which was alleviated by the addition of exogenous flavins. To test a different insoluble electron acceptor, graphite electrode bioreactors were set up to measure current produced by wild-type S. oneidensis and the Δbfe mutant. With the same concentration of supplemented flavins, the two strains produced similar amounts of current. However, when exogenous flavins were not supplemented to bioreactors, bfe mutant strains produced significantly less current than the wild type. We have demonstrated that flavin electron shuttling accounts for ~75% of extracellular electron transfer to insoluble substrates by S. oneidensis and have identified the first FAD transporter in bacteria. PMID:23322638

  19. Electron trapping in rad-hard RCA IC's irradiated with electrons and gamma rays

    NASA Technical Reports Server (NTRS)

    Danchenko, V.; Brashears, S. S.; Fang, P. H.

    1984-01-01

    Enhanced electron trapping has been observed in n-channels of rad-hard CMOS devices due to electron and gamma-ray irradiation. Room-temperature annealing results in a positive shift in the threshold potential far beyond its initial value. The slope of the annealing curve immediately after irradiation was found to depend strongly on the gate bias applied during irradiation. Some dependence was also observed on the electron dose rate. No clear dependence on energy and shielding over a delidded device was observed. The threshold shift is probably due to electron trapping at the radiation-induced interface states and tunneling of electrons through the oxide-silicon energy barrier to fill the radiation-induced electron traps. A mathematical analysis, based on two parallel annealing kinetics, hole annealing and electron trapping, is applied to the data for various electron dose rates.

  20. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    SciTech Connect

    Wang, Lanfa; Huang, Xiaobiao; Pivi, Mauro; /SLAC

    2010-08-25

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  1. Electron Collisions in a Magneto-Optical Trap

    NASA Astrophysics Data System (ADS)

    Dech, Jeffery Michael

    Measurements of the multiple ionization cross section ratios of Cesium were performed with ion time-of-flight (TOF) spectroscopy with a magneto-optical trap (MOT) apparatus, updating the previous measurement which dates back almost a century. Results are presented for collisions at energies of 50 eV to 120 eV. With a MOT, experiments can be performed with trapped, cold atomic targets which allow for unparalleled accuracy and experiments with signicant excited state target fractions above those achievable in most atomic beam experiments. A basic overview of optical cooling trapping, electron collision and atomic phenomena are presented. Experimental studies of electrons with Argon and Cesium targets were performed, measuring the multiple ionization ratios with ion TOF spectroscopy. The experimental apparatus and analysis methods are described in detail. Results are compared with previous measurements of multiple ionization ratios for both targets. Agreement within experimental error is found with the results of Tate and Smith across the energy range.

  2. Electron Cooling of Highly Charged Ions in Penning Traps

    SciTech Connect

    Zwicknagel, Guenter

    2006-10-18

    For recent and planned experiments like the CPT-tests with antihydrogen at CERN (ATHENA, ATRAP) or the QED-tests and various other investigations with slow highly charged ions at GSI (HTTRAP), the ions or antiprotons are cooled with electrons or positrons in Penning traps. In many of these applications an efficient and fast cooling is crucial. In particular for electron cooling of highly charged ions, like e.g. of U92+ in HITRAP, sufficiently large cooling rates are mandatory for avoiding too much losses by recombination or charge exchange processes. Here we present calculations of electron cooling and recombination losses of an ensemble of ions in a Penning traps based on a detailed description of the cooling force and the actual radiative ion-electron recombination rate. We focus on the cooling of highly charged ions, namely bare Uranium, in HITRAP. Both the associated cooling times and recombination losses strongly depend on the density of the electrons and the ratio of the number of ions to the number of electrons in the trap. Our analysis shows that electron cooling of bare Uranium with an initial energy of a few keV/u is feasible with a cooling time less than about a second at less than 10 percent recombination losses.

  3. Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.

    PubMed

    Boehme, Simon C; Azpiroz, Jon Mikel; Aulin, Yaroslav V; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Infante, Ivan; Houtepen, Arjan J

    2015-05-13

    Charge trapping is an ubiquitous process in colloidal quantum-dot solids and a major limitation to the efficiency of quantum dot based devices such as solar cells, LEDs, and thermoelectrics. Although empirical approaches led to a reduction of trapping and thereby efficiency enhancements, the exact chemical nature of the trapping mechanism remains largely unidentified. In this study, we determine the density of trap states in CdTe quantum-dot solids both experimentally, using a combination of electrochemical control of the Fermi level with ultrafast transient absorption and time-resolved photoluminescence spectroscopy, and theoretically, via density functional theory calculations. We find a high density of very efficient electron traps centered ∼0.42 eV above the valence band. Electrochemical filling of these traps increases the electron lifetime and the photoluminescence quantum yield by more than an order of magnitude. The trapping rate constant for holes is an order of magnitude lower that for electrons. These observations can be explained by Auger-mediated electron trapping. From density functional theory calculations we infer that the traps are formed by dicoordinated Te atoms at the quantum dot surface. The combination of our unique experimental determination of the density of trap states with the theoretical modeling of the quantum dot surface allows us to identify the trapping mechanism and chemical reaction at play during charge trapping in these quantum dots.

  4. Auroral Electrons Trapped and Lost: A Vlasov Simulation Study

    NASA Astrophysics Data System (ADS)

    Gunell, H.; Andersson, L.; De Keyser, J. M.; Mann, I.

    2014-12-01

    In the upward current region of the aurora, about two thirds of the total voltage between the auroral ionosphere and the equatorial magnetosphere can be concentrated in a stationary double layer at an altitude of about one earth radius, as Vlasov simulations of the plasma on a magnetic field line have shown (Gunell, et al., Ann. Geophys., 31, 1227-1240, 2013). We perform numerical experiments, changing the total voltage between the ionosphere and the equatorial magnetosphere during the course of the simulation. In the initial state, the total acceleration voltage is 3 kV and there is a double layer approximately 5000 km above the ionospheric end of the system. When the voltage is increased, electrons are trapped between the double layer and the magnetic mirror in a region of velocity space that initially was empty. When the voltage is decreased to its initial value these trapped electrons are released upwards. If the voltage is lowered first and then raised back to where it started, the newly trapped electrons remain trapped. As a consequence of the difference between the two cases, the electron pitch angle distribution, below the double layer, carries information about the recent history of the acceleration voltage. In both cases, most of the change in voltage, ΔV, is assumed by the double layer, in agreement with a study of Cluster data that could confine most of ΔV to altitudes below the spacecraft (Forsyth et al., JGR, 117, A12203, 2012). Hysteresis effects in the double layer position are seen in connection with the electron trapping. This work was supported by the Belgian Science Policy Office through the Solar-Terrestrial Centre of Excellence and by PRODEX/Cluster contract 13127/98/NL/VJ(IC)-PEA 90316.

  5. Electronic doping and trap reduction of quantum dots

    NASA Astrophysics Data System (ADS)

    Thorsen, Amanda Leigh

    Both undoped and doped semiconductor quantum dots (QDs) offer unique opportunities for studying the fundamental physics of quantum confinement. Obtaining a thorough understanding of their physical properties is necessary for development of efficient and robust materials for use in a wide range of applications such as optoelectronics (optical switches, light emitting diodes (LEDs), photovoltaics, and lasers), biosensing, and nanoelectronics. This thesis involves studies that look specifically at the effects of electronic doping and trap reduction in undoped and Mn2+ -doped QDs. Investigation of the effect of electron-Mn2+ exchange interactions on Mn 2+ luminescence in Mn2+:CdS nanocrystal films through an electrochemical method reveals effective Auger de-excitation of photoexcited Mn2+. The doped QDs demonstrate increased sensitivity to Auger de-excitation versus undoped QDs due to the long lifetime of the Mn2+ excited state. Photochemical electronic doping of colloidal CdSe nanocrystals is achieved for the first time through the use of a borohydride hole quencher, Li[Et3BH], and the high spectroscopic quality of the resulting n-type nanocrystals allows for advanced characterization by absorption and photoluminescence. Additionally, chemical titrations of the n-type nanocrystals confirm electron accumulation and suggest significant electron trapping for some of the nanocrystals. Spectroelectrochemical measurements on undoped and Mn2+-doped ZnSe QDs target charge injection into traps within the semiconductor bandgap. In both the undoped and doped QDs, transfer of electrons into the nanocrystal film is directly correlated with enhanced photoluminescence quantum yield and dubbed "electrobrightening." This method of brightening through trap passivation is extended to colloidal systems through the use of outer-sphere reductants and ultimately improves the ensemble photoluminescence quantum yield of Mn2+ -doped ZnSe QDs from 14% to 80%.

  6. Impurity color centers in quartz and trapped electron dating - Electron spin resonance, thermoluminescence studies.

    NASA Technical Reports Server (NTRS)

    Mcmorris, D. W.

    1971-01-01

    Investigation of impurity-related electron-hole traps that are known to be sensitive to ionizing radiations. Electron spin resonance (ESR) equivalent natural doses were determined for the Al hole trap in virgin specimens; the doses agreed with estimates based on published data for the Ge electron trap. The 0.17 deg/sec 180 and 300 C thermoluminescence (TL) peaks in natural specimens were found to have activation energies approximately correct for the Ge trap. The 300 C peak was also found to be correlated with annealing of the Ge electron resonance in gamma-irradiated, step-annealed specimens. Although the 300 C peak occurs in virgin specimens, the corresponding natural Ge electron resonance was not observed.

  7. Gigahertz single-trap electron pumps in silicon

    NASA Astrophysics Data System (ADS)

    Yamahata, Gento; Nishiguchi, Katsuhiko; Fujiwara, Akira

    2014-10-01

    Manipulation of single electrons is the key to developing ultimate electronics such as single-electron-based information processors and electrical standards in metrology. Especially, high-frequency and high-accuracy single-electron pumps are essential to realize practical current standards. While electrically defined quantum dots are widely used to build single-electron pumps, a localized state in semiconductors is also a potential candidate for accurate pumps because it can have a large activation energy for the captured electron. However, the transfer mechanism of such localized-state-mediated single-electron pumps for high-accuracy operation at a high frequency has not been well examined. Here we demonstrate a single-electron pump using a single-trap level with an activation energy of a few ten millielectron volts in Si nanotransistors. By means of gate control of capture and emission rates, the pump operates at a frequency of 3 GHz with an accuracy of better than 10-3 at 17 K, indicating that an electric field at the trap level lowers the capture and emission time to less than 25 ps.

  8. A kinetic theory of trapped electron driven drift wave turbulence in a sheared magnetic field

    SciTech Connect

    Gang, F.Y. . Inst. for Fusion Studies); Diamond, P.H.; Rosenbluth, M.N. . Dept. of Physics General Atomics, San Diego, CA )

    1990-09-01

    A kinetic theory of collisionless and dissipative trapped electron driven drift wave turbulence in a sheared magnetic field is presented. Weak turbulence theory is employed to calculate the nonlinear electron and ion responses and to derive a wave kinetic equation that determines the nonlinear evolution of trapped electron mode turbulence. Saturated fluctuation spectrum is calculated using the condition of nonlinear saturation. The turbulent transport coefficients are in turn calculated using saturated fluctuation spectrum. Due to the disparity in the three different radial scale lengths of the slab-like eigenmode: {Delta} (trapped electron layer width), x{sub t} (turning point width) and x{sub i} (Landau damping point), {Delta} < x{sub t} < x{sub i}, we find that ion Compton scattering rather than trapped electron Compton scattering is the dominant nonlinear saturation mechanism. Ion Compton scattering transfers wave energy from short to long wavelengths where the wave energy is shear damped. As a consequence, a saturated fluctuation spectrum {vert bar}{phi}{vert bar}{sup 2}(k{sub {theta}}) {approximately} k{sub {theta}}{sup {minus}{alpha}} ({alpha} = 2 and 3 for the dissipative and collisionless regime, respectively) occurs for k{sub {theta}}{rho}{sub s} < 1 and is heavily damped for k{sub {theta}}{rho}{sub s} > 1. The predicted fluctuation level and transport coefficients are well below the mixing length'' estimate. This is due to the contribution of radial wavenumbers x{sub t}{sup {minus}1} < k{sub r} {le} {rho}{sub i}{sup {minus}1} to the nonlinear couplings, the effect of radial localization of trapped electron response to a layer of width, {Delta}, and the weak turbulence factor {l angle}({gamma}{sub e}{sup l})/({omega}{sub {rvec {kappa}}}){r angle}{sub {rvec k}} < 1, which enters the saturation level. 18 refs., 1 tab.

  9. Dynamics and reactivity of trapped electrons on supported ice crystallites.

    PubMed

    Stähler, Julia; Gahl, Cornelius; Wolf, Martin

    2012-01-17

    The solvation dynamics and reactivity of localized excess electrons in aqueous environments have attracted great attention in many areas of physics, chemistry, and biology. This manifold attraction results from the importance of water as a solvent in nature as well as from the key role of low-energy electrons in many chemical reactions. One prominent example is the electron-induced dissociation of chlorofluorocarbons (CFCs). Low-energy electrons are also critical in the radiation chemistry that occurs in nuclear reactors. Excess electrons in an aqueous environment are localized and stabilized by the local rearrangement of the surrounding water dipoles. Such solvated or hydrated electrons are known to play an important role in systems such as biochemical reactions and atmospheric chemistry. Despite numerous studies over many years, little is known about the microscopic details of these electron-induced chemical processes, and interest in the fundamental processes involved in the reactivity of trapped electrons continues. In this Account, we present a surface science study of the dynamics and reactivity of such localized low-energy electrons at D(2)O crystallites that are supported by a Ru(001) single crystal metal surface. This approach enables us to investigate the generation and relaxation dynamics as well as dissociative electron attachment (DEA) reaction of excess electrons under well-defined conditions. They are generated by photoexcitation in the metal template and transferred to trapping sites at the vacuum interface of crystalline D(2)O islands. In these traps, the electrons are effectively decoupled from the electronic states of the metal template, leading to extraordinarily long excited state lifetimes on the order of minutes. Using these long-lived, low-energy electrons, we study the DEA to CFCl(3) that is coadsorbed at very low concentrations (∼10(12) cm(-2)). Using rate equations and direct measurement of the change of surface dipole moment, we

  10. Dynamics and reactivity of trapped electrons on supported ice crystallites.

    PubMed

    Stähler, Julia; Gahl, Cornelius; Wolf, Martin

    2012-01-17

    The solvation dynamics and reactivity of localized excess electrons in aqueous environments have attracted great attention in many areas of physics, chemistry, and biology. This manifold attraction results from the importance of water as a solvent in nature as well as from the key role of low-energy electrons in many chemical reactions. One prominent example is the electron-induced dissociation of chlorofluorocarbons (CFCs). Low-energy electrons are also critical in the radiation chemistry that occurs in nuclear reactors. Excess electrons in an aqueous environment are localized and stabilized by the local rearrangement of the surrounding water dipoles. Such solvated or hydrated electrons are known to play an important role in systems such as biochemical reactions and atmospheric chemistry. Despite numerous studies over many years, little is known about the microscopic details of these electron-induced chemical processes, and interest in the fundamental processes involved in the reactivity of trapped electrons continues. In this Account, we present a surface science study of the dynamics and reactivity of such localized low-energy electrons at D(2)O crystallites that are supported by a Ru(001) single crystal metal surface. This approach enables us to investigate the generation and relaxation dynamics as well as dissociative electron attachment (DEA) reaction of excess electrons under well-defined conditions. They are generated by photoexcitation in the metal template and transferred to trapping sites at the vacuum interface of crystalline D(2)O islands. In these traps, the electrons are effectively decoupled from the electronic states of the metal template, leading to extraordinarily long excited state lifetimes on the order of minutes. Using these long-lived, low-energy electrons, we study the DEA to CFCl(3) that is coadsorbed at very low concentrations (∼10(12) cm(-2)). Using rate equations and direct measurement of the change of surface dipole moment, we

  11. Natural variations in the geomagnetically trapped electron population

    NASA Technical Reports Server (NTRS)

    Vampola, A. L.

    1972-01-01

    Temporal variations in the trapped natural electron flux intensities and energy spectra are discussed and demonstrated using recent satellite data. These data are intended to acquaint the space systems engineer with the types of natural variations that may be encountered during a mission and to augment the models of the electron environment currently being used in space system design and orbit selection. An understanding of the temporal variations which may be encountered should prove helpful. Some of the variations demonstrated here which are not widely known include: (1) addition of very energetic electrons to the outer zone during moderate magnetic storms: (2) addition of energetic electrons to the inner zone during major magnetic storms; (3) inversions in the outer zone electron energy spectrum during the decay phase of a storm injection event and (4) occasional formation of multiple maxima in the flux vs altitude profile of moderately energetic electrons.

  12. PIC simulations of the trapped electron filamentation instability in finite-width electron plasma waves

    NASA Astrophysics Data System (ADS)

    Winjum, B. J.; Banks, J. W.; Berger, R. L.; Cohen, B. I.; Chapman, T.; Hittinger, J. A. F.; Rozmus, W.; Strozzi, D. J.; Brunner, S.

    2012-10-01

    We present results on the kinetic filamentation of finite-width nonlinear electron plasma waves (EPW). Using 2D simulations with the PIC code BEPS, we excite a traveling EPW with a Gaussian transverse profile and a wavenumber k0λDe= 1/3. The transverse wavenumber spectrum broadens during transverse EPW localization for small width (but sufficiently large amplitude) waves, while the spectrum narrows to a dominant k as the initial EPW width increases to the plane-wave limit. For large EPW widths, filaments can grow and destroy the wave coherence before transverse localization destroys the wave; the filaments in turn evolve individually as self-focusing EPWs. Additionally, a transverse electric field develops that affects trapped electrons, and a beam-like distribution of untrapped electrons develops between filaments and on the sides of a localizing EPW. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061. Supported also under Grants DE-FG52-09NA29552 and NSF-Phy-0904039. Simulations were performed on UCLA's Hoffman2 and NERSC's Hopper.

  13. Creation of Electron Trap States in Silicon Dioxide By Local Electron Injection

    NASA Astrophysics Data System (ADS)

    Winslow, Dustin; Williams, Clayton

    2012-02-01

    Over a decade ago, the Scanning Tunneling Microscope was shown capable of desorbing single hydrogen atoms from the surface of hydrogen terminated silicon.ootnotetextT.C. Shen et. al. Science 268, 1590 (1995). The resultant dangling bonds can act as atomic scale quantum dots.ootnotetextM. B Haider et. al. PRL 102, 046805 (2009). Electrons trapped in such dangling bond states at the surface of crystalline silicon have short retention times at room temperature, due to the proximity of the occupied state energy level to the conduction band. Here we report on a method for creating electron trap states at the surface of a silicon dioxide film by electron injection from a metalized Atomic Force Microscope probe tip. Single Electron Tunneling Force measurementsootnotetextE. Bussmann, et. al. Appl. Phys. Lett., 85, 13 (2004). are employed to examine the existence of trap states in the silicon dioxide surface before and after the electron injection. Evidence for electron trap state creation, without topographic modification of the silicon dioxide surface, will be presented. The trap states created by this process have electron retention times which are greater than one second at room temperature. The methodology for trap state creation and detection will be presented.

  14. Spectroscopy of Argon Excited in an Electron Beam Ion Trap

    SciTech Connect

    Trabert, E

    2005-04-18

    Argon is one of the gases best investigated and most widely used in plasma discharge devices for a multitude of applications that range from wavelength reference standards to controlled fusion experiments. Reviewing atomic physics and spectroscopic problems in various ionization stages of Ar, the past use and future options of employing an electron beam ion trap (EBIT) for better and more complete Ar data in the x-ray, EUV and visible spectral ranges are discussed.

  15. Upgrade of the electron beam ion trap in Shanghai

    SciTech Connect

    Lu, D.; Yang, Y.; Xiao, J.; Shen, Y.; Fu, Y.; Wei, B.; Yao, K.; Hutton, R.; Zou, Y.

    2014-09-15

    Over the last few years the Shanghai electron beam ion trap (EBIT) has been successfully redesigned and rebuilt. The original machine, developed under collaboration with the Shanghai Institute of Applied Physics, first produced an electron beam in 2005. It could be tuned with electron energies between 1 and 130 keV and beam current up to 160 mA. After several years of operation, it was found that several modifications for improvements were necessary to reach the goals of better electron optics, higher photon detection, and ion injection efficiencies, and more economical running costs. The upgraded Shanghai-EBIT is made almost entirely from Ti instead of stainless steel and achieves a vacuum of less than 10{sup −10} Torr, which helps to minimize the loss of highly changed ions through charge exchange. Meanwhile, a more compact structure and efficient cryogenic system, and excellent optical alignment have been of satisfactory. The magnetic field in the central trap region can reach up till 4.8 T with a uniformity of 2.77 × 10{sup −4}. So far the upgraded Shanghai-EBIT has been operated up to an electron energy of 151 keV and a beam current of up to 218 mA, although promotion to even higher energy is still in progress. Radiation from ions as highly charged as Xe{sup 53+,} {sup 54+} has been produced and the characterization of current density is estimated from the measured electron beam width.

  16. Upgrade of the electron beam ion trap in Shanghai.

    PubMed

    Lu, D; Yang, Y; Xiao, J; Shen, Y; Fu, Y; Wei, B; Yao, K; Hutton, R; Zou, Y

    2014-09-01

    Over the last few years the Shanghai electron beam ion trap (EBIT) has been successfully redesigned and rebuilt. The original machine, developed under collaboration with the Shanghai Institute of Applied Physics, first produced an electron beam in 2005. It could be tuned with electron energies between 1 and 130 keV and beam current up to 160 mA. After several years of operation, it was found that several modifications for improvements were necessary to reach the goals of better electron optics, higher photon detection, and ion injection efficiencies, and more economical running costs. The upgraded Shanghai-EBIT is made almost entirely from Ti instead of stainless steel and achieves a vacuum of less than 10(-10) Torr, which helps to minimize the loss of highly changed ions through charge exchange. Meanwhile, a more compact structure and efficient cryogenic system, and excellent optical alignment have been of satisfactory. The magnetic field in the central trap region can reach up till 4.8 T with a uniformity of 2.77 × 10(-4). So far the upgraded Shanghai-EBIT has been operated up to an electron energy of 151 keV and a beam current of up to 218 mA, although promotion to even higher energy is still in progress. Radiation from ions as highly charged as Xe(53+, 54+) has been produced and the characterization of current density is estimated from the measured electron beam width.

  17. Solubility trapping in formation water as dominant CO(2) sink in natural gas fields.

    PubMed

    Gilfillan, Stuart M V; Lollar, Barbara Sherwood; Holland, Greg; Blagburn, Dave; Stevens, Scott; Schoell, Martin; Cassidy, Martin; Ding, Zhenju; Zhou, Zheng; Lacrampe-Couloume, Georges; Ballentine, Chris J

    2009-04-01

    Injecting CO(2) into deep geological strata is proposed as a safe and economically favourable means of storing CO(2) captured from industrial point sources. It is difficult, however, to assess the long-term consequences of CO(2) flooding in the subsurface from decadal observations of existing disposal sites. Both the site design and long-term safety modelling critically depend on how and where CO(2) will be stored in the site over its lifetime. Within a geological storage site, the injected CO(2) can dissolve in solution or precipitate as carbonate minerals. Here we identify and quantify the principal mechanism of CO(2) fluid phase removal in nine natural gas fields in North America, China and Europe, using noble gas and carbon isotope tracers. The natural gas fields investigated in our study are dominated by a CO(2) phase and provide a natural analogue for assessing the geological storage of anthropogenic CO(2) over millennial timescales. We find that in seven gas fields with siliciclastic or carbonate-dominated reservoir lithologies, dissolution in formation water at a pH of 5-5.8 is the sole major sink for CO(2). In two fields with siliciclastic reservoir lithologies, some CO(2) loss through precipitation as carbonate minerals cannot be ruled out, but can account for a maximum of 18 per cent of the loss of emplaced CO(2). In view of our findings that geological mineral fixation is a minor CO(2) trapping mechanism in natural gas fields, we suggest that long-term anthropogenic CO(2) storage models in similar geological systems should focus on the potential mobility of CO(2) dissolved in water.

  18. Spectral measurements of few-electron uranium ions produced and trapped in a high-energy electron beam ion trap

    SciTech Connect

    Beiersdorfer, P.

    1994-11-04

    Measurements of 2s{sub l/2}-2p{sub 3/2} electric dipole and 2p{sub 1/2}-2p{sub 3/2} magnetic dipole and electric quadrupole transitions in U{sup 82+} through U{sup 89+} have been made with a high-resolution crystal spectrometer that recorded the line radiation from stationary ions produced and trapped in a high-energy electron beam ion trap. From the measurements we infer {minus}39.21 {plus_minus} 0.23 eV for the QED contribution to the 2s{sub 1/2}-2p{sub 3/2} transition energy of lithiumlike U{sup 89+}. A comparison between our measurements and various computations illustrates the need for continued improvements in theoretical approaches for calculating the atomic structure of ions with two or more electrons in the L shell.

  19. Phase space analysis for dynamics of three vortices of pure electron plasma trapped with Penning trap

    SciTech Connect

    Sanpei, Akio; Soga, Yukihiro; Ito, Kiyokazu; Himura, Haruhiko

    2015-06-29

    A trilinear phase space analysis is applied for dynamics of three electron clumps confined with a Penning-Malmberg trap. We show that the Aref’s concept of phase space describe the observed features of the dynamics of three point vortices qualitatively. In vacuum, phase point P moves to physical region boundary in phase space, i.e. triangular configuration cannot be kept. With the addition of a low level background vorticity distribution (BGVD), the excursion of the clumps is reduced and the distance between P and stable point does not extend in the phase space.

  20. Intensity dependent waiting time for strong electron trapping events in speckle stimulated raman scatter

    SciTech Connect

    Rose, Harvey; Daughton, W; Yin, L

    2009-01-01

    The onset of Stimulated Raman scatter from an intense laser speckle is the simplest experimentally realizable laser-plasma-interaction environment. Despite this data and recent 3D particle simulations, the controlling mechanism at the onset of backscatter in the kinetic regime when strong electron trapping in the daughter Langmuir wave is a dominant nonlinearity is not understood. This paper explores the consequences of assuming that onset is controlled by large thermal fluctuations. A super exponential dependence of mean reflectivity on speckle intensity in the onset regime is predicted.

  1. Impurity effects on trapped electron mode in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.

    2016-07-01

    The effects of impurity ions on the trapped electron mode (TEM) in tokamak plasmas are numerically investigated with the gyrokinetic integral eigenmode equation. It is shown that in the case of large electron temperature gradient ( η e ), the impurity ions have stabilizing effects on the TEM, regardless of peaking directions of their density profiles for all normalized electron density gradient R / L n e . Here, R is the major radius and L n e is the electron density gradient scale length. In the case of intermediate and/or small η e , the light impurity ions with conventional inwardly (outwardly) peaked density profiles have stabilizing effects on the TEM for large (small) R / L n e , while the light impurity ions with steep inwardly (outwardly) peaked density profiles can destabilize the TEM for small (large) R / L n e . Besides, the TEM driven by density gradient is stabilized (destabilized) by the light carbon or oxygen ions with inwardly (outwardly) peaked density profiles. In particular, for flat and/or moderate R / L n e , two independent unstable modes, corresponding respectively to the TEM and impurity mode, are found to coexist in plasmas with impurity ions of outwardly peaked density profiles. The high Z tungsten impurity ions play a stronger stabilizing role in the TEM than the low Z impurity ions (such as carbon and oxygen) do. In addition, the effects of magnetic shear and collision on the TEM instability are analyzed. It is shown that the collisionality considered in this work weakens the trapped electron response, leading to a more stable TEM instability, and that the stabilizing effects of the negative magnetic shear on the TEM are more significant when the impurity ions with outwardly peaked density profile are taken into account.

  2. Trapped Energetic Electrons in the Magnetosphere of Ganymede

    NASA Technical Reports Server (NTRS)

    Eviatar, Aharon; Williams, Donald J.; Paranicas, Chris; McEntire, Richard W.; Mauk, Barry H.; Kivelson, Margaret G.

    2000-01-01

    On May 7, 1997, the Galileo orbiter flew through the magnetosphere of Ganymede and crossed flux tubes connected at both ends to the satellite. Energetic electrons, observed during this encounter by means of the Energetic Particle Detector on board Galileo, showed double loss cones and "butterfly" type pitch angle distributions, as has been noted in past publications. In addition, as the spacecraft flew toward Ganymede, both the shape and magnitude of the spectrum changed. The intensities decreased, with the greatest depletion observed at the lowest energies, and the monotonic slope characteristic of the Jovian environment was replaced by a rollover of the spectrum at the low-energy end. The spectra lead us to infer a strongly energy-dependent injection efficiency into the trapping region. As on previous encounters, the pitch angle distributions confirmed the position of the magnetopause as indicated by the magnetometer measurements, but the spectra remained Jovian until the trapping region was reached. Various physical mechanisms capable of generating the observed spectra and pitch angle distributions, including downstream reconnection insertion followed by magnetic gradient drift and absorption of the lowest-energy electrons by Ganymede and injection from Jovian flux tubes upstream are assessed.

  3. Ultrafast Electron Trapping in Ligand-Exchanged Quantum Dot Assemblies

    NASA Astrophysics Data System (ADS)

    Kikkawa, J. M.; Turk, M. E.; Vora, P. M.; Fafarman, A. T.; Diroll, B. T.; Murray, C. B.; Kagan, C. R.

    2015-03-01

    We use time-integrated and time-resolved photoluminescence and absorption to characterize the low-temperature (10 K) optical properties of CdSe quantum dot (QD) solids with different ligand and annealing preparation. Close-packed CdSe quantum dot solids are prepared with native aliphatic ligands and with thiocyanate with and without thermal annealing. Using sub-picosecond, broadband time-resolved photoluminescence and absorption, we find that ligand exchange increases the rate of carrier surface trapping. We further determine that holes within the QD core, rather than electrons, can bleach the band-edge transition in these samples at low temperature, a finding that comes as a surprise given what is known about the surface treatment in these QDs. We find that our ligand treatments lead to faster electron trapping to the quantum dot surface, a greater proportion of surface photoluminescence, and an increased rate of nonradiative decay due to enhanced interparticle coupling upon exchange and annealing. All aspects of this work supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Award No. DE-SC0002158.

  4. Origin of hole and electron traps in graphene oxide

    NASA Astrophysics Data System (ADS)

    Kotin, I. A.; Antonova, I. V.; Orlov, O. M.; Smagulova, S. A.

    2016-06-01

    Charge-carrier capture/emission processes proceeding with the participation of localized states in graphene oxide (GO) in test structures of Au/SiO2/GO/SiO2/Si were examined by charge deep-level transient spectroscopy (Q-DLTS). Two groups of traps capable of capturing both electrons and holes in GO were detected. The energy levels of these groups with reference to the electronic band structure of Si were found to be at EV + 0.75 eV (EC ‑ 0.37 eV) and EV + 0.55 eV (EC ‑ 0.55 eV). Such levels are proposed to be inherent to graphene islands in which charge carriers are emitted from energy levels in the vicinity of the Dirac point. Two groups of levels are suggested to be attributed to graphene islands, with and without p-doping with oxygen.

  5. Motion of trapped electrons and protons in Saturn's inner magnetosphere

    SciTech Connect

    Thomsen, M.F.; Van Allen, J.A.

    1980-11-01

    A summary is given of basic formulas for the guiding center motion of energetic charged particles trapped in a dipolar magnetic field. These formulas for longitudinal drift rates, latitudinal bounce periods, equatorial gyroradii, and equatorial gyroperiods are then stated in convenient numerical form for electrons and protons as functions of kinetic energy E, magnetic shell parameter L, and equatorial pitch angle a/sub 0/ for a slightly simplified model of the observed magnetic field of Saturn. To aid in the study of the interaction of charged particles with the rings and inner satellites of Saturn, additional formulas are given for the time interval between successive encounters of charged particles with a satellite in a circular prograde orbit and for the energy of electrons whose longitudinal angular velocity is resonant, or synchronous, with the Keplerian angular velocity of such a satellite.

  6. Electron beam ion source and electron beam ion trap (invited)a)

    NASA Astrophysics Data System (ADS)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  7. Electron Spin Resonance Study of Electrons Trapped in Solid Molecular Hydrogen Films

    NASA Astrophysics Data System (ADS)

    Sheludiakov, S.; Ahokas, J.; Järvinen, J.; Vainio, O.; Lehtonen, L.; Zvezdov, D.; Khmelenko, V.; Lee, D. M.; Vasiliev, S.

    2016-05-01

    We report on the measurements of electrons trapped in solid molecular films of H2, HD, and D2. A narrow ESR line associated with the trapped electrons was detected with g=2.00233(5), which turned out to be shifted by -0.3 G from the free electron resonance. Comparison is made with earlier measurements where a similar line has been seen. In addition, for a text {D}2{:}text {H}2 mixture, after raising the temperature above 1 K, we observe a strong line at the location of the electron cyclotron resonance. The line amplitude is dependent on temperature and has an activation energy of 26 K. We believe that at elevated temperatures, electrons diffuse from the bulk of the film to the surface.

  8. The charge transport mechanism and electron trap nature in thermal oxide on silicon

    NASA Astrophysics Data System (ADS)

    Islamov, Damir R.; Gritsenko, Vladimir A.; Perevalov, Timofey V.; Orlov, Oleg M.; Krasnikov, Gennady Ya.

    2016-08-01

    The charge transport mechanism of electron via traps in amorphous SiO2 has been studied. Electron transport is limited by phonon-assisted tunneling between traps. Thermal and optical trap energies Wt=1.6 eV, Wopt=3.2 eV, respectively, were determined. Charge flowing leads to oxygen vacancies generation, and the leakage current increases due to the increase of charge trap density. Long-time annealing at high temperatures decreased the leakage current to initial values due to oxygen vacancies recombination with interstitial oxygen. It is found that the oxygen vacancies act as electron traps in SiO2.

  9. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    SciTech Connect

    Asahi, Y. Tsutsui, H.; Tsuji-Iio, S.; Ishizawa, A.; Watanabe, T.-H.

    2014-05-15

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger than or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.

  10. Nonlinear Particle Pinch in Collisionless Trapped Electron Mode Turbulence

    NASA Astrophysics Data System (ADS)

    Terry, P. W.; Gatto, R.

    2005-10-01

    Collisionless trapped electron mode turbulence is shown to have an anomalous particle pinch fundamentally unlike pinches identified previously. It arises from a nonlinear fluctuation eigenmode, placing it outside the purview of quasilinear theory. The nonlinear eigenmode develops because the nonlinearity excites a damped linear eigenmode, changing the density- potential correlation. The flux is solved from spectrum balance equations in a complete basis spanning the fluctuation space under a joint expansion in collision frequency and instability threshold parameter. The solution accounts for saturation by anisotropic energy transfer to zonal wavenumbers of the damped eigenmode. To lowest order the pinch is a convective-like flux driven by temperature gradient. It arises from the damped eigenmode energy and the real part of the correlation between damped and growing eigenmodes. The pinch is slightly smaller than the outwardly directed flux associated with the growing eigenmode, making the flux a small fraction of the quasilinear value. Work supported by US DOE.

  11. Hole Surface Trapping Dynamics Directly Monitored by Electron Spin Manipulation in CdS Nanocrystals.

    PubMed

    Li, Xiao; Feng, Donghai; Tong, Haifang; Jia, Tianqing; Deng, Li; Sun, Zhenrong; Xu, Zhizhan

    2014-12-18

    A new detection technique, pump-spin orientation-probe ultrafast spectroscopy, is developed to study the hole trapping dynamics in colloidal CdS nanocrystals. The hole surface trapping process spatially separates the electron-hole pairs excited by the pump pulse, leaves the core negatively charged, and thus enhances the electron spin signal generated by the orientation pulse. The spin enhancement transients as a function of the pump-orientation delay reveal a fast and a slow hole trapping process with respective time constants of sub-10 ps and sub-100 ps, orders of magnitude faster than that of carrier recombination. The power dependence of hole trapping dynamics elucidates the saturation process and relative number of traps, and suggests that there are three subpopulations of nanoparticles related to hole surface trapping, one with the fast trapping pathway only, another with the slow trapping pathway only, and the third with both pathways together. PMID:26273979

  12. Trapped electron mode driven electron heat transport in JET: experimental investigation and gyro-kinetic theory validation

    NASA Astrophysics Data System (ADS)

    Bonanomi, N.; Mantica, P.; Szepesi, G.; Hawkes, N.; Lerche, E.; Migliano, P.; Peeters, A.; Sozzi, C.; Tsalas, M.; Van Eester, D.; Contributors, JET

    2015-09-01

    The main purpose of this work is to study the dependence of trapped electron modes (TEM) threshold and of electron stiffness on the most relevant plasma parameters. Dedicated transport experiments based on heat flux scans and Te modulation have been performed in JET in TEM dominated plasmas with pure ICRH electron heating and a numerical study using gyrokinetic simulations has been performed with the code GKW. Using multilinear regressions on the experimental data, the stabilizing effect of magnetic shear predicted by theory for our plasma parameters is confirmed while no significant effect of safety factor was found. Good quantitative agreement is found between the TEM thresholds found in the experiments and calculated with linear GKW simulations. Non-linear simulations have given further confirmation of the threshold values and allowed comparison with the values of stiffness found experimentally. Perturbative studies using RF power modulation indicate the existence of an inward convective term for the electron heat flux. Adding NBI power, ion temperature gradient (ITG) modes become dominant and a reduction of |\

  13. Development of diagnostic and manipulation systems for space-charge dominated electron beams and confined electron plasmas in ELTRAP

    SciTech Connect

    Rome, M.; Cavaliere, F.; Maero, G.; Paroli, B.; Pozzoli, R.; Cavenago, M.; Ikram, M.

    2013-03-19

    Modifications have been implemented in the Penning-Malmberg device ELTRAP aimed at performing studies on the dynamics of space-charge dominated nanosecond electron bunches traveling along the magnetic field. In particular, a Thomson backscattering apparatus has been developed where an infrared (IR) laser pulse collides with the bunched electron beam. The frequency-shifted backscattered radiation, acquired by means of a photomultiplier (PMT), can be exploited to evaluate information on energy, energy spread and density of the bunch. The achievable sensitivity of the diagnostics has been estimated, and valuable information on the main parameters affecting the signal-to-noise (S/N) ratio has been obtained [B. Paroli, F. Cavaliere, M. Cavenago, F. De Luca, M. Ikram, G. Maero, C. Marini, R. Pozzoli, and M. Rome, JINST 7, P01008 (2012)]. A series of upgrades are under way, aimed at increasing the S/N ratio through the use of a new laser for the electron source, the insertion of a stray light shield, and the optimization of the detection electronics. Moreover, electromagnetic simulations relevant to the design and implementation of a microwave heating system are presented. The generation of an electron plasma in ELTRAP by means of a low-power radio frequency (RF) drive in the MHz range applied on one of the trap electrodes and under ultra-high vacuum (UHV) conditions has previously been demonstrated [B. Paroli, F. De Luca, G. Maero, F. Pozzoli, and M. Rome, Plasma Sources Sci. Technol. 19, 045013 (2010)]. The new heating system will allow the extension of the RF studies to the GHz range and in particular the production of a more energetic electron plasma via cyclotron resonant excitation.

  14. Development of diagnostic and manipulation systems for space-charge dominated electron beams and confined electron plasmas in ELTRAP

    NASA Astrophysics Data System (ADS)

    Romé, M.; Cavaliere, F.; Cavenago, M.; Ikram, M.; Maero, G.; Paroli, B.; Pozzoli, R.

    2013-03-01

    Modifications have been implemented in the Penning-Malmberg device ELTRAP aimed at performing studies on the dynamics of space-charge dominated nanosecond electron bunches traveling along the magnetic field. In particular, a Thomson backscattering apparatus has been developed where an infrared (IR) laser pulse collides with the bunched electron beam. The frequency-shifted backscattered radiation, acquired by means of a photomultiplier (PMT), can be exploited to evaluate information on energy, energy spread and density of the bunch. The achievable sensitivity of the diagnostics has been estimated, and valuable information on the main parameters affecting the signal-to-noise (S/N) ratio has been obtained [B. Paroli, F. Cavaliere, M. Cavenago, F. De Luca, M. Ikram, G. Maero, C. Marini, R. Pozzoli, and M. Romé, JINST 7, P01008 (2012)]. A series of upgrades are under way, aimed at increasing the S/N ratio through the use of a new laser for the electron source, the insertion of a stray light shield, and the optimization of the detection electronics. Moreover, electromagnetic simulations relevant to the design and implementation of a microwave heating system are presented. The generation of an electron plasma in ELTRAP by means of a low-power radio frequency (RF) drive in the MHz range applied on one of the trap electrodes and under ultra-high vacuum (UHV) conditions has previously been demonstrated [B. Paroli, F. De Luca, G. Maero, F. Pozzoli, and M. Romé, Plasma Sources Sci. Technol. 19, 045013 (2010)]. The new heating system will allow the extension of the RF studies to the GHz range and in particular the production of a more energetic electron plasma via cyclotron resonant excitation.

  15. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    SciTech Connect

    Marrs, R.E.; Bennett, C.; Chen, M.H.; Cowan, T.; Dietrich, D.; Henderson, J.R.; Knapp, D.A.; Levine, M.A.; Schneider, M.B.; Scofield, J.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab.

  16. Nonlinear acceleration of the electron inertia-dominated magnetohydrodynamic modes due to electron parallel compressibility

    SciTech Connect

    Matsumoto, Taro; Naitou, Hiroshi; Tokuda, Shinji; Kishimoto, Yasuaki

    2005-09-15

    The behavior of the collisionless magnetohydrodynamics modes is investigated by the gyrokinetic particle simulation in a cylindrical tokamak plasma in the parameter region where the effects of electron inertia and electron parallel compressibility are competitive for magnetic reconnection. Although the linear growth of the m=1 internal kink-tearing mode is dominated by the electron inertia, it is found that the growth rate can be nonlinearly accelerated due to the electron parallel compressibility proportional to the ion sound Larmor radius {rho}{sub s}. It is also found that, as decreasing the electron skin depth {delta}{sub e}, the maximum growth rate before the internal collapse saturates independently of the microscopic scales such as {delta}{sub e} and {rho}{sub s}. The acceleration of growth rate is also observed in the nonlinear phase of the m=2 double tearing mode.

  17. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; Doughty, Benjamin; Yang, Bin

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  18. A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Egedal, Jan; Le, Ari; Daughton, William

    2013-06-01

    From spacecraft data, it is evident that electron pressure anisotropy develops in collisionless plasmas. This is in contrast to the results of theoretical investigations, which suggest this anisotropy should be limited. Common for such theoretical studies is that the effects of electron trapping are not included; simply speaking, electron trapping is a non-linear effect and is, therefore, eliminated when utilizing the standard methods for linearizing the underlying kinetic equations. Here, we review our recent work on the anisotropy that develops when retaining the effects of electron trapping. A general analytic model is derived for the electron guiding center distribution f¯(v∥,v⊥) of an expanding flux tube. The model is consistent with anisotropic distributions observed by spacecraft, and is applied as a fluid closure yielding anisotropic equations of state for the parallel and perpendicular components (relative to the local magnetic field direction) of the electron pressure. In the context of reconnection, the new closure accounts for the strong pressure anisotropy that develops in the reconnection regions. It is shown that for generic reconnection in a collisionless plasma nearly all thermal electrons are trapped, and dominate the properties of the electron fluid. A new numerical code is developed implementing the anisotropic closure within the standard two-fluid framework. The code accurately reproduces the detailed structure of the reconnection region observed in fully kinetic simulations. These results emphasize the important role of pressure anisotropy for the reconnection process. In particular, for reconnection geometries characterized by small values of the normalized upstream electron pressure, βe∞, the pressure anisotropy becomes large with p∥≫p⊥ and strong parallel electric fields develop in conjunction with this anisotropy. The parallel electric fields can be sustained over large spatial scales and, therefore, become important for

  19. Electron trapping optical data storage system and applications

    NASA Technical Reports Server (NTRS)

    Brower, Daniel; Earman, Allen; Chaffin, M. H.

    1993-01-01

    A new technology developed at Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media stores 14 gigabytes of uncompressed data on a single, double-sided 130 mm disk with a data transfer rate of up to 120 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated W/R/E cycling. This rewritable data storage technology has been developed for use as a basis for numerous data storage products. Industries that can benefit from the ETOM data storage technologies include: satellite data and information systems, broadcasting, video distribution, image processing and enhancement, and telecommunications. Products developed for these industries are well suited for the demanding store-and-forward buffer systems, data storage, and digital video systems needed for these applications.

  20. Modeling of Trapped Electron Effects on Electron Cyclotron Current Drive for Recent DIII-D Experiments

    SciTech Connect

    Lin-Liu, Y.R.; Sauter, O.; Harvey, R.W.; Chan, V.S.; Luce, T.C.; Prater, R.

    1999-08-01

    Owing to its potential capability of generating localized non-inductive current, especially off-axis, Electron Cyclotron Current Drive (ECCD) is considered a leading candidate for current profile control in achieving Advanced Tokamak (AT) operation. In recent DIII-D proof-of-principle experiments [1], localized off-axis ECCD has been clearly demonstrated for first time. The measured current drive efficiency near the magnetic axis agrees well with predictions of the bounce-averaged Fokker-Planck theory [2,3]. However, the off-axis current drive efficiency was observed to exceed the theoretical results, which predict significant degradation of the current drive efficiency due to trapped electron effects. The theoretical calculations have been based on an assumption that the effective collision frequency is much smaller than the bounce frequency such that the trapped electrons are allowed to complete the banana orbit at all energies. The assumption might be justified in reactor-grade tokamak plasmas, in which the electron temperature is sufficiently high or the velocity of resonant electrons is much larger than the thermal velocity, so that the influence of collisionality on current drive efficiency can be neglected. For off-axis deposition in the present-day experiments, the effect of high density and low temperature is to reduce the current drive efficiency, but the increasing collisionality reduces the trapping of current-carrying electrons, leading to compensating increases in the current drive efficiency. In this work, we use the adjoint function formulation [4] to examine collisionality effects on the current drive efficiency.

  1. Gyrokinetic studies of trapped electron mode turbulence in the Helically Symmetric eXperiment stellarator

    SciTech Connect

    Faber, B. J.; Pueschel, M. J.; Terry, P. W.; Proll, J. H. E.; Hegna, C. C.; Weir, G. M.; Likin, K. M.; Talmadge, J. N.

    2015-07-15

    Gyrokinetic simulations of plasma microturbulence in the Helically Symmetric eXperiment are presented. Using plasma profiles relevant to experimental operation, four dominant drift wave regimes are observed in the ion wavenumber range, which are identified as different flavors of density-gradient-driven trapped electron modes. For the most part, the heat transport exhibits properties associated with turbulence driven by these types of modes. Additionally, long-wavelength, radially localized, nonlinearly excited coherent structures near the resonant central flux surface, not predicted by linear simulations, can further enhance flux levels. Integrated heat fluxes are compatible with experimental observations in the corresponding density gradient range. Despite low shearing rates, zonal flows are observed to regulate turbulence but can be overwhelmed at higher density gradients by the long-wavelength coherent structures.

  2. Gyrokinetic studies of trapped electron mode turbulence in the Helically Symmetric eXperiment stellarator

    NASA Astrophysics Data System (ADS)

    Faber, B. J.; Pueschel, M. J.; Proll, J. H. E.; Xanthopoulos, P.; Terry, P. W.; Hegna, C. C.; Weir, G. M.; Likin, K. M.; Talmadge, J. N.

    2015-07-01

    Gyrokinetic simulations of plasma microturbulence in the Helically Symmetric eXperiment are presented. Using plasma profiles relevant to experimental operation, four dominant drift wave regimes are observed in the ion wavenumber range, which are identified as different flavors of density-gradient-driven trapped electron modes. For the most part, the heat transport exhibits properties associated with turbulence driven by these types of modes. Additionally, long-wavelength, radially localized, nonlinearly excited coherent structures near the resonant central flux surface, not predicted by linear simulations, can further enhance flux levels. Integrated heat fluxes are compatible with experimental observations in the corresponding density gradient range. Despite low shearing rates, zonal flows are observed to regulate turbulence but can be overwhelmed at higher density gradients by the long-wavelength coherent structures.

  3. Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; Rhodes, T. L.; Dimits, A. M.; Bravenec, R.; Grierson, B. A.; Holland, C.; Lohr, J.; Marinoni, A.; McKee, G. R.; Petty, C. C.; Rost, J. C.; Schmitz, L.; Wang, G.; Zemedkun, S.; Zeng, L.

    2016-05-01

    A series of DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven trapped electron mode (DGTEM) turbulence dominates the inner core of H-mode plasmas during strong electron cyclotron heating (ECH). Adding 3.4 MW ECH doubles Te/Ti from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This suggests that fusion α-heating may degrade inner core confinement in H-mode plasmas with moderate density peaking and low collisionality, with equal electron and ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] (and GENE [Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes but also density fluctuation spectra from Doppler backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0>qmin>1 .

  4. 'Programming' Electron Beam Ion Traps To Produce Atomic Data Relevant To Plasma Physics

    SciTech Connect

    Currell, Fred; O'Rourke, Brian; Kavanagh, Anthony; Li Yueming; Nakamura, Nobuyuki; Ohtani, Shunsuke; Watanabe, Hirofumi

    2009-09-10

    After a brief review of the processes taking place in electron beam ions traps (EBITs), the means by which EBITs are used to make measurements of electron impact ionization cross-sections and dielectronic recombination resonance strengths are discussed. In particular, results from a study involving holmium ions extracted from an electron beam ion trap are used to illustrate a technique for studying dielectronic recombination in open-shell target ions.

  5. Electronic excitations and self-trapping of electrons and holes in CaSO4

    NASA Astrophysics Data System (ADS)

    Kudryavtseva, I.; Klopov, M.; Lushchik, A.; Lushchik, Ch; Maaroos, A.; Pishtshev, A.

    2014-04-01

    A first-principles study of the electronic properties of a CaSO4 anhydrite structural phase has been performed. A theoretical estimation for the fundamental band gap (p → s transitions) is Eg = 9.6 eV and a proper threshold for p → d transitions is Epd = 10.8 eV. These values agree with the data obtained for a set of CaSO4 doped with Gd3+, Dy3+, Tm3+ and Tb3+ ions using the methods of low-temperature highly sensitive luminescence and thermoactivation spectroscopy. The results are consistent with theoretical predictions of a possible low-temperature self-trapping of oxygen p-holes. The hopping diffusion of hole polarons starts above ˜40 K and is accompanied by a ˜50-60 K peak of thermally stimulated luminescence of RE3+ ions caused due to the recombination of hole polarons with the electrons localized at RE3+. There is no direct evidence of the self-trapping of heavy d-electrons, however, one can argue that their motion rather differs from that of conduction s-electrons.

  6. Electronic properties and deep traps in electron-irradiated n-GaN

    SciTech Connect

    Brudnyi, V. N.; Verevkin, S. S.; Govorkov, A. V.; Ermakov, V. S.; Kolin, N. G.; Korulin, A. V.; Polyakov, A. Ya.; Smirnov, N. B.

    2012-04-15

    The study is concerned with the effect of electron irradiation (with the energies E = 7 and 10 MeV and doses D = 10{sup 16}-10{sup 18} cm{sup -2}) and subsequent heat treatments in the temperature range 100-1000 Degree-Sign C on the electrical properties and the spectrum of deep traps of undoped (concentration of electrons n = 1 Multiplication-Sign 10{sup 14}-1 Multiplication-Sign 10{sup 16} cm{sup -3}), moderately Si-doped (n = (1.2-2) Multiplication-Sign 10{sup 17} cm{sup -3}), and heavily Si-doped (n = (2-3.5) Multiplication-Sign 10{sup 18} cm{sup -3}) epitaxial n-GaN layers grown on Al{sub 2}O{sub 3} substrates by metal-organic chemical vapor deposition. It is found that, on electron irradiation, the resistivity of n-GaN increases, this is due to a shift of the Fermi level to the limiting position close to E{sub c} -0.91 eV. The spectrum of deep traps is studied for the initial and electron-irradiated n-GaN. It is shown that the initial properties of the irradiated material are restored in the temperature range 100-1000 Degree-Sign C, with the main stage of the annealing of radiation defects at about 400 Degree-Sign C.

  7. Soft-X-ray spectra of highly charged Os, Bi, Th, and U ions in an electron beam ion trap

    SciTech Connect

    Trabert, E; Beiersdorfer, P; Fournier, K B; Chen, M H

    2004-12-03

    Systematic variation of the electron-beam energy in an electron-beam ion trap has been employed to produce soft-X-ray spectra of Os, Bi, Th, and U with highest charge states ranging up to Ni-like ions. Guided by relativistic atomic structure calculations, the strongest lines have been identified with {Delta}n = 0 (n = 4 to n' = 4) transitions in Rb- to Cu-like ions. The rather weak 4p-4d transitions are much less affected by QED contributions than the dominant 4s-4p transitions. Our wavelength measurements consequently provide benchmarks with and (almost) without QED. Because the radiative corrections are not very sensitive to the number of electrons in the valence shell, our data, moreover, provide benchmarks for the evaluation of electron-electron interactions.

  8. Measurement of the temperature of cold highly charged ions produced in an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P.; Decaux, V.; Widmann, K.

    1994-09-14

    The temperature of highly charged titanium ions produced and trapped in an electron beam ion trap was determined by precisely measuring the broadening of the emission line profile caused by the thermal Doppler motion. The measured temperature ranges from about 700 eV for deeply trapped ions to about 70 eV for ions in a shallow trap. The latter value represents the lowest temperature at which the x-ray emission of collisonally excited heliumlike Ti{sup 20}+ ions has ever been recorded, and the measured transitions represent the narrowest x-ray lines observed from highly charged titanium ions.

