Sample records for dominant negative mutation

  1. A Novel Method to Screen for Dominant Negative ATM Mutations in Familial Breast Cancer

    DTIC Science & Technology

    2005-04-01

    carry dominant negative mutation in ATM due to natural variation amongst LCLs. Microarrays have been performed to determine differences in gene expression... genes that are altered in their expression in ATMmutation carriers. The validation of this data in carriers of different ATM mutation indicated that the...heterozygous carriers of T727 1 G mutation display a gene expression phenotype that appears identical to carriers of protein truncating mutations in

  2. Channel architecture in maltoporin: dominance studies with lamB mutations influencing maltodextrin binding provide evidence for independent selectivity filters in each subunit.

    PubMed Central

    Ferenci, T; Lee, K S

    1989-01-01

    Maltoporin trimers constitute maltodextrin-selective channels in the outer membrane of Escherichia coli. To study the organization of the maltodextrin-binding site within trimers, dominance studies were undertaken with maltoporin variants of altered binding affinity. It has been established that amino acid substitutions at three dispersed regions of the maltoporin sequence (at residues 8, 82, and 360) resulted specifically in maltodextrin-binding defects and loss of maltodextrin channel selectivity; a substitution at residue 118 increased both binding affinity and maltodextrin transport. Strains heterodiploid for lamB were constructed in which these substitutions were encoded by chromosomal and plasmid-borne genes, and the relative level of maltoporin expression from these genes was estimated. Binding assays with bacteria forming maltoporin heterotrimers were performed in order to test for complementation between binding-negative alleles, negative dominance of negative over wild-type alleles, and possible dominance of negatives over the high-affinity allele. Double mutants with mutations affecting residues 8 and 118, 82 and 118, and 118 and 360 were constructed in vitro, and the dominance properties of the mutations in cis were also tested. There was no complementation between negatives and no negative dominance in heterotrimers. The high-affinity mutation was dominant over negatives in trans but not in cis. The affinity of binding sites in heterotrimer populations was characteristic of the high-affinity allele present and uninfluenced by the negative allele. These results are consistent with the presence of three discrete binding sites in a maltoporin trimer and suggest that the selectivity filter for maltodextrins is not at the interface between the three subunits. PMID:2521623

  3. Differential molecular and behavioural alterations in mouse models of GABRG2 haploinsufficiency versus dominant negative mutations associated with human epilepsy

    PubMed Central

    Warner, Timothy A.; Shen, Wangzhen; Huang, Xuan; Liu, Zhong; Macdonald, Robert L.; Kang, Jing-Qiong

    2016-01-01

    Genetic epilepsy is a common disorder with phenotypic variation, but the basis for the variation is unknown. Comparing the molecular pathophysiology of mutations in the same epilepsy gene may provide mechanistic insights into the phenotypic heterogeneity. GABRG2 is an established epilepsy gene, and mutations in it produce epilepsy syndromes with varying severities. The disease phenotype in some cases may be caused by simple loss of subunit function (functional haploinsufficiency), while others may be caused by loss-of-function plus dominant negative suppression and other cellular toxicity. Detailed molecular defects and the corresponding seizures and related comorbidities resulting from haploinsufficiency and dominant negative mutations, however, have not been compared. Here we compared two mouse models of GABRG2 loss-of-function mutations associated with epilepsy with different severities, Gabrg2+/Q390X knockin (KI) and Gabrg2+/- knockout (KO) mice. Heterozygous Gabrg2+/Q390XKI mice are associated with a severe epileptic encephalopathy due to a dominant negative effect of the mutation, while heterozygous Gabrg2+/- KO mice are associated with mild absence epilepsy due to simple haploinsufficiency. Unchanged at the transcriptional level, KI mice with severe epilepsy had neuronal accumulation of mutant γ2 subunits, reduced remaining functional wild-type subunits in dendrites and synapses, while KO mice with mild epilepsy had no intracellular accumulation of the mutant subunits and unaffected biogenesis of the remaining wild-type subunits. Consequently, KI mice with dominant negative mutations had much less wild-type receptor expression, more severe seizures and behavioural comorbidities than KO mice. This work provides insights into the pathophysiology of epilepsy syndrome heterogeneity and designing mechanism-based therapies. PMID:27340224

  4. The structural basis of the dominant negative phenotype of the Gαi1β1γ2 G203A/A326S heterotrimer

    PubMed Central

    Liu, Ping; Jia, Ming-zhu; Zhou, X Edward; De Waal, Parker W; Dickson, Bradley M; Liu, Bo; Hou, Li; Yin, Yan-ting; Kang, Yan-yong; Shi, Yi; Melcher, Karsten; Xu, H Eric; Jiang, Yi

    2016-01-01

    Aim: Dominant negative mutant G proteins have provided critical insight into the mechanisms of G protein-coupled receptor (GPCR) signaling, but the mechanisms underlying the dominant negative characteristics are not completely understood. The aim of this study was to determine the structure of the dominant negative Gαi1β1γ2 G203A/A326S complex (Gi-DN) and to reveal the structural basis of the mutation-induced phenotype of Gαi1β1γ2. Methods: The three subunits of the Gi-DN complex were co-expressed with a baculovirus expression system. The Gi-DN heterotrimer was purified, and the structure of its complex with GDP was determined through X-ray crystallography. Results: The Gi-DN heterotrimer structure revealed a dual mechanism underlying the dominant negative characteristics. The mutations weakened the hydrogen bonding network between GDP/GTP and the binding pocket residues, and increased the interactions in the Gα-Gβγ interface. Concomitantly, the Gi-DN heterotrimer adopted a conformation, in which the C-terminus of Gαi and the N-termini of both the Gβ and Gγ subunits were more similar to the GPCR-bound state compared with the wild type complex. From these structural observations, two additional mutations (T48F and D272F) were designed that completely abolish the GDP binding of the Gi-DN heterotrimer. Conclusion: Overall, the results suggest that the mutations impede guanine nucleotide binding and Gα-Gβγ protein dissociation and favor the formation of the G protein/GPCR complex, thus blocking signal propagation. In addition, the structure provides a rationale for the design of other mutations that cause dominant negative effects in the G protein, as exemplified by the T48F and D272F mutations. PMID:27498775

  5. Widespread correlations between dominance and homozygous effects of mutations: implications for theories of dominance.

    PubMed

    Phadnis, Nitin; Fry, James D

    2005-09-01

    The dominance of deleterious mutations has important consequences for phenomena such as inbreeding depression, the evolution of diploidy, and levels of natural genetic variation. Kacser and Burns' metabolic theory provides a paradigmatic explanation for why most large-effect mutations are recessive. According to the metabolic theory, the recessivity of large-effect mutations is a consequence of a diminishing-returns relationship between flux through a metabolic pathway and enzymatic activity at any step in the pathway, which in turn is an inevitable consequence of long metabolic pathways. A major line of support for this theory was the demonstration of a negative correlation between homozygous effects and dominance of mutations in Drosophila, consistent with a central prediction of the metabolic theory. Using data on gene deletions in yeast, we show that a negative correlation between homozygous effects and dominance of mutations exists for all major categories of genes analyzed, not just those encoding enzymes. The relationship between dominance and homozygous effects is similar for duplicated and single-copy genes and for genes whose products are members of protein complexes and those that are not. A complete explanation of dominance therefore requires either a generalization of Kacser and Burns' theory to nonenzyme genes or a new theory.

  6. Beneficial Outcome of Losartan Therapy Depends on Type of FBN1 Mutation in Marfan Syndrome.

    PubMed

    Franken, Romy; den Hartog, Alexander W; Radonic, Teodora; Micha, Dimitra; Maugeri, Alessandra; van Dijk, Fleur S; Meijers-Heijboer, Hanne E; Timmermans, Janneke; Scholte, Arthur J; van den Berg, Maarten P; Groenink, Maarten; Mulder, Barbara J M; Zwinderman, Aeilko H; de Waard, Vivian; Pals, Gerard

    2015-04-01

    It has been shown that losartan reduces aortic dilatation in patients with Marfan syndrome. However, treatment response is highly variable. This study investigates losartan effectiveness in genetically classified subgroups. In this predefined substudy of COMPARE, Marfan patients were randomized to daily receive losartan 100 mg or no losartan. Aortic root dimensions were measured by MRI at baseline and after 3 years. FBN1 mutations were classified based on fibrillin-1 protein effect into (1) haploinsufficiency, decreased amount of normal fibrillin-1, or (2) dominant negative, normal fibrillin-1 abundance with mutant fibrillin-1 incorporated in the matrix. A pathogenic FBN1 mutation was found in 117 patients, of whom 79 patients were positive for a dominant negative mutation (67.5%) and 38 for a mutation causing haploinsufficiency (32.5%). Baseline characteristics between treatment groups were similar. Overall, losartan significantly reduced aortic root dilatation rate (no losartan, 1.3±1.5 mm/3 years, n=59 versus losartan, 0.8±1.4 mm/3 years, n=58; P=0.009). However, losartan reduced only aortic root dilatation rate in haploinsufficient patients (no losartan, 1.8±1.5 mm/3 years, n=21 versus losartan 0.5±0.8 mm/3 years, n=17; P=0.001) and not in dominant negative patients (no losartan, 1.2±1.7 mm/3 years, n=38 versus losartan 0.8±1.3 mm/3 years, n=41; P=0.197). Marfan patients with haploinsufficient FBN1 mutations seem to be more responsive to losartan therapy for inhibition of aortic root dilatation rate compared with dominant negative patients. Additional treatment strategies are needed in Marfan patients with dominant negative FBN1 mutations. http://www.trialregister.nl/trialreg/index.asp; Unique Identifier: NTR1423. © 2015 American Heart Association, Inc.

  7. Molecular Basis of the Dominant Negative Effect of a Glycine Transporter 2 Mutation Associated with Hyperekplexia*

    PubMed Central

    Arribas-González, Esther; de Juan-Sanz, Jaime; Aragón, Carmen; López-Corcuera, Beatriz

    2015-01-01

    Hyperekplexia or startle disease is a rare clinical syndrome characterized by an exaggerated startle in response to trivial tactile or acoustic stimuli. This neurological disorder can have serious consequences in neonates, provoking brain damage and/or sudden death due to apnea episodes and cardiorespiratory failure. Hyperekplexia is caused by defective inhibitory glycinergic neurotransmission. Mutations in the human SLC6A5 gene encoding the neuronal GlyT2 glycine transporter are responsible for the presynaptic form of the disease. GlyT2 mediates synaptic glycine recycling, which constitutes the main source of releasable transmitter at glycinergic synapses. Although the majority of GlyT2 mutations detected so far are recessive, a dominant negative mutant that affects GlyT2 trafficking does exist. In this study, we explore the properties and structural alterations of the S512R mutation in GlyT2. We analyze its dominant negative effect that retains wild-type GlyT2 in the endoplasmic reticulum (ER), preventing surface expression. We show that the presence of an arginine rather than serine 512 provoked transporter misfolding, enhanced association to the ER-chaperone calnexin, altered association with the coat-protein complex II component Sec24D, and thereby impeded ER exit. The S512R mutant formed oligomers with wild-type GlyT2 causing its retention in the ER. Overexpression of calnexin rescued wild-type GlyT2 from the dominant negative effect of the mutant, increasing the amount of transporter that reached the plasma membrane and dampening the interaction between the wild-type and mutant GlyT2. The ability of chemical chaperones to overcome the dominant negative effect of the disease mutation on the wild-type transporter was demonstrated in heterologous cells and primary neurons. PMID:25480793

  8. Dominant-negative suppression of big brain ion channel activity by mutation of a conserved glutamate in the first transmembrane domain.

    PubMed

    Yool, Andrea J

    2007-01-01

    The neurogenic protein Drosophila big brain (BIB), which is involved in the process of neuroblast determination, and the water channel aquaporin-1 (AQP1) are among a subset of the major intrinsic protein (MIP) channels that have been found to show gated monovalent cation channel activity. A glutamate residue in the first transmembrane (M1) domain is conserved throughout the MIP family. Mutation of this residue to asparagine in BIB (E71N) knocks out ion channel activity, and when coexpressed with BIB wild-type as shown here generates a dominant-negative effect on ion channel function, measured in the Xenopus oocyte expression system using two-electrode voltage clamp. cRNAs for wild-type and mutant BIB or AQP1 channels were injected individually or as mixtures. The magnitude of the BIB ionic conductance response was greatly reduced by coexpression of the mutant E71N subunit, suggesting a dominant-negative mechanism of action. The analogous mutation in AQP1 (E17N) did not impair ion channel activation by cGMP, but did knock out water channel function, although not via a dominant-negative effect. This contrast in sensitivity between BIB and AQP1 to mutation of the M1 glutamate suggests the possibility of interesting structural differences in the molecular basis of the ion permeation between these two classes of channels. The dominant-negative construct of BIB could be a tool for testing a role for BIB ion channels during nervous system development in Drosophila. The neurogenic protein Drosophila big brain (BIB), which is involved in the process of neuroblast determination, and the water channel aquaporin-1 (AQP1) are among a subset of the major intrinsic protein (MIP) channels that have been found to show gated monovalent cation channel activity. A glutamate residue in the first transmembrane (M1) domain is conserved throughout the MIP family. Mutation of this residue to asparagine in BIB (E71N) knocks out ion channel activity, and when coexpressed with BIB wild-type as shown here generates a dominant-negative effect on ion channel function, measured in the Xenopus oocyte expression system using two-electrode voltage clamp. cRNAs for wild-type and mutant BIB or AQP1 channels were injected individually or as mixtures. The magnitude of the BIB ionic conductance response was greatly reduced by coexpression of the mutant E71N subunit, suggesting a dominant-negative mechanism of action. The analogous mutation in AQP1 (E17N) did not impair ion channel activation by cGMP, but did knock out water channel function, although not via a dominant-negative effect. This contrast in sensitivity between BIB and AQP1 to mutation of the M1 glutamate suggests the possibility of interesting structural differences in the molecular basis of the ion permeation between these two classes of channels. The dominant-negative construct of BIB could be a tool for testing a role for BIB ion channels during nervous system development in Drosophila.

  9. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa.

    PubMed

    Shinkuma, Satoru; Guo, Zongyou; Christiano, Angela M

    2016-05-17

    Genome editing with engineered site-specific endonucleases involves nonhomologous end-joining, leading to reading frame disruption. The approach is applicable to dominant negative disorders, which can be treated simply by knocking out the mutant allele, while leaving the normal allele intact. We applied this strategy to dominant dystrophic epidermolysis bullosa (DDEB), which is caused by a dominant negative mutation in the COL7A1 gene encoding type VII collagen (COL7). We performed genome editing with TALENs and CRISPR/Cas9 targeting the mutation, c.8068_8084delinsGA. We then cotransfected Cas9 and guide RNA expression vectors expressed with GFP and DsRed, respectively, into induced pluripotent stem cells (iPSCs) generated from DDEB fibroblasts. After sorting, 90% of the iPSCs were edited, and we selected four gene-edited iPSC lines for further study. These iPSCs were differentiated into keratinocytes and fibroblasts secreting COL7. RT-PCR and Western blot analyses revealed gene-edited COL7 with frameshift mutations degraded at the protein level. In addition, we confirmed that the gene-edited truncated COL7 could neither associate with normal COL7 nor undergo triple helix formation. Our data establish the feasibility of mutation site-specific genome editing in dominant negative disorders.

  10. Dominant-negative diabetes insipidus and other endocrinopathies

    PubMed Central

    Phillips, John A.

    2003-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) in humans is an autosomal dominant disorder caused by a variety of mutations in the arginine vasopressin (AVP) precursor. A new report demonstrates how heterozygosity for an AVP mutation causes FNDI (see the related article beginning on page 1697). Using an AVP knock-in mutation in mice, the study shows that FNDI is caused by retention of AVP precursors and progressive loss of AVP-producing neurons. PMID:14660740

  11. A novel autosomal partially dominant mutation designated G476D in the keratin 5 gene causing epidermolysis bullosa simplex Weber-Cockayne type: a family study with a genetic twist.

    PubMed

    Kowalewski, Cezary; Hamada, Takahiro; Wozniak, Katarzyna; Kawano, Yuko; Szczecinska, Weronika; Yasumoto, Shinichiro; Schwartz, Robert A; Hashimoto, Takashi

    2007-07-01

    Epidermolysis bullosa simplex Weber-Cockayne type (EBS-WC) is a genetically inherited skin disease characterized by blistering restricted to the palms and soles. Its inheritance in nearly all kindreds is caused by a dominant-negative mutation in either KRT5 or KRT14, the genes encoding keratin 5 and keratin 14 proteins, respectively. Rarely, recessive mutations have also been found. We described a family with EBS-WC caused by a novel autosomal dominant mutation (G476D) in the keratin 5 gene. One family member was first seen with mucosal erosions and generalized blisters localized on the anogenital area, trunk, face and sites of mechanical trauma. Molecular analysis in this patient showed the presence of an additional mutation, an autosomal recessive (G183E) one, in the same gene. This observation suggests an additional effect of a recessively inherited mutation modulating the phenotypic expression of EBS caused by a partially dominant mutation and is important for accurate genetic counseling.

  12. A Restricted Repertoire of De Novo Mutations in ITPR1 Cause Gillespie Syndrome with Evidence for Dominant-Negative Effect

    PubMed Central

    McEntagart, Meriel; Williamson, Kathleen A.; Rainger, Jacqueline K.; Wheeler, Ann; Seawright, Anne; De Baere, Elfride; Verdin, Hannah; Bergendahl, L. Therese; Quigley, Alan; Rainger, Joe; Dixit, Abhijit; Sarkar, Ajoy; López Laso, Eduardo; Sanchez-Carpintero, Rocio; Barrio, Jesus; Bitoun, Pierre; Prescott, Trine; Riise, Ruth; McKee, Shane; Cook, Jackie; McKie, Lisa; Ceulemans, Berten; Meire, Françoise; Temple, I. Karen; Prieur, Fabienne; Williams, Jonathan; Clouston, Penny; Németh, Andrea H.; Banka, Siddharth; Bengani, Hemant; Handley, Mark; Freyer, Elisabeth; Ross, Allyson; van Heyningen, Veronica; Marsh, Joseph A.; Elmslie, Frances; FitzPatrick, David R.

    2016-01-01

    Gillespie syndrome (GS) is characterized by bilateral iris hypoplasia, congenital hypotonia, non-progressive ataxia, and progressive cerebellar atrophy. Trio-based exome sequencing identified de novo mutations in ITPR1 in three unrelated individuals with GS recruited to the Deciphering Developmental Disorders study. Whole-exome or targeted sequence analysis identified plausible disease-causing ITPR1 mutations in 10/10 additional GS-affected individuals. These ultra-rare protein-altering variants affected only three residues in ITPR1: Glu2094 missense (one de novo, one co-segregating), Gly2539 missense (five de novo, one inheritance uncertain), and Lys2596 in-frame deletion (four de novo). No clinical or radiological differences were evident between individuals with different mutations. ITPR1 encodes an inositol 1,4,5-triphosphate-responsive calcium channel. The homo-tetrameric structure has been solved by cryoelectron microscopy. Using estimations of the degree of structural change induced by known recessive- and dominant-negative mutations in other disease-associated multimeric channels, we developed a generalizable computational approach to indicate the likely mutational mechanism. This analysis supports a dominant-negative mechanism for GS variants in ITPR1. In GS-derived lymphoblastoid cell lines (LCLs), the proportion of ITPR1-positive cells using immunofluorescence was significantly higher in mutant than control LCLs, consistent with an abnormality of nuclear calcium signaling feedback control. Super-resolution imaging supports the existence of an ITPR1-lined nucleoplasmic reticulum. Mice with Itpr1 heterozygous null mutations showed no major iris defects. Purkinje cells of the cerebellum appear to be the most sensitive to impaired ITPR1 function in humans. Iris hypoplasia is likely to result from either complete loss of ITPR1 activity or structure-specific disruption of multimeric interactions. PMID:27108798

  13. [Evaluation of performance of five bioinformatics software for the prediction of missense mutations].

    PubMed

    Chen, Qianting; Dai, Congling; Zhang, Qianjun; Du, Juan; Li, Wen

    2016-10-01

    To study the prediction performance evaluation with five kinds of bioinformatics software (SIFT, PolyPhen2, MutationTaster, Provean, MutationAssessor). From own database for genetic mutations collected over the past five years, Chinese literature database, Human Gene Mutation Database, and dbSNP, 121 missense mutations confirmed by functional studies, and 121 missense mutations suspected to be pathogenic by pedigree analysis were used as positive gold standard, while 242 missense mutations with minor allele frequency (MAF)>5% in dominant hereditary diseases were used as negative gold standard. The selected mutations were predicted with the five software. Based on the results, the performance of the five software was evaluated for their sensitivity, specificity, positive predict value, false positive rate, negative predict value, false negative rate, false discovery rate, accuracy, and receiver operating characteristic curve (ROC). In terms of sensitivity, negative predictive value and false negative rate, the rank was MutationTaster, PolyPhen2, Provean, SIFT, and MutationAssessor. For specificity and false positive rate, the rank was MutationTaster, Provean, MutationAssessor, SIFT, and PolyPhen2. For positive predict value and false discovery rate, the rank was MutationTaster, Provean, MutationAssessor, PolyPhen2, and SIFT. For area under the ROC curve (AUC) and accuracy, the rank was MutationTaster, Provean, PolyPhen2, MutationAssessor, and SIFT. The prediction performance of software may be different when using different parameters. Among the five software, MutationTaster has the best prediction performance.

  14. Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR) caused by a VDR mutation: A novel mechanism of dominant inheritance.

    PubMed

    Isojima, Tsuyoshi; Ishizawa, Michiyasu; Yoshimura, Kazuko; Tamura, Mayuko; Hirose, Shinichi; Makishima, Makoto; Kitanaka, Sachiko

    2015-06-01

    Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR) is caused by mutations in the VDR gene, and its inheritance is autosomal recessive. In this report, we aimed to confirm whether HVDRR is occasionally inherited as a dominant trait. An 18-month-old Japanese boy was evaluated for short stature and bowlegs. His father had been treated for rickets during childhood, and his paternal grandfather had bowlegs. We diagnosed him with HVDRR based on laboratory data and radiographic evidence of rickets. Sequence analyses of VDR were performed, and the functional consequences of the detected mutations were analyzed for transcriptional activity, ligand binding, and interaction with the retinoid X receptor, cofactors, and the vitamin D response element (VDRE). A novel mutation (Q400LfsX7) and a reported variant (R370H) were identified in the patient. Heterozygous Q400LfsX7 was detected in his father, and heterozygous R370H was detected in his healthy mother. Functional studies revealed that the transcriptional activity of Q400LfsX7-VDR was markedly disturbed. The mutant had a dominant-negative effect on wild-type-VDR, and the ligand binding affinity of Q400LfsX7-VDR was completely impaired. Interestingly, Q400LfsX7-VDR had a strong interaction with corepressor NCoR and could interact with VDRE without the ligand. R370H-VDR was functionally similar to wild-type-VDR. In conclusion, we found a dominant-negative mutant of VDR causing dominantly inherited HVDRR through a constitutive corepressor interaction, a mechanism similar to that in dominantly inherited thyroid hormone receptor mutations. Our report together with a reported pedigree suggested a distinct inheritance of HVDRR and enriched our understanding of VDR abnormalities.

  15. NIPA1 Gene Mutations Cause Autosomal Dominant Hereditary Spastic Paraplegia (SPG6)

    PubMed Central

    Rainier, Shirley; Chai, Jing-Hua; Tokarz, Debra; Nicholls, Robert D.; Fink, John K.

    2003-01-01

    The hereditary spastic paraplegias (HSPs) are genetically heterogeneous disorders characterized by progressive lower-extremity weakness and spasticity. The molecular pathogenesis is poorly understood. We report discovery of a dominant negative mutation in the NIPA1 gene in a kindred with autosomal dominant HSP (ADHSP), linked to chromosome 15q11-q13 (SPG6 locus); and precisely the same mutation in an unrelated kindred with ADHSP that was too small for meaningful linkage analysis. NIPA1 is highly expressed in neuronal tissues and encodes a putative membrane transporter or receptor. Identification of the NIPA1 function and ligand will aid an understanding of axonal neurodegeneration in HSP and may have important therapeutic implications. PMID:14508710

  16. CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation.

    PubMed

    Wang, Huajing; Sun, William

    2017-01-28

    With the discovery of the CRISPR/Cas9 technology, genome editing could be performed in a rapid, precise and effective manner. Its potential applications in functional interrogation of cancer-causing genes and cancer therapy have been extensively explored. In this study, we demonstrated the use of the CRISPR/Cas9 system to directly target the oncogene HER2. Directing Cas9 to exons of the HER2 gene inhibited cell growth in breast cancer cell lines that harbor amplification of the HER2 locus. The inhibitory effect was potentiated with the addition of PARP inhibitors. Unexpectedly, CRISPR-induced mutations did not significantly affect the level of HER2 protein expression. Instead, CRISPR targeting appeared to exert its effect through a dominant negative mutation. This HER2 mutant interfered with the MAPK/ERK axis of HER2 downstream signaling. Our work provides a novel mechanism underlying the anti-cancer effects of HER2-targeting by CRISPR/Cas9, which is distinct from the clinical drug Herceptin. In addition, it opens up the possibility that incomplete CRISPR targeting of certain oncogenes could still have therapeutic value by generation of dominant negative mutants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. In vivo and in vitro functional characterization of Andersen's syndrome mutations.

    PubMed

    Bendahhou, Saïd; Fournier, Emmanuel; Sternberg, Damien; Bassez, Guillaume; Furby, Alain; Sereni, Carole; Donaldson, Matthew R; Larroque, Marie-Madeleine; Fontaine, Bertrand; Barhanin, Jacques

    2005-06-15

    The inward rectifier K(+) channel Kir2.1 carries all Andersen's syndrome mutations identified to date. Patients exhibit symptoms of periodic paralysis, cardiac dysrhythmia and multiple dysmorphic features. Here, we report the clinical manifestations found in three families with Andersen's syndrome. Molecular genetics analysis identified two novel missense mutations in the KCNJ2 gene leading to amino acid changes C154F and T309I of the Kir2.1 open reading frame. Patch clamp experiments showed that the two mutations produced a loss of channel function. When co-expressed with Kir2.1 wild-type (WT) channels, both mutations exerted a dominant-negative effect leading to a loss of the inward rectifying K(+) current. Confocal microscopy imaging in HEK293 cells is consistent with a co-assembly of the EGFP-fused mutant proteins with WT channels and proper traffick to the plasma membrane to produce silent channels alone or as hetero-tetramers with WT. Functional expression in C2C12 muscle cell line of newly as well as previously reported Andersen's syndrome mutations confirmed that these mutations act through a dominant-negative effect by altering channel gating or trafficking. Finally, in vivo electromyographic evaluation showed a decrease in muscle excitability in Andersen's syndrome patients. We hypothesize that Andersen's syndrome-associated mutations and hypokalaemic periodic paralysis-associated calcium channel mutations may lead to muscle membrane hypoexcitability via a common mechanism.

  18. In vivo and in vitro functional characterization of Andersen's syndrome mutations

    PubMed Central

    Bendahhou, Saïd; Fournier, Emmanuel; Sternberg, Damien; Bassez, Guillaume; Furby, Alain; Sereni, Carole; Donaldson, Matthew R; Larroque, Marie-Madeleine; Fontaine, Bertrand; Barhanin, Jacques

    2005-01-01

    The inward rectifier K+ channel Kir2.1 carries all Andersen's syndrome mutations identified to date. Patients exhibit symptoms of periodic paralysis, cardiac dysrhythmia and multiple dysmorphic features. Here, we report the clinical manifestations found in three families with Andersen's syndrome. Molecular genetics analysis identified two novel missense mutations in the KCNJ2 gene leading to amino acid changes C154F and T309I of the Kir2.1 open reading frame. Patch clamp experiments showed that the two mutations produced a loss of channel function. When co-expressed with Kir2.1 wild-type (WT) channels, both mutations exerted a dominant-negative effect leading to a loss of the inward rectifying K+ current. Confocal microscopy imaging in HEK293 cells is consistent with a co-assembly of the EGFP-fused mutant proteins with WT channels and proper traffick to the plasma membrane to produce silent channels alone or as hetero-tetramers with WT. Functional expression in C2C12 muscle cell line of newly as well as previously reported Andersen's syndrome mutations confirmed that these mutations act through a dominant-negative effect by altering channel gating or trafficking. Finally, in vivo electromyographic evaluation showed a decrease in muscle excitability in Andersen's syndrome patients. We hypothesize that Andersen's syndrome-associated mutations and hypokalaemic periodic paralysis-associated calcium channel mutations may lead to muscle membrane hypoexcitability via a common mechanism. PMID:15831539

  19. Transcriptome analysis of skin fibroblasts with dominant negative COL3A1 mutations provides molecular insights into the etiopathology of vascular Ehlers-Danlos syndrome

    PubMed Central

    Chiarelli, Nicola; Carini, Giulia; Zoppi, Nicoletta; Ritelli, Marco

    2018-01-01

    Vascular Ehlers-Danlos syndrome (vEDS) is a dominantly inherited connective tissue disorder caused by mutations in the COL3A1 gene that encodes type III collagen (COLLIII), which is the major expressed collagen in blood vessels and hollow organs. The majority of disease-causing variants in COL3A1 are glycine substitutions and in-frame splice mutations in the triple helix domain that through a dominant negative effect are associated with the severe clinical spectrum potentially lethal of vEDS, characterized by fragility of soft connective tissues with arterial and organ ruptures. To shed lights into molecular mechanisms underlying vEDS, we performed gene expression profiling in cultured skin fibroblasts from three patients with different structural COL3A1 mutations. Transcriptome analysis revealed significant changes in the expression levels of several genes involved in maintenance of cell redox and endoplasmic reticulum (ER) homeostasis, COLLs folding and extracellular matrix (ECM) organization, formation of the proteasome complex, and cell cycle regulation. Protein analyses showed that aberrant COLLIII expression is associated with the disassembly of many structural ECM constituents, such as fibrillins, EMILINs, and elastin, as well as with the reduction of the proteoglycans perlecan, decorin, and versican, all playing an important role in the vascular system. Furthermore, the altered distribution of the ER marker protein disulfide isomerase PDI and the strong reduction of the COLLs-modifying enzyme FKBP22 are consistent with the disturbance of ER-related homeostasis and COLLs biosynthesis and post-translational modifications, indicated by microarray analysis. Our findings add new insights into the pathophysiology of this severe vascular disorder, since they provide a picture of the gene expression changes in vEDS skin fibroblasts and highlight that dominant negative mutations in COL3A1 also affect post-translational modifications and deposition into the ECM of several structural proteins crucial to the integrity of soft connective tissues. PMID:29346445

  20. Transcriptome analysis of skin fibroblasts with dominant negative COL3A1 mutations provides molecular insights into the etiopathology of vascular Ehlers-Danlos syndrome.

    PubMed

    Chiarelli, Nicola; Carini, Giulia; Zoppi, Nicoletta; Ritelli, Marco; Colombi, Marina

    2018-01-01

    Vascular Ehlers-Danlos syndrome (vEDS) is a dominantly inherited connective tissue disorder caused by mutations in the COL3A1 gene that encodes type III collagen (COLLIII), which is the major expressed collagen in blood vessels and hollow organs. The majority of disease-causing variants in COL3A1 are glycine substitutions and in-frame splice mutations in the triple helix domain that through a dominant negative effect are associated with the severe clinical spectrum potentially lethal of vEDS, characterized by fragility of soft connective tissues with arterial and organ ruptures. To shed lights into molecular mechanisms underlying vEDS, we performed gene expression profiling in cultured skin fibroblasts from three patients with different structural COL3A1 mutations. Transcriptome analysis revealed significant changes in the expression levels of several genes involved in maintenance of cell redox and endoplasmic reticulum (ER) homeostasis, COLLs folding and extracellular matrix (ECM) organization, formation of the proteasome complex, and cell cycle regulation. Protein analyses showed that aberrant COLLIII expression is associated with the disassembly of many structural ECM constituents, such as fibrillins, EMILINs, and elastin, as well as with the reduction of the proteoglycans perlecan, decorin, and versican, all playing an important role in the vascular system. Furthermore, the altered distribution of the ER marker protein disulfide isomerase PDI and the strong reduction of the COLLs-modifying enzyme FKBP22 are consistent with the disturbance of ER-related homeostasis and COLLs biosynthesis and post-translational modifications, indicated by microarray analysis. Our findings add new insights into the pathophysiology of this severe vascular disorder, since they provide a picture of the gene expression changes in vEDS skin fibroblasts and highlight that dominant negative mutations in COL3A1 also affect post-translational modifications and deposition into the ECM of several structural proteins crucial to the integrity of soft connective tissues.

  1. The Kavar(D) dominant female-sterile mutations of Drosophila reveal a role for the maternally provided alpha-tubulin4 isoform in cleavage spindle maintenance and elongation.

    PubMed

    Venkei, Zsolt; Szabad, János

    2005-06-01

    The dominant-negative female-sterile Kavar(D) mutations and their revertant kavar(r) alleles identify the alphaTubulin67C gene of Drosophila melanogaster, which codes for the maternally provided alpha-tubulin(4) isoform. The mutations result in the formation of monopolar, collapsed spindles (each with two nearby centrosomes, a tassel of microtubules and overcondensed chromosomes), thus revealing a novel function for alpha-tubulin(4) in spindle maintenance and elongation. Molecular features of the two Kavar(D) alleles and a kavar(null) allele are described and models for their actions are discussed.

  2. A novel KCNQ4 one-base deletion in a large pedigree with hearing loss: implication for the genotype-phenotype correlation.

    PubMed

    Kamada, Fumiaki; Kure, Shigeo; Kudo, Takayuki; Suzuki, Yoichi; Oshima, Takeshi; Ichinohe, Akiko; Kojima, Kanako; Niihori, Tetsuya; Kanno, Junko; Narumi, Yoko; Narisawa, Ayumi; Kato, Kumi; Aoki, Yoko; Ikeda, Katsuhisa; Kobayashi, Toshimitsu; Matsubara, Yoichi

    2006-01-01

    Autosomal-dominant, nonsyndromic hearing impairment is clinically and genetically heterogeneous. We encountered a large Japanese pedigree in which nonsyndromic hearing loss was inherited in an autosomal-dominant fashion. A genome-wide linkage study indicated linkage to the DFNA2 locus on chromosome 1p34. Mutational analysis of KCNQ4 encoding a potassium channel revealed a novel one-base deletion in exon 1, c.211delC, which generated a profoundly truncated protein without transmembrane domains (p.Q71fsX138). Previously, six missense mutations and one 13-base deletion, c.211_223del, had been reported in KCNQ4. Patients with the KCNQ4 missense mutations had younger-onset and more profound hearing loss than patients with the 211_223del mutation. In our current study, 12 individuals with the c.211delC mutation manifested late-onset and pure high-frequency hearing loss. Our results support the genotype-phenotype correlation that the KCNQ4 deletions are associated with later-onset and milder hearing impairment than the missense mutations. The phenotypic difference may be caused by the difference in pathogenic mechanisms: haploinsufficiency in deletions and dominant-negative effect in missense mutations.

  3. Naturally occurring dominant drug resistance mutations occur infrequently in the setting of recently acquired hepatitis C.

    PubMed

    Applegate, Tanya L; Gaudieri, Silvana; Plauzolles, Anne; Chopra, Abha; Grebely, Jason; Lucas, Michaela; Hellard, Margaret; Luciani, Fabio; Dore, Gregory J; Matthews, Gail V

    2015-01-01

    Direct-acting antivirals (DAAs) are predicted to transform hepatitis C therapy, yet little is known about the prevalence of naturally occurring resistance mutations in recently acquired HCV. This study aimed to determine the prevalence and frequency of drug resistance mutations in the viral quasispecies among HIV-positive and -negative individuals with recent HCV. The NS3 protease, NS5A and NS5B polymerase genes were amplified from 50 genotype 1a participants of the Australian Trial in Acute Hepatitis C. Amino acid variations at sites known to be associated with possible drug resistance were analysed by ultra-deep pyrosequencing. A total of 12% of individuals harboured dominant resistance mutations, while 36% demonstrated non-dominant resistant variants below that detectable by bulk sequencing (that is, <20%) but above a threshold of 1%. Resistance variants (<1%) were observed at most sites associated with DAA resistance from all classes, with the exception of sofosbuvir. Dominant resistant mutations were uncommonly observed in the setting of recent HCV. However, low-level mutations to all DAA classes were observed by deep sequencing at the majority of sites and in most individuals. The significance of these variants and impact on future treatment options remains to be determined. Clinicaltrials.gov NCT00192569.

  4. Helicase-inactivating mutations as a basis for dominant negative phenotypes

    PubMed Central

    Wu, Yuliang

    2010-01-01

    There is ample evidence from studies of both unicellular and multicellular organisms that helicase-inactivating mutations lead to cellular dysfunction and disease phenotypes. In this review, we will discuss the mechanisms underlying the basis for abnormal phenotypes linked to mutations in genes encoding DNA helicases. Recent evidence demonstrates that a clinically relevant patient missense mutation in Fanconi Anemia Complementation Group J exerts detrimental effects on the biochemical activities of the FANC J helicase, and these molecular defects are responsible for aberrant genomic stability and a poor DNA damage response. The ability of FANC J to use the energy from AT P hydrolysis to produce the force required to unwind duplex or G-quadruplex DNA structures or destabilize protein bound to DNA is required for its DNA repair functions in vivo. Strikingly, helicase-inactivating mutations can exert a spectrum of dominant negative phenotypes, indicating that expression of the mutant helicase protein potentially interferes with normal DNA metabolism and has an effect on basic cellular processes such as DNA replication, the DNA damage response and protein trafficking. This review emphasizes that future studies of clinically relevant mutations in helicase genes will be important to understand the molecular pathologies of the associated diseases and their impact on heterozygote carriers. PMID:20980836

  5. A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51

    PubMed Central

    Ameziane, Najim; May, Patrick; Haitjema, Anneke; van de Vrugt, Henri J.; van Rossum-Fikkert, Sari E.; Ristic, Dejan; Williams, Gareth J.; Balk, Jesper; Rockx, Davy; Li, Hong; Rooimans, Martin A.; Oostra, Anneke B.; Velleuer, Eunike; Dietrich, Ralf; Bleijerveld, Onno B.; Maarten Altelaar, A. F.; Meijers-Heijboer, Hanne; Joenje, Hans; Glusman, Gustavo; Roach, Jared; Hood, Leroy; Galas, David; Wyman, Claire; Balling, Rudi; den Dunnen, Johan; de Winter, Johan P.; Kanaar, Roland; Gelinas, Richard; Dorsman, Josephine C.

    2015-01-01

    Fanconi anaemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong predisposition to cancer. A total of 17 FA disease genes have been reported, all of which act in a recessive mode of inheritance. Here we report on a de novo g.41022153G>A; p.Ala293Thr (NM_002875) missense mutation in one allele of the homologous recombination DNA repair gene RAD51 in an FA-like patient. This heterozygous mutation causes a novel FA subtype, ‘FA-R', which appears to be the first subtype of FA caused by a dominant-negative mutation. The patient, who features microcephaly and mental retardation, has reached adulthood without the typical bone marrow failure and paediatric cancers. Together with the recent reports on RAD51-associated congenital mirror movement disorders, our results point to an important role for RAD51-mediated homologous recombination in neurodevelopment, in addition to DNA repair and cancer susceptibility. PMID:26681308

  6. Trafficking Defect and Proteasomal Degradation Contribute to the Phenotype of a Novel KCNH2 Long QT Syndrome Mutation

    PubMed Central

    Mihic, Anton; Chauhan, Vijay S.; Gao, Xiaodong; Oudit, Gavin Y.; Tsushima, Robert G.

    2011-01-01

    The Kv11.1 (hERG) K+ channel plays a fundamental role in cardiac repolarization. Missense mutations in KCNH2, the gene encoding Kv11.1, cause long QT syndrome (LQTS) and frequently cause channel trafficking-deficiencies. This study characterized the properties of a novel KCNH2 mutation discovered in a LQT2 patient resuscitated from a ventricular fibrillation arrest. Proband genotyping was performed by SSCP and DNA sequencing. The electrophysiological and biochemical properties of the mutant channel were investigated after expression in HEK293 cells. The proband manifested a QTc of 554 ms prior to electrolyte normalization. Mutation analysis revealed an autosomal dominant frameshift mutation at proline 1086 (P1086fs+32X; 3256InsG). Co-immunoprecipitation demonstrated that wild-type Kv11.1 and mutant channels coassemble. Western blot showed that the mutation did not produce mature complex-glycosylated Kv11.1 channels and coexpression resulted in reduced channel maturation. Electrophysiological recordings revealed mutant channel peak currents to be similar to untransfected cells. Co-expression of channels in a 1∶1 ratio demonstrated dominant negative suppression of peak Kv11.1 currents. Immunocytochemistry confirmed that mutant channels were not present at the plasma membrane. Mutant channel trafficking rescue was attempted by incubation at reduced temperature or with the pharmacological agents E-4031. These treatments did not significantly increase peak mutant currents or induce the formation of mature complex-glycosylated channels. The proteasomal inhibitor lactacystin increased the protein levels of the mutant channels demonstrating proteasomal degradation, but failed to induce mutant Kv11.1 protein trafficking. Our study demonstrates a novel dominant-negative Kv11.1 mutation, which results in degraded non-functional channels leading to a LQT2 phenotype. PMID:21483829

  7. A missense mutation in the cholesteryl ester transfer protein gene with possible dominant effects on plasma high density lipoproteins.

    PubMed Central

    Takahashi, K; Jiang, X C; Sakai, N; Yamashita, S; Hirano, K; Bujo, H; Yamazaki, H; Kusunoki, J; Miura, T; Kussie, P

    1993-01-01

    Plasma HDL are a negative risk factor for atherosclerosis. Cholesteryl ester transfer protein (CETP; 476 amino acids) transfers cholesteryl ester from HDL to other lipoproteins. Subjects with homozygous CETP deficiency caused by a gene splicing defect have markedly elevated HDL; however, heterozygotes have only mild increases in HDL. We describe two probands with a CETP missense mutation (442 D:G). Although heterozygous, they have threefold increases in HDL concentration and markedly decreased plasma CETP mass and activity, suggesting that the mutation has dominant effects on CETP and HDL in vivo. Cellular expression of mutant cDNA results in secretion of only 30% of wild type CETP activity. Moreover, coexpression of wild type and mutant cDNAs leads to inhibition of wild type secretion and activity. The dominant effects of the CETP missense mutation during cellular expression probably explains why the probands have markedly increased HDL in the heterozygous state, and suggests that the active molecular species of CETP may be multimeric. Images PMID:8408659

  8. Novel autosomal dominant TNNT1 mutation causing nemaline myopathy.

    PubMed

    Konersman, Chamindra G; Freyermuth, Fernande; Winder, Thomas L; Lawlor, Michael W; Lagier-Tourenne, Clotilde; Patel, Shailendra B

    2017-11-01

    Nemaline myopathy (NEM) is one of the three major forms of congenital myopathy and is characterized by diffuse muscle weakness, hypotonia, respiratory insufficiency, and the presence of nemaline rod structures on muscle biopsy. Mutations in troponin T1 (TNNT1) is 1 of 10 genes known to cause NEM. To date, only homozygous nonsense mutations or compound heterozygous truncating or internal deletion mutations in TNNT1 gene have been identified in NEM. This extended family is of historical importance as some members were reported in the 1960s as initial evidence that NEM is a hereditary disorder. Proband and extended family underwent Sanger sequencing for TNNT1. We performed RT-PCR and immunoblot on muscle to assess TNNT1 RNA expression and protein levels in proband and father. We report a novel heterozygous missense mutation of TNNT1 c.311A>T (p.E104V) that segregated in an autosomal dominant fashion in a large family residing in the United States. Extensive sequencing of the other known genes for NEM failed to identify any other mutant alleles. Muscle biopsies revealed a characteristic pattern of nemaline rods and severe myofiber hypotrophy that was almost entirely restricted to the type 1 fiber population. This novel mutation alters a residue that is highly conserved among vertebrates. This report highlights not only a family with autosomal dominant inheritance of NEM, but that this novel mutation likely acts via a dominant negative mechanism. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  9. DNM1 encephalopathy

    PubMed Central

    von Spiczak, Sarah; Helbig, Katherine L.; Shinde, Deepali N.; Huether, Robert; Pendziwiat, Manuela; Lourenço, Charles; Nunes, Mark E.; Sarco, Dean P.; Kaplan, Richard A.; Dlugos, Dennis J.; Kirsch, Heidi; Slavotinek, Anne; Cilio, Maria R.; Cervenka, Mackenzie C.; Cohen, Julie S.; McClellan, Rebecca; Fatemi, Ali; Yuen, Amy; Sagawa, Yoshimi; Littlejohn, Rebecca; McLean, Scott D.; Hernandez-Hernandez, Laura; Maher, Bridget; Møller, Rikke S.; Palmer, Elizabeth; Lawson, John A.; Campbell, Colleen A.; Joshi, Charuta N.; Kolbe, Diana L.; Hollingsworth, Georgie; Neubauer, Bernd A.; Muhle, Hiltrud; Stephani, Ulrich; Scheffer, Ingrid E.; Pena, Sérgio D.J.; Sisodiya, Sanjay M.

    2017-01-01

    Objective: To evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling. Methods: We reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function. Results: We identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function. Conclusions: The phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention. PMID:28667181

  10. Novel CPVT-Associated Calmodulin Mutation in CALM3 (CALM3-A103V) Activates Arrhythmogenic Ca Waves and Sparks

    PubMed Central

    Gomez-Hurtado, Nieves; Boczek, Nicole J.; Kryshtal, Dmytro O.; Johnson, Christopher N.; Sun, Jennifer; Nitu, Florentin R.; Cornea, Razvan L.; Chazin, Walter J.; Calvert, Melissa L.; Tester, David J.; Ackerman, Michael J.; Knollmann, Bjorn C.

    2016-01-01

    Background Calmodulin (CaM) mutations are associated with severe forms of long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). We recently reported that CaM mutations were found in 13% of genotype-negative LQTS patients, but the prevalence of CaM mutations in genotype-negative CPVT patients is unknown. Here, we identify and characterize CaM mutations in 12 patients with genotype-negative but clinically-diagnosed CPVT. Methods and Results Mutational analysis of CALM1, CALM2 and CALM3 coding regions, in vitro measurement of CaM-Ca2+ (Ca) binding affinity, RyR2-CaM binding, Ca handling, L-type Ca current (LTCC) and action potential duration (APD). We identified a novel CaM mutation – A103V – in CALM3 in 1 of 12 patients (8%), a female who experienced episodes of exertion-induced syncope since age 10, had normal QT interval, and displayed ventricular ectopy during stress testing consistent with CPVT. A103V modestly lowered CaM Ca-binding affinity (3-fold reduction vs WT-CaM), but did not alter CaM binding to RyR2. In permeabilized cardiomyocytes, A103V-CaM (100 nM) promoted spontaneous Ca wave and spark activity, a cellular phenotype of RyR2 activation. Even a 1:3 mixture of A103V-CaM:WT-CaM activated Ca waves, demonstrating functional dominance. Compared to LQTS D96V-CaM, A103V-CaM had significantly less effects on LTCC inactivation and APD, and caused delayed after depolarizations (DADs) and triggered beats in intact cardiomyocytes. Conclusions We discovered a novel CPVT mutation in the CALM3 gene that shares functional characteristics with established CPVT-associated mutations in CALM1. A small proportion of A103V-CaM is sufficient to evoke arrhythmogenic Ca disturbances via RyR2 dysregulation, which explains the autosomal dominant inheritance. PMID:27516456

  11. Genetic basis of early-onset, MODY-like diabetes in Japan and features of patients without mutations in the major MODY genes: dominance of maternal inheritance.

    PubMed

    Yorifuji, Tohru; Higuchi, Shinji; Kawakita, Rie; Hosokawa, Yuki; Aoyama, Takane; Murakami, Akiko; Kawae, Yoshiko; Hatake, Kazue; Nagasaka, Hironori; Tamagawa, Nobuyoshi

    2018-06-21

    Causative mutations cannot be identified in the majority of Asian patients with suspected maturity-onset diabetes of the young (MODY). To elucidate the genetic basis of Japanese patients with MODY-like diabetes and gain insight into the etiology of patients without mutations in the major MODY genes. 263 Japanese patients with early-onset, nonobese, MODY-like diabetes mellitus referred to Osaka City General Hospital for diagnosis. Mutational analysis of the four major MODY genes (GCK, HNF1A, HNF4A, HNF1B) by Sanger sequencing. Mutation-positive and mutation-negative patients were further analyzed for clinical features. Mutations were identified in 103 (39.2%) patients; 57 mutations in GCK; 29, HNF1A; 7, HNF4A; and 10, HNF1B. Contrary to conventional diagnostic criteria, 18.4% of mutation-positive patients did not have affected parents and 8.2% were in the overweight range (BMI >85 th percentile). HOMA-IR at diagnosis was elevated (>2) in 15 of 66 (22.7%) mutation-positive patients. Compared with mutation-positive patients, mutation-negative patients were significantly older (p = 0.003), and had higher BMI percentile at diagnosis (p = 0.0006). Interestingly, maternal inheritance of diabetes was significantly more common in mutation-negative patients (p = 0.0332) and these patients had significantly higher BMI percentile as compared with mutation-negative patients with paternal inheritance (p = 0.0106). Contrary to the conventional diagnostic criteria, de novo diabetes, overweight, and insulin-resistance are common in Japanese patients with mutation-positive MODY. A significant fraction of mutation-negative patients had features of early-onset type 2 diabetes common in Japanese, and non-Mendelian inheritance needs to be considered for these patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Genotyping microarray: Mutation screening in Spanish families with autosomal dominant retinitis pigmentosa

    PubMed Central

    García-Hoyos, María; Cortón, Marta; Ávila-Fernández, Almudena; Riveiro-Álvarez, Rosa; Giménez, Ascensión; Hernan, Inma; Carballo, Miguel; Ayuso, Carmen

    2012-01-01

    Purpose Presently, 22 genes have been described in association with autosomal dominant retinitis pigmentosa (adRP); however, they explain only 50% of all cases, making genetic diagnosis of this disease difficult and costly. The aim of this study was to evaluate a specific genotyping microarray for its application to the molecular diagnosis of adRP in Spanish patients. Methods We analyzed 139 unrelated Spanish families with adRP. Samples were studied by using a genotyping microarray (adRP). All mutations found were further confirmed with automatic sequencing. Rhodopsin (RHO) sequencing was performed in all negative samples for the genotyping microarray. Results The adRP genotyping microarray detected the mutation associated with the disease in 20 of the 139 families with adRP. As in other populations, RHO was found to be the most frequently mutated gene in these families (7.9% of the microarray genotyped families). The rate of false positives (microarray results not confirmed with sequencing) and false negatives (mutations in RHO detected with sequencing but not with the genotyping microarray) were established, and high levels of analytical sensitivity (95%) and specificity (100%) were found. Diagnostic accuracy was 15.1%. Conclusions The adRP genotyping microarray is a quick, cost-efficient first step in the molecular diagnosis of Spanish patients with adRP. PMID:22736939

  13. Characterization of a novel MYO3A missense mutation associated with a dominant form of late onset hearing loss.

    PubMed

    Dantas, Vitor G L; Raval, Manmeet H; Ballesteros, Angela; Cui, Runjia; Gunther, Laura K; Yamamoto, Guilherme L; Alves, Leandro Ucela; Bueno, André Silva; Lezirovitz, Karina; Pirana, Sulene; Mendes, Beatriz C A; Yengo, Christopher M; Kachar, Bechara; Mingroni-Netto, Regina C

    2018-06-07

    Whole-exome sequencing of samples from affected members of two unrelated families with late-onset non-syndromic hearing loss revealed a novel mutation (c.2090 T > G; NM_017433) in MYO3A. The mutation was confirmed in 36 affected individuals, showing autosomal dominant inheritance. The mutation alters a single residue (L697W or p.Leu697Trp) in the motor domain of the stereocilia protein MYO3A, leading to a reduction in ATPase activity, motility, and an increase in actin affinity. MYO3A-L697W showed reduced filopodial actin protrusion initiation in COS7 cells, and a predominant tipward accumulation at filopodia and stereocilia when coexpressed with wild-type MYO3A and espin-1, an actin-regulatory MYO3A cargo. The combined higher actin affinity and duty ratio of the mutant myosin cause increased retention time at stereocilia tips, resulting in the displacement of the wild-type MYO3A protein, which may impact cargo transport, stereocilia length, and mechanotransduction. The dominant negative effect of the altered myosin function explains the dominant inheritance of deafness.

  14. CLAVATA1 Dominant-Negative Alleles Reveal Functional Overlap between Multiple Receptor Kinases That Regulate Meristem and Organ Development

    PubMed Central

    Diévart, Anne; Dalal, Monica; Tax, Frans E.; Lacey, Alexzandria D.; Huttly, Alison; Li, Jianming; Clark, Steven E.

    2003-01-01

    The CLAVATA1 (CLV1) receptor kinase controls stem cell number and differentiation at the Arabidopsis shoot and flower meristems. Other components of the CLV1 signaling pathway include the secreted putative ligand CLV3 and the receptor-like protein CLV2. We report evidence indicating that all intermediate and strong clv1 alleles are dominant negative and likely interfere with the activity of unknown receptor kinase(s) that have functional overlap with CLV1. clv1 dominant-negative alleles show major differences from dominant-negative alleles characterized to date in animal receptor kinase signaling systems, including the lack of a dominant-negative effect of kinase domain truncation and the ability of missense mutations in the extracellular domain to act in a dominant-negative manner. We analyzed chimeric receptor kinases by fusing CLV1 and BRASSINOSTEROID INSENSITIVE1 (BRI1) coding sequences and expressing these in clv1 null backgrounds. Constructs containing the CLV1 extracellular domain and the BRI1 kinase domain were strongly dominant negative in the regulation of meristem development. Furthermore, we show that CLV1 expressed within the pedicel can partially replace the function of the ERECTA receptor kinase. We propose the presence of multiple receptors that regulate meristem development in a functionally related manner whose interactions are driven by the extracellular domains and whose activation requires the kinase domain. PMID:12724544

  15. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations

    PubMed Central

    Kamitaki, Nolan; Mitchell, Jana; Avior, Yishai; Mello, Curtis; Kashin, Seva; Mekhoubad, Shila; Ilic, Dusko; Charlton, Maura; Saphier, Genevieve; Handsaker, Robert E.; Genovese, Giulio; Bar, Shiran; Benvenisty, Nissim; McCarroll, Steven A.; Eggan, Kevin

    2017-01-01

    Human pluripotent stem cells (hPSCs) can self-renew indefinitely, making them an attractive source for regenerative therapies. This expansion potential has been linked with acquisition of large copy number variants (CNVs) that provide mutant cells with a growth advantage in culture1–3. However, the nature, extent, and functional impact of other acquired genome sequence mutations in cultured hPSCs is not known. Here, we sequenced the protein-coding genes (exomes) of 140 independent human embryonic stem cell (hESC) lines, including 26 lines prepared for potential clinical use4. We then applied computational strategies for identifying mutations present in a subset of cells5. Though such mosaic mutations were generally rare, we identified five unrelated hESC lines that carried six mutations in the TP53 gene that encodes the tumor suppressor P53. Notably, the TP53 mutations we observed are dominant negative and are the mutations most commonly seen in human cancers. We used droplet digital PCR to demonstrate that the TP53 mutant allelic fraction increased with passage number under standard culture conditions, suggesting that P53 mutation confers selective advantage. When we then mined published RNA sequencing data from 117 hPSC lines, we observed another nine TP53 mutations, all resulting in coding changes in the DNA binding domain of P53. Strikingly, in three lines, the allelic fraction exceeded 50%, suggesting additional selective advantage resulting from loss of heterozygosity at the TP53 locus. As the acquisition and favored expansion of cancer-associated mutations in hPSCs may go unnoticed during most applications, we suggest that careful genetic characterization of hPSCs and their differentiated derivatives should be carried out prior to clinical use. PMID:28445466

  16. Clinical Aspects of Type-1 Long-QT Syndrome by Location, Coding Type, and Biophysical Function of Mutations Involving the KCNQ1 Gene

    PubMed Central

    Moss, Arthur J.; Shimizu, Wataru; Wilde, Arthur A.M.; Towbin, Jeffrey A.; Zareba, Wojciech; Robinson, Jennifer L.; Qi, Ming; Vincent, G. Michael; Ackerman, Michael J.; Kaufman, Elizabeth S.; Hofman, Nynke; Seth, Rahul; Kamakura, Shiro; Miyamoto, Yoshihiro; Goldenberg, Ilan; Andrews, Mark L.; McNitt, Scott

    2012-01-01

    Background Type-1 long-QT syndrome (LQTS) is caused by loss-of-function mutations in the KCNQ1-encoded IKs cardiac potassium channel. We evaluated the effect of location, coding type, and biophysical function of KCNQ1 mutations on the clinical phenotype of this disorder. Methods and Results We investigated the clinical course in 600 patients with 77 different KCNQ1 mutations in 101 proband-identified families derived from the US portion of the International LQTS Registry (n=425), the Netherlands’ LQTS Registry (n=93), and the Japanese LQTS Registry (n=82). The Cox proportional hazards survivorship model was used to evaluate the independent contribution of clinical and genetic factors to the first occurrence of time-dependent cardiac events from birth through age 40 years. The clinical characteristics, distribution of mutations, and overall outcome event rates were similar in patients enrolled from the 3 geographic regions. Biophysical function of the mutations was categorized according to dominant-negative (>50%) or haploinsufficiency (≤50%) reduction in cardiac repolarizing IKs potassium channel current. Patients with transmembrane versus C-terminus mutations (hazard ratio, 2.06; P<0.001) and those with mutations having dominant-negative versus haploinsufficiency ion channel effects (hazard ratio, 2.26; P<0.001) were at increased risk for cardiac events, and these genetic risks were independent of traditional clinical risk factors. Conclusions This genotype–phenotype study indicates that in type-1 LQTS, mutations located in the transmembrane portion of the ion channel protein and the degree of ion channel dysfunction caused by the mutations are important independent risk factors influencing the clinical course of this disorder. PMID:17470695

  17. COL4A4 gene study of a European population: description of new mutations causing autosomal dominant Alport syndrome.

    PubMed

    Rosado, Consolación; Bueno, Elena; Felipe, Carmen; González-Sarmiento, Rogelio

    2014-01-01

    Autosomal forms of Alport syndrome represent 20% of all patients (15% recessive and 5% dominant). They are caused by mutations in the COL4A3 and COL4A4 genes, which encode a-3 and a-4 collagen IV chains of the glomerular basement membrane, cochlea and eye. Thin basement membrane nephropathy may affect up to 1% of the population. The pattern of inheritance in the 40% of cases is the same as autosomal dominant Alport syndrome: heterozygous mutations in these genes. The aim of this study is to detect new pathogenic mutations in the COL4A4 gene in the patients previously diagnosed with autosomal Alport syndrome and thin basement membrane nephropathy in our hospital. We conducted a clinical and genetic study in eleven patients belonging to six unrelated families with aforementioned clinical symptoms and a negative study of COL4A3 gene. The molecular study was made by conformation of sensitive gel electrophoresis (CSGE) and direct sequencing of the fragments that show an altered electrophoretic migration pattern. We found two pathogenic mutations, not yet described: IVS3 + 1G > C is a replacement of Guanine to Cytosine in position +1 of intron 3, in the splicing region, which leads to a pathogenic mutation. c.4267C > T; p.P1423S is a missense mutation, also considered pathogenic. We also found seven new polymorphisms. We describe two new pathogenic mutations, responsible for autosomal dominant Alport syndrome. The other families of the study were undiagnosed owing to problems in the method employed and the possibility of mutations in other genes, giving rise to other diseases with similar symptoms.

  18. An Allelic Series of Trp63 Mutations Defines TAp63 as a Modifier of EEC Syndrome

    PubMed Central

    Lindahl, Emma Vernersson; Garcia, Elvin L.; Mills, Alea A.

    2014-01-01

    Human Ectrodactyly, Ectodermal dysplasia, Clefting (EEC) syndrome is an autosomal dominant developmental disorder defined by limb deformities, skin defects, and craniofacial clefting. Although associated with heterozygous missense mutations in TP63, the genetic basis underlying the variable expressivity and incomplete penetrance of EEC is unknown. Here we show that mice heterozygous for an allele encoding the Trp63 p.Arg318His mutation, which corresponds to the human TP63 p.Arg279His mutation found in patients with EEC, have features of human EEC. Using an allelic series, we discovered that whereas clefting and skin defects are caused by loss of Trp63 function, limb anomalies are due to gain- and/or dominant-negative effects of Trp63. Furthermore, we identify TAp63 as a strong modifier of EEC-associated phenotypes with regard to both penetrance and expressivity. PMID:23775923

  19. The R882H DNMT3A Mutation Associated with AML Dominantly Inhibits WT DNMT3A by Blocking its Ability to Form Active Tetramers

    PubMed Central

    Russler-Germain, David A.; Spencer, David H.; Young, Margaret A.; Lamprecht, Tamara L.; Miller, Christopher A.; Fulton, Robert; Meyer, Matthew R.; Erdmann-Gilmore, Petra; Townsend, R. Reid; Wilson, Richard K.; Ley, Timothy J.

    2014-01-01

    Summary Somatic mutations in DNMT3A, which encodes a de novo DNA methyltransferase, are found in ~30% of normal karyotype acute myeloid leukemia (AML) cases. Most mutations are heterozygous and alter R882 within the catalytic domain (most commonly R882H), suggesting the possibility of dominant negative consequences. The methyltransferase activity of R882H DNMT3A is reduced by ~80% compared to the WT enzyme. In vitro mixing of WT and R882H DNMT3A does not affect the WT activity but co-expression of the two proteins in cells profoundly inhibits the WT enzyme by disrupting its ability to homotetramerize. AML cells with the R882H mutation have severely reduced de novo methyltransferase activity and focal hypomethylation at specific CpGs throughout AML cell genomes. PMID:24656771

  20. Haploinsufficiency for DNA methyltransferase 3A predisposes hematopoietic cells to myeloid malignancies

    PubMed Central

    Cole, Christopher B.; Russler-Germain, David A.; Ketkar, Shamika; Verdoni, Angela M.; Smith, Amanda M.; Bangert, Celia V.; Helton, Nichole M.; Guo, Mindy; O’Laughlin, Shelly; Fronick, Catrina; Fulton, Robert; Chang, Gue Su; Petti, Allegra A.; Miller, Christopher A.; Ley, Timothy J.

    2017-01-01

    The gene that encodes de novo DNA methyltransferase 3A (DNMT3A) is frequently mutated in acute myeloid leukemia genomes. Point mutations at position R882 have been shown to cause a dominant negative loss of DNMT3A methylation activity, but 15% of DNMT3A mutations are predicted to produce truncated proteins that could either have dominant negative activities or cause loss of function and haploinsufficiency. Here, we demonstrate that 3 of these mutants produce truncated, inactive proteins that do not dimerize with WT DNMT3A, strongly supporting the haploinsufficiency hypothesis. We therefore evaluated hematopoiesis in mice heterozygous for a constitutive null Dnmt3a mutation. With no other manipulations, Dnmt3a+/– mice developed myeloid skewing over time, and their hematopoietic stem/progenitor cells exhibited a long-term competitive transplantation advantage. Dnmt3a+/– mice also spontaneously developed transplantable myeloid malignancies after a long latent period, and 3 of 12 tumors tested had cooperating mutations in the Ras/MAPK pathway. The residual Dnmt3a allele was neither mutated nor downregulated in these tumors. The bone marrow cells of Dnmt3a+/– mice had a subtle but statistically significant DNA hypomethylation phenotype that was not associated with gene dysregulation. These data demonstrate that haploinsufficiency for Dnmt3a alters hematopoiesis and predisposes mice (and probably humans) to myeloid malignancies by a mechanism that is not yet clear. PMID:28872462

  1. Distribution and Coexistence of Myoclonus and Dystonia as Clinical Predictors of SGCE Mutation Status: A Pilot Study.

    PubMed

    Zutt, Rodi; Dijk, Joke M; Peall, Kathryn J; Speelman, Hans; Dreissen, Yasmine E M; Contarino, Maria Fiorella; Tijssen, Marina A J

    2016-01-01

    Myoclonus-dystonia (M-D) is a young onset movement disorder typically involving myoclonus and dystonia of the upper body. A proportion of the cases are caused by mutations to the autosomal dominantly inherited, maternally imprinted, epsilon-sarcoglycan gene (SGCE). Despite several sets of diagnostic criteria, identification of patients most likely to have an SGCE mutation remains difficult. Forty consecutive patients meeting pre-existing diagnostic clinical criteria for M-D underwent a standardized clinical examination (20 SGCE mutation positive and 20 negative). Each video was reviewed and systematically scored by two assessors blinded to mutation status. In addition, the presence and coexistence of myoclonus and dystonia was recorded in four body regions (neck, arms, legs, and trunk) at rest and with action. Thirty-nine patients were included in the study (one case was excluded owing to insufficient video footage). Based on previously proposed diagnostic criteria, patients were subdivided into 24 "definite," 5 "probable," and 10 "possible" M-D. Motor symptom severity was higher in the SGCE mutation-negative group. Myoclonus and dystonia were most commonly observed in the neck and upper limbs of both groups. Truncal dystonia with action was significantly seen more in the mutation-negative group (p < 0.05). Coexistence of myoclonus and dystonia in the same body part with action was more commonly seen in the mutation-negative cohort (p < 0.05). Truncal action dystonia and coexistence of myoclonus and dystonia in the same body part with action might suggest the presence of an alternative mutation in patients with M-D.

  2. Epidermal growth factor receptor mutations in Japanese men with lung adenocarcinomas.

    PubMed

    Tomita, Masaki; Ayabe, Takanori; Chosa, Eiichi; Kawagoe, Katsuya; Nakamura, Kunihide

    2014-01-01

    Epidermal growth factor receptor (EGFR) mutations play a vital role in the prognosis of patients with lung adenocarcinoma. Such somatic mutations are more common in women who are non-smokers with adenocarcinoma and are of Asian origin. However, to our knowledge, there are few studies that have focused on men. One hundred and eighty-four consecutive patients (90 men and 94 women) of resected lung adenocarcinoma were studied retrospectively. EGFR mutations were positive in 48.9% and negative (wild type) in 51.1%. Overall mutation was significant in women (66.0% vs. 32.2%) compared with men (p<0.001). For overall patients, EGFR mutation status was associated with gender, pStage, pT status, lepidic dominant histologic subtype, pure or mixed ground-glass nodule type on computed tomography and smoking status. However, in men, EGFR mutation status was only associated with lepidic dominant histologic subtype and not the other variables. Interestingly, the Brinkman index of men with mutant EGFR also did not differ from that for the wild type (680.0±619.3 vs. 813.1±552.1 p=0.1077). The clinical characteristics of men with lung adenocarcinoma related to EGFR mutation are not always similar to that of overall patients. Especially we failed to find the relationship between EGFR mutations and smoking status in men.

  3. Autosomal Dominant Growth Hormone Deficiency (Type II).

    PubMed

    Alatzoglou, Kyriaki S; Kular, Dalvir; Dattani, Mehul T

    2015-06-01

    Isolated growth hormone deficiency (IGHD) is the commonest pituitary hormone deficiency resulting from congenital or acquired causes, although for most patients its etiology remains unknown. Among the known factors, heterozygous mutations in the growth hormone gene (GH1) lead to the autosomal dominant form of GHD, also known as type II GHD. In many cohorts this is the commonest form of congenital isolated GHD and is mainly caused by mutations that affect the correct splicing of GH-1. These mutations cause skipping of the third exon and lead to the production of a 17.5-kDa GH isoform that exerts a dominant negative effect on the secretion of the wild type GH. The identification of these mutations has clinical implications for the management of patients, as there is a well-documented correlation between the severity of the phenotype and the increased expression of the 17.5-kDa isoform. Patients with type II GHD have a variable height deficit and severity of GHD and may develop additional pituitary hormone defiencies over time, including ACTH, TSH and gonadotropin deficiencies. Therefore, their lifelong follow-up is recommended. Detailed studies on the effect of heterozygous GH1 mutations on the trafficking, secretion and action of growth hormone can elucidate their mechanism on a cellular level and may influence future treatment options for GHD type II.

  4. Splice site mutations in GH1 detected in previously (Genetically) undiagnosed families with congenital isolated growth hormone deficiency type II.

    PubMed

    Kempers, M J E; van der Crabben, S N; de Vroede, M; Alfen-van der Velden, J; Netea-Maier, R T; Duim, R A J; Otten, B J; Losekoot, M; Wit, J M

    2013-01-01

    Congenital isolated growth hormone deficiency (IGHD) is a rare endocrine disorder that presents with severe proportionate growth failure. Dominant (type II) IGHD is usually caused by heterozygous mutations of GH1. The presentation of newly affected family members in 3 families with dominant IGHD in whom previous genetic testing had not demonstrated a GH1 mutation or had not been performed, prompted us to identify the underlying genetic cause. GH1 was sequenced in 3 Caucasian families with a clinical autosomal dominant IGHD. All affected family members had severe growth hormone (GH) deficiency that became apparent in the first 2 years of life. GH treatment led to a marked increase in height SDS. So far, no other pituitary dysfunctions have become apparent. In the first family a novel splice site mutation in GH1 was identified (c.172-1G>C, IVS2-1G>C). In two other families a previously reported splice site mutation (c.291+1G>A, IVS3+1G>A) was found. These data show that several years after negative genetic testing it was now possible to make a genetic diagnosis in these families with a well-defined, clearly heritable, autosomal dominant IGHD. This underscores the importance of clinical and genetic follow-up in a multidisciplinary setting. It also shows that even without a positive family history, genetic testing should be considered if the phenotype is strongly suggestive for a genetic syndrome. Identification of pathogenic mutations, like these GH1 mutations, has important clinical implications for the surveillance and genetic counseling of patients and expands our knowledge on the genotype-phenotype correlation. © 2013 S. Karger AG, Basel.

  5. A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Juanjuan; Yuan, Yimin; Lin, Bing

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We report the characterization of a four-generation large Chinese family with ADOA. Black-Right-Pointing-Pointer We find a new heterozygous mutation c.C1198G in OPA1 gene which may be a novel pathogenic mutation in this pedigree. Black-Right-Pointing-Pointer We do not find any mitochondrial DNA mutations associated with optic atrophy. Black-Right-Pointing-Pointer Other factors may also contribute to the phenotypic variability of ADOA in this pedigree. -- Abstract: A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressivemore » visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9 years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.« less

  6. Allele-specific siRNA knockdown as a personalized treatment strategy for vascular Ehlers-Danlos syndrome in human fibroblasts.

    PubMed

    Müller, Gerd A; Hansen, Uwe; Xu, Zhi; Griswold, Benjamin; Talan, Mark I; McDonnell, Nazli B; Briest, Wilfried

    2012-02-01

    The vascular type of the Ehlers-Danlos syndrome (vEDS) is caused by dominant-negative mutations in the procollagen type III (COL3A1) gene. Patients with this autosomal dominant disorder have a shortened life expectancy due to complications from ruptured vessels or hollow organs. We tested the effectiveness of allele-specific RNA interference (RNAi) to reduce the mutated phenotype in fibroblasts. Small-interfering RNAs (siRNAs) discriminating between wild-type and mutant COL3A1 allele were identified by a luciferase reporter gene assay and in primary fibroblasts from a normal donor and a patient with vEDS. The best discriminative siRNA with the mutation at position 10 resulted in >90% silencing of the mutant allele without affecting the wild-type allele. Transmission and immunogold electron microscopy of extracted extracellular matrices from untreated fibroblasts of the patient with vEDS revealed structurally abnormal fibrils. After siRNA treatment, collagen fibrils became similar to fibrils from fibroblasts of normal and COL3A1 haploinsufficient donors. In addition, it was shown that expression of mutated COL3A1 activates the unfolded protein response and that reduction of the amount of mutated protein by siRNA reduces cellular stress. Taken together, the results provide evidence that allele-specific siRNAs are able to reduce negative effects of mutated COL3A1 proteins. Thus, the application of allele-specific RNAi may be a promising direction for future personalized therapies to reduce the severity of vEDS.

  7. A de novo KCNA1 Mutation in a Patient with Tetany and Hypomagnesemia.

    PubMed

    van der Wijst, Jenny; Konrad, Martin; Verkaart, Sjoerd A J; Tkaczyk, Marcin; Latta, Femke; Altmüller, Janine; Thiele, Holger; Beck, Bodo; Schlingmann, Karl Peter; de Baaij, Jeroen H F

    2018-05-23

    Mutations in the KCNA1 gene encoding the voltage-gated potassium (K+) channel Kv1.1 have been linked to rare neurological syndromes, episodic ataxia type 1 (EA1) and myokymia. In 2009, a KCNA1 mutation was identified in a large family with autosomal dominant hypomagnesemia. Despite efforts in establishing a genotype-phenotype correlation for the wide variety of symptoms in EA1, little is known on the serum magnesium (Mg2+) levels in these patients. In the present study, we describe a new de novo KCNA1 mutation in a Polish patient with tetany and hypomagnesemia. Electrophysiological and biochemical analyses were performed to determine the pathogenicity of the mutation. A female patient presented with low serum Mg2+ levels, renal Mg2+ wasting, muscle cramps, and tetanic episodes. Whole exome sequencing identified a p.Leu328Val mutation in KCNA1 encoding the Kv1.1 K+ channel. Electrophysiological examinations demonstrated that the p.Leu328Val mutation caused a dominant-negative loss of function of the encoded Kv1.1 channel. Cell surface biotinylation showed normal plasma membrane expression. Taken together, this is the second report linking KCNA1 with hypomagnesemia, thereby emphasizing the need for further evaluation of the clinical phenotypes observed in patients carrying KCNA1 mutations. © 2018 S. Karger AG, Basel.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruening, W.; Nakagama, H.: Bardessy, N.

    Wilms` tumor (WT), an embryonal malignancy of the kidney, occurs most frequently in children under the age of 5 years, affecting {approximately}1 in 10,000 individuals. The WT1 tumor suppressor gene, residing at 11p13, is structurally altered in {approximately}10-15% of WT cases. Individuals with germline mutations within the WT1 gene suffer from predisposition to WT and developmental defects of the urogenital system. Patients with heterozygous deletions of the WT1 gene, or mutations predicted to cause inactivation of one WT1 allele, suffer relatively mild genital system defects (notably hypospadias and cryptorchidism in males) and a predisposition to WT. These results suggest thatmore » developing genital system development is sensitive to the absolute concentrations of the WT1 gene products. Patients with missense mutations within the WT1 gene, however, can suffer from a much more severe disorder known as Denys-Drash syndrome (DDS). This syndrome is characterized by intersex disorders, renal nephropathy, and a predisposition to WTs. The increased severity of the developmental defects associated with DDS, compared to those individuals with mild genital system anomalies and WTs, suggests that mutations defined in patients with DDS behave in a dominant-negative fashion. We have identified a novel WT1 mutation in a patient with DDS. This mutation, predicted to produce a truncated WT1 polypeptide encompassing exons 1, 2, and 3, defines a domain capable of behaving as an antimorph. We have also demonstrated that WT1 can self-associate in vivo using yeast two-hybrid systems. Deletion analysis have mapped the interacting domains to the amino terminus of the WT1 polypeptide, within exons 1 and 2. These results provide a molecular mechanism to explain how WT1 mutations can function in a dominant-negative fashion to eliminate wild-type WT1 activity, leading to DDS.« less

  9. 'W' mutant forms of the Fms receptor tyrosine kinase act in a dominant manner to suppress CSF-1 dependent cellular transformation.

    PubMed

    Reith, A D; Ellis, C; Maroc, N; Pawson, T; Bernstein, A; Dubreuil, P

    1993-01-01

    Point mutations in highly conserved amino acid residues in the catalytic domain of the Kit receptor tyrosine kinase (RTK) are responsible for the coat color, fertility and hematopoietic defects of mice bearing mutant alleles at the dominant white-spotting (W) locus. The dominant nature of structural Kit mutations suggests that expression of other kinase-defective RTKs might also specifically interfere with signal transduction by normal receptors. To test this possibility, we have investigated the functional consequences of introducing analogous mutations into the RTK encoded by the c-fms proto-oncogene. Both Fms37 (glu582-->lys) and Fms42 (asp776-->asn) mutant proteins, corresponding to the strongly dominant-negative W37 and W42 mutant c-kit alleles, had undetectable in vitro kinase activity and were unable to transform Rat-2 fibroblasts in the presence of exogenous CSF-1. Moreover, expression of Fms37 or Fms42 proteins in Rat-2 cells specifically inhibited anchorage-independent growth mediated by the normal Fms receptor in the presence of exogenous CSF-1 and conferred a dominant loss of Fms-associated PI3-kinase activity on CSF-1 stimulation. Mutant RTKs, bearing point substitutions identical to those present in mild or severe W mutants, may provide a generally applicable strategy for inducing dominant loss of function defects in RTK-mediated signalling pathways.

  10. Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II.

    PubMed

    Zhang, Hua; Chen, Hongsheng; Luo, Hunjin; An, Jing; Sun, Lin; Mei, Lingyun; He, Chufeng; Jiang, Lu; Jiang, Wen; Xia, Kun; Li, Jia-Da; Feng, Yong

    2012-03-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four subtypes (WS1-WS4) based on additional symptoms. PAX3 and SOX10 are two transcription factors that can activate the expression of microphthalmia-associated transcription factor (MITF), a critical transcription factor for melanocyte development. Mutations of PAX3 are associated with WS1 and WS3, while mutations of SOX10 cause WS2 and WS4. Recently, we identified some novel WS-associated mutations in PAX3 and SOX10 in a cohort of Chinese WS patients. Here, we further identified an E248fsX30 SOX10 mutation in a family of WS2. We analyzed the subcellular distribution, expression and in vitro activity of two PAX3 mutations (p.H80D, p.H186fsX5) and four SOX10 mutations (p.E248fsX30, p.G37fsX58, p.G38fsX69 and p.R43X). Except H80D PAX3, which retained partial activity, the other mutants were unable to activate MITF promoter. The H80D PAX3 and E248fsX30 SOX10 were localized in the nucleus as wild type (WT) proteins, whereas the other mutant proteins were distributed in both cytoplasm and nucleus. Furthermore, E248fsX30 SOX10 protein retained the DNA-binding activity and showed dominant-negative effect on WT SOX10. However, E248fsX30 SOX10 protein seems to decay faster than the WT one, which may underlie the mild WS2 phenotype caused by this mutation.

  11. Premalignant Genetic and Epigenetic Alterations in Tubal Epithelium from Women with BRCA1 Mutations

    DTIC Science & Technology

    2011-10-01

    FTsamples to match the age and menopausal distribution of the B1-FTocc cases. Some women in the WT-FT group had a personal history of breast cancer or...Preneoplastic Gene Signature. Case Identifier Age (years) Menopausal Status BRCA1/2 Status* Other Characteristics WT-FT no. 1 46 Pre Negative...communica- tion within the extracellular matrix [17]. Mutations in EFEMP1 cause an autosomal-dominant disorder associated with early onset macular

  12. Missense mutations in TENM4, a regulator of axon guidance and central myelination, cause essential tremor

    PubMed Central

    Hor, Hyun; Francescatto, Ludmila; Bartesaghi, Luca; Ortega-Cubero, Sara; Kousi, Maria; Lorenzo-Betancor, Oswaldo; Jiménez-Jiménez, Felix J.; Gironell, Alexandre; Clarimón, Jordi; Drechsel, Oliver; Agúndez, José A. G.; Kenzelmann Broz, Daniela; Chiquet-Ehrismann, Ruth; Lleó, Alberto; Coria, Francisco; García-Martin, Elena; Alonso-Navarro, Hortensia; Martí, Maria J.; Kulisevsky, Jaume; Hor, Charlotte N.; Ossowski, Stephan; Chrast, Roman; Katsanis, Nicholas; Pastor, Pau; Estivill, Xavier

    2015-01-01

    Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder. PMID:26188006

  13. Compound Heterozygosity for Null Mutations and a Common Hypomorphic Risk Haplotype in TBX6 Causes Congenital Scoliosis.

    PubMed

    Takeda, Kazuki; Kou, Ikuyo; Kawakami, Noriaki; Iida, Aritoshi; Nakajima, Masahiro; Ogura, Yoji; Imagawa, Eri; Miyake, Noriko; Matsumoto, Naomichi; Yasuhiko, Yukuto; Sudo, Hideki; Kotani, Toshiaki; Nakamura, Masaya; Matsumoto, Morio; Watanabe, Kota; Ikegawa, Shiro

    2017-03-01

    Congenital scoliosis (CS) occurs as a result of vertebral malformations and has an incidence of 0.5-1/1,000 births. Recently, TBX6 on chromosome 16p11.2 was reported as a disease gene for CS; about 10% of Chinese CS patients were compound heterozygotes for rare null mutations and a common haplotype defined by three SNPs in TBX6. All patients had hemivertebrae. We recruited 94 Japanese CS patients, investigated the TBX6 locus for both mutations and the risk haplotype, examined transcriptional activities of mutant TBX6 in vitro, and evaluated clinical and radiographic features. We identified TBX6 null mutations in nine patients, including a missense mutation that had a loss of function in vitro. All had the risk haplotype in the opposite allele. One of the mutations showed dominant negative effect. Although all Chinese patients had one or more hemivertebrae, two Japanese patients did not have hemivertebra. The compound heterozygosity of null mutations and the common risk haplotype in TBX6 also causes CS in Japanese patients with similar incidence. Hemivertebra was not a specific type of spinal malformation in TBX6-associated CS (TACS). A heterozygous TBX6 loss-of-function mutation has been reported in a family with autosomal-dominant spondylocostal dysostosis, but it may represent a spectrum of the same disease with TACS. © 2017 WILEY PERIODICALS, INC.

  14. Kcna1-mutant rats dominantly display myokymia, neuromyotonia and spontaneous epileptic seizures.

    PubMed

    Ishida, Saeko; Sakamoto, Yu; Nishio, Takeshi; Baulac, Stéphanie; Kuwamura, Mitsuru; Ohno, Yukihiro; Takizawa, Akiko; Kaneko, Shuji; Serikawa, Tadao; Mashimo, Tomoji

    2012-01-30

    Mutations in the KCNA1 gene, which encodes for the α subunit of the voltage-gated potassium channel Kv1.1, cause episodic ataxia type 1 (EA1). EA1 is a dominant human neurological disorder characterized by variable phenotypes of brief episodes of ataxia, myokymia, neuromyotonia, and associated epilepsy. Animal models for EA1 include Kcna1-deficient mice, which recessively display severe seizures and die prematurely, and V408A-knock-in mice, which dominantly exhibit stress-induced loss of motor coordination. In the present study, we have identified an N-ethyl-N-nitrosourea-mutagenized rat, named autosomal dominant myokymia and seizures (ADMS), with a missense mutation (S309T) in the voltage-sensor domain, S4, of the Kcna1 gene. ADMS rats dominantly exhibited myokymia, neuromyotonia and generalized tonic-clonic seizures. They also showed cold stress-induced tremor, neuromyotonia, and motor incoordination. Expression studies of homomeric and heteromeric Kv1.1 channels in HEK cells and Xenopus oocytes, showed that, although S309T channels are transferred to the cell membrane surface, they remained non-functional in terms of their biophysical properties, suggesting a dominant-negative effect of the S309T mutation on potassium channel function. ADMS rats provide a new model, distinct from previously reported mouse models, for studying the diverse functions of Kv1.1 in vivo, as well as for understanding the pathology of EA1. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4

    PubMed Central

    Liu, Qian; Chen, Haoqian; Ojode, Teresa; Gao, Xiangxi; Anaya-O'Brien, Sandra; Turner, Nicholas A.; Ulrick, Jean; DeCastro, Rosamma; Kelly, Corin; Cardones, Adela R.; Gold, Stuart H.; Hwang, Eugene I.; Wechsler, Daniel S.; Malech, Harry L.; Murphy, Philip M.

    2012-01-01

    WHIM syndrome is a rare, autosomal dominant, immunodeficiency disorder so-named because it is characterized by warts, hypogammaglobulinemia, infections, and myelokathexis (defective neutrophil egress from the BM). Gain-of-function mutations that truncate the C-terminus of the chemokine receptor CXCR4 by 10-19 amino acids cause WHIM syndrome. We have identified a family with autosomal dominant inheritance of WHIM syndrome that is caused by a missense mutation in CXCR4, E343K (1027G → A). This mutation is also located in the C-terminal domain, a region responsible for negative regulation of the receptor. Accordingly, like CXCR4R334X, the most common truncation mutation in WHIM syndrome, CXCR4E343K mediated approximately 2-fold increased signaling in calcium flux and chemotaxis assays relative to wild-type CXCR4; however, CXCR4E343K had a reduced effect on blocking normal receptor down-regulation from the cell surface. Therefore, in addition to truncating mutations in the C-terminal domain of CXCR4, WHIM syndrome may be caused by a single charge-changing amino acid substitution in this domain, E343K, that results in increased receptor signaling. PMID:22596258

  16. EYA1 mutations associated with the branchio-oto-renal syndrome result in defective otic development in Xenopus laevis

    PubMed Central

    Li, Youe; Manaligod, Jose M.; Weeks, Daniel L.

    2009-01-01

    Background information. The BOR (branchio-oto-renal) syndrome is a dominant disorder most commonly caused by mutations in the EYA1 (Eyes Absent 1) gene. Symptoms commonly include deafness and renal anomalies. Results. We have used the embryos of the frog Xenopus laevis as an animal model for early ear development to examine the effects of different EYA1 mutations. Four eya1 mRNAs encoding proteins correlated with congenital anomalies in human were injected into early stage embryos. We show that the expression of mutations associated with BOR, even in the presence of normal levels of endogenous eya1 mRNA, leads to morphologically abnormal ear development as measured by overall otic vesicle size, establishment of sensory tissue and otic innervation. The molecular consequences of mutant eya1 expression were assessed by QPCR (quantitative PCR) analysis and in situ hybridization. Embryos expressing mutant eya1 showed altered levels of multiple genes (six1, dach, neuroD, ngnr-1 and nt3) important for normal ear development. Conclusions. These studies lend support to the hypothesis that dominant-negative effects of EYA1 mutations may have a role in the pathogenesis of BOR. PMID:19951260

  17. 75 FR 66104 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci U S A. 2000 Nov... overactivated. These mice have a knock-in dominantly negative mutant thyroid hormone receptor [beta] gene (TR... mutation in the thyroid hormone receptor beta gene spontaneously develop thyroid carcinoma: a mouse model...

  18. Missense mutations in TENM4, a regulator of axon guidance and central myelination, cause essential tremor.

    PubMed

    Hor, Hyun; Francescatto, Ludmila; Bartesaghi, Luca; Ortega-Cubero, Sara; Kousi, Maria; Lorenzo-Betancor, Oswaldo; Jiménez-Jiménez, Felix J; Gironell, Alexandre; Clarimón, Jordi; Drechsel, Oliver; Agúndez, José A G; Kenzelmann Broz, Daniela; Chiquet-Ehrismann, Ruth; Lleó, Alberto; Coria, Francisco; García-Martin, Elena; Alonso-Navarro, Hortensia; Martí, Maria J; Kulisevsky, Jaume; Hor, Charlotte N; Ossowski, Stephan; Chrast, Roman; Katsanis, Nicholas; Pastor, Pau; Estivill, Xavier

    2015-10-15

    Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Dominant KCNA2 mutation causes episodic ataxia and pharmacoresponsive epilepsy.

    PubMed

    Corbett, Mark A; Bellows, Susannah T; Li, Melody; Carroll, Renée; Micallef, Silvana; Carvill, Gemma L; Myers, Candace T; Howell, Katherine B; Maljevic, Snezana; Lerche, Holger; Gazina, Elena V; Mefford, Heather C; Bahlo, Melanie; Berkovic, Samuel F; Petrou, Steven; Scheffer, Ingrid E; Gecz, Jozef

    2016-11-08

    To identify the genetic basis of a family segregating episodic ataxia, infantile seizures, and heterogeneous epilepsies and to study the phenotypic spectrum of KCNA2 mutations. A family with 7 affected individuals over 3 generations underwent detailed phenotyping. Whole genome sequencing was performed on a mildly affected grandmother and her grandson with epileptic encephalopathy (EE). Segregating variants were filtered and prioritized based on functional annotations. The effects of the mutation on channel function were analyzed in vitro by voltage clamp assay and in silico by molecular modeling. KCNA2 was sequenced in 35 probands with heterogeneous phenotypes. The 7 family members had episodic ataxia (5), self-limited infantile seizures (5), evolving to genetic generalized epilepsy (4), focal seizures (2), and EE (1). They had a segregating novel mutation in the shaker type voltage-gated potassium channel KCNA2 (CCDS_827.1: c.765_773del; p.255_257del). A rare missense SCN2A (rs200884216) variant was also found in 2 affected siblings and their unaffected mother. The p.255_257del mutation caused dominant negative loss of channel function. Molecular modeling predicted repositioning of critical arginine residues in the voltage-sensing domain. KCNA2 sequencing revealed 1 de novo mutation (CCDS_827.1: c.890G>A; p.Arg297Gln) in a girl with EE, ataxia, and tremor. A KCNA2 mutation caused dominantly inherited episodic ataxia, mild infantile-onset seizures, and later generalized and focal epilepsies in the setting of normal intellect. This observation expands the KCNA2 phenotypic spectrum from EE often associated with chronic ataxia, reflecting the marked variation in severity observed in many ion channel disorders. © 2016 American Academy of Neurology.

  20. Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism.

    PubMed

    Tan, A Y; Blumenfeld, J; Michaeel, A; Donahue, S; Bobb, W; Parker, T; Levine, D; Rennert, H

    2015-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder caused by loss of function mutations of PKD1 or PKD2 genes. Although PKD1 is highly polymorphic and the new mutation rate is relatively high, the role of mosaicism is incompletely defined. Herein, we describe the molecular analysis of ADPKD in a 19-year-old female proband and her father. The proband had a PKD1 truncation mutation c.10745dupC (p.Val3584ArgfsX43), which was absent in paternal peripheral blood lymphocytes (PBL). However, very low quantities of this mutation were detected in the father's sperm DNA, but not in DNA from his buccal cells or urine sediment. Next generation sequencing (NGS) analysis determined the level of this mutation in the father's PBL, buccal cells and sperm to be ∼3%, 4.5% and 10%, respectively, consistent with somatic and germline mosaicism. The PKD1 mutation in ∼10% of her father's sperm indicates that it probably occurred early in embryogenesis. In ADPKD cases where a de novo mutation is suspected because of negative PKD gene testing of PBL, additional evaluation with more sensitive methods (e.g. NGS) of the proband PBL and paternal sperm can enhance detection of mosaicism and facilitate genetic counseling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Concentration of mutations causing Schmid metaphyseal chondrodysplasia in the NC1 domain of type X collagen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntosh, I.; Abbott, M.H.; Francomano, C.A.

    1994-09-01

    Schmid metaphyseal chondrodysplasia (SMCD, MIM 156500) is an autosomal dominant disorder of the osseous skeleton resulting in short stature, coxa vara and a waddling gait. Type X collagen is an extracellular matrix protein expressed exclusively by hypertrophic chondrocytes. We have previously identified four mutations in the type X collagen gene (COL10A1) in patients with SMCD. Each of these mutations, as well as another three reported by other investigators, are in the carboxy-terminal non-collagenous domain (NC1). Here, we present data for another three mutations each predicted to cause premature termination of translation within the NC1 domain. Two are nonsense mutations, Y628Xmore » and W651X, while the third is a frameshift resulting from the deletion of two nucleotides, 1856delCC. Each of these mutations occurred de novo, resulting in sporadic cases of SMCD. Four frameshift mutations have now been reported to initiate within 10bp of each other in the NC1 domain, namely 1865delC, 1856delCC, 1856del13 and 1866del10. These findings further support the hypothesis that SMCD is the result of the mutant type X collagen molecule being unable to participate in trimerization, although a dominant-negative model of disease pathogenesis has not been formally excluded.« less

  2. A new C-terminal located mutation (V272ter) in the PIT-1 gene manifesting with severe congenital hypothyroidism. Possible functionality of the PIT-1 C-terminus.

    PubMed

    Blankenstein, O; Mühlenberg, R; Kim, C; Wüller, S; Pfäffle, R; Heimann, G

    2001-01-01

    We describe a newborn with clinical signs of severe hypothyroidism and combined pituitary hormone deficiency due to a new mutation in the PIT-1 gene. Endocrine stimulation test revealed a deficiency for PRL, TSH and GH, suggesting a defect in the pituitary transcription factor PIT-1. Genetic analysis of the PIT-1 gene was performed by exon-specific PCR, followed by SSCP mutation screening and DNA sequencing of the abnormal migrating fragments. DNA sequencing revealed a new mutation (V272ter) in direct neighborhood to a known mutational hot spot (R271W) in the C-terminal part of the PIT-1 molecule. Whereas the R271W mutation has a dominant negative effect on the mutant protein, the newly described mutation is inherited in an autosomal-recessive way. The biological consequences of these two different mutations are discussed. Copyright 2002 S. Karger AG, Basel

  3. Waardenburg syndrome type 3 (Klein-Waardenburg syndrome) segregating with a heterozygous deletion in the paired box domain of PAX3: a simple variant or a true syndrome?

    PubMed

    Tekin, M; Bodurtha, J N; Nance, W E; Pandya, A

    2001-10-01

    Klein-Waardenburg syndrome or Waardenburg syndrome type 3 (WS-III; MIM 148820) is characterized by the presence of musculoskeletal abnormalities in association with clinical features of Waardenburg syndrome type 1 (WS-I). Since the description of the first patient in 1947 (D. Klein, Arch Klaus Stift Vererb Forsch 1947: 22: 336-342), a few cases have been reported. Only occasional families have demonstrated autosomal-dominant inheritance of WS-III. In a previous report, a missense mutation in the paired domain of the PAX3 gene has been described in a family with dominant segregation of WS-III. In this report, we present a second family (mother and son) with typical clinical findings of WS-III segregating with a heterozygous 13-bp deletion in the paired domain of the PAX3 gene. Although homozygosity or compound heterozygosity has also been documented in patients with severe limb involvement, a consistent genotype-phenotype correlation for limb abnormalities associated with heterozygous PAX3 mutations has not previously been apparent. Heterozygous mutations could either reflect a unique dominant-negative effect or possibly the contribution of other unlinked genetic modifiers in determining the phenotype.

  4. PTT analysis of polyps from FAP patients reveals a great majority of APC truncating mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luijt, R.B. van der; Khan, P.M.; Tops, C.M.J.

    The adenomatous polyposis coli (APC) gene plays an important role in colorectal carcinogenesis. Germline APC mutations are associated with familial adenomatous polyposis (FAP), an autosomal dominantly inherited predisposition to colorectal cancer, characterized by the development of numerous adenomatous polyps in the large intestine. In order to investigate whether somatic inactivation of the remaining APC allele is necessary for adenoma formation, we collected multiple adenomatous polyps from individual FAP patients and investigated the presence of somatic mutations in the APC gene. The analysis of somatic APC mutations in these tumor samples was performed using a rapid and sensitive assay, called themore » protein truncation test (PTT). Chain-terminating somatic APC mutations were detected in the great majority of the tumor samples investigated. As expected, these mutations were mainly located in the mutation cluster region (MCR) in exon 15. Our results confirm that somatic mutation of the second APC allele is required for adenoma formation in FAP. Interestingly, in the polyps investigated in our study, the second APC allele is somatically inactivated through point mutation leading to a stop codon rather than by loss of heterozygosity. The observation that somatic second hits in APC are required for tumor development in FAP is in apparent accordance with the Knudson hypothesis for classical tumor suppressor genes. However, it is yet unknown whether chain-terminating APC mutations lead to a truncated protein exerting a dominant-negative effect or whether these mutations result in a null allele. Further investigation of this important issue will hopefully provide a better understanding of the mechanism of action of the mutated APC alleles in colorectal carcinogenesis.« less

  5. Wnt signaling pathway involvement in genotypic and phenotypic variations in Waardenburg syndrome type 2 with MITF mutations.

    PubMed

    Wang, Xue-Ping; Liu, Ya-Lan; Mei, Ling-Yun; He, Chu-Feng; Niu, Zhi-Jie; Sun, Jie; Zhao, Yu-Lin; Feng, Yong; Zhang, Hua

    2018-05-01

    Mutation in the gene encoding microphthalmia-associated transcription factor (MITF) lead to Waardenburg syndrome 2 (WS2), an autosomal dominantly inherited syndrome with auditory-pigmentary abnormalities, which is clinically and genetically heterogeneous. Haploinsufficiency may be the underlying mechanism for WS2. However, the mechanisms explaining the genotypic and phenotypic variations in WS2 caused by MITF mutations are unclear. A previous study revealed that MITF interacts with LEF-1, an important factor in the Wnt signaling pathway, to regulate its own transcription through LEF-1-binding sites on the MITF promoter. In this study, four different WS2-associated MITF mutations (p.R217I, p.R217G, p.R255X, p.R217del) that are associated with highly variable clinical features were chosen. According to the results, LEF-1 can activate the expression of MITF on its own, but MITF proteins inhibited the activation. This inhibition weakens when the dosage of MITF is reduced. Except for p.R217I, p.R255X, p.R217G, and p.R217del lose the ability to activate TYR completely and do not inhibit the LEF-1-mediated activation of the MITF-M promoter, and the haploinsufficiency created by mutant MITF can be overcome; correspondingly, the mutants' associated phenotypes are less severe than that of p.R217I. The dominant negative of p.R217del made it have a second-most severe phenotype. This study's data imply that MITF has a negative feedback loop of regulation to stabilize MITF gene dosage that involves the Wnt signaling pathway and that the interaction of MITF mutants with this pathway drives the genotypic and phenotypic differences observed in Waardenburg syndrome type 2 associated with MITF mutations.

