Sample records for dominant negative splicing

  1. A truncated human peroxisome proliferator-activated receptor alpha splice variant with dominant negative activity.

    PubMed

    Gervois, P; Torra, I P; Chinetti, G; Grötzinger, T; Dubois, G; Fruchart, J C; Fruchart-Najib, J; Leitersdorf, E; Staels, B

    1999-09-01

    that the dominant negative effect of PPARalphatr might occur through competition for essential coactivators. In addition, PPARalphatr interfered with transcriptional activity of other nuclear receptors such as PPARgamma, hepatic nuclear factor-4, and glucocorticoid receptor-alpha, which share CREB-binding protein/p300 as a coactivator. Thus, we have identified a human PPARalpha splice variant that may negatively interfere with PPARalphawt function. Factors regulating either the ratio of PPARalphawt vs. PPARalphatr mRNA or the nuclear entry of PPARalphatr protein should therefore lead to altered signaling via the PPARalpha and, possibly also, other nuclear receptor pathways.

  2. Functional expression of the Na-K-2Cl cotransporter NKCC2 in mammalian cells fails to confirm the dominant-negative effect of the AF splice variant.

    PubMed

    Hannemann, Anke; Christie, Jenny K; Flatman, Peter W

    2009-12-18

    The renal bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) is the major salt transport pathway in the apical membrane of the mammalian thick ascending limb. It is differentially spliced and the three major variants (A, B, and F) differ in their localization and transport characteristics. Most knowledge about its regulation comes from experiments in Xenopus oocytes as NKCC2 proved difficult to functionally express in a mammalian system. Here we report the cloning and functional expression of untagged and unmodified versions of the major splice variants from ferret kidney (fNKCC2A, -B, and -F) in human embryonic kidney (HEK) 293 cells. Many NKCC2 antibodies used in this study detected high molecular weight forms of the transfected proteins, probably NKCC2 dimers, but not the monomers. Interestingly, monomers were strongly detected by phosphospecific antibodies directed against phosphopeptides in the regulatory N terminus. Bumetanide-sensitive (86)Rb uptake was significantly higher in transfected HEK-293 cells and could be stimulated by incubating cells in a medium containing a low chloride concentration prior the uptake measurements. fNKCC2 was less sensitive to the reduction in chloride concentration than NKCC1. Using HEK-293 cells stably expressing fNKCC2A we also show that co-expression of variant NKCC2AF does not have the dominant-negative effect on NKCC2A activity that was seen in Xenopus oocytes, nor is it trafficked to the cell surface. In addition, fNKCC2AF is neither complex glycosylated nor phosphorylated in its N terminus regulatory region like other variants.

  3. Involvement of dominant-negative spliced variants of the intermediate conductance Ca2+-activated K+ channel, K(Ca)3.1, in immune function of lymphoid cells.

    PubMed

    Ohya, Susumu; Niwa, Satomi; Yanagi, Ayano; Fukuyo, Yuka; Yamamura, Hisao; Imaizumi, Yuji

    2011-05-13

    The intermediate conductance Ca(2+)-activated K(+) channel (IK(Ca) channel) encoded by K(Ca)3.1 is responsible for the control of proliferation and differentiation in various types of cells. We identified novel spliced variants of K(Ca)3.1 (human (h) K(Ca)3.1b) from the human thymus, which were lacking the N-terminal domains of the original hK(Ca)3.1a as a result of alternative splicing events. hK(Ca)3.1b was significantly expressed in human lymphoid tissues. Western blot analysis showed that hK(Ca)3.1a proteins were mainly expressed in the plasma membrane fraction, whereas hK(Ca)3.1b was in the cytoplasmic fraction. We also identified a similar N terminus lacking K(Ca)3.1 variants from mice and rat lymphoid tissues (mK(Ca)3.1b and rK(Ca)3.1b). In the HEK293 heterologous expression system, the cellular distribution of cyan fluorescent protein-tagged hK(Ca)3.1a and/or YFP-tagged hK(Ca)3.1b isoforms showed that hK(Ca)3.1b suppressed the localization of hK(Ca)3.1a to the plasma membrane. In the Xenopus oocyte translation system, co-expression of hK(Ca)3.1b with hK(Ca)3.1a suppressed IK(Ca) channel activity of hK(Ca)3.1a in a dominant-negative manner. In addition, this study indicated that up-regulation of mK(Ca)3.1b in mouse thymocytes differentiated CD4(+)CD8(+) phenotype thymocytes into CD4(-)CD8(-) ones and suppressed concanavalin-A-stimulated thymocyte growth by down-regulation of mIL-2 transcripts. Anti-proliferative effects and down-regulation of mIL-2 transcripts were also observed in mK(Ca)3.1b-overexpressing mouse thymocytes. These suggest that the N-terminal domain of K(Ca)3.1 is critical for channel trafficking to the plasma membrane and that the fine-tuning of IK(Ca) channel activity modulated through alternative splicing events may be related to the control in physiological and pathophysiological conditions in T-lymphocytes.