  9. Dominance of broken bonds and nonbonding electrons at the nanoscale.

    PubMed

    Sun, Chang Q

    2010-10-01

    Although they exist ubiquitously in human bodies and our surroundings, the impact of nonbonding lone electrons and lone electron pairs has long been underestimated. Recent progress demonstrates that: (i) in addition to the shorter and stronger bonds between under-coordinated atoms that initiate the size trends of the otherwise constant bulk properties when a substance turns into the nanoscale, the presence of lone electrons near to broken bonds generates fascinating phenomena that bulk materials do not demonstrate; (ii) the lone electron pairs and the lone pair-induced dipoles associated with C, N, O, and F tetrahedral coordination bonding form functional groups in biological, organic, and inorganic specimens. By taking examples of surface vacancy, atomic chain end and terrace edge states, catalytic enhancement, conducting-insulating transitions of metal clusters, defect magnetism, Coulomb repulsion at nanoscale contacts, Cu(3)C(2)H(2) and Cu(3)O(2) surface dipole formation, lone pair neutralized interface stress, etc, this article will focus on the development and applications of theory regarding the energetics and dynamics of nonbonding electrons, aiming to raise the awareness of their revolutionary impact to the society. Discussion will also extend to the prospective impacts of nonbonding electrons on mysteries such as catalytic enhancement and catalysts design, the density anomalies of ice and negative thermal expansion, high critical temperature superconductivity induced by B, C, N, O, and F, the molecular structures and functionalities of CF(4) in anti-coagulation of synthetic blood, NO signaling, and enzyme telomeres, etc. Meanwhile, an emphasis is placed on the necessity and effectiveness of understanding the properties of substances from the perspective of bond and nonbond formation, dissociation, relaxation and vibration, and the associated energetics and dynamics of charge repopulation, polarization, densification, and localization. Finding and grasping

  10. Electron trapping in shear Alfvén waves that power the aurora.

    PubMed

    Watt, Clare E J; Rankin, Robert

    2009-01-30

    Results from 1D Vlasov drift-kinetic plasma simulations reveal how and where auroral electrons are accelerated along Earth's geomagnetic field. In the warm plasma sheet, electrons become trapped in shear Alfvén waves, preventing immediate wave damping. As waves move to regions with larger v(Te)/v(A), their parallel electric field decreases, and the trapped electrons escape their influence. The resulting electron distribution functions compare favorably with in situ observations, demonstrating for the first time a self-consistent link between Alfvén waves and electrons that form aurora.

  11. Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

    SciTech Connect

    Drouot, T.; Gravier, E.; Reveille, T.; Collard, M.

    2015-10-15

    This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of the temperature ratio T{sub e}/T{sub i} on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.

  12. Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

    NASA Astrophysics Data System (ADS)

    Drouot, T.; Gravier, E.; Reveille, T.; Collard, M.

    2015-10-01

    This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of the temperature ratio Te/Ti on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations ne and ni gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.

  13. Emittance and Current of Electrons Trapped in a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, N.; Blumenfeld, I.; Decker, F. J.; Hogan, M. J.; Ischebeck, R.; Iverson, R. H.; Siemann, R. H.; Walz, D. R.; Clayton, C. E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Zhou, M.; Katsouleas, T.; Muggli, P.; Oz, E.; Martins, S.

    2009-01-22

    In recent experiments plasma electrons became trapped in a plasma wakefield accelerator (PWFA). The transverse size of these trapped electrons on a downstream diagnostic yields an upper limit measurement of transverse normalized emittance divided by peak current, {epsilon}{sub N,{sub x}}/I. The lowest upper limit for {epsilon}{sub N,{sub x}}/I measured in the experiment is 1.3{center_dot}10{sup -10} m/A.

  14. Instability due to trapped electrons in magnetized multi-ion dusty plasmas

    NASA Astrophysics Data System (ADS)

    Haider, M. M.; Ferdous, T.; Duha, S. S.

    2015-05-01

    An attempt has been made to find out the effects of trapped electrons in dust-ion-acoustic solitary waves in magnetized multi-ion plasmas, as in most space plasmas, the hot electrons follow the trapped/vortex-like distribution. To do so, we have derived modified Zakharov-Kuznetsov equation using reductive perturbation method and its solution. A small- perturbation technique was employed to find out the instability criterion and growth rate of such a wave.

  15. Charge Transfer Fluorescence and 34 nm Exciton Diffusion Length in Polymers with Electron Acceptor End Traps.

    PubMed

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R; Miller, John R

    2015-06-18

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17-127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence, and DFT descriptions. Quantum yields of CT fluorescence are as large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps, the trap depths are 0.06 (p-xylene), 0.13 (THF), and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization, and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ∼50% of the excitons, and that the exciton diffusion length is LD = 34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. The efficiency of exciton capture depends on chain length but not on trap depth, solvent polarity, or which trap group is present.

  16. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    SciTech Connect

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R.; Miller, John R.

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are as large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length LD =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.

  17. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    DOE PAGES

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R.; Miller, John R.

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length LD =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less

  18. Phase-Space Density Analyses of the AE-8 Trapped Electron and the AP-8 Trapped Proton Model Environments

    SciTech Connect

    T.E. Cayton

    2005-08-12

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  19. Trapping of Electron Cloud LLC/Cesrta Quadrupole and Sextupole Magnets

    SciTech Connect

    Wang, L; Pivi, M.; /SLAC

    2011-08-18

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in CESRTA and ILC quadrupole and sextupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with a long lifetime in a quadrupole and sextupole magnet due to the mirror field trapping mechanism. We study the effects of magnet strength, bunch current, ante-chamber effect, bunch spacing effect and secondary emission yield (SEY) in great detail. The development of an electron cloud in magnets is the main concern where a weak solenoid field is not effective. Quadrupole and sextupole magnets have mirror field configurations which may trap electrons by the mirror field trapping mechanism [2]. Fig.1 shows the orbit of a trapped electron in a quadrupole magnet. The electron makes gyration motion (called transverse motion) and also moves along the field line (called longitudinal motion). At the mirror point (middle of the field line), there is a maximum longitudinal energy and minimum transverse energy. When the electron moves away from the mirror point, its longitudinal energy reduces and the transverse energy increases as the magnetic field increases. If the magnetic field is strong enough, the longitudinal energy becomes zero at one point and then the electron is turned back by the strong field. Note that the electrons are trapped in the region near the middle of the field lines. Although all quadrupole and sextupole magnets can trap electrons in principle, the trapping

  20. Effect of trapped electrons on soliton propagation in a plasma having a density gradient

    NASA Astrophysics Data System (ADS)

    Aziz, Farah; Stroth, Ulrich

    2009-03-01

    A Korteweg-deVries equation with an additional term due to the density gradient is obtained using reductive perturbation technique in an unmagnetized plasma having a density gradient, finite temperature ions, and two-temperature nonisothermal (trapped) electrons. This equation is solved to get the solitary wave solution using sine-cosine method. The phase velocity, soliton amplitude, and width are examined under the effect of electron and ion temperatures and their concentrations. The effect of ion (electron) temperature is found to be more significant in the presence of larger (smaller) number of trapped electrons in the plasma.

  1. Effect of trapped electrons on soliton propagation in a plasma having a density gradient

    SciTech Connect

    Aziz, Farah; Stroth, Ulrich

    2009-03-15

    A Korteweg-deVries equation with an additional term due to the density gradient is obtained using reductive perturbation technique in an unmagnetized plasma having a density gradient, finite temperature ions, and two-temperature nonisothermal (trapped) electrons. This equation is solved to get the solitary wave solution using sine-cosine method. The phase velocity, soliton amplitude, and width are examined under the effect of electron and ion temperatures and their concentrations. The effect of ion (electron) temperature is found to be more significant in the presence of larger (smaller) number of trapped electrons in the plasma.

  2. Study of electron trapping by a transversely ellipsoidal bubble in the laser wake-field acceleration

    SciTech Connect

    Cho, Myung-Hoon; Kim, Young-Kuk; Hur, Min Sup

    2013-09-15

    We present electron trapping in an ellipsoidal bubble which is not well explained by the spherical bubble model by [Kostyukov et al., Phys. Rev. Lett. 103, 175003 (2009)]. The formation of an ellipsoidal bubble, which is elongated transversely, frequently occurs when the spot size of the laser pulse is large compared to the plasma wavelength. First, we introduce the relation between the bubble size and the field slope inside the bubble in longitudinal and transverse directions. Then, we provide an ellipsoidal model of the bubble potential and investigate the electron trapping condition by numerical integration of the equations of motion. We found that the ellipsoidal model gives a significantly less restrictive trapping condition than that of the spherical bubble model. The trapping condition is compared with three-dimensional particle-in-cell simulations and the electron trajectory in test potential simulations.

  3. Thermal evaporated hyperbranched Ag nanostructure as an effective secondary-electron trapping surface coating

    NASA Astrophysics Data System (ADS)

    He, Y. N.; Peng, W. B.; Cui, W. Z.; Ye, M.; Zhao, X. L.; Wang, D.; Hu, T. C.; Wang, R.; Li, Y.

    2016-02-01

    We study secondary electron yield (SEY) suppression of silver using a hyperbranched nanostructure obtained by thermal evaporation. First, we perform thermal evaporation at different residual gas pressures for studying the influence of pressure on surface morphologies. A self-assembled hyperbranched Ag nanostructure has been achieved at 100 Pa. Then, we further investigate the detailed formation process of the self-assembled hyperbranched Ag nanostructure qualitatively and find it to be dominated by "screening effect". Finally, we study the obvious SEY suppression effect of this special structure. We show that 100 Pa is the best process condition within our experimental scope from the SEY suppression point of view. It exhibits maximum SEY (δmax) of ˜0.9. We also show that the combining of this nanostructure with the micro-porous surface we developed before can further improve its SEY suppression effect which leading to a δmax of ˜0.8. We propose a novel 2D rectangular-hemisphere hybrid trap model to perform numerical simulation of secondary electron dynamics for interpretation of the experimental results. In total, this work provides guidance to controllable preparation of low SEY metallic surfaces for potential applications in particle accelerators, RF microwave components and satellite systems.

  4. Photon-activated electron hopping in a single-electron trap enhanced by Josephson radiation

    NASA Astrophysics Data System (ADS)

    Lotkhov, S. V.; Jalali-Jafari, B.; Zorin, A. B.

    2016-04-01

    Using a Josephson junction interferometer (DC SQUID) as a microwave source for irradiating a single-electron trap, both devices fabricated on the same chip, we study the process of photon-assisted tunneling as an effective mechanism of single photon detection. High sensitivity down to a very small oscillation amplitude v J ˜ 10 nV ≪ E act ≲ h f J and down to low photon absorption rates Γph ˜ (1-50) Hz, as well as a clear threshold type of operation with an activation energy Eact ˜ 400 μeV, is demonstrated for the trap with respect to the microwave photons of frequency fJ ˜ (100-200) GHz. Tunable generation is demonstrated with respect to the power and frequency of the microwave signal produced by the SQUID source biased within the subgap voltage range. A much weaker effect is observed at the higher junction voltages along the quasiparticle branch of the I-V curve; this response mostly appears due to the recombination phonons.

  5. Nonlinear propagation of ion-acoustic waves in electron-positron-ion plasma with trapped electrons

    NASA Astrophysics Data System (ADS)

    Alinejad, H.; Sobhanian, S.; Mahmoodi, J.

    2006-01-01

    A theoretical investigation has been made for ion-acoustic waves in an unmagnetized electron-positron-ion plasma. A more realistic situation in which plasma consists of a negatively charged ion fluid, free positrons, and trapped as well as free electrons is considered. The properties of stationary structures are studied by the reductive perturbation method, which is valid for small but finite amplitude limit, and by pseudopotential approach, which is valid for large amplitude. With an appropriate modified form of the electron number density, two new equations for the ion dynamics have been found. When deviations from isothermality are finite, the modified Korteweg-deVries equation has been found, and for the case that deviations from isothermality are small, calculations lead to a generalized Korteweg-deVries equation. It is shown from both weakly and highly nonlinear analysis that the presence of the positrons may allow solitary waves to exist. It is found that the effect of the positron density changes the maximum value of the amplitude and M (Mach number) for which solitary waves can exist. The present theory is applicable to analyze arbitrary amplitude ion-acoustic waves associated with positrons which may occur in space plasma.

  6. Nonlinear propagation of ion-acoustic waves in electron-positron-ion plasma with trapped electrons

    SciTech Connect

    Alinejad, H.; Sobhanian, S.; Mahmoodi, J.

    2006-01-15

    A theoretical investigation has been made for ion-acoustic waves in an unmagnetized electron-positron-ion plasma. A more realistic situation in which plasma consists of a negatively charged ion fluid, free positrons, and trapped as well as free electrons is considered. The properties of stationary structures are studied by the reductive perturbation method, which is valid for small but finite amplitude limit, and by pseudopotential approach, which is valid for large amplitude. With an appropriate modified form of the electron number density, two new equations for the ion dynamics have been found. When deviations from isothermality are finite, the modified Korteweg-deVries equation has been found, and for the case that deviations from isothermality are small, calculations lead to a generalized Korteweg-deVries equation. It is shown from both weakly and highly nonlinear analysis that the presence of the positrons may allow solitary waves to exist. It is found that the effect of the positron density changes the maximum value of the amplitude and M (Mach number) for which solitary waves can exist. The present theory is applicable to analyze arbitrary amplitude ion-acoustic waves associated with positrons which may occur in space plasma.

  7. Threshold for Trapping Positrons in the Wake Driven by a Ultra-relativistic Electron Bunch

    SciTech Connect

    Wang, X.; Muggli, P.; Katsouleas, T.; Ischebeck, R.; Hogan, M. J.; Joshi, C.; Mori, W. B.

    2009-01-22

    We have recently proposed a new concept for generating, injecting and accelerating positrons in a plasma using a double-pulse electron bunch. Monte Carlo simulations show that the number of the positrons produced in a foil target has an exponentially decay energy spectrum. The energy threshold for the trapping of these positrons in a ultra-relativistic electron wake is investigated numerically. For a typical 28.5 GeV electron drive bunch, the trapping threshold for the positrons is a few MeV, and therefore a majority of positrons generated in the foil target are focused and accelerated by the plasma wake.

  8. Effects of trapped electrons on ion reflection in an oblique shock wave

    SciTech Connect

    Toida, Mieko; Inagaki, Junya

    2015-06-15

    A magnetosonic shock wave propagating obliquely to an external magnetic field can trap electrons and accelerate them to ultrarelativistic energies. The trapped electrons excite two-dimensional (2D) electromagnetic fluctuations with finite wavenumbers along the shock front. We study effects of the trapped electrons on ion motions through the 2D fluctuations. It is analytically shown that the fraction of ions reflected from the shock front is enhanced by the 2D fluctuations. This is confirmed by 2D (two space coordinates and three velocities) relativistic, electromagnetic particle simulations with full ion and electron dynamics and calculation of test ions in the electromagnetic fields averaged along the shock front. A comparison between 2D and one-dimensional electromagnetic particle simulations is also shown.

  9. Rapid increase in relativistic electron flux controlled by nonlinear phase trapping of whistler chorus elements

    NASA Astrophysics Data System (ADS)

    Saito, Shinji; Miyoshi, Yoshizumi; Seki, Kanako

    2016-07-01

    Wave-particle interactions with whistler chorus waves are believed to provide a primary acceleration for electrons in the outer radiation belt. Previous models for flux enhancement of the radiation belt have assumed the stochastic process as a diffusion manner of successive random-phase interactions, but physical mechanisms for the acceleration are not fully incorporated in these models because of the lack of a nonlinear scattering process. Here we report rapid increase in relativistic electron flux by using an innovative computer simulation model that incorporates not only diffusive process but also nonlinear scattering processes. The simulations show that three types of scattering simultaneously occur, which are diffusive, phase trapping, and phase bunching. It is found that the phase trapping is the most efficient mechanism to produce the MeV electrons rapidly in the scattering processes. The electrons are accelerated from 400 keV to over 1 MeV in time scale less than 60 s. On the other hand, as the phase trapping is suppressed by the breaking of relative phase angle between waves and gyrating electrons during the interaction, the increase of electron flux at MeV energy is clearly reduced. Our simulations conclude that the phase-trapping process causes a significant effect for the increase in relativistic electron flux and suggest that a quasi-linear diffusion model is not always valid to fully describe the relativistic electron acceleration.

  10. Design and Fabrication of Cryostat Interface and Electronics for High Performance Antimatter Trap (HI-PAT)

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.

    1999-01-01

    Included in Appendix I to this report is a complete set of design and assembly schematics for the high vacuum inner trap assembly, cryostat interfaces and electronic components for the MSFC HI-PAT. Also included in the final report are summaries of vacuum tests, and electronic tests performed upon completion of the assembly.

  11. Analysis of optimal trapping conditions for an electron bunch in an autophase traveling-wave tube

    NASA Astrophysics Data System (ADS)

    Bondarenko, B. N.; Kryzhanovskii, V. G.; Makarenko, I. B.

    The paper presents an investigation of an autophase TWT, with emphasis on the the parameters of the slow-wave structure, the electron beam, and the electrostatic field which assure maximum electron trapping in the potential well of the traveling wave. The study demonstrates the feasibility of creating an efficient device operating in a sufficiently wide range of input parameters.

  12. Radial transport of energetic ions in the presence of trapped electron mode turbulence

    SciTech Connect

    Chowdhury, J.; Wang, W.; Ethier, S.; Manickam, J.; Ganesh, R.

    2011-11-15

    The nature of transport of hot ions is studied in the presence of microturbulence generated by the trapped electron mode in a Tokamak using massively parallel, first principle based global nonlinear gyrokinetic simulation, and with the help of a passive tracer method. Passing and trapped hot ions are observed to exhibit inverse and inverse square scaling with energy, while those with isotropic pitch distribution are found to exhibit inverse dependence on energy. For all types of hot ions, namely, isotropic, passing, and trapped, the radial transport appears to be subdiffusive for the parameters considered.

  13. Investigation of ion capture in an electron beam ion trap charge-breeder for rare isotopes

    NASA Astrophysics Data System (ADS)

    Kittimanapun, Kritsada

    Charge breeding of rare isotope ions has become an important ingredient for providing reaccelerated rare isotope beams for science. At the National Superconducting Cyclotron Laboratory (NSCL), a reaccelerator, ReA, has been built that employs an advanced Electron Beam Ion Trap (EBIT) as a charge breeder. ReA will provide rare-isotope beams with energies of a few hundred keV/u up to tens of MeV/u to enable the study of properties of rare isotopes via low energy Coulomb excitation and transfer reactions, and to investigate nuclear reactions important for nuclear astrophysics. ReA consists of an EBIT charge breeder, a charge-over-mass selector, a room temperature radio-frequency quadrupole accelerator, and a superconducting radio-frequency linear accelerator. The EBIT charge breeder features a high-current electron gun, a long trap structure, and a hybrid superconducting magnet to reach both high acceptance for injected low-charge ions as well as high-electron beam current densities for fast charge breeding. In this work, continuous ion injection and capture in the EBIT have been investigated with a dedicated Monte-Carlo simulation code and in experimental studies. The Monte-Carlo code NEBIT considers the electron-impact ionization cross sections, space charge due to the electron beam current, ion dynamics, electric field from electrodes, and magnetic field from the superconducting magnet. Experiments were performed to study the capture efficiency as a function of injected ion beam current, electron beam current, trap size, and trap potential depth. The charge state evolution of trapped ions was studied, providing information about the effective current density of the electron beam inside the EBIT. An attempt was made to measure the effective space-charge potential of the electron beam by studying the dynamics of a beam injected and reflected inside the trap.

  14. Non-linear Collective Oscillations of Electrons in a Diamagnetic Kepler Trap

    NASA Astrophysics Data System (ADS)

    Godino, Joseph; Kunhardt, Erich; Carr, Wayne

    2001-10-01

    The Diamagnetic Kepler Trap is a potential energy well that arises from a static Coulomb potential in a superimposed uniform magnetic field. In an experimental arrangement with this configuration, we generate a system of electrons and ions by ionization of the neutral background gas that has a typical density of 10^12 particles per cubic centimeter. The lifetime of the trapped electrons is sufficiently long that we can observe collective oscillations. Here, we examine these oscillations by coupling a probe to the plasma and measuring the induced current. We find that as we deepen the potential energy well these oscillations progress through a sequence of linear, non-linear and chaotic behavior. Using the photographs of the light emission from the excited neutrals, we observe that the non-linearity of the collective oscillations results from an increase in the trapped electron density that moves in a direction parallel to the magnetic field lines. From the FFT of the induced current, we find that the transition from linearity to chaos occurs through intermittent fluctuations in the measured signal that are manifest in the broadening of the spectrum. Since the applied sphere voltage never collapses, the electrons remain trapped in the potential energy well and we conclude that the chaos results from a breakdown of the collective behavior into that of many individual singly trapped electrons.

  15. Location Of Hole And Electron Traps On Nanocrystalline Anatase TiO2

    SciTech Connect

    Mercado, Candy C.; Knorr, Fritz J.; McHale, Jeanne L.; Usmani, Shirin M.; Ichimura, Andrew S.; Saraf, Laxmikant V.

    2012-05-17

    The defect photoluminescence from TiO2 nanoparticles in the anatase phase is reported for nanosheets which expose predominantly (001) surfaces, and compared to that from conventional anatase nanoparticles which expose mostly (101) surfaces. Also reported is the weak defect photoluminescence of TiO2 nanotubes, which we find using electron back-scattered diffraction to consist of walls which expose (110) and (100) facets. The nanotubes exhibit photoluminescence that is blue-shifted and much weaker than that from conventional TiO2 nanoparticles. Despite the preponderance of (001) surfaces in the nanosheet samples, they exhibit photoluminescence similar to that of conventional nanoparticles. We assign the broad visible photoluminescence of anatase nanoparticles to two overlapping distributions: hole trap emission associated with oxygen vacancies on (101) exposed surfaces, which peaks in the green, and a broader emission extending into the red which results from electron traps on under-coordinated titanium atoms, which are prevalent on (001) facets. The results of this study suggest how morphology of TiO2 nanoparticles could be optimized to control the distribution and activity of surface traps. Our results also shed light on the mechanism by which the TiCl4 surface treatment heals traps on anatase and mixed-phase TiO2 films, and reveals distinct differences in the trap-state distributions of TiO2 nanoparticles and nanotubes. The molecular basis for electron and hole traps and their spatial separation on different facets is discussed.

  16. Increasing measurement sensitivity for the electron's electric dipole moment using trapped molecular ions

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Gresh, Daniel; Cairncross, William; Grau, Matt; Ng, Kia Boon; Ni, Yiqi; Cornell, Eric; Ye, Jun

    2016-05-01

    Based on our latest measurements of the electron's electric dipole moment (eEDM) using trapped HfF+ ions, after 100 hours of data collection, the statistical error still dominates in our overall uncertainty budget. Overcoming the bottleneck of limited statistical sensitivity can increase the precision of the eEDM measurement directly. Here, we present the progress of three ongoing experiments: (1) applying STImulated Raman Adiabatic Passage (STIRAP) with rotating linear polarization for increased coherent population transfer from the ground X1Σ+ state to the eEDM-sensitive 3Δ1 state; (2) implementing a new ion-counting detector toward shot-noise limited sensitivity with significant suppression technical noise; (3) exploring the possibility of using the ground 3Δ1 state of ThF+ ions to realize a larger effective electric field and a longer coherence time. These experiments provide a route towards an order of magnitude increase in statistical sensitivity in the second generation of measurements.

  17. Probability of relativistic electron trapping by parallel and oblique whistler-mode waves in Earth's radiation belts

    SciTech Connect

    Artemyev, A. V. Vasiliev, A. A.; Neishtadt, A. I.; Mourenas, D.; Krasnoselskikh, V.

    2015-11-15

    We investigate electron trapping by high-amplitude whistler-mode waves propagating at small as well as large angles relative to geomagnetic field lines. The inhomogeneity of the background magnetic field can result in an effective acceleration of trapped particles. Here, we derive useful analytical expressions for the probability of electron trapping by both parallel and oblique waves, paving the way for a full analytical description of trapping effects on the particle distribution. Numerical integrations of particle trajectories allow to demonstrate the accuracy of the derived analytical estimates. For realistic wave amplitudes, the levels of probabilities of trapping are generally comparable for oblique and parallel waves, but they turn out to be most efficient over complementary energy ranges. Trapping acceleration of <100 keV electrons is mainly provided by oblique waves, while parallel waves are responsible for the trapping acceleration of >100 keV electrons.

  18. Transverse Emittance and Current of Multi-GeV Trapped Electrons in a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, N.; Blumenfeld, I.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.H.; Joshi, C.; Katsouleas, T.; Lu, W.; Marsh, K.A.; Martins, S.F.; Mori, W.B.; Muggli, P.; Oz, E.; Siemann, R.H.; Walz, D.R.; Zhou, M.; /UCLA

    2009-10-17

    Multi-GeV trapped electron bunches in a plasma wakefield accelerator (PWFA) are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that emittance scales inversely with the square root of the plasma density in the nonlinear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents.

  19. Soliton Reflection in a Magnetized Cold Plasma having Dust Grains and Trapped Electrons

    NASA Astrophysics Data System (ADS)

    Malik, Hitendra K.; Singh, Omveer; Dahiya, Raj P.

    2012-10-01

    A solitary wave is said to be a soliton if it retains its shape after collision with another solitary wave. The solitons get reflected from a boundary or the density gradient present in the plasma. In the present work, the reflection of a soliton is studied in a magnetized cold plasma having dust grains and trapped electrons. Considering the density inhomogeneity in the plasma, we derive relevant modified Korteweg-deVries (mKdV) equations for the right and left going solitary waves and then after coupling these equations at the point of reflection we solve the coupled equation for obtaining the expression for the reflection coefficient based on which the soliton reflection is examined under the effect of magnetic field, dust grain density, and the temperature of trapped electrons. Specifically the role of trapped electrons and dust grains is uncovered for the excitation of solitary waves and their reflection.

  20. The uses of electron beam ion traps in the study of highly charged ions

    SciTech Connect

    Knapp, D.

    1994-11-02

    The Electron Beam Ion Trap (EBIT) is a relatively new tool for the study of highly charged ions. Its development has led to a variety of new experimental opportunities; measurements have been performed with EBITs using techniques impossible with conventional ion sources or storage rings. In this paper, I will highlight the various experimental techniques we have developed and the results we have obtained using the EBIT and higher-energy Super-EBIT built at the Lawrence Livermore National Laboratory. The EBIT employs a high-current-density electron beam to trap, ionize, and excite a population of ions. The ions can be studied in situ or extracted from the trap for external experiments. The trapped ions form an ionization-state equilibrium determined by the relative ionization and recombination rates. Ions of several different elements may simultaneously be present in the trap. The ions are nearly at rest, and, for most systems, all in their ground-state configurations. The electron-ion interaction energy has a narrow distribution and can be varied over a wide range. We have used the EBIT devices for the measurement of electron-ion interactions, ion structure, ion-surface interactions, and the behavior of low-density plasmas.

  1. Effects of trapped electrons on the oblique propagation of ion acoustic solitary waves in electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-08-01

    The characteristics of the nonlinear oblique propagation of ion acoustic solitary waves in unmagnetized plasmas consisting of Boltzmann positrons, trapped electrons and ions are investigated. The modified Kadomtsev-Petviashivili ( m K P ) equation is derived employing the reductive perturbation technique. The parametric effects on phase velocity, Sagdeev potential, amplitude and width of solitons, and electrostatic ion acoustic solitary structures are graphically presented with the relevant physical explanations. This study may be useful for the better understanding of physical phenomena concerned in plasmas in which the effects of trapped electrons control the dynamics of wave.

  2. Hole and electron traps in the YAlO{sub 3} single crystal scintillator

    SciTech Connect

    Laguta, V. V.; Nikl, M.; Rosa, J.; Vedda, A.; Mihokova, E.; Blazek, K.

    2009-07-15

    The processes of hole and electron localization in YAlO{sub 3} single crystals were investigated by electron-spin resonance. It was found that holes created by UV or x-ray irradiation are trapped at regular oxygen ions forming two types of O{sup -} hole centers corresponding to hole localization at two inequivalent oxygen ions which are located in Y and Al planes, respectively. The hole can be either autolocalized or additionally stabilized by a defect in the neighborhood of the oxygen ion such as yttrium vacancy or an impurity ion at Y site. This leads to a variety of O{sup -} centers which differ both by thermal stability (from about 14 K up to room temperature) and spectral parameters. Electron-type trapping sites are assigned to Y{sub Al} antisite ions. After trapping an electron they become paramagnetic Y{sub Al}{sup 2+} centers. They are found in several configurations with thermal stability up to above 300 K that enables the radiative recombination of freed holes with such localized electrons and the appearance of thermoluminescence peaks. It is shown that the electron trapped around Y{sub Al} antisite ion is additionally stabilized either by an oxygen vacancy or by a defect at Y site. The yttrium antisite ions in the lattice were directly identified by {sup 89}Y nuclear magnetic resonance.

  3. Real-Space Mapping of Surface Trap States in CIGSe Nanocrystals Using 4D Electron Microscopy.

    PubMed

    Bose, Riya; Bera, Ashok; Parida, Manas R; Adhikari, Aniruddha; Shaheen, Basamat S; Alarousu, Erkki; Sun, Jingya; Wu, Tom; Bakr, Osman M; Mohammed, Omar F

    2016-07-13

    Surface trap states in copper indium gallium selenide semiconductor nanocrystals (NCs), which serve as undesirable channels for nonradiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with subpicosecond temporal and nanometer spatial resolutions. Here, we precisely map the collective surface charge carrier dynamics of copper indium gallium selenide NCs as a function of the surface trap states before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, the removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs. PMID:27228321

  4. Solitons in a Plasma Wave with a Finite Density Beam of Trapped Electrons

    NASA Astrophysics Data System (ADS)

    Matveev, A. I.

    2014-07-01

    The nonlinear interaction of a longitudinal wave with a finite density beam of trapped electrons is considered. After a Langmuir wave, excited by external sources, transforms into a hybrid of two waves, further increase in the amplitude of the wave is accompanied by twisting of its fragments with positive and negative polarity. The wave is transformed into a train of solitons with positive and negative polarity, which follow one after the other in alternating fashion. The trapped electrons bunch together within intervals occupied by solitons with negative polarity.

  5. Radio Frequency Generation of an Electron Plasma in a Malmberg-Penning Trap

    SciTech Connect

    Paroli, B.; De Luca, F.; Pozzoli, R.; Rome, M.; Maero, G.

    2010-06-16

    The generation of an electron plasma via low-power Radio Frequency (RF) excitation has been observed in the Malmberg-Penning trap ELTRAP under ultra-high vacuum conditions. The process is sensitive to the RF parameters as well as to the trapping length. The electron heating mechanism necessary to reach the ionization energy of the residual gas has been modeled with the use of a simple one-dimensional iterative map, whose properties show a behavior similar to that of the Fermi acceleration map.

  6. High resolution extreme ultraviolet spectrometer for an electron beam ion trap

    SciTech Connect

    Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki; Sakaue, Hiroyuki A.

    2011-08-15

    An extreme ultraviolet spectrometer has been developed for spectroscopic studies of highly charged ions with an electron beam ion trap. It has a slit-less configuration with a spherical varied-line-spacing grating that provides a flat focal plane for grazing incidence light. Alternative use of two different gratings enables us to cover the wavelength range 1-25 nm. Test observations with the Tokyo electron beam ion trap demonstrate the high performance of the present spectrometer such as a resolving power of above 1000.

  7. Magnetic mirror trap with electron-cyclotron plasma heating as a source of multiply charged ions

    SciTech Connect

    Golovanivskii, K.S.

    1986-03-01

    This paper presents the physical operating principles of sources of multiply charged ions using electron cyclotron resonance. It is shown that the conditions that must be satisfied for multiple ionization are well matched to the conditions of effective plasma confinement in a magnetic mirror trap when a collision mode of confinement is provided. Plasma stability with hot electrons in the mirror magnetic trap and the mechanisms of plasma heating by highfrequency fields are analyzed. Two sources of multiply charged ions with ECR plasma heating are examined. Evaluations of the future of this area are given.

  8. Trap states in AlGaN channel high-electron-mobility transistors

    SciTech Connect

    Zhao, ShengLei; Zhang, Kai; Ha, Wei; Chen, YongHe; Zhang, Peng; Zhang, JinCheng; Hao, Yue; Ma, XiaoHua

    2013-11-18

    Frequency dependent capacitance and conductance measurements were performed to analyze the trap states in the AlGaN channel high-electron-mobility transistors (HEMTs). The trap state density in the AlGaN channel HEMTs decreases from 1.26 × 10{sup 13} cm{sup −2}eV{sup −1} at the energy of 0.33 eV to 4.35 × 10{sup 11} cm{sup −2}eV{sup −1} at 0.40 eV. Compared with GaN channel HEMTs, the trap states in the AlGaN channel HEMTs have deeper energy levels. The trap with deeper energy levels in the AlGaN channel HEMTs is another reason for the reduction of the reverse gate leakage current besides the higher Schottky barrier height.

  9. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-05-14

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10{sup 17} cm{sup −3} to (2–5) × 10{sup 14} cm{sup −3}. The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10{sup 13} cm{sup −3} versus 2.9 × 10{sup 16} cm{sup −3} in the standard samples, with a similar decrease in the electron traps concentration.

  10. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    SciTech Connect

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin E-mail: chilf@suda.edu.cn Chi, Li-Feng E-mail: chilf@suda.edu.cn Wang, Sui-Dong E-mail: chilf@suda.edu.cn

    2015-03-23

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  11. Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam

    SciTech Connect

    Lotov, K. V.; Sosedkin, A. P.; Petrenko, A. V.; Amorim, L. D.; Vieira, J.; Fonseca, R. A.; Silva, L. O.; Gschwendtner, E.; Muggli, P.

    2014-12-15

    It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.

  12. Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes

    SciTech Connect

    Pak, A.; Marsh, K. A.; Joshi, C.; Martins, S. F.; Lu, W.; Mori, W. B.

    2010-01-15

    A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.

  13. A high-resolution compact Johann crystal spectrometer with the Livermore electron beam ion trap.

    SciTech Connect

    Robbins, D L; Chen, H; Beiersdorfer, P; Faenov, A Y; Pikuz, T A; May, M J; Dunn, J; Smith, A J

    2004-04-14

    A compact high-resolution ({lambda}/{Delta}{lambda} {approx} 10000) spherically bent crystal spectrometer in the Johann geometry was recently installed and tested on the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. The curvature of the mica (002) crystal grating allows for higher collection efficiency compared to the flat and cylindrically bent crystal spectrometers commonly used on the Livermore electron beam ion traps. The spectrometer's Johann configuration enables orientation of its dispersion plane to be parallel to the electron beam propagation. Used in concert with a crystal spectrometer, whose dispersion plane is perpendicular to the electron beam propagation, the polarization of x-ray emission lines can be measured.

  14. Monte-Carlo simulation and acceptance calculation on NSCL charge breeder electron beam ion trap

    NASA Astrophysics Data System (ADS)

    Kittimanapun, Kritsada; Bollen, Georg; Lapierre, Alain; Schwarz, Stefan

    2011-10-01

    The NSCL charge breeder electron-beam ion trap (NSCL-EBIT) is constructed as the first part of the post acceleration ReA project at the National Superconducting Cyclotron Laboratory (NSCL) to study the key reactions in nuclear astrophysics and Coulomb excitation. The NSCL-EBIT is designed to operate with 6-T maximum magnetic field strength in the trap center and provide high electron beam current density up to 104 A/cm2 for fast charge breeding. To reach maximum efficiency, acceptance calculations have been done and charge evolution by electron impact ionization based on Monte-Carlo method is implemented. Optimization of electric potential distributions and different magnetic-field configurations are investigated. Acceptance for 0.8 A and 2.5 A electron current are 65% and 85% for an injected ion beam of 10 π mm-mrad, respectively, and the breeding time for Ca15+ is approximately 0.7 ms.

  15. Identification of free radical intermediates in oxidized wine using electron paramagnetic resonance spin trapping.

    PubMed

    Elias, Ryan J; Andersen, Mogens L; Skibsted, Leif H; Waterhouse, Andrew L

    2009-05-27

    Free radicals are thought to be key intermediates in the oxidation of wine, but their nature has not been established. Electron paramagnetic resonance spectroscopy was used to detect and identify several free radical species in wine under oxidative conditions with the aid of spin traps. The 1-hydroxylethyl radical was the sole radical species observed when α-(4-pyridyl-1-oxide)-N-tert-butylnitrone was used as a spin trap in a heated (55 °C), low-sulfite (15 mg L(-1)) red wine. This radical appears to arise from ethanol oxidation via the hydroxyl radical, and this latter species was confirmed by using a high concentration (1.5 M) of the 5,5-dimethylpyrroline-N-oxide spin trap, thus providing the first direct evidence of the Fenton reaction in wine. Hydroxyl radical formation in wine was corroborated by converting hydroxyl radicals to methyl radicals by its reaction with dimethyl sulfoxide. The novel spin trap 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide was also used in this study to identify sulfite radicals in wine for the first time. This spin trap has also been shown to trap hydroperoxyl radicals, the generation of which is predicted in wine; however, no evidence of this species was observed. PMID:19358607

  16. Generation of angular-momentum-dominated electron beams from a photoinjector

    SciTech Connect

    Sun, Y.-E; Piot, P.; Kim, K.-J.; Barov, N.; Lidia, S.; Santucci, J.; Tikhoplav, R.; Wennerberg, J.; /Fermilab

    2004-11-01

    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models.

  17. Generation of angular-momentum-dominated electron beams from a photoinjector

    SciTech Connect

    Sun, Yin-E.; Piot, Philippe; Kim, Kwang-Je; Barov, Nikolas; Lidia, Steven; Santucci, James; Tikhoplav, Rodion; Wennerberg, Jason

    2004-11-30

    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models.

  18. Ambipolar transport via trapped-electron whistler instability along open magnetic field lines.

    PubMed

    Guo, Zehua; Tang, Xian-Zhu

    2012-09-28

    An open field line plasma is bounded by a chamber wall which intercepts the magnetic field. Steady state requires an upstream plasma source balancing the particle loss to the boundary. In cases where the electrons have a long mean free path, ambipolarity in parallel transport critically depends on collisionless detrapping of the electrons via wave-particle interaction. The trapped-electron whistler instability, whose nonlinear saturation produces a spectrum of whistler waves that is responsible for the electron detrapping flux, is shown to be an unusually robust kinetic instability, which is essential to the universality of the ambipolar constraint in plasma transport.

  19. METHOD AND APPARATUS FOR INJECTING AND TRAPPING ELECTRONS IN A MAGNETIC FIELD

    DOEpatents

    Christofilos, N.C.

    1962-05-29

    An apparatus is designed for the manipulation of electrons in an exially symmetric magnetic field region and may be employed to trap electrons in such a field by directing an electron beam into a gradientially intensified field region therein to form an annular electron moving axially in the field and along a decreasing field gradient. Dissipative loop circuits such as resistive loops are disposed along at least the decreasing field gradient so as to be inductively coupled to the electron bunch so as to extract energy of the electron bunch and provide a braking force effective to reduce the velocity of the bunch. Accordingly, the electron bunch upon entering a lower intensity magnetic field region is retained therein since the electrons no longer possess sufficient energy to escape. (AEC)

  20. Surface trap mediated electronic transport in biofunctionalized silicon nanowires

    NASA Astrophysics Data System (ADS)

    Puppo, F.; Traversa, F. L.; Di Ventra, M.; De Micheli, G.; Carrara, S.

    2016-08-01

    Silicon nanowires (SiNWs), fabricated via a top-down approach and then functionalized with biological probes, are used for electrically-based sensing of breast tumor markers. The SiNWs, featuring memristive-like behavior in bare conditions, show, in the presence of biomarkers, modified hysteresis and, more importantly, a voltage memory component, namely a voltage gap. The voltage gap is demonstrated to be a novel and powerful parameter of detection thanks to its high-resolution dependence on charges in proximity of the wire. This unique approach of sensing has never been studied and adopted before. Here, we propose a physical model of the surface electronic transport in Schottky barrier SiNW biosensors, aiming at reproducing and understanding the voltage gap based behavior. The implemented model describes well the experimental I–V characteristics of the device. It also links the modification of the voltage gap to the changing concentration of antigens by showing the decrease of this parameter in response to increasing concentrations of the molecules that are detected with femtomolar resolution in real human samples. Both experiments and simulations highlight the predominant role of the dynamic recombination of the nanowire surface states, with the incoming external charges from bio-species, in the appearance and modification of the voltage gap. Finally, thanks to its compactness, and strict correlation with the physics of the nanodevice, this model can be used to describe and predict the I–V characteristics in other nanostructured devices, for different than antibody-based sensing as well as electronic applications.

  1. Surface trap mediated electronic transport in biofunctionalized silicon nanowires.

    PubMed

    Puppo, F; Traversa, F L; Ventra, M Di; Micheli, G De; Carrara, S

    2016-08-26

    Silicon nanowires (SiNWs), fabricated via a top-down approach and then functionalized with biological probes, are used for electrically-based sensing of breast tumor markers. The SiNWs, featuring memristive-like behavior in bare conditions, show, in the presence of biomarkers, modified hysteresis and, more importantly, a voltage memory component, namely a voltage gap. The voltage gap is demonstrated to be a novel and powerful parameter of detection thanks to its high-resolution dependence on charges in proximity of the wire. This unique approach of sensing has never been studied and adopted before. Here, we propose a physical model of the surface electronic transport in Schottky barrier SiNW biosensors, aiming at reproducing and understanding the voltage gap based behavior. The implemented model describes well the experimental I-V characteristics of the device. It also links the modification of the voltage gap to the changing concentration of antigens by showing the decrease of this parameter in response to increasing concentrations of the molecules that are detected with femtomolar resolution in real human samples. Both experiments and simulations highlight the predominant role of the dynamic recombination of the nanowire surface states, with the incoming external charges from bio-species, in the appearance and modification of the voltage gap. Finally, thanks to its compactness, and strict correlation with the physics of the nanodevice, this model can be used to describe and predict the I-V characteristics in other nanostructured devices, for different than antibody-based sensing as well as electronic applications.

  2. Surface trap mediated electronic transport in biofunctionalized silicon nanowires

    NASA Astrophysics Data System (ADS)

    Puppo, F.; Traversa, F. L.; Di Ventra, M.; De Micheli, G.; Carrara, S.

    2016-08-01

    Silicon nanowires (SiNWs), fabricated via a top-down approach and then functionalized with biological probes, are used for electrically-based sensing of breast tumor markers. The SiNWs, featuring memristive-like behavior in bare conditions, show, in the presence of biomarkers, modified hysteresis and, more importantly, a voltage memory component, namely a voltage gap. The voltage gap is demonstrated to be a novel and powerful parameter of detection thanks to its high-resolution dependence on charges in proximity of the wire. This unique approach of sensing has never been studied and adopted before. Here, we propose a physical model of the surface electronic transport in Schottky barrier SiNW biosensors, aiming at reproducing and understanding the voltage gap based behavior. The implemented model describes well the experimental I-V characteristics of the device. It also links the modification of the voltage gap to the changing concentration of antigens by showing the decrease of this parameter in response to increasing concentrations of the molecules that are detected with femtomolar resolution in real human samples. Both experiments and simulations highlight the predominant role of the dynamic recombination of the nanowire surface states, with the incoming external charges from bio-species, in the appearance and modification of the voltage gap. Finally, thanks to its compactness, and strict correlation with the physics of the nanodevice, this model can be used to describe and predict the I-V characteristics in other nanostructured devices, for different than antibody-based sensing as well as electronic applications.

  3. Surface trap mediated electronic transport in biofunctionalized silicon nanowires.

    PubMed

    Puppo, F; Traversa, F L; Ventra, M Di; Micheli, G De; Carrara, S

    2016-08-26

    Silicon nanowires (SiNWs), fabricated via a top-down approach and then functionalized with biological probes, are used for electrically-based sensing of breast tumor markers. The SiNWs, featuring memristive-like behavior in bare conditions, show, in the presence of biomarkers, modified hysteresis and, more importantly, a voltage memory component, namely a voltage gap. The voltage gap is demonstrated to be a novel and powerful parameter of detection thanks to its high-resolution dependence on charges in proximity of the wire. This unique approach of sensing has never been studied and adopted before. Here, we propose a physical model of the surface electronic transport in Schottky barrier SiNW biosensors, aiming at reproducing and understanding the voltage gap based behavior. The implemented model describes well the experimental I-V characteristics of the device. It also links the modification of the voltage gap to the changing concentration of antigens by showing the decrease of this parameter in response to increasing concentrations of the molecules that are detected with femtomolar resolution in real human samples. Both experiments and simulations highlight the predominant role of the dynamic recombination of the nanowire surface states, with the incoming external charges from bio-species, in the appearance and modification of the voltage gap. Finally, thanks to its compactness, and strict correlation with the physics of the nanodevice, this model can be used to describe and predict the I-V characteristics in other nanostructured devices, for different than antibody-based sensing as well as electronic applications. PMID:27418560

  4. Weak turbulence theory of collisionless trapped electron driven drift instability in tokamaks

    SciTech Connect

    Hahm, T.S.; Tang, W.M.

    1990-10-01

    The toroidal collisionless trapped electron modes are analyzed in the weak turbulence regime treating both ions and trapped electrons nonlinearly in the presence of ion and electron temperature gradients. The spectral intensity of the density fluctuations in the nonlinearly saturated state is analytically obtained from the steady state solution of the wave-kinetic equation. Distant nonlinear interactions between low-k{sub {theta}} and high-k{sub {theta}} modes of similar frequencies via trapped electron scattering (the resonance between the beat wave and the trapped electron precession drift frequencies) suppress the low-k{sub {theta}} (k{sub {theta}}{rho}{sub s} {much lt} (L{sub n}/R){sup 1/2}) modes while close interactions via ion Compton scattering (nonlinear ion Landau damping) produce a monotonically decreasing spectrum from k{sub {theta}}{rho}{sub s} {congruent} (L{sub n}/R){sup 1/2} to k{sub {theta}}{rho}{sub s} {congruent} 1 according to an approximate power law k{sub {theta}}{sup {minus}3}. Various fluctuation amplitudes at saturation and the fluctuation-induced anomalous particle and heat fluxes are found to be smaller than the mixing length estimates. The plasma confinement is predicted to improve with higher T{sub i}/T{sub e}, more peaked density profile, larger aspect ratio, and higher plasma current. Also, a significant dependence of transport on the electron temperature gradient is found which could contribute to the rigidity of the electron temperature profile often experimentally observed.

  5. Electrostatic diagnostics of nanosecond pulsed electron beams in a Malmberg-Penning trap

    SciTech Connect

    Paroli, B.; Bettega, G.; Maero, G.; Rome, M.; Norgia, M.; Pesatori, A.; Svelto, C.

    2010-06-15

    A fast electrostatic diagnostic and analysis scheme on nanosecond pulsed beams in the keV energy range has been developed in the Malmberg-Penning trap ELTRAP. Low-noise electronics has been used for the detection of small induced current signals on the trap electrodes. A discrete wavelet-based procedure has been implemented for data postprocessing. The development of an effective electrostatic diagnostics together with proper data analysis techniques is of general interest in view of deducing the beam properties through comparison of the postprocessed data with the theoretically computed signal shape, which contains beam radius, length, and average density as fit parameters.

  6. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells.

    PubMed

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-01-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries.

  7. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-08-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries.

  8. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells

    PubMed Central

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-01-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446

  9. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells.

    PubMed

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-01-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446

  10. Electron trap level of hydrogen incorporated nitrogen vacancies in silicon nitride

    SciTech Connect

    Sonoda, Ken'ichiro Tsukuda, Eiji; Tanizawa, Motoaki; Yamaguchi, Yasuo

    2015-03-14

    Hydrogen incorporation into nitrogen vacancies in silicon nitride and its effects on electron trap level are analyzed using simulation based on density functional theory with temperature- and pressure-dependent hydrogen chemical potential. If the silicon dangling bonds around a nitrogen vacancy are well separated each other, hydrogen incorporation is energetically stable up to 900 °C, which is in agreement with the experimentally observed desorption temperature. On the other hand, if the dangling bonds strongly interact, the incorporation is energetically unfavorable even at room temperature because of steric hindrance. An electron trap level caused by a nitrogen vacancy becomes shallow by the hydrogen incorporation. An electron is trapped in a deep level created by a silicon dangling bond before hydrogen incorporation, whereas it is trapped in a shallow level created by an anti-bonding state of a silicon-silicon bond after hydrogen incorporation. The simulation results qualitatively explain the experiment, in which reduced hydrogen content in silicon nitride shows superior charge retention characteristics.

  11. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  12. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    SciTech Connect

    Wang, R.; Williams, C. C.

    2015-09-15

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  13. Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics.

    PubMed

    Son, Donghee; Koo, Ja Hoon; Song, Jun-Kyul; Kim, Jaemin; Lee, Mincheol; Shim, Hyung Joon; Park, Minjoon; Lee, Minbaek; Kim, Ji Hoon; Kim, Dae-Hyeong

    2015-05-26

    Electronics for wearable applications require soft, flexible, and stretchable materials and designs to overcome the mechanical mismatch between the human body and devices. A key requirement for such wearable electronics is reliable operation with high performance and robustness during various deformations induced by motions. Here, we present materials and device design strategies for the core elements of wearable electronics, such as transistors, charge-trap floating-gate memory units, and various logic gates, with stretchable form factors. The use of semiconducting carbon nanotube networks designed for integration with charge traps and ultrathin dielectric layers meets the performance requirements as well as reliability, proven by detailed material and electrical characterizations using statistics. Serpentine interconnections and neutral mechanical plane layouts further enhance the deformability required for skin-based systems. Repetitive stretching tests and studies in mechanics corroborate the validity of the current approaches.

  14. Electronic properties of hafnium oxide: A contribution from defects and traps

    NASA Astrophysics Data System (ADS)

    Gritsenko, Vladimir A.; Perevalov, Timofey V.; Islamov, Damir R.

    2016-02-01

    In the present article, we give a review of modern data and latest achievements pertaining to the study of electronic properties of oxygen vacancies in hafnium oxide. Hafnium oxide is a key dielectric for use in many advanced silicon devices. Oxygen vacancies in hafnium oxide largely determine the electronic properties of the material. We show that the electronic transitions between the states due to oxygen vacancies largely determine the optical absorption and luminescent properties of hafnium oxide. We discuss the role of oxygen vacancies as traps that facilitate charge transport in hafnium oxide films. Also, we demonstrate the fact that the electrical conductivity in hafnium oxide is controlled by the phonon-assisted tunnelling of charge carriers between traps that were identified as oxygen vacancies.

  15. Trapping of electrons in troughs of self generated electromagnetic standing waves in a bounded plasma column

    SciTech Connect

    Bhattacharjee, Sudeep; Sahu, Debaprasad; Pandey, Shail; Chatterjee, Sanghomitro; Dey, Indranuj; Roy Chowdhury, Krishanu

    2014-01-15

    Observations and measurements are reported on electron trapping in troughs of self-generated electromagnetic standing waves in a bounded plasma column confined in a minimum-B field. The boundaries are smaller than the free space wavelength of the waves. Earlier work of researchers primarily focused upon electron localization effects induced by purely electrostatic perturbation. We demonstrate the possibility in the presence of electromagnetic standing waves generated in the bounded plasma column. The electron trapping is verified with electrostatic measurements of the plasma floating potential, electromagnetic measurements of the wave field profile, and optical intensity measurements of Argon ionic line at 488 nm. The experimental results show a reasonably good agreement with predictions of a Monte Carlo simulation code that takes into account all kinematical and dynamical effects in the plasma in the presence of bounded waves and external fields.

  16. Atomic origin of high-temperature electron trapping in metal-oxide-semiconductor devices

    SciTech Connect

    Shen, Xiao; Dhar, Sarit; Pantelides, Sokrates T.

    2015-04-06

    MOSFETs based on wide-band-gap semiconductors are suitable for operation at high temperature, at which additional atomic-scale processes that are benign at lower temperatures can get activated, resulting in device degradation. Recently, significant enhancement of electron trapping was observed under positive bias in SiC MOSFETs at temperatures higher than 150 °C. Here, we report first-principles calculations showing that the enhanced electron trapping is associated with thermally activated capturing of a second electron by an oxygen vacancy in SiO{sub 2} by which the vacancy transforms into a structure that comprises one Si dangling bond and a bond between a five-fold and a four-fold Si atoms. The results suggest a key role of oxygen vacancies and their structural reconfigurations in the reliability of high-temperature MOS devices.

  17. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    NASA Astrophysics Data System (ADS)

    Wang, R.; Williams, C. C.

    2015-09-01

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  18. Trapped Electron Stabilization of Ballooning Modes in Low Aspect Ratio Toroidal Plasmas

    SciTech Connect

    C.Z. Cheng and N.N. Gorelenkov

    2004-03-18

    The kinetic effects of trapped electron dynamics and finite gyroradii and magnetic drift motion of ions are shown to give rise to a large parallel electric field and hence a parallel current that greatly enhances the stabilizing effect of field line tension for ballooning modes in low aspect ratio toroidal plasmas. For large aspect ratio the stabilizing effect increases (reduces) the {beta}(= 2P/B{sup 2}) threshold for the first (second) stability of the kinetic ballooning mode (KBM) from the MHD {beta} threshold value by a factor proportional to the trapped electron density fraction. For small aspect ratio the stabilizing effect can greatly increase the {beta} threshold of the first stability of KBMs from the MHD {beta} threshold by S{sub c} {approx_equal} 1 + (n{sub e}/n{sub eu}){delta}, where n{sub e}/n{sub eu} is the ratio of the total electron density to the untrapped electron density, and {delta} depends on the trapped electron dynamics and finite gyroradii and magnetic drift motion of ions. If n{sub e}/n{sub eu} >> 1 as in the National Spherical Torus Experiment (NSTX) with an aspect ratio approximately equal to 1.4, the KBM should be stable for {beta} {le} 1 for finite magnetic shear. Therefore, unstable KBMs are expected only in the weak shear region near the radial location of the minimum of the safety factor in NSTX reverse shear discharges.

  19. Nonlinear Upshift of Trapped Electron Mode Critical Density Gradient: Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.