  6. Highly variable cutis laxa resulting from a dominant splicing mutation of the elastin gene.

    PubMed

    Graul-Neumann, Luitgard M; Hausser, Ingrid; Essayie, Maximilian; Rauch, Anita; Kraus, Cornelia

    2008-04-15

    Autosomal dominant congenital cutis laxa (ADCL) is genetically heterogeneous and shows clinical variability. Only seven ADCL families with mutations in the elastin gene (ELN) have been described previously. We present morphological and molecular genetic studies in a cutis laxa kindred with a previously undescribed highly variable phenotype caused by a novel ELN mutation c.1621 C > T. The proband presented with severe cutis laxa, severe congenital lung disease previously undescribed in ADCL and pulmonary artery disease, which is often seen in ARCL but rare in ADCL. He also developed infantile spasms (OMIM 308350; West syndrome), which we consider a coincidental association although recessive cutis laxa or even digenic inheritance cannot be excluded. Electron microscopy of the proband's dermis revealed only mild rarefication of elastic fibers (in contrast to most recessive cutis laxa types). Apart from mild elastic fiber fragmentation, dermal morphology of the proband's father was within normal range. Molecular analysis of the ELN gene using genomic DNA from blood and RNA from cultured skin fibroblasts indicated a novel splice site mutation in the proband and his clinically healthy father. Analysis of ELN expression in fibroblasts provided evidence for a dominant-negative effect in the child, while due to an unknown mechanism, the father showed haploinsufficiency which might explain the significant clinical variability. Copyright 2008 Wiley-Liss, Inc.

  7. Dominant negative mutant of ionotropic glutamate receptor subunit GluR3: implications for the role of a cysteine residue for its channel activity and pharmacological properties.

    PubMed Central

    Watase, K; Sekiguchi, M; Matsui, T A; Tagawa, Y; Wada, K

    1997-01-01

    We reported that a 33-amino-acid deletion (from tyrosine-715 to glycine-747) in a putative extracellular loop of GluR3 produced a mutant that exhibited dominant negative effects upon the functional expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors [Sekiguchi et al. (1994) J. Biol. Chem. 269, 14559-14565]. In this study, we searched for a key residue in the dominant negative effects to explore the mechanism and examined the role of the residue in the function of the AMPA receptor. We prepared 20 GluR3 mutants with amino acid substitutions within the 33-amino-acid-region, and dominant negative effects were tested electrophysiologically in Xenopus oocytes co-expressing the mutant and normal subunits. Among the mutants, only a GluR3 mutant in which an original cysteine (Cys)-722 was replaced by alanine exhibited a dominant negative effect comparable with that of the original mutant in which the entire 33-amino-acid segment is deleted. The co-expression of the Cys-722 mutant did not inhibit the translation of normal subunits in oocytes. The Cys-722 mutant formed a functional homomeric receptor with significantly higher affinity for glutamate or kainate than a homomeric GluR3 receptor. The Cys-722 mutation greatly enhanced the sensitivity of GluR3 for aniracetam, which alters kinetic properties of AMPA receptors. The kainate-induced currents in oocytes expressing the Cys-722 mutant alone showed strong inward rectification. These results suggest that the Cys-722 in GluR3 is important for dominant negative effects and plays a crucial role in the determination of pharmacological properties in AMPA receptor function. PMID:9065754

  8. Validation in mesenchymal progenitor cells of a mutation-independent ex vivo approach to gene therapy for osteogenesis imperfecta.

    PubMed

    Millington-Ward, Sophia; Allers, Carolina; Tuohy, Gearóid; Conget, Paulette; Allen, Danny; McMahon, Helena P; Kenna, Paul F; Humphries, Peter; Farrar, G Jane

    2002-09-15

    Over 100 dominant-negative mutations within the COL1A1 gene have been identified in osteogenesis imperfecta (OI). In terms of human therapeutics, targeting each of these mutations independently is unlikely to be feasible. Here we show that the hammerhead ribozyme Rzpol1a1, targeting a common polymorphism within transcripts from the COL1A1 gene, downregulates COL1A1 transcript in human mesenchymal progenitor cells at a ribozyme to transcript ratio of only 1:1. Downregulation was confirmed at the protein level. Transducing stem cells with Rzpol1A1 ex vivo followed by autologous transplantation could provide a gene therapy for a large proportion of OI patients with gain-of-function mutations using a single therapeutic.

  9. Loss of Association of REEP2 with Membranes Leads to Hereditary Spastic Paraplegia

    PubMed Central

    Esteves, Typhaine; Durr, Alexandra; Mundwiller, Emeline; Loureiro, José L.; Boutry, Maxime; Gonzalez, Michael A.; Gauthier, Julie; El-Hachimi, Khalid H.; Depienne, Christel; Muriel, Marie-Paule; Acosta Lebrigio, Rafael F.; Gaussen, Marion; Noreau, Anne; Speziani, Fiorella; Dionne-Laporte, Alexandre; Deleuze, Jean-François; Dion, Patrick; Coutinho, Paula; Rouleau, Guy A.; Zuchner, Stephan; Brice, Alexis; Stevanin, Giovanni; Darios, Frédéric

    2014-01-01

    Hereditary spastic paraplegias (HSPs) are clinically and genetically heterogeneous neurological conditions. Their main pathogenic mechanisms are thought to involve alterations in endomembrane trafficking, mitochondrial function, and lipid metabolism. With a combination of whole-genome mapping and exome sequencing, we identified three mutations in REEP2 in two families with HSP: a missense variant (c.107T>A [p.Val36Glu]) that segregated in the heterozygous state in a family with autosomal-dominant inheritance and a missense change (c.215T>A [p.Phe72Tyr]) that segregated in trans with a splice site mutation (c.105+3G>T) in a family with autosomal-recessive transmission. REEP2 belongs to a family of proteins that shape the endoplasmic reticulum, an organelle that was altered in fibroblasts from an affected subject. In vitro, the p.Val36Glu variant in the autosomal-dominant family had a dominant-negative effect; it inhibited the normal binding of wild-type REEP2 to membranes. The missense substitution p.Phe72Tyr, in the recessive family, decreased the affinity of the mutant protein for membranes that, together with the splice site mutation, is expected to cause complete loss of REEP2 function. Our findings illustrate how dominant and recessive inheritance can be explained by the effects and nature of mutations in the same gene. They have also important implications for genetic diagnosis and counseling in clinical practice because of the association of various modes of inheritance to this new clinico-genetic entity. PMID:24388663

  10. Sequence polymorphism in an insect RNA virus field population: A snapshot from a single point in space and time reveals stochastic differences among and within individual hosts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenger, Drake C., E-mail: drake.stenger@ars.usda.

    Population structure of Homalodisca coagulata Virus-1 (HoCV-1) among and within field-collected insects sampled from a single point in space and time was examined. Polymorphism in complete consensus sequences among single-insect isolates was dominated by synonymous substitutions. The mutant spectrum of the C2 helicase region within each single-insect isolate was unique and dominated by nonsynonymous singletons. Bootstrapping was used to correct the within-isolate nonsynonymous:synonymous arithmetic ratio (N:S) for RT-PCR error, yielding an N:S value ~one log-unit greater than that of consensus sequences. Probability of all possible single-base substitutions for the C2 region predicted N:S values within 95% confidence limits of themore » corrected within-isolate N:S when the only constraint imposed was viral polymerase error bias for transitions over transversions. These results indicate that bottlenecks coupled with strong negative/purifying selection drive consensus sequences toward neutral sequence space, and that most polymorphism within single-insect isolates is composed of newly-minted mutations sampled prior to selection. -- Highlights: •Sampling protocol minimized differential selection/history among isolates. •Polymorphism among consensus sequences dominated by negative/purifying selection. •Within-isolate N:S ratio corrected for RT-PCR error by bootstrapping. •Within-isolate mutant spectrum dominated by new mutations yet to undergo selection.« less

  11. Mutations in STAT3 and IL12RB1 impair the development of human IL-17–producing T cells

    PubMed Central

    de Beaucoudrey, Ludovic; Puel, Anne; Filipe-Santos, Orchidée; Cobat, Aurélie; Ghandil, Pegah; Chrabieh, Maya; Feinberg, Jacqueline; von Bernuth, Horst; Samarina, Arina; Jannière, Lucile; Fieschi, Claire; Stéphan, Jean-Louis; Boileau, Catherine; Lyonnet, Stanislas; Jondeau, Guillaume; Cormier-Daire, Valérie; Le Merrer, Martine; Hoarau, Cyrille; Lebranchu, Yvon; Lortholary, Olivier; Chandesris, Marie-Olivia; Tron, François; Gambineri, Eleonora; Bianchi, Lucia; Rodriguez-Gallego, Carlos; Zitnik, Simona E.; Vasconcelos, Julia; Guedes, Margarida; Vitor, Artur Bonito; Marodi, Laszlo; Chapel, Helen; Reid, Brenda; Roifman, Chaim; Nadal, David; Reichenbach, Janine; Caragol, Isabel; Garty, Ben-Zion; Dogu, Figen; Camcioglu, Yildiz; Gülle, Sanyie; Sanal, Ozden; Fischer, Alain; Abel, Laurent; Stockinger, Birgitta; Picard, Capucine; Casanova, Jean-Laurent

    2008-01-01

    The cytokines controlling the development of human interleukin (IL) 17–producing T helper cells in vitro have been difficult to identify. We addressed the question of the development of human IL-17–producing T helper cells in vivo by quantifying the production and secretion of IL-17 by fresh T cells ex vivo, and by T cell blasts expanded in vitro from patients with particular genetic traits affecting transforming growth factor (TGF) β, IL-1, IL-6, or IL-23 responses. Activating mutations in TGFB1, TGFBR1, and TGFBR2 (Camurati-Engelmann disease and Marfan-like syndromes) and loss-of-function mutations in IRAK4 and MYD88 (Mendelian predisposition to pyogenic bacterial infections) had no detectable impact. In contrast, dominant-negative mutations in STAT3 (autosomal-dominant hyperimmunoglobulin E syndrome) and, to a lesser extent, null mutations in IL12B and IL12RB1 (Mendelian susceptibility to mycobacterial diseases) impaired the development of IL-17–producing T cells. These data suggest that IL-12Rβ1– and STAT-3–dependent signals play a key role in the differentiation and/or expansion of human IL-17–producing T cell populations in vivo. PMID:18591412

  12. De novo mutations in NALCN cause a syndrome characterized by congenital contractures of the limbs and face, hypotonia, and developmental delay.

    PubMed

    Chong, Jessica X; McMillin, Margaret J; Shively, Kathryn M; Beck, Anita E; Marvin, Colby T; Armenteros, Jose R; Buckingham, Kati J; Nkinsi, Naomi T; Boyle, Evan A; Berry, Margaret N; Bocian, Maureen; Foulds, Nicola; Uzielli, Maria Luisa Giovannucci; Haldeman-Englert, Chad; Hennekam, Raoul C M; Kaplan, Paige; Kline, Antonie D; Mercer, Catherine L; Nowaczyk, Malgorzata J M; Klein Wassink-Ruiter, Jolien S; McPherson, Elizabeth W; Moreno, Regina A; Scheuerle, Angela E; Shashi, Vandana; Stevens, Cathy A; Carey, John C; Monteil, Arnaud; Lory, Philippe; Tabor, Holly K; Smith, Joshua D; Shendure, Jay; Nickerson, Deborah A; Bamshad, Michael J

    2015-03-05

    Freeman-Sheldon syndrome, or distal arthrogryposis type 2A (DA2A), is an autosomal-dominant condition caused by mutations in MYH3 and characterized by multiple congenital contractures of the face and limbs and normal cognitive development. We identified a subset of five individuals who had been putatively diagnosed with "DA2A with severe neurological abnormalities" and for whom congenital contractures of the limbs and face, hypotonia, and global developmental delay had resulted in early death in three cases; this is a unique condition that we now refer to as CLIFAHDD syndrome. Exome sequencing identified missense mutations in the sodium leak channel, non-selective (NALCN) in four families affected by CLIFAHDD syndrome. We used molecular-inversion probes to screen for NALCN in a cohort of 202 distal arthrogryposis (DA)-affected individuals as well as concurrent exome sequencing of six other DA-affected individuals, thus revealing NALCN mutations in ten additional families with "atypical" forms of DA. All 14 mutations were missense variants predicted to alter amino acid residues in or near the S5 and S6 pore-forming segments of NALCN, highlighting the functional importance of these segments. In vitro functional studies demonstrated that NALCN alterations nearly abolished the expression of wild-type NALCN, suggesting that alterations that cause CLIFAHDD syndrome have a dominant-negative effect. In contrast, homozygosity for mutations in other regions of NALCN has been reported in three families affected by an autosomal-recessive condition characterized mainly by hypotonia and severe intellectual disability. Accordingly, mutations in NALCN can cause either a recessive or dominant condition characterized by varied though overlapping phenotypic features, perhaps based on the type of mutation and affected protein domain(s). Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series.

    PubMed

    Rashid, Ban Mousa; Rashid, Nawshirwan Gafoor; Schulz, Ansgar; Lahr, Georgia; Nore, Beston Faiek

    2013-01-09

    Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton. The absence or malfunction of osteoclasts is found to be strongly associated with the disease evolution. Currently, four clinically distinct forms of the disease have been recognized: the infantile autosomal recessive osteopetrosis, the malignant and the intermediate forms, and autosomal dominant osteopetrosis, type I and type II forms. The autosomal recessive types are the most severe forms with symptoms in very early childhood, whereas the autosomal dominant classes exhibit a heterogeneous trait with milder symptoms, often at later childhood or adulthood. Case 1 is the 12-year-old daughter (index patient) of an Iraqi-Kurdish family who, at the age of eight years, was diagnosed clinically to have mild autosomal dominant osteopetrosis. Presently, at 12-years old, she has severe complications due to the disease progression. In addition, the same family previously experienced the death of a female child in her late childhood. The deceased child had been misdiagnosed, at that time, with thalassemia major. In this report, we extended our investigation to identify the type of the inheritance patterns of osteopetrosis using molecular techniques, because consanguineous marriages exist within the family history. We have detected one heterozygous mutation in exon 15 of the Chloride Channel 7 gene in the index patient (Case 1), whereas other mutations were not detected in the associated genes TCIRG1, OSTM1, RANK, and RANKL. The missense mutation (CGG>TGG) located in exon 15 (c.1225C>T) of the Chloride Channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T).Case 2 is the 16-year-old son (brother of the index patient) of the same family who was diagnosed clinically with mild autosomal dominant osteopetrosis. We have identified the same heterozygous mutation in exon 15 of the Chloride channel 7 gene in this patient (Case 2). The missense mutation (CGG>TGG) located in exon 15 (c.1225C>T) of the Chloride channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T).In addition to the clinical diagnosis of both cases, the missense mutation we identified in one allele of the Chloride channel 7 gene could be linked to autosomal dominant osteopetrosis-II because the symptoms appear in late childhood or adolescence. In this family, the molecular diagnosis was confirmed after identification of the same mutation in the older son (sibling). Furthermore, we detected that the father and his brother (the uncle) are carriers of the same mutation, whereas the mother and her sister (the aunt) do not carry any mutation of the Chloride channel 7 gene. Thus, the disease penetrance is at least 60% in the family. The mother and father are cousins and a further consanguineous marriage between the aunt and the uncle is not recommended because the dominant allele of the Chloride channel 7 gene will be transferred to the progeny. However, a similar risk is also expected following a marriage between the uncle and an unrelated woman. The p.R409W mutation in the Chloride channel 7 gene has not yet been described in the literature and it possibly has a dominant-negative impact on the protein.

  14. High frequency of ribosomal protein gene deletions in Italian Diamond-Blackfan anemia patients detected by multiplex ligation-dependent probe amplification assay

    PubMed Central

    Quarello, Paola; Garelli, Emanuela; Brusco, Alfredo; Carando, Adriana; Mancini, Cecilia; Pappi, Patrizia; Vinti, Luciana; Svahn, Johanna; Dianzani, Irma; Ramenghi, Ugo

    2012-01-01

    Diamond-Blackfan anemia is an autosomal dominant disease due to mutations in nine ribosomal protein encoding genes. Because most mutations are loss of function and detected by direct sequencing of coding exons, we reasoned that part of the approximately 50% mutation negative patients may have carried a copy number variant of ribosomal protein genes. As a proof of concept, we designed a multiplex ligation-dependent probe amplification assay targeted to screen the six genes that are most frequently mutated in Diamond-Blackfan anemia patients: RPS17, RPS19, RPS26, RPL5, RPL11, and RPL35A. Using this assay we showed that deletions represent approximately 20% of all mutations. The combination of sequencing and multiplex ligation-dependent probe amplification analysis of these six genes allows the genetic characterization of approximately 65% of patients, showing that Diamond-Blackfan anemia is indisputably a ribosomopathy. PMID:22689679

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liwei; Yang, Jin Kuk; Kabaleeswaran, Venkataraman

    The death-inducing signaling complex (DISC) formed by the death receptor Fas, the adaptor protein FADD and caspase-8 mediates the extrinsic apoptotic program. Mutations in Fas that disrupt the DISC cause autoimmune lymphoproliferative syndrome (ALPS). Here we show that the Fas-FADD death domain (DD) complex forms an asymmetric oligomeric structure composed of 5-7 Fas DD and 5 FADD DD, whose interfaces harbor ALPS-associated mutations. Structure-based mutations disrupt the Fas-FADD interaction in vitro and in living cells; the severity of a mutation correlates with the number of occurrences of a particular interaction in the structure. The highly oligomeric structure explains the requirementmore » for hexameric or membrane-bound FasL in Fas signaling. It also predicts strong dominant negative effects from Fas mutations, which are confirmed by signaling assays. The structure optimally positions the FADD death effector domain (DED) to interact with the caspase-8 DED for caspase recruitment and higher-order aggregation.« less

  16. DNA Polymerase α Subunit Residues and Interactions Required for Efficient Initiation Complex Formation Identified by a Genetic Selection.

    PubMed

    Lindow, Janet C; Dohrmann, Paul R; McHenry, Charles S

    2015-07-03

    Biophysical and structural studies have defined many of the interactions that occur between individual components or subassemblies of the bacterial replicase, DNA polymerase III holoenzyme (Pol III HE). Here, we extended our knowledge of residues and interactions that are important for the first step of the replicase reaction: the ATP-dependent formation of an initiation complex between the Pol III HE and primed DNA. We exploited a genetic selection using a dominant negative variant of the polymerase catalytic subunit that can effectively compete with wild-type Pol III α and form initiation complexes, but cannot elongate. Suppression of the dominant negative phenotype was achieved by secondary mutations that were ineffective in initiation complex formation. The corresponding proteins were purified and characterized. One class of mutant mapped to the PHP domain of Pol III α, ablating interaction with the ϵ proofreading subunit and distorting the polymerase active site in the adjacent polymerase domain. Another class of mutation, found near the C terminus, interfered with τ binding. A third class mapped within the known β-binding domain, decreasing interaction with the β2 processivity factor. Surprisingly, mutations within the β binding domain also ablated interaction with τ, suggesting a larger τ binding site than previously recognized. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. DA-Raf, a dominant-negative antagonist of the Ras-ERK pathway, is a putative tumor suppressor.

    PubMed

    Kanno, Emiri; Kawasaki, Osamu; Takahashi, Kazuya; Takano, Kazunori; Endo, Takeshi

    2018-01-01

    Activating mutations of RAS genes, particularly KRAS, are detected with high frequency in human tumors. Mutated Ras proteins constitutively activate the ERK pathway (Raf-MEK-ERK phosphorylation cascade), leading to cellular transformation and tumorigenesis. DA-Raf1 (DA-Raf) is a splicing variant of A-Raf and contains the Ras-binding domain (RBD) but lacks the kinase domain. Accordingly, DA-Raf antagonizes the Ras-ERK pathway in a dominant-negative fashion and suppresses constitutively activated K-Ras-induced cellular transformation. Thus, we have addressed whether DA-Raf serves as a tumor suppressor of Ras-induced tumorigenesis. DA-Raf(R52Q), which is generated from a single nucleotide polymorphism (SNP) in the RBD, and DA-Raf(R52W), a mutant detected in a lung cancer, neither bound to active K-Ras nor interfered with the activation of the ERK pathway. They were incapable of suppressing activated K-Ras-induced cellular transformation and tumorigenesis in mice, in which K-Ras-transformed cells were transplanted. Furthermore, although DA-Raf was highly expressed in lung alveolar epithelial type 2 (AE2) cells, its expression was silenced in AE2-derived lung adenocarcinoma cell lines with oncogenic KRAS mutations. These results suggest that DA-Raf represents a tumor suppressor protein against Ras-induced tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes.

    PubMed

    Matsa, Elena; Dixon, James E; Medway, Christopher; Georgiou, Orestis; Patel, Minal J; Morgan, Kevin; Kemp, Paul J; Staniforth, Andrew; Mellor, Ian; Denning, Chris

    2014-04-01

    Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K(+) currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart.

  19. Marfan syndrome: An eyesight of syndrome☆

    PubMed Central

    Kumar, Ashok; Agarwal, Sarita

    2014-01-01

    Marfan syndrome (MFS), a relatively common autosomal dominant hereditary disorder of connective tissue with prominent manifestations in the skeletal, ocular, and cardiovascular systems, is caused by mutations in the glycoprotein gene fibrillin-1 (FBN1). Aortic root dilation and mitral valve prolapse are the main presentations among the cardiovascular malformations of MFS. The revised Ghent diagnostics nosology of Marfan syndrome is established in accordance with a combination of major and minor clinical manifestations in various organ systems and the family history. The pathogenesis of Marfan syndrome has not been fully elucidated. However, fibrillin-1 gene mutations are believed to exert a dominant negative effect. The treatment includes prophylactic β-blockers and angiotensin II-receptor blockers in order to slow down the dilation of the ascending aorta and prophylactic aortic surgery. Importantly, β-blocker therapy may reduce TGF-β activation, which has been recognized as a contributory factor in MFS. The identification of a mutation allows for early diagnosis, prognosis, genetic counseling, preventive management of carriers and reassurance for unaffected relatives. The importance of knowing in advance the location of the putative family mutation is highlighted by its straightforward application to prenatal and postnatal screening. The present article aims to provide an overview of this rare hereditary disorder. PMID:25606393

  20. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes

    PubMed Central

    Matsa, Elena; Dixon, James E.; Medway, Christopher; Georgiou, Orestis; Patel, Minal J.; Morgan, Kevin; Kemp, Paul J.; Staniforth, Andrew; Mellor, Ian; Denning, Chris

    2014-01-01

    Aims Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. Methods and results We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K+ currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). Conclusions These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart. PMID:23470493

  1. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping.

    PubMed Central

    Lengeler, J

    1975-01-01

    Mutants of Escherichia coli K-12 unable to grow on any of the three naturally occurring hexitols D-manitol, D-glucitol, and galactitol and, among these specifically, mutants with altered transport and phosphorylating activity have been isolated. Different isolation procedures have been utilized, including suicide by D-[3H]mannitol, chemotaxis, and resistance to the toxic hexitol analogue 2-deoxy-arabino-hexitol. Mutations thus obtained have been mapped in four distinct operons. (i) Mutations affecting an enzyme II-complexmt1 activity of the phosphoenolpyruvate-dependent phosphotransferase system all map in gene mtlA. This gene has previously been shown (Solomon and Lin, 1972) to be part of an operon, mtl, located at 71 min on the E. coli linkage map containing, in addition to mtlA, the cis-dominant regulatory gene mtlC and mtlD, the structural gene for the enzyme D-mannitol-1-phosphate dehydrogenase. The gene order in this operon, induced by D-mannitol, is mtlC A D. (ii) Mutations in gene gutA affecting a second enzyme II-complexgut of the phosphotransferase system map at 51 min, clustered in operon gutC A D together with the cis-dominant regulatory gene gutC and the structural gene gutD for the enzyme D-glucitol-6-phosphate dehydrogenase. The gut operon, previously called sbl or srl, is induced by D-glucitol. (iii) Mutations affecting the transport and catabolism of galactitol are clustered in a third operon, gatC A D, located at 40.5 min. This operon again contains a cis-dominant regulatory gene, gatC, the structural gene gatD for galactitol-1-phosphate dehydrogenase, and gene gatA coding for a thrid hexitol-specific enzyme II-complexgat. Other genes coding for two additional enzymes involved in galactitol catabolism apparently are not linked to gatC A D. (iv) A fourth class of mutants pleiotropically negative for hexitol growth and transport maps in the pts operon. Triple-negative mutants (mtlA gutA gatA) do not have further transport or phosphorylating activity for any of the three hexitols. PMID:1100602

  2. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism.

    PubMed

    Sartorato, Paola; Lapeyraque, Anne-Laure; Armanini, Decio; Kuhnle, Ursula; Khaldi, Yasmina; Salomon, Rémi; Abadie, Véronique; Di Battista, Eliana; Naselli, Arturo; Racine, Alain; Bosio, Maurizio; Caprio, Massimiliano; Poulet-Young, Véronique; Chabrolle, Jean-Pierre; Niaudet, Patrick; De Gennes, Christiane; Lecornec, Marie-Hélène; Poisson, Elodie; Fusco, Anna Maria; Loli, Paola; Lombès, Marc; Zennaro, Maria-Christina

    2003-06-01

    We have analyzed the human mineralocorticoid receptor (hMR) gene in 14 families with autosomal dominant or sporadic pseudohypoaldosteronism (PHA1), a rare form of mineralocorticoid resistance characterized by neonatal renal salt wasting and failure to thrive. Six heterozygous mutations were detected. Two frameshift mutations in exon 2 (insT1354, del8bp537) and one nonsense mutation in exon 4 (C2157A, Cys645stop) generate truncated proteins due to premature stop codons. Three missense mutations (G633R, Q776R, L979P) differently affect hMR function. The DNA binding domain mutant R633 exhibits reduced maximal transactivation, although its binding characteristics and ED(50) of transactivation are comparable with wild-type hMR. Ligand binding domain mutants R776 and P979 present reduced or absent aldosterone binding, respectively, which is associated with reduced or absent ligand-dependent transactivation capacity. Finally, P979 possesses a transdominant negative effect on wild-type hMR activity, whereas mutations G633R and Q776R probably result in haploinsufficiency in PHA1 patients. We conclude that hMR mutations are a common feature of autosomal dominant PHA1, being found in 70% of our familial cases. Their absence in some families underscores the importance of an extensive investigation of the hMR gene and the role of precise diagnostic procedures to allow for identification of other genes potentially involved in the disease.

  3. Corticosteroid-exacerbated symptoms in an Andersen's syndrome kindred.

    PubMed

    Bendahhou, Saïd; Fournier, Emmanuel; Gallet, Serge; Ménard, Dominique; Larroque, Marie-Madeleine; Barhanin, Jacques

    2007-04-15

    Periodic paralysis, cardiac arrhythmia and bone features are the hallmark of Andersen's syndrome (AS), a rare disorder caused by mutations in the KCNJ2 gene that encodes for the inward rectifier K(+)-channel Kir2.1. Rest following strenuous physical activity, carbohydrate ingestion, emotional stress and exposure to cold are the precipitating triggers. Most of the mutations act in a dominant-negative fashion, either through a trafficking dysfunction or through Kir2.1-phosphatidyl inositol bisphosphate binding defect. We have identified two families that were diagnosed with periodic paralysis and cardiac abnormalities, but only discrete development features. The proband in one of the two families reported having his symptoms occurring twice within the day following corticosteroids ingestion, and alleviated after stopping the corticosteroid treatment. Electromyographic evaluations pointed out to a typical hypokalemic periodic paralysis pattern. Molecular screening of the KCNJ2 gene identified two mutations leading to C54F and T305P substitutions in the Kir2.1 protein. Functional expression in mammalian cells revealed a loss-of-function of the mutated channels and a dominant-negative effect when both mutants and wild-type channels are present in the same cell. However, channel trafficking and assembly are not affected. Substitutions at these residues may interfere with phosphatidyl inositol bisphosphate binding to Kir2.1 channels. Sensitivity of our patients to multiple corticosteroid administrations shows that care must be taken in the use of such treatments in AS patients. Taken together, our data suggest the inclusion of the KCNJ2 gene in the molecular screening of patients with periodic paralysis, even when the classical AS dysmorphic features are not present.

  4. MET-activating Residues in the B-repeat of the Listeria monocytogenes Invasion Protein InlB*

    PubMed Central

    Bleymüller, Willem M.; Lämmermann, Nina; Ebbes, Maria; Maynard, Daniel; Geerds, Christina; Niemann, Hartmut H.

    2016-01-01

    The facultative intracellular pathogen Listeria monocytogenes causes listeriosis, a rare but life-threatening disease. Host cell entry begins with activation of the human receptor tyrosine kinase MET through the bacterial invasion protein InlB, which contains an internalin domain, a B-repeat, and three GW domains. The internalin domain is known to bind MET, but no interaction partner is known for the B-repeat. Adding the B-repeat to the internalin domain potentiates MET activation and is required to stimulate Madin-Darby canine kidney (MDCK) cell scatter. Therefore, it has been hypothesized that the B-repeat may bind a co-receptor on host cells. To test this hypothesis, we mutated residues that might be important for binding an interaction partner. We identified two adjacent residues in strand β2 of the β-grasp fold whose mutation abrogated induction of MDCK cell scatter. Biophysical analysis indicated that these mutations do not alter protein structure. We then tested these mutants in human HT-29 cells that, in contrast to the MDCK cells, were responsive to the internalin domain alone. These assays revealed a dominant negative effect, reducing the activity of a construct of the internalin domain and mutated B-repeat below that of the individual internalin domain. Phosphorylation assays of MET and its downstream targets AKT and ERK confirmed the dominant negative effect. Attempts to identify a host cell receptor for the B-repeat were not successful. We conclude that there is limited support for a co-receptor hypothesis and instead suggest that the B-repeat contributes to MET activation through low affinity homodimerization. PMID:27789707

  5. A heterozygous 21-bp deletion in CAPN3 causes dominantly inherited limb girdle muscular dystrophy.

    PubMed

    Vissing, John; Barresi, Rita; Witting, Nanna; Van Ghelue, Marijke; Gammelgaard, Lise; Bindoff, Laurence A; Straub, Volker; Lochmüller, Hanns; Hudson, Judith; Wahl, Christoph M; Arnardottir, Snjolaug; Dahlbom, Kathe; Jonsrud, Christoffer; Duno, Morten

    2016-08-01

    Limb girdle muscular dystrophy type 2A is the most common limb girdle muscular dystrophy form worldwide. Although strict recessive inheritance is assumed, patients carrying a single mutation in the calpain 3 gene (CAPN3) are reported. Such findings are commonly attributed to incomplete mutation screening. In this investigation, we report 37 individuals (age range: 21-85 years, 21 females and 16 males) from 10 families in whom only one mutation in CAPN3 could be identified; a 21-bp, in-frame deletion (c.643_663del21). This mutation co-segregated with evidence of muscle disease and autosomal dominant transmission in several generations. Evidence of muscle disease was indicated by muscle pain, muscle weakness and wasting, significant fat replacement of muscles on imaging, myopathic changes on muscle biopsy and loss of calpain 3 protein on western blotting. Thirty-one of 34 patients had elevated creatine kinase or myoglobin. Muscle weakness was generally milder than observed in limb girdle muscular dystrophy type 2A, but affected the same muscle groups (proximal leg, lumbar paraspinal and medial gastrocnemius muscles). In some cases, the weakness was severely disabling. The 21-bp deletion did not affect mRNA maturation. Calpain 3 expression in muscle, assessed by western blot, was below 15% of normal levels in the nine mutation carriers in whom this could be tested. Haplotype analysis in four families from three different countries suggests that the 21-bp deletion is a founder mutation. This study provides strong evidence that heterozygosity for the c.643_663del21 deletion in CAPN3 results in a dominantly inherited muscle disease. The normal expression of mutated mRNA and the severe loss of calpain 3 on western blotting, suggest a dominant negative effect with a loss-of-function mechanism affecting the calpain 3 homodimer. This renders patients deficient in calpain 3 as in limb girdle muscular dystrophy type 2A, albeit in a milder form in most cases. Based on findings in 10 families, our study indicates that a dominantly inherited pattern of calpainopathy exists, and should be considered in the diagnostic work-up and genetic counselling of patients with calpainopathy and single-allele aberrations in CAPN3. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Mapping dominant negative mutation for triforine sensitivity in lettuce and its use as a selectable marker for detecting hybrids.

    USDA-ARS?s Scientific Manuscript database

    Some lettuce cultivars are highly sensitive to triforine, an inhibitor of sterol biosynthesis found in some commercial systemic fungicides. First symptoms of a sensitive reaction are usually observed within 24 to 48 hours after treatment and include severe wilting, necrosis and rapid plant death. We...

  7. A missense mutation in Fgfr1 causes ear and skull defects in hush puppy mice.

    PubMed

    Calvert, Jennifer A; Dedos, Skarlatos G; Hawker, Kelvin; Fleming, Michelle; Lewis, Morag A; Steel, Karen P

    2011-06-01

    The hush puppy mouse mutant has been shown previously to have skull and outer, middle, and inner ear defects, and an increase in hearing threshold. The fibroblast growth factor receptor 1 (Fgfr1) gene is located in the region of chromosome 8 containing the mutation. Sequencing of the gene in hush puppy heterozygotes revealed a missense mutation in the kinase domain of the protein (W691R). Homozygotes were found to die during development, at approximately embryonic day 8.5, and displayed a phenotype similar to null mutants. Reverse transcription PCR indicated a decrease in Fgfr1 transcript in heterozygotes and homozygotes. Generation of a construct containing the mutation allowed the function of the mutated receptor to be studied. Immunocytochemistry showed that the mutant receptor protein was present at the cell membrane, suggesting normal expression and trafficking. Measurements of changes in intracellular calcium concentration showed that the mutated receptor could not activate the IP(3) pathway, in contrast to the wild-type receptor, nor could it initiate activation of the Ras/MAP kinase pathway. Thus, the hush puppy mutation in fibroblast growth factor receptor 1 appears to cause a loss of receptor function. The mutant protein appears to have a dominant negative effect, which could be due to it dimerising with the wild-type protein and inhibiting its activity, thus further reducing the levels of functional protein. A dominant modifier, Mhspy, which reduces the effect of the hush puppy mutation on pinna and stapes development, has been mapped to the distal end of chromosome 7 and may show imprinting.

  8. Mitofusin gain and loss of function drive pathogenesis in Drosophila models of CMT2A neuropathy.

    PubMed

    El Fissi, Najla; Rojo, Manuel; Aouane, Aїcha; Karatas, Esra; Poliacikova, Gabriela; David, Claudine; Royet, Julien; Rival, Thomas

    2018-06-13

    Charcot-Marie-Tooth disease type 2A (CMT2A) is caused by dominant alleles of the mitochondrial pro-fusion factor Mitofusin 2 (MFN2). To address the consequences of these mutations on mitofusin activity and neuronal function, we generate Drosophila models expressing in neurons the two most frequent substitutions (R94Q and R364W, the latter never studied before) and two others localizing to similar domains (T105M and L76P). All alleles trigger locomotor deficits associated with mitochondrial depletion at neuromuscular junctions, decreased oxidative metabolism and increased mtDNA mutations, but they differently alter mitochondrial morphology and organization. Substitutions near or within the GTPase domain (R94Q, T105M) result in loss of function and provoke aggregation of unfused mitochondria. In contrast, mutations within helix bundle 1 (R364W, L76P) enhance mitochondrial fusion, as demonstrated by the rescue of mitochondrial alterations and locomotor deficits by over-expression of the fission factor DRP1. In conclusion, we show that both dominant negative and dominant active forms of mitofusin can cause CMT2A-associated defects and propose for the first time that excessive mitochondrial fusion drives CMT2A pathogenesis in a large number of patients. © 2018 The Authors.

  9. A recurrent WARS mutation is a novel cause of autosomal dominant distal hereditary motor neuropathy.

    PubMed

    Tsai, Pei-Chien; Soong, Bing-Wen; Mademan, Inès; Huang, Yen-Hua; Liu, Chia-Rung; Hsiao, Cheng-Tsung; Wu, Hung-Ta; Liu, Tze-Tze; Liu, Yo-Tsen; Tseng, Yen-Ting; Lin, Kon-Ping; Yang, Ueng-Cheng; Chung, Ki Wha; Choi, Byung-Ok; Nicholson, Garth A; Kennerson, Marina L; Chan, Chih-Chiang; De Jonghe, Peter; Cheng, Tzu-Hao; Liao, Yi-Chu; Züchner, Stephan; Baets, Jonathan; Lee, Yi-Chung

    2017-05-01

    Distal hereditary motor neuropathy is a heterogeneous group of inherited neuropathies characterized by distal limb muscle weakness and atrophy. Although at least 15 genes have been implicated in distal hereditary motor neuropathy, the genetic causes remain elusive in many families. To identify an additional causal gene for distal hereditary motor neuropathy, we performed exome sequencing for two affected individuals and two unaffected members in a Taiwanese family with an autosomal dominant distal hereditary motor neuropathy in which mutations in common distal hereditary motor neuropathy-implicated genes had been excluded. The exome sequencing revealed a heterozygous mutation, c.770A > G (p.His257Arg), in the cytoplasmic tryptophanyl-tRNA synthetase (TrpRS) gene (WARS) that co-segregates with the neuropathy in the family. Further analyses of WARS in an additional 79 Taiwanese pedigrees with inherited neuropathies and 163 index cases from Australian, European, and Korean distal hereditary motor neuropathy families identified the same mutation in another Taiwanese distal hereditary motor neuropathy pedigree with different ancestries and one additional Belgian distal hereditary motor neuropathy family of Caucasian origin. Cell transfection studies demonstrated a dominant-negative effect of the p.His257Arg mutation on aminoacylation activity of TrpRS, which subsequently compromised protein synthesis and reduced cell viability. His257Arg TrpRS also inhibited neurite outgrowth and led to neurite degeneration in the neuronal cell lines and rat motor neurons. Further in vitro analyses showed that the WARS mutation could potentiate the angiostatic activities of TrpRS by enhancing its interaction with vascular endothelial-cadherin. Taken together, these findings establish WARS as a gene whose mutations may cause distal hereditary motor neuropathy and alter canonical and non-canonical functions of TrpRS. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Dysfunctional HDL containing L159R apoA-I leads to exacerbation of atherosclerosis in hyperlipidemic mice

    USDA-ARS?s Scientific Manuscript database

    In this study, the effect of the mutation L159R apoA-I or apoA-IL159R (FIN) was assessed. apoA-IL159R (FIN) is associated with a dominant negative phenotype, displaying hypoalphaproteinemia and an increased risk for atherosclerosis in humans. Transgenic mice lines were created through strategic mati...

  11. A Dominant Loss-of-Function GJA1 (Cx43) Mutant Impairs Parturition in the Mouse1

    PubMed Central

    Tong, Dan; Lu, Xuerong; Wang, Hong-Xing; Plante, Isabelle; Lui, Ed; Laird, Dale W.; Bai, Donglin; Kidder, Gerald M.

    2009-01-01

    Expression of GJA1 (commonly known as connexin43 or Cx43), a major myometrial gap junction protein, is upregulated before the onset of delivery, suggesting an essential role for Cx43-mediated gap junctional intercellular communication (GJIC) in normal uterine contraction during parturition. To determine how a disease-linked Cx43 mutation affects myometrial function, we studied a mutant mouse model carrying an autosomal dominant mutation (Gja1Jrt) in the gene encoding Cx43 that displays features of the human genetic disease oculodentodigital dysplasia. We found that Cx43 level, specifically the phosphorylated species of the protein, is significantly reduced in the myometrium of the mutant mice (Gja1Jrt/+), as revealed by Western blotting and immunostaining. Patch-clamp electrophysiological measurements demonstrated that coupling between myometrial smooth muscle cells is reduced to <15% of wild-type, indicating that the mutant protein acts dominantly on its wild-type counterpart. The phosphorylated species of Cx43 in the mutant myometrium failed to increase prior to parturition as well as in response to exogenous estrogen. Correspondingly, in vitro experiments with uterine strips revealed weaker contraction of the mutant myometrium and reduced responsiveness to oxytocin, providing an explanation for the prolonged gestation and presence of suffocated fetuses in the uteri that were observed in some of the mutant mice. We conclude that the Gja1Jrt mutation has a dominant-negative effect on Cx43 function in the myometrium, severely reducing GJIC, leading to impaired parturition. PMID:19176884

  12. Truncating SLC5A7 mutations underlie a spectrum of dominant hereditary motor neuropathies.

    PubMed

    Salter, Claire G; Beijer, Danique; Hardy, Holly; Barwick, Katy E S; Bower, Matthew; Mademan, Ines; De Jonghe, Peter; Deconinck, Tine; Russell, Mark A; McEntagart, Meriel M; Chioza, Barry A; Blakely, Randy D; Chilton, John K; De Bleecker, Jan; Baets, Jonathan; Baple, Emma L; Walk, David; Crosby, Andrew H

    2018-04-01

    To identify the genetic cause of disease in 2 previously unreported families with forms of distal hereditary motor neuropathies (dHMNs). The first family comprises individuals affected by dHMN type V, which lacks the cardinal clinical feature of vocal cord paralysis characteristic of dHMN-VII observed in the second family. Next-generation sequencing was performed on the proband of each family. Variants were annotated and filtered, initially focusing on genes associated with neuropathy. Candidate variants were further investigated and confirmed by dideoxy sequence analysis and cosegregation studies. Thorough patient phenotyping was completed, comprising clinical history, examination, and neurologic investigation. dHMNs are a heterogeneous group of peripheral motor neuron disorders characterized by length-dependent neuropathy and progressive distal limb muscle weakness and wasting. We previously reported a dominant-negative frameshift mutation located in the concluding exon of the SLC5A7 gene encoding the choline transporter (CHT), leading to protein truncation, as the likely cause of dominantly-inherited dHMN-VII in an extended UK family. In this study, our genetic studies identified distinct heterozygous frameshift mutations located in the last coding exon of SLC5A7 , predicted to result in the truncation of the CHT C-terminus, as the likely cause of the condition in each family. This study corroborates C-terminal CHT truncation as a cause of autosomal dominant dHMN, confirming upper limb predominating over lower limb involvement, and broadening the clinical spectrum arising from CHT malfunction.

  13. Genetic, Phenotypic, and Interferon Biomarker Status in ADAR1-Related Neurological Disease.

    PubMed

    Rice, Gillian I; Kitabayashi, Naoki; Barth, Magalie; Briggs, Tracy A; Burton, Annabel C E; Carpanelli, Maria Luisa; Cerisola, Alfredo M; Colson, Cindy; Dale, Russell C; Danti, Federica Rachele; Darin, Niklas; De Azua, Begoña; De Giorgis, Valentina; De Goede, Christian G L; Desguerre, Isabelle; De Laet, Corinne; Eslahi, Atieh; Fahey, Michael C; Fallon, Penny; Fay, Alex; Fazzi, Elisa; Gorman, Mark P; Gowrinathan, Nirmala Rani; Hully, Marie; Kurian, Manju A; Leboucq, Nicolas; Lin, Jean-Pierre S-M; Lines, Matthew A; Mar, Soe S; Maroofian, Reza; Martí-Sanchez, Laura; McCullagh, Gary; Mojarrad, Majid; Narayanan, Vinodh; Orcesi, Simona; Ortigoza-Escobar, Juan Dario; Pérez-Dueñas, Belén; Petit, Florence; Ramsey, Keri M; Rasmussen, Magnhild; Rivier, François; Rodríguez-Pombo, Pilar; Roubertie, Agathe; Stödberg, Tommy I; Toosi, Mehran Beiraghi; Toutain, Annick; Uettwiller, Florence; Ulrick, Nicole; Vanderver, Adeline; Waldman, Amy; Livingston, John H; Crow, Yanick J

    2017-06-01

    We investigated the genetic, phenotypic, and interferon status of 46 patients from 37 families with neurological disease due to mutations in ADAR1 . The clinicoradiological phenotype encompassed a spectrum of Aicardi-Goutières syndrome, isolated bilateral striatal necrosis, spastic paraparesis with normal neuroimaging, a progressive spastic dystonic motor disorder, and adult-onset psychological difficulties with intracranial calcification. Homozygous missense mutations were recorded in five families. We observed a p.Pro193Ala variant in the heterozygous state in 22 of 23 families with compound heterozygous mutations. We also ascertained 11 cases from nine families with a p.Gly1007Arg dominant-negative mutation, which occurred de novo in four patients, and was inherited in three families in association with marked phenotypic variability. In 50 of 52 samples from 34 patients, we identified a marked upregulation of type I interferon-stimulated gene transcripts in peripheral blood, with a median interferon score of 16.99 (interquartile range [IQR]: 10.64-25.71) compared with controls (median: 0.93, IQR: 0.57-1.30). Thus, mutations in ADAR1 are associated with a variety of clinically distinct neurological phenotypes presenting from early infancy to adulthood, inherited either as an autosomal recessive or dominant trait. Testing for an interferon signature in blood represents a useful biomarker in this context. Georg Thieme Verlag KG Stuttgart · New York.

  14. Keratitis-Ichthyosis-Deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43

    PubMed Central

    García, Isaac E.; Maripillán, Jaime; Jara, Oscar; Ceriani, Ricardo; Palacios-Muñoz, Angelina; Ramachandran, Jayalakshimi; Olivero, Pablo; Pérez-Acle, Tomás; González, Carlos; Sáez, Juan C.; Contreras, Jorge E.; Martínez, Agustín D.

    2015-01-01

    Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like Keratitis Ichthyosis Deafness syndrome (KID). Because in the human skin Cx26 is co-expressed with other connexins, like Cx43 and Cx30, and since KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channels functions remain unknown. In this study we demonstrate that syndromic mutations at the N-terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) show exacerbated hemichannel activity, but nonfunctional gap junction channels; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca2+ overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin. PMID:25625422

  15. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome–associated PTPN11 mutation

    PubMed Central

    Marin, Talita M.; Keith, Kimberly; Davies, Benjamin; Conner, David A.; Guha, Prajna; Kalaitzidis, Demetrios; Wu, Xue; Lauriol, Jessica; Wang, Bo; Bauer, Michael; Bronson, Roderick; Franchini, Kleber G.; Neel, Benjamin G.; Kontaridis, Maria I.

    2011-01-01

    LEOPARD syndrome (LS) is an autosomal dominant “RASopathy” that manifests with congenital heart disease. Nearly all cases of LS are caused by catalytically inactivating mutations in the protein tyrosine phosphatase (PTP), non-receptor type 11 (PTPN11) gene that encodes the SH2 domain-containing PTP-2 (SHP2). RASopathies typically affect components of the RAS/MAPK pathway, yet it remains unclear how PTPN11 mutations alter cellular signaling to produce LS phenotypes. We therefore generated knockin mice harboring the Ptpn11 mutation Y279C, one of the most common LS alleles. Ptpn11Y279C/+ (LS/+) mice recapitulated the human disorder, with short stature, craniofacial dysmorphia, and morphologic, histologic, echocardiographic, and molecular evidence of hypertrophic cardiomyopathy (HCM). Heart and/or cardiomyocyte lysates from LS/+ mice showed enhanced binding of Shp2 to Irs1, decreased Shp2 catalytic activity, and abrogated agonist-evoked Erk/Mapk signaling. LS/+ mice also exhibited increased basal and agonist-induced Akt and mTor activity. The cardiac defects in LS/+ mice were completely reversed by treatment with rapamycin, an inhibitor of mTOR. Our results demonstrate that LS mutations have dominant-negative effects in vivo, identify enhanced mTOR activity as critical for causing LS-associated HCM, and suggest that TOR inhibitors be considered for treatment of HCM in LS patients. PMID:21339643

  16. Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2.

    PubMed

    Kim, Hyo Jeong; Lv, Ping; Sihn, Choong-Ryoul; Yamoah, Ebenezer N

    2011-01-14

    Despite advances in identifying deafness genes, determination of the underlying cellular and functional mechanisms for auditory diseases remains a challenge. Mutations of the human K(+) channel hKv7.4 lead to post-lingual progressive hearing loss (DFNA2), which affects world-wide population with diverse racial backgrounds. Here, we have generated the spectrum of point mutations in the hKv7.4 that have been identified as diseased mutants. We report that expression of five point mutations in the pore region, namely L274H, W276S, L281S, G285C, and G296S, as well as the C-terminal mutant G321S in the heterologous expression system, yielded non-functional channels because of endoplasmic reticulum retention of the mutant channels. We mimicked the dominant diseased conditions by co-expressing the wild-type and mutant channels. As compared with expression of wild-type channel alone, the blend of wild-type and mutant channel subunits resulted in reduced currents. Moreover, the combinatorial ratios of wild type:mutant and the ensuing current magnitude could not be explained by the predictions of a tetrameric channel and a dominant negative effect of the mutant subunits. The results can be explained by the dependence of cell surface expression of the mutant on the wild-type subunit. Surprisingly, a transmembrane mutation F182L, which has been identified in a pre-lingual progressive hearing loss patient in Taiwan, yielded cell surface expression and functional features that were similar to that of the wild type, suggesting that this mutation may represent redundant polymorphism. Collectively, these findings provide traces of the cellular mechanisms for DFNA2.

  17. Loss of ATM kinase activity leads to embryonic lethality in mice.

    PubMed

    Daniel, Jeremy A; Pellegrini, Manuela; Lee, Baeck-Seung; Guo, Zhi; Filsuf, Darius; Belkina, Natalya V; You, Zhongsheng; Paull, Tanya T; Sleckman, Barry P; Feigenbaum, Lionel; Nussenzweig, André

    2012-08-06

    Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis.

  18. Evaluation of polygenic cause in Korean patients with familial hypercholesterolemia - A study supported by Korean Society of Lipidology and Atherosclerosis.

    PubMed

    Kwon, Manjae; Han, Soo Min; Kim, Do-Il; Rhee, Moo-Yong; Lee, Byoung-Kwon; Ahn, Young Keun; Cho, Byung Ryul; Woo, Jeongtaek; Hur, Seung-Ho; Jeong, Jin-Ok; Jang, Yangsoo; Lee, Sang-Hak; Lee, Ji Hyun

    2015-09-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disorder caused by mutations in LDLR, APOB, or PCSK9. Polygenicity is a plausible cause in mutation-negative FH patients based on LDL cholesterol (LDL-C)-associated single nucleotide polymorphisms (SNPs) identified by the Global Lipids Genetics Consortium (GLGC). However, there are limited data regarding the polygenic cause of FH in Asians. We gathered data from 66 mutation-negative and 31 mutation-positive Korean FH patients, as well as from 2274 controls who participated in the Korean Health Examinee (HEXA) shared control study. We genotyped the patients for six GLGC SNPs and four East Asian LDL-C-associated SNPs and compared SNP scores among patient groups and controls. Weighted mean 6- and 4-SNP scores (0.67 [SD = 0.07] and 0.46 [0.11], respectively) were both significantly associated with LDL-C levels in controls (p = 2.1 × 10(-4), R(2) = 0.01 and p = 5.0 × 10(-12), R(2) = 0.02, respectively). Mutation-negative FH patients had higher 6-SNP (0.72 [0.07]) and 4-SNP (0.49 [0.08]) scores than controls (p = 1.8 × 10(-8) and p = 3.6 × 10(-3), respectively). We also observed higher scores in mutation-positive FH patients compared with controls, but the difference did not reach statistical significance. The present study demonstrates the utility of SNP score analysis for identifying polygenic FH in Korean patients by showing that small-effect common SNPs may cumulatively elevate LDL-C levels. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Analysis of TFAP2A mutations in Branchio-Oculo-Facial Syndrome indicates functional complexity within the AP-2α DNA-binding domain

    PubMed Central

    Li, Hong; Sheridan, Ryan; Williams, Trevor

    2013-01-01

    Multiple lines of evidence indicate that the AP-2 transcription factor family has an important regulatory function in human craniofacial development. Notably, mutations in TFAP2A, the gene encoding AP-2α, have been identified in patients with Branchio-Oculo-Facial Syndrome (BOFS). BOFS is an autosomal-dominant trait that commonly presents with facial clefting, eye defects and branchial skin anomalies. Examination of multiple cases has suggested either simple haploinsufficiency or more complex genetic causes for BOFS, especially as the clinical manifestations are variable, with no clear genotype–phenotype correlation. Mutations occur throughout TFAP2A, but mostly within conserved sequences within the DNA contact domain of AP-2α. However, the consequences of the various mutations for AP-2α protein function have not been evaluated. Therefore, it remains unclear if all BOFS mutations result in similar changes to the AP-2α protein or if they each produce specific alterations that underlie the spectrum of phenotypes. Here, we have investigated the molecular consequences of the mutations that localize to the DNA-binding region. We show that although individual mutations have different effects on DNA binding, they all demonstrate significantly reduced transcriptional activities. Moreover, all mutant derivatives have an altered nuclear:cytoplasmic distribution compared with the predominantly nuclear localization of wild-type AP-2α and several can exert a dominant-negative activity on the wild-type AP-2α protein. Overall, our data suggest that the individual TFAP2A BOFS mutations can generate null, hypomorphic or antimorphic alleles and that these differences in activity, combined with a role for AP-2α in epigenetic events, may influence the resultant pathology and the phenotypic variability. PMID:23578821

  20. Somatic and germline mosaicism for a mutation of the PHEX gene can lead to genetic transmission of X-linked hypophosphatemic rickets that mimics an autosomal dominant trait.

    PubMed

    Goji, Katsumi; Ozaki, Kayo; Sadewa, Ahmad H; Nishio, Hisahide; Matsuo, Masafumi

    2006-02-01

    Familial hypophosphatemic rickets is usually transmitted as an X-linked dominant disorder (XLH), although autosomal dominant forms have also been observed. Genetic studies of these disorders have identified mutations in PHEX and FGF23 as the causes of X-linked dominant disorder and autosomal dominant forms, respectively. The objective of the study was to describe the molecular genetic findings in a family affected by hypophosphatemic rickets with presumed autosomal dominant inheritance. We studied a family in which the father and the elder of his two daughters, but not the second daughter, were affected by hypophosphatemic rickets. The pedigree interpretation of the family suggested that genetic transmission of the disorder occurred as an autosomal dominant trait. Direct nucleotide sequencing of FGF23 and PHEX revealed that the elder daughter was heterozygous for an R567X mutation in PHEX, rather than FGF23, suggesting that the genetic transmission occurred as an X-linked dominant trait. Unexpectedly, the father was heterozygous for this mutation. Single-nucleotide primer extension and denaturing HPLC analysis of the father using DNA from single hair roots revealed that he was a somatic mosaic for the mutation. Haplotype analysis confirmed that the father transmitted the genotypes for 18 markers on the X chromosome equally to his two daughters. The fact that the father transmitted the mutation to only one of his two daughters indicated that he was a germline mosaic for the mutation. Somatic and germline mosaicism for an X-linked dominant mutation in PHEX may mimic autosomal dominant inheritance.

  1. Diminishing-returns epistasis decreases adaptability along an evolutionary trajectory.

    PubMed

    Wünsche, Andrea; Dinh, Duy M; Satterwhite, Rebecca S; Arenas, Carolina Diaz; Stoebel, Daniel M; Cooper, Tim F

    2017-03-01

    Populations evolving in constant environments exhibit declining adaptability. Understanding the basis of this pattern could reveal underlying processes determining the repeatability of evolutionary outcomes. In principle, declining adaptability can be due to a decrease in the effect size of beneficial mutations, a decrease in the rate at which they occur, or some combination of both. By evolving Escherichia coli populations started from different steps along a single evolutionary trajectory, we show that declining adaptability is best explained by a decrease in the size of available beneficial mutations. This pattern reflected the dominant influence of negative genetic interactions that caused new beneficial mutations to confer smaller benefits in fitter genotypes. Genome sequencing revealed that starting genotypes that were more similar to one another did not exhibit greater similarity in terms of new beneficial mutations, supporting the view that epistasis acts globally, having a greater influence on the effect than on the identity of available mutations along an adaptive trajectory. Our findings provide support for a general mechanism that leads to predictable phenotypic evolutionary trajectories.

  2. Mutations in the C-terminal fragment of DnaK affecting peptide binding.

    PubMed Central

    Burkholder, W F; Zhao, X; Zhu, X; Hendrickson, W A; Gragerov, A; Gottesman, M E

    1996-01-01

    Escherichia coli DnaK acts as a molecular chaperone through its ATP-regulated binding and release of polypeptide substrates. Overexpressing a C-terminal fragment (CTF) of DnaK (Gly-384 to Lys-638) containing the polypeptide substrate binding domain is lethal in wild-type E. coli. This dominant-negative phenotype may result from the nonproductive binding of CTF to cellular polypeptide targets of DnaK. Mutations affecting DnaK substrate binding were identified by selecting noncytotoxic CTF mutants followed by in vitro screening. The clustering of such mutations in the three-dimensional structure of CTF suggests the model that loops L1,2 and L4,5 form a rigid core structure critical for interactions with substrate. Images Fig. 1 Fig. 2 Fig. 3 PMID:8855230

  3. A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma

    PubMed Central

    Liu, Chunqiao; Widen, Sonya A.; Williamson, Kathleen A.; Ratnapriya, Rinki; Gerth-Kahlert, Christina; Rainger, Joe; Alur, Ramakrishna P.; Strachan, Erin; Manjunath, Souparnika H.; Balakrishnan, Archana; Floyd, James A.; Li, Tiansen; Waskiewicz, Andrew; Brooks, Brian P.; Lehmann, Ordan J.; FitzPatrick, David R.; Swaroop, Anand

    2016-01-01

    Ocular coloboma is a common eye malformation resulting from incomplete fusion of the optic fissure during development. Coloboma is often associated with microphthalmia and/or contralateral anophthalmia. Coloboma shows extensive locus heterogeneity associated with causative mutations identified in genes encoding developmental transcription factors or components of signaling pathways. We report an ultra-rare, heterozygous frameshift mutation in FZD5 (p.Ala219Glufs*49) that was identified independently in two branches of a large family with autosomal dominant non-syndromic coloboma. FZD5 has a single-coding exon and consequently a transcript with this frameshift variant is not a canonical substrate for nonsense-mediated decay. FZD5 encodes a transmembrane receptor with a conserved extracellular cysteine rich domain for ligand binding. The frameshift mutation results in the production of a truncated protein, which retains the Wingless-type MMTV integration site family member-ligand-binding domain, but lacks the transmembrane domain. The truncated protein was secreted from cells, and behaved as a dominant-negative FZD5 receptor, antagonizing both canonical and non-canonical WNT signaling. Expression of the resultant mutant protein caused coloboma and microphthalmia in zebrafish, and disruption of the apical junction of the retinal neural epithelium in mouse, mimicking the phenotype of Fz5/Fz8 compound conditional knockout mutants. Our studies have revealed a conserved role of Wnt–Frizzled (FZD) signaling in ocular development and directly implicate WNT–FZD signaling both in normal closure of the human optic fissure and pathogenesis of coloboma. PMID:26908622

  4. The clonal and mutational evolution spectrum of primary triple-negative breast cancers.

    PubMed

    Shah, Sohrab P; Roth, Andrew; Goya, Rodrigo; Oloumi, Arusha; Ha, Gavin; Zhao, Yongjun; Turashvili, Gulisa; Ding, Jiarui; Tse, Kane; Haffari, Gholamreza; Bashashati, Ali; Prentice, Leah M; Khattra, Jaswinder; Burleigh, Angela; Yap, Damian; Bernard, Virginie; McPherson, Andrew; Shumansky, Karey; Crisan, Anamaria; Giuliany, Ryan; Heravi-Moussavi, Alireza; Rosner, Jamie; Lai, Daniel; Birol, Inanc; Varhol, Richard; Tam, Angela; Dhalla, Noreen; Zeng, Thomas; Ma, Kevin; Chan, Simon K; Griffith, Malachi; Moradian, Annie; Cheng, S-W Grace; Morin, Gregg B; Watson, Peter; Gelmon, Karen; Chia, Stephen; Chin, Suet-Feung; Curtis, Christina; Rueda, Oscar M; Pharoah, Paul D; Damaraju, Sambasivarao; Mackey, John; Hoon, Kelly; Harkins, Timothy; Tadigotla, Vasisht; Sigaroudinia, Mahvash; Gascard, Philippe; Tlsty, Thea; Costello, Joseph F; Meyer, Irmtraud M; Eaves, Connie J; Wasserman, Wyeth W; Jones, Steven; Huntsman, David; Hirst, Martin; Caldas, Carlos; Marra, Marco A; Aparicio, Samuel

    2012-04-04

    Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.

  5. Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features.

    PubMed

    Carapito, Raphael; Konantz, Martina; Paillard, Catherine; Miao, Zhichao; Pichot, Angélique; Leduc, Magalie S; Yang, Yaping; Bergstrom, Katie L; Mahoney, Donald H; Shardy, Deborah L; Alsaleh, Ghada; Naegely, Lydie; Kolmer, Aline; Paul, Nicodème; Hanauer, Antoine; Rolli, Véronique; Müller, Joëlle S; Alghisi, Elisa; Sauteur, Loïc; Macquin, Cécile; Morlon, Aurore; Sancho, Consuelo Sebastia; Amati-Bonneau, Patrizia; Procaccio, Vincent; Mosca-Boidron, Anne-Laure; Marle, Nathalie; Osmani, Naël; Lefebvre, Olivier; Goetz, Jacky G; Unal, Sule; Akarsu, Nurten A; Radosavljevic, Mirjana; Chenard, Marie-Pierre; Rialland, Fanny; Grain, Audrey; Béné, Marie-Christine; Eveillard, Marion; Vincent, Marie; Guy, Julien; Faivre, Laurence; Thauvin-Robinet, Christel; Thevenon, Julien; Myers, Kasiani; Fleming, Mark D; Shimamura, Akiko; Bottollier-Lemallaz, Elodie; Westhof, Eric; Lengerke, Claudia; Isidor, Bertrand; Bahram, Seiamak

    2017-11-01

    Shwachman-Diamond syndrome (SDS) (OMIM #260400) is a rare inherited bone marrow failure syndrome (IBMFS) that is primarily characterized by neutropenia and exocrine pancreatic insufficiency. Seventy-five to ninety percent of patients have compound heterozygous loss-of-function mutations in the Shwachman-Bodian-Diamond syndrome (sbds) gene. Using trio whole-exome sequencing (WES) in an sbds-negative SDS family and candidate gene sequencing in additional SBDS-negative SDS cases or molecularly undiagnosed IBMFS cases, we identified 3 independent patients, each of whom carried a de novo missense variant in srp54 (encoding signal recognition particle 54 kDa). These 3 patients shared congenital neutropenia linked with various other SDS phenotypes. 3D protein modeling revealed that the 3 variants affect highly conserved amino acids within the GTPase domain of the protein that are critical for GTP and receptor binding. Indeed, we observed that the GTPase activity of the mutated proteins was impaired. The level of SRP54 mRNA in the bone marrow was 3.6-fold lower in patients with SRP54-mutations than in healthy controls. Profound reductions in neutrophil counts and chemotaxis as well as a diminished exocrine pancreas size in a SRP54-knockdown zebrafish model faithfully recapitulated the human phenotype. In conclusion, autosomal dominant mutations in SRP54, a key member of the cotranslation protein-targeting pathway, lead to syndromic neutropenia with a Shwachman-Diamond-like phenotype.

  6. Autosomal Dominant Mutation in the Signal Peptide of Renin in a Kindred with Anemia, Hyperuricemia, and CKD

    PubMed Central

    Beck, Bodo B.; Trachtman, Howard; Gitman, Michael; Miller, Ilene; Sayer, John A.; Pannes, Andrea; Baasner, Anne; Hildebrandt, Friedhelm; Wolf, Matthias T.F.

    2012-01-01

    Homozygous or compound heterozygous Renin (REN) mutations cause renal tubular dysgenesis (RTD), which is characterized by death in utero due to renal failure and pulmonary hypoplasia. The phenotype resembles the fetopathy caused by angiotensin-converting enzyme inhibitor or angiotensin receptor blocker intake during pregnancy. Recently, heterozygous REN mutations were shown to result in early-onset hyperuricemia, anemia and chronic renal failure. So far, only three different heterozygous REN mutations were reported. We performed mutation analysis of the REN gene in 39 kindreds with hyperuricemia and chronic kidney disease (CKD) previously tested negative for mutations in the UMOD and HNF1β genes. We identified one kindred with a novel c.28T>C (p.W10R) REN mutation in the signal sequence, concluding that REN mutations are rare events in CKD patients. Affected individuals over four generations were identified carrying the novel REN mutation and were characterized by significant anemia, hyperuricemia and CKD. Anemia was severe and disproportional to the degree of renal impairment. Moreover all heterozygous REN mutations are localized in the signal sequence. Therefore, screening of the REN gene for CKD patients with hyperuricemia and anemia may be focusing on exon 1 sequencing, which encodes the signal peptide. PMID:21903317

  7. Telomere length is severely and similarly reduced in JAK2V617F-positive and -negative myeloproliferative neoplasms

    PubMed Central

    Bernard, L; Belisle, C; Mollica, L; Provost, S; Roy, D-C; Gilliland, DG; Levine, RL; Busque, L

    2015-01-01

    Myeloproliferative neoplasms (MPNs) are clonal stem cell disorders characterized by chronic proliferation of hematopoietic progenitors. We studied the telomere length (TL) of 335 MPN patients and 93 gender- and age-matched controls using a quantitative PCR method (relative TL calculated as the ratio of the amount of telomere DNA vs single-copy DNA: T/S ratio). TL was markedly reduced in MPN patients compared with controls (T/S 0.561 vs 0.990, P<0.001). In JAK2V617F MPN patients, TL correlated inversely with allelic burden (P<0.001). Patients homozygous for the mutation (allelic burden 90–100%) had the shortest TL, even when compared with patients with lower allele burdens consistent with a dominant heterozygous population (allelic burden 55–65%) (T/S 0.367 vs 0.497, P = 0.037). This suggests that the high degree of proliferation of the MPN clone reduces TL and suggests the possibility that TL shortening may be indicative of progressive genomic instability during MPN progression. The TL of JAK2V617F-negative MPN patients was similar to JAK2V617F-positive counterparts (T/S 0.527 vs 0.507, P = 0.603), suggesting that the yet-to-be-discovered causative mutation(s) impact the mutated stem cell similarly to JAK2V617F, and that TL measurement may prove useful in the diagnostic workup of JAK2V617F-negative MPN. PMID:19005480

  8. Mutation analysis of the MECP2 gene in patients of Slavic origin with Rett syndrome: novel mutations and polymorphisms.

    PubMed

    Zahorakova, Daniela; Rosipal, Robert; Hadac, Jan; Zumrova, Alena; Bzduch, Vladimir; Misovicova, Nadezda; Baxova, Alice; Zeman, Jiri; Martasek, Pavel

    2007-01-01

    Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder in females, is caused mainly by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). Here we report mutation analysis of the MECP2 gene in 87 patients with RTT from the Czech and Slovak Republics, and Ukraine. The patients, all girls, with classical RTT were investigated for mutations using bi-directional DNA sequencing and conformation sensitive gel electrophoresis analysis of the coding sequence and exon/intron boundaries of the MECP2 gene. Restriction fragment length polymorphism analysis was performed to confirm the mutations that cause the creation or abolition of the restriction site. Mutation-negative cases were subsequently examined by multiple ligation-dependent probe amplification (MLPA) to identify large deletions. Mutation screening revealed 31 different mutations in 68 patients and 12 non-pathogenic polymorphisms. Six mutations have not been previously published: two point mutations (323T>A, 904C>T), three deletions (189_190delGA, 816_832del17, 1069delAGC) and one deletion/inversion (1063_1236del174;1189_1231inv43). MLPA analysis revealed large deletions in two patients. The detection rate was 78.16%. Our results confirm the high frequency of MECP2 mutations in females with RTT and provide data concerning the mutation heterogeneity in the Slavic population.

  9. Gene therapy of uterine leiomyomas: adenovirus-mediated expression of dominant negative estrogen receptor inhibits tumor growth in nude mice.

    PubMed

    Al-Hendy, Ayman; Lee, Eun J; Wang, Hui Q; Copland, John A

    2004-11-01

    Leiomyomas (fibroids) are common estrogen-dependent uterine tumors with no effective medicinal treatment; hysterectomy is the mainstay of management. This study was undertaken to investigate a potential therapy for leiomyoma; we used a mutated dominant-negative estrogen receptor gene delivered via an adenoviral vector (Ad-ER-DN). Ad-ER-DN transduction, in both human and rat leiomyoma cell lines, induced an increase in both caspase-3 levels and BAX/Bcl-2 ratio with evident apoptosis in the TdT-mediated dUTP nick-end labeling assay. In nude mice, rat leiomyoma cells ex vivo transduced with Ad-ER-DN supported significantly smaller tumors compared with Ad-LacZ-treated cells 5 weeks after implantation. In mice treated by direct intratumor injection into preexisting lesions, Ad-ER-DN caused immediate overall arrest of tumor growth. The Ad-ER-DN-treated tumors demonstrated severely inhibited cell proliferation (BrdU index) and a marked increase in the number of apoptotic cells (TdT-mediated dUTP nick-end labeling index). Dominant-negative estrogen receptor gene therapy may provide a nonsurgical treatment option for women with symptomatic uterine fibroids who want to preserve their uteri.

  10. The de novo Q167K mutation in the POU1F1 gene leads to combined pituitary hormone deficiency in an Italian patient.

    PubMed

    Malvagia, Sabrina; Poggi, Giovanni Maria; Pasquini, Elisabetta; Donati, Maria Alice; Pela, Ivana; Morrone, Amelia; Zammarchi, Enrico

    2003-11-01

    The POU1F1 gene encodes a transcription factor that is important for the development and differentiation of the cells producing GH, prolactin, and TSH in the anterior pituitary gland. Patients with POU1F1 mutations show a combined pituitary hormone deficiency with low or absent levels of GH, prolactin, and TSH. Fourteen mutations have been reported in the POU1F1 gene up to now. These genetic lesions can be inherited either in an autosomal dominant or an autosomal recessive mode. We report on the first Italian patient, a girl, affected by combined pituitary hormone deficiency. The patient was found to be positive for congenital hypothyroidism (with low TSH levels) at neonatal screening. Substitutive therapy was started, but subsequent growth was very poor, although psychomotor development was substantially normal. Hospitalized at 10 mo she showed hypotonic crises, growth retardation, delayed bone age, and facial dysmorphism. In addition to congenital hypothyroidism, GH and prolactin deficiencies were found. Mutation DNA analysis of the patient's POU1F1 gene identified the novel Q167K amino acid change at the heterozygous level. The highly conserved Q167 residue is located in the POU-specific domain. No mutation was detected in the other allele. DNA analysis in the proband's parents did not identify this amino acid substitution, suggesting a de novo genetic lesion. From these data it can be hypothesized that the Q167K mutation has a dominant negative effect.

  11. Truncating SLC5A7 mutations underlie a spectrum of dominant hereditary motor neuropathies

    PubMed Central

    Salter, Claire G.; Beijer, Danique; Hardy, Holly; Barwick, Katy E.S.; Bower, Matthew; Mademan, Ines; De Jonghe, Peter; Deconinck, Tine; Russell, Mark A.; McEntagart, Meriel M.; Chioza, Barry A.; Blakely, Randy D.; Chilton, John K.; De Bleecker, Jan; Baets, Jonathan; Baple, Emma L.

    2018-01-01

    Objective To identify the genetic cause of disease in 2 previously unreported families with forms of distal hereditary motor neuropathies (dHMNs). Methods The first family comprises individuals affected by dHMN type V, which lacks the cardinal clinical feature of vocal cord paralysis characteristic of dHMN-VII observed in the second family. Next-generation sequencing was performed on the proband of each family. Variants were annotated and filtered, initially focusing on genes associated with neuropathy. Candidate variants were further investigated and confirmed by dideoxy sequence analysis and cosegregation studies. Thorough patient phenotyping was completed, comprising clinical history, examination, and neurologic investigation. Results dHMNs are a heterogeneous group of peripheral motor neuron disorders characterized by length-dependent neuropathy and progressive distal limb muscle weakness and wasting. We previously reported a dominant-negative frameshift mutation located in the concluding exon of the SLC5A7 gene encoding the choline transporter (CHT), leading to protein truncation, as the likely cause of dominantly-inherited dHMN-VII in an extended UK family. In this study, our genetic studies identified distinct heterozygous frameshift mutations located in the last coding exon of SLC5A7, predicted to result in the truncation of the CHT C-terminus, as the likely cause of the condition in each family. Conclusions This study corroborates C-terminal CHT truncation as a cause of autosomal dominant dHMN, confirming upper limb predominating over lower limb involvement, and broadening the clinical spectrum arising from CHT malfunction. PMID:29582019

  12. Defects along the T(H)17 differentiation pathway underlie genetically distinct forms of the hyper IgE syndrome.

    PubMed

    Al Khatib, Shadi; Keles, Sevgi; Garcia-Lloret, Maria; Karakoc-Aydiner, Elif; Reisli, Ismail; Artac, Hasibe; Camcioglu, Yildiz; Cokugras, Haluk; Somer, Ayper; Kutukculer, Necil; Yilmaz, Mustafa; Ikinciogullari, Aydan; Yegin, Olcay; Yüksek, Mutlu; Genel, Ferah; Kucukosmanoglu, Ercan; Baki, Ali; Bahceciler, Nerin N; Rambhatla, Anupama; Nickerson, Derek W; McGhee, Sean; Barlan, Isil B; Chatila, Talal

    2009-08-01

    The hyper IgE syndrome (HIES) is characterized by abscesses, eczema, recurrent infections, skeletal and connective tissue abnormalities, elevated serum IgE, and diminished inflammatory responses. It exists as autosomal-dominant and autosomal-recessive forms that manifest common and distinguishing clinical features. A majority of those with autosomal-dominant HIES have heterozygous mutations in signal transducer and activator of transcription (STAT)-3 and impaired T(H)17 differentiation. To elucidate mechanisms underlying different forms of HIES. A cohort of 25 Turkish children diagnosed with HIES were examined for STAT3 mutations by DNA sequencing. Activation of STAT3 by IL-6 and IL-21 and STAT1 by IFN-alpha was assessed by intracellular staining with anti-phospho (p)STAT3 and -pSTAT1 antibodies. T(H)17 and T(H)1 cell differentiation was assessed by measuring the production of IL-17 and IFN-gamma, respectively. Six subjects had STAT3 mutations affecting the DNA binding, Src homology 2, and transactivation domains, including 3 novel ones. Mutation-positive but not mutation-negative subjects with HIES exhibited reduced phosphorylation of STAT3 in response to cytokine stimulation, whereas pSTAT1 activation was unaffected. Both patient groups exhibited impaired T(H)17 responses, but whereas STAT3 mutations abrogated early steps in T(H)17 differentiation, the defects in patients with HIES with normal STAT3 affected more distal steps. In this cohort of Turkish children with HIES, a majority had normal STAT3, implicating other targets in disease pathogenesis. Impaired T(H)17 responses were evident irrespective of the STAT3 mutation status, indicating that different genetic forms of HIES share a common functional outcome.

  13. Linkage to D3S47 (C17) in one large autosomal dominant retinitis pigmentosa family and exclusion in another: confirmation of genetic heterogeneity.

    PubMed Central

    Lester, D H; Inglehearn, C F; Bashir, R; Ackford, H; Esakowitz, L; Jay, M; Bird, A C; Wright, A F; Papiha, S S; Bhattacharya, S S

    1990-01-01

    Recently Dryja and his co-workers observed a mutation in the 23d codon of the rhodopsin gene in a proportion of autosomal dominant retinitis pigmentosa (ADRP) patients. Linkage analysis with a rhodopsin-linked probe C17 (D3S47) was carried out in two large British ADRP families, one with diffuse-type (D-type) RP and the other with regional-type (R-type) RP. Significantly positive lod scores (lod score maximum [Zmax] = +5.58 at recombination fraction [theta] = .0) were obtained between C17 and our D-type ADRP family showing complete penetrance. Sequence and oligonucleotide analysis has, however, shown that no point mutation at the 23d codon exists in affected individuals in our complete-penetrance pedigree, indicating that another rhodopsin mutation is probably responsible for ADRP in this family. Significantly negative lod scores (Z less than -2 at theta = .045) were, however, obtained between C17 and our R-type family which showed incomplete penetrance. Previous results presented by this laboratory also showed no linkage between C17 and another large British R-type ADRP family with incomplete penetrance. This confirms genetic heterogeneity. Some types of ADRP are being caused by different mutations in the rhodopsin locus (3q21-24) or another tightly linked gene in this region, while other types of ADRP are the result of mutations elsewhere in the genome. Images Figure 2 Figure 3 Figure 4 PMID:2393026

  14. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2.

    PubMed

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T

    2015-01-01

    Inflorescences of a dominant mutant of Arabidopsis Aux/IAA7, axr2, showed negative phototropism with a similar fluence response curve to the positive phototropism of wild-type stems. Application of a synthetic auxin, NAA, and an inhibitor of polar auxin transport, NPA, increased and decreased respectively the magnitude of the phototropic response in the wild type, while in axr2 application of NAA reduced the negative phototropic response and NPA had no effect. Decapitation of the apex induced a small negative phototropism in wild-type stems, and had no effect in axr2 plants. Inflorescences of the double mutants of auxin transporters, pgp1 pgp19, showed no phototropic response, while decapitation resulted in a negative phototropic response. These results suggest that negative phototropism can occur when the level of auxin or of auxin signaling is reduced to a minimal level, and that in plant axial organs the default phototropic response to unilateral blue light may be negative. Expression of axr2 protein by an endodermis-specific promoter resulted in agravitropism of inflorescences in a similar way to that of axr2, but phototropism was normal, confirming that the endodermis does not play a critical role in phototropism.

  15. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2

    PubMed Central

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T.

    2015-01-01

    Inflorescences of a dominant mutant of Arabidopsis Aux/IAA7, axr2, showed negative phototropism with a similar fluence response curve to the positive phototropism of wild-type stems. Application of a synthetic auxin, NAA, and an inhibitor of polar auxin transport, NPA, increased and decreased respectively the magnitude of the phototropic response in the wild type, while in axr2 application of NAA reduced the negative phototropic response and NPA had no effect. Decapitation of the apex induced a small negative phototropism in wild-type stems, and had no effect in axr2 plants. Inflorescences of the double mutants of auxin transporters, pgp1 pgp19, showed no phototropic response, while decapitation resulted in a negative phototropic response. These results suggest that negative phototropism can occur when the level of auxin or of auxin signaling is reduced to a minimal level, and that in plant axial organs the default phototropic response to unilateral blue light may be negative. Expression of axr2 protein by an endodermis-specific promoter resulted in agravitropism of inflorescences in a similar way to that of axr2, but phototropism was normal, confirming that the endodermis does not play a critical role in phototropism. PMID:25738325

  16. Dominant-negative Sox18 function inhibits dermal papilla maturation and differentiation in all murine hair types.

    PubMed

    Villani, Rehan; Hodgson, Samantha; Legrand, Julien; Greaney, Jessica; Wong, Ho Yi; Pichol-Thievend, Cathy; Adolphe, Christelle; Wainwight, Brandon; Francois, Mathias; Khosrotehrani, Kiarash

    2017-05-15

    SOX family proteins SOX2 and SOX18 have been reported as being essential in determining hair follicle type; however, the role they play during development remains unclear. Here, we demonstrate that Sox18 regulates the normal differentiation of the dermal papilla of all hair types. In guard (primary) hair dermal condensate (DC) cells, we identified transient Sox18 in addition to SOX2 expression at E14.5, which allowed fate tracing of primary DC cells until birth. Similarly, expression of Sox18 was detected in the DC cells of secondary hairs at E16.5 and in tertiary hair at E18.5. Dominant-negative Sox18 mutation (opposum) did not prevent DC formation in any hair type. However, it affected dermal papilla differentiation, restricting hair formation especially in secondary and tertiary hairs. This Sox18 mutation also prevented neonatal dermal cells or dermal papilla spheres from inducing hair in regeneration assays. Microarray expression studies identified WNT5A and TNC as potential downstream effectors of SOX18 that are important for epidermal WNT signalling. In conclusion, SOX18 acts as a mesenchymal molecular switch necessary for the formation and function of the dermal papilla in all hair types. © 2017. Published by The Company of Biologists Ltd.

  17. A somatic T15091C mutation in the Cytb gene of mouse mitochondrial DNA dominantly induces respiration defects.

    PubMed

    Hayashi, Chisato; Takibuchi, Gaku; Shimizu, Akinori; Mito, Takayuki; Ishikawa, Kaori; Nakada, Kazuto; Hayashi, Jun-Ichi

    2015-08-07

    Our previous studies provided evidence that mammalian mitochondrial DNA (mtDNA) mutations that cause mitochondrial respiration defects behave in a recessive manner, because the induction of respiration defects could be prevented with the help of a small proportion (10%-20%) of mtDNA without the mutations. However, subsequent studies found the induction of respiration defects by the accelerated accumulation of a small proportion of mtDNA with various somatic mutations, indicating the presence of mtDNA mutations that behave in a dominant manner. Here, to provide the evidence for the presence of dominant mutations in mtDNA, we used mouse lung carcinoma P29 cells and examined whether some mtDNA molecules possess somatic mutations that dominantly induce respiration defects. Cloning and sequence analysis of 40-48 mtDNA molecules from P29 cells was carried out to screen for somatic mutations in protein-coding genes, because mutations in these genes could dominantly regulate respiration defects by formation of abnormal polypeptides. We found 108 missense mutations existing in one or more of 40-48 mtDNA molecules. Of these missense mutations, a T15091C mutation in the Cytb gene was expected to be pathogenic due to the presence of its orthologous mutation in mtDNA from a patient with cardiomyopathy. After isolation of many subclones from parental P29 cells, we obtained subclones with various proportions of T15091C mtDNA, and showed that the respiration defects were induced in a subclone with only 49% T15091C mtDNA. Because the induction of respiration defects could not be prevented with the help of the remaining 51% mtDNA without the T15091C mutation, the results indicate that the T15091C mutation in mtDNA dominantly induced the respiration defects. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Phenotypic behavior of C2C12 myoblasts upon expression of the dystrophy-related caveolin-3 P104L and TFT mutants.

    PubMed

    Fanzani, Alessandro; Stoppani, Elena; Gualandi, Laura; Giuliani, Roberta; Galbiati, Ferruccio; Rossi, Stefania; Fra, Anna; Preti, Augusto; Marchesini, Sergio

    2007-10-30

    Caveolin-3 (Cav-3) is the main scaffolding protein present in myofiber caveolae. We transfected C2C12 myoblasts with dominant negative forms of Cav-3, P104L or DeltaTFT, respectively, which cause the limb-girdle muscular dystrophy 1-C. Both these forms triggered Cav-3 loss during C2C12 cell differentiation. The P104L mutation reduced myofiber formation by impaired AKT signalling, accompanied by dramatic expression of the E3 ubiquitin ligase Atrogin. On the other hand, the DeltaTFT mutation triggered hypertrophic myotubes sustained by prolonged AKT activation, but independent of increased levels of follistatin and interleukin 4 expression. These data suggest that separated mutations within the same dystrophy-related gene may cause muscle degeneration through different mechanisms.

  19. [Molecular pathogenesis of Waardenburg syndrome type II resulting from SOX10 gene mutation].

    PubMed

    Zhang, Hua; Chen, Hongsheng; Feng, Yong; Qian, Minfei; Li, Jiping; Liu, Jun; Zhang, Chun

    2016-08-01

    To explore the molecular mechanism of Waardenburg syndrome type II (WS2) resulting from SOX10 gene mutation E248fs through in vitro experiment. 293T cells were transiently transfected with wild type (WT) SOX10 and mutant type (MT) E248fs plasmids. The regulatory effect of WT/MT SOX10 on the transcriptional activity of MITF gene and influence of E248fs on WT SOX10 function were determined with a luciferase activity assay. The DNA binding capacity of the WT/MT SOX10 with the promoter of the MITF gene was determined with a biotinylated double-stranded oligonucleotide probe containing the SOX10 binding sequence cattgtc to precipitate MITF and E248fs, respectively. The stability of SOX10 and E248fs were also analyzed. As a loss-of-function mutation, the E248fs mutant failed to transactivate the MITF promoter as compared with the WT SOX10 (P<0.01), which also showed a dominant-negative effect on WT SOX10. The WT SOX10 and E248fs mutant were also able to bind specifically to the cattgtc motif in the MITF promoter, whereas E248fs had degraded faster than WT SOX10. Despite the fact that the E248fs has a dominant-negative effect on SOX10, its reduced stability may down-regulate the transcription of MITF and decrease the synthesis of melanin, which may result in haploinsufficiency of SOX10 protein and cause the milder WS2 phenotype.

  20. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study.

    PubMed

    Talmud, Philippa J; Shah, Sonia; Whittall, Ros; Futema, Marta; Howard, Philip; Cooper, Jackie A; Harrison, Seamus C; Li, Kawah; Drenos, Fotios; Karpe, Frederik; Neil, H Andrew W; Descamps, Olivier S; Langenberg, Claudia; Lench, Nicholas; Kivimaki, Mika; Whittaker, John; Hingorani, Aroon D; Kumari, Meena; Humphries, Steve E

    2013-04-13

    Familial hypercholesterolaemia is a common autosomal-dominant disorder caused by mutations in three known genes. DNA-based cascade testing is recommended by UK guidelines to identify affected relatives; however, about 60% of patients are mutation-negative. We assessed the hypothesis that familial hypercholesterolaemia can also be caused by an accumulation of common small-effect LDL-C-raising alleles. In November, 2011, we assembled a sample of patients with familial hypercholesterolaemia from three UK-based sources and compared them with a healthy control sample from the UK Whitehall II (WHII) study. We also studied patients from a Belgian lipid clinic (Hôpital de Jolimont, Haine St-Paul, Belgium) for validation analyses. We genotyped participants for 12 common LDL-C-raising alleles identified by the Global Lipid Genetics Consortium and constructed a weighted LDL-C-raising gene score. We compared the gene score distribution among patients with familial hypercholesterolaemia with no confirmed mutation, those with an identified mutation, and controls from WHII. We recruited 321 mutation-negative UK patients (451 Belgian), 319 mutation-positive UK patients (273 Belgian), and 3020 controls from WHII. The mean weighted LDL-C gene score of the WHII participants (0.90 [SD 0.23]) was strongly associated with LDL-C concentration (p=1.4 x 10(-77); R(2)=0.11). Mutation-negative UK patients had a significantly higher mean weighted LDL-C score (1.0 [SD 0.21]) than did WHII controls (p=4.5 x 10(-16)), as did the mutation-negative Belgian patients (0.99 [0.19]; p=5.2 x 10(-20)). The score was also higher in UK (0.95 [0.20]; p=1.6 x 10(-5)) and Belgian (0.92 [0.20]; p=0.04) mutation-positive patients than in WHII controls. 167 (52%) of 321 mutation-negative UK patients had a score within the top three deciles of the WHII weighted LDL-C gene score distribution, and only 35 (11%) fell within the lowest three deciles. In a substantial proportion of patients with familial hypercholesterolaemia without a known mutation, their raised LDL-C concentrations might have a polygenic cause, which could compromise the efficiency of cascade testing. In patients with a detected mutation, a substantial polygenic contribution might add to the variable penetrance of the disease. British Heart Foundation, Pfizer, AstraZeneca, Schering-Plough, National Institute for Health Research, Medical Research Council, Health and Safety Executive, Department of Health, National Heart Lung and Blood Institute, National Institute on Aging, Agency for Health Care Policy Research, John D and Catherine T MacArthur Foundation Research Networks on Successful Midlife Development and Socio-economic Status and Health, Unilever, and Departments of Health and Trade and Industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A family with the Arg103Pro mutation in the NEUROD1 gene detected by next-generation sequencing - Clinical characteristics of mutation carriers.

    PubMed

    Szopa, Magdalena; Ludwig-Galezowska, Agnieszka H; Radkowski, Piotr; Skupien, Jan; Machlowska, Julita; Klupa, Tomasz; Wolkow, Pawel; Borowiec, Maciej; Mlynarski, Wojciech; Malecki, Maciej T

    2016-02-01

    Until now only a few families with early onset autosomal diabetes due to the NEUROD1 gene mutations have been identified. Moreover, only some of them meet strict MODY (maturity-onset diabetes of the young) criteria. Next-generation sequencing (NGS) provides an opportunity to detect more pathogenic mutations in this gene. Here, we evaluated the segregation of the Arg103Pro mutation in the NEUROD1 gene in a pedigree in which it was detected, and described the clinical characteristics of the mutation carriers. We included 156 diabetic probands of MODY families, among them 52 patients earlier tested for GCK-MODY and/or HNF1A-MODY by Sanger sequencing with negative results. Genetic testing was performed by targeted NGS sequencing using a panel of 28 monogenic diabetes genes. As detected by NGS, one patient had the missense Arg103Pro (CGC/CCC) mutation in the gene NEUROD1 changing the amino-acid structure of the DNA binding domain of this transcription factor. We confirmed this sequence difference by Sanger sequencing. This family had previously been tested with negative results for HNF1A gene mutations. 17 additional members of this family were invited for further testing. We confirmed the presence of the mutation in 11 subjects. Seven adult mutation carriers (all but one) from three generations had been already diagnosed with diabetes. There were 3 individuals with the Arg103Pro mutation diagnosed before the age of 30 years in the family. The range of age of the four unaffected mutation carriers (3 minors and 1 adult) was 3-48 years. Interestingly, one mutation carrier had a history of transient neonatal hypoglycemia, of which the clinical course resembled episodes typical for HNF4A-MODY. We report a family with autosomal dominant diabetes related to a new NEUROD1 mutation, one of very few meeting MODY criteria. The use of the NGS method will facilitate identification of more families with rare forms of MODY. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Mutation in CPT1C Associated With Pure Autosomal Dominant Spastic Paraplegia

    PubMed Central

    Rinaldi, Carlo; Schmidt, Thomas; Situ, Alan J.; Johnson, Janel O.; Lee, Philip R.; Chen, Ke-lian; Bott, Laura C.; Fadó, Rut; Harmison, George H.; Parodi, Sara; Grunseich, Christopher; Renvoisé, Benoît; Biesecker, Leslie G.; De Michele, Giuseppe; Santorelli, Filippo M.; Filla, Alessandro; Stevanin, Giovanni; Dürr, Alexandra; Brice, Alexis; Casals, Núria; Traynor, Bryan J.; Blackstone, Craig; Ulmer, Tobias S.; Fischbeck, Kenneth H.

    2017-01-01

    IMPORTANCE The family of genes implicated in hereditary spastic paraplegias (HSPs) is quickly expanding, mostly owing to the widespread availability of next-generation DNA sequencing methods. Nevertheless, a genetic diagnosis remains unavailable for many patients. OBJECTIVE To identify the genetic cause for a novel form of pure autosomal dominant HSP. DESIGN, SETTING, AND PARTICIPANTS We examined and followed up with a family presenting to a tertiary referral center for evaluation of HSP for a decade until August 2014. Whole-exome sequencing was performed in 4 patients from the same family and was integrated with linkage analysis. Sanger sequencing was used to confirm the presence of the candidate variant in the remaining affected and unaffected members of the family and screen the additional patients with HSP. Five affected and 6 unaffected participants from a 3-generation family with pure adult-onset autosomal dominant HSP of unknown genetic origin were included. Additionally, 163 unrelated participants with pure HSP of unknown genetic cause were screened. MAIN OUTCOME AND MEASURE Mutation in the neuronal isoform of carnitine palmitoyl-transferase (CPT1C) gene. RESULTS We identified the nucleotide substitution c.109C>T in exon 3 of CPT1C, which determined the base substitution of an evolutionarily conserved Cys residue for an Arg in the gene product. This variant strictly cosegregated with the disease phenotype and was absent in online single-nucleotide polymorphism databases and in 712 additional exomes of control participants. We showed that CPT1C, which localizes to the endoplasmic reticulum, is expressed in motor neurons and interacts with atlastin-1, an endoplasmic reticulum protein encoded by the ATL1 gene known to be mutated in pure HSPs. The mutation, as indicated by nuclear magnetic resonance spectroscopy studies, alters the protein conformation and reduces the mean (SD) number (213.0 [46.99] vs 81.9 [14.2]; P < .01) and size (0.29 [0.01] vs 0.26 [0.01]; P < .05) of lipid droplets on overexpression in cells. We also observed a reduction of mean (SD) lipid droplets in primary cortical neurons isolated from Cpt1c−/− mice as compared with wild-type mice (1.0 [0.12] vs 0.44 [0.05]; P < .001), suggesting a dominant negative mechanism for the mutation. CONCLUSIONS AND RELEVANCE This study expands the genetics of autosomal dominant HSP and is the first, to our knowledge, to link mutation in CPT1C with a human disease. The association of the CPT1C mutation with changes in lipid droplet biogenesis supports a role for altered lipid-mediated signal transduction in HSP pathogenesis. PMID:25751282

  3. Recurrent Reverse Evolution Maintains Polymorphism after Strong Bottlenecks in Commensal Gut Bacteria

    PubMed Central

    Ramiro, Ricardo S.; Barroso-Batista, João; Güleresi, Daniela; Lourenço, Marta; Gordo, Isabel

    2017-01-01

    Abstract The evolution of new strains within the gut ecosystem is poorly understood. We used a natural but controlled system to follow the emergence of intraspecies diversity of commensal Escherichia coli, during three rounds of adaptation to the mouse gut (∼1,300 generations). We previously showed that, in the first round, a strongly beneficial phenotype (loss-of-function for galactitol consumption; gat-negative) spread to >90% frequency in all colonized mice. Here, we show that this loss-of-function is repeatedly reversed when a gat-negative clone colonizes new mice. The regain of function occurs via compensatory mutation and reversion, the latter leaving no trace of past adaptation. We further show that loss-of-function adaptive mutants reevolve, after colonization with an evolved gat-positive clone. Thus, even under strong bottlenecks a regime of strong-mutation-strong-selection dominates adaptation. Coupling experiments and modeling, we establish that reverse evolution recurrently generates two coexisting phenotypes within the microbiota that can or not consume galactitol (gat-positive and gat-negative, respectively). Although the abundance of the dominant strain, the gat-negative, depends on the microbiota composition, gat-positive abundance is independent of the microbiota composition and can be precisely manipulated by supplementing the diet with galactitol. These results show that a specific diet is able to change the abundance of specific strains. Importantly, we find polymorphism for these phenotypes in indigenous Enterobacteria of mice and man. Our results demonstrate that natural selection can greatly overwhelm genetic drift at structuring the strain diversity of gut commensals and that competition for limiting resources may be a key mechanism for maintaining polymorphism in the gut. PMID:28961745

  4. SUMO chain formation relies on the amino-terminal region of SUMO-conjugating enzyme and has dedicated substrates in plants

    PubMed Central

    Tomanov, Konstantin; Nehlin, Lilian; Ziba, Ionida

    2018-01-01

    The small ubiquitin-related modifier (SUMO) conjugation apparatus usually attaches single SUMO moieties to its substrates, but SUMO chains have also been identified. To better define the biochemical requirements and characteristics of SUMO chain formation, mutations in surface-exposed Lys residues of Arabidopsis SUMO-conjugating enzyme (SCE) were tested for in vitro activity. Lys-to-Arg changes in the amino-terminal region of SCE allowed SUMO acceptance from SUMO-activating enzyme and supported substrate mono-sumoylation, but these mutations had significant effects on SUMO chain assembly. We found no indication that SUMO modification of SCE promotes chain formation. A substrate was identified that is modified by SUMO chain addition, showing that SCE can distinguish substrates for either mono-sumoylation or SUMO chain attachment. It is also shown that SCE with active site Cys mutated to Ser can accept SUMO to form an oxyester, but cannot transfer this SUMO moiety onto substrates, explaining a previously known dominant negative effect of this mutation. PMID:29133528

  5. A patient with peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and severe hypoganglionosis associated with a novel SOX10 mutation.

    PubMed

    Akutsu, Yuko; Shirai, Kentaro; Takei, Akira; Goto, Yudai; Aoyama, Tomohiro; Watanabe, Akimitu; Imamura, Masatoshi; Enokizono, Takashi; Ohto, Tatsuyuki; Hori, Tetsuo; Suzuki, Keiko; Hayashi, Masaharu; Masumoto, Kouji; Inoue, Ken

    2018-05-01

    In this report, we present the case of a female infant with peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease (PCWH) associated with a novel frameshift mutation (c.842dupT) in exon 5, the last exon of SOX10. She had severe hypoganglionosis in the small intestine and entire colon, and suffered from frequent enterocolitis. The persistence of ganglion cells made both the diagnosis and treatment difficult in the neonatal period. She also showed hypopigmentation of the irises, hair and skin, bilateral sensorineural deafness with hypoplastic inner year, severe demyelinating neuropathy with hypotonia, and diffuse brain hypomyelination. The p.Ser282GlnfsTer12 mutation presumably escapes from nonsense-mediated decay and may generate a dominant-negative effect. We suggest that hypoganglionosis can be a variant intestinal manifestation associated with PCWH and that hypoganglionosis and aganglionosis may share the same pathoetiological mechanism mediated by SOX10 mutations. © 2018 Wiley Periodicals, Inc.

  6. Mutational subtypes of JAK2 and CALR correlate with different clinical features in Japanese patients with myeloproliferative neoplasms.

    PubMed

    Misawa, Kyohei; Yasuda, Hajime; Araki, Marito; Ochiai, Tomonori; Morishita, Soji; Shirane, Shuichi; Edahiro, Yoko; Gotoh, Akihiko; Ohsaka, Akimichi; Komatsu, Norio

    2018-06-01

    The majority of patients with Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) harbor JAK2, CALR, or MPL mutations. We compared clinical manifestations of different subtypes of JAK2 and CALR mutations in Japanese patients with MPNs. Within our cohort, we diagnosed 166 patients as polycythemia vera (PV), 212 patients as essential thrombocythemia (ET), 23 patients as pre-primary myelofibrosis (PMF), 65 patients as overt PMF, and 27 patients as secondary myelofibrosis following the 2016 WHO criteria. Compared to patients with JAK2V617F-mutated PV, JAK2 exon 12-mutated PV patients were younger, showed lower white blood cell (WBC) counts, lower platelet counts, higher red blood cell counts, and higher frequency of thrombotic events. Compared to JAK2-mutated ET patients, CALR-mutated ET patients were younger, showed lower WBC counts, lower hemoglobin levels, higher platelet counts, and fewer thrombotic events. CALR type 1-like mutation was the dominant subtype in CALR-mutated overt PMF patients. Compared with JAK2V617F-mutated ET patients, JAK2V617F-mutated pre-PMF patients showed higher LDH levels, lower hemoglobin levels, higher JAK2V617F allele burden, and higher frequency of splenomegaly. In conclusion, Japanese patients with MPNs grouped by different mutation subtypes exhibit characteristics similar to those of their Western counterparts. In addition, ET and pre-PMF patients show different characteristics, even when restricted to JAK2V617F-mutated patients.