  4. The roles played by highly truncated splice variants of G protein-coupled receptors

    PubMed Central

    2012-01-01

    Alternative splicing of G protein-coupled receptor (GPCR) genes greatly increases the total number of receptor isoforms which may be expressed in a cell-dependent and time-dependent manner. This increased diversity of cell signaling options caused by the generation of splice variants is further enhanced by receptor dimerization. When alternative splicing generates highly truncated GPCRs with less than seven transmembrane (TM) domains, the predominant effect in vitro is that of a dominant-negative mutation associated with the retention of the wild-type receptor in the endoplasmic reticulum (ER). For constitutively active (agonist-independent) GPCRs, their attenuated expression on the cell surface, and consequent decreased basal activity due to the dominant-negative effect of truncated splice variants, has pathological consequences. Truncated splice variants may conversely offer protection from disease when expression of co-receptors for binding of infectious agents to cells is attenuated due to ER retention of the wild-type co-receptor. In this review, we will see that GPCRs retained in the ER can still be functionally active but also that highly truncated GPCRs may also be functionally active. Although rare, some truncated splice variants still bind ligand and activate cell signaling responses. More importantly, by forming heterodimers with full-length GPCRs, some truncated splice variants also provide opportunities to generate receptor complexes with unique pharmacological properties. So, instead of assuming that highly truncated GPCRs are associated with faulty transcription processes, it is time to reassess their potential benefit to the host organism. PMID:22938630

  5. Dominant-Negative Regulation of Cell Surface Expression by a Pentapeptide Motif at the Extreme COOH Terminus of an Slo1 Calcium-Activated Potassium Channel Splice Variant

    PubMed Central

    Chiu, Yu-Hsin; Alvarez-Baron, Claudia; Kim, Eun Young

    2010-01-01

    Large-conductance Ca2+-activated K+ (BKCa) channels regulate the physiology of many cell types. A single vertebrate gene variously known as Slo1, KCa1.1, or KCNMA1 encodes the pore-forming subunits of BKCa channel but is expressed in a potentially very large number of alternative splice variants. Two splice variants of Slo1, Slo1VEDEC and Slo1QEERL, which differ at the extreme COOH terminus, show markedly different steady-state expression levels on the cell surface. Here we show that Slo1VEDEC and Slo1QEERL can reciprocally coimmunoprecipitate, indicating that they form heteromeric complexes. Moreover, coexpression of even small amounts of Slo1VEDEC markedly reduces surface expression of Slo1QEERL and total Slo1 as indicated by cell-surface biotinylation assays. The effects of Slo1VEDEC on steady-state surface expression can be attributed primarily to the last five residues of the protein based on surface expression of motif-swapped constructs of Slo1 in human embryonic kidney (HEK) 293T cells. In addition, the presence of the VEDEC motif at the COOH terminus of Slo1 channels is sufficient to confer a dominant-negative effect on cell surface expression of itself or other types of Slo1 subunits. Treating cells with short peptides containing the VEDEC motif increased surface expression of Slo1VEDEC channels transiently expressed in HEK293T cells and increased current through endogenous BKCa channels in mouse podocytes. Slo1VEDEC and Slo1QEERL channels are removed from the HEK293T cell surface with similar kinetics and to a similar extent, which suggests that the inhibitory effect of the VEDEC motif is exerted primarily on forward trafficking into the plasma membrane. PMID:20051533

  6. Highly variable cutis laxa resulting from a dominant splicing mutation of the elastin gene.

    PubMed

    Graul-Neumann, Luitgard M; Hausser, Ingrid; Essayie, Maximilian; Rauch, Anita; Kraus, Cornelia