    2012-10-01

    A new nonlinear critical density gradient for pure trapped electron mode (TEM) turbulence increases strongly with collisionality, saturating at several times the linear threshold. The nonlinear TEM threshold appears to limit the density gradient in new experiments subjecting Alcator C-Mod internal transport barriers to modulated radio-frequency heating. Gyrokinetic simulations show the nonlinear upshift of the TEM critical density gradient is associated with long-lived zonal flow dominated states [1]. This introduces a strong temperature dependence that allows external RF heating to control TEM turbulent transport. During pulsed on-axis heating of ITB discharges, core electron temperature modulations of 50% were produced. Bursts of line-integrated density fluctuations, observed on phase contrast imaging, closely follow modulations of core electron temperature inside the ITB foot. Multiple edge fluctuation measurements show the edge response to modulated heating is out of phase with the core response. A new limit cycle stability diagram shows the density gradient appears to be clamped during on-axis heating by the nonlinear TEM critical density gradient, rather than by the much lower linear threshold. Fluctuation wavelength spectra will be quantitatively compared with nonlinear TRINITY/GS2 gyrokinetic transport simulations, using an improved synthetic diagnostic. In related work, we are implementing the first gyrokinetic exact linearized Fokker Planck collision operator [2]. Initial results show short wavelength TEMs are fully stabilized by finite-gyroradius collisional effects for realistic collisionalities. The nonlinear TEM threshold and its collisionality dependence may impact predictions of density peaking based on quasilinear theory, which excludes zonal flows.[4pt] In collaboration with M. Churchill, A. Dominguez, C. L. Fiore, Y. Podpaly, M. L. Reinke, J. Rice, J. L. Terry, N. Tsujii, M. A. Barnes, I. Bespamyatnov, R. Granetz, M. Greenwald, A. Hubbard, J. W

  20. Electron microscopic time-lapse visualization of surface pore filtration on particulate matter trapping process.

    PubMed

    Sanui, Ryoko; Hanamura, Katsunori

    2016-09-01

    A scanning electron microscope (SEM) was used to dynamically visualize the particulate matter (PM) trapping process on diesel particulate filter (DPF) walls at a micro scale as 'time-lapse' images corresponding to the increase in pressure drop simultaneously measured through the DPF. This visualization and pressure drop measurement led to the conclusion that the PM trapping in surface pores was driven by PM bridging and stacking at constricted areas in porous channels. This caused a drastic increase in the pressure drop during PM accumulation at the beginning of the PM trapping process. The relationship between the porous structure of the DPF and the depth of the surface pore was investigated in terms of the porosity distribution and PM penetration depth near the wall surface with respect to depth. The pressure drop calculated with an assumed surface pore depth showed a good correspondence to the measured pressure drop.

  1. Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy: Spin-Trapping with Iron-Dithiocarbamates.

    PubMed

    Maia, Luisa B; Moura, José J G

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is the ideal methodology to identify radicals (detection and characterization of molecular structure) and to study their kinetics, in both simple and complex biological systems. The very low concentration and short life-time of NO and of many other radicals do not favor its direct detection and spin-traps are needed to produce a new and persistent radical that can be subsequently detected by EPR spectroscopy.In this chapter, we present the basic concepts of EPR spectroscopy and of some spin-trapping methodologies to study NO. The "strengths and weaknesses" of iron-dithiocarbamates utilization, the NO traps of choice for the authors, are thoroughly discussed and a detailed description of the method to quantify the NO formation by molybdoenzymes is provided. PMID:27094413

  2. Rare-earth neutral metal injection into an electron beam ion trap plasma

    SciTech Connect

    Magee, E. W. Beiersdorfer, P.; Brown, G. V.; Hell, N.

    2014-11-15

    We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap. The source's form and quantity constraints are significantly reduced making plasmas out of metal with vapor pressures ≤10{sup −7} Torr at ≥1000 °C more obtainable. A long pulsed or constant feed metal vapor injection method adds new flexibility by varying the timing of injection and rate of material being introduced into the trap.

  3. Studies of Photo-Excited and Trapped Electrons in Cubic BISMUTH(12) Silicon OXYGEN(20)

    NASA Astrophysics Data System (ADS)

    Nouchi, Pascale

    We present experimental and theoretical studies of charge transport processes in cubic n-type Bi _{12}SiO_{20 } (n-BSO). We first study the room-temperature photocurrent response to short-pulse illumination in two n-BSO samples called CT1 and SU1 in previous publications. These experiments suggest that drifting electrons spend much time in shallow traps. They allow us to estimate the corresponding trap-limited mobility and to measure the electron lifetime in the conduction band and the dwell time in shallow traps. In sample CT1, we also study the transient photocurrent behavior below room temperature: we find that the charge transport is limited by two sets of shallow traps with energy depths equal to 410 +/- 50 meV and 650 +/- 80 meV. In sample SU1, we directly measure the trap-limited mobility and find it is equal to 0.24 +/- 0.07 cm^2V ^{-1}s^ {-1} at room temperature. We then describe what we believe to be the first measurement of the pure conduction band mobility in n-BSO which we find to be 4.4 +/- 1.3 cm^2V ^{-1}s^ {-1} in SU1. We describe the novel holographic "time-of-flight" technique we developed for this measurement in which we observe the average time for a photoexcited charge carrier to drift in the dark (because of a strong applied electric field) over the period of a grating of charged traps created in the crystal by two interfering short laser pulses. We also use this technique to study the temperature dependence of the mobility. These results suggest the existence of shallow traps of energy depth equal to 320 +/- 40 meV. We also derive an analytical solution to the standard material equations which describes the build-up of the photorefractive grating in the dark after an initial low-energy, spatially -sinusoidal, short-pulse excitation. It is the first short -pulse solution to be developed in a band transport model containing both deep photoexcitable traps and shallow thermally excitable traps. The build-up of the space-charge field includes two

  4. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    SciTech Connect

    Schneider, D.

    1995-10-01

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA`s astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th{sup 80+} can be performed routinely. Measurements of the rates and cross sections for electron transfer from H{sub 2} performed to determine the lifetime of HCI up to Xe{sup q+} and Th{sup q+} (35 {le} q {le} 80) have been studied at mean energies estimated to be {approximately} 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events.

  5. Electron Flood Charge Compensation Device for Ion Trap Secondary Ion Mass Spectrometry

    SciTech Connect

    Appelhans, Anthony David; Ward, Michael Blair; Olson, John Eric

    2002-11-01

    During secondary ion mass spectrometry (SIMS) analyses of organophosphorous compounds adsorbed onto soils, the measured anion signals were lower than expected and it was hypothesized that the low signals could be due to sample charging. An electron flood gun was designed, constructed and used to investigate sample charging of these and other sample types. The flood gun was integrated into one end cap of an ion trap secondary ion mass spectrometer and the design maintained the geometry of the self-stabilizing extraction optics used in this instrument. The SIMION ion optics program was used to design the flood gun, and experimental results agreed with the predicted performance. Results showed the low anion signals from the soils were not due to sample charging. Other insulating and conducting samples were tested using both a ReO4- and a Cs+ primary ion beam. The proximity of the sample and electron source to the ion trap aperture resulted in generation of background ions in the ion trap via electron impact (EI) ionization during the period the electron gun was flooding the sample region. When using the electron gun with the ReO4- primary beam, the required electron current was low enough that the EI background was negligible; however, the high electron flood current required with the Cs+ beam produced background EI ions that degraded the quality of the mass spectra. The consequences of the EI produced cations will have to be evaluated on a sample-by-sample basis when using electron flood. It was shown that the electron flood gun could be intentionally operated to produce EI spectra in this instrument. This offers the opportunity to measure, nearly simultaneously, species evaporating from a sample, via EI, and species bound to the surface, via SIMS.

  6. Effects of surface trapped excess electrons on the dynamics of HCl adsorbed ice surfaces

    NASA Astrophysics Data System (ADS)

    Yoon, Yeohoon; Shin, Seokmin

    2007-05-01

    We report results of Car-Parrinello molecular dynamics simulations showing the effect of surface trapped electrons on the dynamics of HCl adsorbed ice surfaces. It is found that the existence of excess electrons can lead to extensive changes in structural and electronic properties of ice surfaces, which provide better environments for proton transfer. The results of simulations show rapid exchanging mechanism of the proton under such environment, suggesting the importance of interlayer proton transfer in the heterogeneous reaction of HCl adsorbed ice surfaces.

  7. Time structure of postmidnight energetic electron precipitation and the limit of stable trapping

    NASA Technical Reports Server (NTRS)

    Trefall, H.; Williams, D. J.

    1979-01-01

    The paper examines the detailed time structure of high-energy (over 30 keV) electron precipitation along the morningside and dayside of the auroral zone. To this end, available high time resolution data from the Ogo 6 energetic electron experiment are analyzed. The relationship between trapped flux levels and degree of precipitation observed is studied from an observational standpoint and compared with the critical flux levels estimated by Kennel and Petschek (1966). A possible explanation within the general framework of the Kennel-Petschek theory of the observed burstlike precipitation episodes is presented, and the implications of these features for the average lifetime of electrons in drifting clouds are discussed.

  8. Effective electron microrefrigeration by superconductor insulator normal metal tunnel junctions with advanced geometry of electrodes and normal metal traps

    NASA Astrophysics Data System (ADS)

    Jasper Agulo, Ian; Kuzmin, Leonid; Fominsky, Michael; Tarasov, Michael

    2004-04-01

    We demonstrate effective electron cooling of the normal metal strip by superconductor-insulator-normal metal (SIN) tunnel junctions. The improvement was achieved by two methods: first, by using an advanced geometry of the superconducting electrodes for more effective removal of the quasiparticles; and second, by adding a normal metal trap just near the cooling junctions. With simple cross geometry and without normal metal traps, the decrease in electron temperature is 56 mK. With the advanced geometry of the superconducting electrodes, the decrease in electron temperature is 129 mK. With the addition of the normal metal traps, the decrease in electron temperature is 197 mK.

  9. Electrochemical control over photoinduced electron transfer and trapping in CdSe-CdTe quantum-dot solids.

    PubMed

    Boehme, Simon C; Walvis, T Ardaan; Infante, Ivan; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Houtepen, Arjan J

    2014-07-22

    Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We find that very efficient electron trapping in CdTe QDs obstructs electron transfer to CdSe QDs under most conditions. Only the use of thiol ligands results in somewhat slower electron trapping; in this case the competition between trapping and electron transfer results in a small fraction of electrons being transferred to CdSe. However, we demonstrate that electron trapping can be controlled and even avoided altogether by using the unique combination of electrochemistry and transient absorption spectroscopy. When the Fermi level is raised electrochemically, traps are filled with electrons and electron transfer from CdTe to CdSe QDs occurs with unity efficiency. These results show the great importance of knowing and controlling the Fermi level in QD films and open up the possibility of studying the density of trap states in QD films as well as the systematic investigation of the intrinsic electron transfer rates in donor-acceptor films. PMID:24883930

  10. Nonthermally Dominated Electron Acceleration during Magnetic Reconnection in a Low-beta Plasma

    SciTech Connect

    Li, Xiaocan

    2015-07-21

    This work was motivated by electron acceleration during solar flares. After some introductory remarks on proposed particle acceleration mechanisms and questions needing answers, dynamic simulations and simulation results are presented including energy spectra and the formation of the power law distribution. In summary, magnetic reconnection is highly efficient at converting the free magnetic energy stored in a magnetic shear and accelerating electrons to nonthermal energies in low-β regime. The nonthermal electrons have a dominant fraction and form power-law energy spectra with spectral index p ~ 1 in low-β regime. Electrons are preferentially accelerated along the curvature drift direction along the electric field induced by the reconnection outflow. The results can be applied to explain the observations of electron acceleration during solar flares.

  11. Demonstration of charge breeding in a compact room temperature electron beam ion trap

    SciTech Connect

    Vorobjev, G.; Sokolov, A.; Herfurth, F.; Kester, O.; Quint, W.; Stoehlker, Th.; Thorn, A.; Zschornack, G.

    2012-05-15

    For the first time, a small room-temperature electron beam ion trap (EBIT), operated with permanent magnets, was successfully used for charge breeding experiments. The relatively low magnetic field of this EBIT does not contribute to the capture of the ions; single-charged ions are only caught by the space charge potential of the electron beam. An over-barrier injection method was used to fill the EBIT's electrostatic trap with externally produced, single-charged potassium ions. Charge states as high as K{sup 19+} were reached after about a 3 s breeding time. The capture and breeding efficiencies up to 0.016(4)% for K{sup 17+} have been measured.

  12. Electron trapping in evolving coronal structures during a large gradual hard X-ray/radio burst

    NASA Technical Reports Server (NTRS)

    Bruggmann, G.; Vilmer, N.; Klein, K.-L.; Kane, S. R.

    1994-01-01

    Gradual hard X-ray/radio bursts are characterized by their long duration, smooth time profile, time delays between peaks at different hard X-ray energies and microwaves, and radiation from extended sources in the low and middle corona. Their characteristic properties have been ascribed to the dynamic evolution of the accelerated electrons in coronal magnetic traps or to the separate acceleration of high-energy electrons in a 'second step' process. The information available so far was drawn from quality considerations of time profiles or even only from the common occurrence of emissions in different spectral ranges. This paper presents model computations of the temporal evolution of hard X-ray and microwave spectra, together with a qualitative discussion of radio lightcurves over a wide spectral range, and metric imaging observations. The basis hypothesis investigated is that the peculiar 'gradual' features can be related to the dynamical evolution of electrons injected over an extended time interval in a coronal trap, with electrons up to relativistic energies being injected simultaneously. The analyzed event (26 April. 1981) is particularly challenging to this hypothesis because of the long time delays between peaks at different X-ray energies and microwave frequencies. The observations are shown to be consistent with the hypothesis, provided that the electrons lose their energy by Coulomb collisions and possibly betatron deceleration. The access of the electrons to different coronal structures varies in the course of the event. The evolution and likely destabilization of part of the coronal plasma-magnetic field configuration is of crucial influence in determining the access to these structures and possibly the dynamical evolution of the trapped electrons through betatron deceleration in the late phase of the event.

  13. Electron trapping and acceleration by kinetic Alfvén waves in solar flares

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Zimovets, I. V.; Rankin, R.

    2016-05-01

    Context. Theoretical models and spacecraft observations of solar flares highlight the role of wave-particle interaction for non-local electron acceleration. In one scenario, the acceleration of a large electron population up to high energies is due to the transport of electromagnetic energy from the loop-top region down to the footpoints, which is then followed by the energy being released in dense plasma in the lower atmosphere. Aims: We consider one particular mechanism of non-linear electron acceleration by kinetic Alfvén waves. Here, waves are generated by plasma flows in the energy release region near the loop top. We estimate the efficiency of this mechanism and the energies of accelerated electrons. Methods: We use analytical estimates and test-particle modelling to investigate the effects of electron trapping and acceleration by kinetic Alfvén waves in the inhomogeneous plasma of the solar corona. Results: We demonstrate that, for realistic wave amplitudes, electrons can be accelerated up to 10-1000 keV during their propagation along magnetic field lines. Here the electric field that is parallel to the direction of the background magnetic field is about 10 to 103 times the amplitude of the Dreicer electric field. The acceleration mechanism strongly depends on electron scattering which is due to collisions that only take place near the loop footpoints. Conclusions: The non-linear wave-particle interaction can play an important role in the generation of relativistic electrons within flare loops. Electron trapping and coherent acceleration by kinetic Alfvén waves represent the energy cascade from large-scale plasma flows that originate at the loop-top region down to the electron scale. The non-diffusive character of the non-linear electron acceleration may be responsible for the fast generation of high-energy particles.

  14. Approximate analytical solutions for the trapped electron distribution due to quasi-linear diffusion by whistler mode waves

    NASA Astrophysics Data System (ADS)

    Mourenas, D.; Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V.; Li, W.

    2014-12-01

    The distribution of trapped energetic electrons inside the Earth's radiation belts is the focus of intense studies aiming at better describing the evolution of the space environment in the presence of various disturbances induced by the solar wind or by an enhanced lightning activity. Such studies are usually performed by means of comparisons with full numerical simulations solving the Fokker-Planck quasi-linear diffusion equation for the particle distribution function. Here we present for the first time approximate but realistic analytical solutions for the electron distribution, which are shown to be in good agreement with exact numerical solutions in situations where resonant scattering of energetic electrons by whistler mode hiss, lightning-generated or chorus waves, is the dominant process. Quiet time distributions are well recovered, as well as the evolution of energized relativistic electron distributions during disturbed geomagnetic conditions. It is further shown that careful comparisons between the analytical solutions and measured distributions may allow to infer important bounce- and drift-averaged wave characteristics (such as wave amplitude). It could also help to improve the global understanding of underlying physical phenomena.

  15. Selective ECR heating of trapped/passing electrons in the W7-X stellarator

    SciTech Connect

    Marushchenko, N. B.; Erckmann, V.; Beidler, C. D.; Geiger, J.; Laqua, H. P.; Helander, P.; Maassberg, H.; Turkin, Y.

    2014-02-12

    Using specific features of the magnetic equilibrium in the W7-X stellarator, ECRH scenarios with X2 and X3 modes are discussed. The aim is to explore the possibility of selective heating of the different classes of electrons, passing and trapped, by different RF beams with different frequencies, which can be launched from ports located in different crosssections of the device. Perspectives for this kind of experiments in W7-X are estimated numerically by coupling transport and ray tracing codes.

  16. Current collection by a spherical high voltage probe: Electron trapping and collective processes

    NASA Technical Reports Server (NTRS)

    Palmadesso, Peter J.

    1990-01-01

    The author summarizes the results of theoretical studies of the interaction of an uninsulated, spherical, high voltage (10's of KV positive) probe with the ionospheric environment. The focus of this effort was the phenomenon of electron trapping and its implications for breakdown processes (collisional regime) and the current-voltage relationship governing current collection (collisionless regime) in space-based pulsed power systems with high voltage components exposed to space, e.g., the SPEAR I experiment.

  17. Project EDoLMI: Instrumentation for electron diffraction of trapped, massive ions

    NASA Astrophysics Data System (ADS)

    Marcelle Buford, C.; Whetten, R. L.

    2000-11-01

    Project EDoLMI (``Electron Diffraction of Levitated Massive Ions") is a large ($1.4M) NSF-funded instrumentation development project which should result in the first application of the trapped-ion electron diffraction method in an academic institution. The instrument will be developed collaboratively by research teams at the Rowland Institute of Science (Cambridge, MA) and at the Georgia Institute of Technology, and once operational will be located entirely at the Atlanta campus. This contributed paper will describe the theory and practice of the trapped-ion electron diffraction method, as implemented in the Cambridge instrument by Parks etal.,(2-4) as well as descrbing progress toward the Atlanta instrument. The method will also be illustrated by recent results obtained using the Cambridge instrument,(2-4) as well as by theoretical calculations of diffraction results using hypothetical structural models and temperature-ranges of interest. Acknowledgement: We are grateful for the cooperation of EDoLMI team partners at the Rowland Institute of Science, including Dr. Joel H. Parks and Dr. Joseph T. Khoury in particular. 1. ``Collaborative development of a heavy-ion trap electron diffractometer for structure determination of selected nanoparticles, aerosol particles, and biomolecular assemblies," NSF CHE-0079678, by R. L. Whetten, J. H. Parks et al., funding period August 2000 to January 2003. 2. M. Maier-Borst, D. B. Cameron, M. Rokni, J. H. Parks, Phys. Rev. A59, R3162 (1999). 3. J. H. Parks, presented at the Third International Symposium on Theory of Atomic and Molecular Clusters," Berlin (1999), unpublished document. 4. S. Krückeberg, D. Schooss, M. Maier-Borst, J. H. Parks, ``Diffraction of trapped CsI clusters: The appearance of the bulk structure," submitted.

  18. Nonthermally dominated electron acceleration during magnetic reconnection in a low-β plasma

    SciTech Connect

    Li, Xiaocan; Guo, Fan; Li, Hui; Li, Gang

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization. We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.

  19. Nonthermally dominated electron acceleration during magnetic reconnection in a low-β plasma

    DOE PAGES

    Li, Xiaocan; Guo, Fan; Li, Hui; Li, Gang

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization.more » We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.« less

  20. NONTHERMALLY DOMINATED ELECTRON ACCELERATION DURING MAGNETIC RECONNECTION IN A LOW-β PLASMA

    SciTech Connect

    Li, Xiaocan; Li, Gang; Guo, Fan; Li, Hui

    2015-10-01

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization. We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. The nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the  highly efficient electron acceleration in solar flares and other astrophysical systems.

  1. Si-Si bond as a deep trap for electrons and holes in silicon nitride

    NASA Astrophysics Data System (ADS)

    Karpushin, A. A.; Sorokin, A. N.; Gritsenko, V. A.

    2016-02-01

    A two-stage model of the capture of electrons and holes in traps in amorphous silicon nitride Si3N4 has been proposed. The electronic structure of a "Si-Si bond" intrinsic defect in Si3N4 has been calculated in the tight-binding approximation without fitting parameters. The properties of the Si-Si bond such as a giant cross section for capture of electrons and holes and a giant lifetime of trapped carriers have been explained. It has been shown that the Si-Si bond in the neutral state gives shallow levels near the bottom of the conduction band and the top of the valence band, which have a large cross section for capture. The capture of an electron or a hole on this bond is accompanied by the shift of shallow levels by 1.4-1.5 eV to the band gap owing to the polaron effect and a change in the localization region of valence electrons of atoms of the Si-Si bond. The calculations have been proposed with a new method for parameterizing the matrix elements of the tightbinding Hamiltonian taking into account a change in the localization region of valence electrons of an isolated atom incorporated into a solid.

  2. Quasiparticle cascade amplifier based on strong electron cooling of normal metal traps

    NASA Astrophysics Data System (ADS)

    Kuzmin, L.

    2002-08-01

    A novel concept of the quasiparticle amplifier based on the trapping of nonequilibrium quasiparticles, strong direct electron cooling, and the cascade principle of amplification has been suggested. The amplifier can be useful for the normal metal hot-electron bolometers (NHEB) with SIN tunnel junctions and similar devices. In the suggested concept, the second stage is working in a regime of strong direct electron cooling whereby all released energy is removed from the trap by the second tunnel junction. In this case, one can maintain the temperature of the trap near a base level while keeping a high coefficient of amplification. Another important feature of the proposed amplifier is adding the stimulated current I2 to the main measurement current I1 to increase amplification. In this regime, the coefficient of amplification will be greater than unity in any case. The junctions T1 and T2 (of a different area) work in opposite directions with the same voltage near Δ that can be realized only in voltage-biased mode. The principle of cascade amplification can be extended further for a third stage (and so on) with the same adding amplified currents from junctions of increased area. The cascade principle with the same voltage bias for all junctions gives an opportunity to realize an amplifier without an additional power supply and additional wires. This feature can be extremely important for the realization of the multi-pixel arrays of the sensors.

  3. Multisectional linear ion trap and novel loading method for optical spectroscopy of electron and nuclear transitions.

    PubMed

    Sysoev, Alexey A; Troyan, Victor I; Borisyuk, Peter V; Krasavin, Andrey V; Vasiliev, Oleg S; Palchikov, Vitaly G; Avdeev, Ivan A; Chernyshev, Denis M; Poteshin, Sergey S

    2015-01-01

    There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development. PMID:25906029

  4. Multisectional linear ion trap and novel loading method for optical spectroscopy of electron and nuclear transitions.

    PubMed

    Sysoev, Alexey A; Troyan, Victor I; Borisyuk, Peter V; Krasavin, Andrey V; Vasiliev, Oleg S; Palchikov, Vitaly G; Avdeev, Ivan A; Chernyshev, Denis M; Poteshin, Sergey S

    2015-01-01

    There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development.

  5. Electron correlation in the self-trapped hole and exciton in the NaCl crystal

    NASA Astrophysics Data System (ADS)

    Puchin, V. E.; Shluger, A. L.; Itoh, N.

    1995-09-01

    An ab initio embedded molecular cluster method was used to find equilibrium configurations of the self-trapped hole (VK center) and self-trapped exciton in the NaCl crystal. The results obtained in the Hartree-Fock approximation are compared with those using the Mo/ller-Plesset second-order perturbation theory (MP2) for the calculation of the electron correlation correction to the total energy. The excitation energies for the VK center and self-trapped exciton (STE) were calculated using the configuration interaction for single excitations (CIS) combined with the MP2 method. It is demonstrated that the Σ band of the optical absorption spectrum of the VK center consists of two bands. These correspond to the intramolecular electron transition in the Cl-2 molecular ion, and the ``host-to-molecule'' transition from the surrounding lattice anions. For the self-trapped exciton, it is found that the atomic structure of the ``off-center'' configuration of the ground state of the triplet STE is not strongly affected by taking account of the electron correlation. In particular, the off-center displacement of the center of mass of the hole component of the STE from the on-center configuration is less than half that corresonding to a pair of nearest F and H centers. The intramolecular distance in the hole component of the STE obtained in this calculation is much shorter than in previous calculations and close to that in the H center. Two Σ polarized transitions with the energies of 3.7 and 4.02 eV were found for the hole component of the ``off-center'' STE. The correlated treatment, in contrast with the Hartree-Fock and one-electron approximations, predicts the existence of the local minimum on the adiabatic potential surface which corresponds to the ``on-center'' STE configuration (electron trapped by the VK center). The calculated energy of optical absorption by the electron component of the triplet STE in this configuration is 0.6 eV and that of the hole component is

  6. Dynamic trapping of electrons in the porcupine ionospheric ion beam experiment

    NASA Astrophysics Data System (ADS)

    Bohm, M.; Brenning, N.; Faelthammar, C.-G.

    1992-12-01

    Electrons are needed to maintain quasineutrality in a case where positive ions are injected across the magnetic field into a limited volume in a magnetized plasma. In the absence of collisions, a positive potential builds up and traps the electrons which enter the region along the magnetic field. If the added density of ions exceeds the ambient density, large potential differences along the magnetic field can be maintained this way. The process explains several features of the Porcupine xenon beam injection experiment, where strong magnetic field aligned electric fields were measured in the vicinity of a xenon ion beam which was injected into the ambient ionosphere from a spinning sub payload.

  7. EPR study of electron traps in x-ray-irradiated yttria-stabilized zirconia

    SciTech Connect

    Azzoni, C.B.; Paleari, A. )

    1989-10-01

    Single crystals of yttria-stabilized zirconia (12 mol % of Y{sub 2}O{sub 3}) have been x-ray irradiated at room temperature. The electron paramagnetic resonance spectrum of the filled electron traps is analyzed in terms of a single oxygen vacancy type of defect with its symmetry axis along the {l angle}111{r angle} direction. The angular dependence of the linewidth and the asymmetry of the line shape are attributed to the disordered rearrangements of the anion sublattice surrounding the oxygen vacancy. This affects the local crystal fields and the directions of the symmetry axis of the defects.

  8. Mechanisms for trapping and mobilization of residual fluids during capillary-dominated three-phase flow in porous rock

    NASA Astrophysics Data System (ADS)

    Helland, J. O.; Jettestuen, E.

    2016-07-01

    We use a multiphase level set approach to simulate capillary-controlled motions of isolated fluid ganglia surrounded by two other continuous fluids (i.e., double displacements) during three-phase flow on 3-D porous rock geometries. Double displacements and three-phase snap-off mechanisms are closely related. Water snap-off on gas/oil interfaces can initiate double displacements that mobilize isolated oil ganglia in water-wet rock, but it can also terminate ongoing double displacements and trap oil in water. The multiphase level set approach allows for calculating the evolution of disconnected-phase pressure during the motion. In the events of pore filling by double displacement of oil ganglia, and water snap-off on gas/oil interfaces, we find that the local gas/oil capillary pressure drops, while local oil/water capillary pressure increases, by a similar magnitude as observed for the capillary pressure drops during single-pore filling events in dynamic pore-scale experiments of two-phase drainage. We also find that oil ganglia decrease their surface area, and achieve a more compact shape, when the gas/oil interfacial area decreases at the expense of increased oil/water interfacial area during double displacement. By comparison with similar two-phase gas/water simulations, we find that the level of the gas/water capillary pressure curves, including hysteresis loops, are smaller when a mobile, disconnected oil is present, which suggests double displacement of oil is more favorable than direct gas/water displacement. We also present cases in which phase trapping occurred in the three-phase simulations, but not in the corresponding two-phase simulations, supporting the view that more trapping is possible in three-phase flow.

  9. Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys.

    PubMed

    Gandi, Appala Naidu; Schwingenschlögl, Udo

    2016-05-18

    We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit.

  10. Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys.

    PubMed

    Gandi, Appala Naidu; Schwingenschlögl, Udo

    2016-05-18

    We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit. PMID:27156360

  11. Electron cyclotron resonance near the axis of the gas-dynamic trap

    SciTech Connect

    Bagulov, D. S.; Kotelnikov, I. A.

    2012-08-15

    Propagation of an extraordinary electromagnetic wave in the vicinity of electron cyclotron resonance surface in an open linear trap is studied analytically, taking into account inhomogeneity of the magnetic field in paraxial approximation. Ray trajectories are derived from a reduced dispersion equation that makes it possible to avoid the difficulty associated with a transition from large propagation angles to the case of strictly longitudinal propagation. Our approach is based on the theory, originally developed by Zvonkov and Timofeev [Sov. J. Plasma Phys. 14, 743 (1988)], who used the paraxial approximation for the magnetic field strength, but did not consider the slope of the magnetic field lines, which led to considerable error, as has been recently noted by Gospodchikov and Smolyakova [Plasma Phys. Rep. 37, 768-774 (2011)]. We have found ray trajectories in analytic form and demonstrated that the inhomogeneity of both the magnetic field strength and the field direction can qualitatively change the picture of wave propagation and significantly affect the efficiency of electron cyclotron heating of a plasma in a linear magnetic trap. Analysis of the ray trajectories has revealed a criterion for the resonance point on the axis of the trap to be an attractor for the ray trajectories. It is also shown that a family of ray trajectories can still reach the resonance point on the axis if the latter generally repels the ray trajectories. As an example, results of general theory are applied to the electron cyclotron resonance heating experiment which is under preparation on the gas dynamic trap in the Budker Institute of Nuclear Physics [Shalashov et al., Phys. Plasmas 19, 052503 (2012)].

  12. Scattering of Trapped Electrons by VLF Waves During a Magnetic Strom

    NASA Astrophysics Data System (ADS)

    Walt, M.

    2004-12-01

    The Source/Loss Cone Energetic Particle Spectrometer (SEPS) on the NASA Polar satellite measures particle fluxes with high angular resolution (1.5 deg) near the atmospheric loss cone. During the weak magnetic storm (Dst=-40 nT) of September 10, 1996 the trapped electron fluxes increased, and the angular distributions of down-going 150 keV electrons extended well inside the atmospheric loss cone. Simultaneous measurements of up-going electrons showed empty loss cones. These loss cone fluxes were observed at MLT of ~14 hrs, latitude near 45 deg, and L between 4 and 6.5, the extent of the diffusion into the loss cone increasing with increasing L. Wave measurements with the Plasma Wave Instrument, also on the Polar satellite, showed strong VLF hiss and chorus at the time of the pitch angle diffusion. The enhanced waves and electron precipitation persisted for several days. These observations support the original Kennel and Petschek (JGR 71, 1, 1966) concept that an increase in trapped electron flux would initiate wave growth and loss of particles by pitch angle scattering. However, in this case the waves did not propagate parallel to the magnetic field and thus would couple waves and particles at different L values.

  13. Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3

    DOE PAGES

    Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua

    2016-08-16

    Here we report that many metal halides that contain cations with the ns2 electronic configuration have recently been discovered as high-performance optoelectronic materials. In particular, solar cells based on lead halide perovskites have shown great promise as evidenced by the rapid increase of the power conversion efficiency. In this paper, we show density functional theory calculations of electronic structure and dielectric and defect properties of CsGeI3 (a lead-free halide perovskite material). The potential of CsGeI3 as a solar cell material is assessed based on its intrinsic properties. We find anomalously large Born effective charges and a large static dielectric constantmore » dominated by lattice polarization, which should reduce carrier scattering, trapping, and recombination by screening charged defects and impurities. Defect calculations show that CsGeI3 is a p-type semiconductor and its hole density can be modified by varying the chemical potentials of the constituent elements. Despite the reduction of long-range Coulomb attraction by strong screening, the iodine vacancy in CsGeI3 is found to be a deep electron trap due to the short-range potential, i.e., strong Ge–Ge covalent bonding, which should limit electron transport efficiency in p-type CsGeI3. This is in contrast to the shallow iodine vacancies found in several Pb and Sn halide perovskites (e.g., CH3NH3PbI3, CH3NH3SnI3, and CsSnI3). The low-hole-density CsGeI3 may be a useful solar absorber material but the presence of the low-energy deep iodine vacancy may significantly reduce the open circuit voltage of the solar cell. Still, on the other hand, CsGeI3 may be used as an efficient hole transport material in solar cells due to its small hole effective mass, the absence of low-energy deep hole traps, and the favorable band offset with solar absorber materials such as dye molecules and CH3NH3PbI3.« less

  14. Angular-momentum-dominated electron beams and flat-beam generation

    SciTech Connect

    Sun, Yin-e

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  15. Distribution of electron traps in SiO2/HfO2 nMOSFET

    NASA Astrophysics Data System (ADS)

    Xiao-Hui, Hou; Xue-Feng, Zheng; Ao-Chen, Wang; Ying-Zhe, Wang; Hao-Yu, Wen; Zhi-Jing, Liu; Xiao-Wei, Li; Yin-He, Wu

    2016-05-01

    In this paper, the principle of discharge-based pulsed I-V technique is introduced. By using it, the energy and spatial distributions of electron traps within the 4-nm HfO2 layer have been extracted. Two peaks are observed, which are located at ΔE ˜ -1.0 eV and -1.43 eV, respectively. It is found that the former one is close to the SiO2/HfO2 interface and the latter one is close to the gate electrode. It is also observed that the maximum discharge time has little effect on the energy distribution. Finally, the impact of electrical stress on the HfO2 layer is also studied. During stress, no new electron traps and interface states are generated. Meanwhile, the electrical stress also has no impact on the energy and spatial distribution of as-grown traps. The results provide valuable information for theoretical modeling establishment, material assessment, and reliability improvement for advanced semiconductor devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61334002, 61106106, and 61474091), the New Experiment Development Funds for Xidian University, China (Grant No. SY1434), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China (Grant No. JY0600132501).

  16. EPR and ENDOR Study of Ti^3+ Electron Traps in Hydrothermally Grown K TiOPO_4

    NASA Astrophysics Data System (ADS)

    Setzler, S. D.; Edwards, G. J.; Scripsick, M. P.; Halliburton, L. E.; Fernelius, N. C.

    1996-03-01

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (END OR) techniques have been used to characterize two distinct Ti^3+ centers in hydrothermally grown KTiOPO_4, referred to as KTP. This nonlinear optical mat erial is widely used in laser-based frequency-conversion devices operating in the visible and near-infrared (e.g., SHG and OPO applications). In many cases, however, the usefulness of this material is lmited by optical damage in the form of "gray tracks" produced along the laser path. These Ti^3 + electron traps are believed to play a dominant role in gray track formation. Each center has a neighboring proton, i.e., OH^- ion, for charge compensatio n. Hyperfine parameters, including both principal values and directions of prin cipal axes, have been determined for the neighboring proton and neighboring phos phorus nuclei. Detailed models will be presented for the two centers. Work sup ported by AFOSR (F49620-95-1-0349) and NASA (NCCW-0051).

  17. Electron Cloud Generation and Trapping in a Quadrupole Magnet at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T.F.; /SLAC

    2008-03-17

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the 'prompt' electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the 'swept' electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100 {micro}s. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  18. Theory and experiments of electron-hole recombination at silicon/silicon dioxide interface traps and tunneling in thin oxide MOS transistors

    NASA Astrophysics Data System (ADS)

    Cai, Jin

    2000-10-01

    Surface recombination and channel have dominated the electrical characteristics, performance and reliability of p/n junction diodes and transistors. This dissertation uses a sensitive direct-current current voltage (DCIV) method to measure base terminal currents (IB) modulated by the gate bias (VGB) and forward p/n junction bias (VPN) in a MOS transistor (MOST). Base terminal currents originate from electron-hole recombination at Si/SiO2 interface traps. Fundamental theories which relate DCIV characteristics to device and material parameters are presented. Three theory-based applications are demonstrated on both the unstressed as well as hot-carrier-stressed MOSTs: (1) determination of interface trap density and energy levels, (2) spatial profile of interface traps in the drain/base junction-space-charge region and in the channel region, and (3) determination of gate oxide thickness and impurity doping concentrations. The results show that interface trap energy levels are discrete, which is consistent with those from silicon dangling bonds; in unstressed MOS transistors interface trap density in the channel region rises sharply toward source and drain, and after channel-hot-carrier stress, interface trap density increases mostly in the junction space-charge region. As the gate oxide thins below 3 nm, the gate oxide leakage current via quantum mechanical tunneling becomes significant. A gate oxide tunneling theory which refined the traditional WKB tunneling probability is developed for modeling tunneling currents at low electric fields through a trapezoidal SiO2 barrier. Correlation with experimental data on thin oxide MOSTs reveals two new results: (1) hole tunneling dominates over electron tunneling in p+gate p-channel MOSTs, and (2) the small gate/drain overlap region passes higher tunneling currents than the channel region under depletion to flatband gate voltages. The good theory-experimental correlation enables the extraction of impurity doping concentrations

  19. Investigation of nonextensivity trapped electrons effect on the solitary ion-acoustic wave using fractional Schamel equation

    NASA Astrophysics Data System (ADS)

    Nazari-Golshan, A.

    2016-08-01

    Ion-acoustic (IA) solitary wave propagation is investigated by solving the fractional Schamel equation (FSE) in a homogenous system of unmagnetized plasma. This plasma consists of the nonextensive trapped electrons and cold fluid ions. The effects of the nonextensive q-parameter, electron trapping, and fractional parameter have been studied. The FSE is derived by using the semi-inverse and Agrawal's methods. The analytical results show that an increase in the amount of electron trapping and nonextensive q-parameter increases the soliton ion-acoustic amplitude in agreement with the previously obtained results. However, it is vice-versa for the fractional parameter. This feature leads to the fact that the fractional parameter may be used to increase the IA soliton amplitude instead of increasing electron trapping and nonextensive parameters.

  20. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    SciTech Connect

    Schwarz, S. Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A.

    2014-02-15

    The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.

  1. Relativistic electron microbursts and variations in trapped MeV electron fluxes during the 8-9 October 2012 storm: SAMPEX and Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Kurita, Satoshi; Miyoshi, Yoshizumi; Blake, J. Bernard; Reeves, Geoffery D.; Kletzing, Craig A.

    2016-04-01

    It has been suggested that whistler mode chorus is responsible for both acceleration of MeV electrons and relativistic electron microbursts through resonant wave-particle interactions. Relativistic electron microbursts have been considered as an important loss mechanism of radiation belt electrons. Here we report on the observations of relativistic electron microbursts and flux variations of trapped MeV electrons during the 8-9 October 2012 storm, using the SAMPEX and Van Allen Probes satellites. Observations by the satellites show that relativistic electron microbursts correlate well with the rapid enhancement of trapped MeV electron fluxes by chorus wave-particle interactions, indicating that acceleration by chorus is much more efficient than losses by microbursts during the storm. It is also revealed that the strong chorus wave activity without relativistic electron microbursts does not lead to significant flux variations of relativistic electrons. Thus, effective acceleration of relativistic electrons is caused by chorus that can cause relativistic electron microbursts.

  2. Predicting stored grain insect population densities using an electronic probe trap.

    PubMed

    Flinn, P W; Opit, G P; Throne, J E

    2009-08-01

    Manual sampling of insects in stored grain is a laborious and time-consuming process. Automation of grain sampling should help to increase the adoption of stored grain integrated pest management. A new commercial electronic grain probe trap (OPI Insector) has recently been marketed. We field tested OPI Insector electronic grain probes in two bins, each containing 32.6 tonnes of wheat, Triticum aestivum L., over a 2-yr period. We developed new statistical models to convert Insector catch into insects per kilogram. We compared grain sample estimates of insect density (insects per kilogram of wheat) taken near each Insector to the model-predicted insect density by using Insector counts. An existing expert system, Stored Grain Advisor Pro, was modified to automatically read the Insector database and use the appropriate model to estimate Cryptolestes ferrugineus (Stephens), Rhyzopertha dominica (F.), and Tribolium castaneum (Herbst) density from trap catch counts. Management decisions using Insector trap-catch estimates for insect density were similar to those made using grain sample estimates of insect density for most sampling dates. However, because of the similarity in size of R. dominica and T. castaneum, the software was unable to differentiate counts between these two species. In the central and southern portions of the United States, where both species frequently occur, it may be necessary to determine the proportion of each species present in the grain by manual inspection of trap catch. The combination of SGA Pro with the OPI Insector system should prove to be a useful tool for automatic monitoring of insect pests in stored grain.

  3. Zonal flow generation and its nonlinear dynamics in trapped electron mode turbulence of flat density tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Guo, Z. B.; Hahm, T. S.

    2016-06-01

    We investigate zonal flow (ZF) generation in ion temperature gradient driven trapped-electron-mode (ITG-driven TEM) turbulence via modulational instability analysis. We show that the acceleration of a seed ZF is a consequence of the competition of negative radiation pressure (NRP, acting as a driving force) and positive radiation pressure (PRP, acting as a retarding force) of the ITG-driven TEM turbulence. A critical dimensionless ion temperature logarithmic gradient (R/{{L}{{T\\text{i}},\\text{c}}} ) normalized to the major radius is obtained by balancing the NRP- and PRP effects. For \\frac{R}{{{L}{{T\\text{i}}}}}<\\frac{R}{{{L}{{T\\text{i}},\\text{c}}}} , the NRP effect is dominant and the seed ZF is accelerated. Otherwise, the PRP effect is dominant and the seed ZF is decelerated. In addition, a new nonlinear evolution mechanism of the ZF is also proposed. It is shown that the turbulence energy intensity spectrum gets steepened in k-space due to the ZF shearing, which in turn induces nonlinear growth of the ZF.

  4. Properties and parameters of the electron beam injected into the mirror magnetic trap of a plasma accelerator

    NASA Astrophysics Data System (ADS)

    Andreev, V. V.; Novitsky, A. A.; Vinnichenko, L. A.; Umnov, A. M.; Ndong, D. O.

    2016-03-01

    The parameters of the injector of an axial plasma beam injected into a plasma accelerator operating on the basis of gyroresonance acceleration of electrons in the reverse magnetic field are determined. The trapping of the beam electrons into the regime of gyroresonance acceleration is numerically simulated by the particle- in-cell method. The optimal time of axial injection of the beam into a magnetic mirror trap is determined. The beam parameters satisfying the condition of efficient particle trapping into the gyromagnetic autoresonance regime are found.

  5. Trapped electron plasma formation and equilibrium with a low-power radio-frequency drive

    SciTech Connect

    Romé, M.; Maero, G.; Paroli, B.; Pozzoli, R.; Chen, S.

    2015-06-29

    Penning-Malmberg traps confining electron plasmas usually rely on external sources like thermo- and photocathodes. It has been already demonstrated that electron plasmas of comparable densities can be produced by applying a radio-frequency (RF) power to any inner electrode of the trap. Such excitation may result in significant electron heating and ionization of the residual gas with the formation of a plasma column when the RF frequency is of the order or larger than the typical axial bounce frequencies of few-eV electrons, even at RF amplitude of few volts. While discharges are common in plasma generation at higher pressures and RF power, this mechanism is not yet well explored in our working conditions, namely ultra-high vacuum and very low RF power. This plasma production mechanism is very sensitive to the experimental conditions. Interesting phenomena can be observed: transition from a diffuse to a narrow-section, denser plasma column; presence of low-order diocotron modes in transient and steady-state plasmas; modulation of the m=1 diocotron mode and suppression of its instability despite the presence of positive ions and resistive loads. These observations are reported here, and possible explanations are discussed. In addition, a possible electron heating mechanism is investigated with a single-particle, one-dimensional model described by an area-preserving map where an electron bounces within a square potential well and the RF excitation is modelled by a time-oscillating square barrier. The low-energy part of the Poincaré plot includes both quasi-periodic and chaotic regions, where heating up to ionization energies is achievable. Results of a systematic analysis of the map extracting its chaotic properties and scaling laws as a function of the control parameters are reported.

  6. New Evidence for Hydroxyalkyl Radicals and Light- and Thermally Induced Trapped Electron Reactions in Rhamnose.

    PubMed

    Aalbergsjø, Siv G; Sagstuen, Einar

    2015-08-01

    Radical formation and trapping of radicals in X-irradiated crystals of rhamnose at 6 K were investigated using electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR) and ENDOR-induced EPR (EIE) techniques, complemented with periodic density functional theory (DFT) calculations. The two major radical species at 6 K were the O4-centered alkoxy radical and the intermolecularly trapped electron (IMTE), previously also detected by other authors. The current experimental results provided hyperfine coupling constants for these two species in good agreement with the previous data, thus providing a consistency check that improves their credibility. In addition to the O4-centered alkoxy radical and the IMTE, the C3-centered and C5-centered hydroxyalkyl radicals are the most prominent primary species at 6 K. The C3-centered radical appears in two slightly different conformations at 6 K, designated C and D. The C5-centered radical exhibits a coupling to a methyl group with tunneling rotation at 6 K, and analysis of one of the rotational substates (A) of the spin system yielded an understanding of the structure of this radical. Visible light bleaching of the IMTE at 6 K led to the C3-centered radical C, and thermal annealing above 6 K resulted in a conversion of the C to the D conformation. In addition, thermal annealing releases the IMTE, apparently resulting in the formation of the C2-centered radical. It is possible that the thermal decay of the IMTE also contributes to a small part of the C3-centered radical (D) population at 85 K. There are several other products trapped in rhamnose crystals directly after irradiation at 6 K, among which are resonance lines due to the C2 H-abstraction product. However, these other products are minority species and were not fully characterized in the current work.

  7. Electron and boson clusters in confined geometries: Symmetry breaking in quantum dots and harmonic traps

    PubMed Central

    Yannouleas, Constantine; Landman, Uzi

    2006-01-01

    We discuss the formation of crystalline electron clusters in semiconductor quantum dots and of crystalline patterns of neutral bosons in harmonic traps. In a first example, we use calculations for two electrons in an elliptic quantum dot to show that the electrons can localize and form a molecular dimer. The calculated singlet–triplet splitting (J) as a function of the magnetic field (B) agrees with cotunneling measurements with its behavior reflecting the effective dissociation of the dimer for large B. Knowledge of the dot shape and of J(B) allows determination of the degree of entanglement. In a second example, we study strongly repelling neutral bosons in two-dimensional harmonic traps. Going beyond the Gross–Pitaevskii (GP) mean-field approximation, we show that bosons can localize and form polygonal-ring-like crystalline patterns. The total energy of the crystalline phase saturates in contrast to the GP solution, and its spatial extent becomes smaller than that of the GP condensate. PMID:16740665

  8. Search for Trapped Electrons and a Magnetic Moment at Mars by Mariner IV.

    PubMed

    O'gallagher, J J; Simpson, J A

    1965-09-10

    The Mariner IV spacecraft on 14-15 July 1965 passed within 9850 kilometers of Mars, carrying a solid-state charged-particle telescope which could detect electrons greater than 40 kiloelectron volts and protons greater than 1 million electron volts. The trajectory could have passed through a bow shock, a transition region, and a magnetospheric boundary where particles could be stably trapped for a wide range of Martian magnetic moments. No evidence of charged-particle radiation was found in any of these regions. In view of these results, an upper limit is established for the Martian magnetic moment provided it is assumed that the same physical processes leading to acceleration and trapping of electrons in Earth's magnetic field would be found in a Martian magnetic field. On this basis, the upper limit for the Martian magnetic moment is 0.1 percent that of Earth for a wide range of postulated orientations with respect to the rotational axis of Mars. The implications of these results for the physical and biological environment of Mars are briefly discussed.

  9. Dissociative electron attachment in nanoscale ice films: Thickness and charge trapping effects

    SciTech Connect

    Simpson, W.C.; Orlando, T.M.

    1998-03-01

    The yield and kinetic energy (KE) distributions of D{sup {minus}} ions produced via dissociative electron attachment (DEA) resonances in nanoscale D{sub 2}O ice films are collected as a function of film thickness. The {sup 2}B{sub 1}, {sup 2}A{sub 1}, and {sup 2}B{sub 2} DEA resonances shift to higher energies and their D{sup {minus}} ion yields first increase and then decrease as the D{sub 2}O films thicken. The D{sup {minus}} KE distributions also shift to higher energy with increasing film thickness. We interpret the changes in the DEA yield and the D{sup {minus}} KE distributions in terms of modifications in the electronic and geometric structure of the surface of the film as it thickens. A small amount of charge build-up occurs following prolonged electron beam exposure at certain energies, which primarily affects the D{sup {minus}} KE distributions. Charge trapping measurements indicate that an enhancement in the trapping cross section occurs at energies near zero and between 6 and 10 eV. {copyright} {ital 1998 American Institute of Physics.}

  10. Tuning of read/write/erase processes in Electron Trapping Optical Memory media

    NASA Astrophysics Data System (ADS)

    Brower, Daniel T.; Revay, Robert E.

    1992-08-01

    The wavelengths of light used for the Read/Write/Erase processes in Electron Trapping Optical Memory have been shown to be tunable. Simulation and excitation efficiency spectra of nine samples of these IR stimulable phosphors were measured. Tuning was accomplished through compositional modifications of the ETOMTM pseudobinary host lattice. The host lattice systems investigated were CaS, SrS, BaS, SrxCa1-xS, and SrxBa1-xS (0

  11. Electron collisions in the trapped gyro-Landau fluid transport model

    SciTech Connect

    Staebler, G. M.; Kinsey, J. E.

    2010-12-15

    Accurately modeling electron collisions in the trapped gyro-Landau fluid (TGLF) equations has been a major challenge. Insights gained from numerically solving the gyrokinetic equation have lead to a significant improvement of the low order TGLF model. The theoretical motivation and verification of this model with the velocity-space gyrokinetic code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] will be presented. The improvement in the fidelity of TGLF to GYRO is shown to also lead to better prediction of experimental temperature profiles by TGLF for a dedicated collision frequency scan.

  12. Electron collisions in the trapped gyro-Landau fluid transport model

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.; Kinsey, J. E.

    2010-12-01

    Accurately modeling electron collisions in the trapped gyro-Landau fluid (TGLF) equations has been a major challenge. Insights gained from numerically solving the gyrokinetic equation have lead to a significant improvement of the low order TGLF model. The theoretical motivation and verification of this model with the velocity-space gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] will be presented. The improvement in the fidelity of TGLF to GYRO is shown to also lead to better prediction of experimental temperature profiles by TGLF for a dedicated collision frequency scan.

  13. Finite Larmor radius effects on the coupled trapped electron and ion temperature gradient modes

    SciTech Connect

    Sandberg, I.; Isliker, H.; Pavlenko, V. P.

    2007-09-15

    The properties of the coupled trapped electron and toroidal ion temperature gradient modes are investigated using the standard reactive fluid model and taking rigorously into account the effects attributed to the ion polarization drift and to the drifts associated with the lowest-order finite ion Larmor radius effects. In the flat density regime, where the coupling between the modes is relatively weak, the properties of the unstable modes are slightly modified through these effects. For the peak density regions, where the coupling of the modes is rather strong, these second-order drifts determine the spectra of the unstable modes near the marginal conditions.

  14. Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO{sub 3}/SrTiO{sub 3} superlattices: coexistence of Auger recombination and single-carrier trapping

    SciTech Connect

    Ma, H. J. Harsan Ariando; Venkatesan, T.; Wang, S. J.

    2015-06-15

    We report emerging photoluminescence (PL) of bilayer two-dimensional electron gases (2DEG) in LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.

  15. Impact of residual carbon impurities and gallium vacancies on trapping effects in AlGaN/GaN metal insulator semiconductor high electron mobility transistors

    SciTech Connect

    Huber, Martin; Silvestri, Marco; Knuuttila, Lauri; Pozzovivo, Gianmauro; Andreev, Andrei; Lundskog, Anders; Kadashchuk, Andrey; Bonanni, Alberta

    2015-07-20

    Effects of residual C impurities and Ga vacancies on the dynamic instabilities of AlN/AlGaN/GaN metal insulator semiconductor high electron mobility transistors are investigated. Secondary ion mass spectroscopy, positron annihilation spectroscopy, and steady state and time-resolved photoluminescence (PL) measurements have been performed in conjunction with electrical characterization and current transient analyses. The correlation between yellow luminescence (YL), C- and Ga vacancy concentrations is investigated. Time-resolved PL indicating the C{sub N} O{sub N} complex as the main source of the YL, while Ga vacancies or related complexes with C seem not to play a major role. The device dynamic performance is found to be significantly dependent on the C concentration close to the channel of the transistor. Additionally, the magnitude of the YL is found to be in agreement with the threshold voltage shift and with the on-resistance degradation. Trap analysis of the GaN buffer shows an apparent activation energy of ∼0.8 eV for all samples, pointing to a common dominating trapping process and that the growth parameters affect solely the density of trap centres. It is inferred that the trapping process is likely to be directly related to C based defects.

  16. Trapping of excess electrons at the microhydrated protonated amino groups in proteins

    NASA Astrophysics Data System (ADS)

    Li, Wenchao; Zhang, Zhenwei; Yang, Hongfang; Wu, Xiuxiu; Liu, Jinxiang; Bu, Yuxiang

    2012-03-01

    We present a combined first-principles calculation and molecular dynamics simulation study of an excess electron (EE) in condensed phase of a microhydrated protonated amino group in proteins in this work. The protonated amino group, -NH3+, is modeled by a CH3NH3+ and an amount of water molecules are included to form various microhydrated CH3NH3+ clusters, and the states and the dynamics of the trapped EE are analyzed. In addition to the localized and delocalized states observed, the N-H/O-H bond cleavage phenomena followed by escape of a H atom are also observed for some hydrated clusters in which the -NH3+ group exposes on the surface of the cluster and directly participates in binding an EE. The state-to-state conversion is controlled by thermal motion of molecules in the clusters, and the cleavage of the N-H or the O-H bond and the H escape are determined by the binding modes of the EE. The H-escape nature could be attributed to the dissociation of the N-H or O-H bond induced by the trapped EE which transfers to their antibonding orbitals. This work provides a microscopical picture of the EE trapping at a microhydrated hydrophilic group in proteins, long-range electron migration, and the H-evolving mechanisms relevant for the lesions or damages of proteins or DNA. This is the first step in considering increasingly larger peptide fragments for further investigation of the detailed lesion/damage or charge migration mechanisms. Further work about this topic is underway.

  17. Laboratory Astrophysics at the LLNL Electron Beam Ion Traps: EBIT-I and EBIT-II

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; Boyce, K. R.; Kelley, R. L.; Porter, F. S.; Stahle, C. K.; Szymkowiak, A. E.; Tillotson, W.; Beiersdorfer, P.; Chen, H.; May, M. J.