  7. Whole Exome Sequencing in Dominant Cataract Identifies a New Causative Factor, CRYBA2, and a Variety of Novel Alleles in Known Genes

    PubMed Central

    Reis, Linda M.; Tyler, Rebecca C.; Muheisen, Sanaa; Raggio, Victor; Salviati, Leonardo; Han, Dennis P.; Costakos, Deborah; Yonath, Hagith; Hall, Sarah; Power, Patricia; Semina, Elena V.

    2013-01-01

    Pediatric cataracts are observed in 1–15 per 10,000 births with 10–25% of cases attributed to genetic causes; autosomal dominant inheritance is the most commonly observed pattern. Since the specific cataract phenotype is not sufficient to predict which gene is mutated, whole exome sequencing (WES) was utilized to concurrently screen all known cataract genes and to examine novel candidate factors for a disease-causing mutation in probands from 23 pedigrees affected with familial dominant cataract. Review of WES data for 36 known cataract genes identified causative mutations in nine pedigrees (39%) in CRYAA, CRYBB1, CRYBB3, CRYGC (2), CRYGD, GJA8 (2), and MIP and an additional likely causative mutation in EYA1; the CRYBB3 mutation represents the first dominant allele in this gene and demonstrates incomplete penetrance. Examination of crystallin genes not yet linked to human disease identified a novel cataract gene, CRYBA2, a member of the βγ-crystallin superfamily. The p.(Val50Met) mutation in CRYBA2 cosegregated with disease phenotype in a four-generation pedigree with autosomal dominant congenital cataracts with incomplete penetrance. Expression studies detected cryba2 transcripts during early lens development in zebrafish, supporting its role in congenital disease. Our data highlight the extreme genetic heterogeneity of dominant cataract as the eleven causative/likely causative mutations affected nine different genes and the majority of mutant alleles were novel. Furthermore, these data suggest that less than half of dominant cataract can be explained by mutations in currently known genes. PMID:23508780

  8. Characterization of Aryl Hydrocarbon Receptor Interacting Protein (AIP) Mutations in Familial Isolated Pituitary Adenoma Families

    PubMed Central

    Igreja, Susana; Chahal, Harvinder S; King, Peter; Bolger, Graeme B; Srirangalingam, Umasuthan; Guasti, Leonardo; Chapple, J Paul; Trivellin, Giampaolo; Gueorguiev, Maria; Guegan, Katie; Stals, Karen; Khoo, Bernard; Kumar, Ajith V; Ellard, Sian; Grossman, Ashley B; Korbonits, Márta

    2010-01-01

    Familial isolated pituitary adenoma (FIPA) is an autosomal dominant condition with variable genetic background and incomplete penetrance. Germline mutations of the aryl hydrocarbon receptor interacting protein (AIP) gene have been reported in 15–40% of FIPA patients. Limited data are available on the functional consequences of the mutations or regarding the regulation of the AIP gene. We describe a large cohort of FIPA families and characterize missense and silent mutations using minigene constructs, luciferase and β-galactosidase assays, as well as in silico predictions. Patients with AIP mutations had a lower mean age at diagnosis (23.6±11.2 years) than AIP mutation-negative patients (40.4±14.5 years). A promoter mutation showed reduced in vitro activity corresponding to lower mRNA expression in patient samples. Stimulation of the protein kinase A-pathway positively regulates the AIP promoter. Silent mutations led to abnormal splicing resulting in truncated protein or reduced AIP expression. A two-hybrid assay of protein–protein interaction of all missense variants showed variable disruption of AIP-phosphodiesterase-4A5 binding. In summary, exonic, promoter, splice-site, and large deletion mutations in AIP are implicated in 31% of families in our FIPA cohort. Functional characterization of AIP changes is important to identify the functional impact of gene sequence variants. Hum Mutat 31:1–11, 2010. © 2010 Wiley-Liss, Inc. PMID:20506337

  9. Structure of the Dominant Negative S17N Mutant of Ras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nassar, N.; Singh, K; Garcia-Diaz, M

    2010-01-01

    The use of the dominant negative mutant of Ras has been crucial in elucidating the cellular signaling of Ras in response to the activation of various membrane-bound receptors. Although several point mutants of Ras exhibit a dominant negative effect, the asparagine to serine mutation at position 17 (S17N) remains the most popular and the most effective at inhibiting the activation of endogenous Ras. It is now widely accepted that the dominant negative effect is due to the ability of the mutant to sequester upstream activators and its inability to activate downstream effectors. Here, we present the crystal structure of RasS17Nmore » in the GDP-bound form. In the three molecules that populate the asymmetric unit, the Mg{sup 2+} ion that normally coordinates the {beta}-phosphate is absent because of steric hindrance from the Asn17 side chain. Instead, a Ca{sup 2+} ion is coordinating the {alpha}-phosphate. Also absent from one molecule is electron density for Phe28, a conserved residue that normally stabilizes the nucleotide's guanine base. Except for Phe28, the nucleotide makes conserved interactions with Ras. Combined, the inability of Phe28 to stabilize the guanine base and the absence of a Mg{sup 2+} ion to neutralize the negative charges on the phosphates explain the weaker affinity of GDP for Ras. Our data suggest that the absence of the Mg{sup 2+} should also dramatically affect GTP binding to Ras and the proper positioning of Thr35 necessary for the activation of switch 1 and the binding to downstream effectors, a prerequisite for the triggering of signaling pathways.« less

  10. Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond–like features

    PubMed Central

    Konantz, Martina; Paillard, Catherine; Miao, Zhichao; Pichot, Angélique; Leduc, Magalie S.; Yang, Yaping; Bergstrom, Katie L.; Mahoney, Donald H.; Shardy, Deborah L.; Alsaleh, Ghada; Naegely, Lydie; Kolmer, Aline; Paul, Nicodème; Hanauer, Antoine; Rolli, Véronique; Müller, Joëlle S.; Alghisi, Elisa; Sauteur, Loïc; Macquin, Cécile; Morlon, Aurore; Sancho, Consuelo Sebastia; Amati-Bonneau, Patrizia; Procaccio, Vincent; Mosca-Boidron, Anne-Laure; Marle, Nathalie; Goetz, Jacky G.; Unal, Sule; Akarsu, Nurten A.; Radosavljevic, Mirjana; Chenard, Marie-Pierre; Rialland, Fanny; Grain, Audrey; Béné, Marie-Christine; Eveillard, Marion; Vincent, Marie; Guy, Julien; Faivre, Laurence; Thauvin-Robinet, Christel; Thevenon, Julien; Fleming, Mark D.; Bottollier-Lemallaz, Elodie; Westhof, Eric; Isidor, Bertrand

    2017-01-01

    Shwachman-Diamond syndrome (SDS) (OMIM #260400) is a rare inherited bone marrow failure syndrome (IBMFS) that is primarily characterized by neutropenia and exocrine pancreatic insufficiency. Seventy-five to ninety percent of patients have compound heterozygous loss-of-function mutations in the Shwachman-Bodian-Diamond syndrome (sbds) gene. Using trio whole-exome sequencing (WES) in an sbds-negative SDS family and candidate gene sequencing in additional SBDS-negative SDS cases or molecularly undiagnosed IBMFS cases, we identified 3 independent patients, each of whom carried a de novo missense variant in srp54 (encoding signal recognition particle 54 kDa). These 3 patients shared congenital neutropenia linked with various other SDS phenotypes. 3D protein modeling revealed that the 3 variants affect highly conserved amino acids within the GTPase domain of the protein that are critical for GTP and receptor binding. Indeed, we observed that the GTPase activity of the mutated proteins was impaired. The level of SRP54 mRNA in the bone marrow was 3.6-fold lower in patients with SRP54-mutations than in healthy controls. Profound reductions in neutrophil counts and chemotaxis as well as a diminished exocrine pancreas size in a SRP54-knockdown zebrafish model faithfully recapitulated the human phenotype. In conclusion, autosomal dominant mutations in SRP54, a key member of the cotranslation protein-targeting pathway, lead to syndromic neutropenia with a Shwachman-Diamond–like phenotype. PMID:28972538

  11. Mutations in LOXHD1, a Recessive-Deafness Locus, Cause Dominant Late-Onset Fuchs Corneal Dystrophy

    PubMed Central

    Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D.

    2012-01-01

    Fuchs corneal dystrophy (FCD) is a genetic disorder of the corneal endothelium and is the most common cause of corneal transplantation in the United States. Previously, we mapped a late-onset FCD locus, FCD2, on chromosome 18q. Here, we present next-generation sequencing of all coding exons in the FCD2 critical interval in a multigenerational pedigree in which FCD segregates as an autosomal-dominant trait. We identified a missense change in LOXHD1, a gene causing progressive hearing loss in humans, as the sole variant capable of explaining the phenotype in this pedigree. We observed LOXHD1 mRNA in cultured human corneal endothelial cells, whereas antibody staining of both human and mouse corneas showed staining in the corneal epithelium and endothelium. Corneal sections of the original proband were stained for LOXHD1 and demonstrated a distinct increase in antibody punctate staining in the endothelium and Descemet membrane; punctate staining was absent from both normal corneas and FCD corneas negative for causal LOXHD1 mutations. Subsequent interrogation of a cohort of >200 sporadic affected individuals identified another 15 heterozygous missense mutations that were absent from >800 control chromosomes. Furthermore, in silico analyses predicted that these mutations reside on the surface of the protein and are likely to affect the protein's interface and protein-protein interactions. Finally, expression of the familial LOXHD1 mutant allele as well as two sporadic mutations in cells revealed prominent cytoplasmic aggregates reminiscent of the corneal phenotype. All together, our data implicate rare alleles in LOXHD1 in the pathogenesis of FCD and highlight how different mutations in the same locus can potentially produce diverse phenotypes. PMID:22341973

  12. Loss-of-heterozygosity facilitates passage through Haldane's sieve for Saccharomyces cerevisiae undergoing adaptation.

    PubMed

    Gerstein, A C; Kuzmin, A; Otto, S P

    2014-05-07

    Haldane's sieve posits that the majority of beneficial mutations that contribute to adaptation should be dominant, as these are the mutations most likely to establish and spread when rare. It has been argued, however, that if the dominance of mutations in their current and previous environments are correlated, Haldane's sieve could be eliminated. We constructed heterozygous lines of Saccharomyces cerevisiae containing single adaptive mutations obtained during exposure to the fungicide nystatin. Here we show that no clear dominance relationship exists across environments: mutations exhibited a range of dominance levels in a rich medium, yet were exclusively recessive under nystatin stress. Surprisingly, heterozygous replicates exhibited variable-onset rapid growth when exposed to nystatin. Targeted Sanger sequencing demonstrated that loss-of-heterozygosity (LOH) accounted for these growth patterns. Our experiments demonstrate that recessive beneficial mutations can avoid Haldane's sieve in clonal organisms through rapid LOH and thus contribute to rapid evolutionary adaptation.

  13. ATPase-deficient mitochondrial inner membrane protein ATAD3A disturbs mitochondrial dynamics in dominant hereditary spastic paraplegia

    PubMed Central

    Cooper, Helen M.; Yang, Yang; Ylikallio, Emil; Khairullin, Rafil; Woldegebriel, Rosa; Lin, Kai-Lan; Euro, Liliya; Palin, Eino; Wolf, Alexander; Trokovic, Ras; Isohanni, Pirjo; Kaakkola, Seppo; Auranen, Mari; Lönnqvist, Tuula; Wanrooij, Sjoerd

    2017-01-01

    Abstract De novo mutations in ATAD3A (ATPase family AAA-domain containing protein 3A) were recently found to cause a neurological syndrome with developmental delay, hypotonia, spasticity, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. Using whole-exome sequencing, we identified a dominantly inherited heterozygous variant c.1064G > A (p.G355D) in ATAD3A in a mother presenting with hereditary spastic paraplegia (HSP) and axonal neuropathy and her son with dyskinetic cerebral palsy, both with disease onset in childhood. HSP is a clinically and genetically heterogeneous disorder of the upper motor neurons. Symptoms beginning in early childhood may resemble spastic cerebral palsy. The function of ATAD3A, a mitochondrial inner membrane AAA ATPase, is yet undefined. AAA ATPases form hexameric rings, which are catalytically dependent on the co-operation of the subunits. The dominant-negative patient mutation affects the Walker A motif, which is responsible for ATP binding in the AAA module of ATAD3A, and we show that the recombinant mutant ATAD3A protein has a markedly reduced ATPase activity. We further show that overexpression of the mutant ATAD3A fragments the mitochondrial network and induces lysosome mass. Similarly, we observed altered dynamics of the mitochondrial network and increased lysosomes in patient fibroblasts and neurons derived through differentiation of patient-specific induced pluripotent stem cells. These alterations were verified in patient fibroblasts to associate with upregulated basal autophagy through mTOR inactivation, resembling starvation. Mutations in ATAD3A can thus be dominantly inherited and underlie variable neurological phenotypes, including HSP, with intrafamiliar variability. This finding extends the group of mitochondrial inner membrane AAA proteins associated with spasticity. PMID:28158749

  14. Allelic Mutations of KITLG, Encoding KIT Ligand, Cause Asymmetric and Unilateral Hearing Loss and Waardenburg Syndrome Type 2

    PubMed Central

    Zazo Seco, Celia; Serrão de Castro, Luciana; van Nierop, Josephine W.; Morín, Matías; Jhangiani, Shalini; Verver, Eva J.J.; Schraders, Margit; Maiwald, Nadine; Wesdorp, Mieke; Venselaar, Hanka; Spruijt, Liesbeth; Oostrik, Jaap; Schoots, Jeroen; van Reeuwijk, Jeroen; Lelieveld, Stefan H.; Huygen, Patrick L.M.; Insenser, María; Admiraal, Ronald J.C.; Pennings, Ronald J.E.; Hoefsloot, Lies H.; Arias-Vásquez, Alejandro; de Ligt, Joep; Yntema, Helger G.; Jansen, Joop H.; Muzny, Donna M.; Huls, Gerwin; van Rossum, Michelle M.; Lupski, James R.; Moreno-Pelayo, Miguel Angel; Kunst, Henricus P.M.; Kremer, Hannie

    2015-01-01

    Linkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncating mutation, c.286_303delinsT (p.Ser96Ter), in KITLG. This mutation co-segregated with NS-UHL/AHL as a dominant trait with reduced penetrance. By screening a panel of probands with NS-UHL/AHL, we found an additional mutation, c.200_202del (p.His67_Cys68delinsArg). In vitro studies revealed that the p.His67_Cys68delinsArg transmembrane isoform of KITLG is not detectable at the cell membrane, supporting pathogenicity. KITLG encodes a ligand for the KIT receptor. Also, KITLG-KIT signaling and MITF are suggested to mutually interact in melanocyte development. Because mutations in MITF are causative of Waardenburg syndrome type 2 (WS2), we screened KITLG in suspected WS2-affected probands. A heterozygous missense mutation, c.310C>G (p.Leu104Val), that segregated with WS2 was identified in a small family. In vitro studies revealed that the p.Leu104Val transmembrane isoform of KITLG is located at the cell membrane, as is wild-type KITLG. However, in culture media of transfected cells, the p.Leu104Val soluble isoform of KITLG was reduced, and no soluble p.His67_Cys68delinsArg and p.Ser96Ter KITLG could be detected. These data suggest that mutations in KITLG associated with NS-UHL/AHL have a loss-of-function effect. We speculate that the mechanism of the mutation underlying WS2 and leading to membrane incorporation and reduced secretion of KITLG occurs via a dominant-negative or gain-of-function effect. Our study unveils different phenotypes associated with KITLG, previously associated with pigmentation abnormalities, and will thereby improve the genetic counseling given to individuals with KITLG variants. PMID:26522471

  15. Myelin protein zero gene mutated in Charcot-Marie-Tooth type 1B patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Ying; Li, Lanying; Lepercq, J.

    1993-11-15

    The autosomal dominant of Charcot-Marie-Tooth disease (CMT), whose gene is type 1B (CMT1B), has slow nerve conduction with demyelinated Schwann cells. In this study the abundant peripheral myelin protein zero (MPZ) gene, MPZ, was mapped 130 kb centromeric to the Fc receptor immunoglobulin gene cluster in band 1q22, and a major MPZ point mutation was found to cosegregate with CMT1B in one large CMT1B family. The MPZ point mutation in 18 of 18 related CMT1B pedigree 1 patients converts a positively charged lysine in codon 96 to a negatively charged glutamate. The same MPZ locus cosegregates with the CMT1B diseasemore » gene in a second CMT1B family [total multipoint logarithm of odds (lod) = 11.4 at [theta] = 0.00] with a splice junction mutation. Both mutations occur in MPZ protein regions otherwise conserved identically in human, rat, and cow since these species diverged 100 million years ago. MPZ protein, expressed exclusively in myelinated peripheral nerve Schwann cells, constitutes >50% of myelin protein. These mutations are anticipated to disrupt homophilic MPZ binding and result in CMT1B peripheral nerve demyelination.« less

  16. Dominant-negative action of disease-causing gonadotropin-releasing hormone receptor (GnRHR) mutants: a trait that potentially coevolved with decreased plasma membrane expression of GnRHR in humans.

    PubMed

    Leaños-Miranda, Alfredo; Ulloa-Aguirre, Alfredo; Ji, Tae H; Janovick, Jo Ann; Conn, P Michael

    2003-07-01

    Loss of function by 11 of 13 naturally occurring mutations in the human GnRH receptor (hGnRHR) was thought to result from impaired ligand binding or effector coupling, but actually results from receptor misrouting. Homo- or heterodimerization of mutant receptors with wild-type (WT) receptors occurs for other G protein-coupled receptors and may result in dominant-negative or -positive effects on the WT receptor. We tested the hypothesis that WT hGnRHR function was affected by misfolded hGnRHR mutants. hGnRHR mutants were found to inhibit the function of WT GnRHR (measured by activation of effector and ligand binding). Inhibition varied depending on the particular hGnRHR mutant coexpressed and the ratio of hGnRHR mutant to WT hGnRHR cDNA cotransfected. The hGnRHR mutants did not interfere with the function of genetically modified hGnRHRs bearing either a deletion of primate-specific Lys(191) or the carboxyl-terminal tail of the catfish GnRHR; these show intrinsically enhanced expression. Moreover, a peptidomimetic antagonist of GnRH enhanced the expression of WT hGnRHR, but not of genetically modified hGnRHR species. The dominant-negative effect of the naturally occurring receptor mutants occurred only for the WT hGnRHR, which has intrinsic low maturation efficiency. The data suggest that this dominant negative effect accompanies the diminished plasma membrane expression as a recent evolutionary event.

  17. The episodic ataxia type 1 mutation I262T alters voltage-dependent gating and disrupts protein biosynthesis of human Kv1.1 potassium channels.

    PubMed

    Chen, Szu-Han; Fu, Ssu-Ju; Huang, Jing-Jia; Tang, Chih-Yung

    2016-01-18

    Voltage-gated potassium (Kv) channels are essential for setting neuronal membrane excitability. Mutations in human Kv1.1 channels are linked to episodic ataxia type 1 (EA1). The EA1-associated mutation I262T was identified from a patient with atypical phenotypes. Although a previous report has characterized its suppression effect, several key questions regarding the impact of the I262T mutation on Kv1.1 as well as other members of the Kv1 subfamily remain unanswered. Herein we show that the dominant-negative effect of I262T on Kv1.1 current expression is not reversed by co-expression with Kvβ1.1 or Kvβ2 subunits. Biochemical examinations indicate that I262T displays enhanced protein degradation and impedes membrane trafficking of Kv1.1 wild-type subunits. I262T appears to be the first EA1 mutation directly associated with impaired protein stability. Further functional analyses demonstrate that I262T changes the voltage-dependent activation and Kvβ1.1-mediated inactivation, uncouples inactivation from activation gating, and decelerates the kinetics of cumulative inactivation of Kv1.1 channels. I262T also exerts similar dominant effects on the gating of Kv1.2 and Kv1.4 channels. Together our data suggest that I262T confers altered channel gating and reduced functional expression of Kv1 channels, which may account for some of the phenotypes of the EA1 patient.

  18. Novel phenotype associated with a mutation in the KCNA1(Kv1.1) gene

    PubMed Central

    D'Adamo, Maria C.; Gallenmüller, Constanze; Servettini, Ilenio; Hartl, Elisabeth; Tucker, Stephen J.; Arning, Larissa; Biskup, Saskia; Grottesi, Alessandro; Guglielmi, Luca; Imbrici, Paola; Bernasconi, Pia; Di Giovanni, Giuseppe; Franciolini, Fabio; Catacuzzeno, Luigi; Pessia, Mauro; Klopstock, Thomas

    2015-01-01

    Episodic ataxia type 1 (EA1) is an autosomal dominant K+ channelopathy which manifests with short attacks of cerebellar ataxia and dysarthria, and may also show interictal myokymia. Episodes can be triggered by emotional or physical stress, startle response, sudden postural change or fever. Here we describe a 31-year-old man displaying markedly atypical symptoms, including long-lasting attacks of jerking muscle contractions associated with hyperthermia, severe migraine, and a relatively short-sleep phenotype. A single nucleotide change in KCNA1 (c.555C>G) was identified that changes a highly conserved residue (p.C185W) in the first transmembrane segment of the voltage-gated K+ channel Kv1.1. The patient is heterozygous and the mutation was inherited from his asymptomatic mother. Next generation sequencing revealed no variations in the CACNA1A, CACNB4, KCNC3, KCNJ10, PRRT2 or SCN8A genes of either the patient or mother, except for a benign variant in SLC1A3. Functional analysis of the p.C185W mutation in KCNA1 demonstrated a deleterious dominant-negative phenotype where the remaining current displayed slower activation kinetics, subtle changes in voltage-dependence and faster recovery from slow inactivation. Structural modeling also predicts the C185W mutation to be functionally deleterious. This description of novel clinical features, associated with a Kv1.1 mutation highlights a possibly unrecognized relationship between K+ channel dysfunction, hyperthermia and migraine in EA1, and suggests that thorough assessments for these symptoms should be carefully considered for all patients affected by EA1. PMID:25642194

  19. Germline missense pathogenic variants in the BRCA1 BRCT domain, p.Gly1706Glu and p.Ala1708Glu, increase cellular sensitivity to PARP inhibitor olaparib by a dominant negative effect

    PubMed Central

    Vaclová, Tereza; Woods, Nicholas T.; Megías, Diego; Gomez-Lopez, Sergio; Setién, Fernando; García Bueno, José María; Macías, José Antonio; Barroso, Alicia; Urioste, Miguel; Esteller, Manel; Monteiro, Alvaro N.A.; Benítez, Javier; Osorio, Ana

    2016-01-01

    Abstract BRCA1-deficient cells show defects in DNA repair and rely on other members of the DNA repair machinery, which makes them sensitive to PARP inhibitors (PARPi). Although carrying a germline pathogenic variant in BRCA1/2 is the best determinant of response to PARPi, a significant percentage of the patients do not show sensitivity and/or display increased toxicity to the agent. Considering previously suggested mutation-specific BRCA1 haploinsufficiency, we aimed to investigate whether there are any differences in cellular response to PARPi olaparib depending on the BRCA1 mutation type. Lymphoblastoid cell lines derived from carriers of missense pathogenic variants in the BRCA1 BRCT domain (c.5117G > A, p.Gly1706Glu and c.5123C > A, p.Ala1708Glu) showed higher sensitivity to olaparib than cells with truncating variants or wild types (WT). Response to olaparib depended on a basal PARP enzymatic activity, but did not correlate with PARP1 expression. Interestingly, cellular sensitivity to the agent was associated with the level of BRCA1 recruitment into γH2AX foci, being the lowest in cells with missense variants. Since these variants lead to partially stable protein mutants, we propose a model in which the mutant protein acts in a dominant negative manner on the WT BRCA1, impairing the recruitment of BRCA1 into DNA damage sites and, consequently, increasing cellular sensitivity to PARPi. Taken together, our results indicate that carriers of different BRCA1 mutations could benefit from olaparib in a distinct way and show different toxicities to the agent, which could be especially relevant for a potential future use of PARPi as prophylactic agents in BRCA1 mutation carriers. PMID:27742776

  20. On Statistical Modeling of Sequencing Noise in High Depth Data to Assess Tumor Evolution

    NASA Astrophysics Data System (ADS)

    Rabadan, Raul; Bhanot, Gyan; Marsilio, Sonia; Chiorazzi, Nicholas; Pasqualucci, Laura; Khiabanian, Hossein

    2018-07-01

    One cause of cancer mortality is tumor evolution to therapy-resistant disease. First line therapy often targets the dominant clone, and drug resistance can emerge from preexisting clones that gain fitness through therapy-induced natural selection. Such mutations may be identified using targeted sequencing assays by analysis of noise in high-depth data. Here, we develop a comprehensive, unbiased model for sequencing error background. We find that noise in sufficiently deep DNA sequencing data can be approximated by aggregating negative binomial distributions. Mutations with frequencies above noise may have prognostic value. We evaluate our model with simulated exponentially expanded populations as well as data from cell line and patient sample dilution experiments, demonstrating its utility in prognosticating tumor progression. Our results may have the potential to identify significant mutations that can cause recurrence. These results are relevant in the pretreatment clinical setting to determine appropriate therapy and prepare for potential recurrence pretreatment.

  1. Signaling by ectopically expressed Drosophila Src64 requires the protein-tyrosine phosphatase corkscrew and the adapter downstream of receptor kinases.

    PubMed

    Cooper, J A; Simon, M A; Kussick, S J

    1996-11-01

    Vertebrate Src can be activated by specific mutations to become oncogenic. Analogous mutations in Drosophila Src64 (DSrc) induce abnormal differentiation of photoreceptor cells when expressed ectopically in the developing Drosophila adult eye. We have investigated the roles that the adapter protein, Downstream of receptor kinases (Drk), and the SH2 domain-containing tyrosine phosphatase, Corkscrew (Csw), play in this process. We find that dominant-negative mutations in either the drk or csw genes ameliorate the developmental abnormalities induced by activated DSrc. This suggests that Drk and Csw are required downstream of, or parallel to, DSrc. Csw does not act solely as an upstream activator of DSrc. The results are discussed in relation to potential roles for the vertebrate homologues of Drk and Csw (Grb2 and SHP2, respectively) in the transformation of fibroblasts by vertebrate Src.

  2. On Statistical Modeling of Sequencing Noise in High Depth Data to Assess Tumor Evolution

    NASA Astrophysics Data System (ADS)

    Rabadan, Raul; Bhanot, Gyan; Marsilio, Sonia; Chiorazzi, Nicholas; Pasqualucci, Laura; Khiabanian, Hossein

    2017-12-01

    One cause of cancer mortality is tumor evolution to therapy-resistant disease. First line therapy often targets the dominant clone, and drug resistance can emerge from preexisting clones that gain fitness through therapy-induced natural selection. Such mutations may be identified using targeted sequencing assays by analysis of noise in high-depth data. Here, we develop a comprehensive, unbiased model for sequencing error background. We find that noise in sufficiently deep DNA sequencing data can be approximated by aggregating negative binomial distributions. Mutations with frequencies above noise may have prognostic value. We evaluate our model with simulated exponentially expanded populations as well as data from cell line and patient sample dilution experiments, demonstrating its utility in prognosticating tumor progression. Our results may have the potential to identify significant mutations that can cause recurrence. These results are relevant in the pretreatment clinical setting to determine appropriate therapy and prepare for potential recurrence pretreatment.

  3. Biophysical and Molecular Characterization of a Novel de novo KCNJ2 Mutation Associated with Andersen-Tawil Syndrome and CPVT Mimicry

    PubMed Central

    Barajas-Martinez, Hector; Hu, Dan; Ontiveros, Gustavo; Caceres, Gabriel; Desai, Mayurika; Burashnikov, Elena; Scaglione, Jorge; Antzelevitch, Charles

    2010-01-01

    Background Mutations in KCNJ2, the gene encoding the human inward rectifier potassium channel Kir2.1 (IK1 or IKir2.1), have been identified in Andersen-Tawil syndrome (ATS). ATS is a multisystem inherited disease exhibiting periodic paralysis, cardiac arrhythmias, and dysmorphic features at times mimicking catecholaminergic polymorphic ventricular tachycardia (CPVT). Methods and Results Our proband displayed dysmorphic features including micrognathia, clinodactyly and syndactyly, and exhibited multiform extrasystoles and bidirectional ventricular tachycardia both at rest and during exercise testing. The patient’s symptoms continued following administration of nadolol, but subsided after treatment with flecainide. Molecular genetic screening revealed a novel heterozygous mutation (c.779G>C/p.R260P) in KCNJ2. Whole-cell patch-clamp studies conducted in TSA201 cells transfected with wild type human KCNJ2 cDNA (WT-KCNJ2) yielded robust IKir2.1, but no measurable current in cells expressing the R260P mutant. Co-expression of WT and R260P-KCNJ2 (heterozygous expression) yielded a markedly reduced inward IKir2.1 compared with WT alone (−36.5±9.8 pA/pF vs. −143.5±11.4 pA/pF, n=8 for both, P<0.001, respectively at −90 mV) indicating a strong dominant negative effect of the mutant. The outward component of IKir2.1 measured at −50 mV was also markedly reduced with the heterozygous expression vs. WT (0.52±5.5 pA/pF vs. 23.4±6.7 pA/pF, n=8 for both, P<0.001, respectively). Immunocytochemical analysis indicates that impaired trafficking of R260P-KCNJ2 channels. Conclusions We report a novel de novo KCNJ2 mutation associated with classical phenotypic features of ATS and CPVT mimicry. The R260P mutation produces a strong dominant negative effect leading to marked suppression of IK1 secondary to a trafficking defect. PMID:21148745

  4. Clinical and radiological features in CADASIL and NOTCH3-negative patients: a multicenter study from Turkey.

    PubMed

    Ince, Birsen; Benbir, Gulcin; Siva, Aksel; Saip, Sabahattin; Utku, Ufuk; Celik, Yahya; Necioglu-Orken, Dilek; Ozturk, Serefnur; Afsar, Nazire; Aktan, Sevinc; Asil, Talip; Bakac, Goksel; Ekmekci, Hakan; Gokce, Mustafa; Krespi, Yakup; Midi, Ipek; Varlibas, Figen; Citci-Yalcinkaya, Beyza; Goksan, Baki; Uluduz, Derya; Uyguner, Oya

    2014-01-01

    The diversity of clinical presentation and neuroimaging findings of CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) from different regions of the world has not yet been studied in depth. Here we investigated the variability of clinical, radiological and genetic data of 48 patients analyzed for NOTCH3 mutation in Turkey. Clinical evaluation was made according to a preformed questionnaire. Cranial neuroimaging findings were determined on the basis of T1, T2, FLAIR and proton-density magnetic resonance scans. For genetic analysis, polymerase chain reaction was performed with primers flanking exons 2-6 and 11 of NOTCH3 gene. Twenty-five patients (52.1%) were diagnosed as CADASIL with NOTCH3 mutation, while 23 patients (47.9%) had no mutation (NOTCH3-negative patients). The mean age and age at stroke onset were lower in male CADASIL patients (p < 0.03). A family history of migraine (p = 0.012), stroke (p < 0.001), recurrent strokes (p = 0.020) and dementia (p = 0.012) was more common in CADASIL patients. Temporal pole involvement was more common in CADASIL patients (p = 0.004). It is of clinical importance to identify the heterogeneity of CADASIL from different countries due to a low correlation of clinical and radiological data with respect to NOTCH3 mutation. © 2014 S. Karger AG, Basel.

  5. Clinical and genetic characteristics of chinese patients with Birt-Hogg-Dubé syndrome.

    PubMed

    Liu, Yaping; Xu, Zhiyan; Feng, Ruie; Zhan, Yongzhong; Wang, Jun; Li, Guozhen; Li, Xue; Zhang, Weihong; Hu, Xiaowen; Tian, Xinlun; Xu, Kai-Feng; Zhang, Xue

    2017-05-30

    Birt-Hogg-Dubé syndrome (BHD) is an autosomal dominant disorder, the main manifestations of which are fibrofolliculomas, renal tumors, pulmonary cysts and recurrent pneumothorax. The known causative gene for BHD syndrome is the folliculin (FLCN) gene on chromosome 17p11.2. Studies of the FLCN mutation for BHD syndrome are less prevalent in Chinese populations than in Caucasian populations. Our study aims to investigate the genotype spectrum in a group of Chinese patients with BHD. We enrolled 51 patients with symptoms highly suggestive of BHD from January 2014 to February 2017. The FLCN gene was examined using PCR and Sanger sequencing in every patient, for those whose Sanger sequencing showed negative mutation results, multiplex ligation-dependent probe amplification (MLPA) testing was conducted to detect any losses of large segments. Among the 51 patients, 27 had FLCN germline mutations. In total, 20 mutations were identified: 14 were novel mutations, including 3 splice acceptor site mutations, 2 different deletions, 6 nonsense mutations, 1 missense mutation, 1 small insertion, and 1 deletion of the whole exon 8. We found a similar genotype spectrum but different mutant loci in Chinese patients with BHD compared with European and American patients, thus providing stronger evidence for the clinical molecular diagnosis of BHD in China. It suggests that mutation analysis of the FLCN gene should be systematically conducted in patients with cystic lung diseases.

  6. Revisiting PC1/3 Mutants: Dominant-Negative Effect of Endoplasmic Reticulum-Retained Mutants.

    PubMed

    Blanco, Elias H; Ramos-Molina, Bruno; Lindberg, Iris

    2015-10-01

    Prohormone convertase 1/3 (PC1/3), encoded by the gene PCSK1, is critical for peptide hormone synthesis. An increasing number of studies have shown that inactivating mutations in PCSK1 are correlated with endocrine pathologies ranging from intestinal dysfunction to morbid obesity, whereas the common nonsynonymous polymorphisms rs6232 (N221D) and rs6234-rs6235 (Q665E-S690T) are highly associated with obesity risk. In this report, we revisited the biochemical and cellular properties of PC1/3 variants in the context of a wild-type PC1/3 background instead of the S357G hypermorph background used for all previous studies. In the wild-type background the PC1/3 N221D variant exhibited 30% lower enzymatic activity in a fluorogenic assay than wild-type PC1/3; this inhibition was greater than that detected in an equivalent experiment using the PC1/3 S357G background. A PC1/3 variant with the linked carboxyl-terminal polymorphisms Q665E-S690T did not show this difference. We also analyzed the biochemical properties of 2 PC1/3 mutants, G209R and G593R, which are retained in the endoplasmic reticulum (ER), and studied their effects on wild-type PC1/3. The expression of ER-retained mutants induced ER stress markers and also resulted in dominant-negative blockade of wild-type PC1/3 prodomain cleavage and decreased expression of wild-type PC1/3, suggesting facilitation of the entry of wild-type protein to a degradative proteasomal pathway. Dominant-negative effects of PC1/3 mutations on the expression and maturation of wild-type protein, with consequential effects on PC1/3 availability, add a new element which must be considered in population and clinical studies of this gene.

  7. Low penetrance of autosomal dominant lateral temporal epilepsy in Italian families without LGI1 mutations.

    PubMed

    Michelucci, Roberto; Pasini, Elena; Malacrida, Sandro; Striano, Pasquale; Bonaventura, Carlo Di; Pulitano, Patrizia; Bisulli, Francesca; Egeo, Gabriella; Santulli, Lia; Sofia, Vito; Gambardella, Antonio; Elia, Maurizio; de Falco, Arturo; Neve, Angela la; Banfi, Paola; Coppola, Giangennaro; Avoni, Patrizia; Binelli, Simona; Boniver, Clementina; Pisano, Tiziana; Marchini, Marco; Dazzo, Emanuela; Fanciulli, Manuela; Bartolini, Yerma; Riguzzi, Patrizia; Volpi, Lilia; de Falco, Fabrizio A; Giallonardo, Anna Teresa; Mecarelli, Oriano; Striano, Salvatore; Tinuper, Paolo; Nobile, Carlo

    2013-07-01

    In relatively small series, autosomal dominant lateral temporal epilepsy (ADLTE) has been associated with leucine-rich, glioma-inactivated 1 (LGI1) mutations in about 50% of the families, this genetic heterogeneity being probably caused by differences in the clinical characteristics of the families. In this article we report the overall clinical and genetic spectrum of ADLTE in Italy with the aim to provide new insight into its nosology and genetic basis. In a collaborative study of the Commission of Genetics of the Italian League Against Epilepsy (LICE) encompassing a 10-year period (2000-2010), we collected 33 ADLTE families, selected on the basis of the following criteria: presence of at least two members concordant for unprovoked partial seizures with prominent auditory and or aphasic symptoms, absence of any known structural brain pathology or etiology, and normal neurologic examination. The clinical, neurophysiologic, and neuroradiologic findings of all patients were analyzed and a genealogic tree was built for each pedigree. The probands' DNA was tested for LGI1 mutations by direct sequencing and, if negative, were genotyped with single-nucleotide polymorphism (SNP) array to search for disease-linked copy-number variation CNV. The disease penetrance in mutated and nonmutated families was assessed as a proportion of obligate carriers who were affected. The 33 families included a total of 127 affected individuals (61 male, 66 female, 22 deceased). The age at onset ranged between 2 and 60 years (mean 18.7 years). Ninety-one patients (72%) had clear-cut focal (elementary, complex, or secondarily generalized) seizures, characterized by prominent auditory auras in 68% of the cases. Other symptoms included complex visual hallucinations, vertigo, and déjà vu. Aphasic seizures, associated or not with auditory features, were observed in 20% of the cases, whereas tonic-clonic seizures occurred in 86% of the overall series. Sudden noises could precipitate the seizures in about 20% of cases. Seizures, which usually occurred at a low frequency, were promptly controlled or markedly improved by antiepileptic treatment in the majority of patients. The interictal electroencephalography (EEG) studies showed the epileptiform temporal abnormalities in 62% of cases, with a slight predominance over the left region. Magnetic resonance imaging (MRI) or computerized tomography (CT) scans were negative. LGI1 mutations (missense in nine and a microdeletion in one) were found in only 10 families (30%). The patients belonging to the mutated and not mutated groups did not differ except for penetrance estimate, which was 61.3% and 35% in the two groups, respectively (chi-square, p = 0.017). In addition, the disease risk of members of families with mutations in LGI1 was three times higher than that of members of LGI1-negative families (odds ratio [OR] 2.94, confidence interval [CI] 1.2-7.21). A large number of ADLTE families has been collected over a 10-year period in Italy, showing a typical and homogeneous phenotype. LGI1 mutations have been found in only one third of families, clinically indistinguishable from nonmutated pedigrees. The estimate of penetrance and OR, however, demonstrates a significantly lower penetrance rate and relative disease risk in non-LGI1-mutated families compared with LGI1-mutated pedigrees, suggesting that a complex inheritance pattern may underlie a proportion of these families. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  8. Characterization of the R162W Kir7.1 mutation associated with snowflake vitreoretinopathy

    PubMed Central

    Zhang, Wei; Zhang, Xiaoming; Wang, Hui; Sharma, Anil K.; Edwards, Albert O.

    2013-01-01

    KCNJ13 encodes Kir7.1, an inwardly rectifying K+ channel that is expressed in multiple ion-transporting epithelia. A mutation in KCNJ13 resulting in an arginine-to-tryptophan change at residue 162 (R162W) of Kir7.1 was associated with snowflake vitreoretinal degeneration, an inherited autosomal-dominant disease characterized by vitreous degeneration and mild retinal degeneration. We used the Xenopus laevis oocyte expression system to assess the functional properties of the R162W (mutant) Kir7.1 channel and determine how wild-type (WT) Kir7.1 is affected by the presence of the mutant subunit. Recordings obtained via the two-electrode voltage-clamp technique revealed that injection of oocytes with mutant Kir7.1 cRNA resulted in currents and cation selectivity that were indistinguishable from those in water-injected oocytes, suggesting that the mutant protein does not form functional channels in the plasma membrane. Coinjection of oocytes with equal amounts of mutant and WT Kir7.1 cRNAs resulted in inward K+ and Rb+ currents with amplitudes that were ∼17% of those in oocytes injected with WT Kir7.1 cRNA alone, demonstrating a dominant-negative effect of the mutant subunit. Similar to oocytes injected with WT Kir7.1 cRNA alone, coinjected oocytes exhibited inwardly rectifying Rb+ currents that were more than seven times larger than K+ currents, indicating that mutant subunits did not alter Kir7.1 channel selectivity. Immunostaining of Xenopus oocytes or Madin-Darby canine kidney cells expressing mutant or WT Kir7.1 demonstrated distribution of both proteins primarily in the plasma membrane. Our data suggest that the R162W mutation suppresses Kir7.1 channel activity, possibly by negatively impacting gating by membrane phosphadidylinositol 4,5-bisphosphate. PMID:23255580

  9. Mutations in the ELA2 gene encoding neutrophil elastase are present in most patients with sporadic severe congenital neutropenia but only in some patients with the familial form of the disease.

    PubMed

    Ancliff, P J; Gale, R E; Liesner, R; Hann, I M; Linch, D C

    2001-11-01

    Severe congenital neutropenia (SCN) was originally described as an autosomal recessive disorder. Subsequently, autosomal dominant and sporadic forms of the disease have been recognized. All forms are manifest by persistent severe neutropenia and recurrent bacterial infection. In contrast, cyclical hematopoiesis is characterized by periodic neutropenia inter-spaced with (near) normal neutrophil counts. Recently, linkage analysis on 13 affected pedigrees identified chromosome 19p13.3 as the likely position for mutations in cyclical hematopoiesis. Heterozygous mutations in the ELA2 gene encoding neutrophil elastase were detected in all families studied. Further work also demonstrated mutations in ELA2 in sporadic and autosomal dominant SCN. However, all mutations described to date are heterozygous and thus appear to act in a dominant fashion, which is inconsistent with an autosomal recessive disease. Therefore, the current study investigated whether mutations in ELA2 could account for the disease phenotype in classical autosomal recessive SCN and in the sporadic and autosomal dominant types. All 5 exons of ELA2 and their flanking introns were studied in 18 patients (3 autosomal recessive, 5 autosomal dominant [from 3 kindreds], and 10 sporadic) using direct automated sequencing. No mutations were found in the autosomal recessive families. A point mutation was identified in 1 of 3 autosomal dominant families, and a base substitution was identified in 8 of 10 patients with the sporadic form, though 1 was subsequently shown to be a low-frequency polymorphism. These results suggest that mutations in ELA2 are not responsible for classical autosomal recessive Kostmann syndrome but provide further evidence for the role of ELA2 in SCN.

  10. Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons.

    PubMed

    Boczonadi, Veronika; Meyer, Kathrin; Gonczarowska-Jorge, Humberto; Griffin, Helen; Roos, Andreas; Bartsakoulia, Marina; Bansagi, Boglarka; Ricci, Giulia; Palinkas, Fanni; Zahedi, René P; Bruni, Francesco; Kaspar, Brian; Lochmüller, Hanns; Boycott, Kym M; Müller, Juliane S; Horvath, Rita

    2018-06-15

    The nuclear-encoded glycyl-tRNA synthetase gene (GARS) is essential for protein translation in both cytoplasm and mitochondria. In contrast, different genes encode the mitochondrial and cytosolic forms of most other tRNA synthetases. Dominant GARS mutations were described in inherited neuropathies, while recessive mutations cause severe childhood-onset disorders affecting skeletal muscle and heart. The downstream events explaining tissue-specific phenotype-genotype relations remained unclear. We investigated the mitochondrial function of GARS in human cell lines and in the GarsC210R mouse model. Human-induced neuronal progenitor cells (iNPCs) carrying dominant and recessive GARS mutations showed alterations of mitochondrial proteins, which were more prominent in iNPCs with dominant, neuropathy-causing mutations. Although comparative proteomic analysis of iNPCs showed significant changes in mitochondrial respiratory chain complex subunits, assembly genes, Krebs cycle enzymes and transport proteins in both recessive and dominant mutations, proteins involved in fatty acid oxidation were only altered by recessive mutations causing mitochondrial cardiomyopathy. In contrast, significant alterations of the vesicle-associated membrane protein-associated protein B (VAPB) and its downstream pathways such as mitochondrial calcium uptake and autophagy were detected in dominant GARS mutations. The role of VAPB has been supported by similar results in the GarsC210R mice. Our data suggest that altered mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) may be important disease mechanisms leading to neuropathy in this condition.

  11. Dominant Drop mutants are gain-of-function alleles of the muscle segment homeobox gene (msh) whose overexpression leads to the arrest of eye development.

    PubMed

    Mozer, B A

    2001-05-15

    Dominant Drop (Dr) mutations are nearly eyeless and have additional recessive phenotypes including lethality and patterning defects in eye and sensory bristles due to cis-regulatory lesions in the cell cycle regulator string (stg). Genetic analysis demonstrates that the dominant small eye phenotype is the result of separate gain-of-function mutations in the closely linked muscle segment homeobox (msh) gene, encoding a homeodomain transcription factor required for patterning of muscle and nervous system. Reversion of the Dr(Mio) allele was coincident with the generation of lethal loss-of-function mutations in msh in cis, suggesting that the dominant eye phenotype is the result of ectopic expression. Molecular genetic analysis revealed that two dominant Dr alleles contain lesions upstream of the msh transcription start site. In the Dr(Mio) mutant, a 3S18 retrotransposon insertion is the target of second-site mutations (P-element insertions or deletions) which suppress the dominant eye phenotype following reversion. The pattern of 3S18 expression and the absence of msh in eye imaginal discs suggest that transcriptional activation of the msh promoter accounts for ectopic expression. Dr dominant mutations arrest eye development by blocking the progression of the morphogenetic furrow leading to photoreceptor cell loss via apoptosis. Gal4-mediated ubiquitous expression of msh in third-instar larvae was sufficient to arrest the morphogenetic furrow in the eye imaginal disc and resulted in lethality prior to eclosion. Dominant mutations in the human msx2 gene, one of the vertebrate homologs of msh, are associated with craniosynostosis, a disease affecting cranial development. The Dr mutations are the first example of gain-of-function mutations in the msh/msx gene family identified in a genetically tractible model organism and may serve as a useful tool to identify additional genes that regulate this class of homeodomain proteins. Copyright 2001 Academic Press.

  12. Characterization of large rearrangements in autosomal dominant polycystic kidney disease and the PKD1/TSC2 contiguous gene syndrome

    PubMed Central

    Consugar, Mark B.; Wong, Wai C.; Lundquist, Patrick A.; Rossetti, Sandro; Kubly, Vickie J.; Walker, Denise L.; Rangel, Laureano J.; Aspinwall, Richard; Niaudet, W. Patrick; Özen, Seza; David, Albert; Velinov, Milen; Bergstralh, Eric J.; Bae, Kyongtae T.; Chapman, Arlene B.; Guay-Woodford, Lisa M.; Grantham, Jared J.; Torres, Vicente E.; Sampson, Julian R.; Dawson, Brian D.; Harris, Peter C.

    2009-01-01

    Large DNA rearrangements account for about 8% of disease mutations and are more common in duplicated genomic regions, where they are difficult to detect. Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2. PKD1 is located in an intrachromosomally duplicated region. A tuberous sclerosis gene, TSC2, lies immediately adjacent to PKD1 and large deletions can result in the PKD1/TSC2 contiguous gene deletion syndrome. To rapidly identify large rearrangements, a multiplex ligation-dependent probe amplification assay was developed employing base-pair differences between PKD1 and the six pseudogenes to generate PKD1-specific probes. All changes in a set of 25 previously defined deletions in PKD1, PKD2 and PKD1/TSC2 were detected by this assay and we also found 14 new mutations at these loci. About 4% of the ADPKD patients in the CRISP study were found to have gross rearrangements, and these accounted for about a third of base-pair mutation negative families. Sensitivity of the assay showed that about 40% of PKD1/TSC contiguous gene deletion syndrome families contained mosaic cases. Characterization of a family found to be mosaic for a PKD1 deletion is discussed here to illustrate family risk and donor selection considerations. Our assay improves detection levels and the reliability of molecular testing of patients with ADPKD. PMID:18818683

  13. Merkel Cell Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-Associated Merkel Cell Carcinoma.

    PubMed

    Starrett, Gabriel J; Marcelus, Christina; Cantalupo, Paul G; Katz, Joshua P; Cheng, Jingwei; Akagi, Keiko; Thakuria, Manisha; Rabinowits, Guilherme; Wang, Linda C; Symer, David E; Pipas, James M; Harris, Reuben S; DeCaprio, James A

    2017-01-03

    Merkel cell polyomavirus is the primary etiological agent of the aggressive skin cancer Merkel cell carcinoma (MCC). Recent studies have revealed that UV radiation is the primary mechanism for somatic mutagenesis in nonviral forms of MCC. Here, we analyze the whole transcriptomes and genomes of primary MCC tumors. Our study reveals that virus-associated tumors have minimally altered genomes compared to non-virus-associated tumors, which are dominated by UV-mediated mutations. Although virus-associated tumors contain relatively small mutation burdens, they exhibit a distinct mutation signature with observable transcriptionally biased kataegic events. In addition, viral integration sites overlap focal genome amplifications in virus-associated tumors, suggesting a potential mechanism for these events. Collectively, our studies indicate that Merkel cell polyomavirus is capable of hijacking cellular processes and driving tumorigenesis to the same severity as tens of thousands of somatic genome alterations. A variety of mutagenic processes that shape the evolution of tumors are critical determinants of disease outcome. Here, we sequenced the entire genome of virus-positive and virus-negative primary Merkel cell carcinomas (MCCs), revealing distinct mutation spectra and corresponding expression profiles. Our studies highlight the strong effect that Merkel cell polyomavirus has on the divergent development of viral MCC compared to the somatic alterations that typically drive nonviral tumorigenesis. A more comprehensive understanding of the distinct mutagenic processes operative in viral and nonviral MCCs has implications for the effective treatment of these tumors. Copyright © 2017 Starrett et al.

  14. Allelic Heterogeneity at the Equine KIT Locus in Dominant White (W) Horses

    PubMed Central

    Haase, Bianca; Brooks, Samantha A; Schlumbaum, Angela; Azor, Pedro J; Bailey, Ernest; Alaeddine, Ferial; Mevissen, Meike; Burger, Dominik; Poncet, Pierre-André; Rieder, Stefan; Leeb, Tosso

    2007-01-01

    White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from ∼50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the ∼82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations. PMID:17997609

  15. Screening for mutations in rhodopsin and peripherin/RDS in patients with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, J.A.; Gannon, A.M.; Daiger, S.P.

    1994-09-01

    Mutations in rhodopsin account for approximately 30% of all cases of autosomal dominant retinits pigmentosa (adRP) and mutations in peripherin/RDS account for an additional 5% of cases. Also, mutations in rhodopsin can cause autosomal recessive retinitis pigmentosa and mutations in peripherin/RDS can cause dominant macular degeneration. Most disease-causing mutations in rhodopsin and peripherin/RDS are unique to one family or, at most, to a few families within a limited geographic region, though a few mutations are found in multiple, unrelated families. To further determine the spectrum of genetic variation in these genes, we screened DNA samples from 134 unrelated patients withmore » retinitis pigmentosa for mutations in both rhodopsin and peripherin/RDS using SSCP followed by genomic sequencing. Of the 134 patients, 86 were from families with apparent adRP and 48 were either isolated cases or were from families with an equivocal mode of inheritance. Among these patients we found 14 distinct rhodopsin mutations which are likely to cause retinal disease. Eleven of these mutations were found in one individual or one family only, whereas the Pro23His mutation was found in 14 {open_quotes}unrelated{close_quotes}individuals. The splice-site mutation produces dominant disease though with highly variable expression. Among the remaining patients were found 6 distinct peripherin/RDS mutations which are likely to cause retinal disease. These mutations were also found in one patient or family only, except the Gly266Asp mutation which was found in two unrelated patients. These results confirm the expected frequency and broad spectrum of mutations causing adRP.« less

  16. The prevalence of BRCA1 and BRCA2 mutations among young Mexican women with triple-negative breast cancer

    PubMed Central

    Villarreal-Garza, C.; Weitzel, J. N.; Llacuachaqui, M.; Sifuentes, E.; Magallanes-Hoyos, M. C.; Gallardo, L.; Alvarez-Gómez, R. M.; Herzog, J.; Castillo, D.; Royer, R.; Akbari, Mohammad; Lara-Medina, F.; Herrera, L. A.; Mohar, A.

    2015-01-01

    Various guidelines recommend that women with triple-negative breast cancer should be tested for BRCA1 mutations, but the prevalence of mutations may vary with ethnic group and with geographic region, and the optimal cutoff age for testing has not been established. We estimated the frequencies of BRCA1 and BRCA2 (BRCA) mutations among 190 women with triple-negative breast cancer, unselected for family history, diagnosed at age 50 or less at a single hospital in Mexico City. Patients were screened for 115 recurrent BRCA mutations, which have been reported previously in women of Hispanic origin, including a common large rearrangement Mexican founder mutation (BRCA1 ex9-12del). A BRCA mutation was detected in 44 of 190 patients with triple-negative breast cancer (23 %). Forty-three mutations were found in BRCA1 and one mutation was found in BRCA2. Seven different mutations accounted for 39 patients (89 % of the total mutations). The Mexican founder mutation (BRCA1 ex9-12del) was found 18 times and accounted for 41 % of all mutations detected. There is a high prevalence of BRCA1 mutations among young triple-negative breast cancer patients in Mexico. Women with triple-negative breast cancer in Mexico should be screened for mutations in BRCA1. PMID:25716084

  17. Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome.

    PubMed

    Hannibal, Mark C; Buckingham, Kati J; Ng, Sarah B; Ming, Jeffrey E; Beck, Anita E; McMillin, Margaret J; Gildersleeve, Heidi I; Bigham, Abigail W; Tabor, Holly K; Mefford, Heather C; Cook, Joseph; Yoshiura, Koh-ichiro; Matsumoto, Tadashi; Matsumoto, Naomichi; Miyake, Noriko; Tonoki, Hidefumi; Naritomi, Kenji; Kaname, Tadashi; Nagai, Toshiro; Ohashi, Hirofumi; Kurosawa, Kenji; Hou, Jia-Woei; Ohta, Tohru; Liang, Deshung; Sudo, Akira; Morris, Colleen A; Banka, Siddharth; Black, Graeme C; Clayton-Smith, Jill; Nickerson, Deborah A; Zackai, Elaine H; Shaikh, Tamim H; Donnai, Dian; Niikawa, Norio; Shendure, Jay; Bamshad, Michael J

    2011-07-01

    Kabuki syndrome is a rare, multiple malformation disorder characterized by a distinctive facial appearance, cardiac anomalies, skeletal abnormalities, and mild to moderate intellectual disability. Simplex cases make up the vast majority of the reported cases with Kabuki syndrome, but parent-to-child transmission in more than a half-dozen instances indicates that it is an autosomal dominant disorder. We recently reported that Kabuki syndrome is caused by mutations in MLL2, a gene that encodes a Trithorax-group histone methyltransferase, a protein important in the epigenetic control of active chromatin states. Here, we report on the screening of 110 families with Kabuki syndrome. MLL2 mutations were found in 81/110 (74%) of families. In simplex cases for which DNA was available from both parents, 25 mutations were confirmed to be de novo, while a transmitted MLL2 mutation was found in two of three familial cases. The majority of variants found to cause Kabuki syndrome were novel nonsense or frameshift mutations that are predicted to result in haploinsufficiency. The clinical characteristics of MLL2 mutation-positive cases did not differ significantly from MLL2 mutation-negative cases with the exception that renal anomalies were more common in MLL2 mutation-positive cases. These results are important for understanding the phenotypic consequences of MLL2 mutations for individuals and their families as well as for providing a basis for the identification of additional genes for Kabuki syndrome. Copyright © 2011 Wiley-Liss, Inc.

  18. Mutation analysis of the APC gene in Taiwanese FAP families: low incidence of APC germline mutation in a distinct subgroup of FAP families.

    PubMed

    Chiang, J M; Chen, H W; Tang, R P; Chen, J S; Changchien, C R; Hsieh, P S; Wang, J Y

    2010-06-01

    Familial adenomatous polyposis (FAP) is an autosomal-dominant disease caused by germline mutations in the adenomatous polyposis coli (APC) gene. The affected individuals develop colorectal polyposis and show various extra-colonic manifestations. In this study, we aimed to investigate the genetic and clinical characteristics of FAP in Taiwanese families and analyze the genotype-phenotype correlations. Blood samples were obtained from 66 FAP patients registered in the hereditary colorectal cancer database. Then, germline mutations in the APC genes of these 66 polyposis patients from 47 unrelated FAP families were analyzed. The germline-mutation-negative cases were analyzed by performing multiplex ligation-dependent probe amplification (MLPA) and single-strand conformation polymorphism (SSCP) analysis of the MUTYH gene. Among the analyzed families, 79% (37/47) of the families showed 28 APC mutations, including 19 frameshift mutations, 4 nonsense mutations, 3 genomic deletion mutations, 1 missense mutation, and 1 splice-site mutation. In addition, we identified 15 novel mutations in 32% (15/47) of the families. The cases in which APC mutations were not identified showed significantly lower incidence of profuse polyposis (P = 0.034) and gastroduodenal polyps (P = 0.027). Furthermore, FAP families in which some affected individuals had less than 100 polyps showed significant association with low incidence of APC germline mutations (P = 0.002). We have added the APC germline-mutation data for Taiwanese FAP patients and indicated the presence of an FAP subgroup comprising affected individuals with nonadenomatous polyps or less than 100 adenomatous polyps; this form of FAP is less frequently caused by germline mutations of the APC gene.

  19. Incomplete Timothy syndrome secondary to a mosaic mutation of the CACNA1C gene diagnosed using next-generation sequencing.

    PubMed

    Baurand, Amandine; Falcon-Eicher, Sylvie; Laurent, Gabriel; Villain, Elisabeth; Bonnet, Caroline; Thauvin-Robinet, Christel; Jacquot, Caroline; Eicher, Jean-Christophe; Gourraud, Jean-Baptiste; Schmitt, Sébastien; Bézieau, Stéphane; Giraud, Mathilde; Dumont, Solenne; Kuentz, Paul; Probst, Vincent; Burguet, Antoine; Kyndt, Florence; Faivre, Laurence

    2017-02-01

    Autosomal dominant genetic diseases can occur de novo and in the form of somatic mosaicism, which can give rise to a less severe phenotype, and make diagnosis more difficult given the sensitivity limits of the methods used. We report the case of female child with a history of surgery for syndactyly of the hands and feet, who was admitted at 6 years of age to a pediatric intensive care unit following cardiac arrest. The electrocardiogram (ECG) showed a long QT interval that on occasions reached 500 ms. Despite the absence of facial dysmorphism and the presence of normal psychomotor development, a diagnosis of Timothy syndrome was made given the association of syndactyly and the ECG features. Sanger sequencing of the CACNA1C gene, followed by sequencing of the genes KCNQ1, KCNH2, KCNE1, KCNE2, were negative. The subsequent analysis of a panel of genes responsible for hereditary cardiac rhythm disorders using Haloplex technology revealed a recurrent mosaic p.Gly406Arg missense mutation of the CACNA1C gene in 18% of the cells. This mosaicism can explain the negative Sanger analysis and the less complete phenotype in this patient. Given the other cases in the literature, mosaic mutations in Timothy syndrome appear more common than previously thought. This case demonstrates the importance of using next-generation sequencing to identify mosaic mutations when the clinical picture supports a specific mutation that is not identified using conventional testing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Comparison of the clinical and cognitive features of genetically positive ALS patients from the largest tertiary center in Serbia.

    PubMed

    Marjanović, Ivan V; Selak-Djokić, Biljana; Perić, Stojan; Janković, Milena; Arsenijević, Vladimir; Basta, Ivana; Lavrnić, Dragana; Stefanova, Elka; Stević, Zorica

    2017-06-01

    Discovering novel mutations in C9orf72, FUS, ANG, and TDP-43 genes in ALS patients arises necessities for better clinical characterizations of these subjects. The aim is to determine clinical and cognitive profile of genetically positive Serbian ALS patients. 241 ALS patients were included in the study (17 familiar and 224 apparently sporadic). The following genes were analyzed: SOD1, C9orf72, ANG, FUS, and TDP-43. An extensive battery of classic neuropsychological tests was used in 27 ALS patients (22 SOD1 positive and 5 SOD1 negative) and 82 healthy controls (HCs). Overall 37 (15.4%) of 241 ALS patients carried mutations in tested genes-among 17 familiar ALS patients 16 (94.1%) were positive and among 224 apparently sporadic 21 (9.4%) had causative mutation. Mutations in SOD1 gene were the most common, representing 27 (73.0%) of all genetically positive ALS patients. The main clinical characteristics of SOD1 positive patients were: spinal onset in lower extremities, common sphincter and sensitive disturbances, and dysexecutive syndrome. Within SOD1 positive patients, we noticed somewhat earlier onset in patients with A145G, sensory and sphincter disturbances were dominant in patients with L144F, while D90A patients had significant sensory involvement. SOD1 negative group consisted of ten (27.0%) patients (six C9orf72, two ANG, one TDP-43, and one patient baring triple FUS, C9orf72 expansion, and ANG variants). Bulbar involvement and more extensive neuropsychological impairment (including executive, visuospatial, and memory difficulties) were the main features of SOD1 negative cohort. Our results suggest that meaningful clinical suspicion of certain ALS genotype might be made based on thorough clinical evaluation of patients.

  1. Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase.

    PubMed

    Lallemand, Y; Luria, V; Haffner-Krausz, R; Lonai, P

    1998-03-01

    A transgenic mouse strain with early and uniform expression of the Cre site-specific recombinase is described. In this strain, PGK-Crem, Cre is driven by the early acting PGK-1 promoter, but, probably due to cis effects at the integration site, the recombinase is under dominant maternal control. When Cre is transmitted by PGK-Crem females mated to males that carry a reporter transgene flanked by loxP sites, even offspring that do not inherit PGK-Cre delete the target gene. It follows that in the PGK-Crem female Cre activity commences in the diploid phase of oogenesis. In PGK-Crem crosses complete recombination was observed in all organs, including testis and ovary. We prepared a mouse stock that is homozygous for PGK-Crem and at the albino (c) locus. This strain will be useful for the early and uniform induction of ectopic and dominant negative mutations, for the in vivo removal of selective elements from targeted mutations and in connection with the manipulation of targeted loci in 'knock in' and related technologies.

  2. Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3.

    PubMed

    Kornak, Uwe; Mademan, Inès; Schinke, Marte; Voigt, Martin; Krawitz, Peter; Hecht, Jochen; Barvencik, Florian; Schinke, Thorsten; Gießelmann, Sebastian; Beil, F Timo; Pou-Serradell, Adolf; Vílchez, Juan J; Beetz, Christian; Deconinck, Tine; Timmerman, Vincent; Kaether, Christoph; De Jonghe, Peter; Hübner, Christian A; Gal, Andreas; Amling, Michael; Mundlos, Stefan; Baets, Jonathan; Kurth, Ingo

    2014-03-01

    Many neurodegenerative disorders present with sensory loss. In the group of hereditary sensory and autonomic neuropathies loss of nociception is one of the disease hallmarks. To determine underlying factors of sensory neurodegeneration we performed whole-exome sequencing in affected individuals with the disorder. In a family with sensory neuropathy with loss of pain perception and destruction of the pedal skeleton we report a missense mutation in a highly conserved amino acid residue of atlastin GTPase 3 (ATL3), an endoplasmic reticulum-shaping GTPase. The same mutation (p.Tyr192Cys) was identified in a second family with similar clinical outcome by screening a large cohort of 115 patients with hereditary sensory and autonomic neuropathies. Both families show an autosomal dominant pattern of inheritance and the mutation segregates with complete penetrance. ATL3 is a paralogue of ATL1, a membrane curvature-generating molecule that is involved in spastic paraplegia and hereditary sensory neuropathy. ATL3 proteins are enriched in three-way junctions, branch points of the endoplasmic reticulum that connect membranous tubules to a continuous network. Mutant ATL3 p.Tyr192Cys fails to localize to branch points, but instead disrupts the structure of the tubular endoplasmic reticulum, suggesting that the mutation exerts a dominant-negative effect. Identification of ATL3 as novel disease-associated gene exemplifies that long-term sensory neuronal maintenance critically depends on the structural organisation of the endoplasmic reticulum. It emphasizes that alterations in membrane shaping-proteins are one of the major emerging pathways in axonal degeneration and suggests that this group of molecules should be considered in neuroprotective strategies.

  3. Select human cancer mutants of NRMT1 alter its catalytic activity and decrease N-terminal trimethylation.

    PubMed

    Shields, Kaitlyn M; Tooley, John G; Petkowski, Janusz J; Wilkey, Daniel W; Garbett, Nichola C; Merchant, Michael L; Cheng, Alan; Schaner Tooley, Christine E

    2017-08-01

    A subset of B-cell lymphoma patients have dominant mutations in the histone H3 lysine 27 (H3K27) methyltransferase EZH2, which change it from a monomethylase to a trimethylase. These mutations occur in aromatic resides surrounding the active site and increase growth and alter transcription. We study the N-terminal trimethylase NRMT1 and the N-terminal monomethylase NRMT2. They are 50% identical, but differ in key aromatic residues in their active site. Given how these residues affect EZH2 activity, we tested whether they are responsible for the distinct catalytic activities of NRMT1/2. Additionally, NRMT1 acts as a tumor suppressor in breast cancer cells. Its loss promotes oncogenic phenotypes but sensitizes cells to DNA damage. Mutations of NRMT1 naturally occur in human cancers, and we tested a select group for altered activity. While directed mutation of the aromatic residues had minimal catalytic effect, NRMT1 mutants N209I (endometrial cancer) and P211S (lung cancer) displayed decreased trimethylase and increased monomethylase/dimethylase activity. Both mutations are located in the peptide-binding channel and indicate a second structural region impacting enzyme specificity. The NRMT1 mutants demonstrated a slower rate of trimethylation and a requirement for higher substrate concentration. Expression of the mutants in wild type NRMT backgrounds showed no change in N-terminal methylation levels or growth rates, demonstrating they are not acting as dominant negatives. Expression of the mutants in cells lacking endogenous NRMT1 resulted in minimal accumulation of N-terminal trimethylation, indicating homozygosity could help drive oncogenesis or serve as a marker for sensitivity to DNA damaging chemotherapeutics or γ-irradiation. © 2017 The Protein Society.

  4. Choline transporter mutations in severe congenital myasthenic syndrome disrupt transporter localization.

    PubMed

    Wang, Haicui; Salter, Claire G; Refai, Osama; Hardy, Holly; Barwick, Katy E S; Akpulat, Ugur; Kvarnung, Malin; Chioza, Barry A; Harlalka, Gaurav; Taylan, Fulya; Sejersen, Thomas; Wright, Jane; Zimmerman, Holly H; Karakaya, Mert; Stüve, Burkhardt; Weis, Joachim; Schara, Ulrike; Russell, Mark A; Abdul-Rahman, Omar A; Chilton, John; Blakely, Randy D; Baple, Emma L; Cirak, Sebahattin; Crosby, Andrew H

    2017-11-01

    The presynaptic, high-affinity choline transporter is a critical determinant of signalling by the neurotransmitter acetylcholine at both central and peripheral cholinergic synapses, including the neuromuscular junction. Here we describe an autosomal recessive presynaptic congenital myasthenic syndrome presenting with a broad clinical phenotype due to homozygous choline transporter missense mutations. The clinical phenotype ranges from the classical presentation of a congenital myasthenic syndrome in one patient (p.Pro210Leu), to severe neurodevelopmental delay with brain atrophy (p.Ser94Arg) and extend the clinical outcomes to a more severe spectrum with infantile lethality (p.Val112Glu). Cells transfected with mutant transporter construct revealed a virtually complete loss of transport activity that was paralleled by a reduction in transporter cell surface expression. Consistent with these findings, studies to determine the impact of gene mutations on the trafficking of the Caenorhabditis elegans choline transporter orthologue revealed deficits in transporter export to axons and nerve terminals. These findings contrast with our previous findings in autosomal dominant distal hereditary motor neuropathy of a dominant-negative frameshift mutation at the C-terminus of choline transporter that was associated with significantly reduced, but not completely abrogated choline transporter function. Together our findings define divergent neuropathological outcomes arising from different classes of choline transporter mutation with distinct disease processes and modes of inheritance. These findings underscore the essential role played by the choline transporter in sustaining acetylcholine neurotransmission at both central and neuromuscular synapses, with important implications for treatment and drug selection. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Osteogenesis imperfecta: recent findings shed new light on this once well-understood condition.

    PubMed

    Basel, Donald; Steiner, Robert D

    2009-06-01

    Osteogenesis imperfecta is a systemic heritable disorder of connective tissue whose cardinal manifestation is bone fragility. In approximately 90% of individuals with osteogenesis imperfecta, mutations in either of the genes encoding the pro-alpha1 or pro-alpha2 chains of type I collagen (COL1A1 or COL1A2) can be identified. Of those without collagen mutations, a number of them will have mutations involving the enzyme complex responsible for posttranslational hydroxylation of the position 3 proline residue of COL1A1. Two of the genes encoding proteins involved in that enzyme complex, LEPRE1 and cartilage-associated protein, when mutated have been shown to cause autosomal recessive osteogenesis imperfecta, which has a moderate to severe clinical phenotype, often indistinguishable from osteogenesis imperfecta types II or III. Mutations in COL1A1 or COL1A2 which result in an abnormal protein still capable of forming a triple helix cause a more severe phenotype than mutations that lead to decreased collagen production as a result of the dominant negative effect mediated by continuous protein turnover. The current standard of care includes a multidisciplinary approach with surgical intervention when necessary, proactive physiotherapy, and consideration for the use of bisphosphonates all in attempts to improve quality of life.

  6. Identification and functional analysis of a novel mutation in the SOX10 gene associated with Waardenburg syndrome type IV.

    PubMed

    Wang, Hong-Han; Chen, Hong-Sheng; Li, Hai-Bo; Zhang, Hua; Mei, Ling-Yun; He, Chu-Feng; Wang, Xing-Wei; Men, Mei-Chao; Jiang, Lu; Liao, Xin-Bin; Wu, Hong; Feng, Yong

    2014-03-15

    Waardenburg syndrome type IV (WS4) is a rare genetic disorder, characterized by auditory-pigmentary abnormalities and Hirschsprung disease. Mutations of the EDNRB gene, EDN3 gene, or SOX10 gene are responsible for WS4. In the present study, we reported a case of a Chinese patient with clinical features of WS4. In addition, the three genes mentioned above were sequenced in order to identify whether mutations are responsible for the case. We revealed a novel nonsense mutation, c.1063C>T (p.Q355*), in the last coding exon of SOX10. The same mutation was not found in three unaffected family members or 100 unrelated controls. Then, the function and mechanism of the mutation were investigated in vitro. We found both wild-type (WT) and mutant SOX10 p.Q355* were detected at the expected size and their expression levels are equivalent. The mutant protein also localized in the nucleus and retained the DNA-binding activity as WT counterpart; however, it lost its transactivation capability on the MITF promoter and acted as a dominant-negative repressor impairing function of the WT SOX10. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A novel dominant GJB2 (DFNA3) mutation in a Chinese family

    NASA Astrophysics Data System (ADS)

    Wang, Hongyang; Wu, Kaiwen; Yu, Lan; Xie, Linyi; Xiong, Wenping; Wang, Dayong; Guan, Jing; Wang, Qiuju

    2017-01-01

    To decipher the phenotype and genotype of a Chinese family with autosomal dominant non-syndromic hearing loss (ADNSHL) and a novel dominant missense mutation in the GJB2 gene (DFNA3), mutation screening of GJB2 was performed on the propositus from a five-generation ADNSHL family through polymerase chain reaction amplification and Sanger sequencing. The candidate variation and the co-segregation of the phenotype were verified in all ascertained family members. Targeted genes capture and next-generation sequencing (NGS) were performed to explore additional genetic variations. We identified the novel GJB2 mutation c.524C > A (p.P175H), which segregated with high frequency and was involved in progressive sensorineural hearing loss. One subject with an additional c.235delC mutation showed a more severe phenotype than did the other members with single GJB2 dominant variations. Four patients diagnosed with noise-induced hearing loss did not carry this mutation. No other pathogenic variations or modifier genes were identified by NGS. In conclusion, a novel missense mutation in GJB2 (DFNA3), affecting the second extracellular domain of the protein, was identified in a family with ADNSHL.

  8. Aortic dilatation in Marfan syndrome: role of arterial stiffness and fibrillin-1 variants.

    PubMed

    Salvi, Paolo; Grillo, Andrea; Marelli, Susan; Gao, Lan; Salvi, Lucia; Viecca, Maurizio; Di Blasio, Anna Maria; Carretta, Renzo; Pini, Alessandro; Parati, Gianfranco

    2018-01-01

    Marfan syndrome (MFS) is an autosomal dominant genetic disorder characterized by aortic root dilation and dissection and an abnormal fibrillin-1 synthesis. In this observational study, we evaluated aortic stiffness in MFS and its association with ascending aorta diameters and fibrillin-1 genotype. A total of 116 Marfan adult patients without history of cardiovascular surgery, and 144 age, sex, blood pressure and heart rate matched controls were enrolled. All patients underwent arterial stiffness evaluation through carotid-femoral pulse wave velocity (PWV) and central blood pressure waveform analysis (PulsePen tonometer). Fibrillin-1 mutations were classified based on the effect on the protein, into 'dominant negative' and 'haploinsufficient' mutations. PWV and central pulse pressure were significantly higher in MFS patients than in controls [respectively 7.31 (6.81-7.44) vs. 6.69 (6.52-6.86) m/s, P = 0.0008; 41.3 (39.1-43.5) vs. 34.0 (32.7-35.3) mmHg, P < 0.0001], with a higher age-related increase of PWV in MFS (β 0.062 vs. 0.036). Pressure amplification was significantly reduced in MFS [18.2 (15.9-20.5) vs. 33.4 (31.6-35.2)%, P < 0.0001]. Central pressure profile was altered even in MFS patients without aortic dilatation. Multiple linear regression models showed that PWV independently predicted aortic diameters at the sinuses of Valsalva (ß = 0.243, P = 0.002) and at the sinotubular junction (ß = 0.186, P = 0.048). PWV was higher in 'dominant negative' than 'haploinsufficient' fibrillin-1 mutations [7.37 (7.04-7.70) vs. 6.60 (5.97-7.23) m/s, P = 0.035], although this difference was not significant after adjustment. Aortic stiffness is increased in MFS, independently from fibrillin-1 genotype and is associated with diameters of ascending aorta. Alterations in central hemodynamics are present even when aortic diameter is within normal limits. Our findings suggest an accelerated arterial aging in MFS.

  9. The Application of Next-Generation Sequencing for Mutation Detection in Autosomal-Dominant Hereditary Hearing Impairment.

    PubMed

    Gürtler, Nicolas; Röthlisberger, Benno; Ludin, Katja; Schlegel, Christoph; Lalwani, Anil K

    2017-07-01

    Identification of the causative mutation using next-generation sequencing in autosomal-dominant hereditary hearing impairment, as mutation analysis in hereditary hearing impairment by classic genetic methods, is hindered by the high heterogeneity of the disease. Two Swiss families with autosomal-dominant hereditary hearing impairment. Amplified DNA libraries for next-generation sequencing were constructed from extracted genomic DNA, derived from peripheral blood, and enriched by a custom-made sequence capture library. Validated, pooled libraries were sequenced on an Illumina MiSeq instrument, 300 cycles and paired-end sequencing. Technical data analysis was performed with SeqMonk, variant analysis with GeneTalk or VariantStudio. The detection of mutations in genes related to hearing loss by next-generation sequencing was subsequently confirmed using specific polymerase-chain-reaction and Sanger sequencing. Mutation detection in hearing-loss-related genes. The first family harbored the mutation c.5383+5delGTGA in the TECTA-gene. In the second family, a novel mutation c.2614-2625delCATGGCGCCGTG in the WFS1-gene and a second mutation TCOF1-c.1028G>A were identified. Next-generation sequencing successfully identified the causative mutation in families with autosomal-dominant hereditary hearing impairment. The results helped to clarify the pathogenic role of a known mutation and led to the detection of a novel one. NGS represents a feasible approach with great potential future in the diagnostics of hereditary hearing impairment, even in smaller labs.

  10. Activation of the JNK pathway is essential for transformation by the Met oncogene.

    PubMed

    Rodrigues, G A; Park, M; Schlessinger, J

    1997-05-15

    The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.

  11. MPL mutation profile in JAK2 mutation-negative patients with myeloproliferative disorders.

    PubMed

    Ma, Wanlong; Zhang, Xi; Wang, Xiuqiang; Zhang, Zhong; Yeh, Chen-Hsiung; Uyeji, Jennifer; Albitar, Maher

    2011-03-01

    Mutations in the thrombopoietin receptor gene (myeloproliferative leukemia, MPL) have been reported in patients with JAK2 V617F-negative chronic myeloproliferative disorders (MPDs). We evaluated the prevalence of MPL mutations relative to JAK2 mutations in patients with suspected MPDs. A total of 2790 patient samples submitted for JAK2 mutation analysis were tested using real-time polymerase chain reaction and bidirectional sequencing of plasma RNA. JAK2 V617F-negative samples were tested for JAK2 exons 12 to 14 mutations, and those with negative results were then tested for mutations in MPL exons 10 and 11. Of the 2790 patients, 529 (18.96%) had V617F, 12 (0.43%) had small insertions or deletions in exon 12, and 7 (0.25%) had other JAK2 mutations in exons 12 to 14. Of the 2242 JAK2 mutation-negative patients, 68 (3.03%) had MPL mutations. W515L was the predominant MPL mutation (n=46; 68%), and 10 (15%) patients had other W515 variants. The remaining MPL mutations (n=12, 17%) were detected at other locations in exons 10 and 11 and included 3 insertion/deletion mutations. The S505N mutation, associated with familial MPD, was detected in 3 patients. Overall, for every 100 V617F mutations in patients with suspected MPDs, there were 12.9 MPL mutations, 2.3 JAK2 exon 12 mutations, and 1.3 JAK2 exons 13 to 14 mutations. These findings suggest that MPL mutation screening should be performed before JAK2 exons 12 to 14 testing in JAK2 V617F-negative patients with suspected MPDs.

  12. Loss-of-function CARD8 mutation causes NLRP3 inflammasome activation and Crohn's disease.

    PubMed

    Mao, Liming; Kitani, Atsushi; Similuk, Morgan; Oler, Andrew J; Albenberg, Lindsey; Kelsen, Judith; Aktay, Atiye; Quezado, Martha; Yao, Michael; Montgomery-Recht, Kim; Fuss, Ivan J; Strober, Warren

    2018-05-01

    In these studies, we evaluated the contribution of the NLRP3 inflammasome to Crohn's disease (CD) in a kindred containing individuals having a missense mutation in CARD8, a protein known to inhibit this inflammasome. Whole exome sequencing and PCR studies identified the affected individuals as having a V44I mutation in a single allele of the T60 isoform of CARD8. The serum levels of IL-1β in the affected individuals were increased compared with those in healthy controls, and their peripheral monocytes produced increased amounts of IL-1β when stimulated by NLRP3 activators. Immunoblot studies probing the basis of these findings showed that mutated T60 CARD8 failed to downregulate the NLRP3 inflammasome because it did not bind to NLRP3 and inhibit its oligomerization. In addition, these studies showed that mutated T60 CARD8 exerted a dominant-negative effect by its capacity to bind to and form oligomers with unmutated T60 or T48 CARD8 that impeded their binding to NLRP3. Finally, inflammasome activation studies revealed that intact but not mutated CARD8 prevented NLRP3 deubiquitination and serine dephosphorylation. CD due to a CARD8 mutation was not effectively treated by anti-TNF-α, but did respond to IL-1β inhibitors. Thus, patients with anti-TNF-α-resistant CD may respond to this treatment option.

  13. Col4a1 mutations cause progressive retinal neovascular defects and retinopathy

    PubMed Central

    Alavi, Marcel V.; Mao, Mao; Pawlikowski, Bradley T.; Kvezereli, Manana; Duncan, Jacque L.; Libby, Richard T.; John, Simon W. M.; Gould, Douglas B.

    2016-01-01

    Mutations in collagen, type IV, alpha 1 (COL4A1), a major component of basement membranes, cause multisystem disorders in humans and mice. In the eye, these include anterior segment dysgenesis, optic nerve hypoplasia and retinal vascular tortuosity. Here we investigate the retinal pathology in mice carrying dominant-negative Col4a1 mutations. To this end, we examined retinas longitudinally in vivo using fluorescein angiography, funduscopy and optical coherence tomography. We assessed retinal function by electroretinography and studied the retinal ultrastructural pathology. Retinal examinations revealed serous chorioretinopathy, retinal hemorrhages, fibrosis or signs of pathogenic angiogenesis with chorioretinal anastomosis in up to approximately 90% of Col4a1 mutant eyes depending on age and the specific mutation. To identify the cell-type responsible for pathogenesis we generated a conditional Col4a1 mutation and determined that primary vascular defects underlie Col4a1-associated retinopathy. We also found focal activation of Müller cells and increased expression of pro-angiogenic factors in retinas from Col4a1+/Δex41mice. Together, our findings suggest that patients with COL4A1 and COL4A2 mutations may be at elevated risk of retinal hemorrhages and that retinal examinations may be useful for identifying patients with COL4A1 and COL4A2 mutations who are also at elevated risk of hemorrhagic strokes. PMID:26813606

  14. High-risk long QT syndrome mutations in the Kv7.1 (KCNQ1) pore disrupt the molecular basis for rapid K(+) permeation.

    PubMed

    Burgess, Don E; Bartos, Daniel C; Reloj, Allison R; Campbell, Kenneth S; Johnson, Jonathan N; Tester, David J; Ackerman, Michael J; Fressart, Véronique; Denjoy, Isabelle; Guicheney, Pascale; Moss, Arthur J; Ohno, Seiko; Horie, Minoru; Delisle, Brian P

    2012-11-13

    Type 1 long QT syndrome (LQT1) is caused by loss-of-function mutations in the KCNQ1 gene, which encodes the K(+) channel (Kv7.1) that underlies the slowly activating delayed rectifier K(+) current in the heart. Intragenic risk stratification suggests LQT1 mutations that disrupt conserved amino acid residues in the pore are an independent risk factor for LQT1-related cardiac events. The purpose of this study is to determine possible molecular mechanisms that underlie the loss of function for these high-risk mutations. Extensive genotype-phenotype analyses of LQT1 patients showed that T322M-, T322A-, or G325R-Kv7.1 confers a high risk for LQT1-related cardiac events. Heterologous expression of these mutations with KCNE1 revealed they generated nonfunctional channels and caused dominant negative suppression of WT-Kv7.1 current. Molecular dynamics simulations of analogous mutations in KcsA (T85M-, T85A-, and G88R-KcsA) demonstrated that they disrupted the symmetrical distribution of the carbonyl oxygen atoms in the selectivity filter, which upset the balance between the strong attractive and K(+)-K(+) repulsive forces required for rapid K(+) permeation. We conclude high-risk LQT1 mutations in the pore likely disrupt the architectural and physical properties of the K(+) channel selectivity filter.

  15. Contrasting Phenotypes in Resistance to Thyroid Hormone Alpha Correlate with Divergent Properties of Thyroid Hormone Receptor α1 Mutant Proteins.

    PubMed

    Moran, Carla; Agostini, Maura; McGowan, Anne; Schoenmakers, Erik; Fairall, Louise; Lyons, Greta; Rajanayagam, Odelia; Watson, Laura; Offiah, Amaka; Barton, John; Price, Susan; Schwabe, John; Chatterjee, Krishna

    2017-07-01

    Resistance to thyroid hormone alpha (RTHα), a disorder characterized by tissue-selective hypothyroidism and near-normal thyroid function tests due to thyroid receptor alpha gene mutations, is rare but probably under-recognized. This study sought to correlate the clinical characteristics and response to thyroxine (T4) therapy in two adolescent RTHα patients with the properties of the THRA mutation, affecting both TRα1 and TRα2 proteins, they harbored. Clinical, auxological, biochemical, and physiological parameters were assessed in each patient at baseline and after T4 therapy. Heterozygous THRA mutations occurring de novo were identified in a 17-year-old male (patient P1; c.788C>T, p.A263V mutation) investigated for mild pubertal delay and in a 15-year-old male (patient P2; c.821T>C, p.L274P mutation) with short stature (0.4th centile), skeletal dysplasia, dysmorphic facies, and global developmental delay. Both individuals exhibited macrocephaly, delayed dentition, and constipation, together with a subnormal T4/triiodothyronine (T3) ratio, low reverse T3 levels, and mild anemia. When studied in vitro, A263V mutant TRα1 was transcriptionally impaired and inhibited the function of its wild-type counterpart at low (0.01-10 nM) T3 levels, with higher T3 concentrations (100 nM-1 μM) reversing dysfunction and such dominant negative inhibition. In contrast, L274P mutant TRα1 was transcriptionally inert, exerting significant dominant negative activity, only overcome with 10 μM of T3. Mirroring this, normal expression of KLF9, a TH-responsive target gene, was achieved in A263V mutation-containing peripheral blood mononuclear cells following 1 μM of T3 exposure, but with markedly reduced expression levels in L274P mutation-containing peripheral blood mononuclear cells, even with 10 μM of T3. Following T4 therapy, growth, body composition, dyspraxia, and constipation improved in P1, whereas growth retardation and constipation in P2 were unchanged. Neither A263V nor L274P mutations exhibited gain or loss of function in the TRα2 background, and no additional phenotype attributable to this was discerned. This study correlates a milder clinical phenotype and favorable response to T4 therapy in a RTHα patient (P1) with heterozygosity for mutant TRα1 exhibiting partial, T3-reversible, loss of function. In contrast, a more severe clinical phenotype refractory to hormone therapy was evident in another case (P2) associated with severe, virtually irreversible, dysfunction of mutant TRα1.

  16. [Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is caused by a mutation in TFG].

    PubMed

    Ishiura, Hiroyuki; Tsuji, Shoji

    2013-01-01

    Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is an autosomal dominant neurodegenerative disease characterized by proximal predominant weakness and muscle atrophy accompanied by distal sensory disturbance. Linkage analysis using 4 families identified a region on chromosome 3 showing a LOD score exceeding 4. Further refinement of candidate region was performed by haplotype analysis using high-density SNP data, resulting in a minimum candidate region spanning 3.3 Mb. Exome analysis of an HMSN-P patient revealed a mutation (c.854C>T, p.Pro285Leu) in TRK-fused gene (TFG). The identical mutation was found in the four families, which cosegregated with the disease. The mutation was neither found in Japanese control subjects nor public databases. Detailed haplotype analysis suggested two independent origins of the mutation. These findings indicate that the mutation in TFG causes HMSN-P.

  17. [Clinical and molecular study in a family with autosomal dominant hypohidrotic ectodermal dysplasia].

    PubMed

    Callea, Michele; Cammarata-Scalisi, Francisco; Willoughby, Colin E; Giglio, Sabrina R; Sani, Ilaria; Bargiacchi, Sara; Traficante, Giovanna; Bellacchio, Emanuele; Tadini, Gianluca; Yavuz, Izzet; Galeotti, Angela; Clarich, Gabriella

    2017-02-01

    Hypohidrotic ectodermal dysplasia (HED) is a rare disease characterized by deficiency in development of structure derived from the ectoderm and is caused by mutations in the genes EDA, EDAR, or EDARADD. Phenotypes caused by mutations in these three may exhibit similar clinical features, explained by a common signaling pathway. Mutations in EDA gene cause X linked HED, which is the most common form. Mutations in EDAR and EDARADD genes cause autosomal dominant and recessive form of HED. The most striking clinical findings in HED are hypodontia, hypotrichosis and hypohidrosis that can lead to episodes of hyperthermia. We report on clinical findings in a child with HED with autosomal dominant inheritance pattern with a heterozygous mutation c.1072C>T (p.Arg358X) in the EDAR gene. A review of the literature with regard to other cases presenting the same mutation has been carried out and discussed. Sociedad Argentina de Pediatría.

  18. False-negative BRAF V600E mutation results on fine-needle aspiration cytology of papillary thyroid carcinoma.

    PubMed

    Paek, Se Hyun; Kim, Byung Seup; Kang, Kyung Ho; Kim, Hee Sung

    2017-11-13

    The BRAF V600E mutation is highly specific for papillary thyroid carcinoma (PTC). A test for this mutation can increase the diagnostic accuracy of fine-needle aspiration cytology (FNAC), but a considerably high false-negative rate for the BRAF V600E mutation on FNAC has been reported. In this study, we investigated the risk factors associated with false-negative BRAF V600E mutation results on FNAC. BRAF V600E mutation results of 221 PTC nodules between December 2011 and June 2013 were retrospectively reviewed. BRAF V600E mutation results on both preoperative FNAC and postoperative formalin-fixed, paraffin-embedded (FFPE) samples were compared. We investigated the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of BRAF V600E mutation results on FNAC. And, we identified the risk factors associated with false-negative results. Of 221 PTC nodules, 150 (67.9%) on FNAC and 185 (83.7%) on FFPE samples were BRAF V600E mutation positive. The sensitivity, specificity, PPV, and NPV for BRAF V600E mutation testing with FNAC were 80.5, 97.2, 99.3, and 49.3%, respectively. Thirty-six (16.3%) BRAF V600E mutation-negative nodules on FNAC were mutation positive on FFPE sample analysis. Risk factors for these false-negative results were age, indeterminate FNAC results (nondiagnostic, atypia of undetermined significance (AUS), and findings suspicious for PTC), and PTC subtype. False-negative rate of BRAF mutation testing with FNAC for thyroid nodules is increased in cases of old age, indeterminate FNAC pathology results, and certain PTC subtypes. Therapeutic surgery can be considered for these cases. A well-designed prospective study with informed consent of patients will be essential for more informative results.

  19. Allelic Mutations of KITLG, Encoding KIT Ligand, Cause Asymmetric and Unilateral Hearing Loss and Waardenburg Syndrome Type 2.

    PubMed

    Zazo Seco, Celia; Serrão de Castro, Luciana; van Nierop, Josephine W; Morín, Matías; Jhangiani, Shalini; Verver, Eva J J; Schraders, Margit; Maiwald, Nadine; Wesdorp, Mieke; Venselaar, Hanka; Spruijt, Liesbeth; Oostrik, Jaap; Schoots, Jeroen; van Reeuwijk, Jeroen; Lelieveld, Stefan H; Huygen, Patrick L M; Insenser, María; Admiraal, Ronald J C; Pennings, Ronald J E; Hoefsloot, Lies H; Arias-Vásquez, Alejandro; de Ligt, Joep; Yntema, Helger G; Jansen, Joop H; Muzny, Donna M; Huls, Gerwin; van Rossum, Michelle M; Lupski, James R; Moreno-Pelayo, Miguel Angel; Kunst, Henricus P M; Kremer, Hannie

    2015-11-05

    Linkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncating mutation, c.286_303delinsT (p.Ser96Ter), in KITLG. This mutation co-segregated with NS-UHL/AHL as a dominant trait with reduced penetrance. By screening a panel of probands with NS-UHL/AHL, we found an additional mutation, c.200_202del (p.His67_Cys68delinsArg). In vitro studies revealed that the p.His67_Cys68delinsArg transmembrane isoform of KITLG is not detectable at the cell membrane, supporting pathogenicity. KITLG encodes a ligand for the KIT receptor. Also, KITLG-KIT signaling and MITF are suggested to mutually interact in melanocyte development. Because mutations in MITF are causative of Waardenburg syndrome type 2 (WS2), we screened KITLG in suspected WS2-affected probands. A heterozygous missense mutation, c.310C>G (p.Leu104Val), that segregated with WS2 was identified in a small family. In vitro studies revealed that the p.Leu104Val transmembrane isoform of KITLG is located at the cell membrane, as is wild-type KITLG. However, in culture media of transfected cells, the p.Leu104Val soluble isoform of KITLG was reduced, and no soluble p.His67_Cys68delinsArg and p.Ser96Ter KITLG could be detected. These data suggest that mutations in KITLG associated with NS-UHL/AHL have a loss-of-function effect. We speculate that the mechanism of the mutation underlying WS2 and leading to membrane incorporation and reduced secretion of KITLG occurs via a dominant-negative or gain-of-function effect. Our study unveils different phenotypes associated with KITLG, previously associated with pigmentation abnormalities, and will thereby improve the genetic counseling given to individuals with KITLG variants. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. Rare variants in the notch signaling pathway describe a novel type of autosomal recessive Klippel-Feil syndrome.

    PubMed

    Karaca, Ender; Yuregir, Ozge O; Bozdogan, Sevcan T; Aslan, Huseyin; Pehlivan, Davut; Jhangiani, Shalini N; Akdemir, Zeynep C; Gambin, Tomasz; Bayram, Yavuz; Atik, Mehmed M; Erdin, Serkan; Muzny, Donna; Gibbs, Richard A; Lupski, James R

    2015-11-01

    Klippel-Feil syndrome is a rare disorder represented by a subgroup of segmentation defects of the vertebrae and characterized by fusion of the cervical vertebrae, low posterior hairline, and short neck with limited motion. Both autosomal dominant and recessive inheritance patterns were reported in families with Klippel-Feil. Mutated genes for both dominant (GDF6 and GDF3) and recessive (MEOX1) forms of Klippel-Feil syndrome have been shown to be involved in somite development via transcription regulation and signaling pathways. Heterotaxy arises from defects in proteins that function in the development of left-right asymmetry of the developing embryo. We describe a consanguineous family with a male proband who presents with classical Klippel-Feil syndrome together with heterotaxy (situs inversus totalis). The present patient also had Sprengel's deformity, deformity of the sternum, and a solitary kidney. Using exome sequencing, we identified a homozygous frameshift mutation (c.299delT; p.L100fs) in RIPPLY2, a gene shown to play a crucial role in somitogenesis and participate in the Notch signaling pathway via negatively regulating Tbx6. Our data confirm RIPPLY2 as a novel gene for autosomal recessive Klippel-Feil syndrome, and in addition-from a mechanistic standpoint-suggest the possibility that mutations in RIPPLY2 could also lead to heterotaxy. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. A Novel Dominant Mutation in SAG, the Arrestin-1 Gene, Is a Common Cause of Retinitis Pigmentosa in Hispanic Families in the Southwestern United States

    PubMed Central

    Sullivan, Lori S.; Bowne, Sara J.; Koboldt, Daniel C.; Cadena, Elizabeth L.; Heckenlively, John R.; Branham, Kari E.; Wheaton, Dianna H.; Jones, Kaylie D.; Ruiz, Richard S.; Pennesi, Mark E.; Yang, Paul; Davis-Boozer, David; Northrup, Hope; Gurevich, Vsevold V.; Chen, Rui; Xu, Mingchu; Li, Yumei; Birch, David G.; Daiger, Stephen P.

    2017-01-01

    Purpose To identify the causes of autosomal dominant retinitis pigmentosa (adRP) in a cohort of families without mutations in known adRP genes and consequently to characterize a novel dominant-acting missense mutation in SAG. Methods Patients underwent ophthalmologic testing and were screened for mutations using targeted-capture and whole-exome next-generation sequencing. Confirmation and additional screening were done by Sanger sequencing. Haplotypes segregating with the mutation were determined using short tandem repeat and single nucleotide variant polymorphisms. Genealogies were established by interviews of family members. Results Eight families in a cohort of 300 adRP families, and four additional families, were found to have a novel heterozygous mutation in the SAG gene, c.440G>T; p.Cys147Phe. Patients exhibited symptoms of retinitis pigmentosa and none showed symptoms characteristic of Oguchi disease. All families are of Hispanic descent and most were ascertained in Texas or California. A single haplotype including the SAG mutation was identified in all families. The mutation dramatically alters a conserved amino acid, is extremely rare in global databases, and was not found in 4000+ exomes from Hispanic controls. Molecular modeling based on the crystal structure of bovine arrestin-1 predicts protein misfolding/instability. Conclusions This is the first dominant-acting mutation identified in SAG, a founder mutation possibly originating in Mexico several centuries ago. The phenotype is clearly adRP and is distinct from the previously reported phenotypes of recessive null mutations, that is, Oguchi disease and recessive RP. The mutation accounts for 3% of the 300 families in the adRP Cohort and 36% of Hispanic families in this cohort. PMID:28549094

  2. A Novel Dominant Mutation in SAG, the Arrestin-1 Gene, Is a Common Cause of Retinitis Pigmentosa in Hispanic Families in the Southwestern United States.

    PubMed

    Sullivan, Lori S; Bowne, Sara J; Koboldt, Daniel C; Cadena, Elizabeth L; Heckenlively, John R; Branham, Kari E; Wheaton, Dianna H; Jones, Kaylie D; Ruiz, Richard S; Pennesi, Mark E; Yang, Paul; Davis-Boozer, David; Northrup, Hope; Gurevich, Vsevold V; Chen, Rui; Xu, Mingchu; Li, Yumei; Birch, David G; Daiger, Stephen P

    2017-05-01

    To identify the causes of autosomal dominant retinitis pigmentosa (adRP) in a cohort of families without mutations in known adRP genes and consequently to characterize a novel dominant-acting missense mutation in SAG. Patients underwent ophthalmologic testing and were screened for mutations using targeted-capture and whole-exome next-generation sequencing. Confirmation and additional screening were done by Sanger sequencing. Haplotypes segregating with the mutation were determined using short tandem repeat and single nucleotide variant polymorphisms. Genealogies were established by interviews of family members. Eight families in a cohort of 300 adRP families, and four additional families, were found to have a novel heterozygous mutation in the SAG gene, c.440G>T; p.Cys147Phe. Patients exhibited symptoms of retinitis pigmentosa and none showed symptoms characteristic of Oguchi disease. All families are of Hispanic descent and most were ascertained in Texas or California. A single haplotype including the SAG mutation was identified in all families. The mutation dramatically alters a conserved amino acid, is extremely rare in global databases, and was not found in 4000+ exomes from Hispanic controls. Molecular modeling based on the crystal structure of bovine arrestin-1 predicts protein misfolding/instability. This is the first dominant-acting mutation identified in SAG, a founder mutation possibly originating in Mexico several centuries ago. The phenotype is clearly adRP and is distinct from the previously reported phenotypes of recessive null mutations, that is, Oguchi disease and recessive RP. The mutation accounts for 3% of the 300 families in the adRP Cohort and 36% of Hispanic families in this cohort.