    2008-04-15

    Autosomal dominant congenital cutis laxa (ADCL) is genetically heterogeneous and shows clinical variability. Only seven ADCL families with mutations in the elastin gene (ELN) have been described previously. We present morphological and molecular genetic studies in a cutis laxa kindred with a previously undescribed highly variable phenotype caused by a novel ELN mutation c.1621 C > T. The proband presented with severe cutis laxa, severe congenital lung disease previously undescribed in ADCL and pulmonary artery disease, which is often seen in ARCL but rare in ADCL. He also developed infantile spasms (OMIM 308350; West syndrome), which we consider a coincidental association although recessive cutis laxa or even digenic inheritance cannot be excluded. Electron microscopy of the proband's dermis revealed only mild rarefication of elastic fibers (in contrast to most recessive cutis laxa types). Apart from mild elastic fiber fragmentation, dermal morphology of the proband's father was within normal range. Molecular analysis of the ELN gene using genomic DNA from blood and RNA from cultured skin fibroblasts indicated a novel splice site mutation in the proband and his clinically healthy father. Analysis of ELN expression in fibroblasts provided evidence for a dominant-negative effect in the child, while due to an unknown mechanism, the father showed haploinsufficiency which might explain the significant clinical variability. Copyright 2008 Wiley-Liss, Inc.

  7. Weak Negative and Positive Selection and the Drift Load at Splice Sites

    PubMed Central

    Denisov, Stepan V.; Bazykin, Georgii A.; Sutormin, Roman; Favorov, Alexander V.; Mironov, Andrey A.; Gelfand, Mikhail S.; Kondrashov, Alexey S.

    2014-01-01

    Splice sites (SSs) are short sequences that are crucial for proper mRNA splicing in eukaryotic cells, and therefore can be expected to be shaped by strong selection. Nevertheless, in mammals and in other intron-rich organisms, many of the SSs often involve nonconsensus (Nc), rather than consensus (Cn), nucleotides, and beyond the two critical nucleotides, the SSs are not perfectly conserved between species. Here, we compare the SS sequences between primates, and between Drosophila fruit flies, to reveal the pattern of selection acting at SSs. Cn-to-Nc substitutions are less frequent, and Nc-to-Cn substitutions are more frequent, than neutrally expected, indicating, respectively, negative and positive selection. This selection is relatively weak (1 < |4Nes| < 4), and has a similar efficiency in primates and in Drosophila. Within some nucleotide positions, the positive selection in favor of Nc-to-Cn substitutions is weaker than the negative selection maintaining already established Cn nucleotides; this difference is due to site-specific negative selection favoring current Nc nucleotides. In general, however, the strength of negative selection protecting the Cn alleles is similar in magnitude to the strength of positive selection favoring replacement of Nc alleles, as expected under the simple nearly neutral turnover. In summary, although a fraction of the Nc nucleotides within SSs is maintained by selection, the abundance of deleterious nucleotides in this class suggests a substantial genome-wide drift load. PMID:24966225

  8. Functional Implications of Novel Human Acid Sphingomyelinase Splice Variants

    PubMed Central

    Rhein, Cosima; Tripal, Philipp; Seebahn, Angela; Konrad, Alice; Kramer, Marcel; Nagel, Christine; Kemper, Jonas; Bode, Jens; Mühle, Christiane; Gulbins, Erich; Reichel, Martin; Becker, Cord-Michael; Kornhuber, Johannes

    2012-01-01

    Background Acid sphingomyelinase (ASM) hydrolyses sphingomyelin and generates the lipid messenger ceramide, which mediates a variety of stress-related cellular processes. The pathological effects of dysregulated ASM activity are evident in several human diseases and indicate an important functional role for ASM regulation. We investigated alternative splicing as a possible mechanism for regulating cellular ASM activity. Methodology/Principal Findings We identified three novel ASM splice variants in human cells, termed ASM-5, -6 and -7, which lack portions of the catalytic- and/or carboxy-terminal domains in comparison to full-length ASM-1. Differential expression patterns in primary blood cells indicated that ASM splicing might be subject to regulatory processes. The newly identified ASM splice variants were catalytically inactive in biochemical in vitro assays, but they decreased the relative cellular ceramide content in overexpression studies and exerted a dominant-negative effect on ASM activity in physiological cell models. Conclusions/Significance These findings indicate that alternative splicing of ASM is of functional significance for the cellular stress response, possibly representing a mechanism for maintaining constant levels of cellular ASM enzyme activity. PMID:22558155

  9. High prevalence of mutations affecting the splicing process in a Spanish cohort with autosomal dominant retinitis pigmentosa