    2002-01-01

    In order to provide a complete, accurate set of atomic data for interpreting spectra provided by missions such as XMM-Newton, the Chandra X-Ray Observatory, and Astro-E2, we have harnessed the Lawrence Livermore National Laboratory's electron beam ion traps EBIT-I. EBIT-II, and Super-EBIT for laboratory astrophysics. In support of this work we have developed a number of unique techniques, including the ability to experimentally simulate a Maxwellian distribution of electron energies and measuring low-energy charge exchange cross sections using the magnetic trapping mode. We have also built and operated a full suite of spectrometers spanning the 1-7000 Angstrom wavelength band, the most recent being a spectrometer based on a spare Astro-E (6 x 6) microcalorimeter array. Results of our efforts include a complete list of wavelengths of the Fe L-shell transitions, measurements of absolute and relative cross sections for direct impact, dielectronic, and resonance excitation, and measurements of low energy charge transfer reactions. A brief overview of the LLNL ebit facility, its capabilities, and some results will be discussed.

  18. Electron scattering and nonlinear trapping by oblique whistler waves: The critical wave intensity for nonlinear effects

    SciTech Connect

    Artemyev, A. V. Vasiliev, A. A.; Mourenas, D.; Krasnoselskikh, V. V.

    2014-10-15

    In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.

  19. Laboratory Astrophysics at the LLNL Electron Beam Ion Traps EBIT I& EBIT II

    SciTech Connect

    Beeriersdorder, P; Chen, H; May, M J; Thorn, D; Brown, G V; Boyce, K R; Kelly, R L; Porter, F S; Stahle, C K; Szymkowiak, A E; Tillotson, W; Behar, E; Gu, M F; Kahn, S M

    2002-06-18

    In order to provide a complete, accurate set of atomic data for interpreting spectra provided by missions such as XMM-Newton, the Chandra X-Ray Observatory, and Astro-E2, we have harnessed the Lawrence Livermore National Laboratory's electron beam ion traps EBIT-I, EBIT-II, and Super-EBIT for laboratory astrophysics. In support of this work we have developed a number of unique techniques, including the ability to experimentally simulate a Maxwellian distribution of electron energies and measuring low-energy charge exchange cross sections using the ''magnetic trapping mode''. We have also built, and operated a full suite of spectrometers spanning the 1-7000 {angstrom} wavelength band, the most recent, being the NASA/Goddard Space Flight Center's Astro-E 6 x 6 engineering spare microcalorimeter array. Results of our efforts include a complete list of wavelengths of the Fe L-shell transitions, measurements of absolute and relative cross sections for direct, impact, dielectronic, and resonance excitation, and measurements of low energy charge transfer reactions. A brief overview of the LLNL, ebit facility, its capabilities, and some results will be discussed.

  20. Hybrid (Vlasov-Fluid) simulation of ion-acoustic solitons chain formation including trapped electrons

    SciTech Connect

    Behjat, E.; Aminmansoor, F.; Abbasi, H.

    2015-08-15

    Disintegration of a Gaussian profile into ion-acoustic solitons in the presence of trapped electrons [H. Hakimi Pajouh and H. Abbasi, Phys. Plasmas 15, 082105 (2008)] is revisited. Through a hybrid (Vlasov-Fluid) model, the restrictions associated with the simple modified Korteweg de-Vries (mKdV) model are studied. For instance, the lack of vital information in the phase space associated with the evolution of electron velocity distribution, the perturbative nature of mKdV model which limits it to the weak nonlinear cases, and the special spatio-temporal scaling based on which the mKdV is derived. Remarkable differences between the results of the two models lead us to conclude that the mKdV model can only monitor the general aspects of the dynamics, and the precise picture including the correct spatio-temporal scales and the properties of solitons should be studied within the framework of hybrid model.

  1. EBIT - Electronic Beam Ion Trap: N Divison experimental physics annual report 1995

    SciTech Connect

    Schneider, D.

    1996-10-01

    The multi-faceted research effort of the EBIT (Electron Beam Ion Trap) program in N-Division of the Physics and Space Technology Department at Lawrence Livermore National Laboratory (LLNL) continues to contribute significant results to the physical sciences from studies with low energy very highly charged heavy ions. The EBIT program attracts a number of collaborators from the US and abroad for the different projects. The collaborations are partly carried out through participating graduate students demonstrating the excellent educational capabilities at the LLNL EBIT facilities. Moreover, participants from Historically Black Colleges and Universities are engaged in the EBIT project. This report describes EBIT work for 1995 in atomic structure measurements and radiative transition probabilities, spectral diagnostics for laboratory and astrophysical plasmas, ion/surface interaction studies, electron-ion interactions studies, retrap and ion collisions, and instrumental development.

  2. Motion of trapped electrons and protons in Saturn's inner magnetosphere. Progress report

    SciTech Connect

    Thomsen, M.F.; Van Allen, J.A.

    1980-07-01

    A summary is given of basic formulas for the guiding center motion of energetic charged particles trapped in a dipolar magnetic fields. These formulas for longitudinal drift rates, latitudinal bounce periods, equatorial gyroradii, and equatorial gyroperiods are then stated in convenient numerical form for electrons and protons as functions of kinetic energy e, magnetic shell parameter L, and equatorial pitch angle alpha sub O for a slightly simplified model of the observed magnetic field of Saturn. To aid in the study of the interaction of charged particles with the rings and inner satellites of Saturn, additional formulas are given for the time interval between successive encounters of charged particles particles with a satellite in a circular prograde orbit and for the energies of electrons whose longitudinal angular velocity is resonant, or synchronous, with the Keplerian angular velocity of such a satellite.

  3. Electron beam ion trap bi-annual report 1996/1997

    SciTech Connect

    Schneider, D

    1999-01-05

    The research of the EBIT (Electron Beam Ion Trap) program in N Division of the Physics and Space Technology Directorate at LLNL continues to contribute significantly to the understanding of physical processes with low energy highly charged ions in atomic physics, plasma physics, and material science. Low-energy highly charged ions (up to U92+), provided by the EBIT facilities, provide a unique laboratory opportunity to study high field effects in atomic structures and dynamic interaction processes. The formation, existence, and structure of highly charged ions in astrophysical environments and laboratory plasmas make highly charged ions desirable for diagnosing various plasma conditions. The strong interaction of highly charged ions with matter and the response of solid surfaces make them a sensitive analysis tool and possibly a future capability for materials modifications at the atomic scale (nano technology). These physical applications require a good understanding and careful study of the dynamics of the interactions of the ions with complex systems. The EBIT group hosted an international conference and a workshop on trapped charged particles. The various talks and discussions showed that physics research with trapped charged particles is a very active and attractive area of innovative research, and provides a basis for research efforts in new areas. It also became obvious that the EBIT/RETRAP project has unique capabilities to perform important new experiments with trapped very highly charged ions at rest, which are complementary to and competitive with research at heavy ion storage rings and other trapping facilities planned or in operation in Europe, Japan, and the United States. Atomic structure research at EBIT provides ever better and more experimental complete benchmark data, supplying data needed to improve atomic theories. Research highlights through 1996 and 1997 include hyperfine structure measurements in H-like ions, QED studies, lifetime

  4. Modified Korteweg-de Vries soliton reflection in a magnetized plasma with dust grains and trapped electrons

    SciTech Connect

    Kumar, Ravinder; Malik, Hitendra K.

    2013-03-15

    This article aims at studying the reflection of solitons in an inhomogeneous magnetized warm plasma having dust grains with positive or negative charge and trapped electrons (low temperature nonisothermal electrons). In order to study the soliton reflection, a coupled modified Korteweg-de Vries equation is derived and solved along with the use of incident soliton solution. The expressions for the reflected soliton amplitude, width, and reflection coefficient are obtained, and examined under different parameter regimes. The combined effect of the dust grain density with their charge polarity and trapping of the electrons is largely studied on the soliton reflection characteristics under the influence of magnetic field.

  5. Model simulations of continuous ion injection into electron-beam ion source trap with slanted electrostatic mirror

    SciTech Connect

    Pikin, A.; Kponou, A.; Alessi, J. G.; Beebe, E. N.; Prelec, K.; Raparia, D.

    2008-02-15

    The efficiency of trapping ions in an electron-beam ion source (EBIS) is of primary importance for many applications requiring operations with externally produced ions: RIA breeders, ion sources, and traps. At the present time, the most popular method of ion injection is pulsed injection, when short bunches of ions get trapped in a longitudinal trap while traversing the trap region. Continuous trapping is a challenge for EBIS devices because mechanisms which reduce the longitudinal ion energy per charge in a trap (cooling with residual gas, energy exchange with other ions, and ionization) are not very effective, and accumulation of ions is slow. A possible approach to increase trapping efficiency is to slant the mirror at the end of the trap which is opposite to the injection end. A slanted mirror will convert longitudinal motion of ions into transverse motion, and, by reducing their longitudinal velocity, prevent these ions from escaping the trap on their way out. The trade-off for the increased trapping efficiency this way is an increase in the initial transverse energy of the accumulated ions. The slanted mirror can be realized if the ends of two adjacent electrodes, drift tubes, which act as an electrostatic mirror, are machined to produce a slanted gap, rather than an upright one. Applying different voltages to these electrodes will produce a slanted mirror. The results of two-dimensional (2D) and three-dimensional (3D) computer simulations of the ion injection into an EBIS are presented using simplified models of an EBIS with conical (2D simulations) and slanted (3D simulations) mirror electrodes.

  6. Trapping effects in irradiated and avalanche-injected MOS capacitors

    NASA Technical Reports Server (NTRS)

    Bakowski, M.; Cockrum, R. H.; Zamani, N.; Maserjian, J.; Viswanathan, C. R.

    1978-01-01

    The trapping parameters for holes, and for electrons in the presence of trapped holes, have been measured from a set of wafers with different oxide thickness processed under controlled conditions. The trap cross-sections and densities indicate at least three trap species, including an interfacial species, a dominant bulk species which is determined to tail off from the silicon interface, and a third, lower density bulk species that is distributed throughout the oxide.

  7. Investigation of trap states in high Al content AlGaN/GaN high electron mobility transistors by frequency dependent capacitance and conductance analysis

    SciTech Connect

    Zhu, Jie-Jie; Ma, Xiao-Hua Hou, Bin; Chen, Wei-Wei; Hao, Yue

    2014-03-15

    Trap states in Al{sub 0.55}Ga{sub 0.45}N/GaN Schottky-gate high-electron-mobility transistors (S-HEMTs) and Al{sub 2}O{sub 3}/Al{sub 0.55}Ga{sub 0.45}N/GaN metal-oxide-semiconductor HEMTs (MOS-HEMTs) were investigated with conductance method in this paper. Surface states with time constant of (0.09–0.12) μs were found in S-HEMTs, and electron tunneling rather than emission was deemed to be the dominant de-trapping mechanism due to the high electric field in high Al content barrier. The density of surface states evaluated in S-HEMTs was (1.02–4.67)×10{sup 13} eV{sup −1}·cm{sup −2}. Al{sub 2}O{sub 3} gate insulator slightly reduced the surface states, but introduced low density of new traps with time constant of (0.65–1.29) μs into MOS-HEMTs.

  8. A Dominant-negative Gα Mutant That Traps a Stable Rhodopsin-Gα-GTP-βγ Complex*

    PubMed Central

    Ramachandran, Sekar; Cerione, Richard A.

    2011-01-01

    Residues comprising the guanine nucleotide-binding sites of the α subunits of heterotrimeric (large) G-proteins (Gα subunits), as well as the Ras-related (small) G-proteins, are highly conserved. This is especially the case for the phosphate-binding loop (P-loop) where both Gα subunits and Ras-related G-proteins have a conserved serine or threonine residue. Substitutions for this residue in Ras and related (small) G-proteins yield nucleotide-depleted, dominant-negative mutants. Here we have examined the consequences of changing the conserved serine residue in the P-loop to asparagine, within a chimeric Gα subunit (designated αT*) that is mainly comprised of the α subunit of the retinal G-protein transducin and a limited region from the α subunit of Gi1. The αT*(S43N) mutant exhibits a significantly higher rate of intrinsic GDP-GTP exchange compared with wild-type αT*, with light-activated rhodopsin (R*) causing only a moderate increase in the kinetics of nucleotide exchange on αT*(S43N). The αT*(S43N) mutant, when bound to either GDP or GTP, was able to significantly slow the rate of R*-catalyzed GDP-GTP exchange on wild-type αT*. Thus, GTP-bound αT*(S43N), as well as the GDP-bound mutant, is capable of forming a stable complex with R*. αT*(S43N) activated the cGMP phosphodiesterase (PDE) with a dose-response similar to wild-type αT*. Activation of the PDE by αT*(S43N) was unaffected if either R* or β1γ1 alone was present, whereas it was inhibited when R* and the β1γ1 subunit were added together. Overall, our studies suggest that the S43N substitution on αT* stabilizes an intermediate on the G-protein activation pathway consisting of an activated G-protein-coupled receptor, a GTP-bound Gα subunit, and the β1γ1 complex. PMID:21285355

  9. The ReA electron-beam ion trap charge breeder for reacceleration of rare isotopes

    NASA Astrophysics Data System (ADS)

    Lapierre, A.; Schwarz, S.; Kittimanapun, K.; Fogleman, J.; Krause, S.; Nash, S.; Rencsok, R.; Tobos, L.; Perdikakis, G.; Portillo, M.; Rodriguez, J. A.; Wittmer, W.; Wu, X.; Bollen, G.; Leitner, D.; Syphers, M.; ReA Team

    2013-04-01

    ReA is a post-accelerator at the National Superconducting Cyclotron Laboratory at Michigan State University. ReA is designed to reaccelerate rare isotopes to energies of a few MeV/u following production by projectile fragmentation and thermalization in a gas cell. The facility consists of four main components: an electron-beam ion trap (EBIT) charge breeder, an achromatic charge-over-mass (Q/A) separator, a radio-frequency quadrupole accelerator, and a superconducting radio-frequency linear accelerator. The EBIT charge breeder was specifically designed to efficiently capture continuous beams of singly charged ions injected at low energy (<60 keV), charge breed in less than 50 ms, and extract highly charged ions to the Q/A separator for charge-state selection and reacceleration through the accelerator structures. The use of highly charged ions to reach high beam energies is a key aspect that makes ReA a compact and cost-efficient post-accelerator. The EBIT is characterized by a high-current electron gun, a long multi-electrode trap structure and a dual magnet to provide both the high electron-beam current density necessary for fast charge breeding of short-lived isotopes as well as the high capture probability of injected beams. This paper presents an overview and the status of the ReA EBIT, which has extracted for reacceleration tests stable 20Ne8+ ion beams produced from injected gas and more recently 39K16+ beams by injecting stable 39,41K+ ions from an external ion source.

  10. Highly charged ion research at the Livermore electron beam ion traps

    SciTech Connect

    Beiersdorfer, P

    2004-01-04

    Spectroscopy performed with the three Livermore electron beam ion traps is reviewed, which is continuing and complementing the innumerable contributions to atomic physics provided over the years by heavy-ion accelerators. Numerous spectrometers were developed that cover the spectral bands from the visible to the hard x ray region. These enabled exhaustive line surveys useful for x-ray astrophysics and for systematic studies along iso-electronic sequences, such as the 4s-4p, 3s-3p, and 2s-2p transitions in ions of the Cu-I, Na-I, and Li-I sequences useful for studying QED and correlation effects as well as for precise determinations of atomic-nuclear interactions. They also enabled measurements of radiative transition probabilities of very long-lived (milli- and microseconds) and very short-live (femtosecond) levels. Because line excitation processes can be controlled by choice of the electron beam energy, the observed line intensities are used to infer cross sections for electron-impact excitation, dielectronic recombination, resonance excitation, and innershell ionization. These capabilities have recently been expanded to simulate x-ray emission from comets by charge exchange. Specific contributions to basic atomic physics, nuclear physics, and high-temperature diagnostics are illustrated.

  11. Trap states induced by reactive ion etching in AlGaN/GaN high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Zhao, Sheng-Lei; Mi, Min-Han; Hou, Bin; Yang, Xiao-Lei; Zhang, Jin-Cheng; Ma, Xiao-Hua; Hao, Yue

    2015-11-01

    Frequency-dependent conductance measurements were carried out to investigate the trap states induced by reactive ion etching in AlGaN/GaN high-electron-mobility transistors (HEMTs) quantitatively. For the non-recessed HEMT, the trap state density decreases from 2.48 × 1013 cm-2·eV-1 at an energy of 0.29 eV to 2.79 × 1012 cm-2·eV-1 at ET = 0.33 eV. In contrast, the trap state density of 2.38 × 1013-1.10 × 1014 cm-2·eV-1 is located at ET in a range of 0.30-0.33 eV for the recessed HEMT. Thus, lots of trap states with shallow energy levels are induced by the gate recess etching. The induced shallow trap states can be changed into deep trap states by 350 °C annealing process. As a result, there are two different types of trap sates, fast and slow, in the annealed HEMT. The parameters of the annealed HEMT are ET = 0.29-0.31 eV and DT = 8.16 × 1012-5.58 × 1013 cm-2·eV-1 for the fast trap states, and ET = 0.37-0.45 eV and DT = 1.84 × 1013 - 8.50 × 1013 cm-2·eV-1 for the slow trap states. The gate leakage currents are changed by the etching and following annealing process, and this change can be explained by the analysis of the trap states. Project supported by the National Natural Science Foundation of China (Grant Nos. 61334002 and 61106106).

  12. Trapping the M sub 1 and M sub 2 substrates of bacteriorhodopsin for electron diffraction studies

    SciTech Connect

    Perkins, G.A.

    1992-05-01

    Visible and Fourier transform infrared (FTIR) absorption spectroscopies are used to observe protein conformational changes occuring during the bacteriorhodopsin photocycle. Spectroscopic measurements which define the conditions under which bacteriorhodopsin can be isolated and trapped in two distinct substates of the m intermediate of the photocycle, M{sub 1}, and M{sub 2}, are described. A protocol that can be used for high-resolution electron diffraction studies is presented that will trap glucose-embedded purple membrane in the M{sub 1}and M{sub 2} substates at greater than 90% concentration. It was discovered that glucose alone does not provide a fully hydrated environment for bacteriorhodopsin. Equilibration of glucose-embedded samples at high humidity can result in a physical state that is demonstrably closer to the native, fully hydrated state. An extension of the C-T Model of bacteriorhodopsin functionality (Fodor et al., 1988; Mathies et al., 1991) is proposed based on FTIR results and guided by published spectra from resonance Raman and FTIR work. 105 refs.

  13. Longitudinal Space Charge Effects in Bunched Electron Beams Travelling through a Malmberg-Penning Trap

    SciTech Connect

    Rome, M.; Cavaliere, F.; De Luca, F.; Pozzoli, R.; Cavenago, M.; Maero, G.; Paroli, B.

    2010-06-16

    Nanosecond pulsed electron beams in the 1-10 keV energy range have been characterized by means of an electrostatic diagnostic in the Malmberg-Penning trap ELTRAP. The beam length has been inferred through the numerical analysis of the signals measured across the overall load impedance of a planar charge collector. The presence of space charge effects leading to a longitudinal spread of the beam during its transport are evidenced at low injection energies. This feature has also been tested with the use of a one-dimensional fluid model and with two-dimensional, cylindrically-symmetric Particle-In-Cell simulations, whose results are compared to the experimental observations.

  14. Electron traps and their effect on the surface chemistry of TiO2(110)

    PubMed Central

    Papageorgiou, Anthoula C.; Beglitis, Nikolaos S.; Pang, Chi L.; Teobaldi, Gilberto; Cabailh, Gregory; Chen, Qiao; Fisher, Andrew J.; Hofer, Werner A.; Thornton, Geoff

    2010-01-01

    Oxygen vacancies on metal oxide surfaces have long been thought to play a key role in the surface chemistry. Such processes have been directly visualized in the case of the model photocatalyst surface TiO2(110) in reactions with water and molecular oxygen. These vacancies have been assumed to be neutral in calculations of the surface properties. However, by comparing experimental and simulated scanning tunneling microscopy images and spectra, we show that oxygen vacancies act as trapping centers and are negatively charged. We demonstrate that charging the defect significantly affects the reactivity by following the reaction of molecular oxygen with surface hydroxyl formed by water dissociation at the vacancies. Calculations with electronically charged hydroxyl favor a condensation reaction forming water and surface oxygen adatoms, in line with experimental observations. This contrasts with simulations using neutral hydroxyl where hydrogen peroxide is found to be the most stable product. PMID:20133773

  15. Optical realization of bioinspired spiking neurons in the electron trapping material thin film.

    PubMed

    Pashaie, Ramin; Farhat, Nabil H

    2007-12-10

    A thin film of electron-trapping material (ETM), when combined with suitable optical bistability, is considered as a medium for optical implementation of bioinspired neural nets. The optical mechanism of ETM under blue light and near-infrared exposure has the inherent ability at the material level to mimic the crucial components of the stylized Hodgkin-Huxley model of biological neurons. Combining this unique property with the high-resolution capability of ETM, a dense network of bioinspired neurons can be realized in a thin film of this infrared stimulable storage phosphor. When combined with suitable optical bistability and optical interconnectivity, it has the potential of producing an artificial nonlinear excitable medium analog to cortical tissue.

  16. Cascade emission in electron beam ion trap plasma of W25+ ion

    NASA Astrophysics Data System (ADS)

    Jonauskas, V.; Pütterich, T.; Kučas, S.; Masys, Š.; Kynienė, A.; Gaigalas, G.; Kisielius, R.; Radžiūtė, L.; Rynkun, P.; Merkelis, G.

    2015-07-01

    Spectra of the W25+ ion are studied using the collisional-radiative model (CRM) with an ensuing cascade emission. It is determined that the cascade emission boosts intensities only of a few lines in the 10-30 nm range. The cascade emission is responsible for the disappearance of structure of lines at about 6 nm in the electron beam ion trap plasma. Emission band at 4.5-5.3 nm is also affected by the cascade emission. The strongest lines in the CRM spectrum correspond to 4d9 4f4 → 4f3 transitions, while 4f2 5 d → 4f3 transitions arise after the cascade emission is taken into account.

  17. Use of electron-trapping materials in optical signal processing. IV - Parallel incoherent image subtraction

    NASA Astrophysics Data System (ADS)

    Jutamulia, Suganda; Storti, George M.; Seiderman, William; Lindmayer, Joseph; Gregory, Don A.

    1993-02-01

    The application of electron trapping (ET) materials to parallel incoherent image subtraction over a wide dynamic range is examined in detail. A new incoherent image-subtraction technique based on ET materials is presented which can be applied to automation for microcircuit manufacture and inspection and potentially to data compression for videophones, teleconferencing, and high-definition TV. It is suggested that a high-quality ET thin-film could be coupled directly with a CCD chip to perform real-time image subtraction between two simultaneous scenes or subsequent frames. The advantages of the ET-based technique over the incoherent image-subtraction technique based on two liquid-crystal light valves include absence of coherent noise, high resolution, high space-bandwidth product, high speed, and cost effectiveness.

  18. Theory of Fine-scale Zonal Flow Generation From Trapped Electron Mode Turbulence

    SciTech Connect

    Lu Wang and T.S. Hahm

    2009-06-11

    Most existing zonal flow generation theory has been developed with a usual assumption of qrρθ¡ << 1 (qr is the radial wave number of zonal flow, and ρθ¡ is the ion poloidal gyrora- dius). However, recent nonlinear gyrokinetic simulations of trapped electron mode (TEM) turbulence exhibit a relatively short radial scale of the zonal flows with qrρθ¡ ~ 1 [Z. Lin et al., IAEA-CN/TH/P2-8 (2006); D. Ernst et al., Phys. Plasmas 16, 055906 (2009)]. This work reports an extension of zonal flow growth calculation to this short wavelength regime via the wave kinetics approach. A generalized expression for the polarization shielding for arbitrary radial wavelength [Lu Wang and T.S. Hahm, to appear in Phys. Plasmas (2009)] which extends the Rosenbluth-Hinton formula in the long wavelength limit is applied.

  19. Magnetic field extraction of trap-based electron beams using a high-permeability grid

    SciTech Connect

    Hurst, N. C.; Danielson, J. R.; Surko, C. M.

    2015-07-15

    A method to form high quality electrostatically guided lepton beams is explored. Test electron beams are extracted from tailored plasmas confined in a Penning-Malmberg trap. The particles are then extracted from the confining axial magnetic field by passing them through a high magnetic permeability grid with radial tines (a so-called “magnetic spider”). An Einzel lens is used to focus and analyze the beam properties. Numerical simulations are used to model non-adiabatic effects due to the spider, and the predictions are compared with the experimental results. Improvements in beam quality are discussed relative to the use of a hole in a high permeability shield (i.e., in lieu of the spider), and areas for further improvement are described.

  20. Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory

    NASA Astrophysics Data System (ADS)

    Martens, Jonathan; Berden, Giel; Gebhardt, Christoph R.; Oomens, Jos

    2016-10-01

    We report on modifications made to a Paul-type quadrupole ion trap mass spectrometer and discuss its application in infrared ion spectroscopy experiments. Main modifications involve optical access to the trapped ions and hardware and software coupling to a variety of infrared laser sources at the FELIX infrared free electron laser laboratory. In comparison to previously described infrared ion spectroscopy experiments at the FELIX laboratory, we find significant improvements in efficiency and sensitivity. Effects of the trapping conditions of the ions on the IR multiple photon dissociation spectra are explored. Enhanced photo-dissociation is found at lower pressures in the ion trap. Spectra obtained under reduced pressure conditions are found to more closely mimic those obtained in the high-vacuum conditions of an Fourier transform ion cyclotron resonance mass spectrometer. A gas-mixing system is described enabling the controlled addition of a secondary gas into helium buffer gas flowing into the trap and allows for ion/molecule reactions in the trap. The electron transfer dissociation (ETD) option of the mass spectrometer allows for IR structure characterization of ETD-generated peptide dissociation products.

  1. Survival of bacterial isolates exposed to simulated Jovian trapped radiation belt electrons and solar wind protons

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.; Hagen, C. A.; Renninger, G. M.; Simko, G. J.; Smith, C. D.; Yelinek, J. A.

    1972-01-01

    With missions to Jupiter, the spacecraft will be exposed for extended duration to solar wind radiation and the Jovian trapped radiation belt. This study is designed to determine the effect of these radiation environments on spacecraft bacterial isolates. The information can be used in the probability of contamination analysis for these missions. A bacterial subpopulation from Mariner Mars 1971 spacecraft (nine sporeforming and three nonsporeforming isolates) plus two comparative organisms, Staphylococcus epidermidis ATCC 17917 and a strain of Bacillus subtilis var. niger, were exposed to 2-, 12-, and 25-MeV electrons at different doses with simultaneous exposure to a vacuum of 0.0013 N/sqm at 20 and -20 C. The radioresistance of the subpopulation was dependent on the isolate, dose, and energy of electrons. Temperature affected the radioresistance of only the sporeforming isolates. Survival data indicated that spores were reduced approximately 1 log/1500 J/kg, while nonsporeforming isolates (micrococci) were reduced 1.5 to 2 logs/1500 J/kg with the exception of an apparent radioresistant isolate whose resistance approached that of the spores. The subpopulation was found to be less resistant to lower energy than to higher energy electrons.

  2. Production of vacancy-oxygen defect in electron irradiated silicon in the presence of self-interstitial-trapping impurities

    SciTech Connect

    Voronkov, V. V.; Falster, R.; Londos, C. A.; Sgourou, E. N.; Andrianakis, A.; Ohyama, H.

    2011-11-01

    The enhancement by carbon of vacancy-oxygen (VO) defect formation in electron irradiated silicon was investigated using many samples of various carbon contents. The effect of carbon is well described by a simple analytical model of competing trapping of self-interstitials by VO and by carbon (and by emerging carbon-related defects like C{sub i}O{sub i} and IC{sub i}O{sub i}). The trapping ratio by C{sub s} and by VO was determined to be about 0.9, and the optical calibration coefficients for C{sub i}O{sub i} and IC{sub i}O{sub i} were deduced. In crystals containing a high concentration of Ge, germanium also acts as a self-interstitial trapping impurity and, thus, enhances VO production. The trapping efficiency of Ge is 1000 times less than that of carbon.

  3. Magnetism induced by excess electrons trapped at diamagnetic edge-quantum well in multi-layer graphene

    SciTech Connect

    Zhang, Xi; Wang, Chao; Diao, Dongfeng; Sun, Chang Q

    2014-07-28

    In this paper, we clarified a robust mechanism of magnetism generated by excess electrons captured by edge-quantum well of diamagnetic armchair edges. Consistency between density functional theory calculations and electron cyclotron resonance experiments verified that: (1) Multi-layer armchair nanoribbons are stable with proper amounts of excess electrons which can provide net spin; (2) Since under-coordination induces lattice relaxation and potential well modulation, electrons tend to be trapped at edges; and (3) Neither large amount of excess electrons nor positive charges can induce magnetism. This work shed light on the development of graphene devices in its magnetic applications.

  4. Trapping in GaN-based metal-insulator-semiconductor transistors: Role of high drain bias and hot electrons

    SciTech Connect

    Meneghini, M. Bisi, D.; Meneghesso, G.; Zanoni, E.

    2014-04-07

    This paper describes an extensive analysis of the role of off-state and semi-on state bias in inducing the trapping in GaN-based power High Electron Mobility Transistors. The study is based on combined pulsed characterization and on-resistance transient measurements. We demonstrate that—by changing the quiescent bias point from the off-state to the semi-on state—it is possible to separately analyze two relevant trapping mechanisms: (i) the trapping of electrons in the gate-drain access region, activated by the exposure to high drain bias in the off-state; (ii) the trapping of hot-electrons within the AlGaN barrier or the gate insulator, which occurs when the devices are operated in the semi-on state. The dependence of these two mechanisms on the bias conditions and on temperature, and the properties (activation energy and cross section) of the related traps are described in the text.

  5. Dopant controlled trap-filling and conductivity enhancement in an electron-transport polymer

    SciTech Connect

    Higgins, Andrew E-mail: kahn@princeton.edu; Kahn, Antoine E-mail: kahn@princeton.edu; Mohapatra, Swagat K.; Barlow, Stephen; Marder, Seth R.

    2015-04-20

    Charge transport in organic semiconductors is often inhibited by the presence of tail states that extend into the band gap of a material and act as traps for charge carriers. This work demonstrates the passivation of acceptor tail states by solution processing of ultra-low concentrations of a strongly reducing air-stable organometallic dimer, the pentamethylrhodocene dimer, [RhCp*Cp]{sub 2}, into the electron transport polymer poly([N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide) -2,6-diyl]-alt-5,5′-(2,2′-bithiophene)), P(NDI{sub 2}OD-T{sub 2}). Variable-temperature current-voltage measurements of n-doped P(NDI{sub 2}OD-T{sub 2}) are presented with doping concentration varied through two orders of magnitude. Systematic variation of the doping parameter is shown to lower the activation energy for hopping transport and enhance film conductivity and electron mobility.

  6. Measurement of an electron's electric dipole moment using Cs atoms trapped in optical lattices

    NASA Astrophysics Data System (ADS)

    Chin, Cheng; Leiber, Véronique; Vuletić, Vladan; Kerman, Andrew J.; Chu, Steven

    2001-03-01

    We propose to measure the electron's permanent electric dipole moment (EDM) using cesium atoms trapped in a sparsely populated, trichromatic, far blue-detuned three-dimensional (3D) optical lattice. In the proposed configuration, the atoms can be strongly localized near the nodes of the light field and isolated from each other, leading to a strong suppression of the detrimental effects of atom-atom and atom-field interactions. Three linearly polarized standing waves with different frequencies create an effectively linearly polarized 3D optical lattice and lead to a strong reduction of the tensor light shift, which remains a potential source of systematic error. Other systematics concerning external field instability and gradients and higher-order polarizabilities are discussed. Furthermore, auxiliary atoms can be loaded into the same lattices as effective ``comagnetometers'' to monitor various systematic effects, including magnetic-field fluctuations and imperfect electric-field reversal. We estimate that a sensitivity 100 times higher than the current upper bound for the electron's EDM of 4×10-27 e cm can be achieved with the proposed technique.

  7. Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes.

    PubMed

    Ferreira-Cerca, Sébastien; Kiburu, Irene; Thomson, Emma; LaRonde, Nicole; Hurt, Ed

    2014-07-01

    During eukaryotic ribosome biogenesis, members of the conserved atypical serine/threonine protein kinase family, the RIO kinases (Rio1, Rio2 and Rio3) function in small ribosomal subunit biogenesis. Structural analysis of Rio2 indicated a role as a conformation-sensing ATPase rather than a kinase to regulate its dynamic association with the pre-40S subunit. However, it remained elusive at which step and by which mechanism the other RIO kinase members act. Here, we have determined the crystal structure of the human Rio1-ATP-Mg(2+) complex carrying a phosphoaspartate in the active site indicative of ATPase activity. Structure-based mutations in yeast showed that Rio1's catalytic activity regulates its pre-40S association. Furthermore, we provide evidence that Rio1 associates with a very late pre-40S via its conserved C-terminal domain. Moreover, a rio1 dominant-negative mutant defective in ATP hydrolysis induced trapping of late biogenesis factors in pre-ribosomal particles, which turned out not to be pre-40S but 80S-like ribosomes. Thus, the RIO kinase fold generates a versatile ATPase enzyme, which in the case of Rio1 is activated following the Rio2 step to regulate one of the final 40S maturation events, at which time the 60S subunit is recruited for final quality control check.

  8. Oxidative reactions during early stages of beer brewing studied by electron spin resonance and spin trapping.

    PubMed

    Frederiksen, Anne M; Festersen, Rikke M; Andersen, Mogens L

    2008-09-24

    An electron spin resonance (ESR)-based method was used for evaluating the levels of radical formation during mashing and in sweet wort. The method included the addition of 5% (v/v) ethanol together with the spin trap alpha-4-pyridyl(1-oxide)- N- tert-butylnitrone (POBN) to wort, followed by monitoring the rate of formation of POBN spin adducts during aerobic heating of the wort. The presence of ethanol makes the spin trapping method more selective and sensitive for the detection of highly reactive radicals such as hydroxyl and alkoxyl radicals. Samples of wort that were collected during the early stages of the mashing process gave higher rates of spin adduct formation than wort samples collected during the later stages. The lower oxidative stability of the early wort samples was confirmed by measuring the rate of oxygen consumption during heating of the wort. The addition of Fe(II) to the wort samples increased the rate of spin adduct formation, whereas the addition of Fe(II) during the mashing had no effect on the oxidative stability of the wort samples. Analysis of the iron content in the sweet wort samples demonstrated that iron added during the mashing had no effect on the iron level in the wort. The moderate temperatures during the early steps of mashing allow the endogenous malt enzymes to be active. The potential antioxidative effects of different redox-active enzymes during mashing were tested by measuring the rate of spin adduct formation in samples of wort. Surprisingly, a high catalase dosage caused a significant, 20% reduction of the initial rate of radical formation, whereas superoxide dismutase had no effect on the oxidation rates. This suggests that hydrogen peroxide and superoxide are not the only intermediates that play a role in the oxidative reactions occurring during aerobic oxidation of sweet wort.

  9. Experiments on continuum electron capture in atomic hydrogen and collisional interaction of trapped ions. Progress report

    SciTech Connect

    Sellin, I.A.; Elston, S.B.

    1981-01-01

    This section describes the background and scope of as well as progress made on experiments designed to test the present theory of charge exchange to continuum for the case of bare nuclei on atomic hydrogen. The charge transfer process is well known to be an essential ingredient of any attempt to understand the ionization of gaseous media traversed by highly-charged energetic ions. Surprisingly, a sometimes dominant contribution to such ionization remained undiscovered until the past decade. This process, known as charge transfer to the continuum, involves the ionization of electrons from the target species into unbound states closely matched in exit direction and speed to the charged particles which generate them. Subsequent measurements of the resultant forward electron production, performed by University of Tennessee searchers at Oak Ridge and Brookhaven National Laboratories, were unique in employing more highly charged projectiles than previously.

  10. Electrical Instability Induced by Electron Trapping in Low-Bandgap Donor-Acceptor Polymer Field-Effect Transistors.

    PubMed

    Phan, Hung; Wang, Ming; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2015-11-18

    The mechanism of electrical instability and the double slope of p-type organic field-effect transistors (OFETs) fabricated from low-bandgap donor-acceptor copolymers are resolved. Those polymers enable electron conduction in the device, which leads to electron trapping and consequent formation of -SiO(-). This causes a turn-on voltage shift, hole-mobility increase, and double-slope occurrence. These findings tremendously impact the molecular design and device engineering of OFETs. PMID:26441385

  11. EXPERIMENTAL INVESTIGATIONS OF ION CHARGE DISTRIBUTIONS, EFFECTIVE ELECTRON DENSITIES, AND ELECTRON-ION CLOUD OVERLAP IN ELECTRON BEAM ION TRAP PLASMA USING EXTREME-ULTRAVIOLET SPECTROSCOPY

    SciTech Connect

    Liang, G. Y.; Crespo Lopez-Urrutia, J. R.; Baumann, T. M.; Epp, S. W.; Gonchar, A.; Mokler, P. H.; Simon, M. C.; Tawara, H.; Maeckel, V.; Ullrich, J.; Lapierre, A.; Yao, K.; Zou, Y.; Zhao, G. E-mail: crespojr@mpi-hd.mpg.de

    2009-09-10

    Spectra in the extreme ultraviolet range from 107 to 353 A emitted from Fe ions in various ionization stages have been observed at the Heidelberg electron beam ion trap (EBIT) with a flat-field grating spectrometer. A series of transition lines and their intensities have been analyzed and compared with collisional-radiative simulations. The present collisional-radiative model reproduces well the relative line intensities and facilitates line identification of ions produced in the EBIT. The polarization effect on the line intensities resulting from nonthermal unidirectional electron impact was explored and found to be significant (up to 24%) for a few transition lines. Based upon the observed line intensities, relative charge state distributions (CSD) of ions were determined, which peaked at Fe{sup 23+} tailing toward lower charge states. Another simulation on ion charge distributions including the ionization and electron capture processes generated CSDs which are in general agreement with the measurements. By observing intensity ratios of specific lines from levels collisionally populated directly from the ground state and those starting from the metastable levels of Fe XXI, Fe X and other ionic states, the effective electron densities were extracted and found to depend on the ionic charge. Furthermore, it was found that the overlap of the ion cloud with the electron beam estimated from the effective electron densities strongly depends on the charge state of the ion considered, i.e. under the same EBIT conditions, higher charge ions show less expansion in the radial direction.

  12. Transition metals as electron traps. I. Structures, energetics, electron capture, and electron-transfer-induced dissociations of ternary copper-peptide complexes in the gas phase.

    PubMed

    Turecek, Frantisek; Jones, Jace W; Holm, Anne I S; Panja, Subhasis; Nielsen, Steen Brøndsted; Hvelplund, Preben

    2009-05-01

    Electron-induced dissociations of gas-phase ternary copper-2,2'-bipyridine complexes of Gly-Gly-Gly and Gly-Gly-Leu were studied on a time scale ranging from 130 ns to several milliseconds using a combination of charge-reversal ((+)CR(-)) and electron-capture-induced dissociation (ECID) measured on a beam instrument and electron capture dissociation (ECD) measured in a Penning trap. Charge-reduced intermediates were observed on the short time scale in the (+)CR(-) and ECID experiments but not in ECD. Ion dissociations following electron transfer or capture mostly occurred by competitive bpy or peptide ligand loss, whereas peptide backbone fragmentations were suppressed in the presence of the ligated metal ion. Extensive electron structure theory calculations using density functional theory and large basis sets provided optimized structures and energies for the precursor ions, charge-reduced intermediates, and dissociation products. The Cu complexes underwent substantial structure changes upon electron capture. Cu was calculated to be pentacoordinated in the most stable singly charged complexes of the [Cu(peptide-H)bpy](+*) type where it carried a approximately +1 atomic charge. Cu coordination in charge-reduced [Cu(peptide-H)bpy] intermediates depended on the spin state. The themodynamically more stable singlet states had tricoordinated Cu, whereas triplet states had a tetracoordinated Cu. Cu was tricoordinated in stable [Cu(peptide-H)bpy](-*) products of electron transfer. [Cu(peptide)bpy](2+*) complexes contained the peptide ligand in a zwitterionic form while Cu was tetracoordinated. Upon electron capture, Cu was tri- or tetracoordinated in the [Cu(peptide)bpy](+) charge-reduced analogs and the peptide ligands underwent prototropic isomerization to canonical forms. The role of excited singlet and triplet electronic states is assessed. PMID:19132713

  13. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera.

    PubMed

    Baumann, Thomas M; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-01

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r(80%) = (212 ± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm(2) is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments. PMID:25085129

  14. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera.

    PubMed

    Baumann, Thomas M; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-01

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r(80%) = (212 ± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm(2) is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  15. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera

    SciTech Connect

    Baumann, Thomas M. Lapierre, Alain Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-15

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r{sub 80%}=(212±19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm{sup 2} is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  16. Design and performance of an instrument for electron impact tandem mass spectrometry and action spectroscopy of mass/charge selected macromolecular ions stored in RF ion trap*

    NASA Astrophysics Data System (ADS)

    Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-06-01

    A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/ z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.

  17. A Proteomics Grade Electron Transfer Dissociation-enabled Hybrid Linear Ion Trap-orbitrap Mass Spectrometer

    PubMed Central

    McAlister, Graeme C.; Berggren, W. Travis; Horning, Stevan; Makarov, Alexander; Phanstiel, Doug; Griep-Raming, Jens; Stafford, George; Swaney, Danielle L.; Syka, John E. P.; Zabrouskov, Vlad

    2008-01-01

    Here we describe the modification of a quadrupole linear ion trap-orbitrap hybrid (QLT-orbitrap) mass spectrometer to accommodate a negative chemical ionization (NCI) source. The NCI source is used to produce fluoranthene radical anions for imparting electron transfer dissociation (ETD). The anion beam is stable, robust, and intense so that a sufficient amount of reagents can be injected into the QLT in only 4 - 8 ms. Following ion/ion reaction in the QLT, ETD product ions are mass-to-charge (m/z) analyzed in either the QLT (for speed and sensitivity) or the orbitrap (for mass resolution and accuracy). Here we describe the physical layout of this device, parametric optimization of anion transport, an evaluation of relevant ETD figures of merit, and the application of this instrument to protein sequence analysis. Described proteomic applications include complex peptide mixture analysis, post-translational modification (PTM) site identification, isotope-encoded quantitation, large peptide characterization, and intact protein analysis. From these experiments we conclude the ETD-enabled orbitrap will provide the proteomic field with several new opportunities and represents an advance in protein sequence analysis technologies. PMID:18613715

  18. He-like argon, chlorine and sulfur spectra measurement from an Electron Cyclotron Resonance Ion Trap

    NASA Astrophysics Data System (ADS)

    Trassinelli, M.; Boucard, S.; Covita, D. S.; Gotta, D.; Hirtl, A.; Indelicato, P.; LeBigot, É.-O.; dos Santos, J. M. F.; Simons, L. M.; Stingelin, L.; Veloso, J. F. C. A.; Wasser, A.; Zmeskal, J.

    2007-03-01

    We present a new measurement on X-ray spectroscopy of multicharged argon, chlorine and sulfur obtained with the Electron Cyclotron Resonance Ion Trap installed at the Paul Scherrer Institut (Villigen, Switzerland). For this purpose, we used a crystal spectrometer with a spherically bent crystal having an energy resolution of about 0.4 eV. High intensity Kα X-ray spectra were obtained from ions with one 1s hole ranging from almost neutral to heliumlike charge states. In particular we observed the 1s2s 3S1 → 1s2 1S0 M1 and 1s2p 3P2 → 1s2 1S0 M2 transitions in He-like argon, chlorine and sulfur with unprecedented statistics and resolution. The preliminary analysis presented here describes a new technique to measure precisely energy differences between transitions using a Johann-type Bragg spectrometer. A recent characterization of the spectrometer will allow for a drastic reduction of the systematic errors.

  19. The XRS microcalorimeter spectrometer at the Livermore Electron Beam Ion Trap

    SciTech Connect

    Porter, F S; Beiersdorfer, P; Boyce, K; Brown, G V; Chen, H; Gygax, J; Kahn, S M; Kelley, R; Kilbourne, C A; Magee, E; Thorn, D B

    2007-08-22

    NASA's X-ray Spectrometer (XRS) microcalorimeter instrument has been operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory since July of 2000. The spectrometer is currently undergoing its third major upgrade to become an easy to use, extremely high performance instrument for a broad range of EBIT experiments. The spectrometer itself is broadband, capable of simultaneously operating from 0.1 to 12 keV and has been operated at up to 100 keV by manipulating its operating conditions. The spectral resolution closely follows the spaceflight version of the XRS, beginning at 10 eV FWHM at 6 keV in 2000, upgraded to 5.5 eV in 2003, and will hopefully be {approx}3.8 eV in the Fall of 2007. Here we review the operating principles of this unique instrument, the extraordinary science that has been performed at EBIT over the last 6 years, and prospects for future upgrades. Specifically we discuss upgrades to cover the high-energy band (to at least 100 keV) with a high quantum efficiency detector, and prospects for using a new superconducting detector to reach 0.8 eV resolution at 1 keV, and 2 eV at 6 keV with high counting rates.

  20. Magnetically induced electron shelving in a trapped Ca{sup +} ion

    SciTech Connect

    Crick, D. R.; Donnellan, S.; Segal, D. M.; Thompson, R. C.

    2010-05-15

    Atomic states are perturbed by externally applied magnetic fields (Zeeman effect). As well as the usual Zeeman splittings, the magnetic field leads to mixing of states with different values of the J quantum number. We report on the direct experimental measurement of this effect using the electron shelving technique (employed to great effect in single-ion spectroscopy and quantum-information processing). Specifically we observe shelving to the metastable (3p{sup 6}3d) {sup 2}D{sub 5/2} state in a single {sup 40}Ca{sup +} ion, via spontaneous decay on the strongly forbidden 4p {sup 2}P{sub 1/2{r_reversible}}3d {sup 2}D{sub 5/2} transition. The rate of this transition is shown to scale as the square of the magnetic-field strength. The scaling and magnitude of the effect is compared to the result derived from first-order perturbation theory. For applications in quantum-information processing the J-mixing effect causes a degradation of readout fidelity. We show that this degradation is at a tolerable level for Ca{sup +} and is much less problematic for other trapped ionic species.

  1. Development of a Magneto-Optical Trap System of Francium Atoms for the Electron Electric-Dipole-Moment Search

    NASA Astrophysics Data System (ADS)

    Harada, K.; Aoki, T.; Kato, K.; Kawamura, H.; Inoue, T.; Aoki, T.; Uchiyama, A.; Sakamoto, K.; Ito, S.; Itoh, M.; Hayamizu, T.; Hatakeyama, A.; Hatanaka, K.; Wakasa, T.; Sakemi, Y.

    2016-02-01

    The finite value of an electron electric dipole moment (eEDM) provides the direct evidence for the violation of time reversal symmetry. Fr atoms, whose enhancement factor is 895, trapped by laser cooling and trapping techniques are one of the strongest candidates for measuring the eEDM. We are constructing a beamline for measuring the eEDM using laser- cooled Fr atoms at the Cyclotron and Radioisotope Center. We have developed laser light sources including the frequency stabilization system and a magneto-optical trap system for Fr atoms. As the Fr production requires the cyclotron operation, we also use Rb atoms whose chemical properties are similar to those of the Fr atoms. Thus, the Rb beam is utilized for optimizing the operation parameters of the entire apparatus. We have also developed the laser light sources for Rb atoms and observed the beat signal for frequency stabilization of the source using the frequency offset locking method.

  2. Survival of bacterial isolates exposed to simulated Jovian trapped radiation belt electrons and solar wind protons

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.; Hagen, C. A.; Renninger, G. M.; Simko, G. J.; Smith, C. D.; Yelinek, J. A.

    1973-01-01

    With missions to Jupiter, the spacecraft will be exposed for extended durations to solar wind radiation and the Jovian trapped radiation belt. This study is designed to determine the effect of these radiation environments on spacecraft bacterial isolates. The information can be used in the probability of contamination analysis for these missions. A bacterial subpopulation from Mariner Mars 1971 spacecraft (nine spore-forming and three non-spore-forming isolates) plus two comparative organisms, Staphylococcus epidermidis ATCC 17917 and a strain of Bacillus subtilis var. niger, were exposed to 2, 12, and 25 MeV electrons at different doses with simultaneous exposure to a vacuum of 1.3 x 10(-4) N m-2 at 20 and -20 degrees C. The radioresistance of the subpopulation was dependent on the isolate, dose and energy of electrons. Temperature affected the radioresistance of only the spore-forming isolates. Survival data indicated that spores were reduced approximately 1 log/1500 J kg-1 (10 J kg-1=1 krad), while non-spore-forming isolates (micrococci) were reduced 1.5-2 logs/1500 J kg-1 with the exception of an apparent radioresistant isolate whose resistance approached that of the spores. The subpopulation was found to be less resistant to lower energy than to higher energy electrons. The bacterial isolates were exposed to 3 keV protons under the same conditions as the electrons with a total fluence of 1.5 x 10(13) p cm-2 and a dose rate of 8.6 x 10(9) p cm-2 s-1. The results showed that only 20% of S. epidermidis and 45% of B. subtilis populations survived exposure to the 3 keV protons, while the mean survival of the spacecraft subpopulation was 45% with a range from 31.8% (non-spore-former) to 64.8% (non-spore-former). No significant difference existed between spore-forming and non-spore-forming isolates.

  3. Venus fly trap domain of mGluR1 functions as a dominant negative against group I mGluR signaling.

    PubMed

    Beqollari, Donald; Kammermeier, Paul J

    2010-07-01

    Metabotropic glutamate receptors (mGluRs) form covalently linked homodimers and contain large, N-terminal extracellular ligand binding, "venus fly trap" (VFT) domains. These domains, when expressed separately, are secreted as disulfide linked dimers and can dimerize with full-length receptors. mGluR splice variants have been described that contain only this domain, but the consequences of their interaction on receptor signaling have not been explored. Here it is shown that an mGluR1 mutant containing only the VFT is retained on the cell surface when a full-length receptor is co-expressed. Further, when expressed in rat superior cervical ganglion (SCG) neurons and modulation of native calcium currents is used as an assay for receptor activity, the VFT acts as a dominant negative with respect to mGluR1 signaling. Although full-length mGluR1 and mGluR5 are not known to heterodimerize, the mGluR5 VFT partially occludes mGluR1 signaling and the mGluR1 VFT potently occludes mGluR5 signaling in SCG neurons. In addition, an mGluR1 point mutant, mGluR1 C140G, which cannot covalently dimerize, functions like the wild-type receptor when expressed alone. The C140G mutant is inhibited by the mGluR1 VFT construct but does not retain the mGluR1 VFT on the cell surface, suggesting that the loss of C140 renders the interaction reversible. Finally, a peptide designed to disrupt mGluR1 dimerization reduced signaling through the C140G mutant receptor, but only when applied intracellularly for several hours, indicating that loss of signaling requires disruption of dimerization prior to plasma membrane insertion.

  4. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials

    PubMed Central

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-01-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials. PMID:27194379

  5. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials.

    PubMed

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-01-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials. PMID:27194379

  6. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-05-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials.

  7. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  8. Electron spin resonance study of self-trapped holes in CdWO{sub 4} scintillator crystals

    SciTech Connect

    Laguta, V. V.; Nikl, M.; Rosa, J.; Grinyov, B. V.; Nagornaya, L. L.; Tupitsina, I. A.

    2008-11-15

    The self-trapping of holes at oxygen anions was studied by electron spin resonance in UV irradiated CdWO{sub 4} crystals. Analysis of superhyperfine interaction of the holes with {sup 183}W and {sup 111,113}Cd isotopes shows that the self-trapped hole is either delocalized in the space between two energetically equivalent nearest neighbor oxygen ions or tunnels between them. When the temperature increases above 40-50 K the self-trapped holes are thermally liberated and can be retrapped by oxygen ions perturbed by impurity ions. In case of the Nb{sup 5+} or Li{sup +} stabilizing impurities the O{sup -} centers are thermally stable up to 160-170 K. The study of kinetic characteristics of the self-trapped holes suggests that holes leave oxygen ions by thermally assisted tunneling mechanism via two slightly different channels. Corresponding ionization probabilities are defined by the Arrhenius law with an average thermal ionization energy E=90(5) meV. Calculated pre-exponential factors, about 10{sup 5} s{sup -1}, are small, which is consistent with the tunneling mechanism. Thermal stability and kinetic characteristics of the trapped holes are discussed in light of the scintillation and thermoluminescence characteristics of CdWO{sub 4}.

  9. Effects of antimony (Sb) on electron trapping near SiO2/4H-SiC interfaces

    NASA Astrophysics Data System (ADS)

    Mooney, P. M.; Jiang, Zenan; Basile, A. F.; Zheng, Yongju; Dhar, Sarit

    2016-07-01

    To investigate the mechanism by which Sb at the SiO2/SiC interface improves the channel mobility of 4H-SiC MOSFETs, 1 MHz capacitance measurements and constant capacitance deep level transient spectroscopy (CCDLTS) measurements were performed on Sb-implanted 4H-SiC MOS capacitors. The measurements reveal a significant concentration of Sb donors near the SiO2/SiC interface. Two Sb donor related CCDLTS peaks corresponding to shallow energy levels in SiC were observed close to the SiO2/SiC interface. Furthermore, CCDLTS measurements show that the same type of near-interface traps found in conventional dry oxide or NO-annealed capacitors are present in the Sb implanted samples. These are O1 traps, suggested to be carbon dimers substituted for O dimers in SiO2, and O2 traps, suggested to be interstitial Si in SiO2. However, electron trapping is reduced by a factor of ˜2 in Sb-implanted samples compared with samples with no Sb, primarily at energy levels within 0.2 eV of the SiC conduction band edge. This trap passivation effect is relatively small compared with the Sb-induced counter-doping effect on the MOSFET channel surface, which results in improved channel transport.

  10. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    SciTech Connect

    Bhat, Sathyanarayana Rao, Asha; Krishnan, Sheeja; Sanjeev, Ganesh; Suresh, E. P.

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  11. Linear gyrokinetic calculations of toroidal momentum transport in the presence of trapped electron modes in tokamak plasmas

    SciTech Connect

    Kluy, N.; Angioni, C.; Camenen, Y.; Peeters, A. G.