  3. Novel calcium-sensing receptor cytoplasmic tail deletion mutation causing autosomal dominant hypocalcemia: molecular and clinical study.

    PubMed

    Obermannova, Barbora; Sumnik, Zdenek; Dusatkova, Petra; Cinek, Ondrej; Grant, Michael; Lebl, Jan; Hendy, Geoffrey N

    2016-04-01

    Autosomal dominant hypocalcemia (ADH) is a rare disorder caused by activating mutations of the calcium-sensing receptor (CASR). The treatment of ADH patients with 1α-hydroxylated vitamin D derivatives can cause hypercalciuria leading to nephrocalcinosis. We studied a girl who presented with hypoparathyroidism and asymptomatic hypocalcemia at age 2.5 years. Mutations of CASR were investigated by DNA sequencing. Functional analyses of mutant and WT CASRs were done in transiently transfected human embryonic kidney (HEK293) cells. The proband and her father are heterozygous for an eight-nucleotide deletion c.2703_2710delCCTTGGAG in the CASR encoding the intracellular domain of the protein. Transient expression of CASR constructs in kidney cells in vitro suggested greater cell surface expression of the mutant receptor with a left-shifted extracellular calcium dose-response curve relative to that of the WT receptor consistent with gain of function. Initial treatment of the patient with calcitriol led to increased urinary calcium excretion. Evaluation for mosaicism in the paternal grandparents of the proband was negative. We describe a novel naturally occurring deletion mutation within the CASR that apparently arose de novo in the father of the ADH proband. Functional analysis suggests that the cytoplasmic tail of the CASR contains determinants that regulate the attenuation of signal transduction. Early molecular analysis of the CASR gene in patients with isolated idiopathic hypoparathyroidism is recommended because of its relevance to clinical outcome and treatment choice. In ADH patients, calcium supplementation and low-dose cholecalciferol avoids hypocalcemic symptoms without compromising renal function. © 2016 European Society of Endocrinology.

  4. Evolution of the human immunodeficiency virus envelope gene is dominated by purifying selection.

    PubMed

    Edwards, C T T; Holmes, E C; Pybus, O G; Wilson, D J; Viscidi, R P; Abrams, E J; Phillips, R E; Drummond, A J

    2006-11-01

    The evolution of the human immunodeficiency virus (HIV-1) during chronic infection involves the rapid, continuous turnover of genetic diversity. However, the role of natural selection, relative to random genetic drift, in governing this process is unclear. We tested a stochastic model of genetic drift using partial envelope sequences sampled longitudinally in 28 infected children. In each case the Bayesian posterior (empirical) distribution of coalescent genealogies was estimated using Markov chain Monte Carlo methods. Posterior predictive simulation was then used to generate a null distribution of genealogies assuming neutrality, with the null and empirical distributions compared using four genealogy-based summary statistics sensitive to nonneutral evolution. Because both null and empirical distributions were generated within a coalescent framework, we were able to explicitly account for the confounding influence of demography. From the distribution of corrected P-values across patients, we conclude that empirical genealogies are more asymmetric than expected if evolution is driven by mutation and genetic drift only, with an excess of low-frequency polymorphisms in the population. This indicates that although drift may still play an important role, natural selection has a strong influence on the evolution of HIV-1 envelope. A negative relationship between effective population size and substitution rate indicates that as the efficacy of selection increases, a smaller proportion of mutations approach fixation in the population. This suggests the presence of deleterious mutations. We therefore conclude that intrahost HIV-1 evolution in envelope is dominated by purifying selection against low-frequency deleterious mutations that do not reach fixation.

  5. PCSK1 Mutations and Human Endocrinopathies: From Obesity to Gastrointestinal Disorders.

    PubMed

    Stijnen, Pieter; Ramos-Molina, Bruno; O'Rahilly, Stephen; Creemers, John W M

    2016-08-01

    Prohormone convertase 1/3, encoded by the PCSK1 gene, is a serine endoprotease that is involved in the processing of a variety of proneuropeptides and prohormones. Humans who are homozygous or compound heterozygous for loss-of-function mutations in PCSK1 exhibit a variable and pleiotropic syndrome consisting of some or all of the following: obesity, malabsorptive diarrhea, hypogonadotropic hypogonadism, altered thyroid and adrenal function, and impaired regulation of plasma glucose levels in association with elevated circulating proinsulin-to-insulin ratio. Recently, more common variants in the PCSK1 gene have been found to be associated with alterations in body mass index, increased circulating proinsulin levels, and defects in glucose homeostasis. This review provides an overview of the endocrinopathies and other disorders observed in prohormone convertase 1/3-deficient patients, discusses the possible biochemical basis for these manifestations of the disease, and proposes a model whereby certain missense mutations in PCSK1 may result in proteins with a dominant negative action.

  6. Identification of a nonsense mutation in the granulocyte-colony-stimulating factor receptor in severe congenital neutropenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, F.; Loewenberg, B.; Hoefsloot, L.H.

    Severe congenital neutropenia (Kostmann syndrome) is characterized by profound absolute neutropenia and a maturation arrest of marrow progenitor cells at the promyelocyte-myelocyte stage. Marrow cells from such patients frequently display a reduced responsiveness to granulocyte-colony-stimulating factor (G-CSF). G-CSF binds to and activates a specific receptor which transduces signals critical for the proliferation and maturation of granulocytic progenitor cells. Here the authors report the identification of a somatic point mutation in one allele of the G-CSF receptor gene in a patient with severe congenital neutropenia. The mutation results in a cytoplasmic truncation of the receptor. When expressed in murine myeloid cells,more » the mutant receptor transduced a strong growth signal but, in contrast to the wild-type G-CSF receptor, was defective in maturation induction. This mutant receptor chain may act in a dominant negative manner to block granulocytic maturation. 40 refs., figs., 2 tabs.« less

  7. Homozygous EEF1A2 mutation causes dilated cardiomyopathy, failure to thrive, global developmental delay, epilepsy and early death.

    PubMed

    Cao, Siqi; Smith, Laura L; Padilla-Lopez, Sergio R; Guida, Brandon S; Blume, Elizabeth; Shi, Jiahai; Morton, Sarah U; Brownstein, Catherine A; Beggs, Alan H; Kruer, Michael C; Agrawal, Pankaj B

    2017-09-15

    Eukaryotic elongation factor 1A (EEF1A), is encoded by two distinct isoforms, EEF1A1 and EEF1A2; whereas EEF1A1 is expressed almost ubiquitously, EEF1A2 expression is limited such that it is only detectable in skeletal muscle, heart, brain and spinal cord. Currently, the role of EEF1A2 in normal cardiac development and function is unclear. There have been several reports linking de novo dominant EEF1A2 mutations to neurological issues in humans. We report a pair of siblings carrying a homozygous missense mutation p.P333L in EEF1A2 who exhibited global developmental delay, failure to thrive, dilated cardiomyopathy and epilepsy, ultimately leading to death in early childhood. A third sibling also died of a similar presentation, but DNA was unavailable to confirm the mutation. Functional genomic analysis was performed in S. cerevisiae and zebrafish. In S. cerevisiae, there was no evidence for a dominant-negative effect. Previously identified putative de novo mutations failed to complement yeast strains lacking the EEF1A ortholog showing a major growth defect. In contrast, the introduction of the mutation seen in our family led to a milder growth defect. To evaluate its function in zebrafish, we knocked down eef1a2 expression using translation blocking and splice-site interfering morpholinos. EEF1A2-deficient zebrafish had skeletal muscle weakness, cardiac failure and small heads. Human EEF1A2 wild-type mRNA successfully rescued the morphant phenotype, but mutant RNA did not. Overall, EEF1A2 appears to be critical for normal heart function in humans, and its deficiency results in clinical abnormalities in neurologic function as well as in skeletal and cardiac muscle defects. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Autosomal dominant mutation in the signal peptide of renin in a kindred with anemia, hyperuricemia, and CKD.

    PubMed

    Beck, Bodo B; Trachtman, Howard; Gitman, Michael; Miller, Ilene; Sayer, John A; Pannes, Andrea; Baasner, Anne; Hildebrandt, Friedhelm; Wolf, Matthias T F

    2011-11-01

    Homozygous or compound heterozygous mutations in renin (REN) cause renal tubular dysgenesis, which is characterized by death in utero due to kidney failure and pulmonary hypoplasia. The phenotype resembles the fetopathy caused by angiotensin-converting enzyme inhibitor or angiotensin receptor blocker intake during pregnancy. Recently, heterozygous REN mutations were shown to result in early-onset hyperuricemia, anemia, and chronic kidney disease (CKD). To date, only 3 different heterozygous REN mutations have been published. We report mutation analysis of the REN gene in 39 kindreds with hyperuricemia and CKD who previously tested negative for mutations in the UMOD (uromodulin) and HNF1B (hepatocyte nuclear factor 1β) genes. We identified one kindred with a novel thymidine to cytosine mutation at position 28 in the REN complementary DNA, corresponding to a tryptophan to arginine substitution at amino acid 10, which is found within the signal sequence (c.28T>C; p.W10R). On this basis, we conclude that REN mutations are rare events in patients with CKD. Within the kindred, we found affected individuals over 4 generations who carried the novel REN mutation and were characterized by significant anemia, hyperuricemia, and CKD. Anemia was severe and disproportional to the degree of decreased kidney function. Because all heterozygous REN mutations that have been described are localized in the signal sequence, screening of the REN gene for patients with CKD with hyperuricemia and anemia may best be focused on sequencing of exon 1, which encodes the signal peptide. Published by Elsevier Inc.

  9. Genetics and phenomics of inherited and sporadic non-autoimmune hyperthyroidism.

    PubMed

    Gozu, Hulya Iliksu; Lublinghoff, Julia; Bircan, Rifat; Paschke, Ralf

    2010-06-30

    TSH receptor (TSHR) germline mutations occur as activating mutations in familial non-autoimmune hyperthyroidism (FNAH) or sporadic non-autoimmune hyperthyroidism (SNAH). Up to date 17 constitutively activating TSHR mutations have been reported in 24 families with FNAH. The diagnosis of FNAH should be considered in cases with a positive family history, early onset of hyperthyroidism, goiter, absence of clinical stigmata of autoimmunity and recurrent hyperthyroidism. Moreover, 14 subjects with sporadic non-autoimmune hyperthyroidism and 10 different TSH receptor germline mutations have been reported. The main characteristic of SNAH is a negative family history. Additional consequences of prolonged neonatal hyperthyroidism (mental retardation, speech disturbances and craniosynostosis) have often been reported in SNAH. No genotype-phenotype relationship has been reported in patients with germline TSHR mutations. There is no association of in vitro activities determined by linear regression analysis (LRA) and several clinical indicators of hyperthyroidism activity for SNAH. However, the comparison of the LRA values of sporadic TSHR mutations with LRA values of familial TSHR mutations does show a significantly higher median LRA value for sporadic as compared to familial autosomal dominant hyperthyroidism. This finding is in line with the clinical impression of a more active clinical course in patients with SNAH. However, additional genetic, constitutional or environmental factors are most likely responsible for the phenotypic variations of the disease and the lack of correlation between in vitro activities of the TSHR mutations and the severity of hyperthyroidism. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Novel CREB3L3 Nonsense Mutation in a Family With Dominant Hypertriglyceridemia.

    PubMed

    Cefalù, Angelo B; Spina, Rossella; Noto, Davide; Valenti, Vincenza; Ingrassia, Valeria; Giammanco, Antonina; Panno, Maria D; Ganci, Antonina; Barbagallo, Carlo M; Averna, Maurizio R

    2015-12-01

    Cyclic AMP responsive element-binding protein 3-like 3 (CREB3L3) is a novel candidate gene for dominant hypertriglyceridemia. To date, only 4 kindred with dominant hypertriglyceridemia have been found to be carriers of 2 nonsense mutations in CREB3L3 gene (245fs and W46X). We investigated a family in which hypertriglyceridemia displayed an autosomal dominant pattern of inheritance. The proband was a 49-year-old woman with high plasma triglycerides (≤1300 mg/dL; 14.68 mmol/L). Her father had a history of moderate hypertriglyceridemia, and her 51-year-old brother had triglycerides levels as high as 1600 mg/dL (18.06 mmol/L). To identify the causal mutation in this family, we analyzed the candidate genes of recessive and dominant forms of primary hypertriglyceridemia by direct sequencing. The sequencing of CREB3L3 gene led to the discovery of a novel minute frame shift mutation in exon 3 of CREB3L3 gene, predicted to result in the formation of a truncated protein devoid of function (c.359delG-p.K120fsX20). Heterozygosity for the c.359delG mutation resulted in a severe phenotype occurring later in life in the proband and her brother and a good response to diet and a hypotriglyceridemic treatment. The same mutation was detected in a 13-year-old daughter who to date is normotriglyceridemic. We have identified a novel pathogenic mutation in CREB3L3 gene in a family with dominant hypertriglyceridemia with a variable pattern of penetrance. © 2015 American Heart Association, Inc.

  11. Gradual Loss of ACTH Due to a Novel Mutation in LHX4: Comprehensive Mutation Screening in Japanese Patients with Congenital Hypopituitarism

    PubMed Central

    Takagi, Masaki; Ishii, Tomohiro; Inokuchi, Mikako; Amano, Naoko; Narumi, Satoshi; Asakura, Yumi; Muroya, Koji; Hasegawa, Yukihiro; Adachi, Masanori; Hasegawa, Tomonobu

    2012-01-01

    Mutations in transcription factors genes, which are well regulated spatially and temporally in the pituitary gland, result in congenital hypopituitarism (CH) in humans. The prevalence of CH attributable to transcription factor mutations appears to be rare and varies among populations. This study aimed to define the prevalence of CH in terms of nine CH-associated genes among Japanese patients. We enrolled 91 Japanese CH patients for DNA sequencing of POU1F1, PROP1, HESX1, LHX3, LHX4, SOX2, SOX3, OTX2, and GLI2. Additionally, gene copy numbers for POU1F1, PROP1, HESX1, LHX3, and LHX4 were examined by multiplex ligation-dependent probe amplification. The gene regulatory properties of mutant LHX4 proteins were characterized in vitro. We identified two novel heterozygous LHX4 mutations, namely c.249-1G>A, p.V75I, and one common POU1F1 mutation, p.R271W. The patient harboring the c.249-1G>A mutation exhibited isolated growth hormone deficiency at diagnosis and a gradual loss of ACTH, whereas the patient with the p.V75I mutation exhibited multiple pituitary hormone deficiency. In vitro experiments showed that both LHX4 mutations were associated with an impairment of the transactivation capacities of POU1F1 andαGSU, without any dominant-negative effects. The total mutation prevalence in Japanese CH patients was 3.3%. This study is the first to describe, a gradual loss of ACTH in a patient carrying an LHX4 mutation. Careful monitoring of hypothalamic–pituitary -adrenal function is recommended for CH patients with LHX4 mutations. PMID:23029363

  12. A transcriptionally active estrogen receptor mutant is a novel type of dominant negative inhibitor of estrogen action.

    PubMed

    McInerney, E M; Ince, B A; Shapiro, D J; Katzenellenbogen, B S

    1996-12-01

    We have characterized a human estrogen receptor (ER) mutant, V364E, which has a single amino acid substitution in its hormone-binding domain. This ER mutant is fully active or even superactive at saturating levels of estradiol (10(-8) M E2) yet has the capacity to act as a strong dominant negative inhibitor of the wild type ER. In transient transfection assays using ER-negative Chinese hamster ovary (CHO) cells and two different estrogen response element (ERE)-containing promoter reporter genes, V364E treated with 10(-8) M E2 exhibited approximately 250% and 100% of the activity of the wild type ER with these two promoter contexts, respectively. Despite the high activity of V364E when present alone in cells, coexpression of both V364E and wild type ER causes a significant decrease in overall ER-mediated transcriptional activity. On the TATA promoter, where V364E was more inhibitory, estrogen-stimulated activity was reduced by approximately 50% at a 1:1 ratio of mutant to wild type ER expression vector, and at a 10:1 ratio, 75% of ER activity was inhibited. V364E was expressed at lower levels than wild type ER and has a approximately 40-fold lower affinity for E2 compared with wild type ER. In promoter interference assays, V364E exhibited a strict dependence upon E2 for binding to an ERE. Surprisingly, even when V364E was unable to bind to ERE DNA (i.e. either at low E2 concentration or by mutation of its DNA-binding domain), this mutant retained full dominant negative activity. This highly active ER mutant is, thus, able to repress ER-mediated transcription when the mutant and wild type ER are present together in cells, even without DNA binding. Since competition for ERE binding and the formation of inactive heterodimers cannot fully account for the dominant negative activity of V364E, it is probable that altered interactions with proteins important in ER-mediated transcription play a key role in the repression of transcription by V364E. The properties and probable mechanism of action of V364E distinguish it from other previously described dominant negative inhibitors, in which competition for cis-acting DNA elements by transcriptionally inactive receptors played a large role in the resultant dominant negative phenotype.

  13. Mitochondrial recessive ataxia syndrome mimicking dominant spinocerebellar ataxia.

    PubMed

    Palin, Eino J H; Hakonen, Anna H; Korpela, Mari; Paetau, Anders; Suomalainen, Anu

    2012-04-15

    We studied the genetic background of a family with SCA, showing dominant inheritance and anticipation. Muscle histology, POLG1 gene sequence, neuropathology and mitochondrial DNA analyses in a mother and a son showed typical findings for a mitochondrial disorder, and both were shown to be homozygous for a recessive POLG1 mutation, underlying mitochondrial recessive ataxia syndrome, MIRAS. The healthy father was a heterozygous carrier for the same mutation. Recessively inherited MIRAS mutations should be tested in dominantly inherited SCAs cases of unknown cause, as the high carrier frequency of MIRAS may result in two independent introductions of the mutant allele in the family and thereby mimic dominant inheritance. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. RADIATION INDUCED VIABILITY MUTATIONS IN THE HONEY BEE. Progress Report for 1961 and Renewal Proposal of Contract for 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.R.

    The spectrum of viability mutations ranging from dominant lethals to detrimentals in haploids that resulted from irradiating semen from a single haploid male was studied in the honey bee. From the decrease in viability of diploid progeny following irradiation of the spermatheca of the parental queen, it was calculated that one or more dominant lethals were induced in 60.8% of the sperm cells. In a separate test using the same dosage on an unrelated queen 60.9% dominant lethals were found. Recessive mutations and mutants with incomplete dominance were detected in haploid progeny of F-1 queens. (M.C.G.)

  15. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Huang, Yafan; Li, Hui; Hutchison, Claire E.; Laskey, James; Kieber, Joseph J.

    2003-01-01

    CTR1 encodes a negative regulator of the ethylene response pathway in Arabidopsis thaliana. The C-terminal domain of CTR1 is similar to the Raf family of protein kinases, but its first two-thirds encodes a novel protein domain. We used a variety of approaches to investigate the function of these two CTR1 domains. Recombinant CTR1 protein was purified from a baculoviral expression system, and shown to possess intrinsic Ser/Thr protein kinase activity with enzymatic properties similar to Raf-1. Deletion of the N-terminal domain did not elevate the kinase activity of CTR1, indicating that, at least in vitro, this domain does not autoinhibit kinase function. Molecular analysis of loss-of-function ctr1 alleles indicated that several mutations disrupt the kinase catalytic domain, and in vitro studies confirmed that at least one of these eliminates kinase activity, which indicates that kinase activity is required for CTR1 function. One missense mutation, ctr1-8, was found to result from an amino acid substitution within a new conserved motif within the N-terminal domain. Ctr1-8 has no detectable effect on the kinase activity of CTR1 in vitro, but rather disrupts the interaction with the ethylene receptor ETR1. This mutation also disrupts the dominant negative effect that results from overexpression of the CTR1 amino-terminal domain in transgenic Arabidopsis. These results suggest that CTR1 interacts with ETR1 in vivo, and that this association is required to turn off the ethylene-signaling pathway.

  16. Four Novel Mutations in the ALPL Gene in Chinese patients with Odonto, Childhood and Adult Hypophosphatasia.

    PubMed

    Xu, Lijun; Pang, Qianqian; Jiang, Yan; Wang, Ou; Li, Mei; Xing, Xiaoping; Xia, Weibo

    2018-05-03

    Background and purpose: Hypophosphatasiais (HPP) is a rare inherited disorder characterized by defective bone and/or dental mineralization, and decreased serum alkaline phosphatase activity. ALPL , the only gene related with HPP, encodes tissue non-specific alkaline phosphatase (TNSALP). Few studies were carried out in ALPL gene mutations in the Chinese population with HPP. The purpose of this study is to elucidate the clinical and genetic characteristics of HPP in 5 unrelated Chinese families and 2 sporadic patients. Methods : 10 clinically diagnosed HPP patients from 5 unrelated Chinese families and 2 sporadic patients and 50 healthy controls were genetic investigated. All 12 exons and exon-intron boundaries of the ALPL gene were amplified by polymerase chain reaction and directly sequenced. The laboratory and radiological investigations were conducted simultaneously in these 10 HPP patients. A three-dimensional model of the TNSALP was used to predict the dominant negative effect of identified missense mutations. Results : 3 odonto, 3 childhood and 4 adult types of HPP were clinically diagnosed. 10 mutations were identified in 5 unrelated Chinese families and 2 sporadic patients, including 8 missense mutations and 2 frameshift mutations. Of which, 4 were novel: 1 frameshift mutation (p.R138Pfsx45); 3 missense mutations (p.C201R, p.V459A, p.C497S). No identical mutations and any other new ALPL mutations were found in unrelated 50 healthy controls. Conclusions : Our study demonstrated that the ALPL  gene mutations are responsible for HPP in these Chinese families. These findings will be useful for clinicians to improve understanding of this heritable bone disorder. ©2018 The Author(s).

  17. Stickler syndrome caused by COL2A1 mutations: genotype–phenotype correlation in a series of 100 patients

    PubMed Central

    Hoornaert, Kristien P; Vereecke, Inge; Dewinter, Chantal; Rosenberg, Thomas; Beemer, Frits A; Leroy, Jules G; Bendix, Laila; Björck, Erik; Bonduelle, Maryse; Boute, Odile; Cormier-Daire, Valerie; De Die-Smulders, Christine; Dieux-Coeslier, Anne; Dollfus, Hélène; Elting, Mariet; Green, Andrew; Guerci, Veronica I; Hennekam, Raoul C M; Hilhorts-Hofstee, Yvonne; Holder, Muriel; Hoyng, Carel; Jones, Kristi J; Josifova, Dragana; Kaitila, Ilkka; Kjaergaard, Suzanne; Kroes, Yolande H; Lagerstedt, Kristina; Lees, Melissa; LeMerrer, Martine; Magnani, Cinzia; Marcelis, Carlo; Martorell, Loreto; Mathieu, Michèle; McEntagart, Meriel; Mendicino, Angela; Morton, Jenny; Orazio, Gabrielli; Paquis, Véronique; Reish, Orit; Simola, Kalle O J; Smithson, Sarah F; Temple, Karen I; Van Aken, Elisabeth; Van Bever, Yolande; van den Ende, Jenneke; Van Hagen, Johanna M; Zelante, Leopoldo; Zordania, Riina; De Paepe, Anne; Leroy, Bart P; De Buyzere, Marc; Coucke, Paul J; Mortier, Geert R

    2010-01-01

    Stickler syndrome is an autosomal dominant connective tissue disorder caused by mutations in different collagen genes. The aim of our study was to define more precisely the phenotype and genotype of Stickler syndrome type 1 by investigating a large series of patients with a heterozygous mutation in COL2A1. In 188 probands with the clinical diagnosis of Stickler syndrome, the COL2A1 gene was analyzed by either a mutation scanning technique or bidirectional fluorescent DNA sequencing. The effect of splice site alterations was investigated by analyzing mRNA. Multiplex ligation-dependent amplification analysis was used for the detection of intragenic deletions. We identified 77 different COL2A1 mutations in 100 affected individuals. Analysis of the splice site mutations showed unusual RNA isoforms, most of which contained a premature stop codon. Vitreous anomalies and retinal detachments were found more frequently in patients with a COL2A1 mutation compared with the mutation-negative group (P<0.01). Overall, 20 of 23 sporadic patients with a COL2A1 mutation had either a cleft palate or retinal detachment with vitreous anomalies. The presence of vitreous anomalies, retinal tears or detachments, cleft palate and a positive family history were shown to be good indicators for a COL2A1 defect. In conclusion, we confirm that Stickler syndrome type 1 is predominantly caused by loss-of-function mutations in the COL2A1 gene as >90% of the mutations were predicted to result in nonsense-mediated decay. On the basis of binary regression analysis, we developed a scoring system that may be useful when evaluating patients with Stickler syndrome. PMID:20179744

  18. Dissecting protein function: an efficient protocol for identifying separation-of-function mutations that encode structurally stable proteins.

    PubMed

    Lubin, Johnathan W; Rao, Timsi; Mandell, Edward K; Wuttke, Deborah S; Lundblad, Victoria

    2013-03-01

    Mutations that confer the loss of a single biochemical property (separation-of-function mutations) can often uncover a previously unknown role for a protein in a particular biological process. However, most mutations are identified based on loss-of-function phenotypes, which cannot differentiate between separation-of-function alleles vs. mutations that encode unstable/unfolded proteins. An alternative approach is to use overexpression dominant-negative (ODN) phenotypes to identify mutant proteins that disrupt function in an otherwise wild-type strain when overexpressed. This is based on the assumption that such mutant proteins retain an overall structure that is comparable to that of the wild-type protein and are able to compete with the endogenous protein (Herskowitz 1987). To test this, the in vivo phenotypes of mutations in the Est3 telomerase subunit from Saccharomyces cerevisiae were compared with the in vitro secondary structure of these mutant proteins as analyzed by circular-dichroism spectroscopy, which demonstrates that ODN is a more sensitive assessment of protein stability than the commonly used method of monitoring protein levels from extracts. Reverse mutagenesis of EST3, which targeted different categories of amino acids, also showed that mutating highly conserved charged residues to the oppositely charged amino acid had an increased likelihood of generating a severely defective est3(-) mutation, which nevertheless encoded a structurally stable protein. These results suggest that charge-swap mutagenesis directed at a limited subset of highly conserved charged residues, combined with ODN screening to eliminate partially unfolded proteins, may provide a widely applicable and efficient strategy for generating separation-of-function mutations.

  19. A Novel Mutation in OTX2 Causes Combined Pituitary Hormone Deficiency, Bilateral Microphthalmia, and Agenesis of the Left Internal Carotid Artery.

    PubMed

    Shimada, Aya; Takagi, Masaki; Nagashima, Yuka; Miyai, Kentaro; Hasegawa, Yukihiro

    2016-01-01

    Mutations in OTX2 cause hypopituitarism, ranging from isolated growth hormone deficiency to combined pituitary hormone deficiency (CPHD), which are commonly detected in association with severe eye abnormalities, including anophthalmia or microphthalmia. Pituitary phenotypes of OTX2 mutation carriers are highly variable; however, ACTH deficiency during the neonatal period is not common in previous reports. We report a novel missense OTX2 (R89P) mutation in a CPHD patient with severe hypoglycemia in the neonatal period due to ACTH deficiency, bilateral microphthalmia, and agenesis of the left internal carotid artery (ICA). We identified a novel heterozygous mutation in OTX2 (c.266G>C, p.R89P). R89P OTX2 showed markedly reduced transcriptional activity of HESX1 and POU1F1 reporters compared with wild-type OTX2. A dominant negative effect was noted only in the transcription analysis with POU1F1 promoter. Electrophoretic mobility shift assay experiments showed that R89P OTX2 abrogated DNA-binding ability. OTX2 mutations can cause ACTH deficiency in the neonatal period. Our study also shows that OTX2 mutations are associated with agenesis of the ICA. To the best of our knowledge, this is the first report of a transcription factor gene mutation, which was identified due to agenesis of the ICA of a patient with CPHD. This study extends our understanding of the phenotypic features, molecular mechanism, and developmental course associated with mutations in OTX2. © 2016 S. Karger AG, Basel.

  20. Cisplatin With or Without Veliparib in Treating Patients With Recurrent or Metastatic Triple-Negative and/or BRCA Mutation-Associated Breast Cancer With or Without Brain Metastases

    ClinicalTrials.gov

    2018-06-26

    Breast Carcinoma Metastatic in the Brain; Deleterious BRCA1 Gene Mutation; Deleterious BRCA2 Gene Mutation; Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Stage IV Breast Cancer AJCC v6 and v7; Triple-Negative Breast Carcinoma

  1. Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele.

    PubMed

    Tomlinson, Laurence; Yang, Ying; Emenecker, Ryan; Smoker, Matthew; Taylor, Jodie; Perkins, Sara; Smith, Justine; MacLean, Dan; Olszewski, Neil E; Jones, Jonathan D G

    2018-05-24

    The tomato PROCERA gene encodes a DELLA protein, and loss-of-function mutations derepress growth. We used CRISPR/Cas9 and a single guide RNAs (sgRNA) to target mutations to the PROCERA DELLA domain, and recovered several loss-of-function mutations and a dominant dwarf mutation that carries a deletion of one amino acid in the DELLA domain. This is the first report of a dominant dwarf PROCERA allele. This allele retains partial responsiveness to exogenously applied gibberellin (GA). Heterozygotes show an intermediate phenotype at the seedling stage, but adult heterozygotes are as dwarfed as homozygotes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. WNT5A Mutations in Patients with Autosomal Dominant Robinow Syndrome

    PubMed Central

    Person, Anthony D.; Beiraghi, Soraya; Sieben, Christine M.; Hermanson, Spencer; Neumann, Ann N.; Robu, Mara E.; Schleiffarth, J. Robert; Billington, Charles J.; van Bokhoven, Hans; Hoogeboom, J.; Mazzeu, Juliana F.; Petryk, Anna; Schimmenti, Lisa A.; Brunner, Han G.; Ekker, Stephen C.; Lohr, Jamie L.

    2014-01-01

    Robinow syndrome is a skeletal dysplasia with both autosomal dominant and autosomal recessive inheritance patterns. It is characterized by short stature, limb shortening, genital hypoplasia and craniofacial abnormalities. The etiology of dominant Robinow syndrome is unknown, however the phenotypically more severe autosomal recessive form of Robinow syndrome has been associated with mutations in the orphan tyrosine kinase receptor, ROR2, which has recently been identified as a putative WNT5A receptor. Here we show that two different missense mutations in WNT5A, which result in amino acid substitutions of highly conserved cysteines, are associated with autosomal dominant Robinow syndrome. One mutation has been found in all living affected members of the original family described by Meinhard Robinow and another in a second unrelated patient. These missense mutations result in decreased WNT5A activity in functional assays of zebrafish and Xenopus development. This work suggests that a WNT5A/ROR2 signal transduction pathway is important in human craniofacial and skeletal development, and that proper formation and growth of these structures is sensitive to variations in WNT5A function. PMID:19918918

  3. A novel IMPDH1 mutation (Arg231Pro) in a family with a severe form of autosomal dominant retinitis pigmentosa.

    PubMed

    Grover, Sandeep; Fishman, Gerald A; Stone, Edwin M

    2004-10-01

    To define ophthalmic findings in a family with autosomal dominant retinitis pigmentosa and a novel IMPDH1 gene mutation. Genetic and observational family study. Sixteen affected members of a family with autosomal dominant retinitis pigmentosa. Ophthalmic examination, including best-corrected visual acuity (VA), slit-lamp biomicroscopy, direct and indirect ophthalmoscopy, Goldmann kinetic perimetry, and electroretinography were performed. Deoxyribonucleic acid single-strand conformation polymorphism (SSCP) analysis was done. Abnormal polymerase chain reaction products identified by SSCP analysis were sequenced bidirectionally. All affected patients had the onset of night blindness within the first decade of life. Ocular findings were characterized by diffuse retinal pigmentary degenerative changes, marked restriction of peripheral visual fields, severe loss of VA, nondetectable electroretinography amplitudes, and a high frequency of posterior subcapsular lens opacities. Affected members were observed to harbor a novel IMPDH1 gene mutation. A novel IMPDH1 gene mutation (Arg231Pro) was associated with a severe form of autosomal dominant retinitis pigmentosa. Families affected with a severe form of this genetic subtype should be investigated for a mutation in the IMPDH1 gene.

  4. The Molecular Basis of β-Thalassemia

    PubMed Central

    Thein, Swee Lay

    2013-01-01

    The β-thalassemias are characterized by a quantitative deficiency of β-globin chains underlaid by a striking heterogeneity of molecular defects. Although most of the molecular lesions involve the structural β gene directly, some down-regulate the gene through distal cis effects, and rare trans-acting mutations have also been identified. Most β-thalassemias are inherited in a Mendelian recessive fashion but there is a subgroup of β-thalassemia alleles that behave as dominant negatives. Unraveling the molecular basis of β-thalassemia has provided a paradigm for understanding of much of human genetics. PMID:23637309

  5. Molecular Diagnostics in Autosomal Dominant Polycystic Kidney Disease: Utility and Limitations

    PubMed Central

    Zhao, Xiao; Paterson, Andrew D.; Zahirieh, Alireza; He, Ning; Wang, Kairong; Pei, York

    2008-01-01

    Background and objectives: Gene-based mutation screening is now available and has the potential to provide diagnostic confirmation or exclusion of autosomal dominant polycystic kidney disease. This study illustrates its utility and limitations in the clinical setting. Design, setting, participants, & measurements: Using a molecular diagnostic service, genomic DNA of one affected individual from each study family was screened for pathologic PKD1 and PKD2 mutations. Bidirectional sequencing was performed to identify sequence variants in all exons and splice junctions of both genes and to confirm the specific mutations in other family members. In two multiplex families, microsatellite markers were genotyped at both PDK1 and PKD2 loci, and pair-wise and multipoint linkage analysis was performed. Results: Three of five probands studied were referred for assessment of renal cystic disease without a family history of autosomal dominant polycystic kidney disease, and two others were younger at-risk members of families with autosomal dominant polycystic kidney disease being evaluated as living-related kidney donors. Gene-based mutation screening identified pathogenic mutations that provided confirmation or exclusion of disease in three probands, but in the other two, only unclassified variants were identified. In one proband in which mutation screening was indeterminate, DNA linkage studies provided strong evidence for disease exclusion. Conclusions: Gene-based mutation screening or DNA linkage analysis should be considered in individuals in whom the diagnosis of autosomal dominant polycystic kidney disease is uncertain because of a lack of family history or equivocal imaging results and in younger at-risk individuals who are being evaluated as living-related kidney donors. PMID:18077784

  6. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome

    PubMed Central

    Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki

    2015-01-01

    Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions. PMID:26544948

  7. First Report of a Single Exon Deletion in TCOF1 Causing Treacher Collins Syndrome

    PubMed Central

    Beygo, J.; Buiting, K.; Seland, S.; Lüdecke, H.-J.; Hehr, U.; Lich, C.; Prager, B.; Lohmann, D.R.; Wieczorek, D.

    2012-01-01

    Treacher Collins syndrome (TCS) is a rare craniofacial disorder characterized by facial anomalies and ear defects. TCS is caused by mutations in the TCOF1 gene and follows autosomal dominant inheritance. Recently, mutations in the POLR1D and POLR1C genes have also been identified to cause TCS. However, in a subset of patients no causative mutation could be found yet. Inter- and intrafamilial phenotypic variability is high as is the variety of mainly family-specific mutations identified throughout TCOF1. No obvious correlation between pheno- and genotype could be observed. The majority of described point mutations, small insertions and deletions comprising only a few nucleotides within TCOF1 lead to a premature termination codon. We investigated a cohort of 112 patients with a tentative clinical diagnosis of TCS by multiplex ligation-dependent probe amplification (MLPA) to search for larger deletions not detectable with other methods used. All patients were selected after negative screening for mutations in TCOF1, POLR1D and POLR1C. In 1 patient with an unequivocal clinical diagnosis of TCS, we identified a 3.367 kb deletion. This deletion abolishes exon 3 and is the first described single exon deletion within TCOF1. On RNA level we observed loss of this exon which supposedly leads to haploinsufficiency of TREACLE, the nucleolar phosphoprotein encoded by TCOF1. PMID:22712005

  8. First Report of a Single Exon Deletion in TCOF1 Causing Treacher Collins Syndrome.

    PubMed

    Beygo, J; Buiting, K; Seland, S; Lüdecke, H-J; Hehr, U; Lich, C; Prager, B; Lohmann, D R; Wieczorek, D

    2012-01-01

    Treacher Collins syndrome (TCS) is a rare craniofacial disorder characterized by facial anomalies and ear defects. TCS is caused by mutations in the TCOF1 gene and follows autosomal dominant inheritance. Recently, mutations in the POLR1D and POLR1C genes have also been identified to cause TCS. However, in a subset of patients no causative mutation could be found yet. Inter- and intrafamilial phenotypic variability is high as is the variety of mainly family-specific mutations identified throughout TCOF1. No obvious correlation between pheno- and genotype could be observed. The majority of described point mutations, small insertions and deletions comprising only a few nucleotides within TCOF1 lead to a premature termination codon. We investigated a cohort of 112 patients with a tentative clinical diagnosis of TCS by multiplex ligation-dependent probe amplification (MLPA) to search for larger deletions not detectable with other methods used. All patients were selected after negative screening for mutations in TCOF1, POLR1D and POLR1C. In 1 patient with an unequivocal clinical diagnosis of TCS, we identified a 3.367 kb deletion. This deletion abolishes exon 3 and is the first described single exon deletion within TCOF1. On RNA level we observed loss of this exon which supposedly leads to haploinsufficiency of TREACLE, the nucleolar phosphoprotein encoded by TCOF1.

  9. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome)

    PubMed Central

    Tristani-Firouzi, Martin; Jensen, Judy L.; Donaldson, Matthew R.; Sansone, Valeria; Meola, Giovanni; Hahn, Angelika; Bendahhou, Said; Kwiecinski, Hubert; Fidzianska, Anna; Plaster, Nikki; Fu, Ying-Hui; Ptacek, Louis J.; Tawil, Rabi

    2002-01-01

    Andersen syndrome (AS) is a rare, inherited disorder characterized by periodic paralysis, long QT (LQT) with ventricular arrhythmias, and skeletal developmental abnormalities. We recently established that AS is caused by mutations in KCNJ2, which encodes the inward rectifier K+ channel Kir2.1. In this report, we characterized the functional consequences of three novel and seven previously described KCNJ2 mutations using a two-microelectrode voltage-clamp technique and correlated the findings with the clinical phenotype. All mutations resulted in loss of function and dominant-negative suppression of Kir2.1 channel function. In mutation carriers, the frequency of periodic paralysis was 64% and dysmorphic features 78%. LQT was the primary cardiac manifestation, present in 71% of KCNJ2 mutation carriers, with ventricular arrhythmias present in 64%. While arrhythmias were common, none of our subjects suffered sudden cardiac death. To gain insight into the mechanism of arrhythmia susceptibility, we simulated the effect of reduced Kir2.1 using a ventricular myocyte model. A reduction in Kir2.1 prolonged the terminal phase of the cardiac action potential, and in the setting of reduced extracellular K+, induced Na+/Ca2+ exchanger–dependent delayed afterdepolarizations and spontaneous arrhythmias. These findings suggest that the substrate for arrhythmia susceptibility in AS is distinct from the other forms of inherited LQT syndrome. PMID:12163457

  10. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome.

    PubMed

    Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki

    2015-01-01

    Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.

  11. CALR, JAK2 and MPL mutation status in Argentinean patients with BCR-ABL1- negative myeloproliferative neoplasms.

    PubMed

    Ojeda, Mara Jorgelina; Bragós, Irma Margarita; Calvo, Karina Lucrecia; Williams, Gladis Marcela; Carbonell, María Magdalena; Pratti, Arianna Flavia

    2018-05-01

    To establish the frequency of JAK2, MPL and CALR mutations in Argentinean patients with BCR-ABL1-negative  myeloproliferative neoplasms (MPN) and to compare their clinical and haematological features. Mutations of JAK2V617F, JAK2 exon 12, MPL W515L/K and CALR were analysed in 439 Argentinean patients with BCR-ABL1-negative MPN, including 176 polycythemia vera (PV), 214 essential thrombocythemia (ET) and 49 primary myelofibrosis (PMF). In 94.9% of PV, 85.5% ET and 85.2% PMF, we found mutations in JAK2, MPL or CALR. 74.9% carried JAK2V617F, 12.3% CALR mutations, 2.1% MPL mutations and 10.7% were triple negative. In ET, nine types of CALR mutations were identified, four of which were novel. PMF patients were limited to types 1 and 2, type 2 being more frequent. In ET, patients with CALR mutation were younger and had higher platelet counts than those with JAK2V617F and triple negative. In addition, JAK2V617F patients had high leucocyte and haemoglobin values compared with CALR-mutated and triple-negative patients. In PMF, patients with mutant CALR were associated with higher platelet counts. Our study underscores the importance of JAK2, MPL and CALR genotyping for accurate diagnosis of patients with BCR-ABL1-negative MPN.

  12. Mechanisms of protein-folding diseases at a glance.

    PubMed

    Valastyan, Julie S; Lindquist, Susan

    2014-01-01

    For a protein to function appropriately, it must first achieve its proper conformation and location within the crowded environment inside the cell. Multiple chaperone systems are required to fold proteins correctly. In addition, degradation pathways participate by destroying improperly folded proteins. The intricacy of this multisystem process provides many opportunities for error. Furthermore, mutations cause misfolded, nonfunctional forms of proteins to accumulate. As a result, many pathological conditions are fundamentally rooted in the protein-folding problem that all cells must solve to maintain their function and integrity. Here, to illustrate the breadth of this phenomenon, we describe five examples of protein-misfolding events that can lead to disease: improper degradation, mislocalization, dominant-negative mutations, structural alterations that establish novel toxic functions, and amyloid accumulation. In each case, we will highlight current therapeutic options for battling such diseases.

  13. Mutations in Kelch-like 3 and Cullin 3 cause hypertension and electrolyte abnormalities

    PubMed Central

    Boyden, Lynn M.; Choi, Murim; Choate, Keith A.; Nelson-Williams, Carol J.; Farhi, Anita; Toka, Hakan R.; Tikhonova, Irina R.; Bjornson, Robert; Mane, Shrikant M.; Colussi, Giacomo; Lebel, Marcel; Gordon, Richard D.; Semmekrot, Ben A.; Poujol, Alain; Välimäki, Matti J.; De Ferrari, Maria E.; Sanjad, Sami A.; Gutkin, Michael; Karet, Fiona E.; Tucci, Joseph R.; Stockigt, Jim R.; Keppler-Noreuil, Kim M.; Porter, Craig C.; Anand, Sudhir K.; Whiteford, Margo L.; Davis, Ira D.; Dewar, Stephanie B.; Bettinelli, Alberto; Fadrowski, Jeffrey J.; Belsha, Craig W.; Hunley, Tracy E.; Nelson, Raoul D.; Trachtman, Howard; Cole, Trevor R. P.; Pinsk, Maury; Bockenhauer, Detlef; Shenoy, Mohan; Vaidyanathan, Priya; Foreman, John W.; Rasoulpour, Majid; Thameem, Farook; Al-Shahrouri, Hania Z.; Radhakrishnan, Jai; Gharavi, Ali G.; Goilav, Beatrice; Lifton, Richard P.

    2012-01-01

    Hypertension affects one billion people and is a principal reversible risk factor for cardiovascular disease. A rare Mendelian syndrome, pseudohypoaldosteronism type II (PHAII), featuring hypertension, hyperkalemia, and metabolic acidosis, has revealed previously unrecognized physiology orchestrating the balance between renal salt reabsorption versus K+ and H+ excretion1. We used exome sequencing to identify mutations in Kelch-like 3 (KLHL3) or Cullin 3 (CUL3) in 41 PHAII kindreds. KLHL3 mutations are either recessive or dominant, while CUL3 mutations are dominant and predominantly de novo. CUL3 and BTB-Kelch proteins such as KLHL3 are components of Cullin/RING E3 ligase complexes (CRLs) that ubiquitinate substrates bound to Kelch propeller domains2–8. Dominant KLHL3 mutations are clustered in short segments within the Kelch propeller and BTB domains implicated in substrate9 and Cullin5 binding, respectively. Diverse CUL3 mutations all result in skipping of exon 9, producing an in-frame deletion. Because dominant KLHL3 and CUL3 mutations both phenocopy recessive loss-of-function KLHL3 mutations, they may abrogate ubiquitination of KLHL3 substrates. Disease features are reversed by thiazide diuretics, which inhibit the Na-Cl cotransporter (NCC) in the distal nephron of the kidney; KLHL3 and CUL3 are expressed in this location, suggesting a mechanistic link between KLHL3/CUL3 mutations, increased Na-Cl reabsorption, and disease pathogenesis. These findings demonstrate the utility of exome sequencing in disease gene identification despite combined complexities of locus heterogeneity, mixed models of transmission, and frequent de novo mutation, and establish a fundamental role for KLHL3/CUL3 in blood pressure, K+, and pH homeostasis. PMID:22266938

  14. Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance.

    PubMed

    Takeda, K; Takemoto, C; Kobayashi, I; Watanabe, A; Nobukuni, Y; Fisher, D E; Tachibana, M

    2000-01-01

    MITF (microphthalmia-associated transcription factor) is a basic-helix-loop-helix-leucine zipper (bHLHZip) factor which regulates expression of tyrosinase and other melanocytic genes via a CATGTG promoter sequence, and is involved in melanocyte differentiation. Mutations of MITF in mice or humans with Waardenburg syndrome type 2 (WS2) often severely disrupt the bHLHZip domain, suggesting the importance of this structure. Here, we show that Ser298, which locates downstream of the bHLHZip and was previously found to be mutated in individuals with WS2, plays an important role in MITF function. Glycogen synthase kinase 3 (GSK3) was found to phosphorylate Ser298 in vitro, thereby enhancing the binding of MITF to the tyrosinase promoter. The same serine was found to be phosphorylated in vivo, and expression of dominant-negative GSK3beta selectively suppressed the ability of MITF to transactivate the tyrosinase promoter. Moreover, mutation of Ser298, as found in a WS2 family, disabled phos-phorylation of MITF by GSK3beta and impaired MITF function. These findings suggest that the Ser298 is important for MITF function and is phosphorylated probably by GSK3beta.

  15. Influence of the R823W mutation on the interaction of the ANKS6-ANKS3: insights from molecular dynamics simulation and free energy analysis.

    PubMed

    Kan, Wei; Fang, Fengqin; Chen, Lin; Wang, Ruige; Deng, Qigang

    2016-05-01

    The sterile alpha motif (SAM) domain of the protein ANKS6, a protein-protein interaction domain, is responsible for autosomal dominant polycystic kidney disease. Although the disease is the result of the R823W point mutation in the SAM domain of the protein ANKS6, the molecular details are still unclear. We applied molecular dynamics simulations, the principal component analysis, and the molecular mechanics Poisson-Boltzmann surface area binding free energy calculation to explore the structural and dynamic effects of the R823W point mutation on the complex ANKS6-ANKS3 (PDB ID: 4NL9) in comparison to the wild proteins. The energetic analysis presents that the wild type has a more stable structure than the mutant. The R823W point mutation not only disrupts the structure of the ANKS6 SAM domain but also negatively affects the interaction of the ANKS6-ANKS3. These results further clarify the previous experiments to understand the ANKS6-ANKS3 interaction comprehensively. In summary, this study would provide useful suggestions to understand the interaction of these proteins and their fatal action on mediating kidney function.

  16. SPRED1, a RAS MAPK pathway inhibitor that causes Legius syndrome, is a tumour suppressor downregulated in paediatric acute myeloblastic leukaemia.

    PubMed

    Pasmant, E; Gilbert-Dussardier, B; Petit, A; de Laval, B; Luscan, A; Gruber, A; Lapillonne, H; Deswarte, C; Goussard, P; Laurendeau, I; Uzan, B; Pflumio, F; Brizard, F; Vabres, P; Naguibvena, I; Fasola, S; Millot, F; Porteu, F; Vidaud, D; Landman-Parker, J; Ballerini, P

    2015-01-29

    Constitutional dominant loss-of-function mutations in the SPRED1 gene cause a rare phenotype referred as neurofibromatosis type 1 (NF1)-like syndrome or Legius syndrome, consisted of multiple café-au-lait macules, axillary freckling, learning disabilities and macrocephaly. SPRED1 is a negative regulator of the RAS MAPK pathway and can interact with neurofibromin, the NF1 gene product. Individuals with NF1 have a higher risk of haematological malignancies. SPRED1 is highly expressed in haematopoietic cells and negatively regulates haematopoiesis. SPRED1 seemed to be a good candidate for leukaemia predisposition or transformation. We performed SPRED1 mutation screening and expression status in 230 paediatric lymphoblastic and acute myeloblastic leukaemias (AMLs). We found a loss-of-function frameshift SPRED1 mutation in a patient with Legius syndrome. In this patient, the leukaemia blasts karyotype showed a SPRED1 loss of heterozygosity, confirming SPRED1 as a tumour suppressor. Our observation confirmed that acute leukaemias are rare complications of the Legius syndrome. Moreover, SPRED1 was significantly decreased at RNA and protein levels in the majority of AMLs at diagnosis compared with normal or paired complete remission bone marrows. SPRED1 decreased expression correlated with genetic features of AML. Our study reveals a new mechanism which contributes to deregulate RAS MAPK pathway in the vast majority of paediatric AMLs.

  17. Expression of a Mutant kcnj2 Gene Transcript in Zebrafish

    PubMed Central

    Leong, Ivone U. S.; Skinner, Jonathan R.; Shelling, Andrew N.; Love, Donald R.

    2013-01-01

    Long QT 7 syndrome (LQT7, also known as Andersen-Tawil syndrome) is a rare autosomal-dominant disorder that causes cardiac arrhythmias, periodic paralysis, and dysmorphic features. Mutations in the human KCNJ2 gene, which encodes for the subunit of the potassium inwardly-rectifying channel (IK1), have been associated with the disorder. The majority of mutations are considered to be dominant-negative as mutant proteins interact to limit the function of wild type KCNJ2 proteins. Several LQT7 syndrome mouse models have been created that vary in the physiological similarity to the human disease. To complement the LQT7 mouse models, we investigated the usefulness of the zebrafish as an alternative model via a transient approach. Initial bioinformatic analysis identified the zebrafish orthologue of the human KCNJ2 gene, together with a spatial expression profile that was similar to that of human. The expression of a kcnj2-12 transcript carrying an in-frame deletion of critical amino acids identified in human studies resulted in embryos that exhibited defects in muscle development, thereby affecting movement, a decrease in jaw size, pupil-pupil distance, and signs of scoliosis. These defects correspond to some phenotypes expressed by human LQT7 patients. PMID:27335675

  18. Muscle hypertrophy as the presenting sign in a patient with a complete FHL1 deletion.

    PubMed

    Willis, T A; Wood, C L; Hudson, J; Polvikoski, T; Barresi, R; Lochmüller, H; Bushby, K; Straub, V

    2016-08-01

    Four and a half LIM protein 1 (FHL1/SLIM1) has recently been identified as the causative gene mutated in four distinct diseases affecting skeletal muscle that have overlapping features, including reducing body myopathy, X-linked myopathy, X-linked dominant scapuloperoneal myopathy and Emery-Dreifuss muscular dystrophy. FHL1 localises to the sarcomere and the sarcolemma and is believed to participate in muscle growth and differentiation as well as in sarcomere assembly. We describe in this case report a boy with a deletion of the entire FHL1 gene who is now 15 years of age and presented with muscle hypertrophy, reduced subcutaneous fat, rigid spine and short stature. This case is the first, to our knowledge, with a complete loss of the FHL1 protein and MAP7D3 in combination. It supports the theory that dominant negative effects (accumulation of cytotoxic-mutated FHL1 protein) worsen the pathogenesis. It extends the phenotype of FHL1-related myopathies and should prompt future testing in undiagnosed patients who present with unexplained muscle hypertrophy, contractures and rigid spine, particularly if male. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. v-src induction of the TIS10/PGS2 prostaglandin synthase gene is mediated by an ATF/CRE transcription response element.

    PubMed

    Xie, W; Fletcher, B S; Andersen, R D; Herschman, H R

    1994-10-01

    We recently reported the cloning of a mitogen-inducible prostaglandin synthase gene, TIS10/PGS2. In addition to growth factors and tumor promoters, the v-src oncogene induces TIS10/PGS2 expression in 3T3 cells. Deletion analysis, using luciferase reporters, identifies a region between -80 and -40 nucleotides 5' of the TIS10/PGS2 transcription start site that mediates pp60v-src induction in 3T3 cells. This region contains the sequence CGTCACGTG, which includes overlapping ATF/CRE (CGTCA) and E-box (CACGTG) sequences. Gel shift-oligonucleotide competition experiments with nuclear extracts from cells stably transfected with a temperature-sensitive v-src gene demonstrate that the CGTCACGTG sequence can bind proteins at both the ATF/CRE and E-box sequences. Dominant-negative CREB and Myc proteins that bind DNA, but do not transactivate, block v-src induction of a luciferase reporter driven by the first 80 nucleotides of the TIS10/PGS2 promoter. Mutational analysis distinguishes which TIS10/PGS2 cis-acting element mediates pp60v-src induction. E-box mutation has no effect on the fold induction in response to pp60v-src. In contrast, ATF/CRE mutation attenuates the pp60v-src response. Antibody supershift and methylation interference experiments demonstrate that CREB and at least one other ATF transcription factor in these extracts bind to the TIS10/PGS2 ATF/CRE element. Expression of a dominant-negative ras gene also blocks TIS10/PGS2 induction by v-src. Our data suggest that Ras mediates pp60v-src activation of an ATF transcription factor, leading to induced TIS10/PGS2 expression via the ATF/CRE element of the TIS10/PGS2 promoter. This is the first description of v-src activation of gene expression via an ATF/CRE element.

  20. Long-QT mutation p.K557E-Kv7.1: dominant-negative suppression of IKs, but preserved cAMP-dependent up-regulation.

    PubMed

    Spätjens, Roel L H M G; Bébarová, Markéta; Seyen, Sandrine R M; Lentink, Viola; Jongbloed, Roselie J; Arens, Yvonne H J M; Heijman, Jordi; Volders, Paul G A

    2014-10-01

    Mutations in KCNQ1, encoding for Kv7.1, the α-subunit of the IKs channel, cause long-QT syndrome type 1, potentially predisposing patients to ventricular tachyarrhythmias and sudden cardiac death, in particular, during elevated sympathetic tone. Here, we aim at characterizing the p.Lys557Glu (K557E) Kv7.1 mutation, identified in a Dutch kindred, at baseline and during (mimicked) increased adrenergic tone. K557E carriers had moderate QTc prolongation that augmented significantly during exercise. IKs characteristics were determined after co-expressing Kv7.1-wild-type (WT) and/or K557E with minK and Yotiao in Chinese hamster ovary cells. K557E caused IKs loss of function with slowing of the activation kinetics, acceleration of deactivation kinetics, and a rightward shift of voltage-dependent activation. Together, these contributed to a dominant-negative reduction in IKs density. Confocal microscopy and western blot indicated that trafficking of K557E channels was not impaired. Stimulation of WT IKs by 3'-5'-cyclic adenosine monophosphate (cAMP) generated strong current up-regulation that was preserved for K557E in both hetero- and homozygosis. Accumulation of IKs at fast rates occurred both in WT and in K557E, but was blunted in the latter. In a computational model, K557E showed a loss of action potential shortening during β-adrenergic stimulation, in accordance with the lack of QT shortening during exercise in patients. K557E causes IKs loss of function with reduced fast rate-dependent current accumulation. cAMP-dependent stimulation of mutant IKs is preserved, but incapable of fully compensating for the baseline current reduction, explaining the long QT intervals at baseline and the abnormal QT accommodation during exercise in affected patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  1. High-risk Long QT Syndrome Mutations in the Kv7.1 (KCNQ1) Pore Disrupt the Molecular Basis for Rapid K+ Permeation

    PubMed Central

    Burgess, Don E.; Bartos, Daniel C.; Reloj, Allison R.; Campbell, Kenneth S.; Johnson, Jonathan N.; Tester, David J.; Ackerman, Michael J.; Fressart, Véronique; Denjoy, Isabelle; Guicheney, Pascale; Moss, Arthur J.; Ohno, Seiko; Horie, Minoru; Delisle, Brian P.

    2012-01-01

    Type 1 long QT syndrome (LQT1) syndrome is caused by loss-of-function mutations in the KCNQ1, which encodes the K+ channel (Kv7.1) that underlies the slowly activating delayed rectifier K+ current in the heart. Intragenic risk stratification suggests LQT1 mutations that disrupt conserved amino acid residues in the pore are an independent risk factor for LQT1-related cardiac events. The purpose of this study is to determine possible molecular mechanisms that underlie the loss-of-function for these high-risk mutations. Extensive genotype-phenotype analyses of LQT1 patients showed that T322M-, T322A-, or G325R-Kv7.1 confer a high risk for LQT1-related cardiac events. Heterologous expression of these mutations with KCNE1 revealed they generated non-functional channels and caused dominant negative suppression of WT-Kv7.1 current. Molecular dynamic simulations (MDS) of analogous mutations in KcsA (T85M-, T85A-, and G88R-KcsA) demonstrated that they disrupted the symmetrical distribution of the carbonyl oxygen atoms in the selectivity filter, which upset the balance between the strong attractive and K+-K+ repulsive forces required for rapid K+ permeation. We conclude high-risk LQT1 mutations in the pore likely disrupt the architectural and physical properties of the K+ channel selectivity filter. PMID:23092362

  2. ABCG5/G8 gene is associated with hypercholesterolemias without mutation in candidate genes and noncholesterol sterols.

    PubMed

    Lamiquiz-Moneo, Itziar; Baila-Rueda, Lucía; Bea, Ana M; Mateo-Gallego, Rocío; Pérez-Calahorra, Sofía; Marco-Benedí, Victoria; Martín-Navarro, Antonio; Ros, Emilio; Cofán, Montserrat; Rodríguez-Rey, José Carlos; Pocovi, Miguel; Cenarro, Ana; Civeira, Fernando

    Approximately 20% to 40% of clinically defined familial hypercholesterolemia (FH) cases do not show a causative mutation in candidate genes (mutation-negative FH), and some of them may have a polygenic origin. The aim of this work was to study the prevalence of ABCG5/G8 genetic variants in mutation-negative FH, as defects in these genes relate to intestinal hyperabsorption of cholesterol and thus ABCG5/G8 variants could explain in part the mechanism of hypercholesterolemia. We sequenced the ABCG5/G8 genes in 214 mutation-negative FH and 97 controls. Surrogate markers of cholesterol absorption (5α-cholestanol, β-sitosterol, campesterol, stigmasterol, and sitostanol) were quantified by high-performance liquid chromatography-tandem mass spectrometry in both studied groups. We found 8 mutation-negative FH patients (3.73%) with a pathogenic mutation in ABCG5/G8 genes. We observed significantly higher concentration of surrogate markers of cholesterol absorption in mutation-negative FH than in controls. In addition, we found significantly higher concentrations of cholesterol absorption markers in mutation-negative FH with ABCG5/G8 defects than in mutation-negative, ABCG5/G8-negative FH. A gene score reflecting the number of common single nucleotide variants associated with hypercholesterolemia was significantly higher in cases than in controls (P = .032). Subjects with a gene score above the mean had significantly higher 5α-cholestanol and stigmasterol than those with a lower gene score. Mutation-negative FH subjects accumulate an excess of rare and common gene variations in ABCG5/G8 genes. This variation is associated with increased intestinal absorption of cholesterol, as determined by surrogate makers, suggesting that these loci contribute to hypercholesterolemia by enhancing intestinal cholesterol absorption. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  3. Phenotypic Heterogeneity in a DFNA20/26 family segregating a novel ACTG1 mutation.

    PubMed

    Yuan, Yongyi; Gao, Xue; Huang, Bangqing; Lu, Jingqiao; Wang, Guojian; Lin, Xi; Qu, Yan; Dai, Pu

    2016-02-01

    Genetic factors play an important role in hearing loss, contributing to approximately 60% of cases of congenital hearing loss. Autosomal dominant deafness accounts for approximately 20% of cases of hereditary hearing loss. Diseases with autosomal dominant inheritance often show pleiotropy, different degrees of penetrance, and variable expressivity. A three-generation Chinese family with autosomal dominant nonsyndromic hearing impairment (ADNSHI) was enrolled in this study. Audiometric data and blood samples were collected from the family. In total, 129 known human deafness genes were sequenced using next-generation sequencing (NGS) to identify the responsible gene mutation in the family. Whole Exome Sequencing (WES) was performed to exclude any other variant that cosegregated with the phenotype. The age of onset of the affected family members was the second decade of life. The condition began with high-frequency hearing impairment in all family members excluding III:2. The novel ACTG1 c.638A > G (p.K213R) mutation was found in all affected family members and was not found in the unaffected family members. A heterozygous c.638A > G mutation in ACTG1 and homozygous c.109G > A (p.V37I) mutation in GJB2 were found in III:2, who was born with hearing loss. The WES result concurred with that of targeted sequencing of known deafness genes. The novel mutation p.K213R in ACTG1 was found to be co-segregated with hearing loss and the genetic cause of ADNSHI in this family. A homozygous mutation associated with recessive inheritance only rarely co-acts with a dominant mutation to result in hearing loss in a dominant family. In such cases, the mutations in the two genes, as in ACTG1 and GJB2 in the present study, may result in a more severe phenotype. Targeted sequencing of known deafness genes is one of the best choices to identify the genetic cause in hereditary hearing loss families.

  4. Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles

    PubMed Central

    Darbro, Benjamin W.; Mahajan, Vinit B.; Gakhar, Lokesh; Skeie, Jessica M.; Campbell, Elizabeth; Wu, Shu; Bing, Xinyu; Millen, Kathleen J.; Dobyns, William B.; Kessler, John A.; Jalali, Ali; Cremer, James; Segre, Alberto; Manak, J. Robert; Aldinger, Kimerbly A.; Suzuki, Satoshi; Natsume, Nagato; Ono, Maya; Hai, Huynh Dai; Viet, Le Thi; Loddo, Sara; Valente, Enza M.; Bernardini, Laura; Ghonge, Nitin; Ferguson, Polly J.; Bassuk, Alexander G.

    2013-01-01

    We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker malformation and occipital cephaloceles (ADDWOC) and detected a mutation in the extracellular matrix protein encoding gene NID1. In a second family, protein interaction network analysis identified a mutation in LAMC1, which encodes a NID1 binding partner. Structural modeling the NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings implicate the extracellular matrix in the pathogenesis of Dandy-Walker spectrum disorders. PMID:23674478

  5. The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo.

    PubMed

    Monet, Marie; Domenga, Valérie; Lemaire, Barbara; Souilhol, Céline; Langa, Francina; Babinet, Charles; Gridley, Thomas; Tournier-Lasserve, Elisabeth; Cohen-Tannoudji, Michel; Joutel, Anne

    2007-04-15

    Cerebral Autosomal Dominant Arteriopathy with Subcortical infarcts and Leukoencephalopathy (CADASIL) is the most prominent known cause of inherited stroke and vascular dementia in human adult. The disease gene, NOTCH3, encodes a transmembrane receptor primarily expressed in arterial smooth muscle cells (SMC). Pathogenic mutations lead to an odd number of cysteine residues within the NOTCH3 extracellular domain (NOTCH3(ECD)), and are associated with progressive accumulation of NOTCH3(ECD) at the SMC plasma membrane. The murine homolog, Notch3, is dispensable for viability but required post-natally for the elaboration and maintenance of arteries. How CADASIL-associated mutations impact NOTCH3 function remains a fundamental, yet unresolved issue. Particularly, whether NOTCH3(ECD) accumulation may titrate the ligand and inhibit the normal pathway is unknown. Herein, using genetic analyses in the mouse, we assessed the functional significance of an archetypal CADASIL-associated mutation (R90C), in vivo, in brain arteries. We show that transgenic mouse lines expressing either the wild-type human NOTCH3 or the mutant R90C human NOTCH3, at comparable and physiological levels, can rescue the arterial defects of Notch3-/- mice to similar degrees. In vivo assessment of NOTCH3/RBP-Jk activity provides evidence that the mutant NOTCH3 protein exhibits normal level of activity in brain arteries. Remarkably, the mutant NOTCH3 protein remains functional and does not exhibit dominant negative interfering activity, even when NOTCH3(ECD) accumulates. Collectively, these data suggest a model that invokes novel pathogenic roles for the mutant NOTCH3 protein rather than compromised NOTCH3 function as the primary determinant of the CADASIL arteriopathy.

  6. Genomic analysis of codon usage shows influence of mutation pressure, natural selection, and host features on Marburg virus evolution.

    PubMed

    Nasrullah, Izza; Butt, Azeem M; Tahir, Shifa; Idrees, Muhammad; Tong, Yigang

    2015-08-26

    The Marburg virus (MARV) has a negative-sense single-stranded RNA genome, belongs to the family Filoviridae, and is responsible for several outbreaks of highly fatal hemorrhagic fever. Codon usage patterns of viruses reflect a series of evolutionary changes that enable viruses to shape their survival rates and fitness toward the external environment and, most importantly, their hosts. To understand the evolution of MARV at the codon level, we report a comprehensive analysis of synonymous codon usage patterns in MARV genomes. Multiple codon analysis approaches and statistical methods were performed to determine overall codon usage patterns, biases in codon usage, and influence of various factors, including mutation pressure, natural selection, and its two hosts, Homo sapiens and Rousettus aegyptiacus. Nucleotide composition and relative synonymous codon usage (RSCU) analysis revealed that MARV shows mutation bias and prefers U- and A-ended codons to code amino acids. Effective number of codons analysis indicated that overall codon usage among MARV genomes is slightly biased. The Parity Rule 2 plot analysis showed that GC and AU nucleotides were not used proportionally which accounts for the presence of natural selection. Codon usage patterns of MARV were also found to be influenced by its hosts. This indicates that MARV have evolved codon usage patterns that are specific to both of its hosts. Moreover, selection pressure from R. aegyptiacus on the MARV RSCU patterns was found to be dominant compared with that from H. sapiens. Overall, mutation pressure was found to be the most important and dominant force that shapes codon usage patterns in MARV. To our knowledge, this is the first detailed codon usage analysis of MARV and extends our understanding of the mechanisms that contribute to codon usage and evolution of MARV.

  7. Marfan syndrome: current perspectives

    PubMed Central

    Pepe, Guglielmina; Giusti, Betti; Sticchi, Elena; Abbate, Rosanna; Gensini, Gian Franco; Nistri, Stefano

    2016-01-01

    Marfan syndrome (MFS) is a pleiotropic connective tissue disease inherited as an autosomal dominant trait, due to mutations in the FBN1 gene encoding fibrillin 1. It is an important protein of the extracellular matrix that contributes to the final structure of a microfibril. Few cases displaying an autosomal recessive transmission are reported in the world. The FBN1 gene, which is made of 66 exons, is located on chromosome 15q21.1. This review, after an introduction on the clinical manifestations that leads to the diagnosis of MFS, focuses on cardiovascular manifestations, pharmacological and surgical therapies of thoracic aortic aneurysm and/or dissection (TAAD), mechanisms underlying the progression of aneurysm or of acute dissection, and biomarkers associated with progression of TAADs. A Dutch group compared treatment with losartan, an angiotensin II receptor-1 blocker, vs no other additional treatment (COMPARE clinical trial). They observed that losartan reduces the aortic dilatation rate in patients with Marfan syndrome. Later on, they also reported that losartan exerts a beneficial effect on patients with Marfan syndrome carrying an FBN1 mutation that causes haploinsufficiency (quantitative mutation), while it has no significant effect on patients displaying dominant negative (qualitative) mutations. Moreover, a French group in a 3-year trial compared the administration of losartan vs placebo in patients with Marfan syndrome under treatment with beta-receptor blockers. They observed that losartan decreases blood pressure but has no effect on aortic diameter progression. Thus, beta-receptor blockers remain the gold standard therapy in patients with Marfan syndrome. Three potential biochemical markers are mentioned in this review: total homocysteine, serum transforming growth factor beta, and lysyl oxidase. Moreover, markers of oxidative stress measured in plasma, previously correlated with clinical features of Marfan syndrome, may be explored as potential biomarkers of clinical severity. PMID:27274304

  8. Marfan syndrome: current perspectives.

    PubMed

    Pepe, Guglielmina; Giusti, Betti; Sticchi, Elena; Abbate, Rosanna; Gensini, Gian Franco; Nistri, Stefano

    2016-01-01

    Marfan syndrome (MFS) is a pleiotropic connective tissue disease inherited as an autosomal dominant trait, due to mutations in the FBN1 gene encoding fibrillin 1. It is an important protein of the extracellular matrix that contributes to the final structure of a microfibril. Few cases displaying an autosomal recessive transmission are reported in the world. The FBN1 gene, which is made of 66 exons, is located on chromosome 15q21.1. This review, after an introduction on the clinical manifestations that leads to the diagnosis of MFS, focuses on cardiovascular manifestations, pharmacological and surgical therapies of thoracic aortic aneurysm and/or dissection (TAAD), mechanisms underlying the progression of aneurysm or of acute dissection, and biomarkers associated with progression of TAADs. A Dutch group compared treatment with losartan, an angiotensin II receptor-1 blocker, vs no other additional treatment (COMPARE clinical trial). They observed that losartan reduces the aortic dilatation rate in patients with Marfan syndrome. Later on, they also reported that losartan exerts a beneficial effect on patients with Marfan syndrome carrying an FBN1 mutation that causes haploinsufficiency (quantitative mutation), while it has no significant effect on patients displaying dominant negative (qualitative) mutations. Moreover, a French group in a 3-year trial compared the administration of losartan vs placebo in patients with Marfan syndrome under treatment with beta-receptor blockers. They observed that losartan decreases blood pressure but has no effect on aortic diameter progression. Thus, beta-receptor blockers remain the gold standard therapy in patients with Marfan syndrome. Three potential biochemical markers are mentioned in this review: total homocysteine, serum transforming growth factor beta, and lysyl oxidase. Moreover, markers of oxidative stress measured in plasma, previously correlated with clinical features of Marfan syndrome, may be explored as potential biomarkers of clinical severity.

  9. A Recurrent Missense Mutation in ZP3 Causes Empty Follicle Syndrome and Female Infertility.

    PubMed

    Chen, Tailai; Bian, Yuehong; Liu, Xiaoman; Zhao, Shigang; Wu, Keliang; Yan, Lei; Li, Mei; Yang, Zhenglin; Liu, Hongbin; Zhao, Han; Chen, Zi-Jiang

    2017-09-07

    Empty follicle syndrome (EFS) is defined as the failure to aspirate oocytes from mature ovarian follicles during in vitro fertilization. Except for some cases caused by pharmacological or iatrogenic problems, the etiology of EFS remains enigmatic. In the present study, we describe a large family with a dominant inheritance pattern of female infertility characterized by recurrent EFS. Genome-wide linkage analyses and whole-exome sequencing revealed a paternally transmitted heterozygous missense mutation of c.400 G>A (p.Ala134Thr) in zona pellucida glycoprotein 3 (ZP3). The same mutation was identified in an unrelated EFS pedigree. Haplotype analysis revealed that the disease allele of these two families came from different origins. Furthermore, in a cohort of 21 cases of EFS, two were also found to have the ZP3 c.400 G>A mutation. Immunofluorescence and histological analysis indicated that the oocytes of the EFS female had degenerated and lacked the zona pellucida (ZP). ZP3 is a major component of the ZP filament. When mutant ZP3 was co-expressed with wild-type ZP3, the interaction between wild-type ZP3 and ZP2 was markedly decreased as a result of the binding of wild-type ZP3 and mutant ZP3, via dominant negative inhibition. As a result, the assembly of ZP was impeded and the communication between cumulus cells and the oocyte was prevented, resulting in oocyte degeneration. These results identified a genetic basis for EFS and oocyte degeneration and, moreover, might pave the way for genetic diagnosis of infertile females with this phenotype. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Detection of MPL exon10 mutations in 103 Chinese patients with JAK2V617F-negative myeloproliferative neoplasms.

    PubMed

    Chen, Xiuhua; Qi, Xiling; Tan, Yanhong; Xu, Zhifang; Xu, Aining; Zhang, Linlin; Wang, Hongwei

    2011-06-15

    JAK2V617F mutation has been reported in 90% of patients with polycythemia vera (PV) and about 50% of patients with essential thromobocythemia (ET) and primary myelofibrosis (PMF). Recently, acquired mutations in the transmembrane-juxtamembrane region of MPL (MPLW515 mutations) have been reported in approximately 5% of JAK2V617F-negative PMF and about 1% of all cases of ET. MPL is the receptor for thrombopoietin that regulates the production of platelets by bone marrow. It is likely that some mutations more closely related to ET in MPL exon10 may have been missed by current assays. We inferred that there might be other mutations in MPL exon10 for MPN patients in addition to MPLW515 mutations. To investigate its mutation types and prevalence in Chinese patients with myeloproliferative neoplasms (MPN), we performed mutation detection on MPL exon10 in 103 JAK2V617F-negative MPN patients by single strand conformation polymorphism (SSCP) and allele-specific PCR (AS-PCR) combined with sequencing. As a result, one previously unrecognized MPL mutation (12-bp in-frame insertion) was identified in one patient with ET in addition to an MPLW515K mutation identified in one PMF patient. This confirms our hypothesis that BCR/ABL negative and JAK2V617F-negative MPN patients have other mutations besides W515 mutation in MPL exon10 and mutations other than single nucleotide exchange also exist. In addition, MPL mutation was associated with Chinese MPN patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Biological implications of somatic DDX41 p.R525H mutation in acute myeloid leukemia.

    PubMed

    Kadono, Moe; Kanai, Akinori; Nagamachi, Akiko; Shinriki, Satoru; Kawata, Jin; Iwato, Koji; Kyo, Taiichi; Oshima, Kumi; Yokoyama, Akihiko; Kawamura, Takeshi; Nagase, Reina; Inoue, Daichi; Kitamura, Toshio; Inaba, Toshiya; Ichinohe, Tatsuo; Matsui, Hirotaka

    2016-08-01

    The DDX41 gene, encoding a DEAD-box type ATP-dependent RNA helicase, is rarely but reproducibly mutated in myeloid diseases. The acquired mutation in DDX41 is highly concentrated at c.G1574A (p.R525H) in the conserved motif VI located at the C-terminus of the helicase core domain where ATP interacts and is hydrolyzed. Therefore, it is likely that the p.R525H mutation perturbs ATPase activity in a dominant-negative manner. In this study, we screened for the DDX41 mutation of CD34-positive tumor cells based on mRNA sequencing and identified the p.R525H mutation in three cases among 23 patients. Intriguingly, these patients commonly exhibited acute myeloid leukemia (AML) with peripheral blood cytopenias and low blast counts, suggesting that the mutation inhibits the growth and differentiation of hematopoietic cells. Data from cord blood cells and leukemia cell lines suggest a role for DDX41 in preribosomal RNA processing, in which the expression of the p.R525H mutant causes a certain ribosomopathy phenotype in hematopoietic cells by suppressing MDM2-mediated RB degradation, thus triggering the inhibition of E2F activity. This study uncovered a pathogenic role of p.R525H DDX41 in the slow growth rate of tumor cells. Age-dependent epigenetic alterations or other somatic changes might collaborate with the mutation to cause AML. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  12. Mutations in the mitochondrial thioredoxin reductase gene TXNRD2 cause dilated cardiomyopathy.

    PubMed

    Sibbing, Dirk; Pfeufer, Arne; Perisic, Tamara; Mannes, Alexander M; Fritz-Wolf, Karin; Unwin, Sarah; Sinner, Moritz F; Gieger, Christian; Gloeckner, Christian Johannes; Wichmann, Heinz-Erich; Kremmer, Elisabeth; Schäfer, Zasie; Walch, Axel; Hinterseer, Martin; Näbauer, Michael; Kääb, Stefan; Kastrati, Adnan; Schömig, Albert; Meitinger, Thomas; Bornkamm, Georg W; Conrad, Marcus; von Beckerath, Nicolas

    2011-05-01

    Cardiac energy requirement is met to a large extent by oxidative phosphorylation in mitochondria that are highly abundant in cardiac myocytes. Human mitochondrial thioredoxin reductase (TXNRD2) is a selenocysteine-containing enzyme essential for mitochondrial oxygen radical scavenging. Cardiac-specific deletion of Txnrd2 in mice results in dilated cardiomyopathy (DCM). The aim of this study was to investigate whether TXNRD2 mutations explain a fraction of monogenic DCM cases. Sequencing and subsequent genotyping of TXNRD2 in patients diagnosed with DCM (n = 227) and in DCM-free (n = 683) individuals from the general population sample KORA S4 was performed. The functional impact of observed mutations on Txnrd2 function was tested in mouse fibroblasts. We identified two novel amino acid residue-altering TXNRD2 mutations [175G > A (Ala59Thr) and 1124G > A (Gly375Arg)] in three heterozygous carriers among 227 patients that were not observed in the 683 DCM-free individuals. Both DCM-associated mutations result in amino acid substitutions of highly conserved residues in helices contributing to the flavin-adenine dinucleotide (FAD)-binding domain of TXNRD2. Functional analysis of both mutations in Txnrd2(-/-) mouse fibroblasts revealed that contrasting to wild-type (wt) Txnrd2, neither mutant did restore Txnrd2 function. Mutants even impaired the survival of Txnrd2 wt cells under oxidative stress by a dominant-negative mechanism. For the first time, we describe mutations in DCM patients in a gene involved in the regulation of cellular redox state. TXNRD2 mutations may explain a fraction of human DCM disease burden.

  13. TRPC6 G757D Loss-of-Function Mutation Associates with FSGS

    PubMed Central

    Riehle, Marc; Büscher, Anja K.; Gohlke, Björn-Oliver; Kaßmann, Mario; Kolatsi-Joannou, Maria; Bräsen, Jan H.; Nagel, Mato; Becker, Jan U.; Winyard, Paul; Hoyer, Peter F.; Preissner, Robert; Krautwurst, Dietmar; Gollasch, Maik

    2016-01-01

    FSGS is a CKD with heavy proteinuria that eventually progresses to ESRD. Hereditary forms of FSGS have been linked to mutations in the transient receptor potential cation channel, subfamily C, member 6 (TRPC6) gene encoding a nonselective cation channel. Most of these TRPC6 mutations cause a gain-of-function phenotype, leading to calcium–triggered podocyte cell death, but the underlying molecular mechanisms are unclear. We studied the molecular effect of disease-related mutations using tridimensional in silico modeling of tetrameric TRPC6. Our results indicated that G757 is localized in a domain forming a TRPC6-TRPC6 interface and predicted that the amino acid exchange G757D causes local steric hindrance and disruption of the channel complex. Notably, functional characterization of model interface domain mutants suggested a loss-of-function phenotype. We then characterized 19 human FSGS–related TRPC6 mutations, the majority of which caused gain-of-function mutations. However, five mutations (N125S, L395A, G757D, L780P, and R895L) caused a loss-of-function phenotype. Coexpression of wild-type TRPC6 and TRPC6 G757D, mimicking heterozygosity observed in patients, revealed a dominant negative effect of TRPC6 G757D. Our comprehensive analysis of human disease–causing TRPC6 mutations reveals loss of TRPC6 function as an additional concept of hereditary FSGS and provides molecular insights into the mechanism responsible for the loss-of-function phenotype of TRPC6 G757D in humans. PMID:26892346

  14. Dominant negative DISC1 mutant mice display specific social behaviour deficits and aberration in BDNF and cannabinoid receptor expression.

    PubMed

    Kaminitz, Ayelet; Barzilay, Ran; Segal, Hadar; Taler, Michal; Offen, Daniel; Gil-Ad, Irit; Mechoulam, Raphael; Weizman, Abraham

    2014-01-01

    OBJECTIVES. Disrupted in schizophrenia 1 (DISC1) is considered the most prominent candidate gene for schizophrenia. In this study, we aimed to characterize behavioural and brain biochemical traits in a mouse expressing a dominant negative DISC1mutant (DN-DISC1). DN-DISC1 mice underwent behavioural tests to evaluate object recognition, social preference and social novelty seeking. ELISA was conducted on brain tissue to evaluate BDNF levels. Western blot was employed to measure BDNF receptor (TrkB) and cannabinoid receptor CB1. The mutant DISC1 mice displayed deficits in preference to social novelty while both social preference and object recognition were intact. Biochemical analysis of prefrontal cortex and hippocampus revealed a modest reduction in cortical TrkB protein levels of male mice while no differences in BDNF levels were observed. We found sex dependent differences in the expression of cannabinoid-1 receptors. We describe novel behavioural and biochemical abnormalities in the DN-DISC1 mouse model of schizophrenia. The data shows for the first time a possible link between DISC1 mutation and the cannabinoid system.

  15. JAK2, MPL, and CALR mutations in Chinese Han patients with essential thrombocythemia.

    PubMed

    Wang, Jing; Zhang, Biao; Chen, Bing; Zhou, Rong-Fu; Zhang, Qi-Guo; Li, Juan; Yang, Yong-Gong; Zhou, Min; Shao, Xiao-Yan; Xu, Yong; Xu, Xi-Hui; Ouyang, Jian; Xu, Jingyan; Ye, Qing

    2017-04-01

    Mutations in Janus kinase 2 (JAK2), myeloproliferative leukemia (MPL), and CALR are highly relevant to Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms. Assessing the prevalence of molecular mutations in Chinese Han patients with essential thrombocythemia (ET), and correlating their mutational profile with disease characteristics/phenotype. Of the 110 subjects studied, 62 carried the JAK2 V617F mutation, 21 had CALR mutations, one carried an MPL (W515) mutation, and 28 had non-mutated JAK2, CALR, and MPL (so-called triple-negative ET). Mutations in JAK2 exon 12 were not detected in any patient. Two ET patients had both CALR and JAK2 V617F mutations. Comparing the hematological parameters of the patients with JAK2 mutations with those of the patients with CALR mutations showed that the ET patients with CALR mutations were younger (p = 0.045) and had higher platelet counts (p = 0.043). Genotyping for CALR could be a useful diagnostic tool for JAK2/MPL-negative ET, since the data suggest that CALR is much more prevalent than MPL, therefore testing for CALR should be considered in patients who are JAK2 negative as its frequency is almost 20 times that of MPL mutation.

  16. Low frequency of c-MPL gene mutations in Iranian patients with Philadelphia-negative myeloproliferative disorders.

    PubMed

    Ghotaslou, A; Nadali, F; Chahardouli, B; Alizad Ghandforosh, N; Rostami, S H; Alimoghaddam, K; Ghavamzadeh, A

    2015-01-01

    Myeloproliferative disorders are a group of diseases characterized by increased proliferation of myeloid lineage. In addition to JAK2V617F mutation, several mutations in the c-MPL gene have been reported in patients with philadelphia-negative chronic myeloproliferative disorders that could be important in the pathogenesis of diseases. The aim of the present study was to investigate the frequency of c-MPL and JAK2V617F mutations in Iranian patients with Philadelphia-negativemyeloproliferative disorders. Peripheral blood samples were collected from 60 patients with Philadelphia-negative MPD) Subgroups ET and PMF) and 25 healthy subjects as control group. The mutation status of c-MPL and Jak2V617F were investigated by using Amplification-refractory mutation system (ARMS) and Allele-Specific PCR (AS-PCR), respectively. The results were confirmed by sequencing. Among 60 patients, 34 (56.6%) and 1(1.7%) had Jak2V617F and c-MPL mutation, respectively. Patients with Jak2V617F mutation had higher WBC counts and hemoglobin concentration than those without the mutation (p= 0.005, p=0.003). In addition, for all healthy subjects in control group, mutations were negative. The present study revealed that the c-MPL mutations unlike the Jak2V617F mutations are rare in Iranian patients with Ph-negative MPNs and the low mutation rate should be considered in the design of screening strategies of MPD patients.

  17. Low frequency of c-MPL gene mutations in Iranian patients with Philadelphia-negative myeloproliferative disorders

    PubMed Central

    Ghotaslou, A; Nadali, F; Chahardouli, B; Alizad Ghandforosh, N; Rostami, SH; Alimoghaddam, K; Ghavamzadeh, A

    2015-01-01

    Background Myeloproliferative disorders are a group of diseases characterized by increased proliferation of myeloid lineage. In addition to JAK2V617F mutation, several mutations in the c-MPL gene have been reported in patients with philadelphia-negative chronic myeloproliferative disorders that could be important in the pathogenesis of diseases. The aim of the present study was to investigate the frequency of c-MPL and JAK2V617F mutations in Iranian patients with Philadelphia-negativemyeloproliferative disorders. Material and Methods Peripheral blood samples were collected from 60 patients with Philadelphia-negative MPD) Subgroups ET and PMF) and 25 healthy subjects as control group. The mutation status of c-MPL and Jak2V617F were investigated by using Amplification-refractory mutation system (ARMS) and Allele-Specific PCR (AS-PCR), respectively. The results were confirmed by sequencing. Results Among 60 patients, 34 (56.6%) and 1(1.7%) had Jak2V617F and c-MPL mutation, respectively. Patients with Jak2V617F mutation had higher WBC counts and hemoglobin concentration than those without the mutation (p= 0.005, p=0.003). In addition, for all healthy subjects in control group, mutations were negative. Conclusions The present study revealed that the c-MPL mutations unlike the Jak2V617F mutations are rare in Iranian patients with Ph-negative MPNs and the low mutation rate should be considered in the design of screening strategies of MPD patients. PMID:25914801

  18. Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity

    PubMed Central

    Turrell, Frances K.; Kerr, Emma M.; Gao, Meiling; Thorpe, Hannah; Doherty, Gary J.; Cridge, Jake; Shorthouse, David; Speed, Alyson; Samarajiwa, Shamith; Hall, Benjamin A.; Griffiths, Meryl; Martins, Carla P.

    2017-01-01

    Lung adenocarcinoma accounts for ∼40% of lung cancers, the leading cause of cancer-related death worldwide, and current therapies provide only limited survival benefit. Approximately half of lung adenocarcinomas harbor mutations in TP53 (p53), making these mutants appealing targets for lung cancer therapy. As mutant p53 remains untargetable, mutant p53-dependent phenotypes represent alternative targeting opportunities, but the prevalence and therapeutic relevance of such effects (gain of function and dominant-negative activity) in lung adenocarcinoma are unclear. Through transcriptional and functional analysis of murine KrasG12D-p53null, -p53R172H (conformational), and -p53R270H (contact) mutant lung tumors, we identified genotype-independent and genotype-dependent therapeutic sensitivities. Unexpectedly, we found that wild-type p53 exerts a dominant tumor-suppressive effect on mutant tumors, as all genotypes were similarly sensitive to its restoration in vivo. These data show that the potential of p53 targeted therapies is comparable across all p53-deficient genotypes and may explain the high incidence of p53 loss of heterozygosity in mutant tumors. In contrast, mutant p53 gain of function and their associated vulnerabilities can vary according to mutation type. Notably, we identified a p53R270H-specific sensitivity to simvastatin in lung tumors, and the transcriptional signature that underlies this sensitivity was also present in human lung tumors, indicating that this therapeutic approach may be clinically relevant. PMID:28790158

  19. Apcdd1 is a novel Wnt inhibitor Mutated in Hereditary Hypotrichosis Simplex

    PubMed Central

    Shimomura, Yutaka; Agalliu, Dritan; Vonica, Alin; Luria, Victor; Wajid, Muhammad; Baumer, Alessandra; Belli, Serena; Petukhova, Lynn; Schinzel, Albert; Brivanlou, Ali H.; Barres, Ben A.; Christiano, Angela M.

    2011-01-01

    Hereditary hypotrichosis simplex (HHS) is a rare autosomal dominant form of hair loss characterized by hair follicle (HF) miniaturization1, 2. Using genetic linkage analysis, we mapped a novel locus for HHS to chromosome 18p11.22, and identified a mutation (L9R) in the APCDD1 gene in three families. We show that APCDD1 is a membrane-bound glycoprotein that is abundantly expressed in human HFs, and can interact in vitro with WNT3A and LRP5, two essential components of Wnt signaling. Functional studies revealed that APCDD1 inhibits Wnt signaling in a cell-autonomous manner and functions upstream of β-catenin. Moreover, APCDD1 represses activation of Wnt reporters and target genes, and inhibits the biological effects of Wnt signaling during both the generation of neurons from progenitors in the developing chick nervous system, and axis specification in Xenopus embryos. The mutation L9R is located in the signal peptide of APCDD1, and perturbs its translational processing from ER to the plasma membrane. L9R-APCDD1 likely functions in a dominant-negative manner to inhibit the stability and membrane localization of the wild-type protein. These findings describe a novel inhibitor of the Wnt signaling pathway with an essential role in human hair growth. Since APCDD1 is expressed in a broad repertoire of cell types3, our findings suggest that APCDD1 may regulate a diversity of biological processes controlled by Wnt signaling. PMID:20393562

  20. Two novel disease-causing variants in BMPR1B are associated with brachydactyly type A1.

    PubMed

    Racacho, Lemuel; Byrnes, Ashley M; MacDonald, Heather; Dranse, Helen J; Nikkel, Sarah M; Allanson, Judith; Rosser, Elisabeth; Underhill, T Michael; Bulman, Dennis E

    2015-12-01

    Brachydactyly type A1 is an autosomal dominant disorder primarily characterized by hypoplasia/aplasia of the middle phalanges of digits 2-5. Human and mouse genetic perturbations in the BMP-SMAD signaling pathway have been associated with many brachymesophalangies, including BDA1, as causative mutations in IHH and GDF5 have been previously identified. GDF5 interacts directly as the preferred ligand for the BMP type-1 receptor BMPR1B and is important for both chondrogenesis and digit formation. We report pathogenic variants in BMPR1B that are associated with complex BDA1. A c.975A>C (p.(Lys325Asn)) was identified in the first patient displaying absent middle phalanges and shortened distal phalanges of the toes in addition to the significant shortening of middle phalanges in digits 2, 3 and 5 of the hands. The second patient displayed a combination of brachydactyly and arachnodactyly. The sequencing of BMPR1B in this individual revealed a novel c.447-1G>A at a canonical acceptor splice site of exon 8, which is predicted to create a novel acceptor site, thus leading to a translational reading frameshift. Both mutations are most likely to act in a dominant-negative manner, similar to the effects observed in BMPR1B mutations that cause BDA2. These findings demonstrate that BMPR1B is another gene involved with the pathogenesis of BDA1 and illustrates the continuum of phenotypes between BDA1 and BDA2.

  1. Large Deletions of TSPAN12 Cause Familial Exudative Vitreoretinopathy (FEVR).

    PubMed

    Seo, Soo Hyun; Kim, Man Jin; Park, Sung Wook; Kim, Jeong Hun; Yu, Young Suk; Song, Ji Yun; Cho, Sung Im; Ahn, Joo Hyun; Oh, Yeon Hee; Lee, Jee-Soo; Lee, Seungjun; Seong, Moon-Woo; Park, Sung Sup; Kim, Ji Yeon

    2016-12-01

    Familial exudative vitreoretinopathy (FEVR) is a rare, hereditary visual disorder. The gene TSPAN12 is associated with autosomal dominant inheritance of FEVR. The prevalence and impact of large deletions/duplications of TSPAN12 on FEVR patients is unknown. To glean better insight of TSPAN12 on FEVR pathology, herein, we describe three FEVR patients with TSPAN12 deletions. Thirty-three Korean FEVR patients, who previously screened negative for TSPAN12 mutations, mutations in other FEVR-associated genes such as NDP, FZD4, LRP5, and large deletions and duplications of NDP, FZD4, and LRP5, were selected for TSPAN12 large deletion and duplication analyses. Semiquantitative multiplex PCR for TSPAN12 gene dosage analyses were performed, followed by droplet digital PCR (ddPCR) for validation. Among the 33 patients, three patients were confirmed to carry large TSPAN12 deletions. Two of them had whole-gene deletions of TSPAN12, and the other patient possessed a deletion of TSPAN12 in exon 4. FEVR severity detected in these patients was not more severe than in a patient with TSPAN12 point mutation. Regarding previously reported proportions of FEVR-associated genes contributing to the disorder's autosomal dominant inheritance pattern in Korea, we determined that patients with TSPAN12 large deletions were more common than patients with single nucleotide variants in TSPAN12. Evaluating TSPAN12 large deletions and duplications should be considered in FEVR screening and diagnosis as well as in routine genetic workups for FEVR patients.

  2. Motor and sensory neuropathy due to myelin infolding and paranodal damage in a transgenic mouse model of Charcot–Marie–Tooth disease type 1C

    PubMed Central

    Lee, Samuel M.; Sha, Di; Mohammed, Anum A.; Asress, Seneshaw; Glass, Jonathan D.; Chin, Lih-Shen; Li, Lian

    2013-01-01

    Charcot–Marie–Tooth disease type 1C (CMT1C) is a dominantly inherited motor and sensory neuropathy. Despite human genetic evidence linking missense mutations in SIMPLE to CMT1C, the in vivo role of CMT1C-linked SIMPLE mutations remains undetermined. To investigate the molecular mechanism underlying CMT1C pathogenesis, we generated transgenic mice expressing either wild-type or CMT1C-linked W116G human SIMPLE. Mice expressing mutant, but not wild type, SIMPLE develop a late-onset motor and sensory neuropathy that recapitulates key clinical features of CMT1C disease. SIMPLE mutant mice exhibit motor and sensory behavioral impairments accompanied by decreased motor and sensory nerve conduction velocity and reduced compound muscle action potential amplitude. This neuropathy phenotype is associated with focally infolded myelin loops that protrude into the axons at paranodal regions and near Schmidt–Lanterman incisures of peripheral nerves. We find that myelin infolding is often linked to constricted axons with signs of impaired axonal transport and to paranodal defects and abnormal organization of the node of Ranvier. Our findings support that SIMPLE mutation disrupts myelin homeostasis and causes peripheral neuropathy via a combination of toxic gain-of-function and dominant-negative mechanisms. The results from this study suggest that myelin infolding and paranodal damage may represent pathogenic precursors preceding demyelination and axonal degeneration in CMT1C patients. PMID:23359569

  3. Gab1 Acts as an Adapter Molecule Linking the Cytokine Receptor gp130 to ERK Mitogen-Activated Protein Kinase

    PubMed Central

    Takahashi-Tezuka, Mariko; Yoshida, Yuichi; Fukada, Toshiyuki; Ohtani, Takuya; Yamanaka, Yojiro; Nishida, Keigo; Nakajima, Koichi; Hibi, Masahiko; Hirano, Toshio

    1998-01-01

    Gab1 has structural similarities with Drosophila DOS (daughter of sevenless), which is a substrate of the protein tyrosine phosphatase Corkscrew. Both Gab1 and DOS have a pleckstrin homology domain and tyrosine residues, potential binding sites for various SH2 domain-containing adapter molecules when they are phosphorylated. We found that Gab1 was tyrosine phosphorylated in response to various cytokines, such as interleukin-6 (IL-6), IL-3, alpha interferon (IFN-α), and IFN-γ. Upon the stimulation of IL-6 or IL-3, Gab1 was found to form a complex with phosphatidylinositol (PI)-3 kinase and SHP-2, a homolog of Corkscrew. Mutational analysis of gp130, the common subunit of IL-6 family cytokine receptors, revealed that neither tyrosine residues of gp130 nor its carboxy terminus was required for tyrosine phosphorylation of Gab1. Expression of Gab1 enhanced gp130-dependent mitogen-activated protein (MAP) kinase ERK2 activation. A mutation of tyrosine 759, the SHP-2 binding site of gp130, abrogated the interactions of Gab1 with SHP-2 and PI-3 kinase as well as ERK2 activation. Furthermore, ERK2 activation was inhibited by a dominant negative p85 PI-3 kinase, wortmannin, or a dominant negative Ras. These observations suggest that Gab1 acts as an adapter molecule in transmitting signals to ERK MAP kinase for the cytokine receptor gp130 and that SHP-2, PI-3 kinase, and Ras are involved in Gab1-mediated ERK activation. PMID:9632795

  4. Rapid degradation of dominant-negative Rab27 proteins in vivo precludes their use in transgenic mouse models

    PubMed Central

    Ramalho, José S; Anders, Ross; Jaissle, Gesine B; Seeliger, Mathias W; Huxley, Clare; Seabra, Miguel C

    2002-01-01

    Background Transgenic mice have proven to be a powerful system to study normal and pathological gene functions. Here we describe an attempt to generate a transgenic mouse model for choroideremia (CHM), a slow-onset X-linked retinal degeneration caused by mutations in the Rab Escort Protein-1 (REP1) gene. REP1 is part of the Rab geranylgeranylation machinery, a modification that is essential for Rab function in membrane traffic. The loss of REP1 in CHM patients may trigger retinal degeneration through its effects on Rab proteins. We have previously reported that Rab27a is the Rab most affected in CHM lymphoblasts and hypothesised that the selective dysfunction of Rab27a (and possibly a few other Rab GTPases) plays an essential role in the retinal degenerative process. Results To investigate this hypothesis, we generated several lines of dominant-negative, constitutively-active and wild-type Rab27a (and Rab27b) transgenic mice whose expression was driven either by the pigment cell-specific tyrosinase promoter or the ubiquitous β-actin promoter. High levels of mRNA and protein were observed in transgenic lines expressing wild-type or constitutively active Rab27a and Rab27b. However, only modest levels of transgenic protein were expressed. Pulse-chase experiments suggest that the dominant-negative proteins, but not the constitutively-active or wild type proteins, are rapidly degraded. Consistently, no significant phenotype was observed in our transgenic lines. Coat-colour was normal, indicating normal Rab27a activity. Retinal function as determined by fundoscopy, angiography, electroretinography and histology was also normal. Conclusions We suggest that the instability of the dominant-negative mutant Rab27 proteins in vivo precludes the use of this approach to generate mouse models of disease caused by Rab27 GTPases. PMID:12401133

  5. Next generation sequencing of Cytokeratin 20-negative Merkel cell carcinoma reveals ultraviolet-signature mutations and recurrent TP53 and RB1 inactivation.