    PubMed Central

    Ezquerra-Inchausti, Maitane; Barandika, Olatz; Anasagasti, Ander; Irigoyen, Cristina; López de Munain, Adolfo; Ruiz-Ederra, Javier

    2017-01-01

    Retinitis pigmentosa is the most frequent group of inherited retinal dystrophies. It is highly heterogeneous, with more than 80 disease-causing genes 27 of which are known to cause autosomal dominant RP (adRP), having been identified. In this study a total of 29 index cases were ascertained based on a family tree compatible with adRP. A custom panel of 31 adRP genes was analysed by targeted next-generation sequencing using the Ion PGM platform in combination with Sanger sequencing. This allowed us to detect putative disease-causing mutations in 14 out of the 29 (48.28%) families analysed. Remarkably, around 38% of all adRP cases analysed showed mutations affecting the splicing process, mainly due to mutations in genes coding for spliceosome factors (SNRNP200 and PRPF8) but also due to splice-site mutations in RHO. Twelve of the 14 mutations found had been reported previously and two were novel mutations found in PRPF8 in two unrelated patients. In conclusion, our results will lead to more accurate genetic counselling and will contribute to a better characterisation of the disease. In addition, they may have a therapeutic impact in the future given the large number of studies currently underway based on targeted RNA splicing for therapeutic purposes. PMID:28045043

  10. Multiple splicing defects in an intronic false exon.

    PubMed

    Sun, H; Chasin, L A

    2000-09-01

    Splice site consensus sequences alone are insufficient to dictate the recognition of real constitutive splice sites within the typically large transcripts of higher eukaryotes, and large numbers of pseudoexons flanked by pseudosplice sites with good matches to the consensus sequences can be easily designated. In an attempt to identify elements that prevent pseudoexon splicing, we have systematically altered known splicing signals, as well as immediately adjacent flanking sequences, of an arbitrarily chosen pseudoexon from intron 1 of the human hprt gene. The substitution of a 5' splice site that perfectly matches the 5' consensus combined with mutation to match the CAG/G sequence of the 3' consensus failed to get this model pseudoexon included as the central exon in a dhfr minigene context. Provision of a real 3' splice site and a consensus 5' splice site and removal of an upstream inhibitory sequence were necessary and sufficient to confer splicing on the pseudoexon. This activated context also supported the splicing of a second pseudoexon sequence containing no apparent enhancer. Thus, both the 5' splice site sequence and the polypyrimidine tract of the pseudoexon are defective despite their good agreement with the consensus. On the other hand, the pseudoexon body did not exert a negative influence on splicing. The introduction into the pseudoexon of a sequence selected for binding to ASF/SF2 or its replacement with beta-globin exon 2 only partially reversed the effect of the upstream negative element and the defective polypyrimidine tract. These results support the idea that exon-bridging enhancers are not a prerequisite for constitutive exon definition and suggest that intrinsically defective splice sites and negative elements play important roles in distinguishing the real splicing signal from the vast number of false splicing signals.

  11. Alternatively spliced Spalax heparanase inhibits extracellular matrix degradation, tumor growth, and metastasis

    PubMed Central

    Nasser, Nicola J.; Avivi, Aaron; Shafat, Itay; Edovitsky, Evgeny; Zcharia, Eyal; Ilan, Neta; Vlodavsky, Israel; Nevo, Eviatar

    2009-01-01

    Heparanase is an endoglycosidase that degrades heparan sulfate (HS) at the cell surface and in the extracellular matrix. Heparanase is expressed mainly by cancer cells, and its expression is correlated with increased tumor aggressiveness, metastasis, and angiogenesis. Here, we report the cloning of a unique splice variant (splice 36) of heparanase from the subterranean blind mole rat (Spalax). This splice variant results from skipping part of exon 3, exons 4 and 5, and part of exon 6 and functions as a dominant negative to the wild-type enzyme. It inhibits HS degradation, suppresses glioma tumor growth, and decreases experimental B16–BL6 lung colonization in a mouse model. Intriguingly, Spalax splice variant 7 of heparanase (which results from skipping of exon 7) is devoid of enzymatic activity, but unlike splice 36 it enhances tumor growth. Our results demonstrate that alternative splicing of heparanase regulates its enzymatic activity and might adapt the heparanase function to the fluctuating normoxic–hypoxic subterranean environment that Spalax experiences. Development of anticancer drugs designed to suppress tumor growth, angiogenesis, and metastasis is a major challenge, of which heparanase inhibition is a promising approach. We anticipate that the heparanase splicing model, evolved during 40 million years of Spalacid adaptation to underground life, would pave the way for the development of heparanase-based therapeutic modalities directed against angiogenesis, tumor growth, and metastasis. PMID:19164514