    2009-12-15

    The toroidal momentum transport in the presence of trapped electron mode microinstabilities in tokamak plasmas is studied by means of quasilinear gyrokinetic calculations. In particular, the role of the Coriolis drift in producing an inward convection of toroidal momentum is investigated. The Coriolis drift term has been implemented in the gyrokinetic code GS2 [W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)] specifically for the completion of this work. A benchmark between the GS2 implementation of the Coriolis drift and the implementations included in two other gyrokinetic codes is presented. The numerical calculations show that in the presence of trapped electron modes, despite of a weaker symmetry breaking of the eigenfunctions with respect to the case of ion temperature gradient modes, a pinch of toroidal momentum is produced in most conditions. The toroidal momentum viscosity is also computed, and found to be small as compared with the electron heat conductivity, but significantly larger than the ion heat conductivity. In addition, interesting differences are found in the dependence of the toroidal momentum pinch as a function of collisionality between trapped electron modes and ion temperature gradient modes. The results identify also parameter domains in which the pinch is predicted to be small, which are also of interest for comparisons with the experiments.

  12. Bose-Einstein condensation of trapped polaritons in two-dimensional electron-hole systems in a high magnetic field

    SciTech Connect

    Berman, Oleg L.; Kezerashvili, Roman Ya.; Lozovik, Yurii E.

    2009-09-15

    The Bose-Einstein condensation (BEC) of magnetoexcitonic polaritons (magnetopolaritons) in two-dimensional (2D) electron-hole system embedded in a semiconductor microcavity in a high magnetic field B is predicted. There are two physical realizations of 2D electron-hole system under consideration: a graphene layer and quantum well (QW). A 2D gas of magnetopolaritons is considered in a planar harmonic potential trap. Two possible physical realizations of this trapping potential are assumed: inhomogeneous local stress or harmonic electric field potential applied to excitons and a parabolic shape of the semiconductor cavity causing the trapping of microcavity photons. The effective Hamiltonian of the ideal gas of cavity polaritons in a QW and graphene in a high magnetic field and the BEC temperature as functions of magnetic field are obtained. It is shown that the effective polariton mass M{sub eff} increases with magnetic field as B{sup 1/2}. The BEC critical temperature T{sub c}{sup (0)} decreases as B{sup -1/4} and increases with the spring constant of the parabolic trap. The Rabi splitting related to the creation of a magnetoexciton in a high magnetic field in graphene and QW is obtained. It is shown that Rabi splitting in graphene can be controlled by the external magnetic field since it is proportional to B{sup -1/4} while in a QW the Rabi splitting does not depend on the magnetic field when it is strong.

  13. Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Mozer, Forrest; Krasnoselskikh, Vladimir

    2016-04-01

    Simultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of ˜1-10 keV electrons and their acceleration up to 100-300 keV. This kind of process becomes important for oblique whistler mode waves having a significant electric field component along the background magnetic field. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. We demonstrate that the electron energy corresponding to the observed plateau remains in very good agreement with the energy required for Landau resonant interaction with the simultaneously measured oblique chorus waves over 6 h and a wide range of L shells (from 4 to 6) in the outer belt. The efficient parallel acceleration modifies electron pitch angle distributions at energies ˜50-200 keV, allowing us to distinguish the energized population. The observed energy range and the density of accelerated electrons are in reasonable agreement with test particle numerical simulations.

  14. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces.

    PubMed

    Selcuk, Sencer; Selloni, Annabella

    2016-10-01

    Excess electrons from intrinsic defects, dopants and photoexcitation play a key role in many of the properties of TiO2. Understanding their behaviour is important for improving the performance of TiO2 in energy-related applications. We focus on anatase, the TiO2 polymorph most relevant in photocatalysis and solar energy conversion. Using first-principles simulations, we investigate the states and dynamics of excess electrons from different donors near the most common anatase (101) and (001) surfaces and aqueous interfaces. We find that the behaviour of excess electrons depends strongly on the exposed anatase surface, the environment and the character of the electron donor. Whereas no electron trapping is observed on the (101) surface in vacuo, an excess electron at the aqueous (101) interface can trigger water dissociation and become trapped into a stable surface Ti(3+)-bridging OH complex. By contrast, electrons avoid the (001) surface, indicating that oxidation reactions are favoured on this surface. Our results provide a bridge between surface science experiments and observations of crystal-face-dependent photocatalysis on anatase, and support the idea that optimization of the ratio between {101} and {001} facets could provide a way to enhance the photocatalytic activity of this material.

  15. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Selcuk, Sencer; Selloni, Annabella

    2016-10-01

    Excess electrons from intrinsic defects, dopants and photoexcitation play a key role in many of the properties of TiO2. Understanding their behaviour is important for improving the performance of TiO2 in energy-related applications. We focus on anatase, the TiO2 polymorph most relevant in photocatalysis and solar energy conversion. Using first-principles simulations, we investigate the states and dynamics of excess electrons from different donors near the most common anatase (101) and (001) surfaces and aqueous interfaces. We find that the behaviour of excess electrons depends strongly on the exposed anatase surface, the environment and the character of the electron donor. Whereas no electron trapping is observed on the (101) surface in vacuo, an excess electron at the aqueous (101) interface can trigger water dissociation and become trapped into a stable surface Ti3+-bridging OH complex. By contrast, electrons avoid the (001) surface, indicating that oxidation reactions are favoured on this surface. Our results provide a bridge between surface science experiments and observations of crystal-face-dependent photocatalysis on anatase, and support the idea that optimization of the ratio between {101} and {001} facets could provide a way to enhance the photocatalytic activity of this material.

  16. Electron photoemission from charged films: absolute cross section for trapping 0-5 eV electrons in condensed CO2.

    PubMed

    Michaud, M; Hébert, E M; Cloutier, P; Sanche, L

    2007-01-14

    The electron trapping or attachment cross section of carbon dioxide (CO2) condensed as thin films on a spacer of Ar is obtained using a simple model for electron trapping in a molecular film and then charge releasing from the same film by photon absorption. The measurements are presented for different electron exposures and impact energies, film thicknesses, and probing photon energies. The cross section for trapping an electron of incident energy between 0 and 5 eV reveals three different attachment processes characterized by a maximum at about 0.75 eV, a structured feature around 2.25 eV, and a shoulder around 3.75 eV. From the measurement of their dependence with the probing photon energy, the two lowest processes produce traps having a vertical electron binding energy of approximately 3.5 eV, whereas the highest one yields a slightly higher value of approximately 3.7 eV. The 0.75 eV maximum corresponds to the formation of vibrational Feshbach resonances in (CO2)n- anion clusters. The 2.25 eV feature is attributed to the formation of a vibrationally excited 2Piu anion in (CO2)n- clusters, followed by fast decay into its vibrational ground state without undergoing autodetachment. Finally, 3.75 eV shoulder is assigned to the well-known dissociative electron attachment process from 2Piu anion state producing the O- anion in the gas phase and the (CO2)nO- anions in clusters.

  17. Dissipative dust-acoustic shock waves in a varying charge electronegative magnetized dusty plasma with trapped electrons

    NASA Astrophysics Data System (ADS)

    Bacha, Mustapha; Tribeche, Mouloud

    2016-08-01

    The combined effects of an oblique magnetic field and electron trapping on dissipative dust-acoustic waves are examined in varying charge electronegative dusty plasmas with application to the Halley Comet plasma (˜104 km from the nucleus). A weakly nonlinear analysis is carried out to derive a modified Korteweg-de Vries-Burger-like equation. Making use of the equilibrium current balance equation, the physically admissible values of the electron trapping parameter are first constrained. We then show that the Burger dissipative term is solely due to the dust charge variation process. It is found that an increase of the magnetic field obliqueness or a decrease of its magnitude renders the shock structure more dispersive.

  18. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap.

    PubMed

    Beiersdorfer, P; Magee, E W; Brown, G V; Hell, N; Träbert, E; Widmann, K

    2014-11-01

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  19. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K.; Hell, N.

    2014-11-15

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  20. Charge generation and trapping in bisphenol-A-polycarbonate/N-isopropylcarbazole mixture: A study by electron bombardment-induced conductivity

    SciTech Connect

    Santos, S.; Caraballo, D.

    2007-12-15

    Electron bombardment-induced conductivity measurements were carried out on cast films of N-isopropylcarbazole (NIPC) dispersed into an amorphous matrix of bisphenol-A-polycarbonate. The charge generation was studied by estimating the hole yield (g), the fraction of charge escaping recombination, as a function of electric field and concentration of NIPC at room temperature. The hole yield, besides increasing by increasing the content of NIPC, was observed to increase with the electric field in the manner predicted by the Onsager theory of geminate recombination. Deep trapping levels were studied by filling under electron bombardment and observing transients. The deep traps were neutral in nature with a concentration on the order of 8.0x10{sup 14} cm{sup -3}, which was low enough not to degrade transport under normal conditions.

  1. Formation of high-{beta} plasma and stable confinement of toroidal electron plasma in Ring Trap 1

    SciTech Connect

    Saitoh, H.; Yoshida, Z.; Morikawa, J.; Furukawa, M.; Yano, Y.; Kawai, Y.; Kobayashi, M.; Vogel, G.; Mikami, H.

    2011-05-15

    Formation of high-{beta} electron cyclotron resonance heating plasma and stable confinement of pure electron plasma have been realized in the Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet. The effects of coil levitation resulted in drastic improvements of the confinement properties, and the maximum local {beta} value has exceeded 70%. Hot electrons are major component of electron populations, and its particle confinement time is 0.5 s. Plasma has a peaked density profile in strong field region [H. Saitoh et al., 23rd IAEA Fusion Energy Conference EXC/9-4Rb (2010)]. In pure electron plasma experiment, inward particle diffusion is realized, and electrons are stably trapped for more than 300 s. When the plasma is in turbulent state during beam injection, plasma flow has a shear, which activates the diocotron (Kelvin-Helmholtz) instability. The canonical angular momentum of the particle is not conserved in this phase, realizing the radial diffusion of charged particles across closed magnetic surfaces. [Z. Yoshida et al., Phys Rev. Lett. 104, 235004 (2010); H. Saitoh et al., Phys. Plasmas 17, 112111 (2010).].

  2. High Energy Laboratory Astrophysics using an X-Ray Microcalorimeter with an Electron Beam Ion Trap

    NASA Astrophysics Data System (ADS)

    Porter, Frederick

    Since the summer of 2000 we have successfully deployed a high-resolution x-ray microcalorimeter spectrometer, based on the spaceflight XRS instrument, at the Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory. Over the last 15 years, this highly successful partnership has made fundamental measurements in laboratory astrophysics including the measurements of the absolute cross sections of all the Fe L shell transitions from Fe XVII to Fe XXIV, line ratios in Fe and Ni L shell transitions, measurements of Fe K shell emission over a wide range of electron energies, and direct measurements of charge exchange emission from highly ionized Fe, O, N, and most recently L shell S, using a variety of donor gases. This work has resulted in the publication of over 40 peer-reviewed articles with many more either submitted or in preparation. The newest addition to the facility, the ECS microcalorimeter spectrometer, developed under this program, has performed flawlessly as a facility-class instrument since 2007. We propose here to continue our highly successful partnership and deploy new technology to resolve lines in the important 1/4 keV band that encompasses the M-shell iron emission and the L shell emission, including charge exchange, of many of the lower-Z elements, such as Si, S, Mg, Ne, Ca, and Ar. This work is highly relevant to NASA objectives as it allows for the unambiguous connection between spectroscopic observations with Chandra, XMM, Astro-H, and future spectrometers aboard missions like Athena, and the physics occurring in the cosmological source. Our program aids these measurements by benchmarking the spectroscopic synthesis models used to interpret all x-ray observations. Without laboratory measurements to support these models, it is not a priori certain that the models are correct, and the observational data correctly interpreted. This is especially true for charge exchange measurements, where there are substantially

  3. The effect of trapped electrons on the three-dimensional ion-acoustic shock wave in magnetized ionic-pair plasma

    NASA Astrophysics Data System (ADS)

    Guo, Shimin; Mei, Liquan; He, Ya-Ling; Guo, Huaqi; Zhao, Yanjun

    2016-04-01

    The effect of trapped electrons featuring vortex-like distribution on the nonlinear behavior of a three-dimensional ion-acoustic shock wave is investigated in a magnetized ionic-pair plasma. In the long-wave approximation, the dynamics of the shock wave is governed by the (3{+}1) -dimensional Schamel-Zakharov-Kuznetsov-Burgers' equation due to the presence of trapped electrons and ion kinematic viscosity. By using the homogeneous balance principle and tanh function method, we obtain a novel exact shock wave solution of the equation. It is found for the first time that the trapped electrons can support a shock wave with only positive polarity.

  4. Unresolved puzzles in the x-ray emission produced by charge exchange measured on electron beam ion traps

    SciTech Connect

    Beiersdorfer, P.; Brown, G. V.; Clementson, J.; Kilbourne, C. A.; Kelley, R. L.; Leutenegger, M. A.; Porter, F. S.; Schweikhard, L.

    2013-04-19

    Charge exchange recombination, the transfer of one or more electrons from an atomic or molecular system to a positive ion, is a common phenomenon affecting laboratory and astrophysical plasmas. Controlled studies of this process in electron beam ion traps during the past one and a half decades have produced multiple observations that are difficult to explain with available spectral models. Some of the most recent observations are so puzzling that they bring in doubt the existence of a coherent predictive capability for line formation by charge exchange, making investigations of charge exchange a fertile ground for continued measurements and theoretical development.

  5. Simulation studies for operating electron beam ion trap at very low energy for disentangling edge plasma spectra

    SciTech Connect

    Jin Xuelong; Fei Zejie; Xiao Jun; Lu Di; Hutton, Roger; Zou Yaming

    2012-07-15

    Electron beam ion traps (EBITs) are very useful tools for disentanglement studies of atomic processes in plasmas. In order to assist studies on edge plasma spectroscopic diagnostics, a very low energy EBIT, SH-PermEBIT, has been set up at the Shanghai EBIT lab. In this work, simulation studies for factors which hinder an EBIT to operate at very low electron energies were made based on the Tricomp (Field Precision) codes. Longitudinal, transversal, and total kinetic energy distributions were analyzed for all the electron trajectories. Influences from the electron current and electron energy on the energy depression caused by the space charge are discussed. The simulation results show that although the energy depression is most serious along the center of the electron beam, the electrons in the outer part of the beam are more likely to be lost when an EBIT is running at very low energy. Using the simulation results to guide us, we successfully managed to reach the minimum electron beam energy of 60 eV with a beam transmission above 57% for the SH-PermEBIT. Ar and W spectra were measured from the SH-PermEBIT at the apparent electron beam energies (read from the voltage difference between the electron gun cathode and the central drift tube) of 60 eV and 1200 eV, respectively. The spectra are shown in this paper.

  6. Simulation studies for operating electron beam ion trap at very low energy for disentangling edge plasma spectra

    NASA Astrophysics Data System (ADS)

    Jin, Xuelong; Fei, Zejie; Xiao, Jun; Lu, Di; Hutton, Roger; Zou, Yaming

    2012-07-01

    Electron beam ion traps (EBITs) are very useful tools for disentanglement studies of atomic processes in plasmas. In order to assist studies on edge plasma spectroscopic diagnostics, a very low energy EBIT, SH-PermEBIT, has been set up at the Shanghai EBIT lab. In this work, simulation studies for factors which hinder an EBIT to operate at very low electron energies were made based on the Tricomp (Field Precision) codes. Longitudinal, transversal, and total kinetic energy distributions were analyzed for all the electron trajectories. Influences from the electron current and electron energy on the energy depression caused by the space charge are discussed. The simulation results show that although the energy depression is most serious along the center of the electron beam, the electrons in the outer part of the beam are more likely to be lost when an EBIT is running at very low energy. Using the simulation results to guide us, we successfully managed to reach the minimum electron beam energy of 60 eV with a beam transmission above 57% for the SH-PermEBIT. Ar and W spectra were measured from the SH-PermEBIT at the apparent electron beam energies (read from the voltage difference between the electron gun cathode and the central drift tube) of 60 eV and 1200 eV, respectively. The spectra are shown in this paper.

  7. Phase-Space Density Analysis of the AE-8 Traped Electron and the AP-8 Trapped Proton Model Environments

    SciTech Connect

    Thomas E. Cayton

    2005-08-01

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  8. Target normal sheath acceleration of foil ions by laser-trapped hot electrons from a long subcritical-density preplasma

    SciTech Connect

    Luan, S. X.; Yu, Wei; Shen, B. F.; Xu, Z. Z.; Yu, M. Y.; Zhuo, H. B.; Xu, Han; Wong, A. Y.; Wang, J. W.

    2014-12-15

    In a long subcritical density plasma, an ultrashort ultraintense laser pulse can self-organize into a fast but sub-relativistic propagating structure consisting of the modulated laser light and a large number of trapped electrons from the plasma. Upon impact of the structure with a solid foil target placed in the latter, the remaining laser light is reflected, but the dense and hot trapped electrons pass through the foil, together with the impact-generated target-frontsurface electrons to form a dense hot electron cloud at the back of the target suitable for enhancing target normal sheath acceleration of the target-backsurface ions. The accelerated ions are well collimated and of high charge and energy densities, with peak energies a full order of magnitude higher than that from target normal sheath acceleration without the subcritical density plasma. In the latter case, the space-charge field accelerating the ions is limited since they are formed only by the target-frontsurface electrons during the very short instant of laser reflection.

  9. Isotope effects of trapped electron modes in the presence of impurities in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Shen, Yong; Dong, J. Q.; Sun, A. P.; Qu, H. P.; Lu, G. M.; He, Z. X.; He, H. D.; Wang, L. F.

    2016-04-01

    The trapped electron modes (TEMs) are numerically investigated in toroidal magnetized hydrogen, deuterium and tritium plasmas, taking into account the effects of impurity ions such as carbon, oxygen, helium, tungsten and others with positive and negative density gradients with the rigorous integral eigenmode equation. The effects of impurity ions on TEMs are investigated in detail. It is shown that impurity ions have substantially-destabilizing (stabilizing) effects on TEMs in isotope plasmas for {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 (<0 ), opposite to the case of ion temperature gradient (ITG) driven modes. Detailed analyses of the isotope mass dependence for TEM turbulences in hydrogenic isotope plasmas with and without impurities are performed. The relations between the maximum growth rate of the TEMs with respect to the poloidal wave number and the ion mass number are given in the presence of the impurity ions. The results demonstrate that the maximum growth rates scale as {γ\\max}\\propto Mi-0.5 in pure hydrogenic plasmas. The scale depends on the sign of its density gradient and charge number when there is a second species of (impurity) ions. When impurity ions have density profiles peaking inwardly (i.e. {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 ), the scaling also depends on ITG parameter {ηi} . The maximum growth rates scale as {γ\\max}\\propto M\\text{eff}-0.5 for the case without ITG ({ηi}=0 ) or the ITG parameter is positive ({ηi}>0 ) but the impurity ion charge number is low (Z≤slant 5.0 ). However, when {ηi}>0 and the impurity ion charge number is moderate (Z=6.0-8.0 ), the scaling law is found as {γ\\max}\\propto M\\text{eff}-1.0 . Here, Z is impurity ion charge number, and the effective mass number, {{M}\\text{eff}}=≤ft(1-{{f}z}\\right){{M}i}+{{f}z}{{M}z} , with {{M}i} and {{M}Z} being the mass numbers of the hydrogenic and impurity ions, respectively, and {{f}z}=Z{{n}0z}/{{n}0e} being the charge concentration of impurity ions. In addition, with regard

  10. Electron trapping in 4H-SiC MOS capacitors fabricated by pre-oxidation nitrogen implantation

    NASA Astrophysics Data System (ADS)

    Basile, A. F.; Dhar, S.; Mooney, P. M.

    2011-06-01

    Incorporation of nitrogen (N) atoms by ion implantation prior to oxidation of SiO2/4H-SiC interfaces has been investigated by capacitance-voltage (C-V) characteristics and constant capacitance deep-level-transient spectroscopy (CCDLTS) measurements. The shift of the C-V curves to negative voltages can be explained by the partial activation of implanted N atoms during oxidation. The maximum amplitude of the CCDLTS spectra, proportional to the density of near-interface oxide traps, decreases with increasing N dose, but remains significantly larger than that of SiO2/SiC interfaces fabricated by post oxidation annealing in nitric oxide (NO). Intrinsic defects in the SiC epi-layer associated with implantation damage are also observed in N-implanted samples. In contrast, electron traps energetically close to the SiC conduction band, detected in NO annealed samples and presumably introduced during oxidation, are not observed in N-implanted samples. The improved transport characteristics of MOS transistors fabricated on N-implanted epi-layers compared to those fabricated by NO annealing is suggested to result from the effects of the greater N donor concentration and also possibly to the suppression of shallow electron traps in the SiC epilayer.

  11. On the redox origin of surface trapping in AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Gao, Feng; Chen, Di; Tuller, Harry L.; Thompson, Carl V.; Palacios, Tomás

    2014-03-28

    Water-related redox couples in ambient air are identified as an important source of the surface trapping states, dynamic on-resistance, and drain current collapse in AlGaN/GaN high electron mobility transistors (HEMTs). Through in-situ X-ray photoelectron spectroscopy (XPS), direct signature of the water-related species—hydroxyl groups (OH) was found at the AlGaN surface at room temperature. It was also found that these species, as well as the current collapse, can be thermally removed above 200 °C in vacuum conditions. An electron trapping mechanism based on the H{sub 2}O/H{sub 2} and H{sub 2}O/O{sub 2} redox couples is proposed to explain the 0.5 eV energy level commonly attributed to the surface trapping states. Finally, the role of silicon nitride passivation in successfully removing current collapse in these devices is explained by blocking the water molecules away from the AlGaN surface.

  12. The protons and electrons trapped in the Jovian dipole magnetic field region and their interaction with Io

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Hamilton, D. C.; Mckibben, R. B.; Mogro-Campero, A.; Pyle, K. R.; Tuzzolino, A. J.

    1974-01-01

    Detailed analysis of electrons equal to or greater than 3 MeV and of protons 0.5 to 1.8 MeV and equal to or greater than 35 MeV for both the inbound and the outbound passes of the Pioneer 10 spacecraft. Conclusive evidence is obtained that the trapped radiation in Jupiter's inner magnetosphere is maintained and supplied by inward diffusion from the outer regions of the trapped radiation zone. It is shown that the time required for isotropization of an anisotropic flux by pitch angle scattering inside L approximately equal to 6 is long in comparison with the time required for particles to diffuse inward from L approximately equal to 6 to L approximately equal to 3, that the high-energy protons were not injected at high energies by the Crand (cosmic ray albedo neutron decay) process but were accelerated in the magnetosphere of Jupiter, and that the main conclusions of this analysis are unaffected by use of either the D sub 1 or the D sub 2 magnetic field models. Theoretical studies of the capture of trapped electrons and protons by Io have been carried out, and it is found that the probability of capture by Io depends strongly upon the particle species and kinetic energy.

  13. Creation of trapped electrons and holes in alkaline-earth fluoride crystals doped by rare-earth ions

    NASA Astrophysics Data System (ADS)

    Radzhabov, E.

    2002-06-01

    Defects in Ce 3+- and Eu 2+-doped alkaline-earth fluorides, created by vacuum ultraviolet (VUV) photons with energy lower than that of the band gap, were investigated by various methods: thermostimulated luminescence, photostimulated luminescence and optical absorption. The CaF 2:Eu 2+ thermoluminescence curves in the range of 60-330 K due to various types of trapped holes were the same after VUV illumination as after X-ray irradiation. Thermoluminescence curves of Ce 3+-doped alkaline-earth fluorides created by VUV illumination or X-ray irradiation were generally similar. However, Vk thermoluminescence peaks were absent in VUV-illuminated CaF 2:Ce 3+ and SrF 2:Ce 3+ crystals. Creation of Ce 2+ characteristic bands was observed in photostimulated luminescence spectra as well as in optical absorption spectra of vacuum ultraviolet-illuminated or X-ray-irradiated Ce 3+-doped crystals. The proposed mechanism of creation of trapped hole and trapped electron defects by vacuum ultraviolet illumination involves charge transfer-type transitions, in which the electron transfers from valence band to an impurity level, lying in the band gap. Comparison of all involved energies of transitions in the crystals investigated shows that the sum of all transition energies is less than that of the band gap by 1-3 eV. This energy difference can be considered as the energy of lattice relaxation around created Ce 2+ or Eu + ions.

  14. Photoluminenscence blinking dynamics of colloidal quantum dots in the presence of controlled external electron traps.

    PubMed

    Xu, Zhihua; Cotlet, Mircea

    2012-01-23

    The effect of the external charge trap on the photoluminescence blinking dynamics of individual colloidal quantum dots is investigated with a series of colloidal quantum dot-bridge-fullerene dimers with varying bridge lengths, where the fullerene moiety acts as a well-defined, well-positioned external charge trap. It is found that charge transfer followed by charge recombination is an important mechanism in determining the blinking behavior of quantum dots when the external trap is properly coupled with the excited state of the quantum dot, leading to a quasi-continuous distribution of 'on' states and an early fall-off from a power-law distribution for both 'on' and 'off' times associated with quantum dot photoluminescence blinking.

  15. Photoluminescence Blinking Dynamics of Colloidal Quantum Dots in the Presence of Controlled External Electron Traps

    SciTech Connect

    Cotlet, M.; Xu, Z.

    2012-01-23

    The effect of the external charge trap on the photoluminescence blinking dynamics of individual colloidal quantum dots is investigated with a series of colloidal quantum dot-bridge-fullerene dimers with varying bridge lengths, where the fullerene moiety acts as a well-defined, well-positioned external charge trap. It is found that charge transfer followed by charge recombination is an important mechanism in determining the blinking behavior of quantum dots when the external trap is properly coupled with the excited state of the quantum dot, leading to a quasi-continuous distribution of 'on' states and an early fall-off from a power-law distribution for both 'on' and 'off' times associated with quantum dot photoluminescence blinking.

  16. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    PubMed Central

    Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac

    2016-01-01

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503

  17. Dynamic defect correlations dominate activated electronic transport in SrTiO3.

    PubMed

    Snijders, Paul C; Şen, Cengiz; McConnell, Michael P; Ma, Ying-Zhong; May, Andrew F; Herklotz, Andreas; Wong, Anthony T; Ward, T Zac

    2016-01-01

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503

  18. Superoxide Anion Radical Production in the Tardigrade Paramacrobiotus richtersi, the First Electron Paramagnetic Resonance Spin-Trapping Study.

    PubMed

    Savic, Aleksandar G; Guidetti, Roberto; Turi, Ana; Pavicevic, Aleksandra; Giovannini, Ilaria; Rebecchi, Lorena; Mojovic, Milos

    2015-01-01

    Anhydrobiosis is an adaptive strategy that allows withstanding almost complete body water loss. It has been developed independently by many organisms belonging to different evolutionary lines, including tardigrades. The loss of water during anhydrobiotic processes leads to oxidative stress. To date, the metabolism of free radicals in tardigrades remained unclear. We present a method for in vivo monitoring of free radical production in tardigrades, based on electron paramagnetic resonance and spin-trap DEPMPO, which provides simultaneous identification of various spin adducts (i.e., different types of free radicals). The spin trap can be easily absorbed in animals, and tardigrades stay alive during the measurements and during 24-h monitoring after the treatment. The results show that hydrated specimens of the tardigrade Paramacrobiotus richtersi produce the pure superoxide anion radical ((•)O2(-)). This is an unexpected result, as all previously examined animals and plants produce both superoxide anion radical and hydroxyl radical ((•)OH) or exclusively hydroxyl radical.

  19. Lifetime of the 1s2s 3S1 metastable level in He-like S14+ measured with an electron beam ion trap

    SciTech Connect

    L?pez-Urrutia, J C; Beiersdorfer, P; Widmann, K

    2006-03-16

    A precision measurement of the lifetime of the lowest exited level of the He-like S{sup 14+} ion carried out at the Livermore EBIT-II electron beam ion trap yielded a value of (703 {+-} 4) ns. Our method extends the range of lifetime measurements accessible with electron beam ion traps into the nanosecond region and improves the accuracy of currently available data for this level by an order of magnitude.

  20. Trap behaviours characterization of AlGaN/GaN high electron mobility transistors by room-temperature transient capacitance measurement

    NASA Astrophysics Data System (ADS)

    Dong, Bin; Lin, Jie; Wang, Ning; Jiang, Ling-li; Liu, Zong-dai; Hu, Xiaoyan; Cheng, Kai; Yu, Hong-yu

    2016-09-01

    In this paper, the trap behaviours in AlGaN/GaN high electron mobility transistors (HEMTs) are investigated using transient capacitance measurement. By measuring the transient gate capacitance variance (Δ C ) with different pulse height, the gate pulse induced trap behaviours in SiNX gate dielectric layer or at the SiNX/AlGaN interface is revealed. Based on the results, a model on electron traps in AlGaN/GaN HEMTs is proposed. The threshold voltage (Vth) instability in AlGaN/GaN HEMTs is believed to be correlated with the presence of these traps in SiNX gate dielectric layer or at the SiNX/AlGaN interface. Furthermore, trap density before and after step-stress applied on drain electrode is quantitatively analyzed based on Δ C measurement.

  1. Oxygen trapped by rare earth tetrahedral clusters in Nd4FeOS6: Crystal structure, electronic structure, and magnetic properties

    DOE PAGES

    Lin, Qisheng; Taufour, Valentin; Zhang, Yuemei; Wood, Max; Drtina, Thomas; Bud’ko, Sergey L.; Canfield, Paul C.; Miller, Gordon J.

    2015-05-22

    Single crystals of Nd4FeOS6 were grown from an Fe-S eutectic solution. Single crystal X-ray diffraction analysis revealed a Nd4MnOSe6-type structure (P63mc, a = 9.2693(1) Å, c = 6.6650(1) Å, V = 495.94(1) Å3, Z = 2), featuring parallel chains of face-sharing [FeS6x1/2]4- trigonal antiprisms and interlinked [Nd4OS3]4+ cubane-like clusters. Oxygen atoms were found to be trapped by Nd4 clusters in the [Nd4OS3]4+ chains. Structural differences among Nd4MnOSe6-type Nd4FeOS6 and the related La3CuSiS7- and Pr8CoGa3-type structures have been described. Magnetic susceptibility measurements on Nd4FeOS6 suggested the dominance of antiferromagnetic interactions at low temperature, but no magnetic ordering down to 2 Kmore » was observed. Spin-polarized electronic structure calculations revealed magnetic frustration with dominant antiferromagnetic interactions.« less

  2. Opto-Mechanical and Electronic Design of a Tunnel-Trap Si Radiometer.

    PubMed

    Eppeldauer, G P; Lynch, D C

    2000-01-01

    A transmission-type light-trap silicon radiometer has been developed to hold the NIST spectral power and irradiance responsivity scales between 406 nm and 920 nm. The device is built from replaceable input apertures and tightly packed different-size silicon photodiodes. The photodiodes are positioned in a triangular shape tunnel such that beam clipping is entirely eliminated within an 8 field-of-view (FOV). A light trap is attached to the output of the radiometer to collect the transmitted radiation and to minimize the effect of ambient light. The photodiodes, selected for equal shunt resistance, are connected in parallel. The capacitance and the resultant shunt resistance of the device were measured and frequency compensations were applied in the feedback network of the photocurrent-to-voltage converter to optimize signal-, voltage-, and loop-gain characteristics. The trap radiometer can measure either dc or ac optical radiation with high sensitivity. The noise-equivalent-power of the optimized device is 47 fW in dc mode and 5.2 fW at 10 Hz chopping. The relative deviation from the cosine responsivity in irradiance mode was measured to be equal to or less than 0.02 % within 5° FOV and 0.05 % at 8° FOV. The trap-radiometer can transfer irradiance responsivities with uncertainties comparable to those of primary standard radiometers. Illuminance and irradiance meters, holding the SI units (candela, color- and radiance-temperature), will be calibrated directly against the transfer standard trap-radiometer to obtain improved accuracy in the base-units. PMID:27551638

  3. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    DOE PAGES

    Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, Thomas Zac

    2016-07-22

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The resultsmore » show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less

  4. Proposal for manipulating and detecting spin and orbital States of trapped electrons on helium using cavity quantum electrodynamics.

    PubMed

    Schuster, D I; Fragner, A; Dykman, M I; Lyon, S A; Schoelkopf, R J

    2010-07-23

    We propose a hybrid architecture in which an on-chip high finesse superconducting cavity is coupled to the lateral motion and spin state of a single electron trapped on the surface of superfluid helium. We estimate the motional coherence times to exceed 15  μs, while energy will be coherently exchanged with the cavity photons in less than 10 ns for charge states and faster than 1  μs for spin states, making the system attractive for quantum information processing and strong coupling cavity quantum electrodynamics experiments. The cavity is used for nondestructive readout and as a quantum bus mediating interactions between distant electrons or an electron and a superconducting qubit.

  5. Oxygen trapped by rare earth tetrahedral clusters in Nd{sub 4}FeOS{sub 6}: Crystal structure, electronic structure, and magnetic properties

    SciTech Connect

    Lin, Qisheng; Taufour, Valentin; Zhang, Yuemei; Wood, Max; Drtina, Thomas; Bud’ko, Sergey L.; Canfield, Paul C.; Miller, Gordon J.

    2015-09-15

    Single crystals of Nd{sub 4}FeOS{sub 6} were grown from an Fe–S eutectic solution. Single crystal X-ray diffraction analysis revealed a Nd{sub 4}MnOSe{sub 6}-type structure (P6{sub 3}mc, a=9.2693(1) Å, c=6.6650(1)Å, V=495.94(1) Å{sup 3}, Z=2), featuring parallel chains of face-sharing [FeS{sub 6×1/2}]{sup 4−} trigonal antiprisms and interlinked [Nd{sub 4}OS{sub 3}]{sup 4+} cubane-like clusters. Oxygen atoms were found to be trapped by Nd{sub 4} clusters in the [Nd{sub 4}OS{sub 3}]{sup 4{sub +}} chains. Structural differences among Nd{sub 4}MnOSe{sub 6}-type Nd{sub 4}FeOS{sub 6} and the related La{sub 3}CuSiS{sub 7}− and Pr{sub 8}CoGa{sub 3}-type structures have been described. Magnetic susceptibility measurements on Nd{sub 4}FeOS{sub 6} suggested the dominance of antiferromagnetic interactions at low temperature, but no magnetic ordering down to 2 K was observed. Spin-polarized electronic structure calculations revealed magnetic frustration with dominant antiferromagnetic interactions. - Graphical abstract: Trapping of oxygen in Nd{sub 4} tetrahedral clusters results in the formation of the Nd{sub 4}MnOSe{sub 6}-type Nd{sub 4}FeOS{sub 6}, in contrast to the La{sub 3}CuSiS{sub 7}-type oxygen-free Nd{sub 4}FeS{sub 7} and related Pr{sub 8}CoGa{sub 3}-type structures. Complex magnetic frustration inhibits magnetic ordering at low temperature. - Highlights: • Single crystals of Nd{sub 4}FeOS{sub 6} were grown using self-flux method. • Oxygen was found trapped by Nd{sub 4} tetrahedral clusters. • Comparison with two closely related structural types were discussed. • Magnetic measurements revealed antiferromagnetic (AFM) interaction. • VASP calculations confirmed strong magnetic frustration in AFM model.

  6. Light-trap design using multiple reflections and solid-angle attenuation - Application to a spaceborne electron spectrometer

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.

    1992-01-01

    The design and performance of a new light trap for a spaceborne electron spectrometer are described. The light trap has a measured photon-rejection ratio of 2 x 10 exp -11, allowing only one in 5 x 10 exp 10 incident photons to reach the sensitive area of the instrument. This rejection is more than sufficient because the ambient UV in earth orbit requires a rejection no better than 10 exp -8 to maintain the photon interference to less than 10 count/s. The light trap uses triple reflections to keep most of the light passing through the entrance slit away from the sensitive area of the spectrometer. It is shown that the average reflectance of all the internal surfaces must be less than 0.006, which is consistent with the data on the black coating applied to all surfaces. The analysis makes it possible to compare the photon contributions of each of the internal reflecting areas and to estimate the effective scattering width of the metallic electrode edge.

  7. Light-trap design using multiple reflections and solid-angle attenuation - Application to a spaceborne electron spectrometer

    NASA Astrophysics Data System (ADS)

    Herrero, Federico A.

    1992-09-01

    The design and performance of a new light trap for a spaceborne electron spectrometer are described. The light trap has a measured photon-rejection ratio of 2 x 10 exp -11, allowing only one in 5 x 10 exp 10 incident photons to reach the sensitive area of the instrument. This rejection is more than sufficient because the ambient UV in earth orbit requires a rejection no better than 10 exp -8 to maintain the photon interference to less than 10 count/s. The light trap uses triple reflections to keep most of the light passing through the entrance slit away from the sensitive area of the spectrometer. It is shown that the average reflectance of all the internal surfaces must be less than 0.006, which is consistent with the data on the black coating applied to all surfaces. The analysis makes it possible to compare the photon contributions of each of the internal reflecting areas and to estimate the effective scattering width of the metallic electrode edge.

  8. A survey of trapped low energy electrons near the inner boundary of the inner radiation zone from the OSO-7

    NASA Technical Reports Server (NTRS)

    Neighbours, J. E.; Clark, G. W.

    1974-01-01

    Data from the MIT X-ray experiment on the OSO-7 satellite were used to delineate the regions in B-L and geographic spaces where trapped radiation was encountered. The results pertain specifically to electrons with energies in a range of 10 keV centered on 55 keV which were encountered in an orbit between altitudes of 330 and 570 km and latitudes of 33.3 degrees. A typical pitch angle distribution is fitted by a Gaussian with a FWHM of 28 degrees.

  9. Electron Trap Energy Distribution in ALD Al2O3, LaAl4Ox, and GdyAl2-yO3 Layers on Silicon

    NASA Astrophysics Data System (ADS)

    Wang, W. C.; Badylevich, M.; Adelmann, C.; Swerts, J.; Kittl, J. A.; Afanas'ev, V. V.

    2012-12-01

    The energy distribution of electron trap density in atomic layer deposited Al2O3, LaAl4Ox and GdyAl2-yO3 insulating layers was studied by using the exhaustive photodepopulation spectroscopy. Upon filling the traps by electron tunneling from Si substrate, a broad energy distribution of trap levels in the energy range 2-4 eV is found in all studied insulators with trap densities in the range of 1012 cm-2eV-1. The incorporation of La and Gd cations reduces the trap density in aluminate layers as compared to Al2O3. Crystallization of the insulator by the post-deposition annealing is found to increase the trap density while the energy distribution remains unchanged. The similar trap spectra in the Al2O3 and La or Gd aluminate layers suggest the common nature of the traps, probably originating from imperfections in the AlOx sub-network.

  10. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOEpatents

    Chojnacki, Eric P.

    1994-01-01

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer.

  11. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOEpatents

    Chojnacki, E.P.

    1994-05-31

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer. 9 figs.

  12. Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors

    SciTech Connect

    Li, Z. Q.; Podzorov, V.; Sai, N.; Martin, Michael C.; Gershenson, M. E.; Di Ventra, M.; Basov, D. N.

    2007-03-01

    We report on an infrared spectroscopy study of mobile holes in the accumulation layer of organic field-effect transistors based on rubrene single crystals. Our data indicate that both transport and infrared properties of these transistors at room temperature are governed by light quasiparticles in molecular orbital bands with the effective masses m[small star, filled]comparable to free electron mass. Furthermore, the m[small star, filled]values inferred from our experiments are in agreement with those determined from band structure calculations. These findings reveal no evidence for prominent polaronic effects, which is at variance with the common beliefs of polaron formation in molecular solids.

  13. Light quasiparticles dominate electronic transport in molecularcrystal field-effect transistors

    SciTech Connect

    Li, Z.Q.; Podzorov, V.; Sai, N.; Martin, M.C.; Gershenson, M.E.; Di Ventra, M.; Basov, D.N.

    2007-04-30

    We report on an infrared spectroscopy study of mobile holesin the accumulation layer of organic field effect transistors based onrubrene single crystals. Our data indicate that both transport andinfrared properties of these transistors at room temperature are governedby light quasiparticles in molecular orbital bands with the effectivemasses m* comparable to free electron mass. Furthermore, the m* valuesinferred from our experiments are in agreement with those determined fromband structure calculations. These findings reveal no evidence forprominent polaronic effects, which is at variance with the common beliefsof polaron formation in molecular solids.

  14. A kinetic study of solar wind electrons in the transition region from collision dominated to collisionless flow

    NASA Technical Reports Server (NTRS)

    Lie-Svendsen, O.; Leer, E.

    1995-01-01

    We have studied the evolution of the velocity distribution function of a test population of electrons in the solar corona and inner solar wind region, using a recently developed kinetic model. The model solves the time dependent, linear transport equation, with a Fokker-Planck collision operator to describe Coulomb collisions between the 'test population' and a thermal background of charged particles, using a finite differencing scheme. The model provides information on how non-Maxwellian features develop in the distribution function in the transition region from collision dominated to collisionless flow. By taking moments of the distribution the evolution of higher order moments, such as the heat flow, can be studied.

  15. Multi-dimensional Vlasov Simulations and Modeling of Trapped-Electron Sideband and Filamentation Instabilities of Non-Linear Electron Plasma Waves

    NASA Astrophysics Data System (ADS)

    Berger, Richard

    2014-10-01

    Vlasov simulations of large amplitude electron plasma waves (EPWs), which play an essential role in laser-fusion relevant plasmas, have been carried out in 1D and 2D and compared with theoretical models. The electrons trapped in the wave troughs are shown to be well described by an ``adiabatic'' distribution with a corresponding frequency shift of the EPW. Trapped particles play an essential role in the mechanisms underlying sideband instabilities that may affect the EPW, in particular longitudinal instabilities of trapped particle instability (TPI) type, as well as transverse instabilities of kinetic filamentation type. A systematic study of the spectrum of linearly unstable modes in 1D and 2D systems, including their growth rates and wavevectors, has been completed by scanning the amplitude and wavenumber of the initial wave. Simulation results for the TPI are successfully compared with Kruer's reduced model and are also analyzed for the development of the ``negative mass instability''. In the non-linear phase, both the TPI and filamentation instabilities are shown to lead to a rapid loss of field energy and an associated increase in electron kinetic energy. Saturation of the instabilities is reached in conjunction with the development of significant regions in phase space where trajectories of particles, resonant with the initial wave, become chaotic. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD.

  16. Imaging crystal spectrometer for high-resolution x-ray measurements on electron beam ion traps and tokamaks

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Magee, E. W.; Hell, N.; Brown, G. V.

    2016-11-01

    We describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of λ/Δλ ≥ 10 000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions within the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio. We demonstrate the operation and utility of the new instrument by presenting spectra of Mo34+, which prepares the instrument for use as a core impurity diagnostic on the NSTX-U spherical torus and other magnetic fusion devices that employ molybdenum as plasma facing components.

  17. Vacancies and electron trapping centers in acidic ammonothermal GaN probed by a monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Uedono, Akira; Tsukada, Yusuke; Mikawa, Yutaka; Mochizuki, Tae; Fujisawa, Hideo; Ikeda, Hirotaka; Kurihara, Kaori; Fujito, Kenji; Terada, Shigeru; Ishibashi, Shoji; Chichibu, Shigefusa F.

    2016-08-01

    Defects in ammonothermal GaN have been studied using a monoenergetic positron beam. Through measurements of Doppler broadening spectra of the annihilation radiation, the major defect species was identified as a Ga vacancy coupled with impurities such as oxygen and/or hydrogen. Those defects were found to be stable even after annealing at 1000 °C. The shape parameter S for the Doppler broadening spectrum corresponding to positron annihilation at the surface was found to be decreased by illumination within energy ranges of 1.5-2.6 eV and 3.2-3.6 eV. This phenomenon is attributed to the suppression of recombinations between holes and electrons due to trapping centers, which can hold electrons for a long time, and a resultant accumulation of holes at the surface. Recovery of the S value required almost one day, but it was shortened by the annealing at 1000 °C.

  18. Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas

    SciTech Connect

    Kaye, S. M. Guttenfelder, W.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Maingi, R.

    2014-08-15

    A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as β{sub e}, ν{sub e}{sup ∗}, the MHD α parameter, and the gradient scale lengths of T{sub e}, T{sub i}, and n{sub e} were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when β{sub e} and ν{sub e}{sup ∗} were relatively low, ballooning parity modes were dominant. As time progressed and both β{sub e} and ν{sub e}{sup ∗} increased, microtearing became the dominant low-k{sub θ} mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-k{sub θ}, may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting T{sub e} for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant.

  19. Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas

    SciTech Connect

    Kaye, S. M.; Guttenfelder, W.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Maingi, R.

    2014-08-01

    A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as βe, ν*e, the MHD α parameter, and the gradient scale lengths of Te, Ti, and ne were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when βe and ν*e were relatively low, ballooning parity modes were dominant. As time progressed and both βe and ν*e increased, microtearing became the dominant low-κθ mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-κθ, may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting Te for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant.

  20. Multiple trapping on a comb structure as a model of electron transport in disordered nanostructured semiconductors

    SciTech Connect

    Sibatov, R. T. Morozova, E. V.

    2015-05-15

    A model of dispersive transport in disordered nanostructured semiconductors has been proposed taking into account the percolation structure of a sample and joint action of several mechanisms. Topological and energy disorders have been simultaneously taken into account within the multiple trapping model on a comb structure modeling the percolation character of trajectories. The joint action of several mechanisms has been described within random walks with a mixture of waiting time distributions. Integral transport equations with fractional derivatives have been obtained for an arbitrary density of localized states. The kinetics of the transient current has been calculated within the proposed new model in order to analyze time-of-flight experiments for nanostructured semiconductors.

  1. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, Oleksiy; Drake, James; Mozer, Forrest

    2016-04-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  2. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, O. V.; Drake, J. F.; Mozer, F.

    2015-12-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  3. Detection of nitric oxide and superoxide radical anion by electron paramagnetic resonance spectroscopy from cells using spin traps.

    PubMed

    Gopalakrishnan, Bhavani; Nash, Kevin M; Velayutham, Murugesan; Villamena, Frederick A

    2012-01-01

    spin adduct which can be detected by electron paramagnetic resonance (EPR) spectroscopy. The various radical adducts exhibit distinctive spectrum which can be used to identify the radicals being generated and can provide a wealth of information about the nature and kinetics of radical production. The cyclic nitrones, 5,5-dimethyl-pyrroline-N-oxide, DMPO, the phosphoryl-substituted DEPMPO, and the ester-substituted, EMPO and BMPO, have been widely employed as spin traps--the latter spin traps exhibiting longer half-lives for O2•- adduct. Iron (II)-N-methyl-D-glucamine dithiocarbamate, Fe(MGD)2 is commonly used to trap NO due to high rate of adduct formation and the high stability of the spin adduct. PMID:22929836

  4. Electron and recoil ion momentum imaging with a magneto-optically trapped target

    SciTech Connect

    Hubele, R.; Schuricke, M.; Goullon, J.; Lindenblatt, H.; Ferreira, N.; Laforge, A.; Brühl, E.; Globig, D.; Misra, D.; Sell, M.; Song, Z.; Wang, X.; Zhang, S.; Jesus, V. L. B. de; Kelkar, A.; Schneider, K.; Schulz, M.; Fischer, D.

    2015-03-15

    A reaction microscope (ReMi) has been combined with a magneto-optical trap (MOT) for the kinematically complete investigation of atomic break-up processes. With the novel MOTReMi apparatus, the momentum vectors of the fragments of laser-cooled and state-prepared lithium atoms are measured in coincidence and over the full solid angle. The first successful implementation of a MOTReMi could be realized due to an optimized design of the present setup, a nonstandard operation of the MOT, and by employing a switching cycle with alternating measuring and trapping periods. The very low target temperature in the MOT (∼2 mK) allows for an excellent momentum resolution. Optical preparation of the target atoms in the excited Li 2{sup 2}P{sub 3/2} state was demonstrated providing an atomic polarization of close to 100%. While first experimental results were reported earlier, in this work, we focus on the technical description of the setup and its performance in commissioning experiments involving target ionization in 266 nm laser pulses and in collisions with projectile ions.

  5. Study of the motion of electrons in non polar classical liquids. Measurement of Hall effect and f. i. r. search for low energy traps. Progress report

    SciTech Connect

    Not Available

    1981-03-10

    Progress is reported on experiments aimed at the measurement of the Hall mobility of injected electrons in classical non polar insulating liquids and the optical absorption associated with electrons captured by shallow traps in the liquefied rare gases. Theoretical work aimed at a better understanding of the trapping kinetics of electrons by SF/sub 6/ and O/sub 2/ dissolved in rare gas liquids was also carried out. Its conclusion is that the electric field dependence of the trapping probability can be explained, basically without adjustable parameters, by considering the Poole-Frenkel-Schotky ionization of the excited state of the traps. From the analysis of published data on the motion of electrons in liquid ethane it is tentatively concluded that at low temperatures the trapping of electrons in the liquid involves a Jahn-Teller like distortion of a single ethane molecule while at higher temperatures it is necessary to consider a small molecular cluster, possibly made up of 2 molecules.

  6. A study on the degradation mechanism of InGaZnO thin-film transistors under simultaneous gate and drain bias stresses based on the electronic trap characterization

    NASA Astrophysics Data System (ADS)

    Jeong, Chan-Yong; Lee, Daeun; Song, Sang-Hun; In Kim, Jong; Lee, Jong-Ho; Kwon, Hyuck-In

    2014-04-01

    We discuss the device degradation mechanism of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under simultaneous gate and drain bias stresses based on the electronic trap characterization results. The transfer curve exhibits an apparent negative shift as the stress time increases, and a formation of hump is observed in the transfer curve after stresses. A notable increase of the frequency dispersion is observed after stresses in both gate-to-drain capacitance-voltage (CGD-VG) and gate-to-source capacitance-voltage (CGS-VG) curves, which implies that the subgap states are generated by simultaneous gate and drain bias stresses, and the damaged location is not limited to the drain side of TFTs. The larger frequency dispersion is observed in CGD-VG curves after stresses in a wider channel device, which implies that the heat is an important factor in the generation of the subgap states under simultaneous gate and drain bias stresses in a-IGZO TFTs. Based on the electronic trap characterization results, we conclude that the impact ionization near the drain side of the device is not a dominant mechanism causing the generation of subgap states and device degradation in a-IGZO TFTs under simultaneous gate and drain bias stresses. The generation of oxygen vacancy-related donor-like traps near the conduction band edge is considered as a possible mechanism causing the device degradation under simultaneous gate and drain bias stresses in a-IGZO TFTs.

  7. Precipitation of trapped relativistic electrons by amplified whistler waves in the magnetosphere

    SciTech Connect

    Kuo, S. P.; Kuo, Steven S.; Huynh, James T.; Kossey, Paul

    2007-06-15

    Numerical study of a loss-cone negative mass instability to amplify whistler waves by energetic electrons in the radiation belts is presented. The results show that a very low intensity whistler wave can be amplified by 50 keV electrons more than 25 dB, consistent with the Siple experimental result [Helliwell et al., J. Geophys. Res. 85, 3360 (1980)]. The dependencies of the amplification factor on the energetic electron density and on the initial wave intensity are evaluated. It is shown that the amplification factor decreases as the initial wave intensity increases. However, this gain can still exceed 15 dB for a 30 dB increase of the initial wave intensity, which is needed for the purpose of precipitating MeV electrons in the radiation belts. We then show that there exists a double resonance situation, by which, as an example, a wave is simultaneously in cyclotron resonance with 50 keV electrons as well as with 1.5 MeV electrons; the wave is first amplified by 50 keV electrons and then precipitates 1.5 MeV electrons. With the aid of the cyclotron resonance, the threshold field for the commencement of chaos in the electron trajectories is reduced considerably from that for a general case. Pitch angle scattering of 1.5 MeV electrons is demonstrated. The results show that a whistler wave with magnetic field amplitude of 0.08% of the background magnetic field can scatter electrons from an initial pitch angle of 86.5 deg. to a pitch angle <50 deg.

  8. Investigation of trap states in Al2O3 InAlN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Zhao, Sheng-Lei; Xue, Jun-Shuai; Zhu, Jie-Jie; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue

    2015-12-01

    In this paper the trapping effects in Al2O3/In0.17Al0.83N/GaN MOS-HEMT (here, HEMT stands for high electron mobility transistor) are investigated by frequency-dependent capacitance and conductance analysis. The trap states are found at both the Al2O3/InAlN and InAlN/GaN interface. Trap states in InAlN/GaN heterostructure are determined to have mixed de-trapping mechanisms, emission, and tunneling. Part of the electrons captured in the trap states are likely to tunnel into the two-dimensional electron gas (2DEG) channel under serious band bending and stronger electric field peak caused by high Al content in the InAlN barrier, which explains the opposite voltage dependence of time constant and relation between the time constant and energy of the trap states. Project supported by the Program for National Natural Science Foundation of China (Grant Nos. 61404100 and 61306017).

  9. Using spin trapping electron spin resonance for determining the degradation mechanism of membranes used in fuel cells

    NASA Astrophysics Data System (ADS)

    Schlick, Shulamith; Danilczuk, Marek; Spulber, Mariana

    2013-10-01

    Fuel cells (FCs) convert the chemical energy from the reaction of H2 with O2 to electrical energy, and have become an alternative clean energy source for automotive, portable and stationary applications. FC operation is possible when the membrane located between the electrodes maintains its integrity in the oxidising FC environment. Spin trapping electron spin resonance (ESR) has been used for determining the degradation mechanism of the perfluorinated membranes used in FCs. The study of low molecular weight model compounds confirmed two possible degradation mechanisms in membranes: initiated at the backbone and at the side chain. In situ experiments in a FC inserted in the resonator of an ESR spectrometer offered the ability to monitor radical processes in a FC. The presence of the radicals was determined by addition of 5,5-dimethy-l-pyrroline N-oxide (DMPO) as a spin trap. Taken together, the in situ results pointed to crossover processes, reactions at the catalyst surface, and the involvement of H• atoms in attack on the membrane; these processes cannot be visualised in ex situ studies. Therefore different membrane degradation mechanisms in the two types of experiments can be expected. The stability of the DMPO/OH adduct was increased by complexation with cavitands such as β-cyclodextrins and cucurbiturils.