    PubMed

    Harms, Paul W; Collie, Angela M B; Hovelson, Daniel H; Cani, Andi K; Verhaegen, Monique E; Patel, Rajiv M; Fullen, Douglas R; Omata, Kei; Dlugosz, Andrzej A; Tomlins, Scott A; Billings, Steven D

    2016-03-01

    Merkel cell carcinoma is a rare but highly aggressive cutaneous neuroendocrine carcinoma. Cytokeratin 20 (CK20) is expressed in ~95% of Merkel cell carcinomas and is useful for distinction from morphologically similar entities including metastatic small-cell lung carcinoma. Lack of CK20 expression may make diagnosis of Merkel cell carcinoma more challenging, and has unknown biological significance. Approximately 80% of CK20-positive Merkel cell carcinomas are associated with the oncogenic Merkel cell polyomavirus. Merkel cell carcinomas lacking Merkel cell polyomavirus display distinct genetic changes from Merkel cell polyomavirus-positive Merkel cell carcinoma, including RB1 inactivating mutations. Unlike CK20-positive Merkel cell carcinoma, the majority of CK20-negative Merkel cell carcinomas are Merkel cell polyomavirus-negative, suggesting CK20-negative Merkel cell carcinomas predominantly arise through virus-independent pathway(s) and may harbor additional genetic differences from conventional Merkel cell carcinoma. Hence, we analyzed 15 CK20-negative Merkel cell carcinoma tumors (10 Merkel cell polyomavirus-negative, four Merkel cell polyomavirus-positive, and one undetermined) using the Ion Ampliseq Comprehensive Cancer Panel, which assesses copy number alterations and mutations in 409 cancer-relevant genes. Twelve tumors displayed prioritized high-level chromosomal gains or losses (average 1.9 per tumor). Non-synonymous high-confidence somatic mutations were detected in 14 tumors (average 11.9 per tumor). Assessing all somatic coding mutations, an ultraviolet-signature mutational profile was present, and more prevalent in Merkel cell polyomavirus-negative tumors. Recurrent deleterious tumor suppressor mutations affected TP53 (9/15, 60%), RB1 (3/15, 20%), and BAP1 (2/15, 13%). Oncogenic activating mutations included PIK3CA (3/15, 20%), AKT1 (1/15, 7%) and EZH2 (1/15, 7%). In conclusion, CK20-negative Merkel cell carcinoma display overlapping genetic changes with CK20-positive Merkel cell carcinoma, including RB1 mutations restricted to Merkel cell polyomavirus-negative tumors. However, some CK20-negative Merkel cell carcinomas harbor mutations not previously described in Merkel cell carcinoma. Hence, CK20-negative Merkel cell carcinomas harbor diverse oncogenic drivers which may represent therapeutic targets in individual tumors.

  6. Next Generation Sequencing of Cytokeratin 20-Negative Merkel Cell Carcinoma Reveals Ultraviolet Signature Mutations and Recurrent TP53 and RB1 Inactivation

    PubMed Central

    Harms, Paul W.; Collie, Angela M. B.; Hovelson, Daniel H.; Cani, Andi K.; Verhaegen, Monique E.; Patel, Rajiv M.; Fullen, Douglas R.; Omata, Kei; Dlugosz, Andrzej A.; Tomlins, Scott A.; Billings, Steven D.

    2016-01-01

    Merkel cell carcinoma is a rare but highly aggressive cutaneous neuroendocrine carcinoma. Cytokeratin-20 (CK20) is expressed in approximately 95% of Merkel cell carcinomas and is useful for distinction from morphologically similar entities including metastatic small cell lung carcinoma. Lack of CK20 expression may make diagnosis of Merkel cell carcinoma more challenging, and has unknown biological significance. Approximately 80% of CK20-positive Merkel cell carcinomas are associated with the oncogenic Merkel cell polyomavirus. Merkel cell carcinomas lacking Merkel cell polyomavirus display distinct genetic changes from Merkel cell polyomavirus-positive Merkel cell carcinoma, including RB1 inactivating mutations. Unlike CK20-positive Merkel cell carcinoma, the majority of CK20-negative Merkel cell carcinomas are Merkel cell polyomavirus-negative, suggesting CK20-negative Merkel cell carcinomas predominantly arise through virus-independent pathway(s) and may harbor additional genetic differences from conventional Merkel cell carcinoma. Hence, we analyzed 15 CK20-negative Merkel cell carcinoma tumors (ten Merkel cell polyomavirus-negative, four Merkel cell polyomavirus-positive, and one undetermined) using the Ion Ampliseq Comprehensive Cancer Panel, which assesses copy number alterations and mutations in 409 cancer-relevant genes. Twelve tumors displayed prioritized high-level chromosomal gains or losses (average 1.9 per tumor). Non-synonymous high confidence somatic mutations were detected in 14 tumors (average 11.9 per tumor). Assessing all somatic coding mutations, an ultraviolet-signature mutational profile was present, and more prevalent in Merkel cell polyomavirus-negative tumors. Recurrent deleterious tumor suppressor mutations affected TP53 (9/15, 60%), RB1 (3/15, 20%), and BAP1 (2/15, 13%). Oncogenic activating mutations included PIK3CA (3/15, 20%), AKT1 (1/15, 7%)) and EZH2 (1/15, 7%). In conclusion, CK20-negative Merkel cell carcinoma display overlapping genetic changes with CK20-positive Merkel cell carcinoma, including RB1 mutations restricted to Merkel cell polyomavirus-negative tumors. However, some CK20-negative Merkel cell carcinomas harbor mutations not previously described in Merkel cell carcinoma. Hence, CK20-negative Merkel cell carcinomas harbor diverse oncogenic drivers which may represent therapeutic targets in individual tumors. PMID:26743471

  7. Associations between colorectal cancer molecular markers and pathways with clinicopathologic features in older women.

    PubMed

    Samadder, N Jewel; Vierkant, Robert A; Tillmans, Lori S; Wang, Alice H; Weisenberger, Daniel J; Laird, Peter W; Lynch, Charles F; Anderson, Kristin E; French, Amy J; Haile, Robert W; Potter, John D; Slager, Susan L; Smyrk, Thomas C; Thibodeau, Stephen N; Cerhan, James R; Limburg, Paul J

    2013-08-01

    Colorectal tumors have a large degree of molecular heterogeneity. Three integrated pathways of carcinogenesis (ie, traditional, alternate, and serrated) have been proposed, based on specific combinations of microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and mutations in BRAF and KRAS. We used resources from the population-based Iowa Women's Health Study (n = 41,836) to associate markers of colorectal tumors, integrated pathways, and clinical and pathology characteristics, including survival times. We assessed archived specimens from 732 incident colorectal tumors and characterized them as microsatellite stable (MSS), MSI high or MSI low, CIMP high or CIMP low, CIMP negative, and positive or negative for BRAF and/or KRAS mutations. Informative marker data were collected from 563 tumors (77%), which were assigned to the following integrated pathways: traditional (MSS, CIMP negative, BRAF mutation negative, and KRAS mutation negative; n = 170), alternate (MSS, CIMP low, BRAF mutation negative, and KRAS mutation positive; n = 58), serrated (any MSI, CIMP high, BRAF mutation positive, and KRAS mutation negative; n = 142), or unassigned (n = 193). Multivariable-adjusted Cox proportional hazards regression models were used to assess the associations of interest. Patients' mean age (P = .03) and tumors' anatomic subsite (P = .0001) and grade (P = .0001) were significantly associated with integrated pathway assignment. Colorectal cancer (CRC) mortality was not associated with the traditional, alternate, or serrated pathways, but was associated with a subset of pathway-unassigned tumors (MSS or MSI low, CIMP negative, BRAF mutation negative, and KRAS mutation positive) (n = 96 cases; relative risk = 1.76; 95% confidence interval, 1.07-2.89, compared with the traditional pathway). We identified clinical and pathology features associated with molecularly defined CRC subtypes. However, additional studies are needed to determine how these features might influence prognosis. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Precore and core promoter mutations of hepatitis B virus and hepatitis B e antigen-negative chronic hepatitis B in Korea.

    PubMed

    Yoo, Byung Chul; Park, Joong-Won; Kim, Hyung Joon; Lee, Dong Ho; Cha, Young Ju; Park, Sill Moo

    2003-01-01

    The aims of this study were to determine the frequency of precore/core promoter mutations and hepatitis B e antigen (HBeAg)-negative chronic hepatitis B (e-CHB) in Korea. Patients with chronic hepatitis B virus (HBV) infection were tested for HBeAg, anti-HBe, liver profile and HBV-DNA by a branched DNA (bDNA) assay. Serum HBV-DNA was amplified by a polymerase chain reaction and the precore/core promoter sequence was determined. Among the 413 consecutive HBeAg-negative patients, 19.6% were bDNA-positive. Evidence of liver disease was found in 90.1% of bDNA-positive and 41.7% of bDNA-negative patients. Overall, 17.7% of HBeAg-negative patients had e-CHB. Precore mutation (A1896) was detected in 93.7% of HBeAg-negative bDNA-positive and 93.9% of HBeAg-negative bDNA-negative patients. In 59 HBeAg-positive patients, 78% had wild-type and 22% had a mixture of wild-type and A1896 mutant. Core promoter TA mutation was detected in 89.9% of HBeAg-negative bDNA-positive patients, 89.8% of HBeAg-negative bDNA-negative patients, and 74.6% of HBeAg-positive patients. No correlation was found between the presence of precore/core promoter mutations and HBV-DNA levels or disease severity. In Korean patients infected with HBV genotype C, precore mutation occurred almost invariably along with HBeAg seroconversion and core promoter TA mutation was frequent irrespective of viral replication levels or disease severity.

  9. BDNF Val66Met moderates memory impairment, hippocampal function and tau in preclinical autosomal dominant Alzheimer's disease.

    PubMed

    Lim, Yen Ying; Hassenstab, Jason; Cruchaga, Carlos; Goate, Alison; Fagan, Anne M; Benzinger, Tammie L S; Maruff, Paul; Snyder, Peter J; Masters, Colin L; Allegri, Ricardo; Chhatwal, Jasmeer; Farlow, Martin R; Graff-Radford, Neill R; Laske, Christoph; Levin, Johannes; McDade, Eric; Ringman, John M; Rossor, Martin; Salloway, Stephen; Schofield, Peter R; Holtzman, David M; Morris, John C; Bateman, Randall J

    2016-10-01

    SEE ROGAEVA AND SCHMITT-ULMS DOI101093/AWW201 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is implicated in synaptic excitation and neuronal integrity, and has previously been shown to moderate amyloid-β-related memory decline and hippocampal atrophy in preclinical sporadic Alzheimer's disease. However, the effect of BDNF in autosomal dominant Alzheimer's disease is unknown. We aimed to determine the effect of BDNF Val66Met on cognitive function, hippocampal function, tau and amyloid-β in preclinical autosomal dominant Alzheimer's disease. We explored effects of apolipoprotein E (APOE) ε4 on these relationships. The Dominantly Inherited Alzheimer Network conducted clinical, neuropsychological, genetic, biomarker and neuroimaging measures at baseline in 131 mutation non-carriers and 143 preclinical autosomal dominant Alzheimer's disease mutation carriers on average 12 years before clinical symptom onset. BDNF genotype data were obtained for mutation carriers (95 Val 66 homozygotes, 48 Met 66 carriers). Among preclinical mutation carriers, Met 66 carriers had worse memory performance, lower hippocampal glucose metabolism and increased levels of cerebrospinal fluid tau and phosphorylated tau (p-tau) than Val 66 homozygotes. Cortical amyloid-β and cerebrospinal fluid amyloid-β 42 levels were significantly different from non-carriers but did not differ between preclinical mutation carrier Val 66 homozygotes and Met 66 carriers. There was an effect of APOE on amyloid-β levels, but not cognitive function, glucose metabolism or tau. As in sporadic Alzheimer's disease, the deleterious effects of amyloid-β on memory, hippocampal function, and tau in preclinical autosomal dominant Alzheimer's disease mutation carriers are greater in Met 66 carriers. To date, this is the only genetic factor found to moderate downstream effects of amyloid-β in autosomal dominant Alzheimer's disease. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Correlation between connexin 32 gene mutations and clinical phenotype in X-linked dominant Charcot-Marie-Tooth neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionasescu, V.; Ionasescu, R.; Searby, C.

    1996-06-14

    We studied the relationship between the genotype and clinical phenotype in 27 families with dominant X-linked Charcot-Marie-Tooth (CMTX1) neuropathy. Twenty-two families showed mutations in the coding region of the connexin32 (cx32) gene. The mutations include four nonsense mutations, eight missense mutations, two medium size deletions, and one insertion. Most missense mutations showed a mild clinical phenotype (five out of eight), whereas all nonsense mutations, the larger of the two deletions, and the insertion that produced frameshifts showed severe phenotypes. Five CMTX1 families with mild clinical phenotype showed no point mutations of the cx32 gene coding region. Three of these familiesmore » showed positive genetic linkage with the markers of the Xq13.1 region. The genetic linkage of the remaining two families could not be evaluated because of their small size. 25 refs., 1 fig., 1 tab.« less

  11. A novel missense mutation in the ACTG1 gene in a family with congenital autosomal dominant deafness: A case report.

    PubMed

    Lee, Cha Gon; Jang, Jahyeon; Jin, Hyun-Seok

    2018-06-01

    The ACTG1 gene encodes the cytoskeletal protein γ-actin, which functions in non‑muscle cells and is abundant in the auditory hair cells of the cochlea. Autosomal dominant missense mutations in ACTG1 are associated with DFNA20/26, a disorder that is typically characterized by post‑lingual progressive hearing loss. To date, 17 missense mutations in ACTG1 have been reported in 20 families with DFNA20/26. The present study described a small family with autosomal dominant nonsyndromic hearing loss. A novel heterozygous missense mutation, c.94C>T (p.Pro32Ser), in ACTG1 was identified using the TruSight One sequencing panel. Notably, congenital hearing loss in our proband was identified by newborn hearing screening at birth. In silico predictions of protein structure and function indicate that the p.Pro32Ser mutation may result in conformational changes in γ‑actin. The present study expands the understanding of the phenotypic effects of heterozygous missense mutations in the ACTG1 gene. In specific, the present results emphasize that mutations in ACTG1 result in a diverse spectrum of onset ages, including congenital in addition to post‑lingual onset.

  12. Comparison of next-generation sequencing mutation profiling with BRAF and IDH1 mutation-specific immunohistochemistry.

    PubMed

    Jabbar, Kausar J; Luthra, Rajalakshmi; Patel, Keyur P; Singh, Rajesh R; Goswami, Rashmi; Aldape, Ken D; Medeiros, L Jeffrey; Routbort, Mark J

    2015-04-01

    Mutation-specific antibodies for BRAF V600E and IDH1 R132H offer convenient immunohistochemical (IHC) assays to detect these mutations in tumors. Previous studies using these antibodies have shown high sensitivity and specificity, but use in routine diagnosis with qualitative assessment has not been well studied. In this retrospective study, we reviewed BRAF and IDH1 mutation-specific IHC results compared with separately obtained clinical next-generation sequencing results. For 67 tumors with combined IDH1 IHC and mutation data, IHC was unequivocally reported as positive or negative in all cases. Sensitivity of IHC for IDH1 R132H was 98% and specificity was 100% compared with mutation status. Four IHC-negative samples showed non-R132H IDH1 mutations including R132C, R132G, and P127T. For 128 tumors with combined BRAF IHC and mutation data, IHC was positive in 33, negative in 82, and equivocal in 13 tumors. The sensitivity of IHC was 97% and specificity was 99% when including only unequivocally positive or negative results. If equivocal IHC cases were included in the analysis as negative, sensitivity fell to 81%. If equivocal cases were classified as positive, specificity dropped to 91%. Eight IHC-negative samples showed non-V600E BRAF mutations including V600K, N581I, V600M, and K601E. We conclude that IHC for BRAF V600E and IDH1 R132H is relatively sensitive and specific, but there is a discordance rate that is not trivial. In addition, a significant proportion of patients harbor BRAF non-V600E or IDH1 non-R132H mutations not detectable by IHC, potentially limiting utility of IHC screening for BRAF and IDH1 mutations.

  13. A novel OTX2 mutation in a patient with combined pituitary hormone deficiency, pituitary malformation, and an underdeveloped left optic nerve.

    PubMed

    Gorbenko Del Blanco, Darya; Romero, Christopher J; Diaczok, Daniel; de Graaff, Laura C G; Radovick, Sally; Hokken-Koelega, Anita C S

    2012-09-01

    Orthodenticle homolog 2 (OTX2) is a homeobox family transcription factor required for brain and eye formation. Various genetic alterations in OTX2 have been described, mostly in patients with severe ocular malformations. In order to expand the knowledge of the spectrum of OTX2 mutation, we performed OTX2 mutation screening in 92 patients with combined pituitary hormone deficiency (CPHD). We directly sequenced the coding regions and exon-intron boundaries of OTX2 in 92 CPHD patients from the Dutch HYPOPIT study in whom mutations in the classical CPHD genes PROP1, POU1F1, HESX1, LHX3, and LHX4 had been ruled out. Among 92 CPHD patients, we identified a novel heterozygous missense mutation c.401C>G (p.Pro134Arg) in a patient with CPHD, pituitary malformation, and an underdeveloped left optic nerve. Binding of both the wild-type and mutant OTX2 proteins to bicoid binding sites was equivalent; however, the mutant OTX2 exhibited decreased transactivation. We describe a novel missense heterozygous OTX2 mutation that acts as a dominant negative inhibitor of target gene expression in a patient with CPHD, pituitary malformation, and optic nerve hypoplasia. We provide an overview of all OTX2 mutations described till date, which show that OTX2 is a promising candidate gene for genetic screening of patients with CPHD or isolated GH deficiency (IGHD). As the majority of the OTX2 mutations found in patients with CPHD, IGHD, or short stature have been found in exon 5, we recommend starting mutational screening in those patients in exon 5 of the gene.

  14. BRAF/KRAS gene sequencing of sebaceous neoplasms after mismatch repair protein analysis.

    PubMed

    Cornejo, Kristine M; Hutchinson, Lloyd; Deng, April; Tomaszewicz, Keith; Welch, Matthew; Lyle, Stephen; Dresser, Karen; Cosar, Ediz F

    2014-06-01

    Sebaceous neoplasms are cutaneous markers for the autosomal-dominant Muir-Torre syndrome (MTS). This phenotypic variant of Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes. Microsatellite instability or loss of protein expression suggests a mutation or promoter hypermethylation in 1 of the MMR genes. BRAF gene sequencing may help to distinguish between patients with sporadic and LS-associated colorectal carcinomas with loss of MLH1 expression. LS-associated carcinomas are virtually negative for BRAF mutations, but a subset harbors KRAS mutations. The aim of our study was to test sebaceous neoplasms for V600E BRAF or KRAS mutations to determine if these mutations are associated with somatic or germline MMR defects, analogous to colorectal carcinomas. Over a 4-year period, 32 cases comprising 21 sebaceous adenomas, 3 sebaceomas, and 8 sebaceous carcinomas with sufficient material for testing were collected. MMR immunohistochemistry showed that 7 neoplasms had combined loss of MLH1-PMS2, 16 neoplasms had combined loss of MSH2-MSH6, 2 neoplasms had solitary loss of MSH6, and 7 sebaceous neoplasms had intact protein expression. BRAF/KRAS testing revealed all sebaceous neoplasms contained a wild-type BRAF gene. Two (15%) of 13 patients with MTS were found to harbor a KRAS mutation and loss of MLH1 expression. We conclude that a V600E BRAF mutation may not be helpful in distinguishing sporadic from MTS-associated sebaceous neoplasms. Further studies are needed to determine if KRAS mutations are restricted to patients with MTS or are also present in sporadic sebaceous neoplasms. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy

    PubMed Central

    Marchant, D; Yu, K; Bigot, K; Roche, O; Germain, A; Bonneau, D; Drouin‐Garraud, V; Schorderet, D F; Munier, F; Schmidt, D; Neindre, P Le; Marsac, C; Menasche, M; Dufier, J L; Fischmeister, R; Hartzell, C; Abitbol, M

    2007-01-01

    Purpose The mutations responsible for Best vitelliform macular dystrophy (BVMD) are found in a gene called VMD2. The VMD2 gene encodes a transmembrane protein named bestrophin‐1 (hBest1) which is a Ca2+‐sensitive chloride channel. This study was performed to identify disease‐specific mutations in 27 patients with BVMD. Because this disease is characterised by an alteration in Cl− channel function, patch clamp analysis was used to test the hypothesis that one of the VMD2 mutated variants causes the disease. Methods Direct sequencing analysis of the 11 VMD2 exons was performed to detect new abnormal sequences. The mutant of hBest1 was expressed in HEK‐293 cells and the associated Cl− current was examined using whole‐cell patch clamp analysis. Results Six new VMD2 mutations were identified, located exclusively in exons four, six and eight. One of these mutations (Q293H) was particularly severe. Patch clamp analysis of human embryonic kidney cells expressing the Q293H mutant showed that this mutant channel is non‐functional. Furthermore, the Q293H mutant inhibited the function of wild‐type bestrophin‐1 channels in a dominant negative manner. Conclusions This study provides further support for the idea that mutations in VMD2 are a necessary factor for Best disease. However, because variable expressivity of VMD2 was observed in a family with the Q293H mutation, it is also clear that a disease‐linked mutation in VMD2 is not sufficient to produce BVMD. The finding that the Q293H mutant does not form functional channels in the membrane could be explained either by disruption of channel conductance or gating mechanisms or by improper trafficking of the protein to the plasma membrane. PMID:17287362

  16. A case of a Tunisian Rett patient with a novel double-mutation of the MECP2 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendri-Kriaa, Nourhene, E-mail: nourhene.fendri@gmail.com; Hsairi, Ines; Kifagi, Chamseddine

    2011-06-03

    Highlights: {yields} Sequencing of the MECP2 gene, modeling and comparison of the two variants were performed in a Tunisian classical Rett patient. {yields} A double-mutation: a new and de novo mutation c.535C > T and the common one c.763C > T of the MECP2 gene was identified. {yields} The P179S transition may change local electrostatic properties which may affect the function and stability of the protein MeCP2. -- Abstract: Rett syndrome is an X-linked dominant disorder caused frequently by mutations in the methyl-CpG-binding protein 2 gene (MECP2). Rett patients present an apparently normal psychomotor development during the first 6-18 monthsmore » of life. Thereafter, they show a short period of developmental stagnation followed by a rapid regression in language and motor development. The aim of this study was to perform a mutational analysis of the MECP2 gene in a classical Rett patient by sequencing the corresponding gene and modeling the found variants. The results showed the presence of a double-mutation: a new and de novo mutation c.535C > T (p.P179S) and the common c.763C > T (p.R255X) transition of the MECP2 gene. The p.P179S mutation was located in a conserved amino acid in CRIR domain (corepressor interacting region). Modeling results showed that the P179S transition could change local electrostatic properties by adding a negative charge due to serine hydroxyl group of this region of MeCP2 which may affect the function and stability of the protein. The p.R255X mutation is located in TRD-NLS domain (transcription repression domain-nuclear localization signal) of MeCP2 protein.« less

  17. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryja, T.P.; Han, L.B.; Cowley, G.S.

    1991-10-15

    The authors searched for point mutations in every exon of the rhodopsin gene in 150 patients from separate families with autosomal dominant retinitis pigmentosa. Including the 4 mutations the authors reported previously, they found a total of 17 different mutations that correlate with the disease. Each of these mutations is a single-base substitution corresponding to a single amino acid substitution. Based on current models for the structure of rhodopsin, 3 of the 17 mutant amino acids are normally located on the cytoplasmic side of the protein, 6 in transmembrane domains, and 8 on the intradiscal side. Forty-three of the 150more » patients (29%) carry 1 of these mutations, and no patient has more than 1 mutation. In every family with a mutation so far analyzed, the mutation cosegregates with the disease. They found one instance of a mutation in an affected patient that was absent in both unaffected parents (i.e., a new germ-line mutation), indicating that some isolate cases of retinitis pigmentosa carry a mutation of the rhodopsin gene.« less

  18. Interpersonal Responses Among Sibling Dyads Tested for BRCA1/BRCA2 Gene Mutations

    PubMed Central

    Hamann, Heidi A.; Croyle, Robert T.; Smith, Timothy W.; Smith, Ken R.; Ruiz, John M.; Kircher, John C.; Botkin, Jeffrey R.

    2013-01-01

    Objective The familial context plays an important role in psychosocial responses to genetic testing. The purpose of this study was to compare sibling pairs with different combinations of BRCA1/BRCA2 test results on measures of affect, interpersonal responses, and physiological reactions. Design Forty-nine sibling dyads with different combinations of BRCA1/BRCA2 test results (i.e., mixed, positive, negative) completed a questionnaire, and 35 of the dyads also participated in a laboratory-based discussion of genetic testing. Main Outcome Measures The primary outcome variables included participant reports of supportive actions toward their sibling, state anger and anxiety, perceptions of sibling behavior, and electrodermal responses. Results Compared to positive and negative dyads, mixed pairs reported less friendly general support actions, noted more anger, and perceived their sibling to be less friendly and more dominant during the interactions. In comparisons between same-result (i.e., positive, negative) pairs, positive dyads reported more dominant support behaviors and perceived their sibling to be friendlier during the interactions. Conclusion Data suggest that siblings who have different test results may experience more interpersonal strain than siblings who have the same test result. Future research on genetic testing and family relationships can expand upon these findings. PMID:18230020

  19. An abnormal Ca2+ response in mutant sarcomere protein–mediated familial hypertrophic cardiomyopathy

    PubMed Central

    Fatkin, Diane; McConnell, Bradley K.; Mudd, James O.; Semsarian, Christopher; Moskowitz, Ivan G.P.; Schoen, Frederick J.; Giewat, Michael; Seidman, Christine E.; Seidman, J.G.

    2000-01-01

    Dominant-negative sarcomere protein gene mutations cause familial hypertrophic cardiomyopathy (FHC), a disease characterized by left-ventricular hypertrophy, angina, and dyspnea that can result in sudden death. We report here that a murine model of FHC bearing a cardiac myosin heavy-chain gene missense mutation (αMHC403/+), when treated with calcineurin inhibitors or a K+-channel agonist, developed accentuated hypertrophy, worsened histopathology, and was at risk for early death. Despite distinct pharmacologic targets, each agent augmented diastolic Ca2+ concentrations in wild-type cardiac myocytes; αMHC403/+ myocytes failed to respond. Pretreatment with a Ca2+-channel antagonist abrogated diastolic Ca2+ changes in wild-type myocytes and prevented the exaggerated hypertrophic response of treated αMHC403/+ mice. We conclude that FHC-causing sarcomere protein gene mutations cause abnormal Ca2+ responses that initiate a hypertrophic response. These data define an important Ca2+-dependent step in the pathway by which mutant sarcomere proteins trigger myocyte growth and remodel the heart, provide definitive evidence that environment influences progression of FHC, and suggest a rational therapeutic approach to this prevalent human disease. PMID:11104788

  20. The Genetics of a Small Chromosome Region of DROSOPHILA MELANOGASTER Containing the Structural Gene for Alcohol Dehydrogenase. IV: Scutoid, an Antimorphic Mutation

    PubMed Central

    Ashburner, M.; Tsubota, S.; Woodruff, R. C.

    1982-01-01

    Exchange mapping locates the dominant mutation Scutoid to the right of Adh on chromosome arm 2L of D. melanogaster. However, deletion mapping indicates that Sco is to the left of Adh. The phenotype of Sco is sensitive to mutation, or deletion, of noc+ and of three genes, el, l(2)br22, and l(2)br29 mapping immediately distal to noc. The four contiguous loci, el, l(2)br22, l(2)br29 and noc, although separable by deletion end points, interact, because certain (or all) alleles of these four loci show partial failure of complementation, or even negative complementation. The simplest hypothesis is that Sco is a small reciprocal transposition, the genes noc, osp, and Adh exchanging places with three genes normally mapping proximal to them: l(2)br34, l(2)br35 and rd. The Sco phenotype is thought to result from a position effect at the newly created noc/l(2)br28 junction. PMID:6816673

  1. Presence of calreticulin mutations in JAK2-negative polycythemia vera.

    PubMed

    Broséus, Julien; Park, Ji-Hye; Carillo, Serge; Hermouet, Sylvie; Girodon, François

    2014-12-18

    Calreticulin (CALR) mutations have been reported in Janus kinase 2 (JAK2)- and myeloproliferative leukemia (MPL)-negative essential thrombocythemia and primary myelofibrosis. In contrast, no CALR mutations have ever been reported in the context of polycythemia vera (PV). Here, we describe 2 JAK2(V617F)-JAK2(exon12)-negative PV patients who presented with a CALR mutation in peripheral granulocytes at the time of diagnosis. In both cases, the CALR mutation was a 52-bp deletion. Single burst-forming units-erythroid (BFU-E) from 1 patient were grown in vitro and genotyped: the same CALR del 52-bp mutation was noted in 31 of the 37 colonies examined; 30 of 31 BFU-E were heterozygous for CALR del 52 bp, and 1 of 31 BFU-E was homozygous for CALR del 52 bp. In summary, although unknown mutations leading to PV cannot be ruled out, our results suggest that CALR mutations can be associated with JAK2-negative PV. © 2014 by The American Society of Hematology.

  2. Autosomal-dominant Leber Congenital Amaurosis Caused by a Heterozygous CRX Mutation in a Father and Son.

    PubMed

    Arcot Sadagopan, Karthikeyan; Battista, Robert; Keep, Rosanne B; Capasso, Jenina E; Levin, Alex V

    2015-06-01

    Leber congenital amaurosis (LCA) is most often an autosomal recessive disorder. We report a father and son with autosomal dominant LCA due to a mutation in the CRX gene. DNA screening using an allele specific assay of 90 of the most common LCA-causing variations in the coding sequences of AIPL1, CEP290, CRB1, CRX, GUCY2D, RDH12 and RPE65 was performed on the father. Automated DNA sequencing of his son examining exon 3 of the CRX gene was subsequently performed. Both father and son have a heterozygous single base pair deletion of an adenine at codon 153 in the coding sequence of the CRX gene resulting in a frameshift mutation. Mutations involving the CRX gene may demonstrate an autosomal dominant inheritance pattern for LCA.

  3. Identification of a novel mutation in the myosin VIIA motor domain in a family with autosomal dominant hearing loss (DFNA11).

    PubMed

    Di Leva, Francesca; D'Adamo, Pio; Cubellis, Maria Vittoria; D'Eustacchio, Angela; Errichiello, Monica; Saulino, Claudio; Auletta, Gennaro; Giannini, Pasquale; Donaudy, Francesca; Ciccodicola, Alfredo; Gasparini, Paolo; Franzè, Annamaria; Marciano, Elio

    2006-01-01

    We ascertained a large Italian family with an autosomal dominant form of non-syndromic sensorineural hearing loss with vestibular involvement. A genome-wide scan found linkage to locus DFNA11. Sequencing of the MYO7A gene in the linked region identified a new missense mutation resulting in an Ala230Val change in the motor domain of the myosin VIIA. Myosin VIIA has already been implicated in several forms of deafness, but this is the third mutation causing a dominant form of deafness, located in the myosin VIIA motor domain in a region never involved in hearing loss until now. A modelled protein structure of myosin VII motor domain provides evidence for a significant functional effect of this missense mutation. Copyright (c) 2006 S. Karger AG, Basel.

  4. Prevalence of thyrotropin receptor germline mutations and clinical courses in 89 hyperthyroid patients with diffuse goiter and negative anti-thyrotropin receptor antibodies.

    PubMed

    Nishihara, Eijun; Fukata, Shuji; Hishinuma, Akira; Amino, Nobuyuki; Miyauchi, Akira

    2014-05-01

    We studied the frequency of thyrotropin (TSH) receptor mutations in hyperthyroid patients with diffuse goiter and negative TSH receptor antibodies (TRAb), and the clinical pictures of the hyperthyroid patients in the presence and absence of mutations. From 2003 through 2012, 89 hyperthyroid patients with diffuse goiter and negative TRAb based on a second- or third-generation assay underwent sequence analysis of the TSH receptor gene from peripheral leukocytes. The outcome of hyperthyroidism in patients with a TSH receptor mutation and their affected family members was compared with that in patients without any mutation after a 1-10-year follow-up. Germline mutations of the TSH receptor occurred in 4 of the 89 patients (4.5%), including 3 definitive constitutively activating mutations (L512Q, E575K, and D617Y). The main difference in the clinical outcome of hyperthyroidism was that no patients with a TSH receptor mutation achieved euthyroidism throughout the follow-up, while 23.5% of patients without any mutation entered remission. The progression from subclinical to overt hyperthyroidism was not significantly different between patients with or without a mutation. Meanwhile, 10.3% of TRAb-negative patients without any TSH receptor mutation developed TRAb-positive Graves' hyperthyroidism during the follow-up. The prevalence of nonautoimmune hyperthyroidism with TSH receptor mutations is lower than that of latent Graves' disease in TRAb-negative patients with hyperthyroidism. However, all affected patients with a TSH receptor mutation showed persistent hyperthyroidism regardless of subclinical or overt hyperthyroidism throughout the follow-up.

  5. Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles.

    PubMed

    Darbro, Benjamin W; Mahajan, Vinit B; Gakhar, Lokesh; Skeie, Jessica M; Campbell, Elizabeth; Wu, Shu; Bing, Xinyu; Millen, Kathleen J; Dobyns, William B; Kessler, John A; Jalali, Ali; Cremer, James; Segre, Alberto; Manak, J Robert; Aldinger, Kimerbly A; Suzuki, Satoshi; Natsume, Nagato; Ono, Maya; Hai, Huynh Dai; Viet, Le Thi; Loddo, Sara; Valente, Enza M; Bernardini, Laura; Ghonge, Nitin; Ferguson, Polly J; Bassuk, Alexander G

    2013-08-01

    We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker malformation and occipital cephaloceles and detected a mutation in the extracellular matrix (ECM) protein-encoding gene NID1. In a second family, protein interaction network analysis identified a mutation in LAMC1, which encodes a NID1-binding partner. Structural modeling of the NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings implicate the ECM in the pathogenesis of Dandy-Walker spectrum disorders. © 2013 WILEY PERIODICALS, INC.

  6. Early behavioural changes in familial Alzheimer's disease in the Dominantly Inherited Alzheimer Network.

    PubMed

    Ringman, John M; Liang, Li-Jung; Zhou, Yan; Vangala, Sitaram; Teng, Edmond; Kremen, Sarah; Wharton, David; Goate, Alison; Marcus, Daniel S; Farlow, Martin; Ghetti, Bernardino; McDade, Eric; Masters, Colin L; Mayeux, Richard P; Rossor, Martin; Salloway, Stephen; Schofield, Peter R; Cummings, Jeffrey L; Buckles, Virginia; Bateman, Randall; Morris, John C

    2015-04-01

    Prior studies indicate psychiatric symptoms such as depression, apathy and anxiety are risk factors for or prodromal symptoms of incipient Alzheimer's disease. The study of persons at 50% risk for inheriting autosomal dominant Alzheimer's disease mutations allows characterization of these symptoms before progressive decline in a population destined to develop illness. We sought to characterize early behavioural features in carriers of autosomal dominant Alzheimer's disease mutations. Two hundred and sixty-one persons unaware of their mutation status enrolled in the Dominantly Inherited Alzheimer Network, a study of persons with or at-risk for autosomal dominant Alzheimer's disease, were evaluated with the Neuropsychiatric Inventory-Questionnaire, the 15-item Geriatric Depression Scale and the Clinical Dementia Rating Scale (CDR). Ninety-seven asymptomatic (CDR = 0), 25 mildly symptomatic (CDR = 0.5), and 33 overtly affected (CDR > 0.5) autosomal dominant Alzheimer's disease mutation carriers were compared to 106 non-carriers with regard to frequency of behavioural symptoms on the Neuropsychiatric Inventory-Questionnaire and severity of depressive symptoms on the Geriatric Depression Scale using generalized linear regression models with appropriate distributions and link functions. Results from the adjusted analyses indicated that depressive symptoms on the Neuropsychiatric Inventory-Questionnaire were less common in cognitively asymptomatic mutation carriers than in non-carriers (5% versus 17%, P = 0.014) and the odds of experiencing at least one behavioural sign in cognitively asymptomatic mutation carriers was lower than in non-carriers (odds ratio = 0.50, 95% confidence interval: 0.26-0.98, P = 0.042). Depression (56% versus 17%, P = 0.0003), apathy (40% versus 4%, P < 0.0001), disinhibition (16% versus 2%, P = 0.009), irritability (48% versus 9%, P = 0.0001), sleep changes (28% versus 7%, P = 0.003), and agitation (24% versus 6%, P = 0.008) were more common and the degree of self-rated depression more severe (mean Geriatric Depression Scale score of 2.8 versus 1.4, P = 0.006) in mildly symptomatic mutation carriers relative to non-carriers. Anxiety, appetite changes, delusions, and repetitive motor activity were additionally more common in overtly impaired mutation carriers. Similar to studies of late-onset Alzheimer's disease, we demonstrated increased rates of depression, apathy, and other behavioural symptoms in the mildly symptomatic, prodromal phase of autosomal dominant Alzheimer's disease that increased with disease severity. We did not identify any increased psychopathology in mutation carriers over non-carriers during the presymptomatic stage, suggesting these symptoms result when a threshold of neurodegeneration is reached rather than as life-long qualities. Unexpectedly, we found lower rates of depressive symptoms in cognitively asymptomatic mutation carriers. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Gene therapy to develop a genetically engineered cardiac pacemaker.

    PubMed

    Glenn, Christopher M; Pogwizd, Steven M

    2003-01-01

    While cardiac pacemakers are frequently used for the treatment of bradydysrhythmias (from diseases of the cardiac conduction system), their use is still limited by complications that can be life-threatening and expensive. Genetic engineering approaches offer an opportunity to modulate cellular automaticity in a manner that could have significant therapeutic potential. It is well known that ventricular myocytes exhibit a more negative diastolic potential than do pacemaker cells, in large part because of the inward rectifying potassium current/K1 (which pacemaker cells lack). Taking advantage of these intrinsic electrophysiological differences, a biological pacemaker has recently been developed by Miake et al (Nature 2002; 419:132-133) using adenoviral gene transfer approaches. By isolating the gene responsible for/K1 (the Kir2.1 gene), mutating it to make it a dysfunctional channel (a dominant-negative), inserting the mutated gene into an adenoviral vector, and delivering the virus to the hearts of guinea pigs, the investigators were able to successfully convert some ventricular myocytes to pacemaker cells. While issues of safety and long-term efficacy need to be further established, the results of these experiments provide proof of principle that gene transfer offers great promise for treatment of electrophysiological disorders including conduction system disease.

  8. Massively Parallel Sequencing of a Chinese Family with DFNA9 Identified a Novel Missense Mutation in the LCCL Domain of COCH

    PubMed Central

    Gu, Xiaodong; Su, Wenling; Tang, Mingliang; Guo, Luo; Zhao, Liping

    2016-01-01

    DFNA9 is a late-onset, progressive, autosomal dominantly inherited sensorineural hearing loss with vestibular dysfunction, which is caused by mutations in the COCH (coagulation factor C homology) gene. In this study, we investigated a Chinese family segregating autosomal dominant nonsyndromic sensorineural hearing loss. We identified a missense mutation c.T275A p.V92D in the LCCL domain of COCH cosegregating with the disease and absent in 100 normal hearing controls. This mutation leads to substitution of the hydrophobic valine to an acidic amino acid aspartic acid. Our data enriched the mutation spectrum of DFNA9 and implied the importance for mutation screening of COCH in age related hearing loss with vestibular dysfunctions. PMID:28116169

  9. Whole exome sequencing with genomic triangulation implicates CDH2-encoded N-cadherin as a novel pathogenic substrate for arrhythmogenic cardiomyopathy.

    PubMed

    Turkowski, Kari L; Tester, David J; Bos, J Martijn; Haugaa, Kristina H; Ackerman, Michael J

    2017-03-01

    Arrhythmogenic cardiomyopathy (ACM) is a heritable disease characterized by fibrofatty replacement of cardiomyocytes, has a prevalence of approximately 1 in 5000 individuals, and accounts for approximately 20% of sudden cardiac death in the young (≤35 years). ACM is most often inherited as an autosomal dominant trait with incomplete penetrance and variable expression. While mutations in several genes that encode key desmosomal proteins underlie about half of all ACM, the remainder is elusive genetically. Here, whole exome sequencing (WES) was performed with genomic triangulation in an effort to identify a novel explanation for a phenotype-positive, genotype-negative multi-generational pedigree with a presumed autosomal dominant, maternal inheritance of ACM. WES and genomic triangulation was performed on a symptomatic 14-year-old female proband, her affected mother and affected sister, and her unaffected father to elucidate a novel ACM-susceptibility gene for this pedigree. Following variant filtering using Ingenuity® Variant Analysis, gene priority ranking was performed on the candidate genes using ToppGene and Endeavour. The phylogenetic and physiochemical properties of candidate mutations were assessed further by 6 in silico prediction tools. Species alignment and amino acid conservation analysis was performed using the Uniprot Consortium. Tissue expression data was abstracted from Expression Atlas. Following WES and genomic triangulation, CDH2 emerged as a novel, autosomal dominant, ACM-susceptibility gene. The CDH2-encoded N-cadherin is a cell-cell adhesion protein predominately expressed in the heart. Cardiac dysfunction has been demonstrated in prior CDH2 knockout and over-expression animal studies. Further in silico mutation prediction, species conservation, and protein expression analysis supported the ultra-rare (minor allele frequency <0.005%) p.Asp407Asn-CDH2 variant as a likely pathogenic variant. Herein, it is demonstrated that genetic mutations in CDH2-encoded N-cadherin may represent a novel pathogenetic basis for ACM in humans. The prevalence of CDH2-mediated ACM in heretofore genetically elusive ACM remains to be determined. © 2017 Wiley Periodicals, Inc.

  10. Role of subunit assembly in autosomal dominant retinitis pigmentosa linked to mutations in peripherin 2.

    PubMed

    Molday, Robert S; Molday, Laurie L; Loewen, Christopher J R

    2004-01-01

    Peripherin 2 is a photoreceptor-specific membrane protein implicated in outer segment disk morphogenesis and linked to various retinopathies including autosomal dominant retinitis pigmentosa (ADRP). Peripherin 2 and ROM1 assemble as a mixture of core noncovalent homomeric and heteromeric tetramers that further link together through disulfide bonds to form higher order oligomers. These complexes are critical for disk rim formation and outer segment structure through interaction with the cGMP-gated channel and other photoreceptor proteins. We have examined the role of subunit assembly in peripherin 2 targeting to disks, outer segment structure, and photoreceptor degeneration by examining molecular and cellular properties of peripherin 2 mutants in COS-1 cells and transgenic Xenopus laevis rod photoreceptors. Wild-type (WT) and the ADRP-linked P216L mutant were transported and incorporated into newly formed outer segment disks of transgenic X. laevis. The P216L mutant, however, induced progressive outer segment instability and photoreceptor degeneration possibly through the introduction of a new N-linked oligosaccharide chain. In contrast, the C214S and L185P disease-linked, tetramerization-defective mutants, were retained in the inner segment, but did not affect outer segment structure or induce photoreceptor degeneration. Together, these results indicate that peripherin 2 mutations can cause ADRP either through a deficiency in WT peripherin 2 (C214S, 1.185P) or by a dominant negative effect on disk stability (P216L).

  11. Mutations in the small nuclear riboprotein 200 kDa gene (SNRNP200) cause 1.6% of autosomal dominant retinitis pigmentosa

    PubMed Central

    Sullivan, Lori S.; Avery, Cheryl E.; Sasser, Elizabeth M.; Roorda, Austin; Duncan, Jacque L.; Wheaton, Dianna H.; Birch, David G.; Branham, Kari E.; Heckenlively, John R.; Sieving, Paul A.; Daiger, Stephen P.

    2013-01-01

    Purpose The purpose of this project was to determine the spectrum and frequency of mutations in the small nuclear riboprotein 200 kDa gene (SNRNP200) that cause autosomal dominant retinitis pigmentosa (adRP). Methods A well-characterized adRP cohort of 251 families was tested for mutations in the exons and intron/exon junctions of SNRNP200 using fluorescent dideoxy sequencing. An additional 21 adRP families from the eyeGENE® Network were tested for possible mutations. Bioinformatic and segregation analysis was performed on novel variants. Results SNRNP200 mutations were identified in seven of the families tested. Two previously reported mutations, p.Arg681Cys and p.Ser1087Leu, were found in two families each. One family had the previously reported p.Arg681His mutation. Two novel SNRNP200 variants, p.Pro682Ser and p.Ala542Val, were also identified in one family each. Bioinformatic and segregation analyses suggested that these novel variants are likely to be pathogenic. Clinical examination of patients with SNRNP200 mutations showed a wide range of clinical symptoms and severity, including one instance of non-penetrance. Conclusions Mutations in SNRNP200 caused 1.6% of disease in our adRP cohort. Pathogenic mutations were found primarily in exons 16 and 25, but the novel p.Ala542Val mutation in exon 13 suggests that variation in other genetic regions is also responsible for causing dominant disease. SNRNP200 mutations were associated with a wide range of clinical symptoms similar to those of individuals with other splice-factor gene mutations. PMID:24319334

  12. EPO Receptor Gain-of-Function Causes Hereditary Polycythemia, Alters CD34+ Cell Differentiation and Increases Circulating Endothelial Precursors

    PubMed Central

    Perrotta, Silverio; Cucciolla, Valeria; Ferraro, Marcella; Ronzoni, Luisa; Tramontano, Annunziata; Rossi, Francesca; Scudieri, Anna Chiara; Borriello, Adriana; Roberti, Domenico; Nobili, Bruno; Cappellini, Maria Domenica; Oliva, Adriana; Amendola, Giovanni; Migliaccio, Anna Rita; Mancuso, Patrizia; Martin-Padura, Ines; Bertolini, Francesco; Yoon, Donghoon; Prchal, Josef T.; Della Ragione, Fulvio

    2010-01-01

    Background Gain-of-function of erythropoietin receptor (EPOR) mutations represent the major cause of primary hereditary polycythemia. EPOR is also found in non-erythroid tissues, although its physiological role is still undefined. Methodology/Principal Findings We describe a family with polycythemia due to a heterozygous mutation of the EPOR gene that causes a G→T change at nucleotide 1251 of exon 8. The novel EPOR G1251T mutation results in the replacement of a glutamate residue by a stop codon at amino acid 393. Differently from polycythemia vera, EPOR G1251T CD34+ cells proliferate and differentiate towards the erythroid phenotype in the presence of minimal amounts of EPO. Moreover, the affected individuals show a 20-fold increase of circulating endothelial precursors. The analysis of erythroid precursor membranes demonstrates a heretofore undescribed accumulation of the truncated EPOR, probably due to the absence of residues involved in the EPO-dependent receptor internalization and degradation. Mutated receptor expression in EPOR-negative cells results in EPOR and Stat5 phosphorylation. Moreover, patient erythroid precursors present an increased activation of EPOR and its effectors, including Stat5 and Erk1/2 pathway. Conclusions/Significance Our data provide an unanticipated mechanism for autosomal dominant inherited polycythemia due to a heterozygous EPOR mutation and suggest a regulatory role of EPO/EPOR pathway in human circulating endothelial precursors homeostasis. PMID:20700488

  13. [Clinical Analysis of Driver Mutations in Patients with Ph Negative Myeloproliferative Neoplasms].

    PubMed

    He, Zhi-Peng; Tian, Hui-Yun; Tan, Ming; Wu, Yong

    2018-06-01

    To explore the relationship between driver mutations and clinical characteristics in patients with Philadelphia chromosome (Ph) negative myeloproliferative neoplasms (MPN), so as to provide evidence for diagno-sis and treatment of the disease. The clinical data of 410 patients with classic Ph negative MPN including 150 cases of polycythemia vera (PV), 188 cases of essential thrombocythemia (ET) and 72 cases of primary myelofibrosis (PMF) from January 2013 to December 2016 in Fujian Medical University Union Hospital were retrospectively analyzed. The PCR or DNA sequencing were used for JAK2 V617F, JAK2 exon12, CALR and MPL W515L/K mutation analyses, and follow-up information on patients was updated by direct phone call or follow-up in outpatient. Among the 410 patients with Ph negative MPN, 136 (33.2%) cases were asymptomatic at diagnosis. 389 cases were sequenced and JAK2 V617F was detected in 87.1% (122/140) of PV, 64.1% (118/184) of ET, 64.6% (42/65) of PMF; JAK2 exon 12 mutation in 1 case of PV; MPL W515L/K mutation in 1 case of ET and PMF, respectively; CALR mutation in 18(9.8%) cases of ET and 5 (7.7%) cases of PMF. JAK2 V617F mutated PV patients ocourred in older age: the white blood cell count, platelet count and incidence of splenomegaly were higher than JAK2-negative PV cases(P<0.05). Compared with JAK2 V617F mutated ET patients, CALR mutated ET cases displayed younger age, lower leukocyte count, higher platelet count and lower incidence of thrombosis; JAK2-negative ET cases had younger age, lower leukocyte count, lower hemoglobin level, higher platelet count and lower incidence of thrombosis(P<0.05). The incidence of splenomegaly in JAK2 V617F or CALR mutated PMF patients was both higher than that in JAK2-negative PMF cases, but the incidence of leukemia transformation in JAK2-negative PMF patients was higher than that in JAK2 V617F mutated cases (P<0.05). The types of driver mutations are closely related with the clinical features and prognosis in Ph - negative MPN patients.

  14. Genetic Screening for OPA1 and OPA3 Mutations in Patients with Suspected Inherited Optic Neuropathies

    PubMed Central

    Yu-Wai-Man, Patrick; Shankar, Suma P.; Biousse, Valérie; Miller, Neil R.; Bean, Lora J.H.; Coffee, Bradford; Hegde, Madhuri; Newman, Nancy J.

    2010-01-01

    Purpose Autosomal-dominant optic atrophy (DOA) is one of the most common inherited optic neuropathies, and it is genetically heterogeneous, with mutations in both OPA1 and OPA3 known to cause disease. About 60% of cases harbor OPA1 mutations, whereas OPA3 mutations have only been reported in two pedigrees with DOA and premature cataracts. The aim of this study was to determine the yield of OPA1 and OPA3 screening in a cohort of presumed DOA cases referred to a tertiary diagnostic laboratory. Design Retrospective case series. Participants One hundred and eighty-eight probands with bilateral optic atrophy referred for molecular genetic investigations at a tertiary diagnostic facility: 38 patients with an autosomal-dominant pattern of inheritance and 150 sporadic cases. Methods OPA1 and OPA3 genetic testing was initially performed using PCR-based sequencing methods. The presence of large-scale OPA1 and OPA3 genomic rearrangements was further assessed with a targeted comparative genomic hybridization (CGH) microarray platform. The three primary Leber hereditary optic neuropathy (LHON) mutations, m.3460G>A, m.11778G>A, and m.14484T>C, were also screened in all patients. Main Outcome Measures The proportion of patients with OPA1 and OPA3 pathogenic mutations. The clinical profile observed in molecularly confirmed DOA cases. Results We found 21 different OPA1 mutations in 27 of the 188 (14.4%) probands screened. The mutations included six novel pathogenic variants and the first reported OPA1 initiation codon mutation at c.1A>T. An OPA1 missense mutation, c.239A>G (p.Y80C), was identified in an 11-year-old African-American girl with optic atrophy and peripheral sensori-motor neuropathy in her lower limbs. The OPA1 detection rate was significantly higher among individuals with a positive family history of visual failure (50.0%) compared with sporadic cases (5.3%). The primary LHON screen was negative in our patient cohort, and additional molecular investigations did not reveal any large-scale OPA1 rearrangements or OPA3 genetic defects. The mean baseline visual acuity for our OPA1-positive group was 0.48 logarithm of the minimum angle of resolution (LogMAR) (Mean Snellen equivalent = 20/61, range = 20/20–20/400, 95% confidence interval = 20/52–20/71), and visual deterioration occurred in 54.2% of patients during follow-up. Conclusions OPA1 mutations are the most common genetic defects identified in patients with suspected DOA, whereas OPA3 mutations are very rare in isolated optic atrophy cases. PMID:21036400

  15. Novel glucokinase mutations in patients with monogenic diabetes - clinical outline of GCK-MD and potential for founder effect in Slavic population.

    PubMed

    Borowiec, M; Antosik, K; Fendler, W; Deja, G; Jarosz-Chobot, P; Mysliwiec, M; Zmyslowska, A; Malecki, M; Szadkowska, A; Mlynarski, W

    2012-03-01

    Glucokinase (GCK) gene mutations are the causative factor of GCK-MD (monogenic diabetes) characterized by a mild clinical phenotype and potential for insulin withdrawal. This study presents the results of a nationwide genetic screening for GCK-MD performed in Poland. A group of 194 patients with clinical suspicion of GCK-MD and 17 patients with neonatal diabetes were subjected to GCK sequencing. Patients negative for GCK mutations were subjected to multiplex ligation-dependent probe amplification (MLPA) to detect deletions or insertions. A total of 44 GCK heterozygous mutations were found in 68 probands (35%). Among those, 20 mutations were novel ones: A282fs, D198V, E158X, G246V, G249R, I348N, L165V, L315Q, M115I, N254S, P284fs, Q338P, R377L, R43C, R46S, S212fs, S212P, T255N, V406A and Y214D. No abnormalities were detected in MLPA analysis. Homozygous D278E mutation was found in one patient with neonatal diabetes. The most frequently observed combinations of symptoms typical for GCK-MD were mild diabetes and/or fasting hyperglycaemia (98.3%), positive C-peptide at diagnosis (76%) and dominant mode of inheritance (59%). This study outlines numerous novel mutations of the GCK gene present in white Caucasians of Slavic origin. Thorough clinical assessment of known factors associated with GCK-MD may facilitate patient selection. © 2011 John Wiley & Sons A/S.

  16. Rubinstein-Taybi 2 associated to novel EP300 mutations: deepening the clinical and genetic spectrum.

    PubMed

    López, María; García-Oguiza, Alberto; Armstrong, Judith; García-Cobaleda, Inmaculada; García-Miñaur, Sixto; Santos-Simarro, Fernando; Seidel, Verónica; Domínguez-Garrido, Elena

    2018-03-05

    Rubinstein-Taybi syndrome (RSTS) is a rare autosomal dominant neurodevelopmental disorder characterized by broad thumbs and halluces. RSTS is caused by mutations in CREBBP and in EP300 genes in 50-60% and 8%, respectively. Up to now, 76 RSTS-EP300 patients have been described. We present the clinical and molecular characterization of a cohort of RSTS patients carrying EP300 mutations. Patients were selected from a cohort of 72 individuals suspected of RSTS after being negative in CREBBP study. MLPA and panel-based NGS EP300 were performed. Eight patients were found to carry EP300 mutations. Phenotypic characteristics included: intellectual disability (generally mild), postnatal growth retardation, infant feeding problems, psychomotor and language delay and typical facial dysmorphisms (microcephaly, downslanting palpebral fissures, columella below the alae nasi, and prominent nose). Broad thumbs and/or halluces were common, but angulated thumbs were only found in two patients. We identified across the gene novel mutations, including large deletion, frameshift mutations, nonsense, missense and splicing alterations, confirming de novo origin in all but one (the mother, possibly underdiagnosed, has short and broad thumbs and had learning difficulties). The clinical evaluation of our patients corroborates that clinical features in EP300 are less marked than in CREBBP patients although it is difficult to establish a genotype-phenotype correlation although. It is remarkable that these findings are observed in a RSTS-diagnosed cohort; some patients harbouring EP300 mutations could present a different phenotype. Broadening the knowledge about EP300-RSTS phenotype may contribute to improve the management of patients and the counselling to the families.

  17. Prediction (early recognition) of emerging flu strain clusters

    NASA Astrophysics Data System (ADS)

    Li, X.; Phillips, J. C.

    2017-08-01

    Early detection of incipient dominant influenza strains is one of the key steps in the design and manufacture of an effective annual influenza vaccine. Here we report the most current results for pandemic H3N2 flu vaccine design. A 2006 model of dimensional reduction (compaction) of viral mutational complexity derives two-dimensional Cartesian mutational maps (2DMM) that exhibit an emergent dominant strain as a small and distinct cluster of as few as 10 strains. We show that recent extensions of this model can detect incipient strains one year or more in advance of their dominance in the human population. Our structural interpretation of our unexpectedly rich 2DMM involves sialic acid, and is based on nearly 6000 strains in a series of recent 3-year time windows. Vaccine effectiveness is predicted best by analyzing dominant mutational epitopes.

  18. Effect of BRCA germline mutations on breast cancer prognosis

    PubMed Central

    Baretta, Zora; Mocellin, Simone; Goldin, Elena; Olopade, Olufunmilayo I.; Huo, Dezheng

    2016-01-01

    Abstract Background: The contribution of BRCA germline mutational status to breast cancer patients’ prognosis is unclear. We aimed to systematically review and perform meta-analysis of the available evidence of effects of BRCA germline mutations on multiple survival outcomes of breast cancer patients as a whole and in specific subgroups of interest, including those with triple negative breast cancer, those with Ashkenazi Jewish ancestry, and patients with stage I–III disease. Methods: Sixty studies met all inclusion criteria and were considered for this meta-analysis. These studies involved 105,220 breast cancer patients, whose 3588 (3.4%) were BRCA mutations carriers. The associations between BRCA genes mutational status and overall survival (OS), breast cancer-specific survival (BCSS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) were evaluated using random-effect models. Results: BRCA1 mutation carriers have worse OS than BRCA-negative/sporadic cases (hazard ratio, HR 1.30, 95% CI: 1.11–1.52) and worse BCSS than sporadic/BRCA-negative cases among patients with stage I–III breast cancer (HR 1.45, 95% CI: 1.01–2.07). BRCA2 mutation carriers have worse BCSS than sporadic/BRCA-negative cases (HR 1.29, 95% CI: 1.03–1.62), although they have similar OS. Among triple negative breast cancer, BRCA1/2 mutations carriers had better OS than BRCA-negative counterpart (HR 0.49, 95% CI: 0.26–0.92). Among Ashkenazi Jewish women, BRCA1/2 mutations carriers presented higher risk of death from breast cancer (HR 1.44, 95% CI: 1.05–1.97) and of distant metastases (HR 1.82, 95% CI: 1.05–3.16) than sporadic/BRCA-negative patients. Conclusion: Our results support the evaluation of BRCA mutational status in patients with high risk of harboring BRCA germline mutations to better define the prognosis of breast cancer in these patients. PMID:27749552

  19. HPV-negative penile squamous cell carcinoma: disruptive mutations in the TP53 gene are common.

    PubMed

    Kashofer, Karl; Winter, Elke; Halbwedl, Iris; Thueringer, Andrea; Kreiner, Marisa; Sauer, Stefan; Regauer, Sigrid

    2017-07-01

    The majority of penile squamous cell carcinomas is caused by transforming human papilloma virus (HPV) infection. The etiology of HPV-negative cancers is unclear, but TP53 mutations have been implicated. Archival tissues of 108 invasive squamous cell carcinoma from a single pathology institution in a low-incidence area were analyzed for HPV-DNA and p16 ink4a overexpression and for TP53 mutations by ion torrent next-generation sequencing. Library preparation failed in 32/108 squamous cell carcinomas. Institutional review board approval was obtained. Thirty of 76 squamous cell carcinomas (43%; average 63 years) were HPV-negative with 8/33 squamous cell carcinomas being TP53 wild-type (24%; average 63 years). Twenty-five of 33 squamous cell carcinomas (76%; average 65 years) showed 32 different somatic TP53 mutations (23 missense mutations in exons 5-8, 6 nonsense, 1 frameshift and 2 splice-site mutations). Several hotspot mutations were detected multiple times (R175H, R248, R282, and R273). Eighteen of 19 squamous cell carcinomas with TP53 expression in immunohistochemistry had TP53 mutations. Fifty percent of TP53-negative squamous cell carcinomas showed mostly truncating loss-of-function TP53 mutations. Patients without mutations had longer survival (5 years: 86% vs 61%; 10 years: 60% vs 22%), but valid clinically relevant conclusions cannot be drawn due to different tumor stages and heterogeneous treatment of the cases presented in this study. Somatic TP53 mutations are a common feature in HPV-negative penile squamous cell carcinomas and offer an explanation for HPV-independent penile carcinogenesis. About half of HPV-negative penile cancers are driven by oncogenic activation of TP53, while a quarter is induced by loss of TP53 tumor suppressor function. Detection of TP53 mutations should be carried out by sequencing, as immunohistochemical TP53 staining could not identify all squamous cell carcinomas with TP53 mutations.

  20. Involvement of the pituitary-specific transcription factor pit-1 in somatolactotrope cell growth and death: an approach using dominant-negative pit-1 mutants.

    PubMed

    Pellegrini, Isabelle; Roche, Cathy; Quentien, Marie-Helene; Ferrand, Mireille; Gunz, Ginette; Thirion, Sylvie; Bagnis, Claude; Enjalbert, Alain; Franc, Jean-Louis

    2006-12-01

    The anterior pituitary-specific transcription factor Pit-1 was initially identified and cloned as a transactivator of the prolactin (PRL) and GH genes and later as a regulator of the TSHb gene. It was found to be a major developmental regulator, because natural Pit-1 gene mutations cause a dwarf phenotype in mice and cause combined pituitary hormone deficiency associated with pituitary hypoplasia in humans. To further investigate the growth-promoting effects of Pit-1, we used a strategy based on the use of dominant-negative Pit-1 mutants as an alternative means of inactivating endogenous Pit-1 functions. R271W, a Pit-1 mutant identified in one allele in patients with severe combined pituitary hormone deficiency, and Pit-1Delta1-123, a deletion mutant in which only the DNA binding domain of Pit-1 is conserved, were generated, and their ability to abolish the effects of the endogenous native Pit-1 in the differentiated proliferating somatolactotrope GH4C1 cell line was investigated. Enforced expression of the dominant-negative mutants in GH4C1 cells using recombinant lentiviral vectors decreased the levels of expression of known Pit-1 target genes such as PRL and GH, abolished the hormone release, and reduced cell viability by decreasing the growth rate and inducing apoptosis via a caspase-independent pathway. These results show for the first time that the growth-promoting effects of Pit-1 are at least partly due to the fact that this transcription factor prevents apoptotic cell death.

  1. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) associated with a novel C82R mutation in the NOTCH3 gene.

    PubMed

    Zea-Sevilla, M Ascensión; Bermejo-Velasco, Pedro; Serrano-Heranz, Regino; Calero, Miguel

    2015-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare inherited cerebrovascular disease associated with mutations in the NOTCH3 gene on chromosome 19, and represents the most common hereditary stroke disorder. We describe a pedigree, which suffered the classical clinical CADASIL pattern of migraine headaches, recurrent subcortical infarcts, and subcortical dementia, associated with a previously undescribed missense mutation (c.[244T>C], p.[C82R]) in NOTCH3. This new mutation extends the list of known pathogenic mutations responsible for CADASIL, which are associated with an odd number of cysteine residues within any of the epidermal growth factor-like repeats of Notch3 receptor protein.

  2. De novo REEP2 missense mutation in pure hereditary spastic paraplegia.

    PubMed

    Roda, Ricardo H; Schindler, Alice B; Blackstone, Craig

    2017-05-01

    Alterations in proteins that regulate endoplasmic reticulum morphology are common causes of hereditary spastic paraplegia (SPG1-78, plus others). Mutations in the REEP1 gene that encodes an endoplasmic reticulum-shaping protein are well-known causes of SPG31, a common autosomal dominant spastic paraplegia. A closely-related gene, REEP2, is mutated in SPG72, with both autosomal and recessive inheritances. Here, we report a patient with a pure hereditary spastic paraplegia due to a de novo missense mutation (c.119T > G, p.Met40Arg) in REEP2 at a highly-conserved residue very close to another known pathogenic missense change. This represents only the second autosomal dominant SPG72 missense mutation reported.

  3. Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features

    PubMed Central

    Tucci, Valter; Kleefstra, Tjitske; Hardy, Andrea; Heise, Ines; Maggi, Silvia; Willemsen, Marjolein H.; Hilton, Helen; Esapa, Chris; Simon, Michelle; Buenavista, Maria-Teresa; McGuffin, Liam J.; Vizor, Lucie; Dodero, Luca; Tsaftaris, Sotirios; Romero, Rosario; Nillesen, Willy N.; Vissers, Lisenka E.L.M.; Kempers, Marlies J.; Vulto-van Silfhout, Anneke T.; Iqbal, Zafar; Orlando, Marta; Maccione, Alessandro; Lassi, Glenda; Farisello, Pasqualina; Contestabile, Andrea; Tinarelli, Federico; Nieus, Thierry; Raimondi, Andrea; Greco, Barbara; Cantatore, Daniela; Gasparini, Laura; Berdondini, Luca; Bifone, Angelo; Gozzi, Alessandro; Wells, Sara; Nolan, Patrick M.

    2014-01-01

    The recent identification of multiple dominant mutations in the gene encoding β-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of β-catenin function in cognitive impairment. In humans, β-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo β-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with β-catenin mutations enabled us to investigate the consequences of β-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of β-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in β-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults. PMID:24614104

  4. Revertant mosaicism repairs skin lesions in a patient with keratitis-ichthyosis-deafness syndrome by second-site mutations in connexin 26

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudmundsson, Sanna; Wilbe, Maria; Ekvall, Sara

    Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G >more » A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. Finally to our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome.« less

  5. Revertant mosaicism repairs skin lesions in a patient with keratitis-ichthyosis-deafness syndrome by second-site mutations in connexin 26

    DOE PAGES

    Gudmundsson, Sanna; Wilbe, Maria; Ekvall, Sara; ...

    2017-02-01

    Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G >more » A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. Finally to our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome.« less

  6. Mutation analysis for DJ-1 in sporadic and familial parkinsonism: screening strategy in parkinsonism.

    PubMed

    Tomiyama, Hiroyuki; Li, Yuanzhe; Yoshino, Hiroyo; Mizuno, Yoshikuni; Kubo, Shin-Ichiro; Toda, Tatsushi; Hattori, Nobutaka

    2009-05-22

    DJ-1 mutations cause autosomal recessive parkinsonism (ARP). Although some reports of DJ-1 mutations have been published, there is lack of information on the prevalence of these mutations in large-scale studies of both familial and sporadic parkinsonism. In this genetic screening study, we analyzed the distribution and frequency of DJ-1 mutations by direct nucleotide sequencing of coding exons and exon-intron boundaries of DJ-1, in 386 parkin-negative parkinsonism patients (371 index cases: 67 probands of autosomal recessive parkinsonism families, 90 probands of autosomal dominant parkinsonism families, 201 patients with sporadic parkinsonism, and 13 with unknown family histories) from 12 countries (Japan 283, China 27, Taiwan 22, Korea 22, Israel 16, Turkey 5, Philippines 2, Bulgaria 2, Greece 2, Tunisia 1, USA 2, Ukraine 1, unknown 1). None had causative mutation in DJ-1, suggesting DJ-1 mutation is very rare among patients with familial and sporadic parkinsonism from Asian countries and those with other ethnic background. This is in contrast to the higher frequencies and worldwide distribution of parkin- and PINK1-related parkinsonism in ARP and sporadic parkinsonism. Thus, after obtaining clinical information, screening for mutations in (1) parkin, (2) PINK1, (3) DJ-1, (4) ATP13A2 should be conducted in that order, in ARP and sporadic parkinsonism, based on their reported frequencies. In addition, haplotype analysis should be employed to check for homozygosity of 1p36, which harbors a cluster of causative genes for ARP such as DJ-1, PINK1 and ATP13A2 in ARP and sporadic parkinsonism, especially in parkinsonism with consanguinity.

  7. Early-Onset Central Diabetes Insipidus due to Compound Heterozygosity for AVP Mutations.

    PubMed

    Bourdet, Karine; Vallette, Sophie; Deladoëy, Johnny; Van Vliet, Guy

    2016-01-01

    Genetic cases of isolated central diabetes insipidus are rare, are mostly due to dominant AVP mutations and have a delayed onset of symptoms. Only 3 consanguineous pedigrees with a recessive form have been published. A boy with a negative family history presented polyuria and failure to thrive in the first months of life and was diagnosed with central diabetes insipidus. Magnetic resonance imaging showed a normal posterior pituitary signal. A molecular genetic analysis of the AVP gene showed that he had inherited a previously reported mutation from his Lebanese father and a novel A>G transition in the splice acceptor site of intron 1 (IVS1-2A>G) from his French-Canadian mother. Replacement therapy resulted in the immediate disappearance of symptoms and in weight gain. The early polyuria in recessive central diabetes insipidus contrasts with the delayed presentation in patients with monoallelic AVP mutations. This diagnosis needs to be considered in infants with very early onset of polyuria-polydipsia and no brain malformation, even if there is no consanguinity and regardless of whether the posterior pituitary is visible or not on imaging. In addition to informing family counseling, making a molecular diagnosis eliminates the need for repeated imaging studies. © 2015 S. Karger AG, Basel.

  8. Hfq variant with altered RNA binding functions

    PubMed Central

    Ziolkowska, Katarzyna; Derreumaux, Philippe; Folichon, Marc; Pellegrini, Olivier; Régnier, Philippe; Boni, Irina V.; Hajnsdorf, Eliane

    2006-01-01

    The interaction between Hfq and RNA is central to multiple regulatory processes. Using site-directed mutagenesis, we have found a missense mutation in Hfq (V43R) which strongly affects2 the RNA binding capacity of the Hfq protein and its ability to stimulate poly(A) tail elongation by poly(A)-polymerase in vitro. In vivo, overexpression of this Hfq variant fails to stimulate rpoS–lacZ expression and does not restore a normal growth rate in hfq null mutant. Cells in which the wild-type gene has been replaced by the hfqV43R allele exhibit a phenotype intermediate between those of the wild-type and of the hfq minus or null strains. This missense mutation derepresses Hfq synthesis. However, not all Hfq functions are affected by this mutation. For example, HfqV43R represses OppA synthesis as strongly as the wild-type protein. The dominant negative effect of the V43R mutation over the wild-type allele suggests that hexamers containing variant and genuine subunits are presumably not functional. Finally, molecular dynamics studies indicate that the V43R substitution mainly changes the position of the K56 and Y55 side chains involved in the Hfq–RNA interaction but has probably no effect on the folding and the oligomerization of the protein. PMID:16449205

  9. Heredity of port-wine stains: investigation of families without a RASA1 mutation.

    PubMed

    Troilius Rubin, Agneta; Lauritzen, Edgar; Ljunggren, Bo; Revencu, Nicole; Vikkula, Mikka; Svensson, Åke

    2015-01-01

    The prevalence of capillary malformations, also known as port-wine stains (PWS), is 0.3%. Familial segregation can occur. The capillary malformation-arteriovenous malformation (CM-AVM) phenotype is caused by mutations in the RASA1 gene. In PWS familial cases, the inheritance is considered to be autosomal dominant with variable penetrance. Investigation of the heredity of PWS among patients who attended the vascular anomaly section at the Department of Dermatology in Malmoe, Southern Sweden, between 1993 and 2004 and to study the involvement of the RASA1 gene in patients with a positive family history of PWS. A total of 254 patients were examined and given a questionnaire regarding family history of PWS. The first group of 175 patients (109 females and 66 males) reported a negative family history. The other group of 65 patients (46 females and 19 males) reported a positive family history (50% parents or brothers and sisters). The heredity of PWS was 27% (65/240). Twenty-one patients with a positive family history and relatives had no CM-AVM phenotype for mutations in the RASA1 gene. PWS may have a stronger heredity component than it was reported earlier and inheritance should be considered when counseling a patient. RASA1 mutations do not explain the PWS in our patients.

  10. Rare causes of early-onset dystonia-parkinsonism with cognitive impairment: a de novo PSEN-1 mutation.

    PubMed

    Carecchio, Miryam; Picillo, Marina; Valletta, Lorella; Elia, Antonio E; Haack, Tobias B; Cozzolino, Autilia; Vitale, Annalisa; Garavaglia, Barbara; Iuso, Arcangela; Bagella, Caterina F; Pappatà, Sabina; Barone, Paolo; Prokisch, Holger; Romito, Luigi; Tiranti, Valeria

    2017-07-01

    Mutations in PSEN1 are responsible for familial Alzheimer's disease (FAD) inherited as autosomal dominant trait, but also de novo mutations have been rarely reported in sporadic early-onset dementia cases. Parkinsonism in FAD has been mainly described in advanced disease stages. We characterized a patient presenting with early-onset dystonia-parkinsonism later complicated by dementia and myoclonus. Brain MRI showed signs of iron accumulation in the basal ganglia mimicking neurodegeneration with brain iron accumulation (NBIA) as well as fronto-temporal atrophy. Whole exome sequencing revealed a novel PSEN1 mutation and segregation within the family demonstrated the mutation arose de novo.We suggest considering PSEN1 mutations in cases of dystonia-parkinsonism with positive DAT-Scan, later complicated by progressive cognitive decline and cortical myoclonus even without a dominant family history.

  11. Mutation screening of Chinese Treacher Collins syndrome patients identified novel TCOF1 mutations.

    PubMed

    Chen, Ying; Guo, Luo; Li, Chen-Long; Shan, Jing; Xu, Hai-Song; Li, Jie-Ying; Sun, Shan; Hao, Shao-Juan; Jin, Lei; Chai, Gang; Zhang, Tian-Yu

    2018-04-01

    Treacher Collins syndrome (TCS) (OMIM 154500) is a rare congenital craniofacial disorder with an autosomal dominant manner of inheritance in most cases. To date, three pathogenic genes (TCOF1, POLR1D and POLR1C) have been identified. In this study, we conducted mutational analysis on Chinese TCS patients to reveal a mutational spectrum of known causative genes and show phenotype-genotype data to provide more information for gene counselling and future studies on the pathogenesis of TCS. Twenty-two TCS patients were recruited from two tertiary referral centres, and Sanger sequencing for the coding exons and exon-intron boundaries of TCOF1, POLR1D and POLR1C was performed. For patients without small variants, further copy number variations (CNVs) analysis was conducted using high-density SNP array platforms. The Sanger sequencing overall mutation detection rate was as high as 86.3% (19/22) for our cohort. Fifteen TCOF1 pathogenic variants, including ten novel mutations, were identified in nineteen patients. No causative mutations in POLR1D and POLR1C genes and no CNVs mutations were detected. A suspected autosomal dominant inheritance case that implies germinal mosaicism was described. Our study confirmed that TCOF1 was the main disease-causing gene for the Chinese TCS population and revealed its mutation spectrum. We also addressed the need for more studies of mosaicism in TCS cases, which could explain the mechanism of autosomal dominant inheritance in TCS cases and benefit the prevention of TCS.

  12. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittig, S.; Siggaard, C.; Pedersen, E.B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation wasmore » unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. 63 refs., 5 figs., 6 tabs.« less

  13. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus.

    PubMed Central

    Rittig, S.; Robertson, G. L.; Siggaard, C.; Kovács, L.; Gregersen, N.; Nyborg, J.; Pedersen, E. B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation was unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. Images Figure 3 PMID:8554046

  14. Autosomal-dominant nystagmus, foveal hypoplasia and presenile cataract associated with a novel PAX6 mutation.

    PubMed

    Thomas, Shery; Thomas, Mervyn G; Andrews, Caroline; Chan, Wai-Man; Proudlock, Frank A; McLean, Rebecca J; Pradeep, Archana; Engle, Elizabeth C; Gottlob, Irene

    2014-03-01

    Autosomal-dominant idiopathic infantile nystagmus has been linked to 6p12 (OMIM 164100), 7p11.2 (OMIM 608345) and 13q31-q33 (OMIM 193003). PAX6 (11p13, OMIM 607108) mutations can also cause autosomal-dominant nystagmus, typically in association with aniridia or iris hypoplasia. We studied a large multigenerational white British family with autosomal-dominant nystagmus, normal irides and presenile cataracts. An SNP-based genome-wide analysis revealed a linkage to a 13.4-MB region on chromosome 11p13 with a maximum lod score of 2.93. A mutation analysis of the entire coding region and splice junctions of the PAX6 gene revealed a novel heterozygous missense mutation (c.227C>G) that segregated with the phenotype and is predicted to result in the amino-acid substitution of proline by arginine at codon 76 p.(P76R). The amino-acid variation p.(P76R) within the paired box domain is likely to destabilise the protein due to steric hindrance as a result of the introduction of a polar and larger amino acid. Eye movement recordings showed a significant intrafamilial variability of horizontal, vertical and torsional nystagmus. High-resolution in vivo imaging of the retina using optical coherence tomography (OCT) revealed features of foveal hypoplasia, including rudimentary foveal pit, incursion of inner retinal layers, short photoreceptor outer segments and optic nerve hypoplasia. Thus, this study presents a family that segregates a PAX6 mutation with nystagmus and foveal hypoplasia in the absence of iris abnormalities. Moreover, it is the first study showing detailed characteristics using eye movement recordings of autosomal-dominant nystagmus in a multigenerational family with a novel PAX6 mutation.

  15. Autosomal-dominant Meesmann epithelial corneal dystrophy without an exon mutation in the keratin-3 or keratin-12 gene in a Chinese family.

    PubMed

    Cao, Wei; Yan, Ming; Hao, QianYun; Wang, ShuLin; Wu, LiHua; Liu, Qing; Li, MingYan; Biddle, Fred G; Wu, Wei

    2013-04-01

    Meesmann epithelial corneal dystrophy (MECD) is a dominantly inherited disorder, characterized by fragility of the anterior corneal epithelium and formation of intraepithelial microcysts. It has been described in a number of different ancestral groups. To date, all reported cases of MECD have been associated with either a single mutation in one exon of the keratin-3 gene (KRT3) or a single mutation in one of two exons of the keratin-12 gene (KRT12). Each mutation leads to a predicted amino acid change in the respective keratin-3 or keratin-12 proteins that combine to form the corneal-specific heterodimeric intermediate filament protein. This case report describes a four-generation Chinese kindred with typical autosomal-dominant MECD. Exon sequencing of KRT3 and KRT12 in six affected and eight unaffected individuals (including two spouses) did not detect any mutations or nucleotide sequence variants. This kindred demonstrates that single mis-sense mutations may be sufficient but are not required in all individuals with the MECD phenotype. It provides a unique opportunity to investigate further genomic and functional heterogeneity in MECD.

  16. Simultaneous Occurence of an Autosomal Dominant Inherited MSX1 Mutation and an X-linked Recessive Inherited EDA Mutation in One Chinese Family with Non-syndromic Oligodontia.

    PubMed

    Zhang, Xiao Xia; Wong, Sing Wai; Han, Dong; Feng, Hai Lan

    2015-01-01

    To describe the simultaneous occurence of an autosomal dominant inherited MSX1 mutation and an X-linked recessive inherited EDA mutation in one Chinese family with nonsyndromic oligodontia. Clinical data of characteristics of tooth agenesis were collected. MSX1 and EDA gene mutations were detected in a Chinese family of non-syndromic oligodontia. Mild hypodontia in the parents and severe oligodontia in the son was recorded. A novel missense heterozygous mutation c.517C>A (p.Arg173Ser) was detected in the MSX1 gene in the boy and the father. A homozygous missense mutation c.1001G>A (p.Arg334His) was detected in the EDA gene in the boy and the same mutant occurred heterozygously in the mother. Simultaneous occurence of two different gene mutations with different inheritence patterns, which both caused oligodontia, which occurred in one subject and in one family, was reported.

  17. Impaired trafficking of human kidney anion exchanger (kAE1) caused by hetero-oligomer formation with a truncated mutant associated with distal renal tubular acidosis.

    PubMed

    Quilty, Janne A; Cordat, Emmanuelle; Reithmeier, Reinhart A F

    2002-12-15

    Autosomal dominant distal renal tubular acidosis (dRTA) has been associated with several mutations in the anion exchanger AE1 gene. The effect of an 11-amino-acid C-terminal dRTA truncation mutation (901 stop) on the expression of kidney AE1 (kAE1) and erythroid AE1 was examined in transiently transfected HEK-293 cells. Unlike the wild-type proteins, kAE1 901 stop and AE1 901 stop mutants exhibited impaired trafficking from the endoplasmic reticulum to the plasma membrane as determined by immunolocalization, cell-surface biotinylation, oligosaccharide processing and pulse-chase experiments. The 901 stop mutants were able to bind to an inhibitor affinity resin, suggesting that these mutant membrane proteins were not grossly misfolded. Co-expression of wild-type and mutant kAE1 or AE1 resulted in intracellular retention of the wild-type proteins in a pre-medial Golgi compartment. This dominant negative effect was due to hetero-oligomer formation of the mutant and wild-type proteins. Intracellular retention of kAE1 in the alpha-intercalated cells of the kidney would account for the impaired acid secretion into the urine characteristic of dRTA.

  18. Mechanisms for dominance: Adh heterodimer formation in heterozygotes between ENU or x-ray induced null alleles and normal alleles in drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J.C.; Lee, W.R.; Chang, S.H.

    1992-01-01

    To study mechanisms for dominance of phenotype, eight ENU- and four x-ray-induced mutations at the alcohol dehydrogenase (Adh) locus were analyzed for partial dominance in their interaction with normal alleles. All ENU and one of the x-ray mutations were single base substitutions; the other three x-ray mutations were 9-21 base deletions. All but one of the 12 mutant alleles were selected for this study because they produced detectable mutant polypeptides, but seven of the 11 producing a peptide could not form dimers with the normal peptide and the enzyme activity of heterozygotes was about half that of normal homozygotes. Fourmore » mutations formed dimers with a decreased catalytic efficiency and two of these were near the limit of detectability; these two also inhibited the formation of normal homodimers. The mutant alleles therefore show multiple mechanisms leading to partial enzyme expression in heterozygotes and a wide range of dominance ranging from almost complete recessive to nearly dominant. All amino acid changes in mutant peptides that form dimers are located between amino acids 182 and 194, so this region is not critical for dimerization. It may, however, be an important surface domain for catalyzation. 34 refs., 8 figs., 2 tabs.« less

  19. LGI1 microdeletion in autosomal dominant lateral temporal epilepsy

    PubMed Central

    Fanciulli, M.; Santulli, L.; Errichiello, L.; Barozzi, C.; Tomasi, L.; Rigon, L.; Cubeddu, T.; de Falco, A.; Rampazzo, A.; Michelucci, R.; Uzzau, S.; Striano, S.; de Falco, F.A.; Striano, P.

    2012-01-01

    Objectives: To characterize clinically and genetically a family with autosomal dominant lateral temporal epilepsy (ADLTE) negative to LGI1 exon sequencing test. Methods: All participants were personally interviewed and underwent neurologic examination. Most affected subjects underwent EEG and neuroradiologic examinations (CT/MRI). Available family members were genotyped with the HumanOmni1-Quad v1.0 single nucleotide polymorphism (SNP) array beadchip and copy number variations (CNVs) were analyzed in each subject. LGI1 gene dosage was performed by real-time quantitative PCR (qPCR). Results: The family had 8 affected members (2 deceased) over 3 generations. All of them showed GTC seizures, with focal onset in 6 and unknown onset in 2. Four patients had focal seizures with auditory features. EEG showed only minor sharp abnormalities in 3 patients and MRI was unremarkable in all the patients examined. Three family members presented major depression and anxiety symptoms. Routine LGI1 exon sequencing revealed no point mutation. High-density SNP array CNV analysis identified a genomic microdeletion about 81 kb in size encompassing the first 4 exons of LGI1 in all available affected members and in 2 nonaffected carriers, which was confirmed by qPCR analysis. Conclusions: This is the first microdeletion affecting LGI1 identified in ADLTE. Families with ADLTE in which no point mutations are revealed by direct exon sequencing should be screened for possible genomic deletion mutations by CNV analysis or other appropriate methods. Overall, CNV analysis of multiplex families may be useful for identifying microdeletions in novel disease genes. PMID:22496201

  20. The PROPKD Score: A New Algorithm to Predict Renal Survival in Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Cornec-Le Gall, Emilie; Audrézet, Marie-Pierre; Rousseau, Annick; Hourmant, Maryvonne; Renaudineau, Eric; Charasse, Christophe; Morin, Marie-Pascale; Moal, Marie-Christine; Dantal, Jacques; Wehbe, Bassem; Perrichot, Régine; Frouget, Thierry; Vigneau, Cécile; Potier, Jérôme; Jousset, Philippe; Guillodo, Marie-Paule; Siohan, Pascale; Terki, Nazim; Sawadogo, Théophile; Legrand, Didier; Menoyo-Calonge, Victorio; Benarbia, Seddik; Besnier, Dominique; Longuet, Hélène; Férec, Claude; Le Meur, Yannick

    2016-03-01

    The course of autosomal dominant polycystic kidney disease (ADPKD) varies among individuals, with some reaching ESRD before 40 years of age and others never requiring RRT. In this study, we developed a prognostic model to predict renal outcomes in patients with ADPKD on the basis of genetic and clinical data. We conducted a cross-sectional study of 1341 patients from the Genkyst cohort and evaluated the influence of clinical and genetic factors on renal survival. Multivariate survival analysis identified four variables that were significantly associated with age at ESRD onset, and a scoring system from 0 to 9 was developed as follows: being male: 1 point; hypertension before 35 years of age: 2 points; first urologic event before 35 years of age: 2 points; PKD2 mutation: 0 points; nontruncating PKD1 mutation: 2 points; and truncating PKD1 mutation: 4 points. Three risk categories were subsequently defined as low risk (0-3 points), intermediate risk (4-6 points), and high risk (7-9 points) of progression to ESRD, with corresponding median ages for ESRD onset of 70.6, 56.9, and 49 years, respectively. Whereas a score ≤3 eliminates evolution to ESRD before 60 years of age with a negative predictive value of 81.4%, a score >6 forecasts ESRD onset before 60 years of age with a positive predictive value of 90.9%. This new prognostic score accurately predicts renal outcomes in patients with ADPKD and may enable the personalization of therapeutic management of ADPKD. Copyright © 2016 by the American Society of Nephrology.

  1. Clinical and molecular characterization of 40 patients with classic Ehlers–Danlos syndrome: identification of 18 COL5A1 and 2 COL5A2 novel mutations

    PubMed Central

    2013-01-01

    Background Classic Ehlers–Danlos syndrome (cEDS) is a rare autosomal dominant connective tissue disorder that is primarily characterized by skin hyperextensibility, abnormal wound healing/atrophic scars, and joint hypermobility. A recent study demonstrated that more than 90% of patients who satisfy all of these major criteria harbor a type V collagen (COLLV) defect. Methods This cohort included 40 patients with cEDS who were clinically diagnosed according to the Villefranche nosology. The flowchart that was adopted for mutation detection consisted of sequencing the COL5A1 gene and, if no mutation was detected, COL5A2 analysis. In the negative patients the presence of large genomic rearrangements in COL5A1 was investigated using MLPA, and positive results were confirmed via SNP-array analysis. Results We report the clinical and molecular characterization of 40 patients from 28 families, consisting of 14 pediatric patients and 26 adults. A family history of cEDS was present in 9 patients. The majority of the patients fulfilled all the major diagnostic criteria for cEDS; atrophic scars were absent in 2 females, skin hyperextensibility was not detected in a male and joint hypermobility was negative in 8 patients (20% of the entire cohort). Wide inter- and intra-familial phenotypic heterogeneity was observed. We identified causal mutations with a detection rate of approximately 93%. In 25/28 probands, COL5A1 or COL5A2 mutations were detected. Twenty-one mutations were in the COL5A1 gene, 18 of which were novel (2 recurrent). Of these, 16 mutations led to nonsense-mediated mRNA decay (NMD) and to COLLV haploinsufficiency and 5 mutations were structural. Two novel COL5A2 splice mutations were detected in patients with the most severe phenotypes. The known p. (Arg312Cys) mutation in the COL1A1 gene was identified in one patient with vascular-like cEDS. Conclusions Our findings highlight that the three major criteria for cEDS are useful and sufficient for cEDS clinical diagnosis in the large majority of the patients. The borderline patients for whom these criteria fail can be diagnosed when minor signs of connective tissue diseases and family history are present and when genetic testing reveals a defect in COLLV. Our data also confirm that COL5A1 and COL5A2 are the major, if not the only, genes involved in cEDS. PMID:23587214

  2. Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaithinathan, R.; Berson, E.L.; Dryja, T.P.

    Here the authors report 8 novel mutations and 8 previously reported mutations found from further analysis of the rhodopsin gene in a large set of additional patients with autosomal dominant retinitis pigmentosa. Leukocyte DNA was purified from 122 unrelated patients with autosomal dominant retinitis pigmentosa who were not included in previous analyses. The coding region and splice donor and acceptor sites of the rhodopsin gene were screened for mutations using single-strand conformation polymorphism analysis and direct genomic sequencing. They found 29 patients with varient bands that were due to mutations. Sequence analysis showed that 20 cases each had 1 ofmore » 9 previously published mutations: Pro23His, Thr58Arg, Gly89Asp, Pro171Leu, Glu181Lys, Pro347Leu, Phe45Leu, Arg135Trp, and Lys296Glu. In 9 other cases, they found 8 novel mutations. One was a 3-bp deletion (Cys264-del), and the rest were point mutations resulting in an altered amino acid: Gly51Arg (GGC [yields] CGC), Cys110Tyr (TCG [yields] TAC), Gly114Asp (GGC [yields] GAC), Ala164Glu (GCG [yields] GAG), Pro171Ser (CCA [yields] TCA), Val345Leu (GTG [yields] CTG), and Pro347Gln (CCG [yields] CAG). Each of these novel mutations was found in only one family except for Gly51Arg, which was found in two. In every family tested, the mutation cosegregated with the disease. However, in pedigree D865 only one affected member was available for analysis. About two-thirds of the mutations affect amino acids in transmembrane domains, yet only one-half of opsin's residues are in these regions. One-third of the mutations alter residues in the extracellular/intradiscal space, which includes only 25% of the protein.« less

  3. C-terminal oligomerization of podocin mediates interallelic interactions.

    PubMed

    Stráner, Pál; Balogh, Eszter; Schay, Gusztáv; Arrondel, Christelle; Mikó, Ágnes; L'Auné, Gerda; Benmerah, Alexandre; Perczel, András; K Menyhárd, Dóra; Antignac, Corinne; Mollet, Géraldine; Tory, Kálmán

    2018-07-01

    Interallelic interactions of membrane proteins are not taken into account while evaluating the pathogenicity of sequence variants in autosomal recessive disorders. Podocin, a membrane-anchored component of the slit diaphragm, is encoded by NPHS2, the major gene mutated in hereditary podocytopathies. We formerly showed that its R229Q variant is only pathogenic when trans-associated to specific 3' mutations and suggested the causal role of an abnormal C-terminal dimerization. Here we show by FRET analysis and size exclusion chromatography that podocin oligomerization occurs exclusively through the C-terminal tail (residues 283-382): principally through the first C-terminal helical region (H1, 283-313), which forms a coiled coil as shown by circular dichroism spectroscopy, and through the 332-348 region. We show the principal role of the oligomerization sites in mediating interallelic interactions: while the monomer-forming R286Tfs*17 podocin remains membranous irrespective of the coexpressed podocin variant identity, podocin variants with an intact H1 significantly influence each other's localization (r 2  = 0.68, P = 9.2 × 10 -32 ). The dominant negative effect resulting in intracellular retention of the pathogenic F344Lfs*4-R229Q heterooligomer occurs in parallel with a reduction in the FRET efficiency, suggesting the causal role of a conformational rearrangement. On the other hand, oligomerization can also promote the membrane localization: it can prevent the endocytosis of F344Lfs*4 or F344* podocin mutants induced by C-terminal truncation. In conclusion, C-terminal oligomerization of podocin can mediate both a dominant negative effect and interallelic complementation. Interallelic interactions of NPHS2 are not restricted to the R229Q variant and have to be considered in compound heterozygous individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Ataxia telangiectasia mutated (ATM) interacts with p400 ATPase for an efficient DNA damage response.

    PubMed

    Smith, Rebecca J; Savoian, Matthew S; Weber, Lauren E; Park, Jeong Hyeon

    2016-11-04

    Ataxia telangiectasia mutated (ATM) and TRRAP proteins belong to the phosphatidylinositol 3-kinase-related kinase family and are involved in DNA damage repair and chromatin remodeling. ATM is a checkpoint kinase that is recruited to sites of DNA double-strand breaks where it phosphorylates a diverse range of proteins that are part of the chromatin and DNA repair machinery. As an integral subunit of the TRRAP-TIP60 complexes, p400 ATPase is a chromatin remodeler that is also targeted to DNA double-strand break sites. While it is understood that DNA binding transcriptional activators recruit p400 ATPase into a regulatory region of the promoter, how p400 recognises and moves to DNA double-strand break sites is far less clear. Here we investigate a possibility whether ATM serves as a shuttle to deliver p400 to break sites. Our data indicate that p400 co-immunoprecipitates with ATM independently of DNA damage state and that the N-terminal domain of p400 is vital for this interaction. Heterologous expression studies using Sf9 cells revealed that the ATM-p400 complex can be reconstituted without other mammalian bridging proteins. Overexpression of ATM-interacting p400 regions in U2OS cells induced dominant negative effects including the inhibition of both DNA damage repair and cell proliferation. Consistent with the dominant negative effect, the stable expression of an N-terminal p400 fragment showed a decrease in the association of p400 with ATM, but did not alter the association of p400 with TRRAP. Taken together, our findings suggest that a protein-protein interaction between ATM and p400 ATPase occurs independently of DNA damage and contributes to efficient DNA damage response and repair.

  5. Relative Contribution of Mutations in Genes for Autosomal Dominant Distal Hereditary Motor Neuropathies: A Genotype-Phenotype Correlation Study

    ERIC Educational Resources Information Center

    Dierick, Ines; Baets, Jonathan; Irobi, Joy; Jacobs, An; De Vriendt, Els; Deconinck, Tine; Merlini, Luciano; Van den Bergh, Peter; Rasic, Vedrana Milic; Robberecht, Wim; Fischer, Dirk; Morales, Raul Juntas; Mitrovic, Zoran; Seeman, Pavel; Mazanec, Radim; Kochanski, Andrzej; Jordanova, Albena; Auer-Grumbach, Michaela; Helderman-van den Enden, A. T. J. M.; Wokke, John H. J.; Nelis, Eva; De Jonghe, Peter; Timmerman, Vincent

    2008-01-01

    Distal hereditary motor neuropathy (HMN) is a clinically and genetically heterogeneous group of disorders affecting spinal alpha-motor neurons. Since 2001, mutations in six different genes have been identified for autosomal dominant distal HMN; "glycyl-tRNA synthetase (GARS)," "dynactin 1 (DCTN1)," "small heat shock 27 kDa…

  6. Inducing Somatic Pkd1 Mutations in Vivo in a Mouse Model of Autosomal-Dominant Polycystic Kidney Disease

    DTIC Science & Technology

    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the worlds most common life threatening genetic diseases. Over 95 percent of diagnosed...several genetic models to induce mutations: two during embryogenesis (with Six2-cre and CVM-cre) and one in the adult (Villin-cre). One of the embryonic

  7. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients.

    PubMed

    Cabagnols, Xénia; Favale, Fabrizia; Pasquier, Florence; Messaoudi, Kahia; Defour, Jean Philippe; Ianotto, Jean Christophe; Marzac, Christophe; Le Couédic, Jean Pierre; Droin, Nathalie; Chachoua, Ilyas; Favier, Remi; Diop, M'boyba Khadija; Ugo, Valérie; Casadevall, Nicole; Debili, Najet; Raslova, Hana; Bellanné-Chantelot, Christine; Constantinescu, Stefan N; Bluteau, Olivier; Plo, Isabelle; Vainchenker, William

    2016-01-21

    Mutations in signaling molecules of the cytokine receptor axis play a central role in myeloproliferative neoplasm (MPN) pathogenesis. Polycythemia vera is mainly related to JAK2 mutations, whereas a wider mutational spectrum is detected in essential thrombocythemia (ET) with mutations in JAK2, the thrombopoietin (TPO) receptor (MPL), and the calreticulin (CALR) genes. Here, we studied the mutational profile of 17 ET patients negative for JAK2V617F, MPLW515K/L, and CALR mutations, using whole-exome sequencing and next-generation sequencing (NGS) targeted on JAK2 and MPL. We found several signaling mutations including JAK2V617F at very low allele frequency, 1 homozygous SH2B3 mutation, 1 MPLS505N, 1 MPLW515R, and 2 MPLS204P mutations. In the remaining patients, 4 presented a clonal and 7 a polyclonal hematopoiesis, suggesting that certain triple-negative ETs are not MPNs. NGS on 26 additional triple-negative ETs detected only 1 MPLY591N mutation. Functional studies on MPLS204P and MPLY591N revealed that they are weak gain-of-function mutants increasing MPL signaling and conferring either TPO hypersensitivity or independence to expressing cells, but with a low efficiency. Further studies should be performed to precisely determine the frequency of MPLS204 and MPLY591 mutants in a bigger cohort of MPN. © 2016 by The American Society of Hematology.

  8. Novel TMEM98 mutations in pedigrees with autosomal dominant nanophthalmos

    PubMed Central

    Khorram, David; Choi, Michael; Roos, Ben R.; Stone, Edwin M.; Kopel, Teresa; Allen, Richard; Alward, Wallace L.M.; Scheetz, Todd E.