  12. A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of genotype-negative long QT syndrome.

    PubMed

    Crotti, Lia; Lewandowska, Marzena A; Schwartz, Peter J; Insolia, Roberto; Pedrazzini, Matteo; Bussani, Erica; Dagradi, Federica; George, Alfred L; Pagani, Franco

    2009-02-01

    Genetic screening of long QT syndrome (LQTS) fails to identify disease-causing mutations in about 30% of patients. So far, molecular screening has focused mainly on coding sequence mutations or on substitutions at canonical splice sites. The purpose of this study was to explore the possibility that intronic variants not at canonical splice sites might affect splicing regulatory elements, lead to aberrant transcripts, and cause LQTS. Molecular screening was performed through DHPLC and sequence analysis. The role of the intronic mutation identified was assessed with a hybrid minigene splicing assay. A three-generation LQTS family was investigated. Molecular screening failed to identify an obvious disease-causing mutation in the coding sequences of the major LQTS genes but revealed an intronic A-to-G substitution in KCNH2 (IVS9-28A/G) cosegregating with the clinical phenotype in family members. In vitro analysis proved that the mutation disrupts the acceptor splice site definition by affecting the branch point (BP) sequence and promoting intron retention. We further demonstrated a tight functional relationship between the BP and the polypyrimidine tract, whose weakness is responsible for the pathological effect of the IVS9-28A/G mutation. We identified a novel BP mutation in KCNH2 that disrupts the intron 9 acceptor splice site definition and causes LQT2. The present finding demonstrates that intronic mutations affecting pre-mRNA processing may contribute to the failure of traditional molecular screening in identifying disease-causing mutations in LQTS subjects and offers a rationale strategy for the reduction of genotype-negative cases.

  13. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay

    PubMed Central

    Ni, Julie Z.; Grate, Leslie; Donohue, John Paul; Preston, Christine; Nobida, Naomi; O’Brien, Georgeann; Shiue, Lily; Clark, Tyson A.; Blume, John E.; Ares, Manuel

    2007-01-01

    Many alternative splicing events create RNAs with premature stop codons, suggesting that alternative splicing coupled with nonsense-mediated decay (AS-NMD) may regulate gene expression post-transcriptionally. We tested this idea in mice by blocking NMD and measuring changes in isoform representation using splicing-sensitive microarrays. We found a striking class of highly conserved stop codon-containing exons whose inclusion renders the transcript sensitive to NMD. A genomic search for additional examples identified >50 such exons in genes with a variety of functions. These exons are unusually frequent in genes that encode splicing activators and are unexpectedly enriched in the so-called “ultraconserved” elements in the mammalian lineage. Further analysis show that NMD of mRNAs for splicing activators such as SR proteins is triggered by splicing activation events, whereas NMD of the mRNAs for negatively acting hnRNP proteins is triggered by splicing repression, a polarity consistent with widespread homeostatic control of splicing regulator gene expression. We suggest that the extreme genomic conservation surrounding these regulatory splicing events within splicing factor genes demonstrates the evolutionary importance of maintaining tightly tuned homeostasis of RNA-binding protein levels in the vertebrate cell. PMID:17369403

  14. Detecting Image Splicing Using Merged Features in Chroma Space

    PubMed Central

    Liu, Guangjie; Dai, Yuewei

    2014-01-01

    Image splicing is an image editing method to copy a part of an image and paste it onto another image, and it is commonly followed by postprocessing such as local/global blurring, compression, and resizing. To detect this kind of forgery, the image rich models, a feature set successfully used in the steganalysis is evaluated on the splicing image dataset at first, and the dominant submodel is selected as the first kind of feature. The selected feature and the DCT Markov features are used together to detect splicing forgery in the chroma channel, which is convinced effective in splicing detection. The experimental results indicate that the proposed method can detect splicing forgeries with lower error rate compared to the previous literature. PMID:24574877

  15. Detecting image splicing using merged features in chroma space.

    PubMed

    Xu, Bo; Liu, Guangjie; Dai, Yuewei

    2014-01-01

    Image splicing is an image editing method to copy a part of an image and paste it onto another image, and it is commonly followed by postprocessing such as local/global blurring, compression, and resizing. To detect this kind of forgery, the image rich models, a feature set successfully used in the steganalysis is evaluated on the splicing image dataset at first, and the dominant submodel is selected as the first kind of feature. The selected feature and the DCT Markov features are used together to detect splicing forgery in the chroma channel, which is convinced effective in splicing detection. The experimental results indicate that the proposed method can detect splicing forgeries with lower error rate compared to the previous literature.