  10. Trapping the M{sub 1} and M{sub 2} substrates of bacteriorhodopsin for electron diffraction studies

    SciTech Connect

    Perkins, G.A.

    1992-05-01

    Visible and Fourier transform infrared (FTIR) absorption spectroscopies are used to observe protein conformational changes occuring during the bacteriorhodopsin photocycle. Spectroscopic measurements which define the conditions under which bacteriorhodopsin can be isolated and trapped in two distinct substates of the m intermediate of the photocycle, M{sub 1}, and M{sub 2}, are described. A protocol that can be used for high-resolution electron diffraction studies is presented that will trap glucose-embedded purple membrane in the M{sub 1}and M{sub 2} substates at greater than 90% concentration. It was discovered that glucose alone does not provide a fully hydrated environment for bacteriorhodopsin. Equilibration of glucose-embedded samples at high humidity can result in a physical state that is demonstrably closer to the native, fully hydrated state. An extension of the C-T Model of bacteriorhodopsin functionality (Fodor et al., 1988; Mathies et al., 1991) is proposed based on FTIR results and guided by published spectra from resonance Raman and FTIR work. 105 refs.

  11. Superoxide Anion Radical Production in the Tardigrade Paramacrobiotus richtersi, the First Electron Paramagnetic Resonance Spin-Trapping Study.

    PubMed

    Savic, Aleksandar G; Guidetti, Roberto; Turi, Ana; Pavicevic, Aleksandra; Giovannini, Ilaria; Rebecchi, Lorena; Mojovic, Milos

    2015-01-01

    Anhydrobiosis is an adaptive strategy that allows withstanding almost complete body water loss. It has been developed independently by many organisms belonging to different evolutionary lines, including tardigrades. The loss of water during anhydrobiotic processes leads to oxidative stress. To date, the metabolism of free radicals in tardigrades remained unclear. We present a method for in vivo monitoring of free radical production in tardigrades, based on electron paramagnetic resonance and spin-trap DEPMPO, which provides simultaneous identification of various spin adducts (i.e., different types of free radicals). The spin trap can be easily absorbed in animals, and tardigrades stay alive during the measurements and during 24-h monitoring after the treatment. The results show that hydrated specimens of the tardigrade Paramacrobiotus richtersi produce the pure superoxide anion radical ((•)O2(-)). This is an unexpected result, as all previously examined animals and plants produce both superoxide anion radical and hydroxyl radical ((•)OH) or exclusively hydroxyl radical. PMID:26052642

  12. On the correct implementation of Fermi-Dirac statistics and electron trapping in nonlinear electrostatic plane wave propagation in collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Schamel, Hans; Eliasson, Bengt

    2016-05-01

    Quantum statistics and electron trapping have a decisive influence on the propagation characteristics of coherent stationary electrostatic waves. The description of these strictly nonlinear structures, which are of electron hole type and violate linear Vlasov theory due to the particle trapping at any excitation amplitude, is obtained by a correct reduction of the three-dimensional Fermi-Dirac distribution function to one dimension and by a proper incorporation of trapping. For small but finite amplitudes, the holes become of cnoidal wave type and the electron density is shown to be described by a ϕ ( x ) 1 / 2 rather than a ϕ ( x ) expansion, where ϕ ( x ) is the electrostatic potential. The general coefficients are presented for a degenerate plasma as well as the quantum statistical analogue to these steady state coherent structures, including the shape of ϕ ( x ) and the nonlinear dispersion relation, which describes their phase velocity.

  13. Laboratory Astrophysics Using a Microcalorimeter and Bragg Crystal Spectrometer on an Electron Beam Ion Trap

    NASA Technical Reports Server (NTRS)

    Brinton, John (Technical Monitor); Silver, Eric

    2005-01-01

    We completed modifications to the new microcalorimeter system dedicated for use on the EBIT at NIST, which included: 1) a redesign of the x-ray calibration source from a direct electron impact source to one that irradiates the microcalorimeter with fluorescent x-rays. The resulting calibration lines are free of bremsstrahlung background; 2) the microcalorimeter electronic circuit was significantly improved to ensure long-term stability for lengthy experimental runs

  14. Oxygen trapped by rare earth tetrahedral clusters in Nd4FeOS6: Crystal structure, electronic structure, and magnetic properties

    SciTech Connect

    Lin, Qisheng; Taufour, Valentin; Zhang, Yuemei; Wood, Max; Drtina, Thomas; Bud’ko, Sergey L.; Canfield, Paul C.; Miller, Gordon J.

    2015-05-22

    Single crystals of Nd4FeOS6 were grown from an Fe-S eutectic solution. Single crystal X-ray diffraction analysis revealed a Nd4MnOSe6-type structure (P63mc, a = 9.2693(1) Å, c = 6.6650(1) Å, V = 495.94(1) Å3, Z = 2), featuring parallel chains of face-sharing [FeS6x1/2]4- trigonal antiprisms and interlinked [Nd4OS3]4+ cubane-like clusters. Oxygen atoms were found to be trapped by Nd4 clusters in the [Nd4OS3]4+ chains. Structural differences among Nd4MnOSe6-type Nd4FeOS6 and the related La3CuSiS7- and Pr8CoGa3-type structures have been described. Magnetic susceptibility measurements on Nd4FeOS6 suggested the dominance of antiferromagnetic interactions at low temperature, but no magnetic ordering down to 2 K was observed. Spin-polarized electronic structure calculations revealed magnetic frustration with dominant antiferromagnetic interactions.

  15. Experiments with highly charged ions up to bare U{sup 92+} on the electron beam ion trap

    SciTech Connect

    Beiersdorfer, P.

    1994-07-01

    An overview is given of the current experimental effort to investigate the level structure of highly charged ions with the Livermore electron beam ion trap (EBIT) facility. The facility allows the production and study of virtually any ionization state of any element up to bare U{sup 92+}. Precision spectroscopic measurements have been performed for a range of {Delta}n = 0 and {Delta}n = 1 transitions. Examples involving 3-4 and 2-3 as well as 3-3 and 2-2 transitions in uranium ions are discussed that illustrated some of the measurement and analysis techniques employed. The measurements have allowed tests of calculations of the the quantum electrodynamical contributions to the transitions energies at the 0.4% level in a regime where (Z{alpha}) {approx} 1.

  16. Laplace deep level transient spectroscopy of electron traps in epitaxial metalorganic chemical vapor deposition grown n-GaSb

    NASA Astrophysics Data System (ADS)

    Venter, A.; Botha, J. R.; Wagener, V.; Murape, D. M.

    2013-01-01

    Three prominent electron traps, 0.167 eV, 0.243 eV, and 0.295 eV below the conduction band minimum were detected in Te doped MOCVD grown n-GaSb using an Au Schottky barrier diode. The free carrier concentration of the ˜3 μm epilayer grown on n+ (>1018 cm-3) substrate, confirmed by Hall and capacitance-voltage measurements, was 5-7 × 1016 cm-3. The low doping concentration of the epitaxial layers was achieved using diethyl tellurium as the dopant source. Defect concentration profiles suggest that Ec-0.167 eV and Ec-0.243 are predominantly confined to the surface of the epilayer and that the concentration, thereof, approximates the free carrier concentration of the material close to the metal-semiconductor interface.

  17. Study of the visible-excitation luminescence of NTA-TiO2(AB) with single-electron-trapped oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Qian, L.; Jin, Z. S.; Zhang, J. W.; Huang, Y. B.; Zhang, Z. J.; Du, Z. L.

    2005-05-01

    A new kind of TiO2 (NTA-TiO2(AB)) with single-electron-trapped oxygen vacancies was prepared by the dehydration of nanotubed titanic acid under vacuum. Under visible-light excitation (λex=420 nm to 650 nm) NTA-TiO2(AB) showed a relatively intense emission, which red shifts with the increase of excitation wavelength. Analyzing the photoluminescence spectra, a sub-band induced by single-electron-trapped oxygen vacancies within Eg(NTA-TiO2(AB)) was obtained.

  18. Photoinduced Electron Transfer to Engineered Surface Traps in CdSe Nanocrystals

    NASA Astrophysics Data System (ADS)

    Califano, Marco; Zhu, Haiming; Yang, Ye; Hyeon-Deuk, Kim; Song, Nianhui; Wang, Youwei; Zhang, Wenqing; Prezhdo, Oleg; Lian, Tianquan

    2014-03-01

    Quantum confined nanomaterials, such as semiconductor nanocrystals (NCs), have emerged in the past decade as a new class of materials for solar energy conversion. An appropriate model for describing photoinduced charge transfer in these systems is, however, still lacking. Recently we observed that the rate of photoinduced electron transfer from CdSe NCs to molecular acceptors increased with decreasing NC size (and increasing driving force) exhibiting a lack of Marcus inverted regime behaviour over an apparent driving force range of 0-1.3 V. Our atomistic semiempirical pseudopotential calculations show that an Auger assisted ET mechanism, in which the transfer of the electron is coupled to the excitation of the hole, can circumvent the unfavourable Frank-Condon overlap (that is a signature of inter- or intra- molecular electron transfer) in the Marcus inverted regime, reproducing our observed ET rates with remarkable accuracy. We conclude that electron transfer from quantum dots differs from electron transfer originating from both molecules and bulk semiconductors. It proceeds via a novel Auger-assisted pathway which we believe is available to most excitonic nanomaterials. This new finding will have a major impact on the design of next generation solar energy harvesting devices.

  19. Investigation of trap states under Schottky contact in GaN/AlGaN/AlN/GaN high electron mobility transistors

    SciTech Connect

    Ma, Xiao-Hua E-mail: yhao@xidian.edu.cn; Chen, Wei-Wei; Hou, Bin; Zhu, Jie-Jie; Zhang, Kai; Zhang, Jin-Cheng; Zheng, Xue-Feng; Hao, Yue E-mail: yhao@xidian.edu.cn

    2014-03-03

    Forward gate-bias stress experiments are performed to investigate the variation of trap states under Schottky contact in GaN-based high electron mobility transistors. Traps with activation energy E{sub T} ranging from 0.22 eV to 0.31 eV are detected at the gate-semiconductor interface by dynamic conductance technique. Trap density decreases prominently after stressing, particularly for traps with E{sub T} > 0.24 eV. X-ray photoelectron spectroscopy measurements reveal a weaker Ga-O peak on the stressed semiconductor surface. It is postulated that oxygen is stripped by Ni to form NiO upon electrical stress, contributing to the decrease in O{sub N} donor sates under the gate contact.

  20. Michelson-Morley analogue for electrons using trapped ions to test Lorentz symmetry.

    PubMed

    Pruttivarasin, T; Ramm, M; Porsev, S G; Tupitsyn, I I; Safronova, M S; Hohensee, M A; Häffner, H

    2015-01-29

    All evidence so far suggests that the absolute spatial orientation of an experiment never affects its outcome. This is reflected in the standard model of particle physics by requiring all particles and fields to be invariant under Lorentz transformations. The best-known tests of this important cornerstone of physics are Michelson-Morley-type experiments verifying the isotropy of the speed of light. For matter, Hughes-Drever-type experiments test whether the kinetic energy of particles is independent of the direction of their velocity, that is, whether their dispersion relations are isotropic. To provide more guidance for physics beyond the standard model, refined experimental verifications of Lorentz symmetry are desirable. Here we search for violation of Lorentz symmetry for electrons by performing an electronic analogue of a Michelson-Morley experiment. We split an electron wave packet bound inside a calcium ion into two parts with different orientations and recombine them after a time evolution of 95 milliseconds. As the Earth rotates, the absolute spatial orientation of the two parts of the wave packet changes, and anisotropies in the electron dispersion will modify the phase of the interference signal. To remove noise, we prepare a pair of calcium ions in a superposition of two decoherence-free states, thereby rejecting magnetic field fluctuations common to both ions. After a 23-hour measurement, we find a limit of h × 11 millihertz (h is Planck's constant) on the energy variations, verifying the isotropy of the electron's dispersion relation at the level of one part in 10(18), a 100-fold improvement on previous work. Alternatively, we can interpret our result as testing the rotational invariance of the Coulomb potential. Assuming that Lorentz symmetry holds for electrons and that the photon dispersion relation governs the Coulomb force, we obtain a fivefold-improved limit on anisotropies in the speed of light. Our result probes Lorentz symmetry violation

  1. Electrostatic Solitary Waves in Pair-ion Plasmas with Trapped Electrons

    NASA Astrophysics Data System (ADS)

    Mushtaq, A.; Ikram, M.; Clark, R. E. H.

    2014-09-01

    Electrostatic solitons in an unmagnetized pair-ion plasma comprising adiabatic fluid positive and negative ions and non-isothermal electrons are investigated using both arbitrary and small amplitude techniques. An energy integral equation involving the Sagdeev potential is derived, and the basic properties of large amplitude solitary structures are investigated. Various features of solitons differ in different existence domains. The effects of ion adiabaticity, particle concentration, and resonant electrons on the profiles of Sagdeev potential and corresponding solitary waves are investigated. The generalized Korteweg-de Vries equation with mixed-nonlinearity is derived by expanding the Sagdeev potential. Asymptotic solutions for different orders of nonlinearity are discussed for solitary waves. The present work is applicable to understanding the wave phenomena and associated nonlinear electrostatic perturbations in pair/bi-ion plasmas which may occur in space and laboratory plasmas.

  2. Electrostatic Solitary Waves in Pair-ion Plasmas with Trapped Electrons

    NASA Astrophysics Data System (ADS)

    Mushtaq, A.; Ikram, M.; Clark, R. E. H.

    2014-12-01

    Electrostatic solitons in an unmagnetized pair-ion plasma comprising adiabatic fluid positive and negative ions and non-isothermal electrons are investigated using both arbitrary and small amplitude techniques. An energy integral equation involving the Sagdeev potential is derived, and the basic properties of large amplitude solitary structures are investigated. Various features of solitons differ in different existence domains. The effects of ion adiabaticity, particle concentration, and resonant electrons on the profiles of Sagdeev potential and corresponding solitary waves are investigated. The generalized Korteweg-de Vries equation with mixed-nonlinearity is derived by expanding the Sagdeev potential. Asymptotic solutions for different orders of nonlinearity are discussed for solitary waves. The present work is applicable to understanding the wave phenomena and associated nonlinear electrostatic perturbations in pair/bi-ion plasmas which may occur in space and laboratory plasmas.

  3. Nanoscale interfacial structure for Novel Opto-electronic and Ion-trapping Devices

    NASA Astrophysics Data System (ADS)

    Ulin-Avila, Erick

    In this dissertation, we present contributions to the nanoscale engineering of electronic and geometrical structure of dielectric-metal interfaces. Such structure is designed to support the interaction of light and matter for useful scientific and technological applications. Among our interests are electromagnetic subwavelength localization, propagation and storage; photonic manipulation, modulation, synchronization and its use in the confinement of atomic systems. The latter is directed towards a new generation of scalable devices for quantum information processing (QIP) and surface science studies.

  4. Multi-dimensional Vlasov simulations and modeling of trapped-electron-driven filamentation of electron plasma waves

    SciTech Connect

    Berger, R. L. Cohen, B. I.; Brunner, S.; Banks, J. W.; Winjum, B. J.

    2015-05-15

    Kinetic simulations of two-dimensional finite-amplitude electron plasma waves are performed in a one-wavelength long system. A systematic study of the most unstable linear sideband mode, in particular its growth rate γ and wavenumber k{sub y}, is carried out by scanning the amplitude and wavenumber of the initial wave. Simulation results are compared with numerical and analytical solutions to a two-dimensional nonlinear Schrödinger model [H. A. Rose and L. Yin, Phys. Plasmas 15, 042311 (2008)] and to the reduced model by Kruer et al. [Phys. Rev. Lett. 23, 838 (1969)] generalized to two dimensions.

  5. The effect of free and trapped superthermal electrons on the propagation of compressive electron-and ion-acoustic solitary waves in electron-and ion-beam plasma

    NASA Astrophysics Data System (ADS)

    Kakad, Amar; Singh, Satyavir; Lakhina, Gurbax S.; Bharuthram, Ramesh

    Space plasmas are often observed to contain more particles in the high-energy tail than the usual Maxwellian distributions, and are well modeled by kappa distributions. In view of these observations, we study the existence of large amplitude electron-and ion-acoustic solitons in an unmagnetized multi-component plasma system consisting of free cold electrons, superthermal free and trapped hot electrons, and ions. The properties of these solitary waves are investi-gated by means of the pseudopotential approach. It is found that this model supports only compressive electron-and ion acoustic solitary waves and the amplitude of both the electron-and ion-mode decreases with the increase of Kappa index, k. The application of this model in interpreting the salient features of the broadband electrostatic noise in the different Earth's boundary layers will be discussed.

  6. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    NASA Astrophysics Data System (ADS)

    Hell, N.; Beiersdorfer, P.; Magee, E. W.; Brown, G. V.

    2016-11-01

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°-3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument's spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  7. Effect of trapped electron on the dust ion acoustic waves in dusty plasma using time fractional modified Korteweg-de Vries equation

    SciTech Connect

    Nazari-Golshan, A.; Nourazar, S. S.

    2013-10-15

    The time fractional modified Korteweg-de Vries (TFMKdV) equation is solved to study the nonlinear propagation of small but finite amplitude dust ion-acoustic (DIA) solitary waves in un-magnetized dusty plasma with trapped electrons. The plasma is composed of a cold ion fluid, stationary dust grains, and hot electrons obeying a trapped electron distribution. The TFMKdV equation is derived by using the semi-inverse and Agrawal's methods and then solved by the Laplace Adomian decomposition method. Our results show that the amplitude of the DIA solitary waves increases with the increase of time fractional order β, the wave velocity v{sub 0}, and the population of the background free electrons λ. However, it is vice-versa for the deviation from isothermality parameter b, which is in agreement with the result obtained previously.

  8. Mercaptocarborane-capped gold nanoparticles: electron pools and ion traps with switchable hydrophilicity.

    PubMed

    Cioran, Ana M; Musteti, Ana D; Teixidor, Francesc; Krpetić, Željka; Prior, Ian A; He, Qian; Kiely, Christopher J; Brust, Mathias; Viñas, Clara

    2012-01-11

    A simple single-phase method for the preparation of ca. 2 nm gold nanoparticles capped with mercaptocarborane ligands is introduced. The resultant monolayer protected clusters (MPCs) exhibit redox-dependent solubility and readily phase transfer between water and nonpolar solvents depending on the electronic and ionic charge stored in the metal core and in the ligand shell, respectively. The particles and their properties have been characterized by high angle annular dark field imaging in a scanning transmission electron microscope, elemental analysis, centrifugal particle sizing, UV-vis and FTIR spectroscopy, and thermogravimetric analysis and by (1)H, (11)B, and (7)Li NMR spectroscopy. Cellular uptake of the MPCs by HeLa cells has been studied by TEM, and the subsequent generation of reactive oxygen species inside the cells has been evaluated by confocal fluorescence microscopy. These MPCs qualitatively showed significant toxicity and the ability to penetrate into most cell compartments with a strong tendency of finally residing inside membranes. Applications in catalysis, electrocatalysis, and biomedicine are envisaged.

  9. Direct observation of 0.57 eV trap-related RF output power reduction in AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Arehart, A. R.; Sasikumar, A.; Rajan, S.; Via, G. D.; Poling, B.; Winningham, B.; Heller, E. R.; Brown, D.; Pei, Y.; Recht, F.; Mishra, U. K.; Ringel, S. A.

    2013-02-01

    This paper reports direct evidence for trap-related RF output power loss in GaN high electron mobility transistors (HEMTs) grown by metal organic chemical vapor deposition (MOCVD) through increased concentration of a specific electron trap at EC-0.57 eV that is located in the drain access region, as a function of accelerated life testing (ALT). The trap is detected by constant drain current deep level transient spectroscopy (CID-DLTS) and the CID-DLTS thermal emission time constant precisely matches the measured drain lag. Both drain lag and CID-DLTS measurements show this state to already exist in pre-stressed devices, which coupled with its strong increase in concentration as a function of stress in the absence of significant increases in concentrations of other detected traps, imply its role in causing degradation, in particular knee walkout. This study reveals EC-0.57 eV trap concentration tracks degradation induced by ALT for MOCVD-grown HEMTs supplied by several commercial and university sources. The results suggest this defect has a common source and may be a key degradation pathway in AlGaN/GaN HEMTs and/or an indicator to predict device lifetime.

  10. Trap states in enhancement-mode double heterostructures AlGaN/GaN high electron mobility transistors with different GaN channel layer thicknesses

    NASA Astrophysics Data System (ADS)

    He, Yunlong; Li, Peixian; Wang, Chong; Li, Xiangdong; Zhao, Shenglei; Mi, Minhan; Pei, Jiuqing; Zhang, Jincheng; Ma, Xiaohua; Hao, Yue

    2015-08-01

    This is the report on trap states in enhancement-mode AlGaN/GaN/AlGaN double heterostructures high electron mobility transistors by fluorine plasma treatment with different GaN channel layer thicknesses. Compared with the thick GaN channel layer sample, the thin one has smaller 2DEG concentration, lower electron mobility, lower saturation current, and lower peak transconductance, but it has a higher threshold voltage of 1.2 V. Deep level transient spectroscopy measurements are used to obtain the accurate capture cross section of trap states. By frequency dependent capacitance and conductance measurements, the trap state density of (1.98-2.56) × 1012 cm-2 eV-1 is located at ET in a range of (0.37-0.44) eV in the thin sample, while the trap state density of (2.3-2.92) × 1012 cm-2 eV-1 is located at ET in a range of (0.33-0.38) eV in the thick one. It indicates that the trap states in the thin sample are deeper than those in the thick one.

  11. Trap states in enhancement-mode double heterostructures AlGaN/GaN high electron mobility transistors with different GaN channel layer thicknesses

    SciTech Connect

    He, Yunlong; Wang, Chong Li, Xiangdong; Zhao, Shenglei; Mi, Minhan; Pei, Jiuqing; Zhang, Jincheng; Hao, Yue; Li, Peixian; Ma, Xiaohua

    2015-08-10

    This is the report on trap states in enhancement-mode AlGaN/GaN/AlGaN double heterostructures high electron mobility transistors by fluorine plasma treatment with different GaN channel layer thicknesses. Compared with the thick GaN channel layer sample, the thin one has smaller 2DEG concentration, lower electron mobility, lower saturation current, and lower peak transconductance, but it has a higher threshold voltage of 1.2 V. Deep level transient spectroscopy measurements are used to obtain the accurate capture cross section of trap states. By frequency dependent capacitance and conductance measurements, the trap state density of (1.98–2.56) × 10{sup 12 }cm{sup −2} eV{sup −1} is located at E{sub T} in a range of (0.37–0.44) eV in the thin sample, while the trap state density of (2.3–2.92) × 10{sup 12 }cm{sup −2} eV{sup −1} is located at E{sub T} in a range of (0.33–0.38) eV in the thick one. It indicates that the trap states in the thin sample are deeper than those in the thick one.

  12. Correlation of interface states/border traps and threshold voltage shift on AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors

    SciTech Connect

    Wu, Tian-Li Groeseneken, Guido; Marcon, Denis; De Jaeger, Brice; Lin, H. C.; Franco, Jacopo; Stoffels, Steve; Van Hove, Marleen; Decoutere, Stefaan; Bakeroot, Benoit; Roelofs, Robin

    2015-08-31

    In this paper, three electrical techniques (frequency dependent conductance analysis, AC transconductance (AC-g{sub m}), and positive gate bias stress) were used to evaluate three different gate dielectrics (Plasma-Enhanced Atomic Layer Deposition Si{sub 3}N{sub 4}, Rapid Thermal Chemical Vapor Deposition Si{sub 3}N{sub 4}, and Atomic Layer Deposition (ALD) Al{sub 2}O{sub 3}) for AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors. From these measurements, the interface state density (D{sub it}), the amount of border traps, and the threshold voltage (V{sub TH}) shift during a positive gate bias stress can be obtained. The results show that the V{sub TH} shift during a positive gate bias stress is highly correlated to not only interface states but also border traps in the dielectric. A physical model is proposed describing that electrons can be trapped by both interface states and border traps. Therefore, in order to minimize the V{sub TH} shift during a positive gate bias stress, the gate dielectric needs to have a lower interface state density and less border traps. However, the results also show that the commonly used frequency dependent conductance analysis technique to extract D{sub it} needs to be cautiously used since the resulting value might be influenced by the border traps and, vice versa, i.e., the g{sub m} dispersion commonly attributed to border traps might be influenced by interface states.

  13. Monte Carlo simulation of energization of Jovian trapped electrons by recirculation

    NASA Astrophysics Data System (ADS)

    Fujimoto, M.; Nishida, A.

    1990-04-01

    The recirculation model for particle acceleration in the Jovian magnetosphere is studied by means of Monte Carlo simulation. The recirculation model combines the conventional radial and pitch angle diffusion processes with the essentially energy-conserving latitudinal diffusion in low altitudes and the pitch angle scattering in the plasma disk. This process has been proposed to explain the pitch angle and spectral characteristics of MeV electrons observed by Pioneer in the Jovian magnetosphere. The simulation confirms that the dumbbell-type anisotropy and the high-energy tail of the energy spectrum can be produced from the recirculation process if the rate of the low-altitude cross-L diffusion is comparable to that of the conventional radial diffusion.

  14. Laboratory Astrophysics using a Microcalorimeter and Bragg Crystal Spectrometer on an Electron Beam Ion Trap

    NASA Technical Reports Server (NTRS)

    Silver, Eric

    2004-01-01

    When we last reported, our new microcalorimeter system was being prepared for delivery and permanent installation at the NIST EBIT. This occurred in June 2003 and check-out with the internal calibration source and EBIT plasma x-rays took place over the next several months during which time we modified several component parts to improve the performance. These changes included: 1) A redesign of the x-ray calibration source from a direct electron impact source to one that irradiates the microcalorimeter with fluorescent x-rays. The resulting calibration lines are free of bremsstrahlung background; 2) The microcalorimeter electronic circuit has been significantly improved to ensure long-term stability for the lengthy upcoming runs of the EBIT. Both the preamplifier feedback resistors were changed and the first stage of the preamplifier redesigned. Several photos of the new system are shown in slides 3 and 4. This microcalorimeter spectrometer only requires helium refills every three days (as opposed to every 24 hours in our earlier system) and it will hold a temperature of 65 mK for up to 48 hours (as opposed to 8 hours). Consequently, the efficiency of data acquisition will improve dramatically. The first x-ray spectra of the new calibration source made with the 4-element detector array is shown. An example of the temperature control capabilities of the ADR for a 23 hour interval is shown. The horizontal line shows the temperature stability (about +/- 3 micro kelvin). There are a few short-lived heating excursions caused by technical staff working on the EBIT machine simultaneously. During actual experimental runs these are absent. This temporal profile was interrupted to test additional components of the system; otherwise, the temperature controlling would have continued for another 24 hours.

  15. A study of diagnostic x-ray lines in heliumlike neon using an electron beam ion trap

    SciTech Connect

    Wargelin, B.J.

    1993-10-01

    Heliumlike ions play an extremely important role in X-ray astrophysics because of their emissivity and because the relative intensities of their emission lines can be used to infer physical characteristics of X-ray emitting plasmas, including temperature, electron density, and ionization balance. In order to properly apply these diagnostics, accurate atomic data are required, including cross sections for collisional excitation and ionization, radiative rates, and the wavelengths and strengths of satellite lines. Although theoretical atomic models have been created to estimate many of the rates and cross sections involved, very few experimental results are available for comparison with theoretical predictions. This thesis describes an experimental study of heliumlike neon using an electron beam ion trap, a device specifically designed to study X-ray emission from highly charged ions. Using a low-energy X-ray spectrometer designed and built for this experiment, electron impact excitation cross sections and dielectronic satellite strengths were measured for all significant n = 2{yields}1 emission lines in He-like and Li-like Ne over a range of energy extending from well below the direct excitation threshold of the lines to over fourteen times the threshold energy. The cross section for innershell ionization of Li-like Ne, which excites the He-like forbidden line, was also measured. In addition, the radiative and collisional depopulation rates of the metastable ls2s {sup 3}S{sub 1}, state, which form the basis of the He-like Ne density diagnostic, were determined. Experimental results were generally in agreement with theoretical predictions, although some significant differences were noted, particularly for the wavelengths and resonance strengths of dielectronic satellites.

  16. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions

    SciTech Connect

    Schmidt, M.; Zschornack, G.; Kentsch, U.; Ritter, E.

    2014-02-15

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  17. Electron trapping properties at HfO2/SiO2 interface, studied by Kelvin probe force microscopy and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Man-Hong

    2016-08-01

    Electron trapping properties at the HfO2/SiO2 interface have been measured through Kelvin Probe force microscopy, between room temperature and 90 °C. The electron diffusion in HfO2 shows a multiple-step process. After injection, electrons diffuse quickly toward the HfO2/SiO2 interface and then diffuse laterally near the interface in two sub-steps: The first is a fast diffusion through shallow trap centers and the second is a slow diffusion through deep trap centers. Evolution of contact potential difference profile in the fast lateral diffusion sub-step was simulated by solving a diffusion equation with a term describing the charge loss. In this way, the diffusion coefficient and the average life time at different temperatures were extracted. A value of 0.57 eV was calculated for the activation energy of the shallow trap centers in HfO2. Project supported by the National Natural Science Foundation of China (Grant No. 61176080).

  18. Direct detection of a transport-blocking trap in a nanoscaled silicon single-electron transistor by radio-frequency reflectometry

    SciTech Connect

    Villis, B. J.; Sanquer, M.; Jehl, X.; Orlov, A. O.; Barraud, S.; Vinet, M.; Fay, P.; Snider, G.

    2014-06-09

    The continuous downscaling of transistors results in nanoscale devices which require fewer and fewer charged carriers for their operation. The ultimate charge controlled device, the single-electron transistor (SET), controls the transfer of individual electrons. It is also the most sensitive electrometer, and as a result the electron transport through it can be dramatically affected by nearby charges. Standard direct-current characterization techniques, however, are often unable to unambiguously detect and resolve the origin of the observed changes in SET behavior arising from changes in the charge state of a capacitively coupled trap. Using a radio-frequency (RF) reflectometry technique, we are able to unequivocally detect this process, in very close agreement with modeling of the trap's occupation probability.

  19. Donor-Like Surface Traps on Two-Dimensional Electron Gas and Current Collapse of AlGaN/GaN HEMTs

    PubMed Central

    Yu, Chen-hui; Luo, Qing-zhou; Luo, Xiang-dong; Liu, Pei-sheng

    2013-01-01

    The effect of donor-like surface traps on two-dimensional electron gas (2DEG) and drain current collapse of AlGaN/GaN high electron mobility transistors (HEMTs) has been investigated in detail. The depletion of 2DEG by the donor-like surface states is shown. The drain current collapse is found to be more sensitive to the addition of positive surface charges. Surface trap states with higher energy levels result in weaker current collapse and faster collapse process. By adopting an optimized backside doping scheme, the electron density of 2DEG has been improved greatly and the current collapse has been greatly eliminated. These results give reference to the improvement in device performance of AlGaN/GaN HEMTs. PMID:24348195

  20. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  1. Role of inelastic collisions in explanation of the effect of rotating wall trap of electrons/positrons in gases

    NASA Astrophysics Data System (ADS)

    Petrovic, Zoran; Marjanovic, Srdjan

    2015-05-01

    The only existing explanation of the rotating wall positron trap operating in the low space charge limit (swarm) [ref] is based on momentum transfer collisions to represent the collisions of positrons in gas and to facilitate the effective narrowing of the profile and heating/cooling succession. The collisions are represented through a viscous term of a simple transport equation. In that model effective viscosity term is used to fit the observed data with no attention paid to the magnitude of the term compared to the measured or theoretically predicted values. We apply a well tested Monte Carlo technique whereby all interactions may be described by exact experimental or theoretical cross sections. We separate effects due to inelastic processes with small and large energy losses (i.e. on vibrational or rotational excitation versus electronic excitation). It turns out that large energy loss processes are essential in narrowing the profile but also that low energy loss processes define thermalization to the room temperature or lower and allow cooling of the ensemble. Heating was necessary to allow narrowing of the profile but the particles have to return to the thermal equilibrium with low fields.

  2. PREFACE: The ninth International Symposium on Electron Beam Ion Sources and Traps and Their Applications, 15 17 April 2004

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobuyuki; Ohtani, Shunsuke

    2004-01-01

    The ninth International Symposium on Electron Beam Ion Sources and Traps and Their Applications — EBIS/T 2004 was held at the Tokyo Metropolitan University (TMU), 15-17 April 2004. There were about 40 participants and about 30 papers presented. The meeting has shown the remarkable progress in science and technology with the EBIS/T machines. In this meeting, besides the normal presentations related to the EBIS/T works, a special session was organized on the last day which was dedicated to Professors N Kobayashi and K Okuno, who have contributed to the EBIS/T development and to the physics of highly charged ions (HCI), to mark their retirement from the TMU in March 2004. In the evening of the first day, there was a laboratory tour where the participants enjoyed seeing the Tokyo EBIT facility and also a beer party in a small hall next to the laboratory. The banquet was held in a traditional Japanese restaurant in a village under Mt Takao with the Japanese meals and performances, after seeing the HCI-research activities in the TMU. The next EBIS/T symposium will be held in Heidelberg in the summer of 2007 as a satellite meeting of XXV ICPEAC. We are looking forward to the next exciting meeting there. Finally, we thank all of TMU staffs and students for their help during the meeting.

  3. Wide-band, high-resolution soft x-ray spectrometer for the Electron Beam Ion Trap

    SciTech Connect

    Brown, G.V.; Beiersdorfer, P.; Widmann, K.

    1999-01-01

    We have constructed two wide-band, high-resolution vacuum flat crystal spectrometers and implemented them on the Electron Beam Ion Trap located at the Lawrence Livermore National Laboratory. Working in unison, these spectrometers can measure an x-ray bandwidth {le}9 {Angstrom} in the soft x-ray region below 21 {Angstrom}. In order to achieve this large bandwidth each spectrometer houses either two 125 mm {times} 13 mm {times} 2 mm RAP (rubidium acid phthalate, 2d=26.121 {Angstrom}), two 114 mm {times} 13 mm {times} 2 mm TlAP (thallium acid phthalate, 2d=25.75 {Angstrom}) crystals, or some combination thereof, for dispersion and two position sensitive proportional counters for detection of x rays. The spectrometers are used to measure wavelengths and relative intensities of the L-shell line emission from FethinspXVII{endash}XXIV for comparison with spectra obtained from astrophysical and laboratory plasmas. The wide wavelength coverage attainable by these spectrometers makes it possible to measure all the L-shell emission from a given iron ion species simultaneously. {copyright} {ital 1999 American Institute of Physics.}

  4. Controllable Threshold Voltage in Organic Complementary Logic Circuits with an Electron-Trapping Polymer and Photoactive Gate Dielectric Layer.

    PubMed

    Dao, Toan Thanh; Sakai, Heisuke; Nguyen, Hai Thanh; Ohkubo, Kei; Fukuzumi, Shunichi; Murata, Hideyuki

    2016-07-20

    We present controllable and reliable complementary organic transistor circuits on a PET substrate using a photoactive dielectric layer of 6-[4'-(N,N-diphenylamino)phenyl]-3-ethoxycarbonylcoumarin (DPA-CM) doped into poly(methyl methacrylate) (PMMA) and an electron-trapping layer of poly(perfluoroalkenyl vinyl ether) (Cytop). Cu was used for a source/drain electrode in both the p-channel and n-channel transistors. The threshold voltage of the transistors and the inverting voltage of the circuits were reversibly controlled over a wide range under a program voltage of less than 10 V and under UV light irradiation. At a program voltage of -2 V, the inverting voltage of the circuits was tuned to be at nearly half of the supply voltage of the circuit. Consequently, an excellent balance between the high and low noise margins (NM) was produced (64% of NMH and 68% of NML), resulting in maximum noise immunity. Furthermore, the programmed circuits showed high stability, such as a retention time of over 10(5) s for the inverter switching voltage. Our findings bring about a flexible, simple way to obtain robust, high-performance organic circuits using a controllable complementary transistor inverter. PMID:27348479

  5. Effectiveness of electrostatic shielding and electronic subtraction to correct for the hole trapping in CdZnTe semiconductor detectors

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Camarda, G. S.; Hossain, A.; Cui, Y.; James, R. B.

    2007-04-01

    CdZnTe (CZT) is a very promising material for nuclear-radiation detectors. CZT detectors operate at ambient temperatures and offer high detection efficiency and excellent energy resolution, placing them ahead of high-purity Ge for those applications where cryogenic cooling is problematic. The progress achieved in CZT detectors over the past decade is founded on the developments of robust detector designs and readout electronics, both of which helped to overcome the effects of carrier trapping. Because the holes have low mobility, only electrons can be used to generate signals in thick CZT detectors, so one must account for the variation of the output signal versus the locations of the interaction points. To obtain high spectral resolution, the detector's design should provide a means to eliminate this dependence throughout the entire volume of the device. In reality, the sensitive volume of any ionization detector invariably has two regions. In the first, adjacent to the collecting electrode, the amplitude of the output signal rapidly increases almost to its maximum as the interaction point is located farther from the anode; in the rest of the volume, the output signal remains nearly constant. Thus, the quality of CZT detector designs can be characterized based on the magnitude of the signals variations in the drift region and the ratio between the volumes of the drift and induction regions. The former determines the "geometrical" width of the photopeak, i.e., the line width that affects the total energy resolution and is attributed to the device's geometry when all other factors are neglected. The latter determines the photopeak efficiency and the area under the continuum in the pulse-height spectra. In this work, we describe our findings from systematizing different designs of CZT detectors and evaluating their performance based on these two criteria.

  6. EFFECTIVENESS OF ELECTROSTATIC SHIELDING AND ELECTRONIC SUBTRACTION TO CORRECT FOR THE HOLE TRAPPING IN CDZNTE SEMICONDUCTOR DETECTORS.

    SciTech Connect

    BOLOTNIKOV,A.E.; CAMARDA, G.S.; HOSSAIN, A.; CUI, Y.; JAMES, R.B.

    2007-08-26

    CdZnTe (CZT) is a very promising material for nuclear-radiation detectors. CZT detectors operate at ambient temperatures and offer high detection efficiency and excellent energy resolution, placing them ahead of high-purity Ge for those applications where cryogenic cooling is problematic. The progress achieved in CZT detectors over the past decade is founded on the developments of robust detector designs and readout electronics, both of which helped to overcome the effects of carrier trapping. Because the holes have low mobility, only electrons can be used to generate signals in thick CZT detectors, so one must account for the variation of the output signal versus the locations of the interaction points. To obtain high spectral resolution, the detector's design should provide a means to eliminate this dependence throughout the entire volume of the device. In reality, the sensitive volume of any ionization detector invariably has two regions. In the first, adjacent to the collecting electrode, the amplitude of the output signal rapidly increases almost to its maximum as the interaction point is located farther from the anode; in the rest of the volume, the output signal remains nearly constant. Thus, the quality of CZT detector designs can be characterized based on the magnitude of the signals variations in the drift region and the ratio between the volumes of the driR and induction regions. The former determines the ''geometrical'' width of the photopeak i.e., the line width that affects the total energy resolution and is attributed to the device's geometry when all other factors are neglected. The latter determines the photopeak efficiency and the area under the continuum in the pulse-height spectra. In this work, we describe our findings from systematizing different designs of CZT detectors and evaluating their performance based on these two criteria.

  7. Electronic excited state transport and trapping in disordered systems: Picosecond fluorescence mixing, transient grating, and probe pulse experiments

    SciTech Connect

    Miller, R.J.D.; Pierre, M.; Fayer, M.D.

    1983-04-15

    A detailed experimental examination of the dynamics of energy transport and trapping in two component systems, using rhodamine 6G (R6G) as the donor and malachite green (MG) as the trap in both glycerol and ethanol solvents, is presented. The experiments were performed using fluorescence mixing and ground state recovery techniques providing temporal resolution of approx.50 ps. Samples ranging from high trap-low donor concentrations (the Foerster limit) to the opposite regime of high donor and low trap concentrations, were studied. These results were compared with no adjustable parameters to the recent theoretical work of Loring, Andersen, and Fayer (LAF). The excellent agreement between theory and experiment over the entire donor-trap concentration range confirms the theoretical results of LAF and yields a comprehensive description of excited-state dynamics in solution. A variety of dynamic properties are calculated using the LAF theory and the measured parameters associated with R6G-MG system.

  8. Leakage current, capacitance hysteresis and deep traps in Al0.25Ga0.75N/GaN/SiC high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Saadaoui, Salah; Salem, Mohamed Mongi Ben; Fathallah, Olfa; Gassoumi, Malek; Gaquière, Christophe; Maaref, Hassen

    2013-03-01

    Hysteresis phenomenon in the capacitance-voltage characteristics and leakage current under reverse-biased Schottky gate were investigated for Al0.25Ga0.75N/GaN/SiC HEMT's with two different gate lengths. These phenomena were attributed to the electron tunneling through the surface, the bulk or/and the metal/AlGaN interface states. Using Capacitance DLTS, we have found that the deep trap responsible of these phenomena has activation energy of 0.74 eV. It was an extended defect in the AlGaN/GaN heterostructures. Else, an electron trap (Ea=0.16 eV) was detected only in the transistor having the smaller gate length. The possible explanations of its origin will be established in this paper.

  9. In situ radiolysis time-resolved ESR studies of spin trapping by DMPO: Re-evalution of hydroxyl radical and hydrated electron trapping rates and spin adduct yields

    SciTech Connect

    Madden, K.P.; Taniguchi, Hitoshi

    1996-05-02

    The second-order rate constants for the reaction of 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) with radiolytically produced hydroxyl radicals and hydrated electrons have been measured in aqueous solution by direct observation of spin adduct initial yield using time-resolved electron spin resonance. The rate constants are 2.8 x 10{sup 9} mol{sup -1} dm{sup 3} S{sup -1} for the DMPO-hydroxyl radical reaction and 3.2 x 10{sup 9} mol{sup -1} dm{sup 3} s{sup -1} for the reaction of DMPO and hydrated electron, using sodium formate and chloroacetic acid as competitive scavengers of the hydroxyl radical and hydrated electron, respectively. The hydrated electron-DMPO competition study determined the fraction of DMPO-H produced directly from radiolytically produced hydrogen atoms as 0.082 of the total DMPO-H yield, indicating that approximately half of the hydrogen atoms react with DMPO to produce non-aminoxyl products. The fraction of the total hydroxyl radical yield leading to DMPO-OH spin adduct was determined to be 0.94, using the bleach of 2,2,6,6-tetramethylpiperidone-N-oxyl by carbon dioxide radical anion as a reference standard. 36 refs., 8 figs., 1 tab.

  10. Effects of electron trapping and interface state generation on bias stress induced in indium-gallium-zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Han, Chang-Hoon; Kim, Sang-Sub; Kim, Kwang-Ryul; Baek, Do-Hyun; Kim, Sang-Soo; Choi, Byoung-Deog

    2014-08-01

    The electrical characteristics of bias temperature stress (BTS) induced in amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) were studied. We analyzed the threshold voltage (VTH) shift on the basis of the effects of positive bias temperature stress (PBTS) and negative bias temperature stress (NBTS), and applied it to the stretched-exponential model. Both stress temperature and bias are considered as important factors in the electrical instabilities of a-IGZO TFTs, and the stretched-exponential equation is well fitted to the stress condition. VTH for the drain current-gate voltage (IDS-VGS) curve and flat-band voltage (VFB) for the capacitance-voltage (C-V) curve move in the positive direction when PBTS is induced. However, in the case of NBTS, they move slightly in the negative direction. To clarify the VTH shift phenomenon by electron and hole injection, the average effective energy barrier (Eτ) is extracted, and the extracted values of Eτ under PBTS and NBTS are about 1.33 and 2.25 eV, respectively. The oxide trap charges (Not) of PBTS and NBTS calculated by C-V measurement are 4.4 × 1011 and 1.49 × 1011 cm-2, respectively. On the other hand, the border trap charges of PBTS and NBTS are 6.7 × 108 and 1.7 × 109 cm-2, respectively. This indicates that the increased interface trap charge, after PBTS is induced, captures electrons during detrap processing from the border trap to the conduction band, valence band, and interface trap.

  11. Effect of OFF-state stress induced electric field on trapping in AlGaN/GaN high electron mobility transistors on Si (111)

    SciTech Connect

    Anand, M. J. E-mail: eging@ntu.edu.sg; Ng, G. I. E-mail: eging@ntu.edu.sg; Syamal, B.; Zhou, X.; Arulkumaran, S.; Manoj Kumar, C. M.; Ranjan, K.; Vicknesh, S.; Foo, S. C.

    2015-02-23

    The influence of electric field (EF) on the dynamic ON-resistance (dyn-R{sub DS[ON]}) and threshold-voltage shift (ΔV{sub th}) of AlGaN/GaN high electron mobility transistors on Si has been investigated using pulsed current-voltage (I{sub DS}-V{sub DS}) and drain current (I{sub D}) transients. Different EF was realized with devices of different gate-drain spacing (L{sub gd}) under the same OFF-state stress. Under high-EF (L{sub gd} = 2 μm), the devices exhibited higher dyn-R{sub DS[ON]} degradation but a small ΔV{sub th} (∼120 mV). However, at low-EF (L{sub gd} = 5 μm), smaller dyn-R{sub DS[ON]} degradation but a larger ΔV{sub th} (∼380 mV) was observed. Our analysis shows that under OFF-state stress, the gate electrons are injected and trapped in the AlGaN barrier by tunnelling-assisted Poole-Frenkel conduction mechanism. Under high-EF, trapping spreads towards the gate-drain access region of the AlGaN barrier causing dyn-R{sub DS[ON]} degradation, whereas under low-EF, trapping is mostly confined under the gate causing ΔV{sub th}. A trap with activation energy 0.33 eV was identified in the AlGaN barrier by I{sub D}-transient measurements. The influence of EF on trapping was also verified by Silvaco TCAD simulations.

  12. Linear and nonlinear coupling of electromagnetic and electrostatic fluctuations with one dimensional trapping of electrons using product bi (r,q) distribution

    NASA Astrophysics Data System (ADS)

    Aziz, Tahir; Masood, W.; Qureshi, M. N. S.; Shah, H. A.; Yoon, P. H.

    2016-06-01

    In the present paper, we have investigated the ramifications of adiabatic trapping of electrons using a bi product ( r , q ) distribution function on obliquely propagating Alfven waves in a low β plasma. In this regard, we have analyzed the linear and nonlinear dispersion characteristics of finite amplitude coupled kinetic Alfven-acoustic solitary waves using the two-potential theory and employing Sagdeev potential approach. We have deliberated upon the results of the present inquest and highlighted its importance by citing works that have reported the simultaneous presence of electromagnetic pulses and flat-topped distribution of electrons.

  13. Principles determining the length of time materials can be dated by TL (thermoluminescence), ESR (electron spin resonance) and other trapped charge buildup methods

    SciTech Connect

    Levy, P.W.

    1989-01-01

    The dating of nonmetallic objects by thermoluminescence (TL), electron spin resonance (ESR), optically stimulated luminescence (OSL), and similar methods is possible only when these objects possess certain properties that determine the length of time that the dating method will be valid. These, and other properties also determine the useful temperature range, the precision, accuracy and other effects that influence the dating procedure. The most important factors that contribute to the dating of rocks and minerals will described. Detailed descriptions will not be attempted. The length of time materials can be dated by TL, ESR and other methods based on tapped charge buildup during irradiation depends on the trap concentration vs. dose curve. If the trap concentration is constant, i.e., independent of dose, the datable period is less than the time required to ''fill up'' the traps, usually 10/sup 3/ to 10/sup 5/ Gy. If the trap concentration increases with dose the datable period can be 10/sup 3/, or more, times longer. 2 refs.

  14. Trapped antihydrogen.

    PubMed

    Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; el Nasr, S Seif; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2010-12-01

    Antimatter was first predicted in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 10(14) for the frequency of the 1s-to-2s transition), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 10(7) antiprotons and 7 × 10(8) positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 ± 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen. PMID:21085118

  15. Trapped antihydrogen.

    PubMed

    Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; el Nasr, S Seif; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2010-12-01

    Antimatter was first predicted in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 10(14) for the frequency of the 1s-to-2s transition), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 10(7) antiprotons and 7 × 10(8) positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 ± 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen.

  16. Location of Trapped Electron Centers in the Bulk of Epitaxial MgO(001) Films Grown on Mo(001) Using in situ W-band Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Cornu, Damien; Rocker, Jan; Gonchar, Anastasia; Risse, Thomas; Freund, Hans-Joachim

    2016-07-01

    We present the first in situ W-band (94-GHz) electron paramagnetic resonance (EPR) study of a trapped electron center in thin MgO(001) films. The improved resolution of the high-field EPR experiments proves that the signal originate from a well-defined species present in the bulk of the films, whose projection of the principal g-tensor components onto the (001) plane are oriented along the [110] direction of the MgO lattice. Based on a comparison between the structural properties of the films, knowledge of the ability of bulk defects to trap electrons, and the properties of the EPR signal, it is possible to propose that the paramagnetic species are located at the origin of a screw dislocation in the bulk of the film.

  17. Negative and positive ion trapping by isotopic molecules in cryocrystals in case of solid parahydrogen containing electrons and H(6) (+) radical cations.

    PubMed

    Shimizu, Yuta; Inagaki, Makoto; Kumada, Takayuki; Kumagai, Jun

    2010-06-28

    We performed electron spin resonance studies of trapped electrons and H(6) (+) radical cations produced by radiolysis of solid parahydrogen (p-H(2)), p-H(2)-ortho-D(2) (o-D(2)), and p-H(2)-HD mixtures. Yields of trapped electrons, H(6) (+) radical cations, and its isotopic analogs H(6-n)D(n) (+) (4>or=n>or=1) increased with increasing o-D(2) and HD concentrations in solid p-H(2). Electrons were found trapped near an o-D(2) or an HD in solid p-H(2) due to the long-range charge-induced dipole and quadrupole interactions between electrons and isotopic hydrogen molecules. H(6) (+) radical cations diffuse in solid p-H(2) by repetition of H(6) (+)+H(2)-->H(2)+H(6) (+) and are trapped by ortho-D(2) or HD to form H(6-n)D(n) (+) (4>or=n>or=1) as isotope condensation reactions. Decay behaviors of these cations by the repetition, isotope condensation, and geminate recombination between electrons and H(6-n)D(n) (+) (4>or=n>or=0) were reproduced by determining the corresponding reaction rate constants k(1), k(2), and k(3). Values of 0.045 and 0.0015 L mol(-1) min(-1) were obtained for k(1) (H(6) (+)+D(2)-->H(2)+H(4)D(2) (+)) and k(2) (H(4)D(2) (+)+D(2)-->H(2)+H(2)D(4) (+)), respectively, and the value was quasinull for k(3) (H(2)D(4) (+)+D(2)-->H(2)+D(6) (+)). These rate constants suggest that hole mobility drastically decreased in the repetition reaction when H(6) (+) radical cations acting as hole carriers formed H(4)D(2) (+) or H(2)D(4) (+). HD and D(2) molecules, therefore, act as electron and hole acceptors in irradiated solid p-H(2)-o-D(2) and p-H(2)-HD mixtures.

  18. Probing electrons in TiO2 polaronic trap states by IR-absorption: Evidence for the existence of hydrogenic states

    PubMed Central

    Sezen, Hikmet; Buchholz, Maria; Nefedov, Alexei; Natzeck, Carsten; Heissler, Stefan; Di Valentin, Cristiana; Wöll, Christof

    2014-01-01

    An important step in oxide photochemistry, the loading of electrons into shallow trap states, was studied using infrared (IR) spectroscopy on both, rutile TiO2 powders and single-crystal, r-TiO2(110) oriented samples. After UV-irradiation or n-doping by exposure to H-atoms broad IR absorption lines are observed for the powders at around 940 cm−1. For the single crystal substrates, the IR absorption bands arising from an excitation of the trapped electrons into higher-lying final states show additional features not observed in previous work. On the basis of our new, high-resolution data and theoretical studies on the polaron binding energy in rutile we propose that the trap states correspond to polarons and are thus intrinsic in nature. We assign the final states probed by the IR-experiments to hydrogenic states within the polaron potential. Implications of these observations for photochemistry on oxides will be briefly discussed. PMID:24448350

  19. Effect of electron trap states on spin-dependent transport characteristics in CoFe/MgO/n{sup +}-Si junctions investigated by Hanle effect measurements and inelastic electron tunneling spectroscopy

    SciTech Connect

    Inokuchi, Tomoaki Ishikawa, Mizue; Sugiyama, Hideyuki; Tanamoto, Tetsufumi; Saito, Yoshiaki

    2014-12-08

    Spin-dependent transport properties in CoFe/MgO/n{sup +}-Si junctions were investigated by Hanle effect measurements and inelastic electron tunneling (IET) spectroscopy. The CoFe/MgO/n{sup +}-Si junctions examined in this study exhibited two different Hanle curves. In the low bias region, broad Hanle signals were mainly observed; in the high bias region, narrow Hanle signals were mainly observed. The d{sup 2}I/dV{sup 2}-V curves (which correspond to IET spectra) contain several peaks originating from phonon modes and other peaks originating from electron trap states. At the bias voltage where electron trap states are observed, Δd{sup 2}I/dV{sup 2} depends on the magnetic field and the full width at half-maximum of the Δd{sup 2}I/dV{sup 2}–H curves corresponds to that of the broad Hanle signals. These results indicate that electron trap states are located in the low energy region and cause a decrease in spin lifetime.

  20. Trapping of high-energy electrons into regime of surfatron acceleration by electromagnetic waves in space plasma

    SciTech Connect

    Erokhin, A. N.; Erokhin, N. S.; Milant'ev, V. P.

    2012-05-15

    The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc{sup 2}) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initial particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.