    2015-01-01

    Purpose Autosomal dominant nanophthalmos is an inherited eye disorder characterized by a structurally normal but smaller eye. Patients with nanophthalmos have high hyperopia (far-sightedness), a greater incidence of angle-closure glaucoma, and increased risk of surgical complications. In this study, the clinical features and the genetic basis of nanophthalmos were investigated in two large autosomal dominant nanophthalmos pedigrees. Methods Fourteen members of a Caucasian pedigree from the United States and 15 members of a pedigree from the Mariana Islands enrolled in a genetic study of nanophthalmos and contributed DNA samples. Twenty of 29 family members underwent eye examinations that included measurement of axial eye length and/or refractive error. The genetic basis of nanophthalmos in the pedigrees was studied with linkage analysis, whole exome sequencing, and candidate gene (i.e., TMEM98) sequencing to identify the nanophthalmos-causing gene. Results Nine members of the pedigree from the United States and 11 members of the pedigree from the Mariana Islands were diagnosed with nanophthalmos that is transmitted as an autosomal dominant trait. The patients with nanophthalmos had abnormally short axial eye lengths, which ranged from 15.9 to 18.4 mm. Linkage analysis of the nanophthalmos pedigree from the United States identified nine large regions of the genome (greater than 10 Mbp) that were coinherited with disease in this family. Genes within these “linked regions” were examined for disease-causing mutations using exome sequencing, and a His196Pro mutation was detected in the TMEM98 gene, which was recently reported to be a nanophthalmos gene. Sanger sequencing subsequently showed that all other members of this pedigree with nanophthalmos also carry the His196Pro TMEM98 mutation. Testing the Mariana Islands pedigree for TMEM98 mutations identified a 34 bp heterozygous deletion that spans the 3′ end of exon 4 in all affected family members. Neither TMEM98 mutation was detected in public exome sequence databases. Conclusions A recent report identified a single TMEM98 missense mutation in a nanophthalmos pedigree. Our discovery of two additional TMEM98 mutations confirms the important role of the gene in the pathogenesis of autosomal dominant nanophthalmos. PMID:26392740

  9. Novel TMEM98 mutations in pedigrees with autosomal dominant nanophthalmos.

    PubMed

    Khorram, David; Choi, Michael; Roos, Ben R; Stone, Edwin M; Kopel, Teresa; Allen, Richard; Alward, Wallace L M; Scheetz, Todd E; Fingert, John H

    2015-01-01

    Autosomal dominant nanophthalmos is an inherited eye disorder characterized by a structurally normal but smaller eye. Patients with nanophthalmos have high hyperopia (far-sightedness), a greater incidence of angle-closure glaucoma, and increased risk of surgical complications. In this study, the clinical features and the genetic basis of nanophthalmos were investigated in two large autosomal dominant nanophthalmos pedigrees. Fourteen members of a Caucasian pedigree from the United States and 15 members of a pedigree from the Mariana Islands enrolled in a genetic study of nanophthalmos and contributed DNA samples. Twenty of 29 family members underwent eye examinations that included measurement of axial eye length and/or refractive error. The genetic basis of nanophthalmos in the pedigrees was studied with linkage analysis, whole exome sequencing, and candidate gene (i.e., TMEM98) sequencing to identify the nanophthalmos-causing gene. Nine members of the pedigree from the United States and 11 members of the pedigree from the Mariana Islands were diagnosed with nanophthalmos that is transmitted as an autosomal dominant trait. The patients with nanophthalmos had abnormally short axial eye lengths, which ranged from 15.9 to 18.4 mm. Linkage analysis of the nanophthalmos pedigree from the United States identified nine large regions of the genome (greater than 10 Mbp) that were coinherited with disease in this family. Genes within these "linked regions" were examined for disease-causing mutations using exome sequencing, and a His196Pro mutation was detected in the TMEM98 gene, which was recently reported to be a nanophthalmos gene. Sanger sequencing subsequently showed that all other members of this pedigree with nanophthalmos also carry the His196Pro TMEM98 mutation. Testing the Mariana Islands pedigree for TMEM98 mutations identified a 34 bp heterozygous deletion that spans the 3' end of exon 4 in all affected family members. Neither TMEM98 mutation was detected in public exome sequence databases. A recent report identified a single TMEM98 missense mutation in a nanophthalmos pedigree. Our discovery of two additional TMEM98 mutations confirms the important role of the gene in the pathogenesis of autosomal dominant nanophthalmos.

  10. Learning from Job: A Rare Genetic Disease and Lessons of Biblical Proportions.

    PubMed

    Milner, Joshua D

    2018-01-29

    Dominant negative mutations in STAT3, a critical signaling molecule and transcription factor in multiple organ systems, lead to a rare monogenic disease called the STAT3 loss-of-function, autosomal dominant hyper-IgE syndrome (STAT3LOF AD-HIES). The original name for this syndrome, Job's syndrome, was derived from the observation that patients had a propensity to develop skin boils, reminiscent of the affliction cast upon the biblical Job. Many fascinating observations have been made regarding the pathogenesis of the disease and the role STAT3 plays in human health and disease. Additionally, quite a few phenotypic descriptions from the Book of Job are similar to those seen in patients with STAT3LOF AD-HIES, beyond just the boils. This complex multisystem genetic disorder is a challenge clinically and scientifically, but it also brings into question how we approach genetic syndromes beyond just the technical aspects of research and treatment.

  11. Mutations Affecting G-Protein Subunit α11 in Hypercalcemia and Hypocalcemia

    PubMed Central

    Babinsky, Valerie N.; Head, Rosie A.; Cranston, Treena; Rust, Nigel; Hobbs, Maurine R.; Heath, Hunter; Thakker, Rajesh V.

    2013-01-01

    BACKGROUND Familial hypocalciuric hypercalcemia is a genetically heterogeneous disorder with three variants: types 1, 2, and 3. Type 1 is due to loss-of-function mutations of the calcium-sensing receptor, a guanine nucleotide–binding protein (G-protein)–coupled receptor that signals through the G-protein subunit α11 (Gα11). Type 3 is associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which result in altered calcium-sensing receptor endocytosis. We hypothesized that type 2 is due to mutations effecting Gα11 loss of function, since Gα11 is involved in calcium-sensing receptor signaling, and its gene (GNA11) and the type 2 locus are colocalized on chromosome 19p13.3. We also postulated that mutations effecting Gα11 gain of function, like the mutations effecting calcium-sensing receptor gain of function that cause autosomal dominant hypocalcemia type 1, may lead to hypocalcemia. METHODS We performed GNA11 mutational analysis in a kindred with familial hypocalciuric hypercalcemia type 2 and in nine unrelated patients with familial hypocalciuric hypercalcemia who did not have mutations in the gene encoding the calcium-sensing receptor (CASR) or AP2S1. We also performed this analysis in eight unrelated patients with hypocalcemia who did not have CASR mutations. In addition, we studied the effects of GNA11 mutations on Gα11 protein structure and calcium-sensing receptor signaling in human embryonic kidney 293 (HEK293) cells. RESULTS The kindred with familial hypocalciuric hypercalcemia type 2 had an in-frame deletion of a conserved Gα11 isoleucine (Ile200del), and one of the nine unrelated patients with familial hypocalciuric hypercalcemia had a missense GNA11 mutation (Leu135Gln). Missense GNA11 mutations (Arg181Gln and Phe341Leu) were detected in two unrelated patients with hypocalcemia; they were therefore identified as having autosomal dominant hypocalcemia type 2. All four GNA11 mutations predicted disrupted protein structures, and assessment on the basis of in vitro expression showed that familial hypocalciuric hypercalcemia type 2–associated mutations decreased the sensitivity of cells expressing calcium-sensing receptors to changes in extracellular calcium concentrations, whereas autosomal dominant hypocalcemia type 2–associated mutations increased cell sensitivity. CONCLUSIONS Gα11 mutants with loss of function cause familial hypocalciuric hypercalcemia type 2, and Gα11 mutants with gain of function cause a clinical disorder designated as autosomal dominant hypocalcemia type 2. (Funded by the United Kingdom Medical Research Council and others.) PMID:23802516

  12. Lenticular subluxation in a patient with homocystinuria undetected by neonatal screening.

    PubMed

    Cheng, Kang-Hsiang; Hung, Miao-Chiu; Chen, Shih-Jen; Kao, Chuan-Hong; Niu, Dau-Ming

    2007-12-01

    A case of homocystinuria with lenticular subluxation was misdiagnosed as Marfan syndrome since the patient had no apparent mental impairment and had had a negative neonatal screen for homocystinuria. The delayed diagnosis of homocystinuria was due to a negative prior neonatal screen which was checked when he was a breastfed healthy newborn. In the absence of an autosomal dominant family history, and because of prior poor school performance, amino acid analysis and mutational analysis of the cystathionine beta-synthase gene were performed, which revealed the presence of homocystinuria. Low methionine diet with vitamin B6, folic acid, betaine, dipyridamole and aspirin was prescribed for emergency ophthalmologic surgery to prevent thromboembolic events. Fortunately, the operation was completed uneventfully. The patient has been followed-up for 4 years without any significant complaints under diet and medical control. Since homocystinuria is easily missed in neonatal screening programs, it should be suspected in patients who present with lenticular subluxation, even after a negative neonatal screen.

  13. Isolated growth hormone deficiency in two siblings because of paternal mosaicism for a mutation in the GH1 gene.

    PubMed

    Tsubahara, Mayuko; Hayashi, Yoshitaka; Niijima, Shin-ichi; Yamamoto, Michiyo; Kamijo, Takashi; Murata, Yoshiharu; Haruna, Hidenori; Okumura, Akihisa; Shimizu, Toshiaki

    2012-03-01

      Mutations in the GH1 gene have been identified in patients with isolated growth hormone deficiency (IGHD). Mutations causing aberrant splicing of exon 3 of GH1 that have been identified in IGHD are inherited in an autosomal dominant manner, whereas other mutations in GH1 that have been identified in IGHD are inherited in an autosomal recessive manner.   Two siblings born from nonconsanguineous healthy parents exhibited IGHD. To elucidate the cause, GH1 in all family members was analysed.   Two novel mutations in GH1, a point mutation in intron 3 and a 16-bp deletion in exon 3, were identified by sequence analyses. The intronic mutation was present in both siblings and was predicted to cause aberrant splicing. The deletion was present in one of the siblings as well as the mother with normal stature and was predicted to cause rapid degradation of mRNA through nonsense-mediated mRNA decay. The point mutation was not identified in the parents' peripheral blood DNA; however, it was detected in the DNA extracted from the father's sperms. As a trace of the mutant allele was detected in the peripheral blood of the father using PCR-RFLP, the mutation is likely to have occurred de novo at an early developmental stage before differentiation of somatic cells and germline cells.   This is the first report of mosaicism for a mutation in GH1 in a family with IGHD. It is clear that the intronic mutation plays a dominant role in the pathogenesis of IGHD in this family, as one of the siblings who had only the point mutation was affected. On the other hand, the other sibling was a compound heterozygote for the point mutation and the 16-bp deletion and it may be arguable whether IGHD in this patient should be regarded as autosomal dominant or recessive. © 2012 Blackwell Publishing Ltd.

  14. Landscape of Familial Isolated and Young-Onset Pituitary Adenomas: Prospective Diagnosis in AIP Mutation Carriers

    PubMed Central

    Hernández-Ramírez, Laura C.; Gabrovska, Plamena; Dénes, Judit; Stals, Karen; Trivellin, Giampaolo; Tilley, Daniel; Ferraù, Francesco; Evanson, Jane; Ellard, Sian; Grossman, Ashley B.; Roncaroli, Federico; Gadelha, Mônica R.

    2015-01-01

    Context: Familial isolated pituitary adenoma (FIPA) due to aryl hydrocarbon receptor interacting protein (AIP) gene mutations is an autosomal dominant disease with incomplete penetrance. Clinical screening of apparently unaffected AIP mutation (AIPmut) carriers could identify previously unrecognized disease. Objective: To determine the AIP mutational status of FIPA and young pituitary adenoma patients, analyzing their clinical characteristics, and to perform clinical screening of apparently unaffected AIPmut carrier family members. Design: This was an observational, longitudinal study conducted over 7 years. Setting: International collaborative study conducted at referral centers for pituitary diseases. Participants: FIPA families (n = 216) and sporadic young-onset (≤30 y) pituitary adenoma patients (n = 404) participated in the study. Interventions: We performed genetic screening of patients for AIPmuts, clinical assessment of their family members, and genetic screening for somatic GNAS1 mutations and the germline FGFR4 p.G388R variant. Main Outcome Measure(s): We assessed clinical disease in mutation carriers, comparison of characteristics of AIPmut positive and negative patients, results of GNAS1, and FGFR4 analysis. Results: Thirty-seven FIPA families and 34 sporadic patients had AIPmuts. Patients with truncating AIPmuts had a younger age at disease onset and diagnosis, compared with patients with nontruncating AIPmuts. Somatic GNAS1 mutations were absent in tumors from AIPmut-positive patients, and the studied FGFR4 variant did not modify the disease behavior or penetrance in AIPmut-positive individuals. A total of 164 AIPmut-positive unaffected family members were identified; pituitary disease was detected in 18 of those who underwent clinical screening. Conclusions: A quarter of the AIPmut carriers screened were diagnosed with pituitary disease, justifying this screening and suggesting a variable clinical course for AIPmut-positive pituitary adenomas. PMID:26186299

  15. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis.

    PubMed Central

    Schnorr, J D; Holdcraft, R; Chevalier, B; Berg, C A

    2001-01-01

    Little is known about the genes that interact with Ras signaling pathways to regulate morphogenesis. The synthesis of dorsal eggshell structures in Drosophila melanogaster requires multiple rounds of Ras signaling followed by dramatic epithelial sheet movements. We took advantage of this process to identify genes that link patterning and morphogenesis; we screened lethal mutations on the second chromosome for those that could enhance a weak Ras1 eggshell phenotype. Of 1618 lethal P-element mutations tested, 13 showed significant enhancement, resulting in forked and fused dorsal appendages. Our genetic and molecular analyses together with information from the Berkeley Drosophila Genome Project reveal that 11 of these lines carry mutations in previously characterized genes. Three mutations disrupt the known Ras1 cell signaling components Star, Egfr, and Blistered, while one mutation disrupts Sec61beta, implicated in ligand secretion. Seven lines represent cell signaling and cytoskeletal components that are new to the Ras1 pathway; these are Chickadee (Profilin), Tec29, Dreadlocks, POSH, Peanut, Smt3, and MESK2, a suppressor of dominant-negative Ksr. A twelfth insertion disrupts two genes, Nrk, a "neurospecific" receptor tyrosine kinase, and Tpp, which encodes a neuropeptidase. These results suggest that Ras1 signaling during oogenesis involves novel components that may be intimately associated with additional signaling processes and with the reorganization of the cytoskeleton. To determine whether these Ras1 Enhancers function upstream or downstream of the Egf receptor, four mutations were tested for their ability to suppress an activated Egfr construct (lambdatop) expressed in oogenesis exclusively in the follicle cells. Mutations in Star and l(2)43Bb had no significant effect upon the lambdatop eggshell defect whereas smt3 and dock alleles significantly suppressed the lambdatop phenotype. PMID:11606538

  16. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis.

    PubMed

    Schnorr, J D; Holdcraft, R; Chevalier, B; Berg, C A

    2001-10-01

    Little is known about the genes that interact with Ras signaling pathways to regulate morphogenesis. The synthesis of dorsal eggshell structures in Drosophila melanogaster requires multiple rounds of Ras signaling followed by dramatic epithelial sheet movements. We took advantage of this process to identify genes that link patterning and morphogenesis; we screened lethal mutations on the second chromosome for those that could enhance a weak Ras1 eggshell phenotype. Of 1618 lethal P-element mutations tested, 13 showed significant enhancement, resulting in forked and fused dorsal appendages. Our genetic and molecular analyses together with information from the Berkeley Drosophila Genome Project reveal that 11 of these lines carry mutations in previously characterized genes. Three mutations disrupt the known Ras1 cell signaling components Star, Egfr, and Blistered, while one mutation disrupts Sec61beta, implicated in ligand secretion. Seven lines represent cell signaling and cytoskeletal components that are new to the Ras1 pathway; these are Chickadee (Profilin), Tec29, Dreadlocks, POSH, Peanut, Smt3, and MESK2, a suppressor of dominant-negative Ksr. A twelfth insertion disrupts two genes, Nrk, a "neurospecific" receptor tyrosine kinase, and Tpp, which encodes a neuropeptidase. These results suggest that Ras1 signaling during oogenesis involves novel components that may be intimately associated with additional signaling processes and with the reorganization of the cytoskeleton. To determine whether these Ras1 Enhancers function upstream or downstream of the Egf receptor, four mutations were tested for their ability to suppress an activated Egfr construct (lambdatop) expressed in oogenesis exclusively in the follicle cells. Mutations in Star and l(2)43Bb had no significant effect upon the lambdatop eggshell defect whereas smt3 and dock alleles significantly suppressed the lambdatop phenotype.

  17. Variable expressivity of familial medullary thyroid carcinoma (FMTC) due to a RET V804M (GTG-->ATG) mutation.

    PubMed

    Feldman, G L; Edmonds, M W; Ainsworth, P J; Schuffenecker, I; Lenoir, G M; Saxe, A W; Talpos, G B; Roberson, J; Petrucelli, N; Jackson, C E

    2000-07-01

    Multiple endocrine neoplasia type 2 (MEN 2) and familial medullary thyroid carcinoma (FMTC) are autosomal dominantly inherited cancer syndromes that predispose to C-cell hyperplasia and MTC. MEN 2A and FMTC are caused by mutations in the RET proto-oncogene. We used a multiplex polymerase chain reaction-based assay to screen exons 10, 11, 13, and 14 of RET for mutations in 2 families with FMTC. We correlated mutation status with calcitonin and pathologic studies to determine genotype-phenotype correlations. We identified a mutation in codon 804 in exon 14 (GTG-->ATG; V804M) in both families. An 86-year-old person who was a gene carrier and other individuals over age 70 who were suspected by pedigree analysis to be gene carriers had no overt clinical evidence of MTC. Four of 21 patients who underwent a thyroidectomy also had papillary thyroid cancer. One individual in each family had metastatic MTC at age 30 and 32 years, and all 26 people having thyroidectomies had either MTC or C-cell hyperplasia, leading us to continue to recommend prophylactic thyroidectomy for all identified patients who were gene carriers. Because of active MTC in younger members of these families, including metastases, we have continued to advocate thyroid surgery in mutation-positive individuals. While DNA diagnosis of gene carriers and subsequent genetic counseling was relatively straightforward, the acceptance of surgical recommendations was more difficult for some individuals. These families demonstrate that the search for RET mutations should include exons 13, 14, 15, and 16 in patients whose studies in exons 10 and 11 are negative.

  18. Biophysical Properties of 9 KCNQ1 Mutations Associated with Long QT Syndrome (LQTS)

    PubMed Central

    Yang, Tao; Chung, Seo-Kyung; Zhang, Wei; Mullins, Jonathan G.L.; McCulley, Caroline H.; Crawford, Jackie; MacCormick, Judith; Eddy, Carey-Anne; Shelling, Andrew N.; French, John K.; Yang, Ping; Skinner, Jonathan R.; Roden, Dan M.; Rees, Mark I.

    2009-01-01

    Background Inherited long QT syndrome (LQTS) is characterized by prolonged QT interval on the EKG, syncope and sudden death due to ventricular arrhythmia. Causative mutations occur mostly in cardiac potassium and sodium channel subunit genes. Confidence in mutation pathogenicity is usually reached through family genotype-phenotype tracking, control population studies, molecular modelling and phylogenetic alignments, however, biophysical testing offers a higher degree of validating evidence. Methods and Results By using in-vitro electrophysiological testing of transfected mutant and wild-type LQTS constructs into Chinese Hamster Ovary cells, we investigated the biophysical properties of 9 KCNQ1 missense mutations (A46T, T265I, F269S, A302V, G316E, F339S, R360G, H455Y, and S546L) identified in a New Zealand based LQTS screening programme. We demonstrate through electrophysiology and molecular modeling that seven of the missense mutations have profound pathological dominant negative loss-of-function properties confirming their likely disease-causing nature. This supports the use of these mutations in diagnostic family screening. Two mutations (A46T, T265I) show suggestive evidence of pathogenicity within the experimental limits of biophysical testing, indicating that these variants are disease-causing via delayed or fast activation kinetics. Further investigation of the A46T family has revealed an inconsistent co-segregation of the variant with the clinical phenotype. Conclusions Electrophysiological characterisation should be used to validate LQTS pathogenicity of novel missense channelopathies. When such results are inconclusive, great care should be taken with genetic counselling and screening of such families, and alternative disease causing mechanisms should be considered. PMID:19808498

  19. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy.

    PubMed

    Minetti, C; Sotgia, F; Bruno, C; Scartezzini, P; Broda, P; Bado, M; Masetti, E; Mazzocco, M; Egeo, A; Donati, M A; Volonte, D; Galbiati, F; Cordone, G; Bricarelli, F D; Lisanti, M P; Zara, F

    1998-04-01

    Limb-girdle muscular dystrophy (LGMD) is a clinically and genetically heterogeneous group of myopathies, including autosomal dominant and recessive forms. To date, two autosomal dominant forms have been recognized: LGMD1A, linked to chromosome 5q, and LGMD1B, associated with cardiac defects and linked to chromosome 1q11-21. Here we describe eight patients from two different families with a new form of autosomal dominant LGMD, which we propose to call LGMD1C, associated with a severe deficiency of caveolin-3 in muscle fibres. Caveolin-3 (or M-caveolin) is the muscle-specific form of the caveolin protein family, which also includes caveolin-1 and -2. Caveolins are the principal protein components of caveolae (50-100 nm invaginations found in most cell types) which represent appendages or sub-compartments of plasma membranes. We localized the human caveolin-3 gene (CAV3) to chromosome 3p25 and identified two mutations in the gene: a missense mutation in the membrane-spanning region and a micro-deletion in the scaffolding domain. These mutations may interfere with caveolin-3 oligomerization and disrupt caveolae formation at the muscle cell plasma membrane.

  20. [The prevalence and clinical significance of precore and core promoter mutations in Korean patients with chronic hepatitis B virus infection].

    PubMed

    Kim, Hyung Joon; Yoo, Byung Chul

    2002-06-01

    Precore and core promoter mutations of hepatitis B virus (HBV) have been reported in Korea but their prevalence and clinical significance have not been determined. The aims of this study were to determine the prevalence of precore and core promoter mutations and their relationships to hepatitis B e antigen (HBeAg) status, viral replication level, and severity of liver disease in Korea. Among the patients who visited the Liver Diseases Clinics (Chung Ang University Hospital) between December 1998 and August 1999, 150 patients were randomly selected: 50 HBeAg-positive HBV-DNA positive patients by a branched DNA (bDNA) assay, 50 HBeAg-negative bDNA-positive patients, and 50 HBeAg-negative bDNA-negative patients. Serum HBV-DNA was amplified by a polymerase chain reaction (PCR) in these patients and the core promoter/precore HBV sequence was determined in 135 of the patients whose sera were positive for HBV-DNA by PCR. All of the 135 determined HBV-DNA sequences had HBV genotype with T at nucleotide 1858. Precore mutation (A1896) was detected in 95.7% of HBeAg-negative bDNA-positive patients and 94.9% of HBeAg-negative bDNA-negative patients. In HBeAg-positive patients 88% had wild type and 12% had mixture of wild type and A1896 mutant. Core promoter TA mutation (T1762/A1764) was detected in 93.5% of HBeAg-negative bDNA-positive patients, 94.9% of HBeAg-negative bDNA-negative patients and 74% of HBeAg-positive patients. No correlation was found between the presence of precore/core promoter mutations and liver disease severity or HBV-DNA levels. Precore stop codon mutation occurred almost invariably, along with HBeAg seroconversion, irrespective of subsequent viral replication levels or disease severity. Core promoter TA mutation was frequent both in the HBeAg-positive patients and HBeAg-negative patients irrespective of viral replication levels or disease severity.

  1. Molecular analyses of 15,542 patients with suspected BCR-ABL1-negative myeloproliferative disorders allow to develop a stepwise diagnostic workflow

    PubMed Central

    Schnittger, Susanne; Bacher, Ulrike; Eder, Christiane; Dicker, Frank; Alpermann, Tamara; Grossmann, Vera; Kohlmann, Alexander; Kern, Wolfgang; Haferlach, Claudia; Haferlach, Torsten

    2012-01-01

    We investigated 15,542 patients with suspected BCR-ABL1- negative myeloproliferative or myelodysplastic/myeloproliferative neoplasm (including 359 chronic myelomonocytic leukemia) by a molecular marker set. JAK2V617F was detected in the suspected categories as follows: polycythemia vera 88.3%, primary myelofibrosis 53.8%, essential thrombocythemia 50.2%, and not further classifiable myeloproliferative neoplasms 38.0%. JAK2 exon 12 mutations were detected in 40.0% JAK2V617F-negative suspected polycythemia vera, MPLW515 mutations in 13.2%JAK2V617F-negative primary myelofibrosis and 7.1% JAK2V617F-negative essential thrombocythemia. TET2 mutations were distributed across all entities but were most frequent in suspected chronic myelomonocytic leukemia (77.8%). CBL mutations were identified in suspected chronic myelomonocytic leukemia (13.9%), primary myelofibrosis (8.0%), and not further classifiable myeloproliferative neoplasm (7.0%). This leads to a stepwise workflow for suspected myeloproliferative neoplasms starting with JAK2V617F and investigating JAK2V617F-negative patients for JAK2 exon 12 or MPL mutations, respectively. In cases in which a myeloproliferative neoplasm cannot be established, analysis for TET2, CBL and EZH2 mutations may be indicated. PMID:22511494

  2. Autosomal dominant optic neuropathy and sensorineual hearing loss associated with a novel mutation of WFS1

    PubMed Central

    Pennings, Ronald J.E.; Hol, Frans A.; Kunst, Henricus P.M.; Hoefsloot, Elisabeth H.; Cruysberg, Johannes R.M.; Cremers, Cor W.R.J.

    2010-01-01

    Purpose To describe the phenotype of a novel Wolframin (WFS1) mutation in a family with autosomal dominant optic neuropathy and deafness. The study is designed as a retrospective observational case series. Methods Seven members of a Dutch family underwent ophthalmological, otological, and genetical examinations in one institution. Fasting serum glucose was assessed in the affected family members. Results All affected individuals showed loss of neuroretinal rim of the optic nerve at fundoscopy with enlarged blind spots at perimetry. They showed a red-green color vision defect at color vision tests and deviations at visually evoked response tests. The audiograms of the affected individuals showed hearing loss and were relatively flat. The unaffected individuals showed no visual deviations or hearing impairment. The affected family members had no glucose intolerance. Leber hereditary optic neuropathy (LHON) mitochondrial mutations and mutations in the Optic atrophy-1 gene (OPA1) were excluded. In the affected individuals, a novel missense mutation c.2508G>C (p.Lys836Asn) in exon 8 of WFS1 was identified. Conclusions This study describes the phenotype of a family with autosomal dominant optic neuropathy and hearing impairment associated with a novel missense mutation in WFS1. PMID:20069065

  3. Molecular analysis and genetic mapping of the rhodopsin gene in families with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunge, S.; Wedemann, H.; Samanns, C.

    1993-07-01

    Eighty-eight patients/families with autosomal dominant retinitis pigmentosa (RP) were screened for rhodopsin mutations. Direct sequencing revealed 13 different mutations in a total of 14 (i.e., 16%) unrelated patients. Five of these mutations (T4K, Q28H, R135G, F220C, and C222R) have not been reported so far. In addition, multipoint linkage analysis was performed on two large families with autosomal dominant RP due to rhodopsin mutations by using five DNA probes from 3q21-q24. No tight linkage was found between the rhodopsin locus (RHO) and D3S47 ([theta][sub max] = 0.08). By six-point analysis, RHO was localized in the region between D3S21 and D3S47, withmore » a maximum lod score of 13.447 directly at D3S20. 13 refs., 1 fig., 2 tabs.« less

  4. Rare co-occurrence of osteogenesis imperfecta type I and autosomal dominant polycystic kidney disease.

    PubMed

    Hoefele, Julia; Mayer, Karin; Marschall, Christoph; Alberer, Martin; Klein, Hanns-Georg; Kirschstein, Martin

    2016-11-01

    There are several clinical reports about the co-occurrence of autosomal dominant polycystic kidney disease (ADPKD) and connective tissue disorders. A simultaneous occurrence of osteogenesis imperfecta (OI) type I and ADPKD has not been observed so far. This report presents the first patient with OI type I and ADPKD. Mutational analysis of PKD1 and COL1A1 in the index patient revealed a heterozygous mutation in each of the two genes. Mutational analysis of the parents indicated the mother as a carrier of the PKD1 mutation and the father as a carrier of the COL1A1 mutation. The simultaneous occurrence of both disorders has an estimated frequency of 3.5:100 000 000. In singular cases, ADPKD can occur in combination with other rare disorders, e.g. connective tissue disorders.

  5. Inducing Somatic Pkd1 Mutations in Vivo in a Mouse Model of Autosomal-Dominant Polycystic Kidney Disease

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0237 TITLE: Inducing Somatic Pkd1 Mutations in Vivo in a Mouse Model of Autosomal-Dominant Polycystic Kidney ... Kidney Disease 5b. GRANT NUMBER W81XWH-15-1-0237 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Cristina Cebrian-Ligero 5d. PROJECT NUMBER 5e. TASK...Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the world’s most common life-threatening genetic diseases. Over 95% of diagnosed cases of

  6. Whole-exome sequencing and targeted gene sequencing provide insights into the role of PALB2 as a male breast cancer susceptibility gene.

    PubMed

    Silvestri, Valentina; Zelli, Veronica; Valentini, Virginia; Rizzolo, Piera; Navazio, Anna Sara; Coppa, Anna; Agata, Simona; Oliani, Cristina; Barana, Daniela; Castrignanò, Tiziana; Viel, Alessandra; Russo, Antonio; Tibiletti, Maria Grazia; Zanna, Ines; Masala, Giovanna; Cortesi, Laura; Manoukian, Siranoush; Azzollini, Jacopo; Peissel, Bernard; Bonanni, Bernardo; Peterlongo, Paolo; Radice, Paolo; Palli, Domenico; Giannini, Giuseppe; Chillemi, Giovanni; Montagna, Marco; Ottini, Laura

    2017-01-01

    Male breast cancer (MBC) is a rare disease whose etiology appears to be largely associated with genetic factors. BRCA1 and BRCA2 mutations account for about 10% of all MBC cases. Thus, a fraction of MBC cases are expected to be due to genetic factors not yet identified. To further explain the genetic susceptibility for MBC, whole-exome sequencing (WES) and targeted gene sequencing were applied to high-risk, BRCA1/2 mutation-negative MBC cases. Germ-line DNA of 1 male and 2 female BRCA1/2 mutation-negative breast cancer (BC) cases from a pedigree showing a first-degree family history of MBC was analyzed with WES. Targeted gene sequencing for the validation of WES results was performed for 48 high-risk, BRCA1/2 mutation-negative MBC cases from an Italian multicenter study of MBC. A case-control series of 433 BRCA1/2 mutation-negative MBC and female breast cancer (FBC) cases and 849 male and female controls was included in the study. WES in the family identified the partner and localizer of BRCA2 (PALB2) c.419delA truncating mutation carried by the proband, her father, and her paternal uncle (all affected with BC) and the N-acetyltransferase 1 (NAT1) c.97C>T nonsense mutation carried by the proband's maternal aunt. Targeted PALB2 sequencing detected the c.1984A>T nonsense mutation in 1 of the 48 BRCA1/2 mutation-negative MBC cases. NAT1 c.97C>T was not found in the case-control series. These results add strength to the evidence showing that PALB2 is involved in BC risk for both sexes and indicate that consideration should be given to clinical testing of PALB2 for BRCA1/2 mutation-negative families with multiple MBC and FBC cases. Cancer 2017;123:210-218. © 2016 American Cancer Society. © 2016 American Cancer Society.

  7. A molecular and clinical study of Larsen syndrome caused by mutations in FLNB.

    PubMed

    Bicknell, Louise S; Farrington-Rock, Claire; Shafeghati, Yousef; Rump, Patrick; Alanay, Yasemin; Alembik, Yves; Al-Madani, Navid; Firth, Helen; Karimi-Nejad, Mohammad Hassan; Kim, Chong Ae; Leask, Kathryn; Maisenbacher, Melissa; Moran, Ellen; Pappas, John G; Prontera, Paolo; de Ravel, Thomy; Fryns, Jean-Pierre; Sweeney, Elizabeth; Fryer, Alan; Unger, Sheila; Wilson, L C; Lachman, Ralph S; Rimoin, David L; Cohn, Daniel H; Krakow, Deborah; Robertson, Stephen P

    2007-02-01

    Larsen syndrome is an autosomal dominant osteochondrodysplasia characterised by large-joint dislocations and craniofacial anomalies. Recently, Larsen syndrome was shown to be caused by missense mutations or small inframe deletions in FLNB, encoding the cytoskeletal protein filamin B. To further delineate the molecular causes of Larsen syndrome, 20 probands with Larsen syndrome together with their affected relatives were evaluated for mutations in FLNB and their phenotypes studied. Probands were screened for mutations in FLNB using a combination of denaturing high-performance liquid chromatography, direct sequencing and restriction endonuclease digestion. Clinical and radiographical features of the patients were evaluated. The clinical signs most frequently associated with a FLNB mutation are the presence of supernumerary carpal and tarsal bones and short, broad, spatulate distal phalanges, particularly of the thumb. All individuals with Larsen syndrome-associated FLNB mutations are heterozygous for either missense or small inframe deletions. Three mutations are recurrent, with one mutation, 5071G-->A, observed in 6 of 20 subjects. The distribution of mutations within the FLNB gene is non-random, with clusters of mutations leading to substitutions in the actin-binding domain and filamin repeats 13-17 being the most common cause of Larsen syndrome. These findings collectively define autosomal dominant Larsen syndrome and demonstrate clustering of causative mutations in FLNB.

  8. Dominant-negative inhibitors of the Clostridium perfringens epsilon-toxin.

    PubMed

    Pelish, Teal M; McClain, Mark S

    2009-10-23

    The Clostridium perfringens epsilon-toxin is responsible for a severe, often lethal intoxication. In this study, we characterized dominant-negative inhibitors of the epsilon-toxin. Site-specific mutations were introduced into the gene encoding epsilon-toxin, and recombinant proteins were expressed in Escherichia coli. Paired cysteine substitutions were introduced at locations predicted to form a disulfide bond. One cysteine in each mutant was introduced into the membrane insertion domain of the toxin; the second cysteine was introduced into the protein backbone. Mutant proteins with cysteine substitutions at amino acid positions I51/A114 and at V56/F118 lacked detectable cytotoxic activity in a MDCK cell assay. Cytotoxic activity could be reconstituted in both mutant proteins by incubation with dithiothreitol, indicating that the lack of cytotoxic activity was attributable to the formation of a disulfide bond. Fluorescent labeling of the cysteines also indicated that the introduced cysteines participated in a disulfide bond. When equimolar mixtures of wild-type epsilon-toxin and mutant proteins were added to MDCK cells, the I51C/A114C and V56C/F118C mutant proteins each inhibited the activity of wild-type epsilon-toxin. Further analysis of the inhibitory activity of the I51C/A114C and V56C/F118C mutant proteins indicated that these proteins inhibit the ability of the active toxin to form stable oligomeric complexes in the context of MDCK cells. These results provide further insight into the properties of dominant-negative inhibitors of oligomeric pore-forming toxins and provide the basis for developing new therapeutics for treating intoxication by epsilon-toxin.

  9. Veliparib and Carboplatin in Treating Patients With HER2-Negative Metastatic Breast Cancer

    ClinicalTrials.gov

    2018-04-20

    BRCA1 Gene Mutation; BRCA2 Gene Mutation; Estrogen Receptor Negative; Estrogen Receptor Positive; HER2/Neu Negative; Progesterone Receptor Negative; Progesterone Receptor Positive; Recurrent Breast Carcinoma; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Triple-Negative Breast Carcinoma

  10. Lynch syndrome: the influence of environmental factors on extracolonic cancer risk in hMLH1 c.C1528T mutation carriers and their mutation-negative sisters.

    PubMed

    Blokhuis, M M; Pietersen, G E; Goldberg, P A; Algar, U; Van der Merwe, L; Mbatani, N; Vorster, A A; Ramesar, R S

    2010-09-01

    Lynch Syndrome (LS) is a cancer susceptibility syndrome caused mostly by mutations in the mismatch repair genes, hMLH1, hMSH2 and hMSH6. Mutation carriers are at risk of colorectal and endometrial cancer and, less frequently, cancer of the ovaries, stomach, small bowel, hepatobiliary tract, ureter, renal pelvis and brain. The influence of environmental factors on extracolonic cancer risk in LS patients has not been investigated thus far. The aim of this study was to investigate some of these factors in South African females carrying the hMLH1 c.C1528T mutation and their mutation-negative relatives. Data were collected from 87 mutation-positive females and 121 mutation-negative female relatives regarding age, cancer history, hormonal contraceptive use, parity, duration of breast feeding, height, weight and age at first birth, last birth, menarche and menopause. Influence of these factors on cancer risk was analysed by mixed-effects generalised linear models. Extracolonic cancer occurred in 14% (12/87) of mutation-positive females versus 7% (8/121) of mutation-negative females, (P = 0.0279, adjusted for age and relatedness between women). Breast cancer was the most common extracolonic cancer. An association was found for oral contraceptive use and extracolonic cancer risk in mutation-negative females only. No association was found for any of the other risk factors investigated, when adjusted for age. This might be due to the scarcity of extracolonic cancers in our data. Future knowledge on the influence of additional environmental factors on cancer risk in LS females can lead to evidence-based lifestyle advice for mutation carriers, thereby complementing the prevention strategies available today. In addition, it can contribute to an integrated model of cancer aetiology. Therefore, this study should be taken as a thrust for further research.

  11. De novo and rare mutations in the HSPA1L heat shock gene associated with inflammatory bowel disease.

    PubMed

    Takahashi, Shinichi; Andreoletti, Gaia; Chen, Rui; Munehira, Yoichi; Batra, Akshay; Afzal, Nadeem A; Beattie, R Mark; Bernstein, Jonathan A; Ennis, Sarah; Snyder, Michael

    2017-01-26

    Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disease of the gastrointestinal tract which includes ulcerative colitis and Crohn's disease. Genetic risk factors for IBD are not well understood. We performed a family-based whole exome sequencing (WES) analysis on a core family (Family A) to identify potential causal mutations and then analyzed exome data from a Caucasian pediatric cohort (136 patients and 106 controls) to validate the presence of mutations in the candidate gene, heat shock 70 kDa protein 1-like (HSPA1L). Biochemical assays of the de novo and rare (minor allele frequency, MAF < 0.01) mutation variant proteins further validated the predicted deleterious effects of the identified alleles. In the proband of Family A, we found a heterozygous de novo mutation (c.830C > T; p.Ser277Leu) in HSPA1L. Through analysis of WES data of 136 patients, we identified five additional rare HSPA1L mutations (p.Gly77Ser, p.Leu172del, p.Thr267Ile, p.Ala268Thr, p.Glu558Asp) in six patients. In contrast, rare HSPA1L mutations were not observed in controls, and were significantly enriched in patients (P = 0.02). Interestingly, we did not find non-synonymous rare mutations in the HSP70 isoforms HSPA1A and HSPA1B. Biochemical assays revealed that all six rare HSPA1L variant proteins showed decreased chaperone activity in vitro. Moreover, three variants demonstrated dominant negative effects on HSPA1L and HSPA1A protein activity. Our results indicate that de novo and rare mutations in HSPA1L are associated with IBD and provide insights into the pathogenesis of IBD, and also expand our understanding of the roles of HSP70s in human disease.

  12. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy.

    PubMed

    Pasquier, Florence; Cabagnols, Xenia; Secardin, Lise; Plo, Isabelle; Vainchenker, William

    2014-09-01

    The discovery of the JAK2V617F mutation followed by the discovery of other genetic abnormalities allowed important progress in the understanding of the pathogenesis and management of myeloproliferative neoplasms (MPN)s. Classical Breakpoint cluster region-Abelson (BCR-ABL)-negative neoplasms include 3 main disorders: essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). Genomic studies have shown that these disorders are more heterogeneous than previously thought with 3 main entities corresponding to different gene mutations: the JAK2 disorder, essentially due to JAK2V617F mutation, which includes nearly all PVs and a majority of ETs and PMFs with a continuum between these diseases and the myeloproliferative leukemia (MPL) and calreticulin (CALR) disorders, which include a fraction of ET and PMF. All of these mutations lead to a JAK2 constitutive activation. Murine models either with JAK2V617F or MPLW515L, but also with JAK2 or MPL germ line mutations found in hereditary thrombocytosis, have demonstrated that they are drivers of myeloproliferation. However, the myeloproliferative driver mutation is still unknown in approximately 15% of ET and PMF, but appears to also target the JAK/Signal Transducer and Activator of Transcription (STAT) pathway. However, other mutations in genes involved in epigenetics or splicing also can be present and can predate or follow mutations in signaling. They are involved either in clonal dominance or in phenotypic changes, more particularly in PMF. They can be associated with leukemic progression and might have an important prognostic value such as additional sex comb-like 1 mutations. Despite this heterogeneity, it is tempting to target JAK2 and its signaling for therapy. However in PMF, Adenosine Tri-Phosphate (ATP)-competitive JAK2 inhibitors have shown their interest, but also their important limitations. Thus, other approaches are required, which are discussed in this review. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Studies of the TLR4-associated protein MD-2 using yeast-display and mutational analyses

    PubMed Central

    Mattis, Daiva M.; Chervin, Adam; Ranoa, Diana; Kelley, Stacy; Tapping, Richard; Kranz, David M.

    2015-01-01

    Bacterial lipopolysaccharide (LPS) activates the innate immune system by forming a complex with myeloid differentiation factor 2 (MD-2) and Toll-like receptor 4 (TLR4), which is present on antigen presenting cells. MD-2 plays an essential role in this activation of the innate immune system as a member of the ternary complex, TLR4:MD-2:LPS. With the goal of further understanding the molecular details of the interaction of MD-2 with LPS and TLR4, and possibly toward engineering dominant negative regulators of the MD-2 protein, here we subjected MD-2 to a mutational analysis using yeast display. The approach included generation of site-directed alanine mutants, and ligand-driven selections of MD-2 mutant libraries. Our findings showed that: 1) proline mutations in the F119-K132 loop that binds LPS were strongly selected for enhanced yeast surface stability, 2) there was a preference for positive-charged side chains (R/K) at residue 120 for LPS binding, and negative-charged side chains (D/E) for TLR4 binding, 3) aromatic residues were strongly preferred at F119 and F121 for LPS binding, and 4) an MD-2 mutant (T84N/D101A/S118A/S120D/K122P) exhibited increased binding to TLR4 but decreased binding to LPS. These studies revealed the impact of specific residues and regions of MD-2 on the binding of LPS and TLR4, and they provide a framework for further directed evolution of the MD-2 protein. PMID:26320630

  14. Myotilinopathy in a family with late onset myopathy.

    PubMed

    Pénisson-Besnier, Isabelle; Talvinen, Kati; Dumez, Catherine; Vihola, Anna; Dubas, Frédéric; Fardeau, Michel; Hackman, Peter; Carpen, Olli; Udd, Bjarne

    2006-07-01

    Mutations in titin are well known cause of late onset autosomal dominant distal myopathy. Mutations in another sarcomeric protein, myotilin, were first identified in two families with dominant limb girdle muscular phenotype. Recently, however, myotilin mutations have been associated with more distal phenotypes in patients with late onset myofibrillar myopathy. We report here a multigenerational French family in which gene sequencing identified a S60F myotilin mutation in all patients with full penetrance despite very late onset. The family was originally reported as a distal myopathy but intrafamilial variability was remarkable with proximal or distal muscle weakness or both. Extended morphological characteristics of muscle biopsy findings in myotilinopathy indicate that immunohistochemistry may be important for selection of molecular genetic approach in myofibrillar myopathy.

  15. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome*

    PubMed Central

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-01-01

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  16. Identification of a novel p.R1443W mutation in RP1 gene associated with retinitis pigmentosa sine pigmento.

    PubMed

    Ma, Li; Sheng, Xun-Lun; Li, Hui-Ping; Zhang, Fang-Xia; Liu, Ya-Ni; Rong, Wei-Ning; Zhang, Jian-Ling

    2013-01-01

    To screen mutations in the retinitis pigmentosa 1 (RP1) gene and the rhodopsin (RHO) gene in Chinese patients with retinitis pigmentosa sine pigmento (RPSP) and describe the genotype-phenotype relationship of the mutations. Twenty affected, unrelated Chinese individuals with RPSP (4 autosomal dominant RPSP, 12 autosomal recessive RPSP and 4 unknown inheritance pattern) were recruited between 2009 and 2012. The clinical features were determined by complete ophthalmologic examinations. Polymerase chain reaction (PCR) and direct DNA sequencing were used to screen the entire coding region and splice junctions of the RP1 gene and the RHO gene. The cosegregation analysis and population frequency studies were performed for patients with identified mutations. Five variants in the RP1 gene and one in the RHO gene were detected in 20 probands. Four missense changes (rs444772, rs446227, rs414352, rs441800) and one non-coding variant (rs56340615) were common SNPs and none of them showed a significant relationship with RPSP. A missense mutation p.R1443W was identified in the RP1 gene in three affected individuals from a family with autosomal dominant RPSP and was found to cosegregate with the phenotype in this family, suggestive of pathogenic. In addition, population frequency analysis showed the p.R1443W mutation was absent in 300 healthy controls. The identification of p.R1443W mutation cosegregating in a family with autosomal dominant RPSP highlights an atypical phenotype of the RP1 gene mutation, while RHO gene is not associated with the pathogenesis of RPSP in this study. To our knowledge, this is the fist mutation identified to associate with RPSP.

  17. Identification of a novel p.R1443W mutation in RP1 gene associated with retinitis pigmentosa sine pigmento

    PubMed Central

    Ma, Li; Sheng, Xun-Lun; Li, Hui-Ping; Zhang, Fang-Xia; Liu, Ya-Ni; Rong, Wei-Ning; Zhang, Jian-Ling

    2013-01-01

    AIM To screen mutations in the retinitis pigmentosa 1 (RP1) gene and the rhodopsin (RHO) gene in Chinese patients with retinitis pigmentosa sine pigmento (RPSP) and describe the genotype-phenotype relationship of the mutations. METHODS Twenty affected, unrelated Chinese individuals with RPSP (4 autosomal dominant RPSP, 12 autosomal recessive RPSP and 4 unknown inheritance pattern) were recruited between 2009 and 2012. The clinical features were determined by complete ophthalmologic examinations. Polymerase chain reaction (PCR) and direct DNA sequencing were used to screen the entire coding region and splice junctions of the RP1 gene and the RHO gene. The cosegregation analysis and population frequency studies were performed for patients with identified mutations. RESULTS Five variants in the RP1 gene and one in the RHO gene were detected in 20 probands. Four missense changes (rs444772, rs446227, rs414352, rs441800) and one non-coding variant (rs56340615) were common SNPs and none of them showed a significant relationship with RPSP. A missense mutation p.R1443W was identified in the RP1 gene in three affected individuals from a family with autosomal dominant RPSP and was found to cosegregate with the phenotype in this family, suggestive of pathogenic. In addition, population frequency analysis showed the p.R1443W mutation was absent in 300 healthy controls. CONCLUSION The identification of p.R1443W mutation cosegregating in a family with autosomal dominant RPSP highlights an atypical phenotype of the RP1 gene mutation, while RHO gene is not associated with the pathogenesis of RPSP in this study. To our knowledge, this is the fist mutation identified to associate with RPSP. PMID:23991373

  18. Dominant Mutations in S. cerevisiae PMS1 Identify the Mlh1-Pms1 Endonuclease Active Site and an Exonuclease 1-Independent Mismatch Repair Pathway

    PubMed Central

    Smith, Catherine E.; Mendillo, Marc L.; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S.; Desai, Arshad; Putnam, Christopher D.; Kolodner, Richard D.

    2013-01-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway. PMID:24204293

  19. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    PubMed

    Smith, Catherine E; Mendillo, Marc L; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S; Desai, Arshad; Putnam, Christopher D; Kolodner, Richard D

    2013-10-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  20. Cerebrospinal Fluid Progranulin, but Not Serum Progranulin, Is Reduced in GRN-Negative Frontotemporal Dementia.

    PubMed

    Wilke, Carlo; Gillardon, Frank; Deuschle, Christian; Hobert, Markus A; Jansen, Iris E; Metzger, Florian G; Heutink, Peter; Gasser, Thomas; Maetzler, Walter; Blauwendraat, Cornelis; Synofzik, Matthis

    2017-01-01

    Reduced progranulin levels are a hallmark of frontotemporal dementia (FTD) caused by loss-of-function (LoF) mutations in the progranulin gene (GRN). However, alterations of central nervous progranulin expression also occur in neurodegenerative disorders unrelated to GRN mutations, such as Alzheimer's disease. We hypothesised that central nervous progranulin levels are also reduced in GRN-negative FTD. Progranulin levels were determined in both cerebrospinal fluid (CSF) and serum in 75 subjects (37 FTD patients and 38 controls). All FTD patients were assessed by whole-exome sequencing for GRN mutations, yielding a target cohort of 34 patients without pathogenic mutations in GRN (GRN-negative cohort) and 3 GRN mutation carriers (2 LoF variants and 1 novel missense variant). Not only the GRN mutation carriers but also the GRN-negative patients showed decreased CSF levels of progranulin (serum levels in GRN-negative patients were normal). The decreased CSF progranulin levels were unrelated to patients' increased CSF levels of total tau, possibly indicating different destructive neuronal processes within FTD neurodegeneration. The patient with the novel GRN missense variant (c.1117C>T, p.P373S) showed substantially decreased CSF levels of progranulin, comparable to the 2 patients with GRN LoF mutations, suggesting a pathogenic effect of this missense variant. Our results indicate that central nervous progranulin reduction is not restricted to the relatively rare cases of FTD caused by GRN LoF mutations, but also contributes to the more common GRN-negative forms of FTD. Central nervous progranulin reduction might reflect a partially distinct pathogenic mechanism underlying FTD neurodegeneration and is not directly linked to tau alterations. © 2016 S. Karger AG, Basel.

  1. Pathogenetic role of the deafness-related M34T mutation of Cx26

    PubMed Central

    Bicego, Massimiliano; Beltramello, Martina; Melchionda, Salvatore; Carella, Massimo; Piazza, Valeria; Zelante, Leopoldo; Bukauskas, Feliksas F.; Arslan, Edoardo; Cama, Elona; Pantano, Sergio; Bruzzone, Roberto; D’Andrea, Paola; Mammano, Fabio

    2010-01-01

    Mutations in the GJB2 gene, which encodes the gap junction protein connexin26 (Cx26), are the major cause of genetic non-syndromic hearing loss. The role of the allelic variant M34T in causing hereditary deafness remains controversial. By combining genetic, clinical, biochemical, electrophysiological and structural modeling studies, we have re-assessed the pathogenetic role of the M34T mutation. Genetic and audiological data indicate that the majority of heterozygous carriers and all five compound heterozygotes exhibited an impaired auditory function. Functional expression in transiently transfected HeLa cells showed that, although M34T was correctly synthesized and targeted to the plasma membrane, it inefficiently formed intercellular channels that displayed an abnormal electrical behavior and retained only 11% of the unitary conductance of the wild-type protein (HCx26wt). Moreover, M34T channels failed to support the intercellular diffusion of Lucifer Yellow and the spreading of mechanically induced intercellular Ca2+ waves. When co-expressed together with HCx26wt, M34T exerted dominant-negative effects on cell–cell coupling. Our findings are consistent with a structural model, predicting that the mutation leads to a constriction of the channel pore. These data support the view that M34T is a pathological variant of Cx26 associated with hearing impairment. PMID:16849369

  2. Hydrophobic imbalance in the cytoplasmic domain of phospholamban is a determinant for lethal dilated cardiomyopathy.

    PubMed

    Ceholski, Delaine K; Trieber, Catharine A; Young, Howard S

    2012-05-11

    The sarco(endo)plasmic reticulum calcium ATPase (SERCA) and its regulatory partner phospholamban (PLN) are essential for myocardial contractility. Arg(9) → Cys (R9C) and Arg(14) deletion (R14del) mutations in PLN are associated with lethal dilated cardiomyopathy in humans. To better understand these mutations, we made a series of amino acid substitutions in the cytoplasmic domain of PLN and tested their ability to inhibit SERCA. R9C is a complete loss-of-function mutant of PLN, whereas R14del is a mild loss-of-function mutant. When combined with wild-type PLN to simulate heterozygous conditions, the mutants had a dominant negative effect on SERCA function. A series of targeted mutations in this region of the PLN cytoplasmic domain ((8)TRSAIRR(14)) demonstrated the importance of hydrophobic balance in proper PLN regulation of SERCA. We found that Arg(9) → Leu and Thr(8) → Cys substitutions mimicked the behavior of the R9C mutant, and an Arg(14) → Ala substitution mimicked the behavior of the R14del mutant. The results reveal that the change in hydrophobicity resulting from the R9C and R14del mutations is sufficient to explain the loss of function and persistent interaction with SERCA. Hydrophobic imbalance in the cytoplasmic domain of PLN appears to be a predictor for the development and progression of dilated cardiomyopathy.

  3. Role of LRRK2 and SNCA in autosomal dominant Parkinson's disease in Turkey.

    PubMed

    Kessler, Christoph; Atasu, Burcu; Hanagasi, Hasmet; Simón-Sánchez, Javier; Hauser, Ann-Kathrin; Pak, Meltem; Bilgic, Basar; Erginel-Unaltuna, Nihan; Gurvit, Hakan; Gasser, Thomas; Lohmann, Ebba

    2018-03-01

    Mutations in the LRRK2 and alpha-synuclein (SNCA) genes are well-established causes of autosomal dominant Parkinson's disease (PD). However, their frequency differs widely between ethnic groups. Only three studies have screened all coding regions of LRRK2 and SNCA in European samples so far. In Turkey, the role of LRRK2 in Parkinson's disease has been studied fragmentarily, and the incidence of SNCA copy number variations is unknown. The purpose of this study is to determine the frequency of LRRK2 and SNCA mutations in autosomal dominant PD in Turkey. We performed Sanger sequencing of all coding LRRK2 and SNCA exons in a sample of 91 patients with Parkinsonism. Copy number variations in SNCA, PRKN, PINK1, DJ1 and ATP13A2 were assessed using the MLPA method. All patients had a positive family history compatible with autosomal dominant inheritance. Known mutations in LRRK2 and SNCA were found in 3.3% of cases: one patient harbored the LRRK2 G2019S mutation, and two patients carried a SNCA gene duplication. Furthermore, we found a heterozygous deletion of PRKN exon 2 in one patient, and four rare coding variants of unknown significance (LRRK2: A211V, R1067Q, T2494I; SNCA: T72T). Genetic testing in one affected family identified the LRRK2 R1067Q variant as a possibly pathogenic substitution. Point mutations in LRRK2 and SNCA are a rare cause of autosomal dominant PD in Turkey. However, copy number variations should be considered. The unclassified variants, especially LRRK2 R1067Q, demand further investigation. Copyright © 2017. Published by Elsevier Ltd.

  4. Identification of dietary alanine toxicity and trafficking dysfunction in a Drosophila model of hereditary sensory and autonomic neuropathy type 1

    PubMed Central

    Oswald, Matthew C. W.; West, Ryan J. H.; Lloyd-Evans, Emyr; Sweeney, Sean T.

    2015-01-01

    Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is characterized by a loss of distal peripheral sensory and motorneuronal function, neuropathic pain and tissue necrosis. The most common cause of HSAN1 is due to dominant mutations in serine palmitoyl-transferase subunit 1 (SPT1). SPT catalyses the condensation of serine with palmitoyl-CoA, the initial step in sphingolipid biogenesis. Identified mutations in SPT1 are known to both reduce sphingolipid synthesis and generate catalytic promiscuity, incorporating alanine or glycine into the precursor sphingolipid to generate a deoxysphingoid base (DSB). Why either loss of function in SPT1, or generation of DSBs should generate deficits in distal sensory function remains unclear. To address these questions, we generated a Drosophila model of HSAN1. Expression of dSpt1 bearing a disease-related mutation induced morphological deficits in synapse growth at the larval neuromuscular junction consistent with a dominant-negative action. Expression of mutant dSpt1 globally was found to be mildly toxic, but was completely toxic when the diet was supplemented with alanine, when DSBs were observed in abundance. Expression of mutant dSpt1 in sensory neurons generated developmental deficits in dendritic arborization with concomitant sensory deficits. A membrane trafficking defect was observed in soma of sensory neurons expressing mutant dSpt1, consistent with endoplasmic reticulum (ER) to Golgi block. We found that we could rescue sensory function in neurons expressing mutant dSpt1 by co-expressing an effector of ER–Golgi function, Rab1 suggesting compromised ER function in HSAN1 affected dendritic neurons. Our Drosophila model identifies a novel strategy to explore the pathological mechanisms of HSAN1. PMID:26395456

  5. A novel mutation of the glomulin gene in an Italian family with autosomal dominant cutaneous glomuvenous malformations.

    PubMed

    Borroni, Riccardo G; Narula, Nupoor; Diegoli, Marta; Grasso, Maurizia; Concardi, Monica; Rosso, Renato; Cerica, Alessandra; Brazzelli, Valeria; Arbustini, Eloisa

    2011-12-01

    Glomuvenous malformations (GVM) are hamartomas characterized histologically by glomus cells, which should be distinguished from glomus tumors. Familial GVM are rare, often present as multiple lesions, and exhibit familial aggregation, with autosomal dominant transmission. GVM are caused by mutations of the glomulin (GLMN) gene on chromosome 1p21-p22. Their development is thought to follow the 'two-hit' hypothesis, with a somatic mutation required in addition to the inherited germline mutation. We describe a novel GLMN mutation in an Italian family with GVM in which some members present with the less commonly observed phenotype of solitary lesions. A second somatic 'hit' mutation in GLMN was not discovered in our family. We further provide histological, immunohistochemical and electron microscopic data exhibiting the classic features of GVM. The diagnosis of GVM is critical because of distinction from venous malformations and blue rubber bleb nevus syndrome, which may demonstrate clinical similarities but require different treatment. © 2011 John Wiley & Sons A/S.

  6. The dominant alopecia phenotypes Bareskin, Rex-denuded, and Reduced Coat 2 are caused by mutations in gasdermin 3.

    PubMed

    Runkel, F; Marquardt, A; Stoeger, C; Kochmann, E; Simon, D; Kohnke, B; Korthaus, D; Wattler, F; Fuchs, H; Hrabé de Angelis, M; Stumm, G; Nehls, M; Wattler, S; Franz, T; Augustin, M

    2004-11-01

    Reduced Coat 2 (Rco2) is an ENU-induced mutation affecting hair follicle morphogenesis by an abnormal and protracted catagen. We describe chromosomal mapping and molecular identification of the autosomal dominant Rco2 mutation. The Rco2 critical region on mouse chromosome 11 encompasses the alopecia loci, Bareskin (Bsk), Rex-denuded (Re(den)), Recombination induced mutation 3 (Rim3), and Defolliculated (Dfl). Recently, the gasdermin (Gsdm) gene was described as predominantly expressed in skin and gastric tissues. We provide evidence for a murine-specific gene cluster consisting of Gsdm and two closely related genes which we designate as Gsdm2 and Gsdm3. We show that Gsdm3 reflects a mutation hotspot and that Gsdm3 mutations cause alopecia in Rco2, Re(den), and Bsk mice. We infer a role of Gsdm3 during the catagen to telogen transition at the end of hair follicle morphogenesis and the formation of hair follicle-associated sebaceous glands.

  7. Dominant missense mutations in ABCC9 cause Cantú syndrome.

    PubMed

    Harakalova, Magdalena; van Harssel, Jeske J T; Terhal, Paulien A; van Lieshout, Stef; Duran, Karen; Renkens, Ivo; Amor, David J; Wilson, Louise C; Kirk, Edwin P; Turner, Claire L S; Shears, Debbie; Garcia-Minaur, Sixto; Lees, Melissa M; Ross, Alison; Venselaar, Hanka; Vriend, Gert; Takanari, Hiroki; Rook, Martin B; van der Heyden, Marcel A G; Asselbergs, Folkert W; Breur, Hans M; Swinkels, Marielle E; Scurr, Ingrid J; Smithson, Sarah F; Knoers, Nine V; van der Smagt, Jasper J; Nijman, Isaac J; Kloosterman, Wigard P; van Haelst, Mieke M; van Haaften, Gijs; Cuppen, Edwin

    2012-05-18

    Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (K(ATP)) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the K(ATP) channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.

  8. Mutation Spectrum in the Large GTPase Dynamin 2, and Genotype–Phenotype Correlation in Autosomal Dominant Centronuclear Myopathy

    PubMed Central

    Böhm, Johann; Biancalana, Valérie; DeChene, Elizabeth T.; Bitoun, Marc; Pierson, Christopher R.; Schaefer, Elise; Karasoy, Hatice; Dempsey, Melissa A.; Klein, Fabrice; Dondaine, Nicolas; Kretz, Christine; Haumesser, Nicolas; Poirson, Claire; Toussaint, Anne; Greenleaf, Rebecca S.; Barger, Melissa A.; Mahoney, Lane J.; Kang, Peter B.; Zanoteli, Edmar; Vissing, John; Witting, Nanna; Echaniz-Laguna, Andoni; Wallgren-Pettersson, Carina; Dowling, James; Merlini, Luciano; Oldfors, Anders; Ousager, Lilian Bomme; Melki, Judith; Krause, Amanda; Jern, Christina; Oliveira, Acary S. B.; Petit, Florence; Jacquette, Aurélia; Chaussenot, Annabelle; Mowat, David; Leheup, Bruno; Cristofano, Michele; Aldea, Juan José Poza; Michel, Fabrice; Furby, Alain; Llona, Jose E. Barcena; Van Coster, Rudy; Bertini, Enrico; Urtizberea, Jon Andoni; Drouin-Garraud, Valérie; Béroud, Christophe; Prudhon, Bernard; Bedford, Melanie; Mathews, Katherine; Erby, Lori A. H.; Smith, Stephen A.; Roggenbuck, Jennifer; Crowe, Carol A.; Spitale, Allison Brennan; Johal, Sheila C.; Amato, Anthony A.; Demmer, Laurie A.; Jonas, Jessica; Darras, Basil T.; Bird, Thomas D.; Laurino, Mercy; Welt, Selman I.; Trotter, Cynthia; Guicheney, Pascale; Das, Soma; Mandel, Jean-Louis; Beggs, Alan H.; Laporte, Jocelyn

    2012-01-01

    Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype–phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot–Marie–Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT. PMID:22396310

  9. Characterization of Ribozymes Targeting a Congenital Night Blindness Mutation in Rhodopsin Mutation.

    PubMed

    Conley, Shannon M; Whalen, Patrick; Lewin, Alfred S; Naash, Muna I

    2016-01-01

    The G90D mutation in the rhodopsin gene leads to autosomal dominant congenital stationary night blindness (CSNB) in patients. This occurs because the G90D mutant protein cannot efficiently bind chromophore and is constitutively active. To combat this mutation, we designed and characterized two different hammerhead ribozymes to cleave G90D transcript. In vitro testing showed that the G90D1 ribozyme efficiently and specifically cleaved the mutant transcript while G90D2 cleaved both WT and mutant transcript. AAV-mediated delivery of G90D1 under the control of the mouse opsin promoter (MOP500) to G90D transgenic eyes showed that the ribozyme partially retarded the functional degeneration (as measured by electroretinography [ERG]) associated with this mutation. These results suggest that with additional optimization, ribozymes may be a useful part of the gene therapy knockdown strategy for dominant retinal disease.

  10. Characterization and Prognosis Significance of JAK2 (V617F), MPL, and CALR Mutations in Philadelphia-Negative Myeloproliferative Neoplasms

    PubMed

    Singdong, Roongrudee; Siriboonpiputtana, Teerapong; Chareonsirisuthigul, Takol; Kongruang, Adcharee; Limsuwanachot, Nittaya; Sirirat, Tanasan; Chuncharunee, Suporn; Rerkamnuaychoke, Budsaba

    2016-10-01

    Background: The discovery of somatic acquired mutations of JAK2 (V617F) in Philadelphia-negative myeloproliferative neoplasms (Ph-negative MPNs) including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) has not only improved rational disease classification and prognostication but also brings new understanding insight into the pathogenesis of diseases. Dosage effects of the JAK2 (V617F) allelic burden in Ph-negative MPNs may partially influence clinical presentation, disease progression, and treatment outcome. Material and Methods: Pyrosequencing was performed to detect JAK2 (V617F) and MPL (W515K/L) and capillary electrophoresis to identify CALR exon 9.0 mutations in 100.0 samples of Ph-negative MPNs (38.0 PV, 55 ET, 4 PMF, and 3 MPN-U). Results: The results showed somatic mutations of JAK2 (V617F) in 94.7% of PV, 74.5% of ET, 25.0% of PMF, and all MPN-U. A high proportion of JAK2 (V617F) mutant allele burden (mutational load > 50.0%) was predominantly observed in PV when compared with ET. Although a high level of JAK2 (V617F) allele burden was strongly associated with high WBC counts in both PV and ET, several hematological parameters (hemoglobin, hematocrit, and platelet count) were independent of JAK2 (V617F) mutational load. MPL (W515K/L) mutations could not be detected whereas CALR exon 9.0 mutations were identified in 35.7% of patients with JAK2 negative ET and 33.3% with JAK2 negative PMF. Conclusions: The JAK2 (V617F) allele burden may be involved in progression of MPNs. Furthermore, a high level of JAK2 (V617F) mutant allele appears strongly associated with leukocytosis in both PV and ET. Creative Commons Attribution License

  11. Characterization and Prognosis Significance of JAK2 (V617F), MPL, and CALR Mutations in Philadelphia-Negative Myeloproliferative Neoplasms

    PubMed Central

    Singdong, Roongrudee; Siriboonpiputtana, Teerapong; Chareonsirisuthigul, Takol; Kongruang, Adcharee; Limsuwanachot, Nittaya; Sirirat, Tanasan; Chuncharunee, Suporn; Rerkamnuaychoke, Budsaba

    2016-01-01

    Background: The discovery of somatic acquired mutations of JAK2 (V617F) in Philadelphia-negative myeloproliferative neoplasms (Ph-negative MPNs) including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) has not only improved rational disease classification and prognostication but also brings new understanding insight into the pathogenesis of diseases. Dosage effects of the JAK2 (V617F) allelic burden in Ph-negative MPNs may partially influence clinical presentation, disease progression, and treatment outcome. Material and Methods: Pyrosequencing was performed to detect JAK2 (V617F) and MPL (W515K/L) and capillary electrophoresis to identify CALR exon 9 mutations in 100 samples of Ph-negative MPNs (38.0 PV, 55 ET, 4 PMF, and 3 MPN-U). Results: The results showed somatic mutations of JAK2 (V617F) in 94.7% of PV, 74.5% of ET, 25.0% of PMF, and all MPN-U. A high proportion of JAK2 (V617F) mutant allele burden (mutational load > 50.0%) was predominantly observed in PV when compared with ET. Although a high level of JAK2 (V617F) allele burden was strongly associated with high WBC counts in both PV and ET, several hematological parameters (hemoglobin, hematocrit, and platelet count) were independent of JAK2 (V617F) mutational load. MPL (W515K/L) mutations could not be detected whereas CALR exon 9 mutations were identified in 35.7% of patients with JAK2 negative ET and 33.3% with JAK2 negative PMF. Conclusions: The JAK2 (V617F) allele burden may be involved in progression of MPNs. Furthermore, a high level of JAK2 (V617F) mutant allele appears strongly associated with leukocytosis in both PV and ET. PMID:27892678

  12. RNAi: a potential new class of therapeutic for human genetic disease.

    PubMed

    Seyhan, Attila A

    2011-11-01

    Dominant negative genetic disorders, in which a mutant allele of a gene causes disease in the presence of a second, normal copy, have been challenging since there is no cure and treatments are only to alleviate the symptoms. Current therapies involving pharmacological and biological drugs are not suitable to target mutant genes selectively due to structural indifference of the normal variant of their targets from the disease-causing mutant ones. In instances when the target contains single nucleotide polymorphism (SNP), whether it is an enzyme or structural or receptor protein are not ideal for treatment using conventional drugs due to their lack of selectivity. Therefore, there is a need to develop new approaches to accelerate targeting these previously inaccessible targets by classical therapeutics. Although there is a cooling trend by the pharmaceutical industry for the potential of RNA interference (RNAi), RNAi and other RNA targeting drugs (antisense, ribozyme, etc.) still hold their promise as the only drugs that provide an opportunity to target genes with SNP mutations found in dominant negative disorders, genes specific to pathogenic tumor cells, and genes that are critical for mediating the pathology of various other diseases. Because of its exquisite specificity and potency, RNAi has attracted a considerable interest as a new class of therapeutic for genetic diseases including amyotrophic lateral sclerosis, Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), spinocerebellar ataxia, dominant muscular dystrophies, and cancer. In this review, progress and challenges in developing RNAi therapeutics for genetic diseases will be discussed.

  13. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms

    PubMed Central

    Milosevic Feenstra, Jelena D.; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N.; Cazzola, Mario

    2016-01-01

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed “triple negative.” We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. PMID:26423830

  14. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.

    PubMed

    Milosevic Feenstra, Jelena D; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N; Cazzola, Mario; Kralovics, Robert

    2016-01-21

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. © 2016 by The American Society of Hematology.

  15. Diagnostic genetic testing for patients with bilateral optic neuropathy and comparison of clinical features according to OPA1 mutation status.

    PubMed

    Gaier, Eric D; Boudreault, Katherine; Nakata, Isao; Janessian, Maria; Skidd, Philip; DelBono, Elizabeth; Allen, Keri F; Pasquale, Louis R; Place, Emily; Cestari, Dean M; Stacy, Rebecca C; Rizzo, Joseph F; Wiggs, Janey L

    2017-01-01

    Inherited optic neuropathy is genetically heterogeneous, and genetic testing has an important role in risk assessment and counseling. The purpose of this study is to determine the prevalence and spectrum of mutations in a group of patients referred for genetic testing to a tertiary center in the United States. In addition, we compared the clinical features of patients with and without mutations in OPA1 , the gene most commonly involved in dominantly inherited optic atrophy. Clinical data and genetic testing results were reviewed for 74 unrelated, consecutive patients referred with a history of insidious, relatively symmetric, bilateral visual loss secondary to an optic neuropathy. Patients were evaluated for disease-causing variants in OPA1 , OPA3 , WFS1 , and the entire mitochondrial genome with DNA sequencing and copy number variation (CNV) testing. Pathogenic DNA variants were found in 25 cases, with the majority (24 patients) located in OPA1 . Demographics, clinical history, and clinical features for the group of patients with mutations in OPA1 were compared to those without disease-causing variants. Compared to the patients without mutations, cases with mutations in OPA1 were more likely to have a family history of optic nerve disease (p = 0.027); however, 30.4% of patients without a family history of disease also had mutations in OPA1 . OPA1 mutation carriers had less severe mean deviation and pattern standard deviation on automated visual field testing than patients with optic atrophy without mutations in OPA1 (p<0.005). Other demographic and ocular features were not statistically significantly different between the two groups, including the fraction of patients with central scotomas (42.9% of OPA1 mutation positive and 66.0% of OPA1 mutation negative). Genetic testing identified disease-causing mutations in 34% of referred cases, with the majority of these in OPA1. Patients with mutations in OPA1 were more likely to have a family history of disease; however, 30.4% of patients without a family history were also found to have an OPA1 mutation. This observation, as well as similar frequencies of central scotomas in the groups with and without mutations in OPA1 , underscores the need for genetic testing to establish an OPA1 genetic diagnosis.

  16. Genetic, Clinical, and Pathologic Backgrounds of Patients with Autosomal Dominant Alport Syndrome

    PubMed Central

    Kamiyoshi, Naohiro; Fu, Xue Jun; Morisada, Naoya; Nozu, Yoshimi; Ye, Ming Juan; Imafuku, Aya; Miura, Kenichiro; Yamamura, Tomohiko; Minamikawa, Shogo; Shono, Akemi; Ninchoji, Takeshi; Morioka, Ichiro; Nakanishi, Koichi; Yoshikawa, Norishige; Kaito, Hiroshi; Iijima, Kazumoto

    2016-01-01

    Background and objectives Alport syndrome comprises a group of inherited heterogeneous disorders involving CKD, hearing loss, and ocular abnormalities. Autosomal dominant Alport syndrome caused by heterozygous mutations in collagen 4A3 and/or collagen 4A4 accounts for <5% of patients. However, the clinical, genetic, and pathologic backgrounds of patients with autosomal dominant Alport syndrome remain unclear. Design, setting, participants, & measurements We conducted a retrospective analysis of 25 patients with genetically proven autosomal dominant Alport syndrome and their family members (a total of 72 patients) from 16 unrelated families. Patients with suspected Alport syndrome after pathologic examination who were referred from anywhere in Japan for genetic analysis from 2006 to 2015 were included in this study. Clinical, laboratory, and pathologic data were collected from medical records at the point of registration for genetic diagnosis. Genetic analysis was performed by targeted resequencing of 27 podocyte-related genes, including Alport–related collagen genes, to make a diagnosis of autosomal dominant Alport syndrome and identify modifier genes or double mutations. Clinical data were obtained from medical records. Results The median renal survival time was 70 years, and the median age at first detection of proteinuria was 17 years old. There was one patient with hearing loss and one patient with ocular lesion. Among 16 patients who underwent kidney biopsy, three showed FSGS, and seven showed thinning without lamellation of the glomerular basement membrane. Five of 13 detected mutations were reported to be causative mutations for autosomal recessive Alport syndrome in previous studies. Two families possessed double mutations in both collagen 4A3 and collagen 4A4, but no modifier genes were detected among the other podocyte–related genes. Conclusions The renal phenotype of autosomal dominant Alport syndrome was much milder than that of autosomal recessive Alport syndrome or X–linked Alport syndrome in men. It may, thus, be difficult to make an accurate diagnosis of autosomal dominant Alport syndrome on the basis of clinical or pathologic findings. No modifier genes were identified among the known podocyte–related genes. PMID:27281700

  17. Genetic, Clinical, and Pathologic Backgrounds of Patients with Autosomal Dominant Alport Syndrome.

    PubMed

    Kamiyoshi, Naohiro; Nozu, Kandai; Fu, Xue Jun; Morisada, Naoya; Nozu, Yoshimi; Ye, Ming Juan; Imafuku, Aya; Miura, Kenichiro; Yamamura, Tomohiko; Minamikawa, Shogo; Shono, Akemi; Ninchoji, Takeshi; Morioka, Ichiro; Nakanishi, Koichi; Yoshikawa, Norishige; Kaito, Hiroshi; Iijima, Kazumoto

    2016-08-08

    Alport syndrome comprises a group of inherited heterogeneous disorders involving CKD, hearing loss, and ocular abnormalities. Autosomal dominant Alport syndrome caused by heterozygous mutations in collagen 4A3 and/or collagen 4A4 accounts for <5% of patients. However, the clinical, genetic, and pathologic backgrounds of patients with autosomal dominant Alport syndrome remain unclear. We conducted a retrospective analysis of 25 patients with genetically proven autosomal dominant Alport syndrome and their family members (a total of 72 patients) from 16 unrelated families. Patients with suspected Alport syndrome after pathologic examination who were referred from anywhere in Japan for genetic analysis from 2006 to 2015 were included in this study. Clinical, laboratory, and pathologic data were collected from medical records at the point of registration for genetic diagnosis. Genetic analysis was performed by targeted resequencing of 27 podocyte-related genes, including Alport-related collagen genes, to make a diagnosis of autosomal dominant Alport syndrome and identify modifier genes or double mutations. Clinical data were obtained from medical records. The median renal survival time was 70 years, and the median age at first detection of proteinuria was 17 years old. There was one patient with hearing loss and one patient with ocular lesion. Among 16 patients who underwent kidney biopsy, three showed FSGS, and seven showed thinning without lamellation of the glomerular basement membrane. Five of 13 detected mutations were reported to be causative mutations for autosomal recessive Alport syndrome in previous studies. Two families possessed double mutations in both collagen 4A3 and collagen 4A4, but no modifier genes were detected among the other podocyte-related genes. The renal phenotype of autosomal dominant Alport syndrome was much milder than that of autosomal recessive Alport syndrome or X-linked Alport syndrome in men. It may, thus, be difficult to make an accurate diagnosis of autosomal dominant Alport syndrome on the basis of clinical or pathologic findings. No modifier genes were identified among the known podocyte-related genes. Copyright © 2016 by the American Society of Nephrology.

  18. Genetic analysis of microglandular adenosis and acinic cell carcinomas of the breast provides evidence for the existence of a low-grade triple-negative breast neoplasia family.

    PubMed

    Geyer, Felipe C; Berman, Samuel H; Marchiò, Caterina; Burke, Kathleen A; Guerini-Rocco, Elena; Piscuoglio, Salvatore; Ng, Charlotte Ky; Pareja, Fresia; Wen, Hannah Y; Hodi, Zoltan; Schnitt, Stuart J; Rakha, Emad A; Ellis, Ian O; Norton, Larry; Weigelt, Britta; Reis-Filho, Jorge S

    2017-01-01

    Acinic cell carcinoma is an indolent form of invasive breast cancer, whereas microglandular adenosis has been shown to be a neoplastic proliferation. Both entities display a triple-negative phenotype, and may give rise to and display somatic genomic alterations typical of high-grade triple-negative breast cancers. Here we report on a comparison of previously published data on eight carcinoma-associated microglandular adenosis and eight acinic cell carcinomas subjected to targeted massively parallel sequencing targeting all exons of 236 genes recurrently mutated in breast cancer and/or DNA repair-related. Somatic mutations, insertions/ deletions, and copy number alterations were detected using state-of-the-art bioinformatic algorithms. All cases were of triple-negative phenotype. A median of 4.5 (1-13) and 4.0 (1-7) non-synonymous somatic mutations per carcinoma-associated microglandular adenosis and acinic cell carcinoma were identified, respectively. TP53 was the sole highly recurrently mutated gene (75% in microglandular adenosis versus 88% in acinic cell carcinomas), and TP53 mutations were consistently coupled with loss of heterozygosity of the wild-type allele. Additional somatic mutations shared by both groups included those in BRCA1, PIK3CA, and INPP4B. Recurrent (n=2) somatic mutations restricted to microglandular adenosis or acinic cell carcinomas included those affecting PTEN and MED12 or ERBB4, respectively. No significant differences in the repertoire of somatic mutations were detected between microglandular adenosis and acinic cell carcinomas, and between this group of lesions and 77 triple-negative carcinomas from The Cancer Genome Atlas. Microglandular adenosis and acinic cell carcinomas, however, were genetically distinct from estrogen receptor-positive and/or HER2-positive breast cancers from The Cancer Genome Atlas. Our findings support the contention that microglandular adenosis and acinic cell carcinoma are part of the same spectrum of lesions harboring frequent TP53 somatic mutations, and likely represent low-grade forms of triple-negative disease with no/minimal metastatic potential, of which a subset has the potential to progress to high-grade triple-negative breast cancer.

  19. Genetic Analysis of Microglandular Adenosis and Acinic Cell Carcinomas of the Breast Provides Evidence for the Existence of a Low-grade Triple-Negative Breast Neoplasia Family

    PubMed Central

    Geyer, Felipe C; Berman, Samuel H.; Marchiò, Caterina; Burke, Kathleen A; Guerini-Rocco, Elena; Piscuoglio, Salvatore; Ng, Charlotte K Y; Pareja, Fresia; Wen, Hannah Y; Hodi, Zoltan; Schnitt, Stuart J; Rakha, Emad A; Ellis, Ian O; Norton, Larry; Weigelt, Britta; Reis-Filho, Jorge S

    2016-01-01

    Acinic cell carcinoma is an indolent form of invasive breast cancer, whereas microglandular adenosis has been shown to be a neoplastic proliferation. Both entities display a triple-negative phenotype, and may give rise to and display somatic genomic alterations typical of high-grade triple-negative breast cancers. Here we report on a comparison of previously published data on eight carcinoma-associated microglandular adenosis and eight acinic cell carcinomas subjected to targeted massively parallel sequencing targeting all exons of 236 genes recurrently mutated in breast cancer and/or DNA repair-related. Somatic mutations, insertions/deletions and copy number alterations were detected using state-of-the-art bioinformatic algorithms. All cases were of triple-negative phenotype. A median of 4.5 (1–13) and 4.0 (1–7) non-synonymous somatic mutations per carcinoma-associated microglandular adenosis and acinic cell carcinoma were identified, respectively. TP53 was the sole highly recurrently mutated gene (75% in microglandular adenosis versus 88% in acinic cell carcinomas), and TP53 mutations were consistently coupled with loss of heterozygosity of the wild-type allele. Additional somatic mutations shared by both groups included those in BRCA1, PIK3CA and INPP4B. Recurrent (n=2) somatic mutations restricted to microglandular adenosis or acinic cell carcinomas included those affecting PTEN and MED12, or ERBB4, respectively. No significant differences in the repertoire of somatic mutations were detected between microglandular adenosis and acinic cell carcinomas, and between this group of lesions and 77 triple-negative carcinomas from The Cancer Genome Atlas. Microglandular adenosis and acinic cell carcinomas, however, were genetically distinct from estrogen receptor-positive and/or HER2-positive breast cancers from The Cancer Genome Atlas. Our findings support the contention that microglandular adenosis and acinic cell carcinoma are part of the same spectrum of lesions harboring frequent TP53 somatic mutations, and likely represent low-grade forms of triple-negative disease with no/minimal metastatic potential, of which a subset has the potential to progress to high-grade triple-negative breast cancer. PMID:27713419

  20. A Novel Human CAMK2A Mutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors.

    PubMed

    Stephenson, Jason R; Wang, Xiaohan; Perfitt, Tyler L; Parrish, Walker P; Shonesy, Brian C; Marks, Christian R; Mortlock, Douglas P; Nakagawa, Terunaga; Sutcliffe, James S; Colbran, Roger J

    2017-02-22

    Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes. SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple CaMKII functions, induces synaptic deficits, and causes ASD-related behavioral alterations, providing novel insights into the synaptic mechanisms contributing to ASD. Copyright © 2017 the authors 0270-6474/17/372217-18$15.00/0.

  1. Molecular analysis reveals a high mutation frequency in the first untranslated exon of the PPOX gene and largely excludes variegate porphyria in a subset of clinically affected Afrikaner families.

    PubMed

    Kotze, M J; De Villiers, J N; Groenewald, J Z; Rooney, R N; Loubser, O; Thiart, R; Oosthuizen, C J; van Niekerk, M M; Groenewald, I M; Retief, A E; Warnich, L

    1998-10-01

    A subset of probands from 11 South African families with clinical and/or biochemical features of variegate porphyria (VP), but without the known protoporphyrinogen oxidase (PPOX) gene defects identified previously in the South African population, were subjected to mutation analysis. Disease-related mutation(s) could not be identified after screening virtually the entire PPOX gene by heteroduplex single-strand conformation polymorphism analysis (HEX-SSCP), although three new sequence variants were detected in exon 1 of the gene in three normal controls. The presence of these single base changes at nucleotide positions 22 (C/G), 27 (C/A) and 127 (C/A), in addition to the known exon 1 polymorphisms I-26 and I-150, indicates that this untranslated region of the PPOX gene is particularly mutation-prone. Furthermore, microsatellite markers flanking the PPOX and alpha-1 antitrypsin (PI) gene, on chromosomes 1 and 14, respectively, were used to assess the probability of involvement of these loci in disease presentation. Common alleles transmitted from affected parent to affected child were determined where possible in the mutation-negative index cases. Allelic frequencies of these alleles were compared to findings in the normal population, but no predominant disease-associated allele could be identified. Co-segregation of a specific haplotype with the disease phenotype could also not be demonstrated in a large Afrikaner family. It is concluded that further studies are warranted to determine the genetic factor(s) underlying the autosomal dominant pattern of inheritance in molecularly uncharacterized cases showing clinical symptoms of an acute porphyria. Copyright 1998 Academic Press.

  2. Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta.

    PubMed

    Poulter, James A; El-Sayed, Walid; Shore, Roger C; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-01-01

    The conventional approach to identifying the defective gene in a family with an inherited disease is to find the disease locus through family studies. However, the rapid development and decreasing cost of next generation sequencing facilitates a more direct approach. Here, we report the identification of a frameshift mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta (AI). Whole-exome sequencing of three affected family members and subsequent filtering of shared variants, without prior genetic linkage, sufficed to identify the pathogenic variant. Simultaneous analysis of multiple family members confirms segregation, enhancing the power to filter the genetic variation found and leading to rapid identification of the pathogenic variant. LAMB3 encodes a subunit of Laminin-5, one of a family of basement membrane proteins with essential functions in cell growth, movement and adhesion. Homozygous LAMB3 mutations cause junctional epidermolysis bullosa (JEB) and enamel defects are seen in JEB cases. However, to our knowledge, this is the first report of dominant AI due to a LAMB3 mutation in the absence of JEB.

  3. Detection of Rare Mutations in EGFR-ARMS-PCR-Negative Lung Adenocarcinoma by Sanger Sequencing.

    PubMed

    Liang, Chaoyue; Wu, Zhuolin; Gan, Xiaohong; Liu, Yuanbin; You, You; Liu, Chenxian; Zhou, Chengzhi; Liang, Ying; Mo, Haiyun; Chen, Allen M; Zhang, Jiexia

    2018-01-01

    This study aimed to identify potential epidermal growth factor receptor (EGFR) gene mutations in non-small cell lung cancer that went undetected by amplification refractory mutation system-Scorpion real-time PCR (ARMS-PCR). A total of 200 specimens were obtained from the First Affiliated Hospital of Guangzhou Medical University from August 2014 to August 2015. In total, 100 ARMS-negative and 100 ARMS-positive specimens were evaluated for EGFR gene mutations by Sanger sequencing. The methodology and sensitivity of each method and the outcomes of EGFR-tyrosine kinase inhibitor (TKI) therapy were analyzed. Among the 100 ARMS-PCR-positive samples, 90 were positive by Sanger sequencing, while 10 cases were considered negative, because the mutation abundance was less than 10%. Among the 100 negative cases, three were positive for a rare EGFR mutation by Sanger sequencing. In the curative effect analysis of EGFR-TKIs, the progression-free survival (PFS) analysis based on ARMS and Sanger sequencing results showed no difference. However, the PFS of patients with a high abundance of EGFR mutation was 12.4 months [95% confidence interval (CI), 11.6-12.4 months], which was significantly higher than that of patients with a low abundance of mutations detected by Sanger sequencing (95% CI, 10.7-11.3 months) (p<0.001). The ARMS method demonstrated higher sensitivity than Sanger sequencing, but was prone to missing mutations due to primer design. Sanger sequencing was able to detect rare EGFR mutations and deemed applicable for confirming EGFR status. A clinical trial evaluating the efficacy of EGFR-TKIs in patients with rare EGFR mutations is needed. © Copyright: Yonsei University College of Medicine 2018

  4. RHO Mutations (p.W126L and p.A346P) in Two Japanese Families with Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Akahori, Masakazu; Itabashi, Takeshi; Nishino, Jo; Yoshitake, Kazutoshi; Ikeo, Kazuho; Tsuneoka, Hiroshi

    2014-01-01

    Purpose. To investigate genetic and clinical features of patients with rhodopsin (RHO) mutations in two Japanese families with autosomal dominant retinitis pigmentosa (adRP). Methods. Whole-exome sequence analysis was performed in ten adRP families. Identified RHO mutations for the cosegregation analysis were confirmed by Sanger sequencing. Ophthalmic examinations were performed to evaluate the RP phenotypes. The impact of the RHO mutation on the rhodopsin conformation was examined by molecular modeling analysis. Results. In two adRP families, we identified two RHO mutations (c.377G>T (p.W126L) and c.1036G>C (p.A346P)), one of which was novel. Complete cosegregation was confirmed for each mutation exhibiting the RP phenotype in both families. Molecular modeling predicted that the novel mutation (p.W126L) might impair rhodopsin function by affecting its conformational transition in the light-adapted form. Clinical phenotypes showed that patients with p.W126L exhibited sector RP, whereas patients with p.A346P exhibited classic RP. Conclusions. Our findings demonstrated that the novel mutation (p.W126L) may be associated with the phenotype of sector RP. Identification of RHO mutations is a very useful tool for predicting disease severity and providing precise genetic counseling. PMID:25485142

  5. Thyroid Hormone Receptor α Mutation Causes a Severe and Thyroxine-Resistant Skeletal Dysplasia in Female Mice

    PubMed Central

    Bassett, J. H. Duncan; Boyde, Alan; Zikmund, Tomas; Evans, Holly; Croucher, Peter I.; Zhu, Xuguang; Park, Jeong Won

    2014-01-01

    A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1PV/+ mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1PV/+ mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1PV/+ mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation. PMID:24914936

  6. B56δ-related protein phosphatase 2A dysfunction identified in patients with intellectual disability

    PubMed Central

    Houge, Gunnar; Haesen, Dorien; Vissers, Lisenka E.L.M.; Mehta, Sarju; Parker, Michael J.; Wright, Michael; Vogt, Julie; McKee, Shane; Tolmie, John L.; Cordeiro, Nuno; Kleefstra, Tjitske; Willemsen, Marjolein H.; Reijnders, Margot R.F.; Berland, Siren; Hayman, Eli; Lahat, Eli; Brilstra, Eva H.; van Gassen, Koen L.I.; Zonneveld-Huijssoon, Evelien; de Bie, Charlotte I.; Hoischen, Alexander; Eichler, Evan E.; Holdhus, Rita; Steen, Vidar M.; Døskeland, Stein Ove; Hurles, Matthew E.; FitzPatrick, David R.; Janssens, Veerle

    2015-01-01

    Here we report inherited dysregulation of protein phosphatase activity as a cause of intellectual disability (ID). De novo missense mutations in 2 subunits of serine/threonine (Ser/Thr) protein phosphatase 2A (PP2A) were identified in 16 individuals with mild to severe ID, long-lasting hypotonia, epileptic susceptibility, frontal bossing, mild hypertelorism, and downslanting palpebral fissures. PP2A comprises catalytic (C), scaffolding (A), and regulatory (B) subunits that determine subcellular anchoring, substrate specificity, and physiological function. Ten patients had mutations within a highly conserved acidic loop of the PPP2R5D-encoded B56δ regulatory subunit, with the same E198K mutation present in 6 individuals. Five patients had mutations in the PPP2R1A-encoded scaffolding Aα subunit, with the same R182W mutation in 3 individuals. Some Aα cases presented with large ventricles, causing macrocephaly and hydrocephalus suspicion, and all cases exhibited partial or complete corpus callosum agenesis. Functional evaluation revealed that mutant A and B subunits were stable and uncoupled from phosphatase activity. Mutant B56δ was A and C binding–deficient, while mutant Aα subunits bound B56δ well but were unable to bind C or bound a catalytically impaired C, suggesting a dominant-negative effect where mutant subunits hinder dephosphorylation of B56δ-anchored substrates. Moreover, mutant subunit overexpression resulted in hyperphosphorylation of GSK3β, a B56δ-regulated substrate. This effect was in line with clinical observations, supporting a correlation between the ID degree and biochemical disturbance. PMID:26168268

  7. Mutations in AAGAB underlie autosomal dominant punctate palmoplantar keratoderma.

    PubMed

    Dinani, N; Ali, M; Liu, L; McGrath, J; Mellerio, J

    2017-04-01

    Punctate palmoplantar keratoderma type 1 (PPPK1) is a rare autosomal dominant inherited skin disease, characterized by multiple hyperkeratotic lesions on the palms and soles. The causative gene for PPPK1 has been identified as AAGAB, which encodes α- and γ-adaptin-binding protein p34. We describe the clinical features in three unrelated families with PPPK1, and report three recurrent causative mutations in AAGAB. © 2017 British Association of Dermatologists.

  8. Novel Mutation in the CASR Gene (p.Leu123Ser) in a Case of Autosomal Dominant Hypocalcemia

    PubMed Central

    Regala, Joana; Cavaco, Branca; Domingues, Rita; Limbert, Catarina; Lopes, Lurdes

    2015-01-01

    Autosomal dominant hypocalcemia, caused by activating mutations of the calcium-sensing receptor (CASR) gene, is characterized by hypocalcemia with an inappropriately low concentration of parathyroid hormone (PTH). In this report, we describe the identification of a novel missense mutation in the CASR gene, in a boy with autosomal dominant hypocalcemia. Polymerase chain reaction (PCR)–single strand and DNA sequencing revealed a heterozygous mutation in CASR gene that causes a leucine substitution for serine at codon 123 (p.Leu123Ser). This mutation was absent in DNA from 50 control patients. In silico studies suggest that the identified variant was likely pathogenic. Sequencing analysis in the mother suggested mosaicism for the same variant, and she was clinically and biochemically unaffected. Clinical manifestations of the index case started with seizures at 14 months of age; cognitive impairment and several neuropsychological disabilities were noted during childhood. Extrapyramidal signs and basal ganglia calcification developed later, namely, hand tremor and rigidity at the age of 7 and 18 years, respectively. Laboratory analysis revealed hypocalcemia, hyperphosphatemia, and low-serum PTH with hypomagnesemia and mild hypercalciuria. After 2 years of treatment with calcium supplements and calcitriol, some brief periods of clinical improvement were reported; as well as an absence of nephrocalcinosis. PMID:27617113

  9. Veliparib and Atezolizumab Either Alone or in Combination in Treating Patients With Stage III-IV Triple Negative Breast Cancer

    ClinicalTrials.gov

    2018-03-20

    BRCA1 Gene Mutation; BRCA2 Gene Mutation; Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Stage III Breast Cancer AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Triple-Negative Breast Carcinoma

  10. Characterization of IDH1 p.R132H Mutant Clones Using Mutation-specific Antibody in Myeloid Neoplasms.

    PubMed

    Kurt, Habibe; Bueso-Ramos, Carlos E; Khoury, Joseph D; Routbort, Mark J; Kanagal-Shamanna, Rashmi; Patel, Umang V; Jorgensen, Jeffrey L; Wang, Sa A; Ravandi, Farhad; DiNardo, Courtney; Luthra, Rajyalakshmi; Medeiros, L Jeffrey; Patel, Keyur P

    2018-05-01

    Isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations occur in a variety of myeloid neoplasms. Immunohistochemistry (IHC)-based direct visualization of mutant clones of hematopoietic cells can be useful for rapid diagnostic screening and for monitoring treatment response. In this study, we first evaluated the sensitivity and specificity of the IDH1 p.R132H mutation-specific antibody by IHC. All IDH1 wild type cases (n=11) and IDH1 mutant cases with a non-p.R132H mutation (n=30) were negative by IHC, demonstrating 100% antibody specificity. All the initial diagnostic specimens with IDH1 p.R132H mutation including acute myeloid leukemia (n=30), myelodysplastic syndromes (MDS) (n=10), MDS/myeloproliferative neoplasms (MPN) (n=4), and MPN (n=5) were positive by IHC, demonstrating 100% antibody sensitivity. Both immature and mature myeloid cells showed immunoreactivity. Erythroid precursors, lymphoid cells, endothelial cells, and osteoblasts were consistently negative by IHC. We then evaluated the follow-up specimens with a known IDH1 mutation status including acute myeloid leukemia (n=23), MDS (n=2), MDS/MPN (n=2), and MPN (n=2). Thirty-three IDH1 p.R132H mutant cases were positive by IHC and 12 IDH1 mutation negative cases were negative by IHC. However, IHC reactivity in up to 25% of bone marrow cells was noted in 8 of 20 polymerase chain reaction-negative cases, all from patients with a known history of IDH1 p.R132H mutation indicating sampling error or a sensitivity issue with molecular tests. These data indicate that IHC is a highly specific and sensitive tool to detect IDH1 p.R132H mutation in bone marrow involved by myeloid neoplasms. In addition, IDH1 p.R132H IHC also allows localization and assessment of the maturation stage of the clones carrying the mutation.

  11. Endocytosis of hERG Is Clathrin-Independent and Involves Arf6

    PubMed Central

    Abuarab, Nada; Smith, Andrew J.; Hardy, Matthew E. L.; Elliott, David J. S.; Sivaprasadarao, Asipu

    2013-01-01

    The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6. PMID:24392021

  12. Tap and Dbp5, but not Gag, are involved in DR-mediated nuclear export of unspliced Rous sarcoma virus RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBlanc, Jason J.; Uddowla, Sabena; Abraham, Benjamin

    2007-07-05

    All retroviruses must circumvent cellular restrictions on the export of unspliced RNAs from the nucleus. While the unspliced RNA export pathways for HIV and Mason-Pfizer monkey virus are well characterized, that of Rous sarcoma virus (RSV) is not. We have previously reported that the RSV direct repeat (DR) elements are involved in the cytoplasmic accumulation of unspliced viral RNA. Here, using fluorescent in situ hybridization (FISH), we demonstrate that unspliced viral RNAs bearing a single point mutation (G8863C) in the DR exhibit a restricted cellular localization in and around the nucleus. In contrast, wild type unspliced viral RNA had amore » diffuse localization throughout the nucleus and cytoplasm. Since the RSV Gag protein has a transient localization in the nucleus, we examined the effect of Gag over-expression on a DR-mediated reporter construct. While Gag did not enhance DR-mediated nuclear export, the dominant-negative expression of two cellular export factors, Tap and Dbp5, inhibited expression of the same reporter construct. Furthermore, FISH studies using the dominant-negative Dbp5 demonstrated that unspliced wild type RSV RNA was retained within the nucleus. Taken together, these results further implicate the DR in nuclear RNA export through interactions with Tap and Dbp5.« less

  13. Impaired default network functional connectivity in autosomal dominant Alzheimer disease

    PubMed Central

    Chhatwal, Jasmeer P.; Schultz, Aaron P.; Johnson, Keith; Benzinger, Tammie L.S.; Jack, Clifford; Ances, Beau M.; Sullivan, Caroline A.; Salloway, Stephen P.; Ringman, John M.; Koeppe, Robert A.; Marcus, Daniel S.; Thompson, Paul; Saykin, Andrew J.; Correia, Stephen; Schofield, Peter R.; Rowe, Christopher C.; Fox, Nick C.; Brickman, Adam M.; Mayeux, Richard; McDade, Eric; Bateman, Randall; Fagan, Anne M.; Goate, Allison M.; Xiong, Chengjie; Buckles, Virginia D.; Morris, John C.