  16. Isolation and characterization of alternatively spliced variants of the mouse sigma1 receptor gene, Sigmar1.

    PubMed

    Pan, Ling; Pasternak, David A; Xu, Jin; Xu, Mingming; Lu, Zhigang; Pasternak, Gavril W; Pan, Ying-Xian

    2017-01-01

    The sigma1 receptor acts as a chaperone at the endoplasmic reticulum, associates with multiple proteins in various cellular systems, and involves in a number of diseases, such as addiction, pain, cancer and psychiatric disorders. The sigma1 receptor is encoded by the single copy SIGMAR1 gene. The current study identifies five alternatively spliced variants of the mouse sigma1 receptor gene using a polymerase chain reaction cloning approach. All the splice variants are generated by exon skipping or alternative 3' or 5' splicing, producing the truncated sigma1 receptor. Similar alternative splicing has been observed in the human SIGMAR1 gene based on the molecular cloning or genome sequence prediction, suggesting conservation of alternative splicing of SIGMAR1 gene. Using quantitative polymerase chain reactions, we demonstrate differential expression of several splice variants in mouse tissues and brain regions. When expressed in HEK293 cells, all the splice variants fail to bind sigma ligands, implicating that each truncated region in these splice variants is important for ligand binding. However, co-immunoprecipitation (Co-IP) study in HEK293 cells co-transfected with tagged constructs reveals that all the splice variants maintain their ability to physically associate with a mu opioid receptor (mMOR-1), providing useful information to correlate the motifs/sequences necessary for their physical association. Furthermore, a competition Co-IP study showed that all the variants can disrupt in a dose-dependent manner the dimerization of the original sigma1 receptor with mMOR-1, suggesting a potential dominant negative function and providing significant insights into their function.

  17. Genome-Wide Survey of Cold Stress Regulated Alternative Splicing in Arabidopsis thaliana with Tiling Microarray

    PubMed Central

    Leviatan, Noam; Alkan, Noam; Leshkowitz, Dena; Fluhr, Robert

    2013-01-01

    Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression. PMID:23776682

  18. Isolation and characterization of alternatively spliced variants of the mouse sigma1 receptor gene, Sigmar1

    PubMed Central

    Pan, Ling; Pasternak, David A.; Xu, Jin; Xu, Mingming; Lu, Zhigang; Pasternak, Gavril W.

    2017-01-01

    The sigma1 receptor acts as a chaperone at the endoplasmic reticulum, associates with multiple proteins in various cellular systems, and involves in a number of diseases, such as addiction, pain, cancer and psychiatric disorders. The sigma1 receptor is encoded by the single copy SIGMAR1 gene. The current study identifies five alternatively spliced variants of the mouse sigma1 receptor gene using a polymerase chain reaction cloning approach. All the splice variants are generated by exon skipping or alternative 3’ or 5’ splicing, producing the truncated sigma1 receptor. Similar alternative splicing has been observed in the human SIGMAR1 gene based on the molecular cloning or genome sequence prediction, suggesting conservation of alternative splicing of SIGMAR1 gene. Using quantitative polymerase chain reactions, we demonstrate differential expression of several splice variants in mouse tissues and brain regions. When expressed in HEK293 cells, all the splice variants fail to bind sigma ligands, implicating that each truncated region in these splice variants is important for ligand binding. However, co-immunoprecipitation (Co-IP) study in HEK293 cells co-transfected with tagged constructs reveals that all the splice variants maintain their ability to physically associate with a mu opioid receptor (mMOR-1), providing useful information to correlate the motifs/sequences necessary for their physical association. Furthermore, a competition Co-IP study showed that all the variants can disrupt in a dose-dependent manner the dimerization of the original sigma1 receptor with mMOR-1, suggesting a potential dominant negative function and providing significant insights into their function. PMID:28350844