  1. Optically programmable excitonic traps

    PubMed Central

    Alloing, Mathieu; Lemaître, Aristide; Galopin, Elisabeth; Dubin, François

    2013-01-01

    With atomic systems, optically programmed trapping potentials have led to remarkable progress in quantum optics and quantum information science. Programmable trapping potentials could have a similar impact on studies of semiconductor quasi-particles, particularly excitons. However, engineering such potentials inside a semiconductor heterostructure remains an outstanding challenge and optical techniques have not yet achieved a high degree of control. Here, we synthesize optically programmable trapping potentials for indirect excitons of bilayer heterostructures. Our approach relies on the injection and spatial patterning of charges trapped in a field-effect device. We thereby imprint in-situ and on-demand electrostatic traps into which we optically inject cold and dense ensembles of excitons. This technique creates new opportunities to improve state-of-the-art technologies for the study of collective quantum behavior of excitons and also for the functionalisation of emerging exciton-based opto-electronic circuits. PMID:23546532

  2. Electron spin resonance spectroscopic demonstration of the hydroxyl free radical scavenger properties of dimethylaminoethanol in spin trapping experiments confirming the molecular basis for the biological effects of centrophenoxine.

    PubMed

    Nagy, I; Floyd, R A

    1984-12-01

    The ADP-Fe(II)-H2O2 system generates OH free radicals which can be trapped by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) thus yielding a measurable signal by electron spin resonance spectroscopy. The amount of DMPO-OH spin adduct formed under certain conditions decreased considerably, if dimethylaminoethanol (DMAE), p-chlorophenoxyacetic acid (PCPA) or centrophenoxine (CPH) were present in comparable concentrations to that of DMPO. It has been demonstrated that such an effect cannot be attributed to any interference of the tested compounds with the Fe(II) and its oxidability by H2O2. The reaction of DMAE with OH free radicals was demonstrated also by using other spin traps. These spin traps reacted with OH free radicals either not at all (phenyl-tert-butylnitrone, PBN) or only to a slight extent (alfa-pyridyl-l-oxide-N-tert-butylnitrone, 4-POBN). DMAE was also a competitive OH free radical scavenger with proline and hydroxyproline, both of which have recently been shown to react with OH free radicals to form nitroxyl free radicals. On the basis of the experimental results, the OH free radical scavenger property of DMAE can be regarded as firmly established. This result supports the molecular mechanism proposed for the explanation of the anti-aging effects of CPH in terms of the membrane hypothesis of aging.

  3. Rotational and vibrational dynamics in the excited electronic state of deprotonated and protonated fluorescein studied by time-resolved photofragmentation in an ion trap

    PubMed Central

    Imanbaew, Dimitri; Gelin, Maxim F.; Riehn, Christoph

    2016-01-01

    Excited state dynamics of deprotonated and protonated fluorescein were investigated by polarization dependent femtosecond time-resolved pump-probe photofragmentation in a 3D ion trap. Transients of deprotonated fluorescein exhibit vibrational wavepacket dynamics with weak polarization dependence. Transients of protonated fluorescein show only effects of molecular alignment and rotational dephasing. The time resolved rotational anisotropy of protonated fluorescein is simulated by the calculated orientational correlation function. The observed differences between deprotonated and protonated fluorescein are ascribed to their different higher lying electronically excited states and corresponding structures. This is partially supported by time-dependent density functional theory calculations of the excited state structures. PMID:27376104

  4. Rotational and vibrational dynamics in the excited electronic state of deprotonated and protonated fluorescein studied by time-resolved photofragmentation in an ion trap.

    PubMed

    Imanbaew, Dimitri; Gelin, Maxim F; Riehn, Christoph

    2016-07-01

    Excited state dynamics of deprotonated and protonated fluorescein were investigated by polarization dependent femtosecond time-resolved pump-probe photofragmentation in a 3D ion trap. Transients of deprotonated fluorescein exhibit vibrational wavepacket dynamics with weak polarization dependence. Transients of protonated fluorescein show only effects of molecular alignment and rotational dephasing. The time resolved rotational anisotropy of protonated fluorescein is simulated by the calculated orientational correlation function. The observed differences between deprotonated and protonated fluorescein are ascribed to their different higher lying electronically excited states and corresponding structures. This is partially supported by time-dependent density functional theory calculations of the excited state structures. PMID:27376104

  5. Low-energy operation of the Livermore electron beam ion traps: Atomic spectroscopy of Si V, S VII, and Ar IX

    SciTech Connect

    Lepson, J K; Beiersdorfer, P

    2004-01-02

    As part of a project to compile a comprehensive catalog of astrophysically relevant emission lines, we used the low-energy capability of the Lawrence Livermore electron beam ion traps to extend the spectroscopy of neon-like ions and the neighboring charge states to silicon, sulfur, and argon. They present wavelength data of Si V and demonstrate the effect of collisional deexcitation of electric dipole forbidden lines on the 2-3 L-shell spectra of Si V, S VII, and Ar IX.

  6. Improved apparatus for trapped radical and other studies down to 1.5 K. [microwave cavity cryogenic equipment for electron paramagnetic resonance experiments

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Sugawara, K.

    1978-01-01

    A Dewar system and associated equipment for electron paramagnetic resonance (EPR) studies of trapped free radicals and other optical or irradiation experiments are described. The apparatus is capable of reaching a temperature of 1.5 K and transporting on the order of 20 W per K temperature gradient; its principal advantages are for use at pumped cryogen temperatures and for experiments with large heat inputs. Two versions of the apparatus are discussed, one of which is designed for EPR in a rectangular cavity operating in a TE(102) mode and another in which EPR is performed in a cylindrical microwave cavity.

  7. Flat-field grating spectrometer for high-resolution soft x-ray and EUV measurements on an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P; Magee, E; Trabert, E; Chen, H; Lepson, J K; Gu, M F; Schmidt, M

    2004-03-27

    A R = 44.3 m grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Angstrom up to 50 Angstrom. The instrument uses a grating with variable line spacing (about 2400 l/mm) for a flat field of view. Spectra are recorded with a back-illuminated charge-coupled device detector. The new instrument greatly improves upon the resolution achieved with existing grating spectrometers and complements crystal spectrometers at the shorter wavelengths both in terms of wavelength coverage and polarization independent reflectivity response.

  8. Anomalous modulation of photoinduced electron transfer of coumarin 102 in aniline-dimethylaniline mixture: dominant role of hydrogen bonding.

    PubMed

    Barman, Nabajeet; Sahu, Kalyanasis

    2014-12-28

    In a previous study, we reported a striking observation that photoinduced electron transfer (PET) from aniline (AN) to photoexcited coumarin 102 (C102) can be accelerated by adding an inert component (cyclohexane or toluene) to the neat electron donor solvent AN (Phys. Chem. Chem. Phys., 2014, 16, 6159-6166). The H-bond linking the electron donor (D, AN) and the acceptor (A, C102) was proposed to dictate the PET process. To account for the unusual variation of quenching pattern with AN mole fraction, two possible reasons were cited - (1) the D-A (AN-C102) H-bonding may be modulated due to change in polarity of the medium or (2) the additional D-D (AN-AN) H-bonding may restrain the D-A H-bonding to adjust optimally for the PET. Here, we investigate the PET of C102 in an AN-dimethylaniline (DMA) mixture to negate the polarity variation. Since, both AN and DMA have similar polarities, the polarity of the mixture should remain invariant at all compositions. Nevertheless, we found that the fluorescence quantum yield and lifetime of C102 in the mixtures follows a similar unusual trend as observed earlier in the AN-toluene or AN-cyclohexane mixtures; it first decreases up to a particular mole fraction (XD) of the H-bond donor AN and, thereafter, increases on further enrichment of the donor. The observed PET modulation may be rationalized by considering efficient PET in the 1 : 1 H-bonded C102-AN complex but less efficient PET in higher order C102-(AN)n≥2 complexes, where additional D-D (AN-AN) H-bonding may influence the key C102-AN H-bonding and thus inhibit the PET process.

  9. Quadrupole Strong Focusing for Transport of Space-Charge Dominated Electron Beams in Traveling-Wave Tubes

    NASA Astrophysics Data System (ADS)

    Nichols, Kimberley E. L.

    Analysis of quadrupole focusing lattices for high-frequency TWT's is presented. This work is motivated by recent work performed at the Naval Research Laboratory (NRL) which demonstrated an advantageous case for strong focusing employing a Halbach quadrupole lattice. Using realistic Permanent Magnet Quadruple (PMQ) field cancellation, the advantage of using PMQ to transport higher current densities than Permanent Periodic Magnet (PPM) lattices disappears, while other advantages for employing quadrupole focusing remain. This dissertation gives a comprehensive analysis of the applicability of PMQ focusing in vacuum electronic devices.

  10. Sn vacancies in photorefractive Sn2P2S6 crystals: An electron paramagnetic resonance study of an optically active hole trap

    NASA Astrophysics Data System (ADS)

    Golden, E. M.; Basun, S. A.; Evans, D. R.; Grabar, A. A.; Stoika, I. M.; Giles, N. C.; Halliburton, L. E.

    2016-10-01

    Electron paramagnetic resonance (EPR) is used to identify the singly ionized charge state of the Sn vacancy ( VSn - ) in single crystals of Sn2P2S6 (often referred to as SPS). These vacancies, acting as a hole trap, are expected to be important participants in the photorefractive effect observed in undoped SPS crystals. In as-grown crystals, the Sn vacancies are doubly ionized ( VSn 2 - ) with no unpaired spins. They are then converted to a stable EPR-active state when an electron is removed (i.e., a hole is trapped) during an illumination below 100 K with 633 nm laser light. The resulting EPR spectrum has g-matrix principal values of 2.0079, 2.0231, and 1.9717. There are resolved hyperfine interactions with two P neighbors and one Sn neighbor. The isotropic portions of these hyperfine matrices are 167 and 79 MHz for the two 31P neighbors and 8504 MHz for the one Sn neighbor (this latter value is the average for 117Sn and 119Sn). These VSn - vacancies are shallow acceptors with the hole occupying a diffuse wave function that overlaps the neighboring Sn2+ ion and (P2S6)4- anionic unit. Using a general-order kinetics approach, an analysis of isothermal decay curves of the VSn - EPR spectrum in the 107-115 K region gives an activation energy of 283 meV.

  11. Analysis of the fine structure of Sn11 +-Sn14 + ions by optical spectroscopy in an electron-beam ion trap

    NASA Astrophysics Data System (ADS)

    Windberger, A.; Torretti, F.; Borschevsky, A.; Ryabtsev, A.; Dobrodey, S.; Bekker, H.; Eliav, E.; Kaldor, U.; Ubachs, W.; Hoekstra, R.; Crespo López-Urrutia, J. R.; Versolato, O. O.

    2016-07-01

    We experimentally re-evaluate the fine structure of Sn11 +-Sn14 + ions. These ions are essential in bright extreme-ultraviolet (EUV) plasma-light sources for next-generation nanolithography, but their complex electronic structure is an open challenge for both theory and experiment. We combine optical spectroscopy of magnetic dipole M 1 transitions, in a wavelength range covering 260 to 780 nm, with charge-state selective ionization in an electron beam ion trap. Our measurements confirm the predictive power of ab initio calculations based on Fock space coupled cluster theory. We validate our line identification using semiempirical cowan calculations with adjustable wave-function parameters. Available Ritz combinations further strengthen our analysis. Comparison with previous work suggests that line identifications in the EUV need to be revisited.

  12. Modified Korteweg–de Vries equation in a negative ion rich hot adiabatic dusty plasma with non-thermal ion and trapped electron

    SciTech Connect

    Adhikary, N. C.; Deka, M. K.; Dev, A. N.; Sarmah, J.

    2014-08-15

    In this report, the investigation of the properties of dust acoustic (DA) solitary wave propagation in an adiabatic dusty plasma including the effect of the non-thermal ions and trapped electrons is presented. The reductive perturbation method has been employed to derive the modified Korteweg–de Vries (mK-dV) equation for dust acoustic solitary waves in a homogeneous, unmagnetized, and collisionless plasma whose constituents are electrons, singly charged positive ions, singly charged negative ions, and massive charged dust particles. The stationary analytical solution of the mK-dV equation is numerically analyzed and where the effect of various dusty plasma constituents DA solitary wave propagation is taken into account. It is observed that both the ions in dusty plasma play as a key role for the formation of both rarefactive as well as the compressive DA solitary waves and also the ion concentration controls the transformation of negative to positive potentials of the waves.

  13. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  14. Optical trapping

    PubMed Central

    Neuman, Keir C.; Block, Steven M.

    2006-01-01

    Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications. PMID:16878180

  15. Dominance of interface chemistry over the bulk properties in determining the electronic structure of epitaxial metal/perovskite oxide heterojunctions

    SciTech Connect

    Chambers, Scott A.; Du, Yingge; Gu, Meng; Droubay, Timothy C.; Hepplestone, Steven; Sushko, Petr

    2015-06-09

    We show that despite very similar crystallographic properties and work function values in the bulk, epitaxial Fe and Cr metallizations on Nb:SrTiO3(001) generate completely different heterojunction electronic properties. Cr is Ohmic whereas Fe forms a Schottky barrier with a barrier height of 0.50 eV. This contrast arises because of differences in interface chemistry. In contrast to Cr [Chambers, S. A. et al., Adv. Mater. 2013, 25, 4001.], Fe exhibits a +2 oxidation state and occupies Ti sites in the perovskite lattice, resulting in negligible charge transfer to Ti, upward band bending, and Schottky barrier formation. The differences between Cr and Fe are understood by performing first-principles calculations of the energetics of defect formation which corroborate the observed interface chemistry and structure.

  16. Catalytic Properties Dominated by Electronic Structures in PdZn, NiZn, and PtZn Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Nozawa, Kazuki; Endo, Naruki; Kameoka, Satoshi; Tsai, An Pang; Ishii, Yasushi

    2011-06-01

    The catalytic functions of Pd are completely modified by alloying with Zn, and PdZn exhibits comparable catalytic selectivity to Cu in the steam reforming of methanol (SRM). We perform theoretical and experimental studies to confirm our previous argument that the position of the d-band is a significant factor determining catalytic properties. First-principles slab calculations for M--Zn (M = Pd, Ni, Pt) reveal that the bond breaking on the surface leads to some reduction in the d-bandwidth, but that the position of the d-band for stable surfaces remains essentially unchanged from that of the bulk. The origin of the dramatic change in the electronic structure caused by alloying is theoretically demonstrated. Our previous argument is experimentally examined not only in SRM, but also in elemental reactions such as CO and H2 adsorptions. Magnetic measurements also indicate the importance of the d-band position in SRM.

  17. Microfabricated cylindrical ion trap

    DOEpatents

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  18. High voltage trapping effects in GaN-based metal-insulator-semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Meneghesso, Gaudenzio; Meneghini, Matteo; Silvestri, Riccardo; Vanmeerbeek, Piet; Moens, Peter; Zanoni, Enrico

    2016-01-01

    This paper presents an analysis of the high voltage trapping processes that take place in high-electron mobility transistors based on GaN, with a metal-insulator-semiconductor (MIS) structure. The study is based on combined pulsed and transient measurements, carried out with trapping voltages in the range from 50 to 500 V. The results indicate that: (i) dynamic Ron is maximum for trapping voltages between 200 and 300 V, and decreases for higher voltage levels; (ii) Ron-transient measurements reveal the presence of a dominant trap with activation energy Ea1 = 0.93 eV and of a second trap with activation energy equal to Ea2 = 0.61 eV; (iii) the deep level transient spectroscopy (DLTS) signal associated to trap Ea1 is completely suppressed for high trapping voltages (VDS = 500 V). The results are interpreted by considering that the trap Ea1 is located in the buffer, and originates from CN defects. The exposure to high drain voltages may favor the depletion of such traps, due to a field-assisted de-trapping process or to the presence of vertical leakage paths.

  19. Stability of an emittance-dominated sheet-electron beam in planar wiggler and periodic permanent magnet structures with natural focusing

    NASA Astrophysics Data System (ADS)

    Carlsten, B. E.; Earley, L. M.; Krawczyk, F. L.; Russell, S. J.; Potter, J. M.; Ferguson, P.; Humphries, S.

    2005-06-01

    A sheet-beam traveling-wave amplifier has been proposed as a high-power generator of rf from 95 to 300 GHz, using a microfabricated rf slow-wave structure [Carlsten et al., IEEE Trans. Plasma Sci. 33, 85 (2005), ITPSBD, 0093-3813, 10.1109/TPS.2004.841172], for emerging radar and communications applications. The planar geometry of microfabrication technologies matches well with the nearly planar geometry of a sheet beam, and the greater allowable beam current leads to high-peak power, high-average power, and wide bandwidths. Simulations of nominal designs using a vane-loaded waveguide as the slow-wave structure have indicated gains in excess of 1 dB/mm, with extraction efficiencies greater than 20% at 95 GHz with a 120-kV, 20-A electron beam. We have identified stable sheet-beam formation and transport as the key enabling technology for this type of device. In this paper, we describe sheet-beam transport, for both wiggler and periodic permanent magnet (PPM) magnetic field configurations, with natural (or single-plane) focusing. For emittance-dominated transport, the transverse equation of motion reduces to a Mathieu equation, and to a modified Mathieu equation for a space-charge dominated beam. The space-charge dominated beam has less beam envelope ripple than an emittance-dominated beam, but they have similar stability thresholds (defined by where the beam ripple continues to grow without bound along the transport line), consistent with the threshold predicted by the Mathieu equation. Design limits are derived for an emittance-dominated beam based on the Mathieu stability threshold. The increased beam envelope ripple for emittance-dominated transport may impact these design limits, for some transport requirements. The stability of transport in a wiggler field is additionally compromised by the beam’s increased transverse motion. Stable sheet-beam transport with natural focusing is shown to be achievable for a 120-kV, 20-A, elliptical beam with a cross section of

  20. Switching Oxide Traps

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.

    2003-01-01

    We consider radiation-induced charge trapping in SiO2 dielectric layers, primarily from the point of view of CMOS devices. However, SiO2 insulators are used in many other ways, and the same defects occur in other contexts. The key studies, which determined the nature of the oxide charge traps, were done primarily on gate oxides in CMOS devices, because that was the main radiation problem in CMOS at one time. There are two major reviews of radiation-induced oxide charge trapping already in the literature, which discuss the subject in far greater detail than is possible here. The first of these was by McLean et al. in 1989, and the second, ten years later, was intended as an update, because of additional, new work that had been reported. Basically, the picture that has emerged is that ionizing radiation creates electron-hole pairs in the oxide, and the electrons have much higher mobility than the holes. Therefore, the electrons are swept out of the oxide very rapidly by any field that is present, leaving behind any holes that escape the initial recombination process. These holes then undergo a polaron hopping transport toward the Si/SiO2 interface (under positive bias). Near the interface, some fraction of them fall into deep, relatively stable, long-lived hole traps. The nature and annealing behavior of these hole traps is the main focus of this paper.

  1. In vivo singlet-oxygen generation in blood of chromium(VI)-treated mice: an electron spin resonance spin-trapping study.

    PubMed

    Hojo, Y; Okado, A; Kawazoe, S; Mizutani, T

    2000-07-01

    Although it is assumed from in vitro experiments that the generation of reactive oxygen species such as the singlet oxygen (1O2), the hydroxyl radical, and the superoxide anion are responsible for chromium(VI) toxicity/carcinogenicity, no electron spin resonance (ESR) evidence for the generation of 1O2 in vivo has been reported. In this study, we have employed an ESR spin-trapping technique with 2,2,6,6-tetramethyl-4-piperidone (TMPD), a specific 1O2 trap, to detect 1O2 in blood. The ESR spectrum of the spin adduct observed in the blood of mice given 4.8 mmol Cr(VI)/kg body weight exhibited the 1:1:1 intensity pattern of three lines with a hyperfine coupling constant A(N) = 16.08 G and a g-value = 2.0066. The concentration of spin adduct detected in the blood was 1.46 microM (0.1% of total Cr concentration). The adduct production was inhibited by the addition of specific 1O2 scavengers such as 1,4-diazabicyclo[2.2.2]octane and sodium azide to the blood. The results indicate that the spin adduct is nitroxide produced by the reaction of 1O2 with TMPD. This is the first report of ESR evidence for the in vivo generation of 1O2 in mammals by Cr(VI).

  2. Direct evidence for in vivo hydroxyl radical generation in blood of mice after acute chromium(VI) intake: electron spin resonance spin-trapping investigation.

    PubMed

    Hojo, Y; Okado, A; Kawazoe, S; Mizutani, T

    2000-07-01

    Although it is assumed from in vitro experiments that the hydroxyl radical (*OH) may be responsible for chromium(VI) toxicity/carcinogenicity, no electron spin resonance (ESR) evidence for the generation of *OH in vivo has been reported. In this study, we have employed an ESR spin-trapping technique with 5,5-dimethylpyrroline-N-oxide (DMPO), a selective *OH trap, to detect *OH in blood. The ESR spectrum of spin adduct observed in the blood of mice given 4.8 mmol Cr(VI)/kg body weight exhibited the 1:2:2:1 intensity pattern of a quartet with a hyperfine coupling constant A(N) = A(H) = 14.81 G and g-value = 2.0067. The concentration of the spin adduct detected in the blood was 7.37 microM. The adduct production was inhibited by the addition of specific *OH scavengers such as sodium benzoate and methional to the blood. The results indicate that the spin adduct is nitroxide produced by the reaction of *OH with DMPO. This is the first report of ESR evidence for the in vivo generation of *OH in mammals by Cr(VI).

  3. Wave magnetic field amplitude threshold for nonlinear trapping of energetic gyroresonant and Landau resonant electrons by nonducted VLF waves in the magnetosphere

    SciTech Connect

    Bell, T.F.

    1986-04-01

    Using a recently developed theory, we calculate the wave magnetic field amplitude threshold B/sub tau/ necessary to allow the nonlinear trapping of energetic gyroresonant and Landau resonant electrons by VLF whistler mode waves in the magnetosphere, propagating at an arbitrary angle, psi, with respect to the earth's magnetic field, B/sub 0/. This theory predicts that the amplitude threshold is governed near the magnetic equatorial plane by the gradient of psi with respect to distance, z, along B/sub 0/. Using commonly accepted models of the magnetosphere and computer raytracing techniques, we determine the function psi(z) for magnetic shells in the range 2< or =L< or =5 and for frequencies 5 kHz< or =f< or =17.8 kHz.

  4. Time-fractional Schamel-KdV equation for dust-ion-acoustic waves in pair-ion plasma with trapped electrons and opposite polarity dust grains

    NASA Astrophysics Data System (ADS)

    Guo, Shimin; Mei, Liquan; He, Yaling; Li, Yibao

    2016-03-01

    Nonlinear propagation of dust-ion-acoustic (DIA) waves is investigated in a one-dimensional, unmagnetized plasma containing positive ions, negative ions, trapped electrons featuring vortex-like distribution, and immobile dust grains having both positive and negative charges. Via reductive perturbation method, Agrawal's method, and Euler-Lagrange equation, the time-fractional Schamel-KdV equation under the sense of Riesz fractional derivative is derived to describe nonlinear behavior of DIA waves. The approximate solution of the time-fractional Schamel-KdV equation is constructed in terms of Jacobi elliptic functions by variational iteration method. The effect of the plasma parameters on the DIA solitary waves is also discussed in detail.

  5. Antihydrogen Trapped

    NASA Astrophysics Data System (ADS)

    Bowe[1], Paul

    2011-05-01

    In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time. Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome. The unique design features of the ALPHA apparatus will be explained. These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise the perturbations to trapped charged particles which may cause particle loss and heating. The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures,, where trapping attempts with a reasonable chance of success can be tried. The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time.

  6. Simulation of electron transmittance and tunnel current in n{sup +} Poly-Si/HfSiO{sub x}N/Trap/SiO{sub 2}/Si(100) capacitors using analytical and numerical approaches

    SciTech Connect

    Noor, Fatimah A. Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2015-04-16

    In this paper, we discuss the electron transmittance and tunneling current in high-k-based-MOS capacitors with trapping charge by including the off-diagonal effective-mass tensor elements and the effect of coupling between transverse and longitudinal energies represented by an electron velocity in the gate. The HfSiO{sub x}N/SiO{sub 2} dual ultrathin layer is used as the gate oxide in an n{sup +} poly- Si/oxide/Si capacitor to replace SiO{sub 2}. The main problem of using HfSiO{sub x}N is the charge trapping formed at the HfSiO{sub x}N/SiO{sub 2} interface that can influence the performance of the device. Therefore, it is important to develop a model taking into account the presence of electron traps at the HfSiO{sub x}N/SiO{sub 2} interface in the electron transmittance and tunneling current. The transmittance and tunneling current in n{sup +} poly- Si/HfSiO{sub x}N/trap/SiO2/Si(100) capacitors are calculated by using Airy wavefunctions and a transfer matrix method (TMM) as analytical and numerical approaches, respectively. The transmittance and tunneling current obtained from the Airy wavefunction are compared to those computed by the TMM. The effects of the electron velocity on the transmittance and tunneling current are also discussed.

  7. Trapping photon-dressed Dirac electrons in a quantum dot studied by coherent two dimensional photon echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Roslyak, O.; Gumbs, Godfrey; Mukamel, S.

    2012-05-01

    We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional spectra are discussed. The effect of the Coulomb induced exciton-exciton scattering and the formation of biexciton molecules are demonstrated.

  8. Improvement of charged particles transport across a transverse magnetic filter field by electrostatic trapping of magnetized electrons

    SciTech Connect

    Das, B. K. Hazarika, P.; Chakraborty, M.; Bandyopadhyay, M.

    2014-07-15

    A study on the transport of charged particles across a magnetic filter field has been carried out in a double plasma device (DPD) and presented in this manuscript. The DPD is virtually divided into two parts viz. source and target regions by a transverse magnetic field (TMF) which is constructed by inserting strontium ferrite magnets into two stainless steel rectangular tubes. Plasma electrons are magnetized but ions are unmagnetized inside the TMF region. Negative voltages are applied to the TMF tubes in order to reduce the loss of electrons towards them. Plasma is produced in the source region by filament discharge method and allowed to flow towards the target region through this negatively biased TMF. It is observed that in the target region, plasma density can be increased and electron temperature decreased with the help of negatively biased TMF. This observation is beneficial for negative ion source development. Plasma diffusion across the negatively biased TMF follows Bohm or anomalous diffusion process when negative bias voltage is very less. At higher negative bias, diffusion coefficient starts deviating from the Bohm diffusion value, associated with enhanced plasma flow in the target region.

  9. Characterizing traps causing random telegraph noise during trap-assisted tunneling gate-induced drain leakage

    NASA Astrophysics Data System (ADS)

    Yoo, Sung-Won; Shin, Joonha; Seo, Youngsoo; Kim, Hyunsuk; Jeon, Sangbin; Kim, Hyunsoo; Shin, Hyungcheol

    2015-07-01

    This paper presents an analysis of traps causing random telegraph noise (RTN) in trap-assisted tunneling (TAT) gate-induced drain leakage (GIDL) current. RTN was shown for the first time to occur as a result of electron trapping rather than hole trapping. In addition, the proper effective permittivity of two different materials is used to accurately determine the distance between two traps causing RTN in TAT GIDL in an oxide.

  10. Laboratory astrophysics and atomic physics using the NASA/GSFC microcalorimeter spectrometers at the LLNL Electron Beam Ion Trap and Radiation Properties Facility

    SciTech Connect

    Brown, G; Beiersdorfer, P; Boyce, K; Chen, H; Gu, M F; Kahn, S; Kelley, R; Kilbourne, C; May, M; Porter, F S; Szymkowiak, A; Thorn, D; Widmann, K

    2005-08-18

    The 32 pixel laboratory microcalorimeter spectrometer built by the NASA/Goddard Space Flight Center is now an integral part of the spectroscopy suite used routinely by the electron beam ion trap and radiative properties group at the Lawrence Livermore National Laboratory. The second generation laboratory instrument, dubbed the XRS/EBIT, is nearly identical to the XRS instrument on the Suzaku X-ray Observatory, formerly Astro-E2. The detector array is from the same processed wafer and uses the same HgTe absorbers. it is being used to measure the photon emission from a variety of radiation sources. These include x-ray emission from laboratory simulated celestial sources, x-ray emission from highly charged ions of Au, and x-ray emission following charge exchange and radiative electron capture. The wide range of applications demonstrates the versatility of a high-resolution, high-efficiency low temperature detector that is able to collect data continually with minimal operator servicing.

  11. Discrimination Method of the Volatiles from Fresh Mushrooms by an Electronic Nose Using a Trapping System and Statistical Standardization to Reduce Sensor Value Variation

    PubMed Central

    Fujioka, Kouki; Shimizu, Nobuo; Manome, Yoshinobu; Ikeda, Keiichi; Yamamoto, Kenji; Tomizawa, Yasuko

    2013-01-01

    Electronic noses have the benefit of obtaining smell information in a simple and objective manner, therefore, many applications have been developed for broad analysis areas such as food, drinks, cosmetics, medicine, and agriculture. However, measurement values from electronic noses have a tendency to vary under humidity or alcohol exposure conditions, since several types of sensors in the devices are affected by such variables. Consequently, we show three techniques for reducing the variation of sensor values: (1) using a trapping system to reduce the infering components; (2) performing statistical standardization (calculation of z-score); and (3) selecting suitable sensors. With these techniques, we discriminated the volatiles of four types of fresh mushrooms: golden needle (Flammulina velutipes), white mushroom (Agaricus bisporus), shiitake (Lentinus edodes), and eryngii (Pleurotus eryngii) among six fresh mushrooms (hen of the woods (Grifola frondosa), shimeji (Hypsizygus marmoreus) plus the above mushrooms). Additionally, we succeeded in discrimination of white mushroom, only comparing with artificial mushroom flavors, such as champignon flavor and truffle flavor. In conclusion, our techniques will expand the options to reduce variations in sensor values. PMID:24233028

  12. Phosphorous trapped within buckminsterfullerene

    NASA Astrophysics Data System (ADS)

    Larsson, J. A.; Greer, J. C.; Harneit, W.; Weidinger, A.

    2002-05-01

    Under normal circumstances, when covalent molecules form, electrons are exchanged between atoms to form bonds. However, experiment and theoretical computations reveal exactly the opposite effect for the formation of group V elements nitrogen and phosphorous encapsulated within a buckminsterfullerene molecule. The C60 carbon cage remains intact upon encapsulation of the atom, whereas the electronic charge cloud of the N or P atom contracts. We have studied the chemical, spin, and thermodynamic properties of endohedral phosphorous (P@C60) and have compared our results with earlier findings for N@C60. From a combined experimental and theoretical vantage, we are able to elucidate a model for the interaction between the trapped group V atom and the fullerene cage. A picture emerges for the electronic structure of these complexes, whereby an atom is trapped within a fullerene, and interacts weakly with the molecular orbitals of the C60 cage.

  13. Trapping photon-dressed Dirac electrons in a quantum dot studied by coherent two dimensional photon echo spectroscopy

    PubMed Central

    Roslyak, O.; Gumbs, Godfrey; Mukamel, S.

    2012-01-01

    We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional spectra are discussed. The effect of the Coulomb induced exciton-exciton scattering and the formation of biexciton molecules are demonstrated. PMID:22612079

  14. Suitability of magnetic particle immunoassay for the analysis of PBDEs in Hawaiian freshwater fish and crabs in comparison with gas chromatography/electron capture detection-ion trap mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gas chromatograph/electron capture detector-ion trap mass spectrometer (GC/ECD-ITMS) was used for the determination of polybrominated diphenyl ethers (PBDEs) in freshwater fish and crabs. The samples were also analyzed with an enzyme-linked immunosorbent assay (ELISA). GC/ECD-ITMS results showed...

  15. High-k shallow traps observed by charge pumping with varying discharging times

    SciTech Connect

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen; Chang, Ting-Chang; Lu, Ying-Hsin; Lo, Wen-Hung; Tsai, Jyun-Yu; Liu, Kuan-Ju; Wang, Bin-Wei; Cao, Xi-Xin; Chen, Hua-Mao; Cheng, Osbert; Huang, Cheng-Tung; Chen, Tsai-Fu

    2013-11-07

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are in fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1−x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.

  16. Trapped Antihydrogen

    NASA Astrophysics Data System (ADS)

    Robicheaux, Francis

    2012-03-01

    Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, the bound state of an antiproton and a positron, is made entirely of antiparticles and is believed to be stable. It is this longevity that holds the promise of precision studies of matter-antimatter symmetry. Low energy (Kelvin scale) antihydrogen has been produced at CERN since 2002. I will describe the experiment which has recently succeeded in trapping antihydrogen in a cryogenic Penning trap for times up to approximately 15 minutes.

  17. Nonadiabatic transitions in electrostatically trapped ammonia molecules

    SciTech Connect

    Kirste, Moritz; Schnell, Melanie; Meijer, Gerard; Sartakov, Boris G.

    2009-05-15

    Nonadiabatic transitions are known to be major loss channels for atoms in magnetic traps but have thus far not been experimentally reported upon for trapped molecules. We have observed and quantified losses due to nonadiabatic transitions for three isotopologues of ammonia in electrostatic traps by comparing the trapping times in traps with a zero and a nonzero electric field at the center. Nonadiabatic transitions are seen to dominate the overall loss rate even for the present samples that are at relatively high temperatures of 30 mK. It is anticipated that losses due to nonadiabatic transitions in electric fields are omnipresent in ongoing experiments on cold molecules.

  18. The dominant factors affecting the memory characteristics of (Ta{sub 2}O{sub 5}){sub x}(Al{sub 2}O{sub 3}){sub 1−x} high-k charge-trapping devices

    SciTech Connect

    Gong, Changjie; Lan, Xuexin; Yin, Qiaonan; Ou, Xin; Liu, Jinqiu; Sun, Chong; Wang, Laiguo; Lu, Wei; Yin, Jiang Xu, Bo; Xia, Yidong; Liu, Zhiguo; Li, Aidong

    2014-09-22

    The prototypical charge-trapping memory devices with the structure p-Si/Al{sub 2}O{sub 3}/(Ta{sub 2}O{sub 5}){sub x}(Al{sub 2}O{sub 3}){sub 1−x}/Al{sub 2}O{sub 3}/Pt(x = 0.5, 0.3, and 0.1) were fabricated by using atomic layer deposition and RF magnetron sputtering techniques. A memory window of 7.39 V with a charge storage density of 1.97 × 10{sup 13 }cm{sup −2} at a gate voltage of ±11 V was obtained for the memory device with the composite charge trapping layer (Ta{sub 2}O{sub 5}){sub 0.5}(Al{sub 2}O{sub 3}){sub 0.5}. All memory devices show fast program/erase speed and excellent endurance and retention properties, although some differences in their memory performance exist, which was ascribed to the relative individual band alignments of the composite (Ta{sub 2}O{sub 5}){sub x}(Al{sub 2}O{sub 3}){sub 1−x} with Si.

  19. Deep trap, laser activated image converting system

    NASA Technical Reports Server (NTRS)

    Maserjian, J. (Inventor)

    1975-01-01

    Receiving an optical image on the surface of a photoconducting semiconductor is presented, storing the image in deep traps of the semiconductor, and later scanning the semiconductor with a laser beam to empty the deep traps, thereby producing a video signal. The semiconductor is illuminated with photons of energy greater than the band gap producing electron-hole pairs in the semiconductor which subsequently fill traps in energy from the band edges. When the laser beam of low energy photons excites the trapped electrons and holes out of the traps into the conduction and valence bands, a photoconductivity can be observed.

  20. Characterization of diacylglycerol isomers in edible oils using gas chromatography-ion trap electron ionization mass spectrometry.

    PubMed

    Zhu, Hanjiang; Clegg, Michael S; Shoemaker, Charles F; Wang, Selina C

    2013-08-23

    Verifying the authenticity of edible oils is of international concern. A new quality control standard for olive oil has been proposed that relates the ratio of 1,2-diacylglycerol (DAG) to 1,3-DAG to sensory aspects of olive oil. DAGs and their isomers are difficult to quantitate and characterize by Flame Ionization Gas Chromatography (GC-FID) due to the lack of suitable standards. Mass detectors offer the advantage of providing structural detail to the eluding DAG(s), thus removing ambiguity to the identification of both resolved and unresolved DAGs in GC chromatograms. In this study, a GC Electron Ionization Mass Spectrometry (GC-EI-MS) method was developed to determine the fatty acid composition and molecular structure of trimethylsilyl (TMS) derivatized DAGs present in edible oils. Twenty-two species of DAG isomers were identified in refined coconut oil and unrefined olive oil utilizing signature fragment ions, [M-15](+), [M-89](+), [M-RCO2](+), [RCO2+58](+) and [M-RCO2CH2](+). The [M-RCO2CH2](+) ion is considered the key diagnostic ion to distinguish between DAG positional isomers. MS/MS spectra of [M-RCO2](+) and [M-15](+) ions obtained from commercial standards containing both 1,2- and 1,3-DAG isomers were used as a model system to confirm the identification of DAG isomers in natural products. Furthermore, a number of reaction mechanisms are proposed to explain the formation of the most abundant mass fragments of DAGs and their isomers.

  1. Gas Chromatographic-Ion Trap Mass Spectrometric Analysis of Volatile Organic Compounds by Ion-Molecule Reactions Using the Electron-Deficient Reagent Ion CCl{3/+}

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl{3/+} was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl{3/+} could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl{3/+} with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M + CCl3 - HCl]+ for aromatic hydrocarbons, [M - OH]+ for saturated cyclic ether, ketone, and alcoholic compounds, [M - H]+ ion for monoterpenes, M·+ for sesquiterpenes, [M - CH3CO]+ for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl{3/+} were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds.

  2. The wave magnetic field amplitude threshold for nonlinear trapping of energetic gyroresonant and Landau resonant electrons by nonducted VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Bell, T. F.

    1986-01-01

    A recently developed theory is used to calculate the wave magnetic field amplitude threshold, B-tau, necessary to allow the nonlinear trapping of energetic gyroresonant and Landau resonant electrons by VLF whistler mode waves in the magnetosphere propagating at an arbitrary angle, psi, with respect to the earth's magnetic field. A detailed raytracing study is carried out to establish the variation of psi with position along each magnetic shell in the range L = 2-5 and for frequencies 5-17.8 kHz. It is found that the minimum values of B-tau along each L shell generally occur at points of second-order resonance. In general, for nonducted fixed frequency signals there is only one point of second-order resonance on each L shell, and this is located within a few degrees of the magnetic equator. However, over a narrow range of L, there are as many as three points of second-order resonance and as many as three associated minima in B-tau. At least one of these points is located more than 10 deg from the magnetic equator.

  3. Trapping and dark current in plasma-based accelerators

    SciTech Connect

    Schroder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

    2004-06-01

    The trapping of thermal electrons in a nonlinear plasma wave of arbitrary phase velocity is investigated. The threshold plasma wave amplitude for trapping plasma electrons is calculated, thereby determining the fraction trapped and the expected dark current in a plasma-based accelerator. It is shown that the presence of a laser field (e.g., trapping in the self-modulated regime of the laser wakefield accelerator) increases the trapping threshold. Implications for experimental and numerical laser-plasma studies are discussed.

  4. Identification of methamphetamines and over-the-counter sympathometic amines by full-scan GC-ion trap MS with electron impact and chemical ionization.

    PubMed

    Wu, A H; Onigbinde, T A; Wong, S S; Johnson, K G

    1992-01-01

    An underivatized methane chemical ionization (CI) assay for measuring amphetamines in urine was evaluated against derivatized electron impact (EI) assays using a gas chromatograph-ion trap mass spectrometer. The full-scan CI mass spectra of methamphetamine, ephedrine/pseudoephedrine, and phentermine were compared with the full scan and three-ion EI mass spectra of heptafluorobutyric anhydride (HFBA) and 4-carbethoxyhexafluorobutyryl chloride (CB) derivatives. The fragmentation patterns for these compounds were nearly identical for the three major high molecular weight ions (m/z 254, 210, and 169 for EI-HFBA derivatives, and m/z 308, 262, and 280 for EI-CB derivatives). The CI mass spectra of the underivatized drugs contained more discernible differences at the higher molecular weights, including m/z 119, 148, and 150 for methamphetamine, 148, 166, and 176 for ephedrine/pseudoephedrine, and 91, 133, and 150 for phentermine. The within-run precision ranged from 7-9% for CI versus 5-6% for EI with HFBA derivatization (mean 500 ng/mL, n = 5). The limits of detection (LOD) for amphetamine and methamphetamine were 2.4 and 8.6 ng/mL, respectively, for CI versus 0.7 and 1.4 ng/mL for EI. The limits of quantitation (LOQ) were 4.5 and 19.1 ng/mL for CI versus 1.4 and 5.7 ng/mL for EI. The use of full-scan mass spectral analysis with either electron impact or chemical ionization provides additional qualitative data that may be helpful for measuring methamphetamine in the presence of other sympathomimetic amines.

  5. Carrier trapping study on a Ge nanocrystal by two-pass lift mode electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    (林振, Z. Lin; Brunkov, P.; Bassani, F.; Descamps, A.; O'Dwyer, C.; Bremond, G.

    2015-03-01

    Trapped charges inside an isolated germanium nanocrystal (Ge NC) have been studied by two-pass lift mode electrostatic force microscopy (EFM) measurements at room temperature. From visualized EFM images, electrons and holes were proven to be successfully injected and trapped in the Ge NC and distributed homogenously at the edge of its truncated spherical morphology. The Ge NC is found to have iso-potential surface and behave as a conductive material after being charged. It is also shown that the dominant charge decay mechanism during discharging of Ge NCs is related to the leakage of these trapped charges. A truncated capacitor model is used to approximate the real capacitance between the tip and Ge NC surface and to quantitatively study these trapped charges. These investigations demonstrate the potential for Ge nanocrystal memory applications.

  6. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  7. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  8. Detection and imaging of the free radical DNA in cells—Site-specific radical formation induced by Fenton chemistry and its repair in cellular DNA as seen by electron spin resonance, immuno-spin trapping and confocal microscopy

    PubMed Central

    Bhattacharjee, Suchandra; Chatterjee, Saurabh; Jiang, JinJie; Sinha, Birandra Kumar; Mason, Ronald P.

    2012-01-01

    Oxidative stress-related damage to the DNA macromolecule produces lesions that are implicated in various diseases. To understand damage to DNA, it is important to study the free radical reactions causing the damage. Measurement of DNA damage has been a matter of debate as most of the available methods measure the end product of a sequence of events and provide limited information on the initial free radical formation. We report a measurement of free radical damage in DNA induced by a Cu(II)-H2O2 oxidizing system using immuno-spin trapping supplemented with electron paramagnetic resonance. In this investigation, the short-lived radical generated is trapped by the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) immediately upon formation. The DMPO adduct formed is initially electron paramagnetic resonance active, but is subsequently oxidized to the stable nitrone adduct, which can be detected and visualized by immuno-spin trapping and has the potential to be further characterized by other analytical techniques. The radical was found to be located on the 2′-deoxyadenosine (dAdo) moiety of DNA. The nitrone adduct was repaired on a time scale consistent with DNA repair. In vivo experiments for the purpose of detecting DMPO–DNA nitrone adducts should be conducted over a range of time in order to avoid missing adducts due to the repair processes. PMID:22387463

  9. Compression of antiproton clouds for antihydrogen trapping.

    PubMed

    Andresen, G B; Bertsche, W; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; El Nasr, S Seif; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-05-23

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  10. Compression of Antiproton Clouds for Antihydrogen Trapping

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Jenkins, M. J.; Joergensen, L. V.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Silveira, D. M.; Fujiwara, M. C.; Gill, D. R.

    2008-05-23

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  11. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  12. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  13. Gas chromatographic-ion trap mass spectrometric analysis of volatile organic compounds by ion-molecule reactions using the electron-deficient reagent ion CCl3(+).

    PubMed

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl(3)(+) was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl(3)(+) could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl(3)(+) with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M+CCl(3) - HCl](+) for aromatic hydrocarbons, [M - OH](+) for saturated cyclic ether, ketone, and alcoholic compounds, [M - H](+) ion for monoterpenes, M(·+) for sesquiterpenes, [M - CH(3)CO](+) for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl(3)(+) were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds. PMID:21952897

  14. The habitats exploited and the species trapped in a Caribbean island trap fishery

    USGS Publications Warehouse

    Garrison, V.H.; Rogers, C.S.; Beets, J.; Friedlander, A.M.

    2004-01-01

    We visually observed fish traps in situ to identify the habitats exploited by the U.S. Virgin Islands fishery and to document species composition and abundance in traps by habitat. Fishers set more traps in algal plains than in any other habitat around St. John. Coral reefs, traditionally targeted by fishers, accounted for only 16% of traps. Traps in algal plain contained the highest number of fishes per trap and the greatest numbers of preferred food species. Traps on coral reefs contained the most species, 41 of the 59 taxa observed in the study. Acanthurus coeruleus was the most abundant species and Acanthuridae the most abundant family observed in traps. Piscivore numbers were low and few serranids were observed. Traps in algal plain contained the most fishes as a result of: ecological changes such as shifts in habitat use, mobility of species and degradation of nearshore habitat (fishery independent); and, catchability of fishes and long-term heavy fishing pressure (fishery dependent). The low number of serranids per trap, dominance of the piscivore guild by a small benthic predator, Epinephelus guttatus, and dominance of trap contents overall by a small, fast-growing species of a lower trophic guild, Acanthurus coeruleus, all point to years of intense fishing pressure.

  15. Trapping low-energy antiprotons in an ion trap

    SciTech Connect

    Fei, Xiang.

    1990-01-01

    A fraction of antiprotons from the Low Energy Antiproton Ring (LEAR) of CERN are slowed from 5.9 MeV to below 3 keV as they pass through thin foils. Transmitted particle energy distribution and low energy antiproton yield are measured by a time-of-flight technique. The difference in the range of protons and antiprotons (known as the Barkas effect) is observed. While still in flight, up to 1.3 {times} 10{sup 5} antiprotons with energies between 0 eV to 3 keV are stored in an ion trap from a single pulse of 5.9 MeV antiprotons leaving LEAR, thus a trapping efficiency exceeding of 4 {times} 10{sup {minus}4} is established. Trapped antiprotons maintain their initial energy distribution unless allowed to collide with a cloud of trapped electrons, whereupon they slow and cool below 1 meV in 10 s, and fall into a harmonic potential well suited for precision mass measurements. The slowing, trapping and cooling of antiprotons are the main focus of this thesis. The stored antiprotons are in thermal equilibrium at 4.2 K. In this ion trap, the antiproton cyclotron frequency is measured and compared with the proton (or electron) cyclotron frequency. The new measured ratio of the antiproton and proton inertial masses, with its 4 {times} 10{sup {minus}8} uncertainty, is more than three orders of magnitude more accurate than previous measurements using exotic atoms. This is a most precise test of CPT invariance with baryons. The antiproton lifetime in an ion trap was measured to be more than 103 days by trapping a cloud of antiprotons for 59 days. The indicates the number density of atoms is less than 100/cm{sup 3} which corresponds to the pressure in the vacuum chamber being less than 5 {times} 10{sup {minus}17} Torr at 4.2 K if we apply the ideal gas law.

  16. Large spin relaxation rates in trapped submerged-shell atoms

    SciTech Connect

    Connolly, Colin B.; Au, Yat Shan; Doret, S. Charles; Doyle, John M.; Ketterle, Wolfgang

    2010-01-15

    Spin relaxation due to atom-atom collisions is measured for magnetically trapped erbium and thulium atoms at a temperature near 500 mK. The rate constants for Er-Er and Tm-Tm collisions are 3.0x10{sup -10} and 1.1x10{sup -10} cm{sup 3} s{sup -1}, respectively, 2-3 orders of magnitude larger than those observed for highly magnetic S-state atoms. This is strong evidence for an additional, dominant, spin relaxation mechanism, electronic interaction anisotropy, in collisions between these 'submerged-shell,' Lnot =0 atoms. These large spin relaxation rates imply that evaporative cooling of these atoms in a magnetic trap will be highly inefficient.

  17. Electrostatic trapping of metastable NH molecules

    SciTech Connect

    Hoekstra, Steven; Metsaelae, Markus; Zieger, Peter C.; Scharfenberg, Ludwig; Gilijamse, Joop J.; Meijer, Gerard; Meerakker, Sebastiaan Y. T. van de

    2007-12-15

    We report on the Stark deceleration and electrostatic trapping of {sup 14}NH (a{sup 1}{delta}) radicals. In the trap, the molecules are excited on the spin-forbidden A{sup 3}{pi}<-a{sup 1}{delta} transition and detected via their subsequent fluorescence to the X{sup 3}{sigma}{sup -} ground state. The 1/e trapping time is 1.4{+-}0.1 s, from which a lower limit of 2.7 s for the radiative lifetime of the a{sup 1}{delta}, v=0, J=2 state is deduced. The spectral profile of the molecules in the trapping field is measured to probe their spatial distribution. Electrostatic trapping of metastable NH followed by optical pumping of the trapped molecules to the electronic ground state is an important step toward accumulation of these radicals in a magnetic trap.

  18. Ion traps fabricated in a CMOS foundry

    SciTech Connect

    Mehta, K. K.; Ram, R. J.; Eltony, A. M.; Chuang, I. L.; Bruzewicz, C. D.; Sage, J. M. Chiaverini, J.

    2014-07-28

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  19. Scalable Designs for Planar Ion Trap Arrays

    NASA Astrophysics Data System (ADS)

    Slusher, R. E.

    2007-03-01

    Recent progress in quantum operations with trapped ion qubits has been spectacular for qubit counts up to approximately ten ions. Two qubit quantum gates, quantum error correction, simple quantum algorithms and entanglement of up to 8 qubits have been demonstrated by groups including those at NIST, University of Michigan, University of Innsbruck and Oxford. Interesting problems in quantum information processing including quantum simulations of condensed matter systems and quantum repeaters for long distance quantum communication systems require hundreds or thousands of qubits. Initial designs for an ion trap ``Quantum CCD'' using spatially multiplexed planar ion traps as well as initial experiments using planar ion traps are promising routes to scaling up the number of trapped ions to more interesting levels. We describe designs for planar ion traps fabricated using silicon VLSI techniques. This approach allows the control voltages required for the moving and positioning the ions in the array to be connected vertically through the silicon substrate to underlying CMOS electronics. We have developed techniques that allow the ion trap structures to be fabricated monolithically on top of the CMOS electronics. The planar traps have much weaker trapping depths than the more conventional multi-level traps. However, the trap depths are still adequate for trapping hot ions from many ion sources. The planar traps also involve more complex configurations for laser cooling and micromotion control. Initial solutions to these problems will be presented. Laser access to the ions can be provided by laser beams grazing the trap surface or by using vertical slots through the trap chip. We will also discuss limits imposed by power dissipation and ion transport through trap junctions (e.g. crosses and Ys). We have fabricated these VLSI based traps in a number of configurations. Initial fabrication and packaging challenges will be discussed. D. Kielpinski, C. Monroe, and D.J. Wineland

  20. Sex-linked dominant

    MedlinePlus

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... can be either an autosomal chromosome or a sex chromosome. It also depends on whether the trait ...

  1. Electron cooling

    NASA Astrophysics Data System (ADS)

    Meshkov, I.; Sidorin, A.

    2004-10-01

    The brief review of the most significant and interesting achievements in electron cooling method, which took place during last two years, is presented. The description of the electron cooling facilities-storage rings and traps being in operation or under development-is given. The applications of the electron cooling method are considered. The following modern fields of the method development are discussed: crystalline beam formation, expansion into middle and high energy electron cooling (the Fermilab Recycler Electron Cooler, the BNL cooler-recuperator, cooling with circulating electron beam, the GSI project), electron cooling in traps, antihydrogen generation, electron cooling of positrons (the LEPTA project).

  2. Multi-ring trap as a reservoir of cooled antiprotons

    SciTech Connect

    Ichioka, T.; Yamazaki, Y.; Higaki, H.; Komaki, K.; Hori, M.; Oshima, N.; Mohri, A.; Kuroki, K.

    1999-12-10

    For the ASACUSA project, a new charged particle trap was designed and constructed. Like a Penning-Malmberg trap, static electric and static magnetic fields are used. Multi-ring electrode is exploited to generate a harmonic potential on the trap axis. It enables the confinement of a number of antiprotons and electrons for the electron cooling. Upon its design, plasma behavior of trapped particle clouds was taken into consideration. As the first step, trap performances have been checked with electrons. Current status are presented.

  3. Spectroscopy with trapped highly charged ions

    SciTech Connect

    Beiersdorfer, P

    2008-01-23

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed, and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  4. Current drive generation based on autoresonance and intermittent trapping mechanisms.

    PubMed

    Gell, Y; Nakach, R

    1999-09-01

    Two mechanisms for generating streams of high-velocity electrons are presented. One has its origin in auto resonance (AR) interaction, which takes place in the system after a trapping conditioning stage, the second being dominated by the trapping process itself. These mechanisms are revealed from the study of the relativistic motion of an electron in a configuration consisting of two counterpropagating electromagnetic waves along a constant magnetic field in a dispersive medium. Using a Hamiltonian formalism, we have numerically solved the equations of motion and presented the results in a set of figures showing the generation of streams of electrons having high parallel velocities. Insight into these numerical results is gained from a theoretical analysis, which consists of a reformulation of the equations of motion. The operation of these mechanisms was found to circumvent the deterioration of the electron acceleration process that is characteristic for a dispersive medium, thus allowing for an effective generation of a current drive. Discussion of the results follows.

  5. A sensitive detection method for high resolution spectroscopy of trapped antihydrogen, hydrogen and other trapped species

    NASA Astrophysics Data System (ADS)

    Lenz Cesar, Claudio

    2016-04-01

    A method for detection of the weak 1s-2s laser excitation of a few trapped antihydrogen atoms is described. It involves the typical antihydrogen trapping environment that combines a magnetic trap for the atoms as well as a Penning trap for its constituent particles. By photoionization of the excited state the photoion can be kept in a weak Penning trap and at a suitable time be ejected towards a charged particle detector such as a microchannel plate or a channel electron multiplier. Since it does not rely on annihilation, the method is also suitable for trapped hydrogen and may find application with other species when a weak transition to a metastable state is intended and only a few trapped atoms or molecules are available.

  6. The thermodynamics and kinetics of electron transfer between cytochrome b6f and photosystem I in the chlorophyll d-dominated cyanobacterium, Acaryochloris marina.