    2013-01-01

    Objective: To investigate default mode network (DMN) functional connectivity MRI (fcMRI) in a large cross-sectional cohort of subjects from families harboring pathogenic presenilin-1 (PSEN1), presenilin-2 (PSEN2), and amyloid precursor protein (APP) mutations participating in the Dominantly Inherited Alzheimer Network. Methods: Eighty-three mutation carriers and 37 asymptomatic noncarriers from the same families underwent fMRI during resting state at 8 centers in the United States, United Kingdom, and Australia. Using group-independent component analysis, fcMRI was compared using mutation status and Clinical Dementia Rating to stratify groups, and related to each participant's estimated years from expected symptom onset (eYO). Results: We observed significantly decreased DMN fcMRI in mutation carriers with increasing Clinical Dementia Rating, most evident in the precuneus/posterior cingulate and parietal cortices (p < 0.001). Comparison of asymptomatic mutation carriers with noncarriers demonstrated decreased fcMRI in the precuneus/posterior cingulate (p = 0.014) and right parietal cortex (p = 0.0016). We observed a significant interaction between mutation carrier status and eYO, with decreases in DMN fcMRI observed as mutation carriers approached and surpassed their eYO. Conclusion: Functional disruption of the DMN occurs early in the course of autosomal dominant Alzheimer disease, beginning before clinically evident symptoms, and worsening with increased impairment. These findings suggest that DMN fcMRI may prove useful as a biomarker across a wide spectrum of disease, and support the feasibility of DMN fcMRI as a secondary endpoint in upcoming multicenter clinical trials in Alzheimer disease. PMID:23884042

  14. Inducible Transgenic Models of BRCAl Function

    DTIC Science & Technology

    1997-10-01

    TIC Fort Detrick, Maryland 21702-5012. 13. ABSTRACT (Maximum 200 words) Germline mutations in the breast and ovarian cancer susceptibility gene ...breast cancer cases result from the inheritance of germline mutations in autosomal dominant susceptibility genes ", 2. Germline mutations in one of these...BRCA1, account for a large proportion of families with inherited breast and ovarian cancer. Interestingly, while germline BRCA1 mutations predispose

  15. Arresting a Torsin ATPase Reshapes the Endoplasmic Reticulum*

    PubMed Central

    Rose, April E.; Zhao, Chenguang; Turner, Elizabeth M.; Steyer, Anna M.; Schlieker, Christian

    2014-01-01

    Torsins are membrane-tethered AAA+ ATPases residing in the nuclear envelope (NE) and endoplasmic reticulum (ER). Here, we show that the induction of a conditional, dominant-negative TorsinB variant provokes a profound reorganization of the endomembrane system into foci containing double membrane structures that are derived from the ER. These double-membrane sinusoidal structures are formed by compressing the ER lumen to a constant width of 15 nm, and are highly enriched in the ATPase activator LULL1. Further, we define an important role for a highly conserved aromatic motif at the C terminus of Torsins. Mutations in this motif perturb LULL1 binding, reduce ATPase activity, and profoundly limit the induction of sinusoidal structures. PMID:24275647

  16. Role of ANC-1 in tethering nuclei to the actin cytoskeleton.

    PubMed

    Starr, Daniel A; Han, Min

    2002-10-11

    Mutations in anc-1 (nuclear anchorage defective) disrupt the positioning of nuclei and mitochondria in Caenorhabditis elegans. ANC-1 is shown to consist of mostly coiled regions with a nuclear envelope localization domain (called the KASH domain) and an actin-binding domain; this structure was conserved with the Drosophila protein Msp-300 and the mammalian Syne proteins. Antibodies against ANC-1 localized cytoplasmically and were enriched at the nuclear periphery in an UNC-84-dependent manner. Overexpression of the KASH domain or the actin-binding domain caused a dominant negative anchorage defect. Thus, ANC-1 may connect nuclei to the cytoskeleton by interacting with UNC-84 at the nuclear envelope and with actin in the cytoplasm.

  17. Analysis of full coding sequence of the TP53 gene in invasive vulvar cancers: Implications for therapy.

    PubMed

    Kashofer, Karl; Regauer, Sigrid

    2017-08-01

    This study evaluates the frequency and type of TP53 gene mutations and HPV status in 72 consecutively diagnosed primary invasive vulvar squamous cell carcinomas (SCC) during the past 5years. DNA of formalin-fixed and paraffin embedded tumour tissue was analysed for 32 HPV subtypes and the full coding sequence of the TP53 gene, and correlated with results of p53 immunohistochemistry. 13/72 (18%) cancers were HPV-induced squamous cell carcinomas, of which 1/13 (8%) carcinoma harboured a somatic TP53 mutation. Among the 59/72 (82%) HPV-negative cancers, 59/72 (82%) SCC were HPV-negative with wild-type gene in 14/59 (24%) SCC and somatic TP53 mutations in 45/59 (76%) SCC. 28/45 (62%) SCC carried one (n=20) or two (n=8) missense mutations. 11/45 (24%) carcinomas showed a single disruptive mutation (3× frame shift, 7× stop codon, 1× deletion), 3/45 SCC a splice site mutation. 3/45 (7%) carcinomas had 2 or 3 different mutations. 18 different "hot spot" mutations were observed in 22/45 cancers (49%; 5× R273, 3× R282; 2× each Y220, R278, R248). Immunohistochemical p53 over expression was identified in most SCC with missense mutations, but not in SCC with disruptive TP53 mutations or TP53 wild-type. 14/45 (31%) patients with TP53 mutated SCC died of disease within 12months (range 2-24months) versus 0/13 patients with HPV-induced carcinomas and 0/14 patients with HPV-negative, TP53 wild-type carcinomas. 80% of primary invasive vulvar SCC were HPV-negative carcinomas with a high frequency of disruptive mutations and "hot spot" TP53 gene mutations, which have been linked to chemo- and radioresistance. The death rate of patients with p53 mutated vulvar cancers was 31%. Immunohistochemical p53 over expression could not reliably identify SCC with TP53 gene mutation. Pharmacological therapies targeting mutant p53 will be promising strategies for personalized therapy in patients with TP53 mutated vulvar cancers. Copyright © 2017. Published by Elsevier Inc.

  18. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis

    PubMed Central

    Garin, Intza; Edghill, Emma L.; Akerman, Ildem; Rubio-Cabezas, Oscar; Rica, Itxaso; Locke, Jonathan M.; Maestro, Miguel Angel; Alshaikh, Adnan; Bundak, Ruveyde; del Castillo, Gabriel; Deeb, Asma; Deiss, Dorothee; Fernandez, Juan M.; Godbole, Koumudi; Hussain, Khalid; O’Connell, Michele; Klupa, Thomasz; Kolouskova, Stanislava; Mohsin, Fauzia; Perlman, Kusiel; Sumnik, Zdenek; Rial, Jose M.; Ugarte, Estibaliz; Vasanthi, Thiruvengadam; Johnstone, Karen; Flanagan, Sarah E.; Martínez, Rosa; Castaño, Carlos; Patch, Ann-Marie; Fernández-Rebollo, Eduardo; Raile, Klemens; Morgan, Noel; Harries, Lorna W.; Castaño, Luis; Ellard, Sian; Ferrer, Jorge; de Nanclares, Guiomar Perez; Hattersley, Andrew T.

    2010-01-01

    Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (−3.2 SD score vs. −2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man. PMID:20133622

  19. [NOTCH3 gene mutations in two Chinese families featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy].

    PubMed

    Sun, Qiying; Li, Wenwen; Zhou, Yafang; Yi, Fang; Wang, Jianfeng; Hu, Yacen; Yao, Lingyan; Zhou, Lin; Xu, Hongwei

    2017-12-10

    To analyze potential mutations of the NOTCH3 gene in two Chinese families featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy (CADASIL). The two probands and related family members and 100 healthy controls were recruited. Potential mutations of the NOTCH3 gene were screened by PCR and direct sequencing. PolyPhen-2 and SIFT software were used to predict the protein function. The conditions of both probands were adult-onset, with main clinical features including recurrent transient ischemic attacks and/or strokes, cognitive impairment. MRI findings suggested multiple cerebral infarcts and severe leukoencephalopathy. A heterozygous mutation c.328C>T (p.Arg110Cys), which was located in exon 3 of the NOTCH3 gene and known as a causative mutation, was identified in proband 1. A novel heterozygous mutation c.1013 G>C (p.Cys338Ser) located in exon 6 of the NOTCH3 gene was identified in the proband 2, which was not reported previously. The same mutations were not detected among the 100 unrelated healthy controls. Function analysis suggested that heterozygous mutation c.1013G>C can severely affect the functions of NOTCH3 protein. Two heterozygous missense mutations in the NOTCH3 gene have been identified in two families affected with CADASIL. The novel heterozygous Cys338Ser mutation in exon 6 of the NOTCH3 gene probably underlies the CADASIL.

  20. Identification and Characterization of Genes That Interact with Lin-12 in Caenorhabditis Elegans

    PubMed Central

    Tax, F. E.; Thomas, J. H.; Ferguson, E. L.; Horvitz, H. R.

    1997-01-01

    We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-17, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup-17 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup-17 and lag-2, suggest that both genes act at approximately the same time as lin-12 in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1. PMID:9409830

  1. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss.

    PubMed

    Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young

    2014-07-01

    Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene.

  2. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss

    PubMed Central

    Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young

    2014-01-01

    Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene. PMID:25080041

  3. RADIATION INDUCED VIABILITY MUTATIONS IN THE HONEY BEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.R.

    The frequency of recessive detrimental mutations expressed in the haploid drone honey bee was investigated and compared with recessive and dominant lethal mutations detected in the haploid drone and diploid worker. A single queen was inseminated by a drone homozygous for three genetic markers. Viability of progeny was determined, and hybrid daughters bearing the genetic markers were stored in colonies. The spermatheca of the queen was then irradiated with 2600 r kvp x rays. Morphological defects and viability were studied in progeny and grand-progeny. A total of 92 pairs was tested during one season. Results showed that 60.8% of themore » sperm cells receiving radiation contained at least one or more dominant lethals. Correcting for the saturation effect on the assumption of independence of each dominant lethal, an average proportion of 0.94 dominant lethals were found per cell. The average reduction in embryonic viability was 28%. Forty per cent of the queens tested contained one or more recessive lethals. Corrections in procedure and plans for future work, as well as work in progress, are described. (H.M.G.)« less

  4. Dosage analysis of cancer predisposition genes by multiplex ligation-dependent probe amplification

    PubMed Central

    Bunyan, D J; Eccles, D M; Sillibourne, J; Wilkins, E; Thomas, N Simon; Shea-Simonds, J; Duncan, P J; Curtis, C E; Robinson, D O; Harvey, J F; Cross, N C P

    2004-01-01

    Multiplex ligation-dependent probe amplification (MLPA) is a recently described method for detecting gross deletions or duplications of DNA sequences, aberrations which are commonly overlooked by standard diagnostic analysis. To determine the incidence of copy number variants in cancer predisposition genes from families in the Wessex region, we have analysed the hMLH1 and hMSH2 genes in patients with hereditary nonpolyposis colorectal cancer (HNPCC), BRCA1 and BRCA2 in families with hereditary breast/ovarian cancer (BRCA) and APC in patients with familial adenomatous polyposis coli (FAP). Hereditary nonpolyposis colorectal cancer (n=162) and FAP (n=74) probands were fully screened for small mutations, and cases for which no causative abnormality were found (HNPCC, n=122; FAP, n=24) were screened by MLPA. Complete or partial gene deletions were identified in seven cases for hMSH2 (5.7% of mutation-negative HNPCC; 4.3% of all HNPCC), no cases for hMLH1 and six cases for APC (25% of mutation negative FAP; 8% of all FAP). For BRCA1 and BRCA2, a partial mutation screen was performed and 136 mutation-negative cases were selected for MLPA. Five deletions and one duplication were found for BRCA1 (4.4% of mutation-negative BRCA cases) and one deletion for BRCA2 (0.7% of mutation-negative BRCA cases). Cost analysis indicates it is marginally more cost effective to perform MLPA prior to point mutation screening, but the main advantage gained by prescreening is a greatly reduced reporting time for the patients who are positive. These data demonstrate that dosage analysis is an essential component of genetic screening for cancer predisposition genes. PMID:15475941

  5. Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy.

    PubMed

    Goh, Gerald; Walradt, Trent; Markarov, Vladimir; Blom, Astrid; Riaz, Nadeem; Doumani, Ryan; Stafstrom, Krista; Moshiri, Ata; Yelistratova, Lola; Levinsohn, Jonathan; Chan, Timothy A; Nghiem, Paul; Lifton, Richard P; Choi, Jaehyuk

    2016-01-19

    Merkel cell carcinoma (MCC) is a rare but highly aggressive cutaneous neuroendocrine carcinoma, associated with the Merkel cell polyomavirus (MCPyV) in 80% of cases. To define the genetic basis of MCCs, we performed exome sequencing of 49 MCCs. We show that MCPyV-negative MCCs have a high mutation burden (median of 1121 somatic single nucleotide variants (SSNVs) per-exome with frequent mutations in RB1 and TP53 and additional damaging mutations in genes in the chromatin modification (ASXL1, MLL2, and MLL3), JNK (MAP3K1 and TRAF7), and DNA-damage pathways (ATM, MSH2, and BRCA1). In contrast, MCPyV-positive MCCs harbor few SSNVs (median of 12.5 SSNVs/tumor) with none in the genes listed above. In both subgroups, there are rare cancer-promoting mutations predicted to activate the PI3K pathway (HRAS, KRAS, PIK3CA, PTEN, and TSC1) and to inactivate the Notch pathway (Notch1 and Notch2). TP53 mutations appear to be clinically relevant in virus-negative MCCs as 37% of these tumors harbor potentially targetable gain-of-function mutations in TP53 at p.R248 and p.P278. Moreover, TP53 mutational status predicts death in early stage MCC (5-year survival in TP53 mutant vs wild-type stage I and II MCCs is 20% vs. 92%, respectively; P = 0.0036). Lastly, we identified the tumor neoantigens in MCPyV-negative and MCPyV-positive MCCs. We found that virus-negative MCCs harbor more tumor neoantigens than melanomas or non-small cell lung cancers (median of 173, 65, and 111 neoantigens/sample, respectively), two cancers for which immune checkpoint blockade can produce durable clinical responses. Collectively, these data support the use of immunotherapies for virus-negative MCCs.

  6. Changes in screening behaviors and attitudes toward screening from pre-test genetic counseling to post-disclosure in Lynch syndrome families

    PubMed Central

    Burton-Chase, Allison M.; Hovick, Shelly R.; Peterson, Susan K.; Marani, Salma K.; Vernon, Sally W.; Amos, Christopher I.; Frazier, Marsha L.; Lynch, Patrick M.; Gritz, Ellen R.

    2013-01-01

    Purpose This study examined colonoscopy adherence and attitudes towards colorectal cancer (CRC) screening in individuals who underwent Lynch syndrome genetic counseling and testing. Methods We evaluated changes in colonoscopy adherence and CRC screening attitudes in 78 cancer-unaffected relatives of Lynch syndrome mutation carriers before pre-test genetic counseling (baseline) and at 6 and 12 months post-disclosure of test results (52 mutation-negative, 26 mutation-positive). Results While both groups were similar at baseline, at 12 months post-disclosure, a greater number of mutation-positive individuals had had a colonoscopy compared with mutation-negative individuals. From baseline to 12 months post-disclosure, the mutation-positive group demonstrated an increase in mean scores on measures of colonoscopy commitment, self-efficacy, and perceived benefits of CRC screening, and a decrease in mean scores for perceived barriers to CRC screening. Mean scores on colonoscopy commitment decreased from baseline to 6 months in the mutation-negative group. Conclusion Adherence to risk-appropriate guidelines for CRC surveillance improved after genetic counseling and testing for Lynch syndrome. Mutation-positive individuals reported increasingly positive attitudes toward CRC screening after receiving genetic test results, potentially reinforcing longer term colonoscopy adherence. PMID:23414081

  7. Learning from Job: A Rare Genetic Disease and Lessons of Biblical Proportions

    PubMed Central

    Milner, Joshua D.

    2018-01-01

    Dominant negative mutations in STAT3, a critical signaling molecule and transcription factor in multiple organ systems, lead to a rare monogenic disease called the STAT3 loss-of-function, autosomal dominant hyper-IgE syndrome (STAT3LOF AD-HIES). The original name for this syndrome, Job’s syndrome, was derived from the observation that patients had a propensity to develop skin boils, reminiscent of the affliction cast upon the biblical Job. Many fascinating observations have been made regarding the pathogenesis of the disease and the role STAT3 plays in human health and disease. Additionally, quite a few phenotypic descriptions from the Book of Job are similar to those seen in patients with STAT3LOF AD-HIES, beyond just the boils. This complex multisystem genetic disorder is a challenge clinically and scientifically, but it also brings into question how we approach genetic syndromes beyond just the technical aspects of research and treatment. PMID:29406845

  8. IRF4 haploinsufficiency in a family with Whipple’s disease

    PubMed Central

    Guérin, Antoine; Kerner, Gaspard; Marr, Nico; Markle, Janet G; Fenollar, Florence; Wong, Natalie; Boughorbel, Sabri; Avery, Danielle T; Ma, Cindy S; Bougarn, Salim; Bouaziz, Matthieu; Béziat, Vivien; Della Mina, Erika; Oleaga-Quintas, Carmen; Lazarov, Tomi; Worley, Lisa; Nguyen, Tina; Patin, Etienne; Deswarte, Caroline; Martinez-Barricarte, Rubén; Boucherit, Soraya; Ayral, Xavier; Edouard, Sophie; Boisson-Dupuis, Stéphanie; Rattina, Vimel; Bigio, Benedetta; Vogt, Guillaume; Geissmann, Frédéric; Quintana-Murci, Lluis; Chaussabel, Damien; Tangye, Stuart G; Raoult, Didier; Abel, Laurent; Bustamante, Jacinta

    2018-01-01

    Most humans are exposed to Tropheryma whipplei (Tw). Whipple’s disease (WD) strikes only a small minority of individuals infected with Tw (<0.01%), whereas asymptomatic chronic carriage is more common (<25%). We studied a multiplex kindred, containing four WD patients and five healthy Tw chronic carriers. We hypothesized that WD displays autosomal dominant (AD) inheritance, with age-dependent incomplete penetrance. We identified a single very rare non-synonymous mutation in the four patients: the private R98W variant of IRF4, a transcription factor involved in immunity. The five Tw carriers were younger, and also heterozygous for R98W. We found that R98W was loss-of-function, modified the transcriptome of heterozygous leukocytes following Tw stimulation, and was not dominant-negative. We also found that only six of the other 153 known non-synonymous IRF4 variants were loss-of-function. Finally, we found that IRF4 had evolved under purifying selection. AD IRF4 deficiency can underlie WD by haploinsufficiency, with age-dependent incomplete penetrance. PMID:29537367

  9. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease.

    PubMed

    Rodriguez-Vieitez, Elena; Saint-Aubert, Laure; Carter, Stephen F; Almkvist, Ove; Farid, Karim; Schöll, Michael; Chiotis, Konstantinos; Thordardottir, Steinunn; Graff, Caroline; Wall, Anders; Långström, Bengt; Nordberg, Agneta

    2016-03-01

    Alzheimer's disease is a multifactorial dementia disorder characterized by early amyloid-β, tau deposition, glial activation and neurodegeneration, where the interrelationships between the different pathophysiological events are not yet well characterized. In this study, longitudinal multitracer positron emission tomography imaging of individuals with autosomal dominant or sporadic Alzheimer's disease was used to quantify the changes in regional distribution of brain astrocytosis (tracer (11)C-deuterium-L-deprenyl), fibrillar amyloid-β plaque deposition ((11)C-Pittsburgh compound B), and glucose metabolism ((18)F-fluorodeoxyglucose) from early presymptomatic stages over an extended period to clinical symptoms. The 52 baseline participants comprised autosomal dominant Alzheimer's disease mutation carriers (n = 11; 49.6 ± 10.3 years old) and non-carriers (n = 16; 51.1 ± 14.2 years old; 10 male), and patients with sporadic mild cognitive impairment (n = 17; 61.9 ± 6.4 years old; nine male) and sporadic Alzheimer's disease (n = 8; 63.0 ± 6.5 years old; five male); for confidentiality reasons, the gender of mutation carriers is not revealed. The autosomal dominant Alzheimer's disease participants belonged to families with known mutations in either presenilin 1 (PSEN1) or amyloid precursor protein (APPswe or APParc) genes. Sporadic mild cognitive impairment patients were further divided into (11)C-Pittsburgh compound B-positive (n = 13; 62.0 ± 6.4; seven male) and (11)C-Pittsburgh compound B-negative (n = 4; 61.8 ± 7.5 years old; two male) groups using a neocortical standardized uptake value ratio cut-off value of 1.41, which was calculated with respect to the cerebellar grey matter. All baseline participants underwent multitracer positron emission tomography scans, cerebrospinal fluid biomarker analysis and neuropsychological assessment. Twenty-six of the participants underwent clinical and imaging follow-up examinations after 2.8 ± 0.6 years. By using linear mixed-effects models, fibrillar amyloid-β plaque deposition was first observed in the striatum of presymptomatic autosomal dominant Alzheimer's disease carriers from 17 years before expected symptom onset; at about the same time, astrocytosis was significantly elevated and then steadily declined. Diverging from the astrocytosis pattern, amyloid-β plaque deposition increased with disease progression. Glucose metabolism steadily declined from 10 years after initial amyloid-β plaque deposition. Patients with sporadic mild cognitive impairment who were (11)C-Pittsburgh compound B-positive at baseline showed increasing amyloid-β plaque deposition and decreasing glucose metabolism but, in contrast to autosomal dominant Alzheimer's disease carriers, there was no significant longitudinal decline in astrocytosis over time. The prominent initially high and then declining astrocytosis in autosomal dominant Alzheimer's disease carriers, contrasting with the increasing amyloid-β plaque load during disease progression, suggests astrocyte activation is implicated in the early stages of Alzheimer's disease pathology. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  10. The different faces of the p. A53T alpha-synuclein mutation: A screening of Greek patients with parkinsonism and/or dementia.

    PubMed

    Breza, Marianthi; Koutsis, Georgios; Karadima, Georgia; Potagas, Constantin; Kartanou, Chrisoula; Papageorgiou, Sokratis G; Paraskevas, George P; Kapaki, Elisabeth; Stefanis, Leonidas; Panas, Marios

    2018-04-13

    The p. A53T mutation in the alpha-synuclein (SNCA) gene is a rare cause of autosomal dominant Parkinson's disease (PD). Although generally rare, it is particularly common in the Greek population due to a founder effect. A53T-positive PD patients often develop dementia during disease course and may very rarely present with dementia. We screened for the p. A53T SNCA mutation a total of 347 cases of Greek origin with parkinsonism and/or dementia, collected over 15 years at the Neurogenetics Unit, Eginition Hospital, University of Athens. Cases were classified into: "pure parkinsonism", "pure dementia" and "parkinsonism plus dementia". In total, 4 p. A53T SNCA mutation carriers were identified. All had autosomal dominant family history and early onset. Screening of the "pure parkinsonism" category revealed 2 cases with typical PD. The other two mutation carriers were identified in the "parkinsonism plus dementia" category. One had a diagnosis of PD dementia and the other of behavioral variant frontotemporal dementia. Screening of patients with "pure dementia" failed to identify any further A53T-positive cases. Our results confirm that the p. A53T SNCA mutation is relatively common in Greek patients with PD or PD plus dementia, particularly in cases with early onset and/or autosomal dominant family history. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Tryptophan to Glycine mutation in the position 116 leads to protein aggregation and decreases the stability of the LITAF protein.

    PubMed

    Kumar, Chundi Vinay; Swetha, Rayapadi G; Ramaiah, Sudha; Anbarasu, Anand

    2015-01-01

    Mutations in the gene-encoding vesicle lipopolysaccharide-induced tumor necrosis factor (LITAF) protein cause Charcot-Marie-Tooth type 1C (CMT1C) disease, a neurological disorder. The LITAF gene is mapped to chromosome number 16 and can be found at cytogenetic location 16p13 of the chromosome. CMT1C-linked small integral membrane protein of lysosome/late endosome mutants are loss-of-function mutants that act in a dominant negative manner to impair endosomal trafficking, leading to prolonged extracellular signal-regulated kinases 1/2 signaling downstream of ErbB activation. Mutation W116G in the LITAF decreases the stability of the protein and also interrupts the functioning of gene. We have analyzed the single nucleotide polymorphism (SNP) results of 28 nsSNPs obtained from dbSNP. We also carried out multiple molecular dynamics simulations of 200 ns and obtained results of root-mean-square deviation, root-mean-square fluctuation, radius of gyration, solvent-accessible surface area, H-bond, and principal component analysis to check and prove the stability of both the wild type and the mutant. The protein was then checked for its aggregation and the results showed loss of helix. The loss of helix leads to the instability of the protein.

  12. Clinical and genetic characterization of leukoencephalopathies in adults.

    PubMed

    Lynch, David S; Rodrigues Brandão de Paiva, Anderson; Zhang, Wei Jia; Bugiardini, Enrico; Freua, Fernando; Tavares Lucato, Leandro; Macedo-Souza, Lucia Inês; Lakshmanan, Rahul; Kinsella, Justin A; Merwick, Aine; Rossor, Alexander M; Bajaj, Nin; Herron, Brian; McMonagle, Paul; Morrison, Patrick J; Hughes, Deborah; Pittman, Alan; Laurà, Matilde; Reilly, Mary M; Warren, Jason D; Mummery, Catherine J; Schott, Jonathan M; Adams, Matthew; Fox, Nick C; Murphy, Elaine; Davagnanam, Indran; Kok, Fernando; Chataway, Jeremy; Houlden, Henry

    2017-05-01

    Leukodystrophies and genetic leukoencephalopathies are a rare group of disorders leading to progressive degeneration of cerebral white matter. They are associated with a spectrum of clinical phenotypes dominated by dementia, psychiatric changes, movement disorders and upper motor neuron signs. Mutations in at least 60 genes can lead to leukoencephalopathy with often overlapping clinical and radiological presentations. For these reasons, patients with genetic leukoencephalopathies often endure a long diagnostic odyssey before receiving a definitive diagnosis or may receive no diagnosis at all. In this study, we used focused and whole exome sequencing to evaluate a cohort of undiagnosed adult patients referred to a specialist leukoencephalopathy service. In total, 100 patients were evaluated using focused exome sequencing of 6100 genes. We detected pathogenic or likely pathogenic variants in 26 cases. The most frequently mutated genes were NOTCH3, EIF2B5, AARS2 and CSF1R. We then carried out whole exome sequencing on the remaining negative cases including four family trios, but could not identify any further potentially disease-causing mutations, confirming the equivalence of focused and whole exome sequencing in the diagnosis of genetic leukoencephalopathies. Here we provide an overview of the clinical and genetic features of these disorders in adults. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  13. Identification of FBN1 gene mutations in patients with ectopia lentis and marfanoid habitus

    PubMed Central

    Comeglio, P; Evans, A L; Brice, G; Cooling, R J; Child, A H

    2002-01-01

    Background: Marfan syndrome (MFS), inherited as an autosomal dominant trait, typically affects the cardiovascular, skeletal, and ocular systems. Ectopia lentis (EL) is a clinical manifestation of MFS, with stretching or disruption of the lenticular zonular filaments, leading to displacement of the lenses. EL, with or without minor skeletal changes, exists as an independent autosomal dominant phenotype linked to the same FBN1 locus. Methods: A consecutive series of 11 patients, affected predominantly by EL, was analysed for FBN1 mutations using PCR, SSCA, and sequencing. Results: Six mutations were identified, of which three are novel and one is recurrent in two patients, thus establishing a mutation incidence in this group of 7/11 (63%). Conclusion: The FBN1 variants reported are clustered in the first 15 exons of the gene, while FBN1 mutations reported in the literature are distributed throughout the entire length of the gene. A different type of FBN1 mutation presents in this group of patients, compared with MFS, with arginine to cysteine substitutions appearing frequently. PMID:12446365

  14. Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test.

    PubMed

    Arrant, A E; Filiano, A J; Warmus, B A; Hall, A M; Roberson, E D

    2016-07-01

    Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia (FTD), a neurodegenerative disorder in which social behavior is disrupted. Progranulin-insufficient mice, both Grn(+/-) and Grn(-/-) , are used as models of FTD due to GRN mutations, with Grn(+/-) mice mimicking the progranulin haploinsufficiency of FTD patients with GRN mutations. Grn(+/-) mice have increased social dominance in the tube test at 6 months of age, although this phenotype has not been reported in Grn(-/-) mice. In this study, we investigated how the tube test phenotype of progranulin-insufficient mice changes with age, determined its robustness under several testing conditions, and explored the associated cellular mechanisms. We observed biphasic social dominance abnormalities in Grn(+/-) mice: at 6-8 months, Grn(+/-) mice were more dominant than wild-type littermates, while after 9 months of age, Grn(+/-) mice were less dominant. In contrast, Grn(-/-) mice did not exhibit abnormal social dominance, suggesting that progranulin haploinsufficiency has distinct effects from complete progranulin deficiency. The biphasic tube test phenotype of Grn(+/-) mice was associated with abnormal cellular signaling and neuronal morphology in the amygdala and prefrontal cortex. At 6-9 months, Grn(+/-) mice exhibited increased mTORC2/Akt signaling in the amygdala and enhanced dendritic arbors in the basomedial amygdala, and at 9-16 months Grn(+/-) mice exhibited diminished basal dendritic arbors in the prelimbic cortex. These data show a progressive change in tube test dominance in Grn(+/-) mice and highlight potential underlying mechanisms by which progranulin insufficiency may disrupt social behavior. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Mutation in the PCSK9 Gene in Omani Arab Subjects with Autosomal Dominant Hypercholesterolemia and its Effect on PCSK9 Protein Structure.

    PubMed

    Al-Waili, Khalid; Al-Zidi, Ward Al-Muna; Al-Abri, Abdul Rahim; Al-Rasadi, Khalid; Al-Sabti, Hilal Ali; Shah, Karna; Al-Futaisi, Abdullah; Al-Zakwani, Ibrahim; Banerjee, Yajnavalka

    2013-01-01

    Proprotein convertase subtilisin/kexin type (PCSK9) is a crucial protein in LDL cholesterol (LDL-C) metabolism by virtue of its pivotal role in the degradation of the LDL receptor. Mutations in the PCSK9 gene have previously been found to segregate with autosomal dominant familial hypercholesterolemia (ADFH). In this study, DNA sequencing of the 12 exons of the PCSK9 gene has been performed for two patients with a clinical diagnosis of familial hypercholesterolemia where mutation in the LDL-receptor gene hasn't been excluded. One missense mutation was detected in the exon 9 PCSK9 gene in the two ADFH patients. The patients were found to be heterozygote for Ile474Val (SNP rs562556). Using an array of in silico tools, we have investigated the effect of the above mutation on different structural levels of the PCSK9 protein. Although, the mutation has already been reported in the literature for other populations, to the best of our knowledge this is the first report of a mutation in the PCSK9 gene from the Arab population, including the Omani population.

  16. Genome-Wide Linkage Analysis to Identify Genetic Modifiers of ALK Mutation Penetrance in Familial Neuroblastoma

    PubMed Central

    Devoto, Marcella; Specchia, Claudia; Laudenslager, Marci; Longo, Luca; Hakonarson, Hakon; Maris, John; Mossé, Yael

    2011-01-01

    Background Neuroblastoma (NB) is an important childhood cancer with a strong genetic component related to disease susceptibility. Approximately 1% of NB cases have a positive family history. Following a genome-wide linkage analysis and sequencing of candidate genes in the critical region, we identified ALK as the major familial NB gene. Dominant mutations in ALK are found in more than 50% of familial NB cases. However, in the families used for the linkage study, only about 50% of carriers of ALK mutations are affected by NB. Methods To test whether genetic variation may explain the reduced penetrance of the disease phenotype, we analyzed genome-wide genotype data in ALK mutation-positive families using a model-based linkage approach with different liability classes for carriers and non-carriers of ALK mutations. Results The region with the highest LOD score was located at chromosome 2p23–p24 and included the ALK locus under models of dominant and recessive inheritance. Conclusions This finding suggests that variants in the non-mutated ALK gene or another gene linked to it may affect penetrance of the ALK mutations and risk of developing NB in familial cases. PMID:21734404

  17. Hypomorphic NOTCH3 mutation in an Italian family with CADASIL features.

    PubMed

    Moccia, Marcello; Mosca, Lorena; Erro, Roberto; Cervasio, Mariarosaria; Allocca, Roberto; Vitale, Carmine; Leonardi, Antonio; Caranci, Ferdinando; Del Basso-De Caro, Maria Laura; Barone, Paolo; Penco, Silvana

    2015-01-01

    The cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) is because of NOTCH3 mutations affecting the number of cysteine residues. In this view, the role of atypical NOTCH3 mutations is still debated. Therefore, we investigated a family carrying a NOTCH3 nonsense mutation, with dominantly inherited recurrent cerebrovascular disorders. Among 7 family members, 4 received a clinical diagnosis of CADASIL. A heterozygous truncating mutation in exon 3 (c.307C>T, p.Arg103X) was found in the 4 clinically affected subjects and in one 27-year old lady, only complaining of migraine with aura. Magnetic resonance imaging scans found typical signs of small-vessel disease in the 4 affected subjects, supporting the clinical diagnosis. Skin biopsies did not show the typical granular osmiophilic material, but only nonspecific signs of vascular damage, resembling those previously described in Notch3 knockout mice. Interestingly, messenger RNA (mRNA) analysis supports the hypothesis of an atypical NOTCH3 mutation, suggesting a nonsense-mediated mRNA decay. In conclusion, the present study broadens the spectrum of CADASIL mutations, and, therefore, opens new insights about Notch3 signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Detecting negative selection on recurrent mutations using gene genealogy

    PubMed Central

    2013-01-01

    Background Whether or not a mutant allele in a population is under selection is an important issue in population genetics, and various neutrality tests have been invented so far to detect selection. However, detection of negative selection has been notoriously difficult, partly because negatively selected alleles are usually rare in the population and have little impact on either population dynamics or the shape of the gene genealogy. Recently, through studies of genetic disorders and genome-wide analyses, many structural variations were shown to occur recurrently in the population. Such “recurrent mutations” might be revealed as deleterious by exploiting the signal of negative selection in the gene genealogy enhanced by their recurrence. Results Motivated by the above idea, we devised two new test statistics. One is the total number of mutants at a recurrently mutating locus among sampled sequences, which is tested conditionally on the number of forward mutations mapped on the sequence genealogy. The other is the size of the most common class of identical-by-descent mutants in the sample, again tested conditionally on the number of forward mutations mapped on the sequence genealogy. To examine the performance of these two tests, we simulated recurrently mutated loci each flanked by sites with neutral single nucleotide polymorphisms (SNPs), with no recombination. Using neutral recurrent mutations as null models, we attempted to detect deleterious recurrent mutations. Our analyses demonstrated high powers of our new tests under constant population size, as well as their moderate power to detect selection in expanding populations. We also devised a new maximum parsimony algorithm that, given the states of the sampled sequences at a recurrently mutating locus and an incompletely resolved genealogy, enumerates mutation histories with a minimum number of mutations while partially resolving genealogical relationships when necessary. Conclusions With their considerably high powers to detect negative selection, our new neutrality tests may open new venues for dealing with the population genetics of recurrent mutations as well as help identifying some types of genetic disorders that may have escaped identification by currently existing methods. PMID:23651527

  19. 'Laminopathies': A wide spectrum of human diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worman, Howard J.; Bonne, Gisele; Universite Pierre et Marie Curie-Paris 6, Faculte de medecine, Paris F-75013

    2007-06-10

    Mutations in genes encoding the intermediate filament nuclear lamins and associated proteins cause a wide spectrum of diseases sometimes called 'laminopathies.' Diseases caused by mutations in LMNA encoding A-type lamins include autosomal dominant Emery-Dreifuss muscular dystrophy and related myopathies, Dunnigan-type familial partial lipodystrophy, Charcot-Marie-Tooth disease type 2B1 and developmental and accelerated aging disorders. Duplication in LMNB1 encoding lamin B1 causes autosomal dominant leukodystrophy and mutations in LMNB2 encoding lamin B2 are associated with acquired partial lipodystrophy. Disorders caused by mutations in genes encoding lamin-associated integral inner nuclear membrane proteins include X-linked Emery-Dreifuss muscular dystrophy, sclerosing bone dysplasias, HEM/Greenberg skeletal dysplasiamore » and Pelger-Huet anomaly. While mutations and clinical phenotypes of 'laminopathies' have been carefully described, data explaining pathogenic mechanisms are only emerging. Future investigations will likely identify new 'laminopathies' and a combination of basic and clinical research will lead to a better understanding of pathophysiology and the development of therapies.« less

  20. A novel inherited mutation of the transcription factor RUNX1 causes thrombocytopenia and may predispose to acute myeloid leukaemia.

    PubMed

    Walker, Logan C; Stevens, Jane; Campbell, Hamish; Corbett, Rob; Spearing, Ruth; Heaton, David; Macdonald, Donald H; Morris, Christine M; Ganly, Peter

    2002-06-01

    The RUNX1 (AML1, CBFA2) gene is a member of the runt transcription factor family, responsible for DNA binding and heterodimerization of other non-DNA binding transcription factors. RUNX1 plays an important part in regulating haematopoiesis and it is frequently disrupted by illegitimate somatic recombination in both acute myeloid and lymphoblastic leukaemia. Germline mutations of RUNX1 have also recently been described and are dominantly associated with inherited leukaemic conditions. We have identified a unique point mutation of the RUNX1 gene (A107P) in members of a family with autosomal dominant inheritance of thrombocytopenia. One member has developed acute myeloid leukaemia (AML).

  1. Ddx18 is essential for cell-cycle progression in zebrafish hematopoietic cells and is mutated in human AML

    PubMed Central

    Bolli, Niccolò; Rhodes, Jennifer; Abdel-Wahab, Omar I.; Levine, Ross; Hedvat, Cyrus V.; Stone, Richard; Khanna-Gupta, Arati; Sun, Hong; Kanki, John P.; Gazda, Hanna T.; Beggs, Alan H.; Cotter, Finbarr E.

    2011-01-01

    In a zebrafish mutagenesis screen to identify genes essential for myelopoiesis, we identified an insertional allele hi1727, which disrupts the gene encoding RNA helicase dead-box 18 (Ddx18). Homozygous Ddx18 mutant embryos exhibit a profound loss of myeloid and erythroid cells along with cardiovascular abnormalities and reduced size. These mutants also display prominent apoptosis and a G1 cell-cycle arrest. Loss of p53, but not Bcl-xl overexpression, rescues myeloid cells to normal levels, suggesting that the hematopoietic defect is because of p53-dependent G1 cell-cycle arrest. We then sequenced primary samples from 262 patients with myeloid malignancies because genes essential for myelopoiesis are often mutated in human leukemias. We identified 4 nonsynonymous sequence variants (NSVs) of DDX18 in acute myeloid leukemia (AML) patient samples. RNA encoding wild-type DDX18 and 3 NSVs rescued the hematopoietic defect, indicating normal DDX18 activity. RNA encoding one mutation, DDX18-E76del, was unable to rescue hematopoiesis, and resulted in reduced myeloid cell numbers in ddx18hi1727/+ embryos, indicating this NSV likely functions as a dominant-negative allele. These studies demonstrate the use of the zebrafish as a robust in vivo system for assessing the function of genes mutated in AML, which will become increasingly important as more sequence variants are identified by next-generation resequencing technologies. PMID:21653321

  2. Mutation of SIMPLE in Charcot–Marie–Tooth 1C alters production of exosomes

    PubMed Central

    Zhu, Hong; Guariglia, Sara; Yu, Raymond Y. L.; Li, Wenjing; Brancho, Deborah; Peinado, Hector; Lyden, David; Salzer, James; Bennett, Craig; Chow, Chi-Wing

    2013-01-01

    Charcot–Marie–Tooth (CMT) disease is an inherited neurological disorder. Mutations in the small integral membrane protein of the lysosome/late endosome (SIMPLE) account for the rare autosomal-dominant demyelination in CMT1C patients. Understanding the molecular basis of CMT1C pathogenesis is impeded, in part, by perplexity about the role of SIMPLE, which is expressed in multiple cell types. Here we show that SIMPLE resides within the intraluminal vesicles of multivesicular bodies (MVBs) and inside exosomes, which are nanovesicles secreted extracellularly. Targeting of SIMPLE to exosomes is modulated by positive and negative regulatory motifs. We also find that expression of SIMPLE increases the number of exosomes and secretion of exosome proteins. We engineer a point mutation on the SIMPLE allele and generate a physiological mouse model that expresses CMT1C-mutated SIMPLE at the endogenous level. We find that CMT1C mouse primary embryonic fibroblasts show decreased number of exosomes and reduced secretion of exosome proteins, in part due to improper formation of MVBs. CMT1C patient B cells and CMT1C mouse primary Schwann cells show similar defects. Together the data indicate that SIMPLE regulates the production of exosomes by modulating the formation of MVBs. Dysregulated endosomal trafficking and changes in the landscape of exosome-mediated intercellular communications may place an overwhelming burden on the nervous system and account for CMT1C molecular pathogenesis. PMID:23576546

  3. Lack of KIF21A mutations in congenital fibrosis of the extraocular muscles type I patients from consanguineous Saudi Arabian families

    PubMed Central

    Shinwari, Jameela; Omar, Aisha; Al-Sharif, Latifa; Khalil, Dania S.; Alanazi, Mohammed; Al-Amri, Abdullah; Al Tassan, Nada

    2011-01-01

    Purpose Congenital fibrosis of the extraocular muscles type I (CFEOM1), the most common CFEOM worldwide, is characterized by bilateral ptotic hypotropia, an inability to supraduct above the horizontal midline, horizontal strabismus (typically exotropia), and ophthalmoplegia with abnormal synkinesis. This distinct non-syndromic phenotype is considered autosomal dominant and is virtually always from heterozygous missense mutations in kinesin family member 21A (KIF21A). However, there are occasional KIF21A-negative cases, opening the possibility for a recessive cause. The objective of this study is to explore this possibility by assessing CFEOM1 patients exclusively from consanguineous families, who are the most likely to have recessive cause for their phenotype if a recessive cause exists. Methods Ophthalmic examination and candidate gene direct sequencing (KIF21A, paired-like homeobox 2A [PHOX2A], tubulin beta-3 [TUBB3]) of CFEOM1 patients from consanguineous families referred for counseling from 2005 to 2010. Results All 5 probands had classic CFEOM1 as defined above. Three had siblings with CFEOM. None of the probands had mutations in KIF21A, PHOX2A, or TUBB3. Conclusions The lack of KIF21A mutations in CFEOM1 patients exclusively from consanguineous families, most of whom had siblings with CFEOM, is strong evidence for a recessive form of CFEOM1. Further studies of such families will hopefully uncover the specific locus(loci). PMID:21264235

  4. The mutation profile of JAK2 and CALR in Chinese Han patients with Philadelphia chromosome-negative myeloproliferative neoplasms

    PubMed Central

    2014-01-01

    Mutations in JAK2, MPL and CALR are highly relevant to the Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms (MPNs). We performed high resolution melting analysis and Sanger sequencing together with T-A cloning to elucidate the unique mutation profile of these genes, in Chinese patients with MPNs. Peripheral blood DNA samples were obtained from 80 patients with polycythemia vera (PV), 80 patients with essential thrombocytosis (ET) and 50 patients with primary myelofibrosis (PMF). Ten PV patients were identified with diverse JAK2 exon 12 mutations. Five novel JAK2 Exon 12 mutation patterns (M532V/E543G, N533D, M535I/H538Y/K549I, E543G and D544N) were described. JAK2 V617F was detected in 140 samples (66 PV, 45 ET and 29 PMF). JAK2 Exon 12 mutations were prevalent (13%) and variable in the Chinese patients. Compared with PV patients with JAK2 V617F mutations, PV patients with JAK2 exon 12 mutations had an earlier median onset of disease (P = 0.0013). MPL W515L/K mutations were discerned in 4 ET and 3 PMF patients. Two kinds of CALR mutation, c. 1179_1230del and c. 1234_1235insTTGTC were detected in 20 ET and 16 PMF patients. A novel CALR mutation pattern (c. 1173_1223del/c. 1179_1230del) was identified in 2 PMF samples. In addition, 17 scattered point mutations in CALR c.1153 to c.1255 were also detected in 13 cases with CALR frame-shifting variations and 2 cases without CALR frame-shifting variations. Female patients showed a predisposition to CALR mutations (P = 0.0035). Chinese Ph-negative MPN patients have a unique mutation landscape in the common molecular markers of MPN diagnosis. Validation of the molecular diagnostic pipeline should be emphasized since there is a considerable ethnical diversity in the molecular profiles of Ph-negative MPNs. PMID:25023898

  5. Functional characterisation of the type 1 von Willebrand disease candidate VWF gene variants: p.M771I, p.L881R and p.P1413L

    PubMed Central

    Berber, Ergul; Ozbil, Mehmet; Brown, Christine; Baslar, Zafer; Caglayan, S. Hande; Lillicrap, David

    2017-01-01

    Background Abnormalities in the biosynthetic pathway or increased clearance of plasma von Willebrand factor (VWF) are likely to contribute to decreased plasma VWF levels in inherited type 1 von Willebrand disease (VWD). Recent studies demonstrated that 65% of type 1 VWD patients have candidate VWF mutations, the majority of which are missense variants. The purpose of this study was to explore the effects of three VWF missense mutations (p.M771I, p.L881R and p.P1413L) located in different functional domains of VWF, reported as candidate mutations in type 1 VWD patients in the course of the MCMDM-1VWD study. Materials and methods The focus of these studies was on the intracellular biosynthetic processing and localisation of VWF in a heterologous cell system. Molecular dynamic simulation for p.M771I and p.P1413L was also performed to analyse the conformational effects of the changes. Results As determined by immunofluorescence antibody staining and confocal microscopy of HEK293 cells, the intracellular localisation of recombinant VWF with the p.M771I variation was impaired. Transient transfection studies and phorbol myristate acetate stimulation in COS-7 cells revealed significant intracellular retention. In addition, major loss of VWF multimers was observed for only the p.M771I mutation. Molecular dynamic simulations on p.M771I mutant VWF revealed distinct structural rearrangements including a large deviation in the E’ domain, and significant loss of β-sheet secondary structure. Discussion The pathogenic effects of candidate VWF gene mutations were explored in this study. In vitro expression studies in heterologous cell systems revealed impaired secretion of VWF and a dominant negative effect on the processing of the wild-type protein for only the p.M771I mutation and none of the mutations affected the regulated secretion. PMID:27483487

  6. Functional characterisation of the type 1 von Willebrand disease candidate VWF gene variants: p.M771I, p.L881R and p.P1413L.

    PubMed

    Berber, Ergul; Ozbil, Mehmet; Brown, Christine; Baslar, Zafer; Caglayan, S Hande; Lillicrap, David

    2017-10-01

    Abnormalities in the biosynthetic pathway or increased clearance of plasma von Willebrand factor (VWF) are likely to contribute to decreased plasma VWF levels in inherited type 1 von Willebrand disease (VWD). Recent studies demonstrated that 65% of type 1 VWD patients have candidate VWF mutations, the majority of which are missense variants. The purpose of this study was to explore the effects of three VWF missense mutations (p.M771I, p.L881R and p.P1413L) located in different functional domains of VWF, reported as candidate mutations in type 1 VWD patients in the course of the MCMDM-1VWD study. The focus of these studies was on the intracellular biosynthetic processing and localisation of VWF in a heterologous cell system. Molecular dynamic simulation for p.M771I and p.P1413L was also performed to analyse the conformational effects of the changes. As determined by immunofluorescence antibody staining and confocal microscopy of HEK293 cells, the intracellular localisation of recombinant VWF with the p.M771I variation was impaired. Transient transfection studies and phorbol myristate acetate stimulation in COS-7 cells revealed significant intracellular retention. In addition, major loss of VWF multimers was observed for only the p.M771I mutation. Molecular dynamic simulations on p.M771I mutant VWF revealed distinct structural rearrangements including a large deviation in the E' domain, and significant loss of β-sheet secondary structure. The pathogenic effects of candidate VWF gene mutations were explored in this study. In vitro expression studies in heterologous cell systems revealed impaired secretion of VWF and a dominant negative effect on the processing of the wild-type protein for only the p.M771I mutation and none of the mutations affected the regulated secretion.

  7. Paternal inheritance of classic X-linked bilateral periventricular nodular heterotopia.

    PubMed

    Kasper, Burkhard S; Kurzbuch, Katrin; Chang, Bernard S; Pauli, Elisabeth; Hamer, Hajo M; Winkler, Jürgen; Hehr, Ute

    2013-06-01

    Periventricular nodular heterotopia (PNH) is a developmental disorder of the central nervous system, characterized by heterotopic nodules of gray matter resulting from disturbed neuronal migration. The most common form of bilateral PNH is X-linked dominant inherited, caused by mutations in the Filamin A gene (FLNA) and associated with a wide variety of other clinical findings including congenital heart disease. The typical patient with FLNA-associated PNH is female and presents with difficult to treat seizures. In contrast, hemizygous FLNA loss of function mutations in males are reported to be perinatally lethal. In X-linked dominant traits like FLNA-associated PNH the causal mutation is commonly inherited from the mother. Here, we present an exceptional family with paternal transmission of classic bilateral FLNA-associated PNH from a mildly affected father with somatic and germline mosaicism for a c.5686G>A FLNA splice mutation to both daughters with strikingly variable clinical manifestation and PNH extent in cerebral MR imaging. Our observations emphasize the importance to consider in genetic counseling and risk assessment the rare genetic constellation of paternal transmission for families with X-linked dominant inherited FLNA-associated PNH. Copyright © 2013 Wiley Periodicals, Inc.

  8. Genetic forms of neurohypophyseal diabetes insipidus.

    PubMed

    Rutishauser, Jonas; Spiess, Martin; Kopp, Peter

    2016-03-01

    Neurohypophyseal diabetes insipidus is characterized by polyuria and polydipsia owing to partial or complete deficiency of the antidiuretic hormone, arginine vasopressin (AVP). Although in most patients non-hereditary causes underlie the disorder, genetic forms have long been recognized and studied both in vivo and in vitro. In most affected families, the disease is transmitted in an autosomal dominant manner, whereas autosomal recessive forms are much less frequent. Both phenotypes can be caused by mutations in the vasopressin-neurophysin II (AVP) gene. In transfected cells expressing dominant mutations, the mutated hormone precursor is retained in the endoplasmic reticulum, where it forms fibrillar aggregates. Autopsy studies in humans and a murine knock-in model suggest that the dominant phenotype results from toxicity to vasopressinergic neurons, but the mechanisms leading to cell death remain unclear. Recessive transmission results from AVP with reduced biologic activity or the deletion of the locus. Genetic neurohypophyseal diabetes insipidus occurring in the context of diabetes mellitus, optic atrophy, and deafness is termed DIDMOAD or Wolfram syndrome, a genetically and phenotypically heterogeneous autosomal recessive disorder caused by mutations in the wolframin (WFS 1) gene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Alzheimer disease-like clinical phenotype in a family with FTDP-17 caused by a MAPT R406W mutation.

    PubMed

    Lindquist, S G; Holm, I E; Schwartz, M; Law, I; Stokholm, J; Batbayli, M; Waldemar, G; Nielsen, J E

    2008-04-01

    We report clinical, molecular, neuroimaging and neuropathological features of a Danish family with autosomal dominant inherited dementia, a clinical phenotype resembling Alzheimer's disease and a pathogenic mutation (R406W) in the microtubule associated protein tau (MAPT) gene. Pre-symptomatic and affected family members underwent multidisciplinary (clinical, molecular, neuroimaging and neuropathological) examinations. Treatment with memantine in a family member with early symptoms, based on the clinical phenotype and the lack of specific treatment, appears to stabilize the disease course and increase the glucose metabolism in cortical and subcortical areas, as determined by serial [F(18)]FDG-PET scanning before and after initiation of treatment. Neuropathological examination of a second affected and mutation-positive family member showed moderate atrophy of the temporal lobes including the hippocampi. Microscopy revealed abundant numbers of tau-positive neurofibrillary tangles in all cortical areas and in some brainstem nuclei corresponding to a diagnosis of frontotemporal lobe degeneration on the basis of a MAPT mutation. The clinical and genetic heterogeneity of autosomal dominant inherited dementia must be taken into account in the genetic counselling and genetic testing of families with autosomal dominantly inherited dementia in general.

  10. X-ray induced dominant lethal mutations in mature and immature oocytes of guinea-pigs and golden hamsters.

    PubMed

    Cox, B D; Lyon, M F

    1975-06-01

    The induction of dominant lethal mutations by doses of 100-400 rad X-rays in oocytes of the guinea-pig and golden hamster was studied using criteria of embryonic mortality. For both species higher yields were obtained from mature than from immature oocytes, in contrast to results for the mouse. Data on fertility indicated that in the golden hamster, as in the mouse, immature oocytes were more sensitive to killing by X-rays than mature oocytes but that the converse was true in the guinea-pig. The dose-response relationship for mutation to dominant lethals in pre-ovulatory oocytes of guinea-pig and golden hamsters was linear, both when based on pre- and post-implantation loss and when on post-implantation loss only. The rate per unit dose was higher for the golden hamster, and the old golden hamsters were possibly slightly more sensitive than young ones. The mutation rate data for mature oocytes of the mouse, using post-implantation loss alone, also fitted a linear dose-response relationship, except that the rate per unit dose was lower than for the other two species.

  11. Autosomal dominant hypoparathyroidism caused by germline mutation in GNA11: phenotypic and molecular characterization.

    PubMed

    Li, Dong; Opas, Evan E; Tuluc, Florin; Metzger, Daniel L; Hou, Cuiping; Hakonarson, Hakon; Levine, Michael A

    2014-09-01

    Most cases of autosomal dominant hypoparathyroidism (ADH) are caused by gain-of-function mutations in CASR or dominant inhibitor mutations in GCM2 or PTH. Our objectives were to identify the genetic basis for ADH in a multigenerational family and define the underlying disease mechanism. Here we evaluated a multigenerational family with ADH in which affected subjects had normal sequences in these genes and were shorter than unaffected family members. We collected clinical and biochemical data from 6 of 11 affected subjects and performed whole-exome sequence analysis on DNA from two affected sisters and their affected father. Functional studies were performed after expression of wild-type and mutant Gα11 proteins in human embryonic kidney-293-CaR cells that stably express calcium-sensing receptors. Whole-exome-sequencing followed by Sanger sequencing revealed a heterozygous mutation, c.179G>T; p.R60L, in GNA11, which encodes the α-subunit of G11, the principal heterotrimeric G protein that couples calcium-sensing receptors to signal activation in parathyroid cells. Functional studies of Gα11 R60L showed increased accumulation of intracellular concentration of free calcium in response to extracellular concentration of free calcium with a significantly decreased EC50 compared with wild-type Gα11. By contrast, R60L was significantly less effective than the oncogenic Q209L form of Gα11 as an activator of the MAPK pathway. Compared to subjects with CASR mutations, patients with GNA11 mutations lacked hypercalciuria and had normal serum magnesium levels. Our findings indicate that the germline gain-of-function mutation of GNA11 is a cause of ADH and implicate a novel role for GNA11 in skeletal growth.

  12. Autosomal Dominant Hypoparathyroidism Caused by Germline Mutation in GNA11: Phenotypic and Molecular Characterization

    PubMed Central

    Li, Dong; Opas, Evan E.; Tuluc, Florin; Metzger, Daniel L.; Hou, Cuiping; Hakonarson, Hakon

    2014-01-01

    Context: Most cases of autosomal dominant hypoparathyroidism (ADH) are caused by gain-of-function mutations in CASR or dominant inhibitor mutations in GCM2 or PTH. Objective: Our objectives were to identify the genetic basis for ADH in a multigenerational family and define the underlying disease mechanism. Subjects: Here we evaluated a multigenerational family with ADH in which affected subjects had normal sequences in these genes and were shorter than unaffected family members. Methods: We collected clinical and biochemical data from 6 of 11 affected subjects and performed whole-exome sequence analysis on DNA from two affected sisters and their affected father. Functional studies were performed after expression of wild-type and mutant Gα11 proteins in human embryonic kidney-293-CaR cells that stably express calcium-sensing receptors. Results: Whole-exome-sequencing followed by Sanger sequencing revealed a heterozygous mutation, c.179G>T; p.R60L, in GNA11, which encodes the α-subunit of G11, the principal heterotrimeric G protein that couples calcium-sensing receptors to signal activation in parathyroid cells. Functional studies of Gα11 R60L showed increased accumulation of intracellular concentration of free calcium in response to extracellular concentration of free calcium with a significantly decreased EC50 compared with wild-type Gα11. By contrast, R60L was significantly less effective than the oncogenic Q209L form of Gα11 as an activator of the MAPK pathway. Compared to subjects with CASR mutations, patients with GNA11 mutations lacked hypercalciuria and had normal serum magnesium levels. Conclusions: Our findings indicate that the germline gain-of-function mutation of GNA11 is a cause of ADH and implicate a novel role for GNA11 in skeletal growth. PMID:24823460

  13. Colorectal cancer risk variants at 8q23.3 and 11q23.1 are associated with disease phenotype in APC mutation carriers.

    PubMed

    Ghorbanoghli, Z; Nieuwenhuis, M H; Houwing-Duistermaat, J J; Jagmohan-Changur, S; Hes, F J; Tops, C M; Wagner, A; Aalfs, C M; Verhoef, S; Gómez García, E B; Sijmons, R H; Menko, F H; Letteboer, T G; Hoogerbrugge, N; van Wezel, T; Vasen, H F A; Wijnen, J T

    2016-10-01

    Familial adenomatous polyposis (FAP) is a dominantly inherited syndrome caused by germline mutations in the APC gene and characterized by the development of multiple colorectal adenomas and a high risk of developing colorectal cancer (CRC). The severity of polyposis is correlated with the site of the APC mutation. However, there is also phenotypic variability within families with the same underlying APC mutation, suggesting that additional factors influence the severity of polyposis. Genome-wide association studies identified several single nucleotide polymorphisms (SNPs) that are associated with CRC. We assessed whether these SNPs are associated with polyp multiplicity in proven APC mutation carriers. Sixteen CRC-associated SNPs were analysed in a cohort of 419 APC germline mutation carriers from 182 families. Clinical data were retrieved from the Dutch Polyposis Registry. Allele frequencies of the SNPs were compared for patients with <100 colorectal adenomas versus patients with ≥100 adenomas, using generalized estimating equations with the APC genotype as a covariate. We found a trend of association of two of the tested SNPs with the ≥100 adenoma phenotype: the C alleles of rs16892766 at 8q23.3 (OR 1.71, 95 % CI 1.05-2.76, p = 0.03, dominant model) and rs3802842 at 11q23.1 (OR 1.51, 95 % CI 1.03-2.22, p = 0.04, dominant model). We identified two risk variants that are associated with a more severe phenotype in APC mutation carriers. These risk variants may partly explain the phenotypic variability in families with the same APC gene defect. Further studies with a larger sample size are recommended to evaluate and confirm the phenotypic effect of these SNPs in FAP.

  14. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review.

    PubMed

    Metcalf, Alexander M; Spurdle, Amanda B

    2014-03-01

    Colorectal cancer (CRC) that displays high microsatellite instability (MSI-H) can be caused by either germline mutations in mismatch repair (MMR) genes, or non-inherited transcriptional silencing of the MLH1 promoter. A correlation between MLH1 promoter methylation, specifically the 'C' region, and BRAF V600E status has been reported in CRC studies. Germline MMR mutations also greatly increase risk of endometrial cancer (EC), but no systematic review has been undertaken to determine if these tumour markers may be useful predictors of MMR mutation status in EC patients. Endometrial cancer cohorts meeting review inclusion criteria encompassed 2675 tumours from 20 studies for BRAF V600E, and 447 tumours from 11 studies for MLH1 methylation testing. BRAF V600E mutations were reported in 4/2675 (0.1%) endometrial tumours of unknown MMR mutation status, and there were 7/823 (0.9%) total sequence variants in exon 11 and 27/1012 (2.7%) in exon 15. Promoter MLH1 methylation was not observed in tumours from 32 MLH1 mutation carriers, or for 13 MSH2 or MSH6 mutation carriers. MMR mutation-negative individuals with tumour MLH1 and PMS2 IHC loss displayed MLH1 methylation in 48/51 (94%) of tumours. We have also detailed specific examples that show the importance of MLH1 promoter region, assay design, and quantification of methylation. This review shows that BRAF mutations occurs so infrequently in endometrial tumours they can be discounted as a useful marker for predicting MMR-negative mutation status, and further studies of endometrial cohorts with known MMR mutation status are necessary to quantify the utility of tumour MLH1 promoter methylation as a marker of negative germline MMR mutation status in EC patients.

  15. An accurate, simple prognostic model consisting of age, JAK2, CALR, and MPL mutation status for patients with primary myelofibrosis.

    PubMed

    Rozovski, Uri; Verstovsek, Srdan; Manshouri, Taghi; Dembitz, Vilma; Bozinovic, Ksenija; Newberry, Kate; Zhang, Ying; Bove, Joseph E; Pierce, Sherry; Kantarjian, Hagop; Estrov, Zeev

    2017-01-01

    In most patients with primary myelofibrosis, one of three mutually exclusive somatic mutations is detected. In approximately 60% of patients, the Janus kinase 2 gene is mutated, in 20%, the calreticulin gene is mutated, and in 5%, the myeloproliferative leukemia virus gene is mutated. Although patients with mutated calreticulin or myeloproliferative leukemia genes have a favorable outcome, and those with none of these mutations have an unfavorable outcome, prognostication based on mutation status is challenging due to the heterogeneous survival of patients with mutated Janus kinase 2. To develop a prognostic model based on mutation status, we screened primary myelofibrosis patients seen at the MD Anderson Cancer Center, Houston, USA, between 2000 and 2013 for the presence of Janus kinase 2, calreticulin, and myeloproliferative leukemia mutations. Of 344 primary myelofibrosis patients, Janus kinase 2 V617F was detected in 226 (66%), calreticulin mutation in 43 (12%), and myeloproliferative leukemia mutation in 16 (5%); 59 patients (17%) were triple-negatives. A 50% cut-off dichotomized Janus kinase 2-mutated patients into those with high Janus kinase 2 V617F allele burden and favorable survival and those with low Janus kinase 2 V617F allele burden and unfavorable survival. Patients with a favorable mutation status (high Janus kinase 2 V617F allele burden/myeloproliferative leukemia/calreticulin mutation) and aged 65 years or under had a median survival of 126 months. Patients with one risk factor (low Janus kinase 2 V617F allele burden/triple-negative or age >65 years) had an intermediate survival duration, and patients aged over 65 years with an adverse mutation status (low Janus kinase 2 V617F allele burden or triple-negative) had a median survival of only 35 months. Our simple and easily applied age- and mutation status-based scoring system accurately predicted the survival of patients with primary myelofibrosis. Copyright© Ferrata Storti Foundation.

  16. Target gene analyses of 39 amelogenesis imperfecta kindreds

    PubMed Central

    Chan, Hui-Chen; Estrella, Ninna M. R. P.; Milkovich, Rachel N.; Kim, Jung-Wook; Simmer, James P.; Hu, Jan C-C.

    2012-01-01

    Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred. PMID:22243262

  17. Relationship between JAK2V617F mutation, allele burden and coagulation function in Ph-negative myeloproliferative neoplasms.

    PubMed

    Hu, Linhui; Pu, Lianfang; Ding, Yangyang; Li, Manman; Cabanero, Michael; Xie, Jingxin; Zhou, Dejun; Yang, Dongdong; Zhang, Cui; Wang, Huiping; Zhai, Zhimin; Ru, Xiang; Li, Jingrong; Xiong, Shudao

    2017-07-01

    Our aim was to explore the relationship between JAK2V617F mutation allele burden and hematological parameters especially in coagulation function in Chinese population. This study included 133 Ph-negative myeloproliferative neoplasms (MPNs) patients between 2013 and 2016. All the clinical and experimental data of patients were collected at the time of the diagnosis without any prior treatment, including blood parameters, coagulation function, splenomegaly, vascular events and chromosome karyotype. PCR and qPCR were used to detect JAK2V617F mutation and JAK2V617F mutation allele burden. In polycythemia vera patients, a positive correlation between the allele burden of JAK2V617F mutation and PLT counts was found; in essential thrombocythemia (ET) patients, WBC counts, RBC counts, HB, and HCT were higher in mutated patients than in wild-type patients. Furthermore, PT-INR was higher in ET and PMF mutated patients. In addition, a positive correlation between the allele burden of JAK2V617F mutation and activated partial thromboplastin time (APTT) was observed in JAK2V617F mutated ET patients. Higher hematologic parameters including counts of WBC, RBC, and PLT are closely associated with JAK2V617F mutation and its burden in Ph-negative MPNs; importantly, PT-INR, APTT are also related to JAK2V617F mutation and allele burden. Thus, our data indicate that JAK2V617F mutation allele burden might not only represent the burden of MPN but also alter the coagulation function.

  18. Familial pachygyria in both genders related to a DCX mutation.

    PubMed

    Kim, Young Ok; Nam, Tai-Seung; Park, Chungoo; Kim, Seul Kee; Yoon, Woong; Choi, Seok-Yong; Kim, Myeong-Kyu; Woo, Young Jong

    2016-06-01

    Doublecortin (DCX) and tubulin play critical roles in neuronal migration. DCX mutations usually cause anterior dominant lissencephaly in males and subcortical band heterotopia (SBH) in females. We used whole-exome sequencing to investigate causative gene variants in a large family with late-childhood-onset focal epilepsy and anterior dominant pachygyria without SBH in both genders. Two potential variants were found for the genes encoding DCX and beta tubulin isotype 1 (TUBB1). The novel DCX mutation (p.D90G, NP_000546.2) appeared to be a major causative variant, whereas the novel mutation of TUBB1 (p.R62fsX, NP_110400.1) was found only in patients with more-severe intellectual disability after gender matching. We report an unusual DCX-related disorder exhibiting familial pachygyria without SBH in both genders. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  19. Changes in screening behaviors and attitudes toward screening from pre-test genetic counseling to post-disclosure in Lynch syndrome families.

    PubMed

    Burton-Chase, A M; Hovick, S R; Peterson, S K; Marani, S K; Vernon, S W; Amos, C I; Frazier, M L; Lynch, P M; Gritz, E R

    2013-03-01

    The purpose of this study was to examine colonoscopy adherence and attitudes toward colorectal cancer (CRC) screening in individuals who underwent Lynch syndrome genetic counseling and testing. We evaluated changes in colonoscopy adherence and CRC screening attitudes in 78 cancer-unaffected relatives of Lynch syndrome mutation carriers before pre-test genetic counseling (baseline) and at 6 and 12 months post-disclosure of test results (52 mutation negative and 26 mutation positive). While both groups were similar at baseline, at 12 months post-disclosure, a greater number of mutation-positive individuals had had a colonoscopy compared with mutation-negative individuals. From baseline to 12 months post-disclosure, the mutation-positive group demonstrated an increase in mean scores on measures of colonoscopy commitment, self-efficacy, and perceived benefits of CRC screening, and a decrease in mean scores for perceived barriers to CRC screening. Mean scores on colonoscopy commitment decreased from baseline to 6 months in the mutation-negative group. To conclude, adherence to risk-appropriate guidelines for CRC surveillance improved after genetic counseling and testing for Lynch syndrome. Mutation-positive individuals reported increasingly positive attitudes toward CRC screening after receiving genetic test results, potentially reinforcing longer term colonoscopy adherence. © 2013 John Wiley & Sons A/S.

  20. Characterisation of the unstable expanded CAG repeat in the MJD1 gene in four Brazilian families of Portuguese descent with Machado-Joseph disease

    PubMed Central

    Stevanin, Giovanni; Cassa, Eloy; Cancel, Géraldine; Abbas, Nacer; Dürr, Alexandra; Jardim, Edymar; Agid, Yves; Sousa, Patricia S; Brice, Alexis

    1995-01-01

    Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative disorder which has been shown to result, in Japanese families, from the expansion of a CAG repeat in the MJD1 gene on chromosome 14q. We show that the same molecular mechanism is responsible for MJD in four large Brazilian kindreds of Portuguese descent. The behaviour of the mutation was evaluated in 28 affected and 19 asymptomatic gene carriers. The number of repeats in the expanded alleles ranged from 66 to 77 with a strong negative correlation with age at onset (r=0·79). A mean 1·6 repeats increase from generation to generation correlated with clinical anticipation. Instability of the CAG repeat was bidirectional, with expansions as well as contractions, and was more marked in paternal transmissions. Finally, linkage disequilibrium was complete at locus D14S280 in the four Portuguese-Brazilian kindreds and four previously reported French families with the same mutation, which suggests the existence of a common founder. PMID:8558567

  1. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early onset autoinflammatory syndrome

    PubMed Central

    Zhou, Qing; Wang, Hongying; Schwartz, Daniella M.; Stoffels, Monique; Park, Yong Hwan; Zhang, Yuan; Yang, Dan; Demirkaya, Erkan; Takeuchi, Masaki; Tsai, Wanxia Li; Lyons, Jonathan J.; Yu, Xiaomin; Ouyang, Claudia; Chen, Celeste; Chin, David T.; Zaal, Kristien; Chandrasekharappa, Settara C.; Hanson, Eric P.; Yu, Zhen; Mullikin, James C.; Hasni, Sarfaraz A.; Wertz, Ingrid; Ombrello, Amanda K.; Stone, Deborah L.; Hoffmann, Patrycja; Jones, Anne; Barham, Beverly K.; Leavis, Helen L.; van Royen-Kerkof, Annet; Sibley, Cailin; Batu, Ezgi D.; Gül, Ahmet; Siegel, Richard M.; Boehm, Manfred; Milner, Joshua D.; Ozen, Seza; Gadina, Massimo; Chae, JaeJin; Laxer, Ronald M.; Kastner, Daniel L.; Aksentijevich, Ivona

    2016-01-01

    Systemic autoinflammatory diseases are driven by abnormal activation of innate immunity1. Herein we describe a new syndrome caused by high penetrance heterozygous germline mutations in the NFκB regulatory protein TNFAIP3 (A20) in six unrelated families with early onset systemic inflammation. The syndrome resembles Behçet’s disease (BD), which is typically considered a polygenic disorder with onset in early adulthood2. A20 is a potent inhibitor of the NFκB signaling pathway3. TNFAIP3 mutant truncated proteins are likely to act by haploinsufficiency since they do not exert a dominant-negative effect in overexpression experiments. Patients’ cells show increased degradation of IκBα and nuclear translocation of NFκB p65, and increased expression of NFκB-mediated proinflammatory cytokines. A20 restricts NFκB signals via deubiquitinating (DUB) activity. In cells expressing the mutant A20 protein, there is defective removal of K63-linked ubiquitin from TRAF6, NEMO, and RIP1 after TNF stimulation. NFκB-dependent pro-inflammatory cytokines are potential therapeutic targets for these patients. PMID:26642243

  2. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome.

    PubMed

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-08-14

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. May 2006 update in porphobilinogen deaminase gene polymorphisms and mutations causing acute intermittent porphyria: comparison with the situation in Slavic population.

    PubMed

    Hrdinka, M; Puy, H; Martasek, P

    2006-01-01

    Acute intermittent porphyria (AIP) is an autosomal dominant disorder of heme biosynthesis caused by molecular defects in the porphobilinogen deaminase (PBGD) gene. This paper reviews published mutations, their types, and polymorphisms within the PBGD gene. To date, 301 different mutations and 21 polymorphisms have been identified in the PBGD gene in AIP patients and individuals from various countries and ethnic groups. During the search for mutations identified among Slavic AIP patients we found 65 such mutations and concluded that there is not a distinct predominance of certain mutations in Slavs.

  4. Cystic fibrosis transmembrane conductance regulator gene mutations: do they play a role in the aetiology of allergic bronchopulmonary aspergillosis?

    PubMed

    Eaton, T E; Weiner Miller, P; Garrett, J E; Cutting, G R

    2002-05-01

    Previous work suggests that cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations may be implicated in the aetiology of allergic bronchopulmonary aspergilosis (ABPA). To compare the frequency of CF gene mutations in asthmatics with ABPA of varying severity with asthmatics who were skin prick test (SPT)-positive to Aspergillus fumigatus (Af) without evidence of ABPA and asthmatics SPT-negative to Af. Thirty-one Caucasian patients with ABPA were identified, together with asthmatics SPT positive to Af without evidence of ABPA (n = 23) and SPT negative to Af (n = 28). Genomic DNA was tested for 16 CF mutations accounting for approximately 85% of CF alleles in Caucasian New Zealanders. Four (12.9%) ABPA patients were found to be carriers of a CF mutation (DeltaF508 n = 3, R117H n = 1), one (4.3%) asthmatic SPT positive to Af without ABPA (DeltaF508), and one (3.6%) asthmatic SPT negative to Af (R117H). All patients with a CF mutation had normal sweat chloride (< 40 mM). There was no significant difference between the frequency of CF mutations in the ABPA patients and asthmatics without ABPA. However, the frequency of CF mutations in the ABPA patients was significantly different (P = 0.0125) to the expected carrier rate in the general population. These results lend further support to a possible link between CF mutations and ABPA.

  5. Autosomal dominant hypocalcemia with Bartter syndrome due to a novel activating mutation of calcium sensing receptor, Y829C.

    PubMed

    Choi, Keun Hee; Shin, Choong Ho; Yang, Sei Won; Cheong, Hae Il

    2015-04-01

    The calcium sensing receptor (CaSR) plays an important role in calcium homeostasis. Activating mutations of CaSR cause autosomal dominant hypocalcemia by affecting parathyroid hormone secretion in parathyroid gland and calcium resorption in kidney. They can also cause a type 5 Bartter syndrome by inhibiting the apical potassium channel in the thick ascending limb of the loop of Henle in the kidney. This study presents a patient who had autosomal dominant hypocalcemia with Bartter syndrome due to an activating mutation Y829C in the transmembrane domain of the CaSR. Symptoms of hypocalcemia occurred 12 days after birth and medication was started immediately. Medullary nephrocalcinosis and basal ganglia calcification were found at 7 years old and at 17 years old. Three hypercalcemic episodes occurred, one at 14 years old and two at 17 years old. The Bartter syndrome was not severe while the serum calcium concentration was controlled, but during hypercalcemic periods, the symptoms of Bartter syndrome were aggravated.

  6. Autosomal dominant hypocalcemia with Bartter syndrome due to a novel activating mutation of calcium sensing receptor, Y829C

    PubMed Central

    Choi, Keun Hee; Yang, Sei Won; Cheong, Hae Il

    2015-01-01

    The calcium sensing receptor (CaSR) plays an important role in calcium homeostasis. Activating mutations of CaSR cause autosomal dominant hypocalcemia by affecting parathyroid hormone secretion in parathyroid gland and calcium resorption in kidney. They can also cause a type 5 Bartter syndrome by inhibiting the apical potassium channel in the thick ascending limb of the loop of Henle in the kidney. This study presents a patient who had autosomal dominant hypocalcemia with Bartter syndrome due to an activating mutation Y829C in the transmembrane domain of the CaSR. Symptoms of hypocalcemia occurred 12 days after birth and medication was started immediately. Medullary nephrocalcinosis and basal ganglia calcification were found at 7 years old and at 17 years old. Three hypercalcemic episodes occurred, one at 14 years old and two at 17 years old. The Bartter syndrome was not severe while the serum calcium concentration was controlled, but during hypercalcemic periods, the symptoms of Bartter syndrome were aggravated. PMID:25932037

  7. A novel variant of FGFR3 causes proportionate short stature.

    PubMed

    Kant, Sarina G; Cervenkova, Iveta; Balek, Lukas; Trantirek, Lukas; Santen, Gijs W E; de Vries, Martine C; van Duyvenvoorde, Hermine A; van der Wielen, Michiel J R; Verkerk, Annemieke J M H; Uitterlinden, André G; Hannema, Sabine E; Wit, Jan M; Oostdijk, Wilma; Krejci, Pavel; Losekoot, Monique

    2015-06-01

    Mutations of the fibroblast growth factor receptor 3 (FGFR3) cause various forms of short stature, of which the least severe phenotype is hypochondroplasia, mainly characterized by disproportionate short stature. Testing for an FGFR3 mutation is currently not part of routine diagnostic testing in children with short stature without disproportion. A three-generation family A with dominantly transmitted proportionate short stature was studied by whole-exome sequencing to identify the causal gene mutation. Functional studies and protein modeling studies were performed to confirm the pathogenicity of the mutation found in FGFR3. We performed Sanger sequencing in a second family B with dominant proportionate short stature and identified a rare variant in FGFR3. Exome sequencing and/or Sanger sequencing was performed, followed by functional studies using transfection of the mutant FGFR3 into cultured cells; homology modeling was used to construct a three-dimensional model of the two FGFR3 variants. A novel p.M528I mutation in FGFR3 was detected in family A, which segregates with short stature and proved to be activating in vitro. In family B, a rare variant (p.F384L) was found in FGFR3, which did not segregate with short stature and showed normal functionality in vitro compared with WT. Proportionate short stature can be caused by a mutation in FGFR3. Sequencing of this gene can be considered in patients with short stature, especially when there is an autosomal dominant pattern of inheritance. However, functional studies and segregation studies should be performed before concluding that a variant is pathogenic. © 2015 European Society of Endocrinology.

  8. A Novel Dominant Hyperekplexia Mutation Y705C Alters Trafficking and Biochemical Properties of the Presynaptic Glycine Transporter GlyT2*

    PubMed Central

    Giménez, Cecilio; Pérez-Siles, Gonzalo; Martínez-Villarreal, Jaime; Arribas-González, Esther; Jiménez, Esperanza; Núñez, Enrique; de Juan-Sanz, Jaime; Fernández-Sánchez, Enrique; García-Tardón, Noemí; Ibáñez, Ignacio; Romanelli, Valeria; Nevado, Julián; James, Victoria M.; Topf, Maya; Chung, Seo-Kyung; Thomas, Rhys H.; Desviat, Lourdes R.; Aragón, Carmen; Zafra, Francisco; Rees, Mark I.; Lapunzina, Pablo; Harvey, Robert J.; López-Corcuera, Beatriz

    2012-01-01

    Hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, producing hypertonia and apnea episodes. Although rare, this orphan disorder can have serious consequences, including sudden infant death. Dominant and recessive mutations in the human glycine receptor (GlyR) α1 gene (GLRA1) are the major cause of this disorder. However, recessive mutations in the presynaptic Na+/Cl−-dependent glycine transporter GlyT2 gene (SLC6A5) are rapidly emerging as a second major cause of startle disease. In this study, systematic DNA sequencing of SLC6A5 revealed a new dominant GlyT2 mutation: pY705C (c.2114A→G) in transmembrane domain 11, in eight individuals from Spain and the United Kingdom. Curiously, individuals harboring this mutation show significant variation in clinical presentation. In addition to classical hyperekplexia symptoms, some individuals had abnormal respiration, facial dysmorphism, delayed motor development, or intellectual disability. We functionally characterized this mutation using molecular modeling, electrophysiology, [3H]glycine transport, cell surface expression, and cysteine labeling assays. We found that the introduced cysteine interacts with the cysteine pair Cys-311–Cys-320 in the second external loop of GlyT2. This interaction impairs transporter maturation through the secretory pathway, reduces surface expression, and inhibits transport function. Additionally, Y705C presents altered H+ and Zn2+ dependence of glycine transport that may affect the function of glycinergic neurotransmission in vivo. PMID:22753417

  9. A novel nonsense mutation in CRYBB1 associated with autosomal dominant congenital cataract

    PubMed Central

    Yang, Juhua; Zhu, Yihua; Gu, Feng; He, Xiang; Cao, Zongfu; Li, Xuexi; Tong, Yi

    2008-01-01

    Purpose To identify the molecular defect underlying an autosomal dominant congenital nuclear cataract in a Chinese family. Methods Twenty-two members of a three-generation pedigree were recruited, clinical examinations were performed, and genomic DNA was extracted from peripheral blood leukocytes. All members were genotyped with polymorphic microsatellite markers adjacent to each of the known cataract-related genes. Linkage analysis was performed after genotyping. Candidate genes were screened for mutation using direct sequencing. Individuals were screened for presence of a mutation by restriction fragment length polymorphism (RFLP) analysis. Results Linkage analysis identified a maximum LOD score of 3.31 (recombination fraction [θ]=0.0) with marker D22S1167 on chromosome 22, which flanks the β-crystallin gene cluster (CRYBB3, CRYBB2, CRYBB1, and CRYBA4). Sequencing the coding regions and the flanking intronic sequences of these four candidate genes identified a novel, heterozygous C→T transition in exon 6 of CRYBB1 in the affected individuals of the family. This single nucleotide change introduced a novel BfaI site and was predicted to result in a nonsense mutation at codon 223 that changed a phylogenetically conserved amino acid to a stop codon (p.Q223X). RFLP analysis confirmed that this mutation co-segregated with the disease phenotype in all available family members and was not found in 100 normal unrelated individuals from the same ethnic background. Conclusions This study has identified a novel nonsense mutation in CRYBB1 (p.Q223X) associated with autosomal dominant congenital nuclear cataract. PMID:18432316

  10. Mutation analysis of COL4A3 and COL4A4 genes in a Chinese autosomal-dominant Alport syndrome family.

    PubMed

    Guo, Liwei; Li, Duan; Dong, Shuangshuang; Wan, Donghao; Yang, Baosheng; Huang, Yanmei

    2017-06-01

    Autosomal dominant Alport syndrome (ADAS) accounts for 5% of all cases of Alport syndrome (AS), a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family.Mutations in COL4A3 and COL4A4 genes were reported to be associated with ADAS. In this study, clinical data in a large consanguineous family with seven affected members were reviewed, and genomic DNA was extracted. For mutation screening, all exons of COL4A3 and COL4A4 genes were polymerase chain reaction-amplified and direct sequenced from genomic DNA, and the mutations were analyzed by comparing with members in this family, 100 ethnicitymatched controls and the sequence of COL4A3 and COL4A4 genes from GenBank. A novel mutation determining a nucleotide change was found, i.e. c.4195 A>T (p.Met1399Leu) at 44th exon of COL4A4 gene, and this mutation showed heterozygous in all patients of this family. Also a novel intron mutation (c.4127+11 C>T) was observed at COL4A4 gene. Thus the novel missense mutation c.4195 A>T (p.Met1399Leu) and the intron mutation (c.4127+11 C>T) at COL4A4 gene might be responsible for ADAS of this family. Our results broadened the spectrum of mutations in COL4A4 and had important implications in the diagnosis, prognosis, and genetic counselling of ADAS.

  11. Parental mosaicism is a pitfall in preimplantation genetic diagnosis of dominant disorders.

    PubMed

    Steffann, Julie; Michot, Caroline; Borghese, Roxana; Baptista-Fernandes, Marcia; Monnot, Sophie; Bonnefont, Jean-Paul; Munnich, Arnold

    2014-05-01

    PCR amplification on single cells is prone to allele drop-out (PCR failure of one allele), a cause of misdiagnosis in preimplantation genetic diagnosis (PGD). Owing to this error risk, PGD usually relies on both direct and indirect genetic analyses. When the affected partner is the sporadic case of a dominant disorder, building haplotypes require spermatozoon or polar body testing prior to PGD, but these procedures are cost and time-consuming. A couple requested PGD because the male partner suffered from a dominant Cowden syndrome (CS). He was a sporadic case, but the couple had a first unaffected child and the non-mutated paternal haplotype was tentatively deduced. The couple had a second spontaneous pregnancy and the fetus was found to carry the at-risk haplotype but not the PTEN mutation. The mutation was present in blood from the affected father, but at low level, confirming the somatic mosaicism. Ignoring the possibility of mosaicism in the CS patient would have potentially led to selection of affected embryos. This observation emphasizes the risk of PGD in families at risk to transmit autosomal-dominant disorder when the affected partner is a sporadic case.

  12. Screening for germline phosphatase and tensin homolog-mutations in suspected Cowden syndrome and Cowden syndrome-like families among uterine cancer patients

    PubMed Central

    TZORTZATOS, GERASIMOS; ARAVIDIS, CHRISTOS; LINDBLOM, ANNIKA; MINTS, MIRIAM; THAM, EMMA

    2015-01-01

    Cowden syndrome (CS) is an autosomal dominant disorder characterized by multiple hamartomas in the breast, thyroid and endometrium, with a prevalence of 1 per 250,000. Females with CS have a 21–28% lifetime risk of developing uterine cancer. Germline mutations in the phosphatase and tensin homolog (PTEN) gene, a tumor suppressor gene, are responsible for 30–80% of CS cases. PTEN is a nine-exon gene, located on chromosome 10q23.3, which encodes the 403 amino acid PTEN protein. It negatively regulates the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway, affecting various cellular processes and signaling pathways. The present study examined whether PTEN mutations are present in CS-like families with uterine cancer (UC). UC patients underwent surgery at Karolinska University Hospital, Stockholm, Sweden (2008–2012). Pedigrees were analyzed and 54 unrelated CS-like families were identified. CS-like families were defined as having at least one occurrence of uterine cancer and one of breast cancer, as well as at least one additional Cowden-associated tumor (uterine, breast, thyroid, colon or kidney cancer) in the same individual or in first-degree relatives. Genomic DNA was amplified using polymerase chain reaction, and DNA sequencing analysis of all nine exons of the PTEN gene was conducted. No germline PTEN mutations or polymorphisms were identified. Germline PTEN mutations are rare in CS-like families with uterine cancer, therefore, genetic screening must be restricted to patients that meet the strict National Comprehensive Cancer Network criteria. Gynecologists must be aware of the CS criteria and identify potential cases of CS in females where uterine cancer is the sentinel cancer. PMID:25789042

  13. Pro416Arg cherubism mutation in Sh3bp2 knock-in mice affects osteoblasts and alters bone mineral and matrix properties

    PubMed Central

    Wang, Chiachien J.; Chen, I-Ping; Koczon-Jaremko, Boguslawa; Boskey, Adele L.; Ueki, Yasuyoshi; Kuhn, Liisa; Reichenberger, Ernst J.

    2010-01-01

    Cherubism is an autosomal dominant disorder in children characterized by unwarranted symmetrical bone resorption of the jaws with fibrous tissue deposition. Mutations causing cherubism have been identified in the adaptor protein SH3BP2. Knock-in mice with a Pro416Arg mutation in Sh3bp2 exhibit a generalized osteoporotic bone phenotype. In this study, we examined the effects of this “cherubism” mutation on spectroscopic indices of “bone quality” and on osteoblast differentiation. Fourier-transform infrared imaging (FTIRI) analysis of femurs from wild-type and Sh3bp2 knock-in mice showed decreased mineral content, decreased mineral crystallinity/crystal size, and increased collagen maturity in homozygous mutants. To assess osteoblast maturation in vivo, knock-in mice were crossed with transgenic mice over-expressing GFP driven by 3.6-kb or 2.3-kb Col1a1 promoter fragments. Reduced numbers of mature osteoblasts were observed in homozygous mice. Neonatal calvarial cultures, which were enriched for osteoblasts by depletion of hematopoietic cells (negative selection for Ter119- and CD45-positive cells) were investigated for osteoblast-specific gene expression and differentiation, which demonstrated that differentiation and mineralization in homozygous osteoblast cultures was impaired. Co-cultures with calvarial osteoblasts and bone marrow macrophages showed that mutant osteoblasts appear to increase osteoclastogenesis resulting in increased bone resorption on bone chips. In summary, the Sh3bp2 mutation in cherubism mice alters bone quality, reduces osteoblast function, and may contribute to excessive bone resorption by osteoclasts. Our data, together with previous osteoclast studies, demonstrate a critical role of Sh3bp2 in bone remodeling and osteoblast differentiation. PMID:20117257

  14. Mutations in TUBB8 and Human Oocyte Meiotic Arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Ruizhi; Sang, Qing; Kuang, Yanping

    BACKGROUND: We present that human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to the arrest of human oocyte maturation are unknown. METHODS: We sequenced the exomes of five members of a four-generation family, three of whom had infertility due to oocyte meiosis I arrest. We performed Sanger sequencing of a candidate gene, TUBB8, in DNA samples from these members, additional family members, and members of 23 other affected families. The expression of TUBB8 and all other β-tubulin isotypes was assessed in human oocytes, earlymore » embryos, sperm cells, and several somatic tissues by means of a quantitative reverse- transcriptase-polymerase-chain-reaction assay. We evaluated the effect of the TUBB8 mutations on the assembly of the heterodimer consisting of one α-tubulin polypeptide and one β-tubulin polypeptide (α/β-tubulin heterodimer) in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes. RESULTSL: We identified seven mutations in the primate-specific gene TUBB8 that were responsible for oocyte meiosis I arrest in 7 of the 24 families. TUBB8 expression is unique to oocytes and the early embryo, in which this gene accounts for almost all the expressed β-tubulin. The mutations affect chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, disrupt microtubule behavior on expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle-assembly defects and maturation arrest on expression in mouse and human oocytes. CONCLUSIONS: Lastly, TUBB8 mutations have dominant-negative effects that disrupt microtubule behavior and oocyte meiotic spindle assembly and maturation, causing female infertility.« less

  15. DNA polymerase β variant Ile260Met generates global gene expression changes related to cellular transformation

    PubMed Central

    Sweasy, Joann B.

    2012-01-01

    Maintenance of genomic stability is essential for cellular survival. The base excision repair (BER) pathway is critical for resolution of abasic sites and damaged bases, estimated to occur 20,000 times in cells daily. DNA polymerase β (Pol β) participates in BER by filling DNA gaps that result from excision of damaged bases. Approximately 30% of human tumours express Pol β variants, many of which have altered fidelity and activity in vitro and when expressed, induce cellular transformation. The prostate tumour variant Ile260Met transforms cells and is a sequence-context-dependent mutator. To test the hypothesis that mutations induced in vivo by Ile260Met lead to cellular transformation, we characterized the genome-wide expression profile of a clone expressing Ile260Met as compared with its non-induced counterpart. Using a 1.5-fold minimum cut-off with a false discovery rate (FDR) of <0.05, 912 genes exhibit altered expression. Microarray results were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and revealed unique expression profiles in other clones. Gene Ontology (GO) clusters were analyzed using Ingenuity Pathways Analysis to identify altered gene networks and associated nodes. We determined three nodes of interest that exhibited dysfunctional regulation of downstream gene products without themselves having altered expression. One node, peroxisome proliferator-activated protein γ (PPARG), was sequenced and found to contain a coding region mutation in PPARG2 only in transformed cells. Further analysis suggests that this mutation leads to dominant negative activity of PPARG2. PPARG is a transcription factor implicated to have tumour suppressor function. This suggests that the PPARG2 mutant may have played a role in driving cellular transformation. We conclude that PPARG induces cellular transformation by a mutational mechanism. PMID:22914675

  16. RASA1 analysis guides management in a family with capillary malformation-arteriovenous malformation

    PubMed Central

    Flore, Leigh Anne; Leon, Eyby; Maher, Tom A.; Milunsky, Jeff M.

    2012-01-01

    Capillary malformation-arteriovenous malformation (CM-AVM; MIM 60354) is an autosomal dominant disorder characterized by multifocal cutaneous capillary malformations, often in association with fast-flow vascular lesions, which may be cutaneous, subcutaneous, intramuscular, intraosseus, or cerebral arteriovenous malformations or arteriovenous fistulas. CM-AVM results from heterozygous mutations in the RASA1 gene. Capillary malformations of the skin are common, and clinical examination alone may not be able to definitively diagnose-or exclude- CM-AVM. We report a family in which the proband was initially referred for a genetic evaluation in the neonatal period because of the presence of a cardiac murmur and minor dysmorphic features. Both he and his mother were noted to have multiple capillary malformations on the face, head, and extremities. Echocardiography revealed dilated head and neck vessels and magnetic resonance imaging and angiography of the brain revealed a large infratentorial arteriovenous fistula, for which he has had two embolization procedures. RASA1 sequence analysis revealed a heterozygous mutation, confirming his diagnosis of CM-AVM. We established targeted mutation analysis for the proband's mother and sister, the latter of whom is a healthy 3-year-old whose only cutaneous finding is a facial capillary malformation. This revealed that the proband's mother is also heterozygous for the RASA1 mutation, but his sister is negative. Consequently, his mother will undergo magnetic resonance imaging and angiography screening for intracranial and spinal fast-flow lesions, while his sister will require no imaging or serial evaluations. Targeted mutation analysis has been offered to additional maternal family members. This case illustrates the benefit of molecular testing in diagnosis and making screening recommendations for families with CM-AVM. PMID:27625812

  17. RASA1 analysis guides management in a family with capillary malformation-arteriovenous malformation.

    PubMed

    Flore, Leigh Anne; Leon, Eyby; Maher, Tom A; Milunsky, Jeff M

    2012-06-01

    Capillary malformation-arteriovenous malformation (CM-AVM; MIM 60354) is an autosomal dominant disorder characterized by multifocal cutaneous capillary malformations, often in association with fast-flow vascular lesions, which may be cutaneous, subcutaneous, intramuscular, intraosseus, or cerebral arteriovenous malformations or arteriovenous fistulas. CM-AVM results from heterozygous mutations in the RASA1 gene. Capillary malformations of the skin are common, and clinical examination alone may not be able to definitively diagnose-or exclude- CM-AVM. We report a family in which the proband was initially referred for a genetic evaluation in the neonatal period because of the presence of a cardiac murmur and minor dysmorphic features. Both he and his mother were noted to have multiple capillary malformations on the face, head, and extremities. Echocardiography revealed dilated head and neck vessels and magnetic resonance imaging and angiography of the brain revealed a large infratentorial arteriovenous fistula, for which he has had two embolization procedures. RASA1 sequence analysis revealed a heterozygous mutation, confirming his diagnosis of CM-AVM. We established targeted mutation analysis for the proband's mother and sister, the latter of whom is a healthy 3-year-old whose only cutaneous finding is a facial capillary malformation. This revealed that the proband's mother is also heterozygous for the RASA1 mutation, but his sister is negative. Consequently, his mother will undergo magnetic resonance imaging and angiography screening for intracranial and spinal fast-flow lesions, while his sister will require no imaging or serial evaluations. Targeted mutation analysis has been offered to additional maternal family members. This case illustrates the benefit of molecular testing in diagnosis and making screening recommendations for families with CM-AVM.

  18. Mutations in TUBB8 and Human Oocyte Meiotic Arrest

    DOE PAGES

    Feng, Ruizhi; Sang, Qing; Kuang, Yanping; ...