  19. Understanding splicing regulation through RNA splicing maps

    PubMed Central

    Witten, Joshua T.; Ule, Jernej

    2011-01-01

    Alternative splicing is a highly regulated process that greatly increases the proteome diversity and plays an important role in cellular differentiation and disease. Interactions between RNA-binding proteins (RBPs) and pre-mRNA are the principle regulator of splicing decisions. Findings from recent genome-wide studies of protein–RNA interactions have been combined with assays of the global effects of RBPs on splicing to create RNA splicing maps. These maps integrate information from all pre-mRNAs regulated by single RBPs to identify the global positioning principles guiding splicing regulation. Recent studies using this approach have identified a set of positional principles that are shared between diverse RBPs. Here, we discuss how insights from RNA splicing maps of different RBPs inform the mechanistic models of splicing regulation. PMID:21232811

  20. The Functional Impact of Alternative Splicing in Cancer.

    PubMed

    Climente-González, Héctor; Porta-Pardo, Eduard; Godzik, Adam; Eyras, Eduardo

    2017-08-29

    Alternative splicing changes are frequently observed in cancer and are starting to be recognized as important signatures for tumor progression and therapy. However, their functional impact and relevance to tumorigenesis remain mostly unknown. We carried out a systematic analysis to characterize the potential functional consequences of alternative splicing changes in thousands of tumor samples. This analysis revealed that a subset of alternative splicing changes affect protein domain families that are frequently mutated in tumors and potentially disrupt protein-protein interactions in cancer-related pathways. Moreover, there was a negative correlation between the number of these alternative splicing changes in a sample and the number of somatic mutations in drivers. We propose that a subset of the alternative splicing changes observed in tumors may represent independent oncogenic processes that could be relevant to explain the functional transformations in cancer, and some of them could potentially be considered alternative splicing drivers (AS drivers). Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. SpliceDisease database: linking RNA splicing and disease.

    PubMed

    Wang, Juan; Zhang, Jie; Li, Kaibo; Zhao, Wei; Cui, Qinghua

    2012-01-01

    RNA splicing is an important aspect of gene regulation in many organisms. Splicing of RNA is regulated by complicated mechanisms involving numerous RNA-binding proteins and the intricate network of interactions among them. Mutations in cis-acting splicing elements or its regulatory proteins have been shown to be involved in human diseases. Defects in pre-mRNA splicing process have emerged as a common disease-causing mechanism. Therefore, a database integrating RNA splicing and disease associations would be helpful for understanding not only the RNA splicing but also its contribution to disease. In SpliceDisease database, we manually curated 2337 splicing mutation disease entries involving 303 genes and 370 diseases, which have been supported experimentally in 898 publications. The SpliceDisease database provides information including the change of the nucleotide in the sequence, the location of the mutation on the gene, the reference Pubmed ID and detailed description for the relationship among gene mutations, splicing defects and diseases. We standardized the names of the diseases and genes and provided links for these genes to NCBI and UCSC genome browser for further annotation and genomic sequences. For the location of the mutation, we give direct links of the entry to the respective position/region in the genome browser. The users can freely browse, search and download the data in SpliceDisease at http://cmbi.bjmu.edu.cn/sdisease.

  2. Both sides of the same coin: Rac1 splicing regulating by EGF signaling.

    PubMed

    Fu, Xiang-Dong

    2017-04-01

    EGF, a well-studied mitogen for cancer cells, is revealed to induce an E3 ubiquitin ligase adaptor SPSB1, which recruits the Elongin B/C-Collin complex to trigger ubiquitylation of the negative splicing regulator hnRNP A1. This event is synergized with EGF-activated SR proteins to alter alternative splicing of a key small GTPase Rac1 to enhance cell migration, highlighting converging EGF signals on both negative and positive splicing regulators to jointly promote a key cancer pathway.

  3. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs

    PubMed Central

    Zhang, Xiao-Ou; Dong, Rui; Zhang, Yang; Zhang, Jia-Lin; Luo, Zheng; Zhang, Jun; Chen, Ling-Ling; Yang, Li