    PubMed

    Bailleul, Benjamin; Johnson, Xenie; Finazzi, Giovanni; Barber, James; Rappaport, Fabrice; Telfer, Alison

    2008-09-12

    We have investigated the photosynthetic properties of Acaryochloris marina, a cyanobacterium distinguished by having a high level of chlorophyll d, which has its absorption bands shifted to the red when compared with chlorophyll a. Despite this unusual pigment content, the overall rate and thermodynamics of the photosynthetic electron flow are similar to those of chlorophyll a-containing species. The midpoint potential of both cytochrome f and the primary electron donor of photosystem I (P(740)) were found to be unchanged with respect to those prevailing in organisms having chlorophyll a, being 345 and 425 mV, respectively. Thus, contrary to previous reports (Hu, Q., Miyashita, H., Iwasaki, I. I., Kurano, N., Miyachi, S., Iwaki, M., and Itoh, S. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 13319-13323), the midpoint potential of the electron donor P(740) has not been tuned to compensate for the decrease in excitonic energy in A. marina and to maintain the reducing power of photosystem I. We argue that this is a weaker constraint on the engineering of the oxygenic photosynthetic electron transfer chain than preserving the driving force for plastoquinol oxidation by P(740), via the cytochrome b(6)f complex. We further show that there is no restriction in the diffusion of the soluble electron carrier between cytochrome b(6)f and photosystem I in A. marina, at variance with plants. This difference probably reflects the simplified ultrastructure of the thylakoids of this organism, where no segregation into grana and stroma lamellae is observed. Nevertheless, chlorophyll fluorescence measurements suggest that there is energy transfer between adjacent photosystem II complexes but not from photosystem II to photosystem I, indicating spatial separation between the two photosystems. PMID:18635535

  7. Electron

    NASA Astrophysics Data System (ADS)

    Springford, Michael

    1997-03-01

    1. J. J. Thomson and the discovery of the electron A. B. P. Pippard; 2. The isolated electron W. N. Cottingham; 3. The relativistic electron D. I. Olive; 4. The electron glue B. L. Gyorffy; 5. The electron fluid P. Coleman; 6. The magnetic electron G. G. Lonzarich; 7. The paired electron A. J. Leggett; 8. The heavy electron M. Springford; 9. The coherent electron Y. Imry and M. Peskin; 10. The composite electron R. Nicholas; 11. The electron in the cosmos M. S. Longair.

  8. Electron

    NASA Astrophysics Data System (ADS)

    Springford, Michael

    2008-12-01

    1. J. J. Thomson and the discovery of the electron A. B. P. Pippard; 2. The isolated electron W. N. Cottingham; 3. The relativistic electron D. I. Olive; 4. The electron glue B. L. Gyorffy; 5. The electron fluid P. Coleman; 6. The magnetic electron G. G. Lonzarich; 7. The paired electron A. J. Leggett; 8. The heavy electron M. Springford; 9. The coherent electron Y. Imry and M. Peskin; 10. The composite electron R. Nicholas; 11. The electron in the cosmos M. S. Longair.

  9. Trapping polar molecules in an ac trap

    SciTech Connect

    Bethlem, Hendrick L.; Veldhoven, Jacqueline van; Schnell, Melanie; Meijer, Gerard

    2006-12-15

    Polar molecules in high-field seeking states cannot be trapped in static traps as Maxwell's equations do not allow a maximum of the electric field in free space. It is possible to generate an electric field that has a saddle point by superposing an inhomogeneous electric field to an homogeneous electric field. In such a field, molecules are focused along one direction, while being defocused along the other. By reversing the direction of the inhomogeneous electric field the focusing and defocusing directions are reversed. When the fields are being switched back and forth at the appropriate rate, this leads to a net focusing force in all directions. We describe possible electrode geometries for creating the desired fields and discuss their merits. Trapping of {sup 15}ND{sub 3} ammonia molecules in a cylindrically symmetric ac trap is demonstrated. We present measurements of the spatial distribution of the trapped cloud as a function of the settings of the trap and compare these to both a simple model assuming a linear force and to full three-dimensional simulations of the experiment. With the optimal settings, molecules within a phase-space volume of 270 mm{sup 3} (m/s){sup 3} remain trapped. This corresponds to a trap depth of about 5 mK and a trap volume of about 20 mm{sup 3}.

  10. Long-range electronic reconstruction to a dxz,yz-dominated Fermi surface below the LaAlO₃/SrTiO₃ interface.

    PubMed

    Petrović, A P; Paré, A; Paudel, T R; Lee, K; Holmes, S; Barnes, C H W; David, A; Wu, T; Tsymbal, E Y; Panagopoulos, C

    2014-01-01

    Low dimensionality, broken symmetry and easily-modulated carrier concentrations provoke novel electronic phase emergence at oxide interfaces. However, the spatial extent of such reconstructions - i.e. the interfacial "depth" - remains unclear. Examining LaAlO₃/SrTiO₃ heterostructures at previously unexplored carrier densities n(2D) ≥ 6.9 × 10(14) cm(-2), we observe a Shubnikov-de Haas effect for small in-plane fields, characteristic of an anisotropic 3D Fermi surface with preferential dxz,yz orbital occupancy extending over at least 100 nm perpendicular to the interface. Quantum oscillations from the 3D Fermi surface of bulk doped SrTiO₃ emerge simultaneously at higher n(2D). We distinguish three areas in doped perovskite heterostructures: narrow (<20 nm) 2D interfaces housing superconductivity and/or other emergent phases, electronically isotropic regions far (>120 nm) from the interface and new intermediate zones where interfacial proximity renormalises the electronic structure relative to the bulk. PMID:24939804

  11. Long-range electronic reconstruction to a dxz,yz-dominated Fermi surface below the LaAlO3/SrTiO3 interface

    PubMed Central

    Petrović, A. P.; Paré, A.; Paudel, T. R.; Lee, K.; Holmes, S.; Barnes, C. H. W.; David, A.; Wu, T.; Tsymbal, E. Y.; Panagopoulos, C.

    2014-01-01

    Low dimensionality, broken symmetry and easily-modulated carrier concentrations provoke novel electronic phase emergence at oxide interfaces. However, the spatial extent of such reconstructions - i.e. the interfacial “depth” - remains unclear. Examining LaAlO3/SrTiO3 heterostructures at previously unexplored carrier densities n2D ≥ 6.9 × 1014 cm−2, we observe a Shubnikov-de Haas effect for small in-plane fields, characteristic of an anisotropic 3D Fermi surface with preferential dxz,yz orbital occupancy extending over at least 100 nm perpendicular to the interface. Quantum oscillations from the 3D Fermi surface of bulk doped SrTiO3 emerge simultaneously at higher n2D. We distinguish three areas in doped perovskite heterostructures: narrow (<20 nm) 2D interfaces housing superconductivity and/or other emergent phases, electronically isotropic regions far (>120 nm) from the interface and new intermediate zones where interfacial proximity renormalises the electronic structure relative to the bulk. PMID:24939804

  12. Electronic Impact of Inclusions in Diamond

    SciTech Connect

    Muller, E.M.; Smedley, J.; Raghothamachar, B.; Gaowei, M.; Keister, J.W.; Ben-Zvi, I.; Dudley, M.; Wu, Q.

    2010-04-07

    X-ray topography data are compared with photodiode responsivity maps to identify potential candidates for electron trapping in high purity, single crystal diamond. X-ray topography data reveal the defects that exist in the diamond material, which are dominated by non-electrically active linear dislocations. However, many diamonds also contain defects configurations (groups of threading dislocations originating from a secondary phase region or inclusion) in the bulk of the wafer which map well to regions of photoconductive gain, indicating that these inclusions are a source of electron trapping which affect the performance of diamond X-ray detectors. It was determined that photoconductive gain is only possible with the combination of an injecting contact and charge trapping in the near surface region. Typical photoconductive gain regions are 0.2 mm across; away from these near-surface inclusions the device yields the expected diode responsivity.

  13. Dominance of the Breit interaction in the cross section and circular polarization of x-ray radiation following longitudinally-polarized-electron-impact excitation of highly charged ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Dong, Chen-Zhong; Jiang, Jun

    2014-08-01

    Longitudinally-polarized-electron-impact excitation cross sections from the ground state to the individual magnetic sublevels of the excited state 1s2s22p3/2(J = 2) of highly charged Be-like ions are calculated using a fully relativistic distorted-wave method. The contributions of the Breit interaction to the cross sections and circular polarizations of the 1s2s22p3/2(J = 2)→1s22s2(J = 0) magnetic quadrupole (M2) line for selected Be-like Ag43+, Ho63+, and Bi79+ ions are investigated systematically. It is found that the Breit interaction has a large effect and makes the cross sections increase, especially to the mf = -1 and -2 sublevels, the Breit interaction can modify the cross sections by several orders of magnitude. These dramatic influences also lead to a remarkable decrease in the circular polarization of subsequent x-ray radiation, the character of which becomes more and more evident with increasing incident energy and atomic number. And all these characteristics are very different from the conclusions for the linear polarization of radiation following the electron-impact process [S. Fritzsche, A. Surzhykov, and T. Stöhlker, Phys. Rev. Lett. 103, 113001 (2009), 10.1103/PhysRevLett.103.113001; Z. W. Wu, J. Jiang, and C. Z. Dong, Phys. Rev. A 84, 032713 (2011), 10.1103/PhysRevA.84.032713].

  14. Effects of extreme magnetic quadrupole fields on penning traps and the consequences for antihydrogen trapping.

    PubMed

    Fajans, J; Bertsche, W; Burke, K; Chapman, S F; van der Werf, D P

    2005-10-01

    Measurements on electrons confined in a Penning trap show that extreme quadrupole fields destroy particle confinement. Much of the particle loss comes from the hitherto unrecognized ballistic transport of particles directly into the wall. The measurements scale to the parameter regime used by ATHENA and ATRAP to create antihydrogen, and suggest that quadrupoles cannot be used to trap antihydrogen.

  15. Effects of Extreme Magnetic Quadrupole Fields on Penning Traps and the Consequences for Antihydrogen Trapping

    SciTech Connect

    Fajans, J.; Bertsche, W.; Burke, K.; Chapman, S.F.; Werf, D.P. van der

    2005-10-07

    Measurements on electrons confined in a Penning trap show that extreme quadrupole fields destroy particle confinement. Much of the particle loss comes from the hitherto unrecognized ballistic transport of particles directly into the wall. The measurements scale to the parameter regime used by ATHENA and ATRAP to create antihydrogen, and suggest that quadrupoles cannot be used to trap antihydrogen.

  16. Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode

    SciTech Connect

    Tyagi, Manisha; Tomar, Monika; Gupta, Vinay

    2015-06-15

    Highlights: • p-NiO/n-ZnO heterojunction diode with enhanced junction parameters has been prepared. • Temperature dependent I–V throw insight into the involved conduction mechanism. • SCLC with exponential trap distribution was found to be the dominant mechanism. • C–V measurement at different frequencies support the presence of traps. - Abstract: The development of short-wavelength p–n junction is essentially important for the realization of transparent electronics for next-generation optoelectronic devices. In the present work, a p–n heterojunction diode based on p-NiO/n-ZnO has been prepared under the optimised growth conditions exhibiting improved electrical and junction parameters. The fabricated heterojunction gives typical current–voltage (I–V) characteristics with good rectifying behaviour (rectification ratio ≈ 10{sup 4} at 2 V). The temperature dependent current–voltage characteristics of heterojunction diode have been studied and origin of conduction mechanism is identified. The space-charge limited conduction with exponential trap distribution having deep level trap is found to be the dominant conduction mechanism in the fabricated p–n heterojunction diode. The conduction and valence band discontinuities for NiO/ZnO heterostructure have been determined from the capacitance–voltage (C–V) measurements.

  17. Charge trapping properties of alternative high-kappa dielectrics in MOS devices

    NASA Astrophysics Data System (ADS)

    Zhou, Xing

    High-kappa dielectrics are promising candidates to replace SiO 2 in advanced integrated circuits in future space systems. Studies of the effects of ionizing radiation and bias-temperature stress (BTS) on high-kappa dielectrics were performed. Trapped charge densities are evaluated as functions of temperature and stress time. Prior radiation exposure enhances BTS-induced degradation in these devices. Worst-case responses in combined effects are positive (or zero) bias irradiation followed by NBTS for HfO2-based devices. Degradation due to oxide or interface trap-charge changes in magnitude with the bias polarity during switched-bias annealing either after irradiation or constant voltage stress (CVS). This demonstrates that metastable electron trapping (dominant during post-rad annealing) and hydrogen transport and reactions (dominant during post-CVS annealing) in the near-interfacial dielectric layers play significant roles in the defect formation process. Additional defect growth with time was observed as a result of additional charge injection through the gate stacks during the annealing process. These results provide insights into fundamental trapping properties of high-kappa dielectrics and can be used to help predict long-term reliability of these devices.

  18. Microscale ion trap mass spectrometer

    DOEpatents

    Ramsey, J. Michael; Witten, William B.; Kornienko, Oleg

    2002-01-01

    An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.

  19. Electron Spin Resonance Study of Interface Trap States and Charge Carrier Concentration in Rubrene Single-Crystal Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Tsuji, Masaki; Arai, Norimichi; Marumoto, Kazuhiro; Takeya, Jun; Shimoi, Yukihiro; Tanaka, Hisaaki; Kuroda, Shin-ichi; Takenobu, Taishi; Iwasa, Yoshihiro

    2011-08-01

    Field-induced charge carriers at the semiconductor/dielectric interface of rubrene single-crystal field-effect transistors (RSC-FETs) were studied by ESR. We fabricated bottom-contact RSC-FETs to be used for ESR measurements by laminating RSCs onto SiO2 and polymer/SiO2 gate dielectric surfaces. The observed ESR spectra depict a minimal dependence on gate voltage, whose result is in sharp contrast to those obtained using RSC-FETs fabricated by the deposition of a parylene C gate dielectric. This behavior indicates that few deep trap levels are generated by the lamination technique. The dependence of ESR intensity on drain voltage was also investigated using gradual channel approximation.

  20. Electronic influence of β-diketonato-type ligands on the coordination of 1,5-cyclooctadiene to palladium(II) as defined by 'Venus fly trap' geometric parameters.

    PubMed

    Hill, Tania N; Roodt, Andreas; Steyl, Gideon

    2013-02-01

    A range of single-crystal structures of the type [Pd(cod)(LL'-Bid)]A, where LL'-Bid = acetylacetonato (acac), thenoyltrifluoroactetonato (thtfac) and hexafluoroacetylacetonato (hfacac), and A = tetrafluoroborate (BF(4)(-)) and hexafluorophosphate (PF(6)(-)), are reported. The complexes [Pd(cod)(acac)]PF(6) (I), [Pd(cod)(thtfac)]PF(6) (III), [Pd(cod)(thtfac)]BF(4) (IV) and [Pd(cod)(hfacac)]PF(6) (V) are isostructural in the monoclinic space group P2(1)/c. The influence of the variation of the β-diketonato-type ligands on the coordination geometry of cis,cis-1,5-cycloocta-1,5-diene (cod) was investigated and found that no significant changes to the Pd-C and C=C bond distances were observed. The `Venus fly trap' parameters vary by 7.8° for the 'jaw' angle (ψ), while the `bite' angle (χ) remains virtually constant.

  1. Electronic states at the interface between indium tin oxide and silicon

    SciTech Connect

    Malmbekk, H.; Vines, L.; Monakhov, E. V.; Svensson, B. G.

    2011-10-01

    Electronic properties and thermal stability of interfacial states between indium tin oxide (ITO) and monocrystalline silicon (Si) have been investigated. ITO films with thicknesses of about 300 nm were deposited by dc magnetron sputtering on n- and p-type (100) Si at room temperature. The samples were then annealed for 30 min at different temperatures in the range 100-600 deg. C, and the ITO-Si junction was found to exhibit rectifying behavior. Current-voltage (IV), capacitance-voltage (CV), and deep-level transient spectroscopy (DLTS) measurements have been used to electrically characterize the ITO-Si interface. DLTS measurements on p-type Si samples reveal a dominant hole trap at around 0.37 eV above the valence band edge. In the n-type samples, a broad band of electron traps occur in the range 0.1-0.2 eV below the conduction band edge. These electron traps display wide DLTS peaks, indicating a band of electronic energy levels rather than well-defined states originating from isolated point defects. All the traps in both the p- and n-type samples are found to be located near the ITO-Si interface. Investigations of the thermal stability of the observed electronic states show that the dominant hole trap anneal out after 30 min at 250 deg. C, while the dominant electron traps can be stable up to 500 deg. C. IV and DLTS measurements demonstrate a clear correlation between the annealing of the dominant electronic states and increase in the junction rectification.

  2. Sorption vacuum trap

    NASA Technical Reports Server (NTRS)

    Barrington, A. E.; Caruso, A. J.

    1970-01-01

    Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.

  3. Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H2

    PubMed Central

    Joo, Ji Bong; Dillon, Robert; Lee, Ilkeun; Yin, Yadong; Bardeen, Christopher J.; Zaera, Francisco

    2014-01-01

    The production of hydrogen from water with semiconductor photocatalysts can be promoted by adding small amounts of metals to their surfaces. The resulting enhancement in photocatalytic activity is commonly attributed to a fast transfer of the excited electrons generated by photon absorption from the semiconductor to the metal, a step that prevents deexcitation back to the ground electronic state. Here we provide experimental evidence that suggests an alternative pathway that does not involve electron transfer to the metal but requires it to act as a catalyst for the recombination of the hydrogen atoms made via the reduction of protons on the surface of the semiconductor instead. PMID:24843154

  4. Monitoring Air Pollution In and Around the Premises of Industrial Parks Using Two Types of Electronic Nose and Gas Chromatography-Ion Trap Mass Spectrometry

    SciTech Connect

    Liu, Jen Yu; Ling, Yong Chien, Sr.

    2004-03-31

    Two types of electronic nose and GC-MS were used to monitor air pollution in the premises of seven industrial parks. Real-time analysis of air at the sites was performed using portable electronic noses. Air samples were analyzed from the up and down stream direction along the wind flow to investigate the effect or distribution of the pollutants on the surrounding environment. The advantage of multisensors in spatially resolved sensing for direct multicomponent analysis was explored to minimize tedious sample preparation procedure. Electronic nose could give characteristic odor fingerprints, which were correlated with the pollutants analyzed using GC-MS providing detailed diagnostic information such as the presence of hydrocarbons, halocarbons, phenols, nitrogenous benzenes, sulfur compounds, lipid-derived compounds, polysiloxanes, etc. Subsequent principal component analysis helped in identifying the source of pollutants. The applicability of the electronic nose was demonstrated confirming it to be a simple and rapid screening method for identifying the pollutant source.

  5. RELATIVISTIC GLOBAL SOLUTIONS OF NEUTRINO-DOMINATED ACCRETION FLOWS

    SciTech Connect

    Xue Li; Liu Tong; Gu Weimin; Lu Jufu

    2013-08-15

    Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes are plausible candidates for the central engines of gamma-ray bursts (GRBs). We investigate one-dimensional global solutions of NDAFs, taking into account general relativity in the Kerr metric, neutrino physics, and nucleosynthesis more precisely than previous works. We calculate 16 solutions with different characterized accretion rates and black hole spins to exhibit the radial distributions of various physical properties in NDAFs. We confirm that the electron degeneracy has important effects in NDAFs and we find that the electron fraction is about 0.46 in the outer region for all 16 solutions. From the perspective of the mass fraction, free nucleons, {sup 4}He, and {sup 5}6Fe dominate in the inner, middle, and outer regions, respectively. The influence of neutrino trapping on the annihilation is of importance for the superhigh accretion ( M-dot =10 M{sub sun} s{sup -1}) and most of the 16 solutions have an adequate annihilation luminosity for GRBs.

  6. Electron Acceleration by Cascading Reconnection in the Solar Corona. I. Magnetic Gradient and Curvature Drift Effects

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Büchner, J.; Bárta, M.; Gan, W.; Liu, S.

    2015-12-01

    We investigate the electron acceleration by magnetic gradient and curvature drift effects in cascading magnetic reconnection of a coronal current sheet via a test particle method in the framework of the guiding center approximation. After several Alfvén transit times, most of the electrons injected at the current sheet are still trapped in the magnetic islands. A small fraction of the injected electrons precipitate into the chromosphere. The acceleration of trapped electrons is dominated by the magnetic curvature drifts, which change the parallel momentum of the electron, and appears to be more efficient than the acceleration of precipitating electrons, which is dominated by the perpendicular momentum change caused by the magnetic gradient drifts. With the resulting trapped energetic electron distribution, the corresponding hard X-ray (HXR) radiation spectra are calculated using an optically thin Bremsstrahlung model. Trapped electrons may explain flare loop top HXR emission as well as the observed bright spots along current sheets trailing coronal mass ejections. The asymmetry of precipitating electrons with respect to the polarity inversion line may contribute to the observed asymmetry of footpoint emission.

  7. ELECTRON ACCELERATION BY CASCADING RECONNECTION IN THE SOLAR CORONA. I. MAGNETIC GRADIENT AND CURVATURE DRIFT EFFECTS

    SciTech Connect

    Zhou, X.; Büchner, J.; Bárta, M.; Gan, W.; Liu, S.

    2015-12-10

    We investigate the electron acceleration by magnetic gradient and curvature drift effects in cascading magnetic reconnection of a coronal current sheet via a test particle method in the framework of the guiding center approximation. After several Alfvén transit times, most of the electrons injected at the current sheet are still trapped in the magnetic islands. A small fraction of the injected electrons precipitate into the chromosphere. The acceleration of trapped electrons is dominated by the magnetic curvature drifts, which change the parallel momentum of the electron, and appears to be more efficient than the acceleration of precipitating electrons, which is dominated by the perpendicular momentum change caused by the magnetic gradient drifts. With the resulting trapped energetic electron distribution, the corresponding hard X-ray (HXR) radiation spectra are calculated using an optically thin Bremsstrahlung model. Trapped electrons may explain flare loop top HXR emission as well as the observed bright spots along current sheets trailing coronal mass ejections. The asymmetry of precipitating electrons with respect to the polarity inversion line may contribute to the observed asymmetry of footpoint emission.

  8. Ion temperature gradient driven turbulence with strong trapped ion resonance

    SciTech Connect

    Kosuga, Y.; Itoh, S.-I.; Diamond, P. H.; Itoh, K.; Lesur, M.

    2014-10-15

    A theory to describe basic characterization of ion temperature gradient driven turbulence with strong trapped ion resonance is presented. The role of trapped ion granulations, clusters of trapped ions correlated by precession resonance, is the focus. Microscopically, the presence of trapped ion granulations leads to a sharp (logarithmic) divergence of two point phase space density correlation at small scales. Macroscopically, trapped ion granulations excite potential fluctuations that do not satisfy dispersion relation and so broaden frequency spectrum. The line width from emission due only to trapped ion granulations is calculated. The result shows that the line width depends on ion free energy and electron dissipation, which implies that non-adiabatic electrons are essential to recover non-trivial dynamics of trapped ion granulations. Relevant testable predictions are summarized.

  9. A CF4 based positron trap

    NASA Astrophysics Data System (ADS)

    Marjanovic, Srdjan; Bankovic, Ana; Dujko, Sasa; Deller, Adam; Cooper, Ben; Cassidy, David; Petrovic, Zoran

    2016-05-01

    All positron buffer gas traps in use rely on N2 as the primary trapping gas due to its conveniently placed a1 Π electronic excitation cross section that is large enough to compete with positronium (Ps) formation in the threshold region. Its energy loss of 8.5 eV is sufficient to capture positrons into a potential well upon a single collision. The competing Ps formation, however, limits the efficiency of the two stage trap to 25 %. As positron moderators produce beams with energies of several eV we have proposed to use CF4 in the first stage of the trap, due to its large vibrational excitation cross section, where several vibrational excitations would be sufficient to trap the positrons with small losses. Apart from the simulations we also report the results of attempts to apply this approach to an existing Surko-type positron trap. Operating the unmodified trap as a CF4 based device proved to be unsuccessful, due primarily to excessive scattering due to high CF4 pressure in the first stage. However, the performance was consistent with subsequent simulations using the real system parameters. This agreement indicates that an efficient CF4 based scheme may be realized in an appropriately designed trap. also at Serbian Academy of Sciences and Arts, Knez Mihajlova 35, 11000 Belgrade, Serbia.

  10. Effect of Trapping on Vortices in Plasma

    NASA Astrophysics Data System (ADS)

    Siddiqui, H.; Shah, H. A.; Tsintsadze, N. L.

    2008-09-01

    Microscopic trapping of electrons is considered in one- and two-dimensional potential wells (shallow and deep) and its effect on vortex formation is investigated by deriving modified Hasegawa Mima (HM) equations. Inhomogenieties in the number density and magnetic field are taken into account. The modified HM equations are analysed by considering bounce frequencies of the trapped particles. Solitary vortices are obtained via Kortweg deVries (KdV) type of equations and both exact and Sagdeev potential solutions are obtained. In general it is observed that trapping produces stronger non-linearities and this leads to the modification of the original HM equation.

  11. Atoms and plasmas in a high-magnetic-field trap

    SciTech Connect

    Raithel, G.; Knuffman, B.; Shah, M. H.; Hempel, C.; Paradis, E.; Mhaskar, R.; Zhang, X.; Choi, J.-H.; Povilus, A. P.; Guest, J. R.

    2008-08-08

    We investigate cold rubidium plasmas in a particle trap that has the unique capability to simultaneously laser-cool and trap neutral atoms as well as to confine plasmas in magnetic fields of about three Tesla. The atom trap is a high-field Ioffe-Pritchard laser trap, while the plasma trap is a Ioffe-Penning trap that traps electrons and ions in separate wells. The observed plasma dynamics is characterized by a breathing-mode oscillation of the positive (ionic) plasma component, which feeds back on the behavior of the negative (electron) component of the plasma. At higher densities, the observed oscillations become nonlinear. The electron component has been found to undergo rapid cooling. We further report on the recombination of magnetized plasmas into Rydberg atoms in transient traps and quasi-steady-state traps. In transient traps, large numbers of recombined Rydberg atoms in high-lying states are observed. In quasi-steady-state traps, the measured numbers of recombined atoms are lower and the binding energies higher.

  12. Stokes Trap: Multiplexed particle trapping and manipulation using fluidics

    NASA Astrophysics Data System (ADS)

    Shenoy, Anish; Schroeder, Charles

    We report the development of the Stokes Trap, which is a multiplexed microfluidic trap for control over an arbitrary number of small particles in a microfluidic device. Our work involves the design and implementation of ``smart'' flow-based devices by coupling feedback control with microfluidics, thereby enabling new routes for the fluidic-directed assembly of particles. Here, we discuss the development of a new method to achieve multiplexed microfluidic trapping of an arbitrary number of particles using the sole action of fluid flow. In particular, we use a Hele-Shaw microfluidic cell to generate hydrodynamic forces on particles in a viscous-dominated flow defined by the microdevice geometry and imposed peripheral flow rates. This platform allows for a high degree of flow control over individual particles and can be used for manufacturing novel particles for fundamental studies, using fluidic-directed assembly. From a broader perspective, our work provides a solid framework for guiding the design of next-generation, automated on-chip assays.

  13. The social dominance paradox.

    PubMed

    Cook, Jennifer Louise; den Ouden, Hanneke E M; Heyes, Cecilia M; Cools, Roshan

    2014-12-01

    Dominant individuals report high levels of self-sufficiency, self-esteem, and authoritarianism. The lay stereotype suggests that such individuals ignore information from others, preferring to make their own choices. However, the nonhuman animal literature presents a conflicting view, suggesting that dominant individuals are avid social learners, whereas subordinates focus on learning from private experience. Whether dominant humans are best characterized by the lay stereotype or the animal view is currently unknown. Here, we present a "social dominance paradox": using self-report scales and computerized tasks, we demonstrate that socially dominant people explicitly value independence, but, paradoxically, in a complex decision-making task, they show an enhanced reliance (relative to subordinate individuals) on social learning. More specifically, socially dominant people employed a strategy of copying other agents when the agents' responses had a history of being correct. However, in humans, two subtypes of dominance have been identified: aggressive and social. Aggressively dominant individuals, who are as likely to "get their own way" as socially dominant individuals but who do so through the use of aggressive or Machiavellian tactics, did not use social information, even when it was beneficial to do so. This paper presents the first study of dominance and social learning in humans and challenges the lay stereotype in which all dominant individuals ignore others' views. The more subtle perspective we offer could have important implications for decision making in both the boardroom and the classroom. PMID:25454588

  14. Simultaneous use of gas chromatography/ion trap mass spectrometry - electron capture detector to improve the analysis of bromodiphenyl ethers in biological and environmental samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mass range limit of some gas chromatograph/mass spectrometers (GC/MS) prohibits the sensitive analysis of higher brominated diphenyl ethers (BDEs). A gas chromatograph/electron capture detector (GC/ECD) can sensitively determine higher BDEs. In this study, a method that GC eluents were split wit...

  15. Trap style influences wild pig behavior and trapping success

    USGS Publications Warehouse

    Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.

    2011-01-01

    Despite the efforts of many natural resource professionals, wild pig (Sus scrofa) populations are expanding in many areas of the world. Although many creative techniques for controlling pig populations are being explored, trapping has been and still is themost commonly usedmethod of population control formany public and private land managers. We conducted an observational study to examine the efficiency of 2 frequently used trap styles: a small, portable box-style trap and a larger, semi-permanent, corral-style trap.We used game cameras to examine patterns of trap entry by wild pigs around each style of trap, and we conducted a trapping session to compare trapping success between trap styles. Adult female and juvenile wild pigs entered both styles of trap more readily than did adult males, and adult males seemed particularly averse to entering box traps. Less than 10% of adult male visits to box traps resulted in entries, easily the least percentage of any class at any style of trap. Adult females entered corral traps approximately 2.2 times more often per visit than box traps and re-entered corral traps >2 times more frequently. Juveniles entered and reentered both box and corral traps at similar rates. Overall (all-class) entry-per-visit rates at corral traps (0.71) were nearly double that of box traps (0.37). Subsequent trapping data supported these preliminary entry data; the capture rate for corral traps was >4 times that of box traps. Our data suggest that corral traps are temporally and economically superior to box traps with respect to efficiency; that is, corral traps effectively trap more pigs per trap night at a lower cost per pig than do box traps. ?? 2011 The Wildlife Society.

  16. Trapping Rydberg Atoms in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Anderson, Sarah E.

    2012-06-01

    Optical lattice traps for Rydberg atoms are of interest in advanced science and in practical applications. After a brief discussion of these areas of interest, I will review some basics of optical Rydberg-atom trapping. The trapping potential experienced by a Rydberg atom in an optical lattice is given by the spatial average of the free-electron ponderomotive energy weighted by the Rydberg electron's probability distribution. I will then present experimental results on the trapping of ^85Rb Rydberg atoms in a one-dimensional ponderomotive optical lattice (wavelength 1064 nm). The principal methods employed to study the lattice performance are microwave spectroscopy, which is used to measure the lattice's trapping efficiency, and photo-ionization, which is used to measure the dwell time of the atoms in the lattice. I have achieved a 90% trapping efficiency for ^85Rb 50S atoms by inverting the lattice immediately after laser excitation of ground-state atoms into Rydberg states. I have characterized the dwell time of the atoms in the lattice using photo-ionization of 50D5/2 atoms. In continued work, I have explored the dependence of the Rydberg-atom trapping potential on the angular portion of the atomic wavefunction. Distinct angular states exhibit different trapping behavior in the optical lattice, depending on how their wavefunctions are oriented relative to the lattice planes. Specifically, I have measured the lattice potential depth of sublevels of ^85Rb nD atoms (50<=n<=65) in a one-dimensional optical lattice with a transverse DC electric field. The trapping behavior varies substantially for the various angular sublevels, in agreement with theory. The talk will conclude with an outlook into planned experiments.

  17. Ecological and evolutionary traps

    USGS Publications Warehouse

    Schlaepfer, Martin A.; Runge, M.C.; Sherman, P.W.

    2002-01-01

    Organisms often rely on environmental cues to make behavioral and life-history decisions. However, in environments that have been altered suddenly by humans, formerly reliable cues might no longer be associated with adaptive outcomes. In such cases, organisms can become 'trapped' by their evolutionary responses to the cues and experience reduced survival or reproduction. Ecological traps occur when organisms make poor habitat choices based on cues that correlated formerly with habitat quality. Ecological traps are part of a broader phenomenon, evolutionary traps, involving a dissociation between cues that organisms use to make any behavioral or life-history decision and outcomes normally associated with that decision. A trap can lead to extinction if a population falls below a critical size threshold before adaptation to the novel environment occurs. Conservation and management protocols must be designed in light of, rather than in spite of, the behavioral mechanisms and evolutionary history of populations and species to avoid 'trapping' them.

  18. Genetic studies: dominant lethal study, sex linked recessive lethal, ames mutagenicity, and heritable translocation test of thermal processed, frozen, electron irradiated, and gamma irradiated chicken. Final report Jun 76-Aug 83

    SciTech Connect

    Sullivan, D.; Lusskin, R.M.; Thomson, G.M.; Kuzdas, C.D.; Ronning, D.C.

    1983-01-01

    Four samples of chicken meat identified as the frozen control, thermally processed, gamma sterilized (5.9 Mrad), and electron sterilized (5.9 MeV), along with negative and positive controls, were evaluated for genetic activity. The samples were evaluated for ability to induce dominant lethal mutations in spermatid and spermatozoan stages of spermatogenesis in mice fed 35 percent chicken meat. The test meat samples were not observed to have an effect on the incidence of the dominant lethal mutations. However, the positive control failed to give a positive response. The meat samples were investigated for mutagenic activity employing Drosophila melanogaster in the sex linked recessive lethal test. The samples were determined to be nonmutagenic in this test and the positive control gave a significant response. Reduced production of offspring in cultures of Drosophila reared on gamma irradiated chicken which could not be overcome by the addition of vitamins was observed. Pre-incubation tests with and without added mutagens revealed that in no case was a positive result observed in the Ames test from chicken meat without an added mutagen. The manner in which chicken meat was processed had no effect upon the response to the Ames test. A heritable translocation test in mice failed to reveal any cytological evidence of translocation heterozygosity in any of the chicken-containing diets.

  19. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  20. A CF4 based positron trap

    NASA Astrophysics Data System (ADS)

    Marjanović, Srdjan; Banković, Ana; Cassidy, David; Cooper, Ben; Deller, Adam; Dujko, Saša; Petrović, Zoran Lj

    2016-11-01

    All buffer-gas positron traps in use today rely on N2 as the primary trapping gas due to its conveniently placed {{{a}}}1{{\\Pi }} electronic excitation cross-section. The energy loss per excitation in this process is 8.5 eV, which is sufficient to capture positrons from low-energy moderated beams into a Penning-trap configuration of electric and magnetic fields. However, the energy range over which this cross-section is accessible overlaps with that for positronium (Ps) formation, resulting in inevitable losses and setting an intrinsic upper limit on the overall trapping efficiency of ∼25%. In this paper we present a numerical simulation of a device that uses CF4 as the primary trapping gas, exploiting vibrational excitation as the main inelastic capture process. The threshold for such excitations is far below that for Ps formation and hence, in principle, a CF4 trap can be highly efficient; our simulations indicate that it may be possible to achieve trapping efficiencies as high as 90%. We also report the results of an attempt to re-purpose an existing two-stage N2-based buffer-gas positron trap. Operating the device using CF4 proved unsuccessful, which we attribute to back scattering and expansion of the positron beam following interactions with the CF4 gas, and an unfavourably broad longitudinal beam energy spread arising from the magnetic field differential between the source and trap regions. The observed performance was broadly consistent with subsequent simulations that included parameters specific to the test system, and we outline the modifications that would be required to realise efficient positron trapping with CF4. However, additional losses appear to be present which require further investigation through both simulation and experiment.

  1. Trapped positrons observed by PAMELA experiment

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. V.; Adriani, O.; Barbarino, G.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F. S.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; Consiglio, L.; De Santis, C.; De Simone, N.; Di Felice, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobsky, S.; Krutkov, S. Yu; Kvashnin, A. N.; Leonov, A. A.; Malakhov, V. V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Merge, M.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Papini, P.; Palma, F.; Panico, B.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Vacchi, A.; Vannuccini, E.; Vasiliev, G. I.; Voronov, S. A.; Yurkin, Yu T.; Zampa, G.; Zampa, N.

    2016-02-01

    Measurements of electron and positron spatial distributions in energy range from 80 MeV to several GeV below the geomagnetic cutoff rigidity were carried out using the PAMELA magnetic spectrometer. The instrument is installed on board the Resurs-DK satellite which was launched June 15th 2006 on an elliptical orbit with the inclination 70 degrees and the altitude 350-600 km. The procedure of trajectories calculations in the geomagnetic filed gives a way to separate stably trapped and short lived albedo components produced in interactions of cosmic ray protons with the residual atmosphere. The work presents spatial distributions of trapped, quasitrapped and short-lived albedo electrons and positrons in the near Earth space. Electron to positron ratio points out on different production mechanism of trapped and quasitrapped particles.

  2. Geomagnetically trapped energetic helium nuclei

    SciTech Connect

    Chen, J.; Gregory Guzik, T.; Wefel, J.P.; Roger Pyle, K.; Cooper, J.F.

    1996-07-01

    Geomagnetically trapped helium nuclei, at high energy ({approximately}40{endash}100 MeV/nucleon), have been measured by the ONR-604 instrument during the 1990/1991 CRRES mission. The ONR-604 instrument resolved the isotopes of helium with a mass resolution of 0.1 amu. The energetic helium observed at {ital L}{lt}2.3 have a pitch angle distribution peaking perpendicular to the local magnetic field, which is characteristic of a trapped population. Both the trapped {sup 3}He and {sup 4}He show two peaks at {ital L}=1.2 and 1.9. Each isotope{close_quote}s flux, in each peak, can be characterized by a power law energy spectrum. The energy spectrum of the {sup 3}He is different from that of {sup 4}He, indicating that the {sup 3}He/{sup 4}He ratio is energy dependent. Over the energy range of 51{endash}86 MeV/nucleon, the {sup 3}He/{sup 4}He ratio is 8.7{plus_minus}3.1 at {ital L}=1.1{endash}1.5 and is 2.4{plus_minus}0.6 at {ital L}=1.5{endash}2.3. The trapped helium counting rates decrease gradually with time during the CRRES mission, when the anomalous component is excluded from the inner heliosphere, indicating that these high energy ions were not injected by flares during this time period. The decrease in intensity is attributed mainly to the events around {ital L}=1.9. The helium around {ital L}=1.2, dominated by {sup 3}He, does not show a significant temporal evolution, which implies a long-term energetic trapped {sup 3}He population. Two possible origins of the geomagnetically trapped helium isotopes are the interactions of energetic protons with the upper atmosphere and/or the inward diffusion and acceleration of helium ions due to electric-field fluctuations. {copyright} {ital 1996 American Institute of Physics.}

  3. A cooler Penning trap for the TITAN mass measurement facility

    SciTech Connect

    Chowdhury, U.; Kootte, B.; Good, M.; Lascar, D.; Schultz, B. E.; Dilling, J.; Gwinner, G.

    2015-01-09

    The TITAN facility at TRIUMF makes use of highly charged ions, charge-bred in an electron beam ion trap, to carry out accurate mass measurements on radioactive isotopes. We report on our progress to develop a cooler Penning trap, CPET, which aims at reducing the energy spread of the ions to ≈ 1 eV/charge prior to injection into the mass measurement trap. In off-line mode, we can now trap electron plasmas for minutes, and we observe the damping of the m = 1 diocotron plasma mode within ≈ 2 s.

  4. Al{sub 2}O{sub 3}/GeO{sub x}/Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation

    SciTech Connect

    Zhang, R.; Iwasaki, T.; Taoka, N.; Takenaka, M.; Takagi, S.

    2011-03-14

    An electron cyclotron resonance (ECR) plasma postoxidation method has been employed for forming Al{sub 2}O{sub 3}/GeO{sub x}/Ge metal-oxide-semiconductor (MOS) structures. X-ray photoelectron spectroscopy and transmission electron microscope characterizations have revealed that a GeO{sub x} layer is formed beneath the Al{sub 2}O{sub 3} capping layer by exposing the Al{sub 2}O{sub 3}/Ge structures to ECR oxygen plasma. The interface trap density (D{sub it}) of Au/Al{sub 2}O{sub 3}/GeO{sub x}/Ge MOS capacitors is found to be significantly suppressed down to lower than 10{sup 11} cm{sup -2} eV{sup -1}. Especially, a plasma postoxidation time of as short as 10 s is sufficient to reduce D{sub it} with maintaining the equivalent oxide thickness (EOT). As a result, the minimum D{sub it} values and EOT of 5x10{sup 10} cm{sup -2} eV{sup -1} and 1.67 nm, and 6x10{sup 10} cm{sup -2} eV{sup -1} and 1.83 nm have been realized for Al{sub 2}O{sub 3}/GeO{sub x}/Ge MOS structures with p- and n-type substrates, respectively.

  5. Trapped gyro-Landau-fluid transport modeling of DIII-D hybrid discharges

    SciTech Connect

    Kinsey, J. E.; Staebler, G. M.; Petty, C. C.

    2010-12-15

    Previous work has summarized the physics and first results of benchmarking the trapped gyro-Landau-fluid (TGLF) model for turbulent transport driven by trapped ion and electron modes, ion and electron temperature gradient (ETG) modes, and electromagnetic kinetic ballooning modes including the effects of shaped geometry. Recently, an improved collision model was implemented which provides a more accurate fit to a transport database of nonlinear collisional GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] simulations of long wavelength driftwave turbulence. The impact of the new collision model on TGLF modeling results was unknown. Using the improved TGLF model we obtain excellent agreement with the ion and electron temperature profiles from 30 DIII-D [A. Mahdavi and J. L. Luxon, Fusion Sci. Technol. 48, 2 (2005)] hybrid discharges. The transport results show that the electron energy transport tends to be dominated by short wavelength ETG modes in cases where the ion energy transport approaches neoclassical levels. The hybrid regime has significant energy confinement improvement from ExB velocity shear which is well predicted by TGLF. Weak magnetic shear and low safety factor are also shown to enhance the hybrid regime energy confinement. In high normalized {beta} hybrids, we find that finite {beta} effects noticably reduce the predicted electron energy transport and improve agreement with the measured electron temperature profiles.

  6. Trapped gyro-Landau-fluid transport modeling of DIII-D hybrid discharges

    NASA Astrophysics Data System (ADS)

    Kinsey, J. E.; Staebler, G. M.; Petty, C. C.

    2010-12-01

    Previous work has summarized the physics and first results of benchmarking the trapped gyro-Landau-fluid (TGLF) model for turbulent transport driven by trapped ion and electron modes, ion and electron temperature gradient (ETG) modes, and electromagnetic kinetic ballooning modes including the effects of shaped geometry. Recently, an improved collision model was implemented which provides a more accurate fit to a transport database of nonlinear collisional GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] simulations of long wavelength driftwave turbulence. The impact of the new collision model on TGLF modeling results was unknown. Using the improved TGLF model we obtain excellent agreement with the ion and electron temperature profiles from 30 DIII-D [A. Mahdavi and J. L. Luxon, Fusion Sci. Technol. 48, 2 (2005)] hybrid discharges. The transport results show that the electron energy transport tends to be dominated by short wavelength ETG modes in cases where the ion energy transport approaches neoclassical levels. The hybrid regime has significant energy confinement improvement from E ×B velocity shear which is well predicted by TGLF. Weak magnetic shear and low safety factor are also shown to enhance the hybrid regime energy confinement. In high normalized β hybrids, we find that finite β effects noticably reduce the predicted electron energy transport and improve agreement with the measured electron temperature profiles.

  7. Gate-modulated weak anti-localization and carrier trapping in individual Bi2Se3 nanoribbons

    NASA Astrophysics Data System (ADS)

    Wang, Li-Xian; Yan, Yuan; Liao, Zhi-Min; Yu, Da-Peng

    2015-02-01

    We report a gate-voltage modulation on the weak anti-localization of individual topological insulator Bi2Se3 nanoribbons. The phase coherence length decreases with decreasing the carrier density of the surface states on the bottom surface of the Bi2Se3 nanoribbon as tuning the gate voltage from 0 to -100 V, indicating that the electron-electron interaction dominates the decoherence at low carrier density. Furthermore, we observe an abnormal conductance decline at positive gate voltage regime, which is ascribed to the capture of surface carriers by the trapping centers in the surface oxidation layer.

  8. The NSSDC trapped radiation model facility

    NASA Technical Reports Server (NTRS)

    Gaffey, John D., Jr.; Bilitza, D.

    1990-01-01

    The National Space Science Data Center (NSSDC) trapped radiation models calculate the integral and differential electron and proton flux for given values of the particle energy E, drift shell parameter L, and magnetic field strength B for either solar maximum or solar minimum. The most recent versions of the series of models, which have been developed and continuously improved over several decades by Dr. James Vette and coworkers at NSSDC, are AE-8 for electrons and AP-8 for protons. The present status of the NSSDC trapped particle models is discussed. The limits of validity of the models are described.

  9. Genetic Dominance & Cellular Processes

    ERIC Educational Resources Information Center

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  10. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  11. Optical Trapping of Nanoparticles

    PubMed Central

    Bergeron, Jarrah; Zehtabi-Oskuie, Ana; Ghaffari, Saeedeh; Pang, Yuanjie; Gordon, Reuven

    2013-01-01

    Optical trapping is a technique for immobilizing and manipulating small objects in a gentle way using light, and it has been widely applied in trapping and manipulating small biological particles. Ashkin and co-workers first demonstrated optical tweezers using a single focused beam1. The single beam trap can be described accurately using the perturbative gradient force formulation in the case of small Rayleigh regime particles1. In the perturbative regime, the optical power required for trapping a particle scales as the inverse fourth power of the particle size. High optical powers can damage dielectric particles and cause heating. For instance, trapped latex spheres of 109 nm in diameter were destroyed by a 15 mW beam in 25 sec1, which has serious implications for biological matter2,3. A self-induced back-action (SIBA) optical trapping was proposed to trap 50 nm polystyrene spheres in the non-perturbative regime4. In a non-perturbative regime, even a small particle with little permittivity contrast to the background can influence significantly the ambient electromagnetic field and induce a large optical force. As a particle enters an illuminated aperture, light transmission increases dramatically because of dielectric loading. If the particle attempts to leave the aperture, decreased transmission causes a change in momentum outwards from the hole and, by Newton's Third Law, results in a force on the particle inwards into the hole, trapping the particle. The light transmission can be monitored; hence, the trap can become a sensor. The SIBA trapping technique can be further improved by using a double-nanohole structure. The double-nanohole structure has been shown to give a strong local field enhancement5,6. Between the two sharp tips of the double-nanohole, a small particle can cause a large change in optical transmission, thereby inducing a large optical force. As a result, smaller nanoparticles can be trapped, such as 12 nm silicate spheres7 and 3.4 nm

  12. One-Electron Oxidation of a Disilicon(0) Compound: An Experimental and Theoretical Study of [Si2](+) Trapped by N-Heterocyclic Carbenes.

    PubMed

    Arz, Marius I; Straßmann, Martin; Meyer, Andreas; Schnakenburg, Gregor; Schiemann, Olav; Filippou, Alexander C

    2015-08-24

    One-electron oxidation of the disilicon(0) compound Si2(Idipp)2 (1, Idipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) with [Fe(C5Me5)2][B(Ar(F))4] (Ar(F) = C6H3-3,5-(CF3)2) affords selectively the green radical salt [Si2(Idipp)2][B(Ar(F))4] (1-[B(Ar(F))4). Oxidation of the centrosymmetric 1 occurs reversibly at a low redox potential (E1/2 = -1.250 V vs. Fc(+)/Fc), and is accompanied by considerable structural changes as shown by single-crystal X-ray structural analysis of 1-B(Ar(F))4. These include a shortening of the Si-Si bond, a widening of the Si-Si-CNHC angles, and a lowering of the symmetry, leading to a quite different conformation of the NHC substituents at the two inequivalent Si sites in 1(+). Comparative quantum chemical calculations of 1 and 1(+) indicate that electron ejection occurs from the symmetric (n+) combination of the Si lone pairs (HOMO). EPR studies of 1-B(Ar(F))4 in frozen solution verified the inequivalency of the two Si sites observed in the solid-state, and point in agreement with the theoretical results to an almost equal distribution of the spin density over the two Si atoms, leading to quite similar (29)Si hyperfine coupling tensors in 1(+). EPR studies of 1-B(Ar(F))4 in liquid solution unraveled a topomerization with a low activation barrier that interconverts the two Si sites in 1(+). PMID:26246231

  13. Nonlinear integrable ion traps

    SciTech Connect

    Nagaitsev, S.; Danilov, V.; /SNS Project, Oak Ridge

    2011-10-01

    Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

  14. Trapping radioactive ions

    NASA Astrophysics Data System (ADS)

    Kluge, H.-J.; Blaum, K.

    2004-12-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  15. Investigation of the behaviour of electronic resistive switching memory based on MoSe2-doped ultralong Se microwires

    NASA Astrophysics Data System (ADS)

    Zhou, Guangdong; Sun, Bai; Yao, Yanqing; Zhang, Huihui; Zhou, Ankun; Alameh, Kamal; Ding, Baofu; Song, Qunliang

    2016-10-01

    MoSe2-doped ultralong Se microwires of length/diameter ratio in the order of ˜240 are synthesized by hydrothermal method. An electronic resistive switching memory (ERSM) device using a single MoSe2-doped ultralong Se microwire is attained. The ERSM exhibits stable resistance ratio of ˜102 for 5000 s, highly stable performance during 500 stressing cycles, and excellent immunity to the frequency of the driving voltage. By investigating the dynamic processes of trap filling, de-trapping, and free-charge migration, trap-controlled space-charge-limited current mechanism is found to dominate the observed ERSM behaviour.

  16. Elimination of charge carrier trapping in diluted semiconductors

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, D.; Kunz, A.; Wetzelaer, G. A. H.; Michels, J. J.; Crăciun, N. I.; Koynov, K.; Lieberwirth, I.; Blom, P. W. M.

    2016-06-01

    In 1962, Mark and Helfrich demonstrated that the current in a semiconductor containing traps is reduced by N/Ntr, with N the amount of transport sites, Nt the amount of traps and r a number that depends on the trap energy distribution. For r > 1, the possibility opens that trapping effects can be nearly eliminated when N and Nt are simultaneously reduced. Solution-processed conjugated polymers are an excellent model system to test this hypothesis, because they can be easily diluted by blending them with a high-bandgap semiconductor. We demonstrate that in conjugated polymer blends with 10% active semiconductor and 90% high-bandgap host, the typical strong electron trapping can be effectively eliminated. As a result we were able to fabricate polymer light-emitting diodes with balanced electron and hole transport and reduced non-radiative trap-assisted recombination, leading to a doubling of their efficiency at nearly ten times lower material costs.

  17. Sampling Small Mammals in Southeastern Forests: The Importance of Trapping in Trees

    SciTech Connect

    Loeb, S.C.; Chapman, G.L.; Ridley, T.R.

    1999-01-01

    We investigated the effect of sampling methodology on the richness and abundance of small mammal communities in loblolly pine forests. Trapping in trees using Sherman live traps was included along with routine ground trapping using the same device. Estimates of species richness did not differ among samples in which tree traps were included or excluded. However, diversity indeces (Shannon-Wiener, Simpson, Shannon and Brillouin) were strongly effected. The indeces were significantly greater than if tree samples were included primarily the result of flying squirrel captures. Without tree traps, the results suggested that cotton mince dominated the community. We recommend that tree traps we included in sampling.

  18. Controlling the efficiency of trapping in treelike fractals.

    PubMed

    Wu, Bin; Zhang, Zhongzhi

    2013-07-14

    Efficiently controlling the trapping process, especially the trapping efficiency, is central in the study of trap problem in complex systems, since it is a fundamental mechanism for diverse other dynamic processes. Thus, it is of theoretical and practical significance to study the control technique for trapping problem. In this paper, we study the trapping problem in a family of proposed directed fractals with a deep trap at a central node. The directed fractals are a generalization of previous undirected fractals by introducing the directed edge weights dominated by a parameter. We characterize all the eigenvalues and their degeneracies for an associated matrix governing the trapping process. The eigenvalues are provided through an exact recursive relation deduced from the self-similar structure of the fractals. We also obtain the expressions for the smallest eigenvalue and the mean first-passage time (MFPT) as a measure of trapping efficiency, which is the expected time for the walker to first visit the trap. The MFPT is evaluated according to the proved fact that it is approximately equal to reciprocal of the smallest eigenvalue. We show that the MFPT is controlled by the weight parameter by modifying which the MFPT can scale superlinealy, linearly, or sublinearly with the system size. Thus, this work paves a way to delicately controlling the trapping process in the fractals.

  19. Stratigraphic traps 2

    SciTech Connect

    Not Available

    1991-01-01

    This volume contains studies of fields with traps that are mainly stratigraphic in nature. Structure plays a role in the traps of several fields, but overall, it is clear that the main trapping features with the group of fields in this volume are stratigraphic. The first six fields in this volume, Alabama Ferry, Rospo Mare, Walker Creek, Bindley, Lexington, and Newburg/South Westhope, have carbonate reservoirs. The latter two of these, Lexington and Newburg/South Westhope, also have sandstone reservoirs. The remaining fields, East Texas, East Clinton, Stockholm Southwest, Sorrento, Port Acres, and Lagoa Parda, have only sandstone reservoirs.

  20. The nature of the TRAP-Anti-TRAP complex.

    PubMed

    Watanabe, Masahiro; Heddle, Jonathan G; Kikuchi, Kenichi; Unzai, Satoru; Akashi, Satoko; Park, Sam-Yong; Tame, Jeremy R H

    2009-02-17

    Tryptophan biosynthesis is subject to exquisite control in species of Bacillus and has become one of the best-studied model systems in gene regulation. The protein TRAP (trp RNA-binding attenuation protein) predominantly forms a ring-shaped 11-mer, which binds cognate RNA in the presence of tryptophan to suppress expression of the trp operon. TRAP is itself regulated by the protein Anti-TRAP, which binds to TRAP and prevents RNA binding. To date, the nature of this interaction has proved elusive. Here, we describe mass spectrometry and analytical centrifugation studies of the complex, and 2 crystal structures of the TRAP-Anti-TRAP complex. These crystal structures, both refined to 3.2-A resolution, show that Anti-TRAP binds to TRAP as a trimer, sterically blocking RNA binding. Mass spectrometry shows that 11-mer TRAP may bind up to 5 AT trimers, and an artificial 12-mer TRAP may bind 6. Both forms of TRAP make the same interactions with Anti-TRAP. Crystallization of wild-type TRAP with Anti-TRAP selectively pulls the 12-mer TRAP form out of solution, so the crystal structure of wild-type TRAP-Anti-TRAP complex reflects a minor species from a mixed population. PMID:19164760