    2016-01-21

    BACKGROUND: We present that human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to the arrest of human oocyte maturation are unknown. METHODS: We sequenced the exomes of five members of a four-generation family, three of whom had infertility due to oocyte meiosis I arrest. We performed Sanger sequencing of a candidate gene, TUBB8, in DNA samples from these members, additional family members, and members of 23 other affected families. The expression of TUBB8 and all other β-tubulin isotypes was assessed in human oocytes, earlymore » embryos, sperm cells, and several somatic tissues by means of a quantitative reverse- transcriptase-polymerase-chain-reaction assay. We evaluated the effect of the TUBB8 mutations on the assembly of the heterodimer consisting of one α-tubulin polypeptide and one β-tubulin polypeptide (α/β-tubulin heterodimer) in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes. RESULTSL: We identified seven mutations in the primate-specific gene TUBB8 that were responsible for oocyte meiosis I arrest in 7 of the 24 families. TUBB8 expression is unique to oocytes and the early embryo, in which this gene accounts for almost all the expressed β-tubulin. The mutations affect chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, disrupt microtubule behavior on expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle-assembly defects and maturation arrest on expression in mouse and human oocytes. CONCLUSIONS: Lastly, TUBB8 mutations have dominant-negative effects that disrupt microtubule behavior and oocyte meiotic spindle assembly and maturation, causing female infertility.« less

  19. Dominant-Negative Mutations in α-II Spectrin Cause West Syndrome with Severe Cerebral Hypomyelination, Spastic Quadriplegia, and Developmental Delay

    PubMed Central

    Saitsu, Hirotomo; Tohyama, Jun; Kumada, Tatsuro; Egawa, Kiyoshi; Hamada, Keisuke; Okada, Ippei; Mizuguchi, Takeshi; Osaka, Hitoshi; Miyata, Rie; Furukawa, Tomonori; Haginoya, Kazuhiro; Hoshino, Hideki; Goto, Tomohide; Hachiya, Yasuo; Yamagata, Takanori; Saitoh, Shinji; Nagai, Toshiro; Nishiyama, Kiyomi; Nishimura, Akira; Miyake, Noriko; Komada, Masayuki; Hayashi, Kenji; Hirai, Syu-ichi; Ogata, Kazuhiro; Kato, Mitsuhiro; Fukuda, Atsuo; Matsumoto, Naomichi

    2010-01-01

    A de novo 9q33.3-q34.11 microdeletion involving STXBP1 has been found in one of four individuals (group A) with early-onset West syndrome, severe hypomyelination, poor visual attention, and developmental delay. Although haploinsufficiency of STXBP1 was involved in early infantile epileptic encephalopathy in a previous different cohort study (group B), no mutations of STXBP1 were found in two of the remaining three subjects of group A (one was unavailable). We assumed that another gene within the deletion might contribute to the phenotype of group A. SPTAN1 encoding α-II spectrin, which is essential for proper myelination in zebrafish, turned out to be deleted. In two subjects, an in-frame 3 bp deletion and a 6 bp duplication in SPTAN1 were found at the initial nucleation site of the α/β spectrin heterodimer. SPTAN1 was further screened in six unrelated individuals with WS and hypomyelination, but no mutations were found. Recombinant mutant (mut) and wild-type (WT) α-II spectrin could assemble heterodimers with β-II spectrin, but α-II (mut)/β-II spectrin heterodimers were thermolabile compared with the α-II (WT)/β-II heterodimers. Transient expression in mouse cortical neurons revealed aggregation of α-II (mut)/β-II and α-II (mut)/β-III spectrin heterodimers, which was also observed in lymphoblastoid cells from two subjects with in-frame mutations. Clustering of ankyrinG and voltage-gated sodium channels at axon initial segment (AIS) was disturbed in relation to the aggregates, together with an elevated action potential threshold. These findings suggest that pathological aggregation of α/β spectrin heterodimers and abnormal AIS integrity resulting from SPTAN1 mutations were involved in pathogenesis of infantile epilepsy. PMID:20493457

  20. Prolonged Stationary-Phase Incubation Selects for lrp Mutations in Escherichia coli K-12

    PubMed Central

    Zinser, Erik R.; Kolter, Roberto

    2000-01-01

    Evolution by natural selection occurs in cultures of Escherichia coli maintained under carbon starvation stress. Mutants of increased fitness express a growth advantage in stationary phase (GASP) phenotype, enabling them to grow and displace the parent as the majority population. The first GASP mutation was identified as a loss-of-function allele of rpoS, encoding the stationary-phase global regulator, ςS (M. M. Zambrano, D. A. Siegele, M. A. Almirón, A. Tormo, and R. Kolter, Science 259:1757–1760, 1993). We now report that a second global regulator, Lrp, can also play a role in stationary-phase competition. We found that a mutant that took over an aged culture of an rpoS strain had acquired a GASP mutation in lrp. This GASP allele, lrp-1141, encodes a mutant protein lacking the critical glycine in the turn of the helix-turn-helix DNA-binding domain. The lrp-1141 allele behaves as a null mutation when in single copy and is dominant negative when overexpressed. Hence, the mutant protein appears to retain stability and the ability to dimerize but lacks DNA-binding activity. We also demonstrated that a lrp null allele generated by a transposon insertion has a fitness gain identical to that of the lrp-1141 allele, verifying that cells lacking Lrp activity have a competitive advantage during prolonged starvation. Finally, we tested by genetic analysis the hypothesis that the lrp-1141 GASP mutation confers a fitness gain by enhancing amino acid catabolism during carbon starvation. We found that while amino acid catabolism may play a role, it is not necessary for the lrp GASP phenotype, and hence the lrp GASP phenotype is due to more global physiological changes. PMID:10894750

  1. Recurrent hotspot mutations in HRAS Q61 and PI3K-AKT pathway genes as drivers of breast adenomyoepitheliomas.

    PubMed

    Geyer, Felipe C; Li, Anqi; Papanastasiou, Anastasios D; Smith, Alison; Selenica, Pier; Burke, Kathleen A; Edelweiss, Marcia; Wen, Huei-Chi; Piscuoglio, Salvatore; Schultheis, Anne M; Martelotto, Luciano G; Pareja, Fresia; Kumar, Rahul; Brandes, Alissa; Fan, Dan; Basili, Thais; Da Cruz Paula, Arnaud; Lozada, John R; Blecua, Pedro; Muenst, Simone; Jungbluth, Achim A; Foschini, Maria P; Wen, Hannah Y; Brogi, Edi; Palazzo, Juan; Rubin, Brian P; Ng, Charlotte K Y; Norton, Larry; Varga, Zsuzsanna; Ellis, Ian O; Rakha, Emad A; Chandarlapaty, Sarat; Weigelt, Britta; Reis-Filho, Jorge S

    2018-05-08

    Adenomyoepithelioma of the breast is a rare tumor characterized by epithelial-myoepithelial differentiation, whose genetic underpinning is largely unknown. Here we show through whole-exome and targeted massively parallel sequencing analysis that whilst estrogen receptor (ER)-positive adenomyoepitheliomas display PIK3CA or AKT1 activating mutations, ER-negative adenomyoepitheliomas harbor highly recurrent codon Q61 HRAS hotspot mutations, which co-occur with PIK3CA or PIK3R1 mutations. In two- and three-dimensional cell culture models, forced expression of HRAS Q61R in non-malignant ER-negative breast epithelial cells with or without a PIK3CA H1047R somatic knock-in results in transformation and the acquisition of the cardinal features of adenomyoepitheliomas, including the expression of myoepithelial markers, a reduction in E-cadherin expression, and an increase in AKT signaling. Our results demonstrate that adenomyoepitheliomas are genetically heterogeneous, and qualify mutations in HRAS, a gene whose mutations are vanishingly rare in common-type breast cancers, as likely drivers of ER-negative adenomyoepitheliomas.

  2. A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain

    PubMed Central

    Olson, C. Anders; Wu, Nicholas C.; Sun, Ren

    2014-01-01

    SUMMARY Background Non-additivity in fitness effects from two or more mutations, termed epistasis, can result in compensation of deleterious mutations or negation of beneficial mutations. Recent evidence shows the importance of epistasis in individual evolutionary pathways. However, an unresolved question in molecular evolution is how often and how significantly fitness effects change in alternative genetic backgrounds. Results To answer this question we quantified the effects of all single mutations and double mutations between all positions in the IgG-binding domain of protein G (GB1). By observing the first two steps of all possible evolutionary pathways, this fitness profile enabled the characterization of the extent and magnitude of pairwise epistasis throughout an entire protein molecule. Furthermore, we developed a novel approach to quantitatively determine the effects of single mutations on structural stability (ΔΔGU). This enabled determination of the importance of stability effects in functional epistasis. Conclusions Our results illustrate common biophysical mechanisms for occurrences of positive and negative epistasis. Our results show pervasive positive epistasis within a conformationally dynamic network of residues. The stability analysis shows that significant negative epistasis, which is more common than positive epistasis, mostly occurs between combinations of destabilizing mutations. Furthermore, we show that although significant positive epistasis is rare, many deleterious mutations are beneficial in at least one alternative mutational background. The distribution of conditionally beneficial mutations throughout the domain demonstrates that the functional portion of sequence space can be significantly expanded by epistasis. PMID:25455030

  3. Prognostication in Philadelphia Chromosome Negative Myeloproliferative Neoplasms: a Review of the Recent Literature.

    PubMed

    Zhou, Amy; Afzal, Amber; Oh, Stephen T

    2017-10-01

    The prognosis for patients with Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms (MPNs) is highly variable. All Ph-negative MPNs carry an increased risk for thrombotic complications, bleeding, and leukemic transformation. Several clinical, biological, and molecular prognostic factors have been identified in recent years, which provide important information in guiding management of patients with Ph-negative MPNs. In this review, we critically evaluate the recent published literature and discuss important new developments in clinical and molecular factors that impact survival, disease transformation, and thrombosis in patients with polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Recent studies have identified several clinical factors and non-driver mutations to have prognostic impact on Ph-negative MPNs independent of conventional risk stratification and prognostic models. In polycythemia vera (PV), leukocytosis, abnormal karyotype, phlebotomy requirement on hydroxyurea, increased bone marrow fibrosis, and mutations in ASXL1, SRSF2, and IDH2 were identified as additional adverse prognostic factors. In essential thrombocythemia (ET), JAK2 V617F mutation, splenomegaly, and mutations in SH2B3, SF3B1, U2AF1, TP53, IDH2, and EZH2 were found to be additional negative prognostic factors. Bone marrow fibrosis and mutations in ASXL1, SRSF2, EZH2, and IDH1/2 have been found to be additional prognostic factors in primary myelofibrosis (PMF). CALR mutations appear to be a favorable prognostic factor in PMF, which has not been clearly demonstrated in ET. The prognosis for patients with PV, ET, and PMF is dependent upon the presence or absence of several clinical, biological, and molecular risk factors. The significance of additional risk factors identified in these recent studies will need further validation in prospective studies to determine how they may be best utilized in the management of these disorders.

  4. MET exon 14 skipping mutation in triple-negative pulmonary adenocarcinomas and pleomorphic carcinomas: An analysis of intratumoral MET status heterogeneity and clinicopathological characteristics.

    PubMed

    Kwon, Dohee; Koh, Jaemoon; Kim, Sehui; Go, Heounjeong; Kim, Young A; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Jeon, Yoon Kyung; Chung, Doo Hyun

    2017-04-01

    MET mutations leading to exon 14 skipping rarely occur in non-small cell lung cancer (NSCLC). Recently, small molecule inhibitors targeting MET mutations showed clinical benefit. However, the clinicopathological characteristics of NSCLC harboring MET mutations, and the correlation among mutations, protein expression, and gene copy number of MET in NSCLC remain unclear. Therefore, we address these issues. MET exon 14 skipping mutations were evaluated using real-time quantitative reverse-transcription-PCR (qRT-PCR) in 102 triple-negative (i.e., EGFR mutation (-)/ALK translocation (-)/KRAS mutation (-)) pulmonary adenocarcinomas, and 45 pleomorphic carcinomas. MET mutation and gene copy were also examined in microdissected tissues obtained from tumor areas with heterogeneous MET immunohistochemical expression. MET mutations were detected in 8.8% (9/102) of triple-negative adenocarcinomas and 20% (9/45) of pleomorphic carcinomas of the lung. Patients with MET-mutated adenocarcinomas was significantly older than those without MET mutations (P=0.015). The male to female and ever-to never-smoker ratios were 3:6 and 2:7, respectively, among patients with MET-mutated adenocarcinomas. All (9/9) of the MET-mutated adenocarcinomas showed acinar predominant histology with associated lepidic patterns. In contrast, the male to female and ever- to never-smoker ratios were 8:1 and 7:1, respectively, among patients with MET-mutated pleomorphic carcinomas. The carcinoma component of MET-mutated pleomorphic carcinomas was mostly adenocarcinoma of acinar pattern (8/9). MET mutation was detected by qRT-PCR in all samples with heterogeneous MET expression microdissected from five cases with MET-mutated adenocarcinoma, while MET gene amplification was detected in tumor areas expressing high MET protein levels among MET-mutated adenocarcinomas. MET-mutated NSCLC is characterized by older age in patients with adenocarcinoma and by an acinar histology and variable MET expression in patients with adenocarcinoma and pleomorphic carcinomas. Moreover, MET gene amplification might occur in the tumor cells harboring the MET mutation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Late-onset cone photoreceptor degeneration induced by R172W mutation in Rds and partial rescue by gene supplementation.

    PubMed

    Conley, Shannon; Nour, May; Fliesler, Steven J; Naash, Muna I

    2007-12-01

    R172W is a common mutation in the human retinal degeneration slow (RDS) gene, associated with a late-onset dominant macular dystrophy. In this study, the authors characterized a mouse model that closely mimics the human phenotype and tested the feasibility of gene supplementation as a disease treatment strategy. Transgenic mouse lines carrying the R172W mutation were generated. The retinal phenotype associated with this mutation in a low-expresser line (L-R172W) was examined, both structurally (histology with correlative immunohistochemistry) and functionally (electroretinography). By examining animals over time and with various rds genetic backgrounds, the authors evaluated the dominance of the defect. To assess the efficacy of gene transfer therapy as a treatment for this defect, a previously characterized transgenic line expressing the normal mouse peripherin/Rds (NMP) was crossed with a higher-expresser Rds line harboring the R172W mutation (H-R172W). Functional, structural, and biochemical analyses were used to assess rescue of the retinal disease phenotype. In the wild-type (WT) background, L-R172W mice exhibited late-onset (12-month) dominant cone degeneration without any apparent effect on rods. The degeneration was slightly accelerated (9 months) in the rds(+/-) background. L-R172W retinas did not form outer segments in the absence of endogenous Rds. With use of the H-R172W line on an rds(+/-) background for proof-of-principle genetic supplementation studies, the NMP transgene product rescued rod and cone functional defects and supported outer segment integrity up to 3 months of age, but the rescue effect did not persist in older (11-month) animals. The R172W mutation leads to dominant cone degeneration in the mouse model, regardless of the expression level of the transgene. In contrast, effects of the mutation on rods are dose dependent, underscoring the usefulness of the L-R172W line as a faithful model of the human phenotype. This model may prove helpful in future studies on the mechanisms of cone degeneration and for elucidating the different roles of Rds in rods and cones. This study provides evidence that Rds genetic supplementation can be used to partially rescue visual function. Although this strategy is capable of rescuing haploinsufficiency, it does not rescue the long-term degeneration associated with a gain-of-function mutation.

  6. High prevalence of mutations affecting the splicing process in a Spanish cohort with autosomal dominant retinitis pigmentosa

    PubMed Central

    Ezquerra-Inchausti, Maitane; Barandika, Olatz; Anasagasti, Ander; Irigoyen, Cristina; López de Munain, Adolfo; Ruiz-Ederra, Javier

    2017-01-01

    Retinitis pigmentosa is the most frequent group of inherited retinal dystrophies. It is highly heterogeneous, with more than 80 disease-causing genes 27 of which are known to cause autosomal dominant RP (adRP), having been identified. In this study a total of 29 index cases were ascertained based on a family tree compatible with adRP. A custom panel of 31 adRP genes was analysed by targeted next-generation sequencing using the Ion PGM platform in combination with Sanger sequencing. This allowed us to detect putative disease-causing mutations in 14 out of the 29 (48.28%) families analysed. Remarkably, around 38% of all adRP cases analysed showed mutations affecting the splicing process, mainly due to mutations in genes coding for spliceosome factors (SNRNP200 and PRPF8) but also due to splice-site mutations in RHO. Twelve of the 14 mutations found had been reported previously and two were novel mutations found in PRPF8 in two unrelated patients. In conclusion, our results will lead to more accurate genetic counselling and will contribute to a better characterisation of the disease. In addition, they may have a therapeutic impact in the future given the large number of studies currently underway based on targeted RNA splicing for therapeutic purposes. PMID:28045043

  7. Genetic screening in adolescents with steroid-resistant nephrotic syndrome.

    PubMed

    Lipska, Beata S; Iatropoulos, Paraskevas; Maranta, Ramona; Caridi, Gianluca; Ozaltin, Fatih; Anarat, Ali; Balat, Ayse; Gellermann, Jutta; Trautmann, Agnes; Erdogan, Ozlem; Saeed, Bassam; Emre, Sevinc; Bogdanovic, Radovan; Azocar, Marta; Balasz-Chmielewska, Irena; Benetti, Elisa; Caliskan, Salim; Mir, Sevgi; Melk, Anette; Ertan, Pelin; Baskin, Esra; Jardim, Helena; Davitaia, Tinatin; Wasilewska, Anna; Drozdz, Dorota; Szczepanska, Maria; Jankauskiene, Augustina; Higuita, Lina Maria Serna; Ardissino, Gianluigi; Ozkaya, Ozan; Kuzma-Mroczkowska, Elzbieta; Soylemezoglu, Oguz; Ranchin, Bruno; Medynska, Anna; Tkaczyk, Marcin; Peco-Antic, Amira; Akil, Ipek; Jarmolinski, Tomasz; Firszt-Adamczyk, Agnieszka; Dusek, Jiri; Simonetti, Giacomo D; Gok, Faysal; Gheissari, Alaleh; Emma, Francesco; Krmar, Rafael T; Fischbach, Michel; Printza, Nikoleta; Simkova, Eva; Mele, Caterina; Ghiggeri, Gian Marco; Schaefer, Franz

    2013-07-01

    Genetic screening paradigms for congenital and infantile nephrotic syndrome are well established; however, screening in adolescents has received only minor attention. To help rectify this, we analyzed an unselected adolescent cohort of the international PodoNet registry to develop a rational screening approach based on 227 patients with nonsyndromic steroid-resistant nephrotic syndrome aged 10-20 years. Of these, 21% had a positive family history. Autosomal dominant cases were screened for WT1, TRPC6, ACTN4, and INF2 mutations. All other patients had the NPHS2 gene screened, and WT1 was tested in sporadic cases. In addition, 40 sporadic cases had the entire coding region of INF2 tested. Of the autosomal recessive and the sporadic cases, 13 and 6%, respectively, were found to have podocin-associated nephrotic syndrome, and 56% of them were compound heterozygous for the nonneutral p.R229Q polymorphism. Four percent of the sporadic and 10% of the autosomal dominant cases had a mutation in WT1. Pathogenic INF2 mutations were found in 20% of the dominant but none of the sporadic cases. In a large cohort of adolescents including both familial and sporadic disease, NPHS2 mutations explained about 7% and WT1 4% of cases, whereas INF2 proved relevant only in autosomal dominant familial disease. Thus, screening of the entire coding sequence of NPHS2 and exons 8-9 of WT1 appears to be the most rational and cost-effective screening approach in sporadic juvenile steroid-resistant nephrotic syndrome.

  8. White matter hyperintensities and the mediating role of cerebral amyloid angiopathy in dominantly-inherited Alzheimer's disease.

    PubMed

    Lee, Seonjoo; Zimmerman, Molly E; Narkhede, Atul; Nasrabady, Sara E; Tosto, Giuseppe; Meier, Irene B; Benzinger, Tammie L S; Marcus, Daniel S; Fagan, Anne M; Fox, Nick C; Cairns, Nigel J; Holtzman, David M; Buckles, Virginia; Ghetti, Bernardino; McDade, Eric; Martins, Ralph N; Saykin, Andrew J; Masters, Colin L; Ringman, John M; Fӧrster, Stefan; Schofield, Peter R; Sperling, Reisa A; Johnson, Keith A; Chhatwal, Jasmeer P; Salloway, Stephen; Correia, Stephen; Jack, Clifford R; Weiner, Michael; Bateman, Randall J; Morris, John C; Mayeux, Richard; Brickman, Adam M

    2018-01-01

    White matter hyperintensity (WMH) volume on MRI is increased among presymptomatic individuals with autosomal dominant mutations for Alzheimer's disease (AD). One potential explanation is that WMH, conventionally considered a marker of cerebrovascular disease, are a reflection of cerebral amyloid angiopathy (CAA) and that increased WMH in this population is a manifestation of this vascular form of primary AD pathology. We examined whether the presence of cerebral microbleeds, a marker of CAA, mediates the relationship between WMH and estimated symptom onset in individuals with and without autosomal dominant mutations for AD. Participants (n = 175, mean age = 41.1 years) included 112 with an AD mutation and 63 first-degree non-carrier controls. We calculated the estimated years from expected symptom onset (EYO) and analyzed baseline MRI data for WMH volume and presence of cerebral microbleeds. Mixed effects regression and tests of mediation were used to examine microbleed and WMH differences between carriers and non-carriers and to test the whether the association between WMH and mutation status is dependent on the presence of microbleeds. Mutation carriers were more likely to have microbleeds than non-carriers (p<0.05) and individuals with microbleeds had higher WMH volume than those without (p<0.05). Total WMH volume was increased in mutation carriers compared with non-carriers, up to 20 years prior to EYO, after controlling for microbleed status, as we demonstrated previously. Formal testing of mediation demonstrated that 21% of the association between mutation status and WMH was mediated by presence of microbleeds (p = 0.03) but a significant direct effect of WMH remained (p = 0.02) after controlling for presence of microbleeds. Although there is some co-dependency between WMH and microbleeds, the observed increases in WMH among mutation carriers does not appear to be fully mediated by this marker of CAA. The findings highlight the possibility that WMH represent a core feature of AD independent of vascular forms of beta amyloid.

  9. REEP1 Mutation Spectrum and Genotype/Phenotype Correlation in Hereditary Spastic Paraplegia Type 31

    ERIC Educational Resources Information Center

    Beetz, Christian; Schule, Rebecca; Deconinck, Tine; Tran-Viet, Khanh-Nhat; Zhu, Hui; Kremer, Berry P. H.; Frints, Suzanna G. M.; van Zelst-Stams, Wendy A. G.; Byrne, Paula; Otto, Susanne; Nygren, Anders O. H.; Baets, Jonathan; Smets, Katrien; Ceulemans, Berten; Dan, Bernard; Nagan, Narasimhan; Kassubek, Jan; Klimpe, Sven; Klopstock, Thomas; Stolze, Henning; Smeets, Hubert J. M.; Schrander-Stumpel, Constance T. R. M.; Hutchinson, Michael; van de Warrenburg, Bart P.; Braastad, Corey; Deufel, Thomas; Pericak-Vance, Margaret; Schols, Ludger; de Jonghe, Peter; Zuchner, Stephan

    2008-01-01

    Mutations in the receptor expression enhancing protein 1 (REEP1) have recently been reported to cause autosomal dominant hereditary spastic paraplegia (HSP) type SPG31. In a large collaborative effort, we screened a sample of 535 unrelated HSP patients for "REEP1" mutations and copy number variations. We identified 13 novel and 2 known "REEP1"…

  10. Loss of Function of KCNC1 is associated with intellectual disability without seizures

    PubMed Central

    Poirier, Karine; Viot, Géraldine; Lombardi, Laura; Jauny, Clémence; Billuart, Pierre; Bienvenu, Thierry

    2017-01-01

    p.(Arg320His) mutation in the KCNC1 gene in human 11p15.1 has recently been identified in patients with progressive myoclonus epilepsies, a group of rare inherited disorders manifesting with action myoclonus, myoclonic epilepsy, and ataxia. This KCNC1 variant causes a dominant-negative effect. Here we describe three patients from the same family with intellectual disability and dysmorphic features. The three affected individuals carry a c.1015C>T (p.(Arg339*)) nonsense variant in KCNC1 gene. As previously observed in the mutant mouse carrying a disrupted KCNC1 gene, these findings reveal that individuals with a KCNC1 loss-of-function variant can present intellectual disability without seizure and epilepsy. PMID:28145425

  11. Vestibular function in families with inherited autosomal dominant hearing loss

    PubMed Central

    Street, Valerie A.; Kallman, Jeremy C.; Strombom, Paul D.; Bramhall, Naomi F.; Phillips, James O.

    2008-01-01

    The inner ear contains the developmentally related cochlea and peripheral vestibular labyrinth. Given the similar physiology between these two organs, hearing loss and vestibular dysfunction may be expected to occur simultaneously in individuals segregating mutations in inner ear genes. Twenty-two different genes have been discovered that when mutated lead to non-syndromic autosomal dominant hearing loss. A review of the literature indicates that families segregating mutations in 13 of these 22 genes have undergone formal clinical vestibular testing. Formal assessment revealed vestibular dysfunction in families with mutations in ten of these 13 genes. Remarkably, only families with mutations in the COCH and MYO7A genes self-report considerable vestibular challenges. Families segregating mutations in the other eight genes do not self-report significant balance problems and appear to compensate well in everyday life for vestibular deficits discovered during formal clinical vestibular assessment. An example of a family (referred to as the HL1 family) with progressive hearing loss and clinically-detected vestibular hypofunction that does not report vestibular symptoms is described in this review. Notably, one member of the HL1 family with clinically-detected vestibular hypofunction reached the summit of Mount Kilimanjaro. PMID:18776598

  12. Relationship between driver gene mutations, their relative protein expressions and survival in non-small cell lung carcinoma in Macao.

    PubMed

    Chan, Kin Iong; Vong, Hong Ting; Sin, Lai Fong; Yip, Yuk Ching; Zhong, Xue Yun; Wen, Jian Ming

    2018-04-01

    We report the status of most common gene mutations in non-small cell lung carcinoma (NSCLC) in Macao, and explore the relationship between each gene mutation and clinicopathologic features and survival. EGFR, KRAS and BRAF mutations were detected by PCR in 122 cases of NSCLC. ALK translocation and MET amplification were detected by fluorescence in situ hybridization (FISH). MET and thyroid transcription factor (TTF-1) were investigated by immunohistochemistry. Clinical data were collected for analyzing their correlation with the gene mutations. The mutation of EGFR, KRAS and BRAF was detected in 48 (39.3%), 13 (10.7%) and 3 (2.5%) of 122 cases of NSCLC, respectively. ALK translocation and MET amplification were detected in 7 (5.7%) and 3 cases (2.5%). The rate of EGFR mutation was significantly higher in female and non-smoker patients. In TTF-1 positive cases EGFR mutation was more frequent. Age of the patients over 62-year old was correlated with KRAS mutations. The concordance between ALK IHC and FISH was 58.3%. The MET protein in the cases with MET amplification was 100% positive. The survival was lower in the patients with positive MET protein than those with negative. MET protein was an independent prognostic factor for NSCLC. EGFR mutation occurred frequently in the female never smoke patients with NSCLC. KRAS mutation was more common in old patients. Negative MET protein expression could be used as a negative predictive marker of MET amplification. MET protein expression was an independent prognostic factor for NSCLC. © 2017 John Wiley & Sons Ltd.

  13. Autoimmune Disease in a DFNA6/14/38 Family carrying a Novel Missense Mutation in WFS1

    PubMed Central

    Hildebrand, Michael S.; Sorensen, Jessica L.; Jensen, Maren; Kimberling, William J.; Smith, Richard J.H.

    2008-01-01

    Most familial cases of autosomal dominant low frequency sensorineural hearing loss (LFSNHL) are attributable to mutations in the Wolframin syndrome 1 (WFS1) gene at the DFNA6/14/38 locus. WFS1 mutations at this locus were first described in 2001 in six families segregating LFSNHL that was non-progressive below 2000 Hz; the causative mutations all clustered in the C-terminal domain of the wolframin protein. Mutations in WFS1 also cause Wolfram syndrome (WS), an autosomal recessive neurodegenerative disorder defined by diabetes mellitus, optic atrophy and often deafness, while numerous single nucleotide polymorphisms (SNPs) in WFS1 have been associated with increased risk for diabetes mellitus, psychiatric illnesses and Parkinson’s disease. This study was conducted in an American family segregating autosomal dominant LFSNHL. Two hearing impaired family members also had autoimmune diseases - Graves disease (GD) and Crohn’s disease (CD). Based on the low frequency audioprofile, mutation screening of WFS1 was completed and a novel missense mutation (c.2576G→A) that results in an arginine-to-glutamine substitution (p.R859Q) was identified in the C-terminal domain of the wolframin protein where most LFSNHL-causing mutations cluster. The family member with GD also carried polymorphisms in WFS1 that have been associated with other autoimmune diseases. PMID:18688868

  14. Identification of a MYO7A mutation in a large Chinese DFNA11 family and genotype-phenotype review for DFNA11.

    PubMed

    Li, Lina; Yuan, Hu; Wang, Hongyang; Guan, Jing; Lan, Lan; Wang, Dayong; Zong, Liang; Liu, Qiong; Han, Bing; Huang, Deliang; Wang, Qiuju

    2018-05-01

    The molecular and genetic research showed the association between DFNA11 and mutations in MYO7A. This research aimed to identify a MYO7A mutation in a family with nonsyndromic autosomal dominant hearing loss. We have ascertained one large multigenerational Chinese family (Z029) with autosomal dominant late-onset progressive non-syndromic sensorineural hearing loss. Genome-wide linkage analysis of the family mapped the disease locus to the DFNA11 interval, where the MYO7A was considered as a candidate gene. Sequencing of the PCR products was carried out for each sample. One hundred and fifty one control subjects with normal hearing functions were also evaluated. The pathogenic mutation (c.2011G>A) was identified in the family. This mutation co-segregated with hearing loss in this family. No mutation of MYO7A gene was found in the 151 controls. The missense mutation of MYO7A is identified in the family displaying the pedigree consistent with DFNA11. We not only examined the clinical and genetic characteristics of the family, but also provided a basis for genetic counseling. We also summarized and analyzed the phenotypes and genotypes of all DFNA11 families, four of nine are Chinese families, suggesting that MYO7A mutations are not rare. Therefore, we should pay more attention to Chinese patients.

  15. Screening and monitoring of MPL W515L mutation with real-time PCR in patients with myelofibrosis undergoing allogeneic-SCT.

    PubMed

    Alchalby, H; Badbaran, A; Bock, O; Fehse, B; Bacher, U; Zander, A R; Kröger, N

    2010-09-01

    Monitoring of minimal residual disease (MRD) after allogeneic (allo)-SCT for myelofibrosis (MF) allows recognizing the depth of remission and thus guides application of appropriate therapeutic interventions. MPL W515L/K mutations, which are detected in 5-10% of JAK2V617F-negative patients, may be useful for this purpose. Using a highly sensitive quantitative PCR method, we tested 90 patients with MF who underwent allo-SCT for the presence of MPL W515L/K mutations. Two patients with primary MF were found to harbor MPLW515L while no patient was positive for MPLW515K mutation. Both patients were JAK2V617F negative and cleared the mutation rapidly after allo-SCT and remained negative for a median follow-up of 19 months. The results of molecular monitoring correlated well with other remission parameters such as normalization of peripheral blood counts and morphology and complete donor chimerism. We conclude that MPLW515L can be cleared after allo-SCT and hence may be used as an MRD marker in a proportion of JAK2V617F-negative MF patients.

  16. Laboratory practice guidelines for detecting and reporting JAK2 and MPL mutations in myeloproliferative neoplasms: a report of the Association for Molecular Pathology.

    PubMed

    Gong, Jerald Z; Cook, James R; Greiner, Timothy C; Hedvat, Cyrus; Hill, Charles E; Lim, Megan S; Longtine, Janina A; Sabath, Daniel; Wang, Y Lynn

    2013-11-01

    Recurrent mutations in JAK2 and MPL genes are genetic hallmarks of BCR-ABL1-negative myeloproliferative neoplasms. Detection of JAK2 and MPL mutations has been incorporated into routine diagnostic algorithms for these diseases. This Special Article summarizes results from a nationwide laboratory survey of JAK2 and MPL mutation analysis. Based on the current practice pattern and the literature, this Special Article provides recommendations and guidelines for laboratory practice for detection of mutations in the JAK2 and MPL genes, including clinical manifestations for prompting the mutation analysis, current and recommended methodologies for testing the mutations, and standardization for reporting the test results. This Special Article also points to future directions for genomic testing in BCR-ABL1-negative myeloproliferative neoplasms. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  17. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome.

    PubMed

    Renner, Ellen D; Rylaarsdam, Stacey; Anover-Sombke, Stephanie; Rack, Anita L; Reichenbach, Janine; Carey, John C; Zhu, Qili; Jansson, Annette F; Barboza, Julia; Schimke, Lena F; Leppert, Mark F; Getz, Melissa M; Seger, Reinhard A; Hill, Harry R; Belohradsky, Bernd H; Torgerson, Troy R; Ochs, Hans D

    2008-07-01

    Hyper-IgE syndrome (HIES) is a rare, autosomal-dominant immunodeficiency characterized by eczema, Staphylococcus aureus skin abscesses, pneumonia with pneumatocele formation, Candida infections, and skeletal/connective tissue abnormalities. Recently it was shown that heterozygous signal transducer and activator of transcription 3 (STAT3) mutations cause autosomal-dominant HIES. To determine the spectrum and functional consequences of heterozygous STAT3 mutations in a cohort of patients with HIES. We sequenced the STAT3 gene in 38 patients with HIES (National Institutes of Health score >40 points) from 35 families, quantified T(H)17 cells in peripheral blood, and evaluated tyrosine phosphorylation of STAT3. Most STAT3 mutations in our cohort were in the DNA-binding domain (DBD; 22/35 families) or Src homology 2 (SH2) domain (10/35) and were missense mutations. We identified 2 intronic mutations resulting in exon skipping and in-frame deletions within the DBD. In addition, we identified 2 mutations located in the transactivation domain downstream of the SH2 domain: a 10-amino acid deletion and an amino acid substitution. In 1 patient, we were unable to identify a STAT3 mutation. T(H)17 cells were absent or low in the peripheral blood of all patients who were evaluated (n = 17). IL-6-induced STAT3-phosphorylation was consistently reduced in patients with SH2 domain mutations but comparable to normal controls in patients with mutations in the DBD. Heterozygous STAT3 mutations were identified in 34 of 35 unrelated HIES families. Patients had impaired T(H)17 cell development, and those with SH2 domain mutations had reduced STAT3 phosphorylation.

  18. A Dominant Mutation in Hexokinase 1 (HK1) Causes Retinitis Pigmentosa

    PubMed Central

    Sullivan, Lori S.; Koboldt, Daniel C.; Bowne, Sara J.; Lang, Steven; Blanton, Susan H.; Cadena, Elizabeth; Avery, Cheryl E.; Lewis, Richard A.; Webb-Jones, Kaylie; Wheaton, Dianna H.; Birch, David G.; Coussa, Razck; Ren, Huanan; Lopez, Irma; Chakarova, Christina; Koenekoop, Robert K.; Garcia, Charles A.; Fulton, Robert S.; Wilson, Richard K.; Weinstock, George M.; Daiger, Stephen P.

    2014-01-01

    Purpose. To identify the cause of retinitis pigmentosa (RP) in UTAD003, a large, six-generation Louisiana family with autosomal dominant retinitis pigmentosa (adRP). Methods. A series of strategies, including candidate gene screening, linkage exclusion, genome-wide linkage mapping, and whole-exome next-generation sequencing, was used to identify a mutation in a novel disease gene on chromosome 10q22.1. Probands from an additional 404 retinal degeneration families were subsequently screened for mutations in this gene. Results. Exome sequencing in UTAD003 led to identification of a single, novel coding variant (c.2539G>A, p.Glu847Lys) in hexokinase 1 (HK1) present in all affected individuals and absent from normal controls. One affected family member carries two copies of the mutation and has an unusually severe form of disease, consistent with homozygosity for this mutation. Screening of additional adRP probands identified four other families (American, Canadian, and Sicilian) with the same mutation and a similar range of phenotypes. The families share a rare 450-kilobase haplotype containing the mutation, suggesting a founder mutation among otherwise unrelated families. Conclusions. We identified an HK1 mutation in five adRP families. Hexokinase 1 catalyzes phosphorylation of glucose to glucose-6-phosphate. HK1 is expressed in retina, with two abundant isoforms expressed at similar levels. The Glu847Lys mutation is located at a highly conserved position in the protein, outside the catalytic domains. We hypothesize that the effect of this mutation is limited to the retina, as no systemic abnormalities in glycolysis were detected. Prevalence of the HK1 mutation in our cohort of RP families is 1%. PMID:25190649

  19. Fitness change in relation to mutation number in spontaneous mutation accumulation lines of Chlamydomonas reinhardtii

    PubMed Central

    Kraemer, Susanne A.; Böndel, Katharina B.; Ness, Robert W.; Keightley, Peter D.; Colegrave, Nick

    2017-01-01

    Abstract Although all genetic variation ultimately stems from mutations, their properties are difficult to study directly. Here, we used multiple mutation accumulation (MA) lines derived from five genetic backgrounds of the green algae Chlamydomonas reinhardtii that have been previously subjected to whole genome sequencing to investigate the relationship between the number of spontaneous mutations and change in fitness from a nonevolved ancestor. MA lines were on average less fit than their ancestors and we detected a significantly negative correlation between the change in fitness and the total number of accumulated mutations in the genome. Likewise, the number of mutations located within coding regions significantly and negatively impacted MA line fitness. We used the fitness data to parameterize a maximum likelihood model to estimate discrete categories of mutational effects, and found that models containing one to two mutational effect categories (one neutral and one deleterious category) fitted the data best. However, the best‐fitting mutational effects models were highly dependent on the genetic background of the ancestral strain. PMID:28884790

  20. Comprehensive PKD1 and PKD2 Mutation Analysis in Prenatal Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Audrézet, Marie-Pierre; Corbiere, Christine; Lebbah, Said; Morinière, Vincent; Broux, Françoise; Louillet, Ferielle; Fischbach, Michel; Zaloszyc, Ariane; Cloarec, Sylvie; Merieau, Elodie; Baudouin, Véronique; Deschênes, Georges; Roussey, Gwenaelle; Maestri, Sandrine; Visconti, Chiara; Boyer, Olivia; Abel, Carine; Lahoche, Annie; Randrianaivo, Hanitra; Bessenay, Lucie; Mekahli, Djalila; Ouertani, Ines; Decramer, Stéphane; Ryckenwaert, Amélie; Cornec-Le Gall, Emilie; Salomon, Rémi; Ferec, Claude; Heidet, Laurence

    2016-03-01

    Prenatal forms of autosomal dominant polycystic kidney disease (ADPKD) are rare but can be recurrent in some families, suggesting a common genetic modifying background. Few patients have been reported carrying, in addition to the familial mutation, variation(s) in polycystic kidney disease 1 (PKD1) or HNF1 homeobox B (HNF1B), inherited from the unaffected parent, or biallelic polycystic kidney and hepatic disease 1 (PKHD1) mutations. To assess the frequency of additional variations in PKD1, PKD2, HNF1B, and PKHD1 associated with the familial PKD mutation in early ADPKD, these four genes were screened in 42 patients with early ADPKD in 41 families. Two patients were associated with de novo PKD1 mutations. Forty patients occurred in 39 families with known ADPKD and were associated with PKD1 mutation in 36 families and with PKD2 mutation in two families (no mutation identified in one family). Additional PKD variation(s) (inherited from the unaffected parent when tested) were identified in 15 of 42 patients (37.2%), whereas these variations were observed in 25 of 174 (14.4%, P=0.001) patients with adult ADPKD. No HNF1B variations or PKHD1 biallelic mutations were identified. These results suggest that, at least in some patients, the severity of the cystic disease is inversely correlated with the level of polycystin 1 function. Copyright © 2016 by the American Society of Nephrology.

  1. Induced mutations in mice and genetic risk assessment in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, P.B.

    1980-01-01

    In studies on mice, in contrast to studies on humans, it is possible to perform carefully controlled experiments with the exposures one desires. The necessity for having separate mammalian tests for looking at the induction of gene mutations and small deficiencies, and at the induction of chromosomal aberrations, is obvious. Mutagens can differ as to which of these types of damage they are more likely to cause. The reason for focusing attention on the mouse in a discussion of hazard from induced gene mutations and small deficiencies is the existence of techniques in this mammal for readily studying the inductionmore » of such genetic effects. Many mutations at the molecular level cause no apparent changes at the gene-product level and many mutations that cause changes at the gene-product level cause no detectable phenotypic changes in heterozygotes. Many dominant mutations that change the phenotype cause no serious handicap. For these reasons, risk estimation for important chemicals must rely heavily on studies on the induction of those germinal mutations in mammals that are easily related to human dominant disorders, such as skeletal and cataract mutations. Molecular or enzyme studies cannot provide definitive answers about risk. The specific-locus method should help greatly in assessing the genetic risks to humans from chemicals. The new sensitive-indicator method should complement it in providing a tool for attacking the question of what treatments induce gene mutations and small deficiencies and for approximating first-generation damage to the skeleton. (ERB)« less

  2. The co-occurrence of driver mutations in chronic myeloproliferative neoplasms.

    PubMed

    Boddu, Prajwal; Chihara, Dai; Masarova, Lucia; Pemmaraju, Naveen; Patel, Keyur P; Verstovsek, Srdan

    2018-06-27

    Myeloproliferative neoplasms (MPNs) are clonal disorders characterized by proliferation of one or more elements of the myeloid lineage. Key genetic aberrations include the BCR-ABL1 gene rearrangement in Philadelphia chromosome-positive chronic myelogenous leukemia (CML) and JAK2/MPL/CALR aberrations in Philadelphia chromosome-negative MPNs. While thought to be mutually exclusive, occasional isolated reports of coexistence of BCR-ABL1 and JAK2, and JAK2 with MPL or CALR aberrations have been described. Given the paucity of data, clinical characteristics and outcome of patients harboring concurrent Philadelphia-positive and Philadelphia-negative mutations or dual Philadelphia-negative driver mutations have not been systematically evaluated, and their clinical relevance is largely unknown. It is difficult to determine the true relevance of co-existing driver mutations on outcomes given the rarity of its occurrence. In this case series, we describe those patients who had dual driver mutations detected at any point during the course of their disease and characterized their clinical and laboratory features, bone marrow pathology, and overall disease course.

  3. A dominant negative mutation at the ATP binding domain of AMHR2 is associated with a defective anti-Müllerian hormone signaling pathway.

    PubMed

    Li, Lin; Zhou, Xueya; Wang, Xi; Wang, Jing; Zhang, Wei; Wang, Binbin; Cao, Yunxia; Kee, Kehkooi

    2016-09-01

    Does a heterozygous mutation in AMHR2, identified in whole-exome sequencings (WES) of patients with primary ovarian insufficiency (POI), cause a defect in anti-Müllerian hormone (AMH) signaling? The I209N mutation at the adenosine triphosphate binding domain of AMHR2 exerts dominant negative defects in the AMH signaling pathway. Previous studies have demonstrated the associations of several sequence variants in AMH or AMHR2 with POI, but no functional assay has been performed to verify whether there was any defect on AMH signaling. Ninety-six unrelated female Chinese Han patients were diagnosed with idiopathic POI and subjected to WES. In silico analysis was done for the sequence variants followed by molecular assays to examine the functional effects of the sequence variants in human granulosa cells. In silico analysis, immunostaining, Western analysis, genome-wide expression analysis, quantitatively polymerase chain reaction were applied to the characterization of the sequence variants. We identified one novel heterozygous missense variant, p.Ala17Glu (A17E), in AMHR2. Subsequently, A17E and two independently reported missense variants, p.Ile209Asn (I209N) and p.Leu354Phe (L354F), were evaluated for effects on the AMH signaling pathway. In silico analysis predicted that all three variants may be deleterious. However, only one variant, I209N, showed severe defects in transducing the AMH signal as well as impaired SMAD1/5/8 phosphorylation. Furthermore, using genome-wide gene expression analysis, we identified genes whose expression was affected by the mutation, these included genes previously reported to participate in AMH signaling as well as newly identified genes. They are EMILIN2, FAM155A, GATA2, HES5, ID1, ID2, RLTPR, SMAD7, CBL, MALAT1 and SMARCA2. None. Although the in vitro assays demonstrated the causative effect of I209N on AMH signaling, further studies need to validate its long-term effects on folliculogenesis and POI. These results will aid both researchers and clinicians in understanding the molecular pathology of AMH signaling and POI to develop diagnostic assays or therapeutics approaches. Research funding is provided by the Ministry of Science and Technology of China [2012CB944704; 2012CB966702], and the National Natural Science Foundation of China [Grant number: 31171429]. The authors declare no conflict of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Phenotypic Suppression of the Gibberellin-Insensitive Mutant (gai) of Arabidopsis.

    PubMed Central

    Wilson, R. N.; Somerville, C. R.

    1995-01-01

    The semidominant gibberellin-insensitive (gai) mutant of Arabidopsis thaliana shows impairment in multiple responses to the plant hormone gibberellin A3, which include effects on seed germination, stem elongation, apical dominance, and rapid flowering in short days. Results presented here show that the gai mutation also interferes with development of fertile flowers in continuous light. Mu-tagenesis of the gai mutant resulted in recovery of 17 independent mutants in which the gibberellin-insensitive phenotype is partially or completely suppressed. Sixteen of the suppressor mutations act semidominantly to restore gibberellin responsiveness. One representative of this class, the gar1 mutation, could not be genetically separated from the gai locus and is proposed to cause inactivation of the gai gene. The exceptional gar2 mutation partially suppresses the gai phenotype, is completely dominant, and is not linked to the gai locus. The gar2 mutation may define a new gene involved in gibberellin signaling. A recessive allele of the spindly (SPY) locus, spy-5, was also found to partially suppress the gai mutant phenotype. PMID:12228487

  5. Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant).

    PubMed

    Bichet, Daniel G; Bockenhauer, Detlef

    2016-03-01

    Nephrogenic diabetes insipidus (NDI), which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine vasopressin (AVP). Polyuria with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. About 90% of patients with congenital NDI are males with X-linked NDI who have mutations in the vasopressin V2 receptor (AVPR2) gene encoding the vasopressin V2 receptor. In less than 10% of the families studied, congenital NDI has an autosomal recessive or autosomal dominant mode of inheritance with mutations in the aquaporin-2 (AQP2) gene. When studied in vitro, most AVPR2 and AQP2 mutations lead to proteins trapped in the endoplasmic reticulum and are unable to reach the plasma membrane. Prior knowledge of AVPR2 or AQP2 mutations in NDI families and perinatal mutation testing is of direct clinical value and can avert the physical and mental retardation associated with repeated episodes of dehydration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy

    PubMed Central

    Sarparanta, Jaakko; Jonson, Per Harald; Golzio, Christelle; Sandell, Satu; Luque, Helena; Screen, Mark; McDonald, Kristin; Stajich, Jeffrey M.; Mahjneh, Ibrahim; Vihola, Anna; Raheem, Olayinka; Penttilä, Sini; Lehtinen, Sara; Huovinen, Sanna; Palmio, Johanna; Tasca, Giorgio; Ricci, Enzo; Hackman, Peter; Hauser, Michael; Katsanis, Nicholas; Udd, Bjarne

    2012-01-01

    Limb-girdle muscular dystrophy type 1D (LGMD1D) was linked to 7q36 over a decade ago1, but its genetic cause has remained elusive. We have studied nine LGMD families from Finland, the U.S., and Italy, and identified four dominant missense mutations leading to p.Phe93Leu or p.Phe89Ile changes in the ubiquitously expressed co-chaperone DNAJB6. Functional testing in vivo showed that the mutations have a dominant toxic effect mediated specifically by the cytoplasmic isoform of DNAJB6. In vitro studies demonstrated that the mutations increase the half-life of DNAJB6, extending this effect to the wild-type protein, and reduce its protective anti-aggregation effect. Further, we show that DNAJB6 interacts with members of the CASA complex, including the myofibrillar-myopathy-causing protein BAG3. Our data provide the genetic cause of LGMD1D, suggest that the pathogenesis is mediated by defective chaperone function, and highlight how mutations expressed ubiquitously can exert their effect in a tissue-, cellular compartment-, and isoform-specific manner. PMID:22366786

  7. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms.

    PubMed

    Malkin, D; Li, F P; Strong, L C; Fraumeni, J F; Nelson, C E; Kim, D H; Kassel, J; Gryka, M A; Bischoff, F Z; Tainsky, M A

    1990-11-30

    Familial cancer syndromes have helped to define the role of tumor suppressor genes in the development of cancer. The dominantly inherited Li-Fraumeni syndrome (LFS) is of particular interest because of the diversity of childhood and adult tumors that occur in affected individuals. The rarity and high mortality of LFS precluded formal linkage analysis. The alternative approach was to select the most plausible candidate gene. The tumor suppressor gene, p53, was studied because of previous indications that this gene is inactivated in the sporadic (nonfamilial) forms of most cancers that are associated with LFS. Germ line p53 mutations have been detected in all five LFS families analyzed. These mutations do not produce amounts of mutant p53 protein expected to exert a trans-dominant loss of function effect on wild-type p53 protein. The frequency of germ line p53 mutations can now be examined in additional families with LFS, and in other cancer patients and families with clinical features that might be attributed to the mutation.

  8. Impairment of memory generalization in preclinical autosomal dominant Alzheimer's disease mutation carriers.

    PubMed

    Petok, Jessica R; Myers, Catherine E; Pa, Judy; Hobel, Zachary; Wharton, David M; Medina, Luis D; Casado, Maria; Coppola, Giovanni; Gluck, Mark A; Ringman, John M

    2018-05-01

    Fast, inexpensive, and noninvasive identification of Alzheimer's disease (AD) before clinical symptoms emerge would augment our ability to intervene early in the disease. Individuals with fully penetrant genetic mutations causing autosomal dominant Alzheimer's disease (ADAD) are essentially certain to develop the disease, providing a unique opportunity to examine biomarkers during the preclinical stage. Using a generalization task that has previously shown to be sensitive to medial temporal lobe pathology, we compared preclinical individuals carrying ADAD mutations to noncarrying kin to determine whether generalization (the ability to transfer previous learning to novel but familiar recombinations) is vulnerable early, before overt cognitive decline. As predicted, results revealed that preclinical ADAD mutation carriers made significantly more errors during generalization than noncarrying kin, despite no differences between groups during learning or retention. This impairment correlated with the left hippocampal volume, particularly in mutation carriers. Such identification of generalization deficits in early ADAD may provide an easily implementable and potentially linguistically and culturally neutral way to identify and track cognition in ADAD. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. A novel AARS mutation in a family with dominant myeloneuropathy.

    PubMed

    Motley, William W; Griffin, Laurie B; Mademan, Inès; Baets, Jonathan; De Vriendt, Els; De Jonghe, Peter; Antonellis, Anthony; Jordanova, Albena; Scherer, Steven S

    2015-05-19

    To determine the genetic cause of neurodegeneration in a family with myeloneuropathy. We studied 5 siblings in a family with a mild, dominantly inherited neuropathy by clinical examination and electrophysiology. One patient had a sural nerve biopsy. After ruling out common genetic causes of axonal Charcot-Marie-Tooth disease, we sequenced 3 tRNA synthetase genes associated with neuropathy. All affected family members had a mild axonal neuropathy, and 3 of 4 had lower extremity hyperreflexia, evidence of a superimposed myelopathy. A nerve biopsy showed evidence of chronic axonal loss. All affected family members had a heterozygous missense mutation c.304G>C (p.Gly102Arg) in the alanyl-tRNA synthetase (AARS) gene; this allele was not identified in unaffected individuals or control samples. The equivalent change in the yeast ortholog failed to complement a strain of yeast lacking AARS function, suggesting that the mutation is damaging. A novel mutation in AARS causes a mild myeloneuropathy, a novel phenotype for patients with mutations in one of the tRNA synthetase genes. © 2015 American Academy of Neurology.

  10. A mutation in the gamma actin 1 (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26)

    PubMed Central

    van Wijk, E; Krieger, E; Kemperman, M; De Leenheer, E M R; Huygen, P; Cremers, C; Cremers, F; Kremer, H

    2003-01-01

    Linkage analysis in a multigenerational family with autosomal dominant hearing loss yielded a chromosomal localisation of the underlying genetic defect in the DFNA20/26 locus at 17q25-qter. The 6-cM critical region harboured the γ-1-actin (ACTG1) gene, which was considered an attractive candidate gene because actins are important structural elements of the inner ear hair cells. In this study, a Thr278Ile mutation was identified in helix 9 of the modelled protein structure. The alteration of residue Thr278 is predicted to have a small but significant effect on the γ 1 actin structure owing to its close proximity to a methionine residue at position 313 in helix 11. Met313 has no space in the structure to move away. Moreover, the Thr278 residue is highly conserved throughout eukaryotic evolution. Using a known actin structure the mutation could be predicted to impair actin polymerisation. These findings strongly suggest that the Thr278Ile mutation in ACTG1 represents the first disease causing germline mutation in a cytoplasmic actin isoform. PMID:14684684

  11. Clinical and ERG data in a family with autosomal dominant RP and Pro-347-Arg mutation in the rhodopsin gene.

    PubMed

    Niemeyer, G; Trüb, P; Schinzel, A; Gal, A

    1992-01-01

    In a family with autosomal dominant retinitis pigmentosa, documented over six generations, a previously undescribed point mutation in the rhodopsin gene could be identified. The mutation found in the six affected members examined but in none of the controls, including healthy members of the family, was a point mutation in codon 347 predicting a substitution of the amino acid arginine for proline, designated Pro-347-Arg. Six affected members from two generations were examined clinically and with ganzfeld rod and cone electroretinography. The cone and, more dramatically, the rod electroretinograms were reduced to residual b-wave amplitudes or were non-detectable as early as ages 18 to 22 years. The Pro-347-Arg mutation resulted in a subjectively and clinically homogeneous phenotype: early onset of night blindness before age 11, relatively preserved usable visual fields until about age 30, blindness at ages 40 to 60, and change from an initial apparently sine pigmento to a hyperpigmented and atrophic fundus picture between 30 and 50 years of age.

  12. Activation of the kinase activity of ATM by retinoic acid is required for CREB-dependent differentiation of neuroblastoma cells.

    PubMed

    Fernandes, Norvin D; Sun, Yingli; Price, Brendan D

    2007-06-01

    The ATM protein kinase is mutated in ataxia telangiectasia, a genetic disease characterized by defective DNA repair, neurodegeneration, and growth factor signaling defects. The activity of ATM kinase is activated by DNA damage, and this activation is required for cells to survive genotoxic events. In addition to this well characterized role in DNA repair, we now demonstrate a novel role for ATM in the retinoic acid (RA)-induced differentiation of SH-SY5Y neuroblastoma cells into post-mitotic, neuronal-like cells. RA rapidly activates the activity of ATM kinase, leading to the ATM-dependent phosphorylation of the CREB protein, extrusion of neuritic processes, and differentiation of SH-SY5Y cells into neuronal-like cells. When ATM protein expression was suppressed by short hairpin RNA, the ATM-dependent phosphorylation of CREB was blocked. Furthermore, ATM-negative cells failed to differentiate into neuronal-like cells when exposed to retinoic acid; instead, they underwent cell death. Expression of a constitutively active CREBVP16 construct, or exposure to forskolin to induce CREB phosphorylation, rescued ATM negative cells and restored differentiation. Furthermore, when dominant negative CREB proteins with mutations in either the CREB phosphorylation site (CREBS133A) or the DNA binding domain (KCREB) were introduced into SH-SY5Y cells, retinoic acid-induced differentiation was blocked and the cells underwent cell death. The results demonstrate that ATM is required for the retinoic acid-induced differentiation of SH-SY5Y cells through the ATM dependent-phosphorylation of serine 133 of CREB. These results therefore define a novel mechanism for activation of the activity of ATM kinase by RA, and implicate ATM in the regulation of CREB function during RA-induced differentiation.

  13. Iron Modifies Plasma FGF23 Differently in Autosomal Dominant Hypophosphatemic Rickets and Healthy Humans

    PubMed Central

    Peacock, Munro; Gray, Amie K.; Padgett, Leah R.; Hui, Siu L.; Econs, Michael J.

    2011-01-01

    Context: In autosomal dominant hypophosphatemic rickets (ADHR), fibroblast growth factor 23 (FGF23) resists cleavage, causing increased plasma FGF23 levels. The clinical phenotype includes variable onset during childhood or adulthood and waxing/waning of hypophosphatemia. Delayed onset after puberty in females suggests iron status may be important. Objective: Studies were performed to test the hypothesis that plasma C-terminal and intact FGF23 concentrations are related to serum iron concentrations in ADHR. Design and Setting: Cross-sectional and longitudinal studies of ADHR and a cross-sectional study in healthy subjects were conducted at an academic medical center. Participants: Participants included 37 subjects with ADHR mutations from four kindreds and 158 healthy adult controls. Main Outcome Measure: The relationships of serum iron concentrations with plasma C-terminal and intact FGF23 concentrations were evaluated. Results: Serum phosphate and 1,25-dihydroxyvitamin D correlated negatively with C-terminal FGF23 and intact FGF23 in ADHR but not in controls. Serum iron was negatively correlated to both C-terminal FGF23 (r = −0.386; P < 0.05) and intact FGF23 (r = −0.602; P < 0.0001) in ADHR. However, control subjects also demonstrated a negative relationship of serum iron with C-terminal FGF23 (r = −0.276; P < 0.001) but no relationship with intact FGF23. Longitudinally in ADHR subjects, C-terminal FGF23 and intact FGF23 concentrations changed negatively with iron concentrations (P < 0.001 and P = 0.055, respectively), serum phosphate changed negatively with C-terminal FGF23 and intact FGF23 (P < 0.001), and there was a positive relationship between serum iron and phosphate (P < 0.001). Conclusions: Low serum iron is associated with elevated FGF23 in ADHR. However, in controls, low serum iron was also associated with elevated C-terminal FGF23, but not intact FGF23, suggesting cleavage maintains homeostasis despite increased FGF23 expression. PMID:21880793

  14. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans.

    PubMed

    Imel, Erik A; Peacock, Munro; Gray, Amie K; Padgett, Leah R; Hui, Siu L; Econs, Michael J

    2011-11-01

    In autosomal dominant hypophosphatemic rickets (ADHR), fibroblast growth factor 23 (FGF23) resists cleavage, causing increased plasma FGF23 levels. The clinical phenotype includes variable onset during childhood or adulthood and waxing/waning of hypophosphatemia. Delayed onset after puberty in females suggests iron status may be important. Studies were performed to test the hypothesis that plasma C-terminal and intact FGF23 concentrations are related to serum iron concentrations in ADHR. Cross-sectional and longitudinal studies of ADHR and a cross-sectional study in healthy subjects were conducted at an academic medical center. Participants included 37 subjects with ADHR mutations from four kindreds and 158 healthy adult controls. The relationships of serum iron concentrations with plasma C-terminal and intact FGF23 concentrations were evaluated. Serum phosphate and 1,25-dihydroxyvitamin D correlated negatively with C-terminal FGF23 and intact FGF23 in ADHR but not in controls. Serum iron was negatively correlated to both C-terminal FGF23 (r = -0.386; P < 0.05) and intact FGF23 (r = -0.602; P < 0.0001) in ADHR. However, control subjects also demonstrated a negative relationship of serum iron with C-terminal FGF23 (r = -0.276; P < 0.001) but no relationship with intact FGF23. Longitudinally in ADHR subjects, C-terminal FGF23 and intact FGF23 concentrations changed negatively with iron concentrations (P < 0.001 and P = 0.055, respectively), serum phosphate changed negatively with C-terminal FGF23 and intact FGF23 (P < 0.001), and there was a positive relationship between serum iron and phosphate (P < 0.001). Low serum iron is associated with elevated FGF23 in ADHR. However, in controls, low serum iron was also associated with elevated C-terminal FGF23, but not intact FGF23, suggesting cleavage maintains homeostasis despite increased FGF23 expression.

  15. Familial exudative vitreoretinopathy and related retinopathies

    PubMed Central

    Gilmour, D F

    2015-01-01

    Familial exudative vitreoretinopathy (FEVR) is a rare inherited disorder of retinal angiogenesis. Cases can be autosomal dominant, autosomal recessive, or X-linked. FEVR patients have an avascular peripheral retina which, depending on the degree of ischaemia, causes the secondary complications of the disease. Expressivity may be asymmetric and is highly variable. Five genes have been identified that when mutated, cause FEVR; NDP (X-linked), FZD4 (autosomal dominant and recessive), LRP5 (autosomal dominant and recessive), TSPAN12 (autosomal dominant and recessive), and ZNF408 (autosomal dominant). Four of these genes have been shown to have a central role in Norrin/Frizzled4 signalling, suggesting a critical role for this pathway in retinal angiogenesis. In addition to the ocular features, LRP5 mutations can cause osteopenia and osteoporosis. All FEVR patients in whom molecular testing is not easily accessible should have dual energy X-ray absorptiometry (DEXA) scans to assess bone mineral density, as treatment can be initiated to reduce the risk of bone fractures. PMID:25323851

  16. Cutaneous squamous and neuroendocrine carcinoma: genetically and immunohistochemically different from Merkel cell carcinoma

    PubMed Central

    Pulitzer, Melissa P; Brannon, A Rose; Berger, Michael F; Louis, Peter; Scott, Sasinya N; Jungbluth, Achim A; Coit, Daniel G; Brownell, Isaac; Busam, Klaus J

    2016-01-01

    Cutaneous neuroendocrine (Merkel cell) carcinoma most often arises de novo in the background of a clonally integrated virus, the Merkel cell polyomavirus, and is notable for positive expression of retinoblastoma 1 (RB1) protein and low expression of p53 compared with the rare Merkel cell polyomavirus-negative Merkel cell carcinomas. Combined squamous and Merkel cell tumors are consistently negative for Merkel cell polyomavirus. Little is known about their immunophenotypic or molecular profile. Herein, we studied 10 combined cutaneous squamous cell and neuroendocrine carcinomas for immunohistochemical expression of p53, retinoblastoma 1 protein, neurofilament, p63, and cytokeratin 20 (CK20). We compared mutation profiles of five combined Merkel cell carcinomas and seven ‘pure’ Merkel cell carcinomas using targeted next-generation sequencing. Combined tumors were from the head, trunk, and leg of Caucasian males and one female aged 52–89. All cases were highly p53- and p63-positive and neurofilament-negative in the squamous component, whereas RB1-negative in both components. Eight out of 10 were p53-positive, 3/10 p63-positive, and 3/10 focally neurofilament-positive in the neuroendocrine component. Six out of 10 were CK20-positive in any part. By next-generation sequencing, combined tumors were highly mutated, with an average of 48 mutations per megabase compared with pure tumors, which showed 1.25 mutations per megabase. RB1 and p53 mutations were identified in all five combined tumors. Combined tumors represent an immunophenotypically and genetically distinct variant of primary cutaneous neuroendocrine carcinomas, notable for a highly mutated genetic profile, significant p53 expression and/or mutation, absent RB1 expression in the context of increased RB1 mutation, and minimal neurofilament expression. PMID:26022453

  17. Cutaneous squamous and neuroendocrine carcinoma: genetically and immunohistochemically different from Merkel cell carcinoma.

    PubMed

    Pulitzer, Melissa P; Brannon, A Rose; Berger, Michael F; Louis, Peter; Scott, Sasinya N; Jungbluth, Achim A; Coit, Daniel G; Brownell, Isaac; Busam, Klaus J

    2015-08-01

    Cutaneous neuroendocrine (Merkel cell) carcinoma most often arises de novo in the background of a clonally integrated virus, the Merkel cell polyomavirus, and is notable for positive expression of retinoblastoma 1 (RB1) protein and low expression of p53 compared with the rare Merkel cell polyomavirus-negative Merkel cell carcinomas. Combined squamous and Merkel cell tumors are consistently negative for Merkel cell polyomavirus. Little is known about their immunophenotypic or molecular profile. Herein, we studied 10 combined cutaneous squamous cell and neuroendocrine carcinomas for immunohistochemical expression of p53, retinoblastoma 1 protein, neurofilament, p63, and cytokeratin 20 (CK20). We compared mutation profiles of five combined Merkel cell carcinomas and seven 'pure' Merkel cell carcinomas using targeted next-generation sequencing. Combined tumors were from the head, trunk, and leg of Caucasian males and one female aged 52-89. All cases were highly p53- and p63-positive and neurofilament-negative in the squamous component, whereas RB1-negative in both components. Eight out of 10 were p53-positive, 3/10 p63-positive, and 3/10 focally neurofilament-positive in the neuroendocrine component. Six out of 10 were CK20-positive in any part. By next-generation sequencing, combined tumors were highly mutated, with an average of 48 mutations per megabase compared with pure tumors, which showed 1.25 mutations per megabase. RB1 and p53 mutations were identified in all five combined tumors. Combined tumors represent an immunophenotypically and genetically distinct variant of primary cutaneous neuroendocrine carcinomas, notable for a highly mutated genetic profile, significant p53 expression and/or mutation, absent RB1 expression in the context of increased RB1 mutation, and minimal neurofilament expression.

  18. A novel truncation mutation in CRYBB1 associated with autosomal dominant congenital cataract with nystagmus.

    PubMed

    Rao, Yan; Dong, Sufang; Li, Zuhua; Yang, Guohua; Peng, Chunyan; Yan, Ming; Zheng, Fang

    2017-01-01

    To identify the potential candidate genes for a large Chinese family with autosomal dominant congenital cataract (ADCC) and nystagmus, and investigate the possible molecular mechanism underlying the role of the candidate genes in cataractogenesis. We combined the linkage analysis and direct sequencing for the candidate genes in the linkage regions to identify the causative mutation. The molecular and bio-functional properties of the proteins encoded by the candidate genes was further explored with biophysical and biochemical studies of the recombinant wild-type and mutant proteins. We identified a c. C749T (p.Q227X) transversion in exon 6 of CRYBB1 , a cataract-causative gene. This nonsense mutation changes a phylogenetically conserved glutamine to a stop codon and is predicted to truncate the C-terminus of the wild-type protein by 26 amino acids. Comparison of the biophysical and biochemical properties of the recombinant full-length and truncated βB1-crystallins revealed that the mutation led to the insolubility and the phase separation phenomenon of the truncated protein with a changed conformation. Meanwhile, the thermal stability of the truncated βB1-crystallin was significantly decreased, and the mutation diminished the chaperoning ability of αA-crystallin with the mutant under heating stress. Our findings highlight the importance of the C-terminus in βB1-crystallin in maintaining the crystalline function and stability, and provide a novel insight into the molecular mechanism underlying the pathogenesis of human autosomal dominant congenital cataract.

  19. A de novo mutation of the MYH7 gene in a large Chinese family with autosomal dominant myopathy

    PubMed Central

    Oda, Tetsuya; Xiong, Hui; Kobayashi, Kazuhiro; Wang, Shuo; Satake, Wataru; Jiao, Hui; Yang, Yanling; Cha, Pei-Chieng; Hayashi, Yukiko K; Nishino, Ichizo; Suzuki, Yutaka; Sugano, Sumio; Wu, Xiru; Toda, Tatsushi

    2015-01-01

    Laing distal myopathy (LDM) is an autosomal dominant myopathy that is caused by mutations in the slow/beta cardiac myosin heavy-chain (MYH7) gene. It has been recently reported that LDM presents with a wide range of clinical manifestations. We herein report a large Chinese family with autosomal dominant myopathy. The affected individuals in the family presented with foot drop in early childhood, along with progressive distal and proximal limb weakness. Their characteristic symptoms include scapular winging and scoliosis in the early disease phase and impairment of ambulation in the advanced phase. Although limb-girdle muscle dystrophy (LGMD) was suspected initially, a definite diagnosis could not be reached. As such, we performed linkage analysis and detected four linkage regions, namely 1q23.2-24.1, 14q11.2-12, 15q26.2-26.3 and 17q24.3. Through subsequent whole exome sequencing, we found a de novo p.K1617del causative mutation in the MYH7 gene and diagnosed the disease as LDM. This is the first LDM case in China. Our patients have severe clinical manifestations that mimic LGMD in comparison with the patients with the same mutation reported elsewhere. PMID:27081534

  20. Selkirk Rex: Morphological and Genetic Characterization of a New Cat Breed

    PubMed Central

    2012-01-01

    Rexoid, curly hair mutations have been selected to develop new domestic cat breeds. The Selkirk Rex is the most recently established curly-coated cat breed originating from a spontaneous mutation that was discovered in the United States in 1987. Unlike the earlier and well-established Cornish and Devon Rex breeds with curly-coat mutations, the Selkirk Rex mutation is suggested as autosomal dominant and has a different curl phenotype. This study provides a genetic analysis of the Selkirk Rex breed. An informal segregation analysis of genetically proven matings supported an autosomal, incomplete dominant expression of the curly trait in the Selkirk Rex. Homozygous curl cats can be distinguished from heterozygous cats by head and body type, as well as the presentation of the hair curl. Bayesian clustering of short tandem repeat (STR) genotypes from 31 cats that represent the future breeding stock supported the close relationship of the Selkirk Rex to the British Shorthair, Scottish Fold, Persian, and Exotic Shorthair, suggesting the Selkirk as part of the Persian breed family. The high heterozygosity of 0.630 and the low mean inbreeding coefficient of 0.057 suggest that Selkirk Rex has a diverse genetic foundation. A new locus for Selkirk autosomal dominant Rex, SADRE, is suggested for the curly trait. PMID:22837475

  1. Loss of Fumarate Hydratase and Aberrant Protein Succination Detected With S-(2-Succino)-Cysteine Staining to Identify Patients With Multiple Cutaneous and Uterine Leiomyomatosis and Hereditary Leiomyomatosis and Renal Cell Cancer Syndrome.

    PubMed

    Llamas-Velasco, Mar; Requena, Luis; Adam, Julie; Frizzell, Norma; Hartmann, Arndt; Mentzel, Thomas

    2016-12-01

    Hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome is an autosomal dominant disorder caused by heterozygotic germline mutations in fumarate hydratase (FH) with incomplete penetrance, and clinically challenging to diagnose. Immunohistochemical stainings may favor an earlier diagnosis. The authors have tested 31 smooth muscle neoplasms. Ten of the 13 lesions from patients with HLRCC syndrome showed negative FH staining. Most sporadic piloleiomyomas presented strongly positive FH staining although 5 cases were negative. Sensitivity of FH staining in our series is 83.3% but specificity is 75%. Anti-S-(2-succino)-cysteine (2SC) showed the opposite intensity staining pattern and showed great correlation with anti-FH (rho spearman = -0.797). Anti-2SC staining increased the diagnostic accuracy in 19% of the cases. The main limitation of this study is the lack additional clinical data to further classify the cases as the case inclusion was histopathological. Negative FH staining could indicate a high risk of HLRCC but it could also suggest the presence of a syndrome in up to 25% of sporadic cases. Thus, when there is a doubtful case, anti-2SC may be added to exclude the syndrome if a negative staining is found.

  2. Rationale for an adjunctive therapy with fenofibrate in pharmacoresistant nocturnal frontal lobe epilepsy.

    PubMed

    Puligheddu, Monica; Melis, Miriam; Pillolla, Giuliano; Milioli, Giulia; Parrino, Liborio; Terzano, Giovanni Mario; Aroni, Sonia; Sagheddu, Claudia; Marrosu, Francesco; Pistis, Marco; Muntoni, Anna Lisa

    2017-10-01

    Nocturnal frontal lobe epilepsy (NFLE) is an idiopathic partial epilepsy with a family history in about 25% of cases, with autosomal dominant inheritance (autosomal dominant NFLE [ADNFLE]). Traditional antiepileptic drugs are effective in about 55% of patients, whereas the rest remains refractory. One of the key pathogenetic mechanisms is a gain of function of neuronal nicotinic acetylcholine receptors (nAChRs) containing the mutated α4 or β2 subunits. Fenofibrate, a common lipid-regulating drug, is an agonist at peroxisome proliferator-activated receptor alpha (PPARα) that is a ligand-activated transcription factor, which negatively modulates the function of β2-containing nAChR. To test clinical efficacy of adjunctive therapy with fenofibrate in pharmacoresistant ADNFLE\\NFLE patients, we first demonstrated the effectiveness of fenofibrate in a mutated mouse model displaying both disease genotype and phenotype. We first tested the efficacy of fenofibrate in transgenic mice carrying the mutation in the α4-nAChR subunit (Chrna4S252F) homologous to that found in humans. Subsequently, an add-on protocol was implemented in a clinical setting and fenofibrate was administered to pharmacoresistant NFLE patients. Here, we show that a chronic fenofibrate diet markedly reduced the frequency of large inhibitory postsynaptic currents (IPSCs) recorded from cortical pyramidal neurons in Chrna4S252F mice, and prevented nicotine-induced increase of IPSC frequency. Moreover, fenofibrate abolished differences between genotypes in the frequency of sleep-related movements observed under basal conditions. Patients affected by NFLE, nonresponders to traditional therapy, by means of adjunctive therapy with fenofibrate displayed a reduction of seizure frequency. Furthermore, digital video-polysomnographic recordings acquired in NFLE subjects after 6 months of adjunctive fenofibrate substantiated the significant effects on control of motor-behavioral seizures. Our preclinical and clinical studies suggest PPARα as a novel disease-modifying target for antiepileptic drugs due to its ability to regulate dysfunctional nAChRs. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  3. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    PubMed Central

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular spectrum of PRPH2, PRPF8, RHO, RP1, SNRNP200, and TOPORS-associated adRP by the identification of 17 novel mutations. PMID:28076437

  4. Mutations in POGLUT1, Encoding Protein O-Glucosyltransferase 1, Cause Autosomal-Dominant Dowling-Degos Disease

    PubMed Central

    Basmanav, F. Buket; Oprisoreanu, Ana-Maria; Pasternack, Sandra M.; Thiele, Holger; Fritz, Günter; Wenzel, Jörg; Größer, Leopold; Wehner, Maria; Wolf, Sabrina; Fagerberg, Christina; Bygum, Anette; Altmüller, Janine; Rütten, Arno; Parmentier, Laurent; El Shabrawi-Caelen, Laila; Hafner, Christian; Nürnberg, Peter; Kruse, Roland; Schoch, Susanne; Hanneken, Sandra; Betz, Regina C.

    2014-01-01

    Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To identify additional causes of DDD, we performed exome sequencing in five unrelated affected individuals without mutations in KRT5. Data analysis identified three heterozygous mutations from these individuals, all within the same gene. These mutations, namely c.11G>A (p.Trp4∗), c.652C>T (p.Arg218∗), and c.798-2A>C, are within POGLUT1, which encodes protein O-glucosyltransferase 1. Further screening of unexplained cases for POGLUT1 identified six additional mutations, as well as two of the above described mutations. Immunohistochemistry of skin biopsies of affected individuals with POGLUT1 mutations showed significantly weaker POGLUT1 staining in comparison to healthy controls with strong localization of POGLUT1 in the upper parts of the epidermis. Immunoblot analysis revealed that translation of either wild-type (WT) POGLUT1 or of the protein carrying the p.Arg279Trp substitution led to the expected size of about 50 kDa, whereas the c.652C>T (p.Arg218∗) mutation led to translation of a truncated protein of about 30 kDa. Immunofluorescence analysis identified a colocalization of the WT protein with the endoplasmic reticulum and a notable aggregating pattern for the truncated protein. Recently, mutations in POFUT1, which encodes protein O-fucosyltransferase 1, were also reported to be responsible for DDD. Interestingly, both POGLUT1 and POFUT1 are essential regulators of Notch activity. Our results furthermore emphasize the important role of the Notch pathway in pigmentation and keratinocyte morphology. PMID:24387993

  5. Identification and analysis of CHEK2 germline mutations in Chinese BRCA1/2-negative breast cancer patients.

    PubMed

    Fan, Zhenhua; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xu, Ye; Xie, Yuntao

    2018-05-01

    Cell-cycle-checkpoint kinase 2 (CHEK2) is an important moderate-penetrance breast cancer predisposition gene; however, recurrent CHEK2 mutations found in Caucasian women are very rare in Chinese population. We investigated the mutation spectrum and clinical relevance of CHEK2 germline mutations in Chinese breast cancer patients. The entire coding regions and splicing sites of CHEK2 were screened in 7657 Chinese BRCA1/2-negative breast cancer patients, using 62-gene panel-based sequencing. Out of 7657 BRCA1/2-negative breast cancer patients, 26 (0.34%) carried CHEK2 pathogenic germline mutations. Most of these mutations (92.3%, 24/26) were nonsense or frameshift mutations; 84.6% (22/26) of them were in forkhead-associated (FHA) or kinase domains. Of the 18 types of CHEK2 mutations we found, 61.1% (11/18) of were novel mutations and two recurrent mutations (Y139X and R137X) were found in this cohort. Patients with CHEK2 mutations were significantly more likely to have family histories of breast and/or ovarian cancer (23.1% vs. 8.6%, p = 0.022) and family histories of any cancer (50.0% vs. 31.6%, p = 0.044); and were significantly more likely to have lymph node-positive (53.8% vs. 27.3%, p = 0.002) and progesterone receptor (PR)-positive (88.5% vs. 64.5%, p = 0.011) breast cancers. Among Chinese breast cancer patients, the CHEK2 germline mutation rate is approximately 0.34% and two specific mutations (Y139X and R137X) are recurrent. Patients with CHEK2 mutations are significantly more likely to have family histories of cancer, and to develop lymph node-positive and/or PR-positive breast cancers.

  6. Nonsense-Mediated Decay in Genetic Disease: Friend or Foe?

    PubMed Central

    Miller, Jake N.; Pearce, David A.

    2014-01-01

    Eukaryotic cells utilize various RNA quality control mechanisms to ensure high fidelity of gene expression, thus protecting against the accumulation of nonfunctional RNA and the subsequent production of abnormal peptides. Messenger RNAs (mRNAs) are largely responsible for protein production, and mRNA quality control is particularly important for protecting the cell against the downstream effects of genetic mutations. Nonsense-mediated decay (NMD) is an evolutionarily conserved mRNA quality control system in all eukaryotes that degrades transcripts containing premature termination codons (PTCs). By degrading these aberrant transcripts, NMD acts to prevent the production of truncated proteins that could otherwise harm the cell through various insults, such as dominant negative effects or the ER stress response. Although NMD functions to protect the cell against the deleterious effects of aberrant mRNA, there is a growing body of evidence that mutation-, codon-, gene-, cell-, and tissue-specific differences in NMD efficiency can alter the underlying pathology of genetic disease. In addition, the protective role that NMD plays in genetic disease can undermine current therapeutic strategies aimed at increasing the production of full-length functional protein from genes harboring nonsense mutations. Here, we review the normal function of this RNA surveillance pathway and how it is regulated, provide current evidence for the role that it plays in modulating genetic disease phenotypes, and how NMD can be used as a therapeutic target. PMID:25485595

  7. Prevalence of precore-defective mutant of hepatitis B virus in HBV carriers.

    PubMed

    Niitsuma, H; Ishii, M; Saito, Y; Miura, M; Kobayashi, K; Ohori, H; Toyota, T

    1995-08-01

    Two hundred and seventy-three serum specimens from hepatitis B virus (HBV) carriers were examined for the presence of a characteristic one point mutation at nucleotide (nt) 1896 from the EcoRI site of the HBV genome in the precore region (the preC mutant) using restriction fragment length polymorphism (RFLP) analysis. This assay approach could detect preC mutants or wild-type sequences when either form constituted more than 10% of the total sample. Overall, 65.5% (76/116) of HBeAg-positive carriers had only the preC wild-type. All HBeAg-positive asymptomatic carriers (n = 14) had only the preC wild-type. In patients with chronic hepatitis B and in anti-HBe-positive asymptomatic carriers, increased prevalence of the preC mutant was associated with the development of anti-HBe antibodies and normalization of the serum alanine aminotransferase concentration. Furthermore, 27 (29.0%) of 93 HBeAg-negative carriers had unexpectedly preC wild-type sequences only. Direct sequencing of the HBV precore region of HBV specimens from 24 patients revealed no mutation at nt 1896, supporting the specificity of the RFLP analysis. These results suggest that RFLP analysis was accurate for the detection of the preC mutation and that the absence of serum HBeAg cannot be explained solely by the dominance of the preC mutant.

  8. Role of TSP-5/COMP in pseudoachondroplasia.

    PubMed

    Posey, Karen L; Hayes, Elizabeth; Haynes, Richard; Hecht, Jacqueline T

    2004-06-01

    Pseudoachondroplasia (PSACH) is a well-characterized dwarfing condition associated with disproportionate short stature, abnormal joints and osteoarthritis requiring joint replacement. PSACH is caused by mutations in cartilage oligomeric matrix protein (COMP). COMP, the fifth member of the thrombospondin (TSP) gene family, is a pentameric protein found primarily in the extracellular matrix of musculoskeletal tissues. Functional studies have shown that COMP binds types II and IX collagens but the role of COMP in the extracellular matrix remains to be defined. Mutations in COMP interfere with calcium-binding and protein conformation. PSACH growth plate and growth plate chondrocytes studies indicate that COMP mutations have a dominant negative effect with both COMP and type IX collagen being retained in large rER cisternae. This massive retention causes impaired chondrocyte function with little COMP secreted into the matrix and premature loss of chondrocytes. Deficiency of linear growth results from loss of chondrocytes from the growth plate. Secondarily, the matrix contains minimal COMP, which may be normal and/or mutant, and little type IX collagen. This deficiency results in abnormal joints that are easily eroded and cause painful osteoarthritis. Unlike other misfolded proteins that are targeted for degradation, much of the retained COMP escapes degradation, compromises cell function, and causes cell death. Gene therapy will need to target the reduction of COMP in order to restore normal chondrocyte function and longevity.

  9. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia.

    PubMed

    Drummond, Revel S M; Martínez-Sánchez, N Marcela; Janssen, Bart J; Templeton, Kerry R; Simons, Joanne L; Quinn, Brian D; Karunairetnam, Sakuntala; Snowden, Kimberley C

    2009-12-01

    One of the key factors that defines plant form is the regulation of when and where branches develop. The diversity of form observed in nature results, in part, from variation in the regulation of branching between species. Two CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes, CCD7 and CCD8, are required for the production of a branch-suppressing plant hormone. Here, we report that the decreased apical dominance3 (dad3) mutant of petunia (Petunia hybrida) results from the mutation of the PhCCD7 gene and has a less severe branching phenotype than mutation of PhCCD8 (dad1). An analysis of the expression of this gene in wild-type, mutant, and grafted petunia suggests that in petunia, CCD7 and CCD8 are coordinately regulated. In contrast to observations in Arabidopsis (Arabidopsis thaliana), ccd7ccd8 double mutants in petunia show an additive phenotype. An analysis using dad3 or dad1 mutant scions grafted to wild-type rootstocks showed that when these plants produce adventitious mutant roots, branching is increased above that seen in plants where the mutant roots are removed. The results presented here indicate that mutation of either CCD7 or CCD8 in petunia results in both the loss of an inhibitor of branching and an increase in a promoter of branching.

  10. Phenylalanine-427 of anthrax protective antigen functions in both pore formation and protein translocation.

    PubMed

    Sun, Jianjun; Lang, Alexander E; Aktories, Klaus; Collier, R John

    2008-03-18

    The protective antigen (PA) moiety of anthrax toxin forms a heptameric pore in endosomal membranes of mammalian cells and translocates the enzymatic moieties of the toxin to the cytosol of these cells. Phenylalanine-427 (F427), a solvent-exposed residue in the lumen of the pore, was identified earlier as being crucial for the transport function of PA. The seven F427 residues were shown in electrophysiological studies to form a clamp that catalyzes protein translocation through the pore. Here, we demonstrate by a variety of tests that certain F427 mutations also profoundly inhibit the conformational transition of the heptameric PA prepore to the pore and thereby block pore formation in membranes. Lysine, arginine, aspartic acid, or glycine at position 427 strongly inhibited this acidic pH-induced conformational transition, whereas histidine, serine, and threonine had virtually no effect on this step, but inhibited translocation instead. Thus, it is possible to inhibit pore formation or translocation selectively, depending on the choice of the side chain at position 427; and the net inhibition of the PA transport function by any given F427 mutation is the product of its effects on both steps. Mutations inhibiting either or both steps elicited a strong dominant-negative phenotype. These findings demonstrate the dual functions of F427 and underline its central role in transporting the enzymatic moieties of anthrax toxin across membranes.

  11. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells

    PubMed Central

    Derksen, Patrick W. B.; Tjin, Esther; Meijer, Helen P.; Klok, Melanie D.; Mac Gillavry, Harold D.; van Oers, Marinus H. J.; Lokhorst, Henk M.; Bloem, Andries C.; Clevers, Hans; Nusse, Roel; van der Neut, Ronald; Spaargaren, Marcel; Pals, Steven T.

    2004-01-01

    The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also influenced by signals from the environment. In multiple myeloma (MM), the factors and signals coming from the bone marrow microenvironment are possibly even essential for the growth of the tumor cells. As targets for intervention, these signals may be equally important as mutated oncogenes. Given their oncogenic potential, WNT signals form a class of paracrine growth factors that could act to influence MM cell growth. In this paper, we report that MM cells have hallmarks of active WNT signaling, whereas the cells have not undergone detectable mutations in WNT signaling genes such as adenomatous polyposis coli and β-catenin (CTNNB1). We show that the malignant MM plasma cells overexpress β-catenin, including its N-terminally unphosphorylated form, suggesting active β-catenin/T cell factor-mediated transcription. Further accumulation and nuclear localization of β-catenin, and/or increased cell proliferation, was achieved by stimulation of WNT signaling with either Wnt3a, LiCl, or the constitutively active S33Y mutant of β-catenin. In contrast, by blocking WNT signaling by dominant-negative T cell factor, we can interfere with the growth of MM cells. We therefore suggest that MM cells are dependent on an active WNT signal, which may have important implications for the management of this incurable form of cancer. PMID:15067127

  12. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 Is Involved in the Production of Negative and Positive Branching Signals in Petunia1[W][OA

    PubMed Central

    Drummond, Revel S.M.; Martínez-Sánchez, N. Marcela; Janssen, Bart J.; Templeton, Kerry R.; Simons, Joanne L.; Quinn, Brian D.; Karunairetnam, Sakuntala; Snowden, Kimberley C.

    2009-01-01

    One of the key factors that defines plant form is the regulation of when and where branches develop. The diversity of form observed in nature results, in part, from variation in the regulation of branching between species. Two CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes, CCD7 and CCD8, are required for the production of a branch-suppressing plant hormone. Here, we report that the decreased apical dominance3 (dad3) mutant of petunia (Petunia hybrida) results from the mutation of the PhCCD7 gene and has a less severe branching phenotype than mutation of PhCCD8 (dad1). An analysis of the expression of this gene in wild-type, mutant, and grafted petunia suggests that in petunia, CCD7 and CCD8 are coordinately regulated. In contrast to observations in Arabidopsis (Arabidopsis thaliana), ccd7ccd8 double mutants in petunia show an additive phenotype. An analysis using dad3 or dad1 mutant scions grafted to wild-type rootstocks showed that when these plants produce adventitious mutant roots, branching is increased above that seen in plants where the mutant roots are removed. The results presented here indicate that mutation of either CCD7 or CCD8 in petunia results in both the loss of an inhibitor of branching and an increase in a promoter of branching. PMID:19846541

  13. Disorders with similar clinical phenotypes reveal underlying genetic interaction: SATB2 acts as an activator of the UPF3B gene

    PubMed Central

    Leoyklang, Petcharat; Suphapeetiporn, Kanya; Srichomthong, Chalurmpon; Tongkobpetch, Siraprapa; Fietze, Stefanie; Dorward, Heidi; Cullinane, Andrew R.; Gahl, William A.; Huizing, Marjan; Shotelersuk, Vorasuk

    2014-01-01

    Two syndromic cognitive impairment disorders have very similar craniofacial dysmorphisms. One is caused by mutations of SATB2, a transcription regulator, and the other by heterozygous mutations leading to premature stop codons in UPF3B, encoding a member of the nonsense-mediated mRNA decay complex. Here we demonstrate that the products of these two causative genes function in the same pathway. We show that the SATB2 nonsense mutation in our patient leads to a truncated protein that localizes to the nucleus, forms a dimer with wild-type SATB2 and interferes with its normal activity. This suggests that the SATB2 nonsense mutation has a dominant negative effect. The patient’s leukocytes had significantly decreased UPF3B mRNA compared to controls. This effect was replicated both in vitro, where siRNA knockdown of SATB2 in HEK293 cells resulted in decreased UPF3B expression, and in vivo, where embryonic tissue of Satb2 knock-out mice showed significantly decreased Upf3b expression. Furthermore, chromatin immunoprecipitation demonstrates that SATB2 binds to the UPF3B promoter, and a luciferase reporter assay confirmed that SATB2 expression significantly activates gene transcription using the UPF3B promoter. These findings indicate that SATB2 acts as an activator UPF3B expression through binding to its promoter. This study emphasizes the value of recognizing disorders with similar clinical phenotypes to explore underlying mechanisms of genetic interaction. PMID:23925499

  14. DNA hypermethylation and X chromosome inactivation are major determinants of phenotypic variation in women heterozygous for G6PD mutations.

    PubMed

    Wang, Jin; Xiao, Qi-Zhi; Chen, You-Ming; Yi, Sheng; Liu, Dun; Liu, Yan-Hui; Zhang, Cui-Mei; Wei, Xiao-Feng; Zhou, Yu-Qiu; Zhong, Xing-Ming; Zhao, Cun-You; Xiong, Fu; Wei, Xiang-Cai; Xu, Xiang-Min

    2014-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked incompletely dominant enzyme deficiency that results from G6PD gene mutations. Women heterozygous for G6PD mutations exhibit variation in the loss of enzyme activity but the cause of this phenotypic variation is unclear. We determined DNA methylation and X-inactivation patterns in 71 G6PD-deficient female heterozygotes and 68 G6PD non-deficient controls with the same missense mutations (G6PD Canton c.1376G>T or Kaiping c.1388G>A) to correlate determinants with variable phenotypes. Specific CpG methylations within the G6PD promoter were significantly higher in G6PD-deficient heterozygotes than in controls. Preferential X-inactivation of the G6PD wild-type allele was determined in heterozygotes. The incidence of preferential X-inactivation was 86.2% in the deficient heterozygote group and 31.7% in the non-deficient heterozygote group. A significant negative correlation was observed between X-inactivation ratios of the wild-type allele and G6PD/6-phosphogluconate dehydrogenase (6PGD) ratios in heterozygous G6PD Canton (r=-0.657, p<0.001) or Kaiping (r=-0.668, p<0.001). Multivariate logistic regression indicated that heterozygotes with hypermethylation of specific CpG sites in the G6PD promoter and preferential X-inactivation of the wild-type allele were at risk of enzyme deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Long-term response to growth hormone therapy in a patient with short stature caused by a novel heterozygous mutation in NPR2.

    PubMed

    Vasques, Gabriela A; Hisado-Oliva, Alfonso; Funari, Mariana F A; Lerario, Antonio M; Quedas, Elisangela P S; Solberg, Paulo; Heath, Karen E; Jorge, Alexander A L

    2017-01-01

    Heterozygous loss-of-function mutations in the natriuretic peptide receptor B gene (NPR2) are responsible for short stature in patients without a distinct phenotype. Some of these patients have been treated with recombinant human growth hormone (rhGH) therapy with a variable response. The proband was a healthy boy who presented at the age of 5.1 years with familial short stature (height SDS of -3.1). He had a prominent forehead, a depressed nasal bridge, centripetal fat distribution and a high-pitched voice resembling that of children with GH deficiency. His hormonal evaluation showed low insulin-like growth factor-1 (IGF-1) but a normal GH peak at a stimulation test. During the first year of rhGH treatment, his growth velocity increased from 3.4 to 10.4 cm/year (height SDS change of +1.1). At the last visit, he was 8.8 years old and still on treatment, his growth velocity was 6.4 cm/year and height SDS was -1.8. We identified through exome sequencing a novel heterozygous loss-of-function NPR2 mutation (c.2905G>C; p.Val969Leu). Cells cotransfected with the p.Val969Leu mutant showed a significant decrease in cyclic guanosine monophosphate (cGMP) production compared to the wild type (WT), suggesting a dominant negative effect. This case reveals a novel heterozygous loss-of-function NPR2 mutation responsible for familial short stature and the good response of rhGH therapy in this patient.

  16. R248Q mutation--Beyond p53-DNA binding.

    PubMed

    Ng, Jeremy W K; Lama, Dilraj; Lukman, Suryani; Lane, David P; Verma, Chandra S; Sim, Adelene Y L

    2015-12-01

    R248 in the DNA binding domain (DBD) of p53 interacts directly with the minor groove of DNA. Earlier nuclear magnetic resonance (NMR) studies indicated that the R248Q mutation resulted in conformation changes in parts of DBD far from the mutation site. However, how information propagates from the mutation site to the rest of the DBD is still not well understood. We performed a series of all-atom molecular dynamics (MD) simulations to dissect sterics and charge effects of R248 on p53-DBD conformation: (i) wild-type p53 DBD; (ii) p53 DBD with an electrically neutral arginine side-chain; (iii) p53 DBD with R248A; (iv) p53 DBD with R248W; and (v) p53 DBD with R248Q. Our results agree well with experimental observations of global conformational changes induced by the R248Q mutation. Our simulations suggest that both charge- and sterics are important in the dynamics of the loop (L3) where the mutation resides. We show that helix 2 (H2) dynamics is altered as a result of a change in the hydrogen bonding partner of D281. In turn, neighboring L1 dynamics is altered: in mutants, L1 predominantly adopts the recessed conformation and is unable to interact with the major groove of DNA. We focused our attention the R248Q mutant that is commonly found in a wide range of cancer and observed changes at the zinc-binding pocket that might account for the dominant negative effects of R248Q. Furthermore, in our simulations, the S6/S7 turn was more frequently solvent exposed in R248Q, suggesting that there is a greater tendency of R248Q to partially unfold and possibly lead to an increased aggregation propensity. Finally, based on the observations made in our simulations, we propose strategies for the rescue of R248Q mutants. © 2015 Wiley Periodicals, Inc.

  17. Clinical Characterization of Patients With Autosomal Dominant Short Stature due to Aggrecan Mutations

    PubMed Central

    Gkourogianni, Alexandra; Andrew, Melissa; Tyzinski, Leah; Crocker, Melissa; Douglas, Jessica; Dunbar, Nancy; Fairchild, Jan; Funari, Mariana F. A.; Heath, Karen E.; Jorge, Alexander A. L.; Kurtzman, Tracey; LaFranchi, Stephen; Lalani, Seema; Lebl, Jan; Lin, Yuezhen; Los, Evan; Newbern, Dorothee; Nowak, Catherine; Olson, Micah; Popovic, Jadranka; Průhová, Štěpánka; Elblova, Lenka; Quintos, Jose Bernardo; Segerlund, Emma; Sentchordi, Lucia; Shinawi, Marwan; Stattin, Eva-Lena; Swartz, Jonathan; del Angel, Ariadna González; Cuéllar, Sinhué Diaz; Hosono, Hidekazu; Sanchez-Lara, Pedro A.; Hwa, Vivian; Baron, Jeffrey; Dauber, Andrew

    2017-01-01

    Context: Heterozygous mutations in the aggrecan gene (ACAN) cause autosomal dominant short stature with accelerated skeletal maturation. Objective: We sought to characterize the phenotypic spectrum and response to growth-promoting therapies. Patients and Methods: One hundred three individuals (57 females, 46 males) from 20 families with autosomal dominant short stature and heterozygous ACAN mutations were identified and confirmed using whole-exome sequencing, targeted next-generation sequencing, and/or Sanger sequencing. Clinical information was collected from the medical records. Results: Identified ACAN variants showed perfect cosegregation with phenotype. Adult individuals had mildly disproportionate short stature [median height, −2.8 standard deviation score (SDS); range, −5.9 to −0.9] and a history of early growth cessation. The condition was frequently associated with early-onset osteoarthritis (12 families) and intervertebral disc disease (9 families). No apparent genotype–phenotype correlation was found between the type of ACAN mutation and the presence of joint complaints. Childhood height was less affected (median height, −2.0 SDS; range, −4.2 to −0.6). Most children with ACAN mutations had advanced bone age (bone age − chronologic age; median, +1.3 years; range, +0.0 to +3.7 years). Nineteen individuals had received growth hormone therapy with some evidence of increased growth velocity. Conclusions: Heterozygous ACAN mutations result in a phenotypic spectrum ranging from mild and proportionate short stature to a mild skeletal dysplasia with disproportionate short stature and brachydactyly. Many affected individuals developed early-onset osteoarthritis and degenerative disc disease, suggesting dysfunction of the articular cartilage and intervertebral disc cartilage. Additional studies are needed to determine the optimal treatment strategy for these patients. PMID:27870580

  18. Insights into the pathogenesis of dominant retinitis pigmentosa associated with a D477G mutation in RPE65.

    PubMed

    Choi, Elliot H; Suh, Susie; Sander, Christopher L; Hernandez, Christian J Ortiz; Bulman, Elizabeth R; Khadka, Nimesh; Dong, Zhiqian; Shi, Wuxian; Palczewski, Krzysztof; Kiser, Philip D

    2018-04-12

    RPE65 is the essential trans-cis isomerase of the classical retinoid (visual) cycle. Mutations in RPE65 give rise to severe retinal dystrophies, most of which are associated with loss of protein function and recessive inheritance. The only known exception is a c.1430G>A (D477G) mutation that gives rise to dominant retinitis pigmentosa with delayed onset and choroidal and macular involvement. Position 477 is distant from functionally critical regions of RPE65. Hence, the mechanism of D477G pathogenicity remains unclear, although protein misfolding and aggregation mechanisms have been suggested. We characterized a D477G knock-in mouse model which exhibited mild age-dependent changes in retinal structure and function. Immunoblot analysis of protein extracts from the eyes of the knock-in mice demonstrated the presence of ubiquitinated RPE65 and reduced RPE65 expression. We observed an accumulation of retinyl esters in the knock-in mice as well as a delay in rhodopsin regeneration kinetics and diminished electroretinography responses, indicative of RPE65 functional impairment induced by the D477G mutation in vivo. However, a cell line expressing D477G RPE65 revealed protein expression levels, cellular localization, and retinoid isomerase activity comparable to cells expressing wild-type protein. Structural analysis of an RPE65 chimera suggested that the D477G mutation does not perturb protein folding or tertiary structure. Instead, the mutation generates an aggregation-prone surface that could induce cellular toxicity through abnormal complex formation as suggested by crystal packing analysis. These results indicate that a toxic gain-of-function induced by the D477G RPE65 substitution may play a role in the pathogenesis of this form of dominant retinitis pigmentosa.

  19. PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a γ-secretase inhibitor.

    PubMed

    Wang, Kai; Zhang, Qin; Li, Danan; Ching, Keith; Zhang, Cathy; Zheng, Xianxian; Ozeck, Mark; Shi, Stephanie; Li, Xiaorong; Wang, Hui; Rejto, Paul; Christensen, James; Olson, Peter

    2015-03-15

    To identify and characterize novel, activating mutations in Notch receptors in breast cancer and to determine response to the gamma secretase inhibitor (GSI) PF-03084014. We used several computational approaches, including novel algorithms, to analyze next-generation sequencing data and related omic datasets from The Cancer Genome Atlas (TCGA) breast cancer cohort. Patient-derived xenograft (PDX) models were sequenced, and Notch-mutant models were treated with PF-03084014. Gene-expression and functional analyses were performed to study the mechanism of activation through mutation and inhibition by PF-03084014. We identified mutations within and upstream of the PEST domains of NOTCH1, NOTCH2, and NOTCH3 in the TCGA dataset. Mutations occurred via several genetic mechanisms and compromised the function of the PEST domain, a negative regulatory domain commonly mutated in other cancers. Focal amplifications of NOTCH2 and NOTCH3 were also observed, as were heterodimerization or extracellular domain mutations at lower incidence. Mutations and amplifications often activated the Notch pathway as evidenced by increased expression of canonical Notch target genes, and functional mutations were significantly enriched in the triple-negative breast cancer subtype (TNBC). PDX models were also identified that harbored PEST domain mutations, and these models were highly sensitive to PF-03084014. This work suggests that Notch-altered breast cancer constitutes a bona fide oncogenic driver segment with the most common alteration being PEST domain mutations present in multiple Notch receptors. Importantly, functional studies suggest that this newly identified class can be targeted with Notch inhibitors, including GSIs. ©2015 American Association for Cancer Research.

  20. Pitfalls of mapping a large Turkish consanguineous family with vertical monilethrix inheritance.

    PubMed

    Celep, F; Uzumcu, A; Sonmez, F M; Uyguner, O; Balci, Y Isik; Bahadir, S; Karaguzel, A

    2009-01-01

    Monilethrix, a rare autosomal dominant disease characterized by hair fragility and follicular hyperkeratosis, is caused by mutations in three type II hair cortex keratins. The human keratin family comprises 54 members, 28 type I and 26 type II. The phenotype shows variable penetrance and results in hair fragility and patchy dystrophic alopecia. In our study, Monilethrix was diagnosed on the basis of clinical characteristics and microscopic examination in a family with 11 affected members. Haplotype analysis was performed by three Simple Tandem Repeat markers (STR) and KRT86 gene was sequenced for the identification of the disease causing mutation. In the results of this, autosomal dominant mutation (E402K) in exon 7 of KRT86 gene was identified as a cause of Moniltherix in the large family from Turkey.

Top