    2016-01-01

    Circular RNAs (circRNAs) derived from back-spliced exons have been widely identified as being co-expressed with their linear counterparts. A single gene locus can produce multiple circRNAs through alternative back-splice site selection and/or alternative splice site selection; however, a detailed map of alternative back-splicing/splicing in circRNAs is lacking. Here, with the upgraded CIRCexplorer2 pipeline, we systematically annotated different types of alternative back-splicing and alternative splicing events in circRNAs from various cell lines. Compared with their linear cognate RNAs, circRNAs exhibited distinct patterns of alternative back-splicing and alternative splicing. Alternative back-splice site selection was correlated with the competition of putative RNA pairs across introns that bracket alternative back-splice sites. In addition, all four basic types of alternative splicing that have been identified in the (linear) mRNA process were found within circRNAs, and many exons were predominantly spliced in circRNAs. Unexpectedly, thousands of previously unannotated exons were detected in circRNAs from the examined cell lines. Although these novel exons had similar splice site strength, they were much less conserved than known exons in sequences. Finally, both alternative back-splicing and circRNA-predominant alternative splicing were highly diverse among the examined cell lines. All of the identified alternative back-splicing and alternative splicing in circRNAs are available in the CIRCpedia database (http://www.picb.ac.cn/rnomics/circpedia). Collectively, the annotation of alternative back-splicing and alternative splicing in circRNAs provides a valuable resource for depicting the complexity of circRNA biogenesis and for studying the potential functions of circRNAs in different cells. PMID:27365365

  4. Splicing predictions reliably classify different types of alternative splicing

    PubMed Central

    Busch, Anke; Hertel, Klemens J.

    2015-01-01

    Alternative splicing is a key player in the creation of complex mammalian transcriptomes and its misregulation is associated with many human diseases. Multiple mRNA isoforms are generated from most human genes, a process mediated by the interplay of various RNA signature elements and trans-acting factors that guide spliceosomal assembly and intron removal. Here, we introduce a splicing predictor that evaluates hundreds of RNA features simultaneously to successfully differentiate between exons that are constitutively spliced, exons that undergo alternative 5′ or 3′ splice-site selection, and alternative cassette-type exons. Surprisingly, the splicing predictor did not feature strong discriminatory contributions from binding sites for known splicing regulators. Rather, the ability of an exon to be involved in one or multiple types of alternative splicing is dictated by its immediate sequence context, mainly driven by the identity of the exon's splice sites, the conservation around them, and its exon/intron architecture. Thus, the splicing behavior of human exons can be reliably predicted based on basic RNA sequence elements. PMID:25805853

  5. Novel down-regulatory mechanism of the surface expression of the vasopressin V2 receptor by an alternative splice receptor variant.

    PubMed

    Sarmiento, José M; Añazco, Carolina C; Campos, Danae M; Prado, Gregory N; Navarro, Javier; González, Carlos B

    2004-11-05

    In rat kidney, two alternatively spliced transcripts are generated from the V2 vasopressin receptor gene. The large transcript (1.2 kb) encodes the canonical V2 receptor, whereas the small transcript encodes a splice variant displaying a distinct sequence corresponding to the putative seventh transmembrane domain and the intracellular C terminus of the V2 receptor. This work showed that the small spliced transcript is translated in the rat kidney collecting tubules. However, the protein encoded by the small transcript (here called the V2b splice variant) is retained inside the cell, in contrast to the preferential surface distribution of the V2 receptor (here called the V2a receptor). Cells expressing the V2b splice variant do not exhibit binding to 3H-labeled vasopressin. Interestingly, we found that expression of the splice variant V2b down-regulates the surface expression of the V2a receptor, most likely via the formation of V2a.V2b heterodimers as demonstrated by co-immunoprecipitation and fluorescence resonance energy transfer experiments between the V2a receptor and the V2b splice variant. The V2b splice variant would then be acting as a dominant negative. The effect of the V2b splice variant is specific, as it does not affect the surface expression of the G protein-coupled interleukin-8 receptor (CXCR1). Furthermore, the sequence encompassing residues 242-339, corresponding to the C-terminal domain of the V2b splice variant, also down-regulates the surface expression of the V2a receptor. We suggest that some forms of nephrogenic diabetes insipidus are due to overexpression of the splice variant V2b, which could retain the wild-type V2a receptor inside the cell via the formation of V2a.V2b heterodimers.

  6. Ott1 (Rbm15) regulates thrombopoietin response in hematopoietic stem cells through alternative splicing of c-Mpl

    PubMed Central

    Xiao, Nan; Laha, Suparna; Das, Shankar P.; Morlock, Kayla; Jesneck, Jonathan L.

    2015-01-01

    Thrombopoietin (Thpo) signaling through the c-Mpl receptor promotes either quiescence or proliferation of hematopoietic stem cells (HSCs) in a concentration-dependent manner; however, in vivo Thpo serum levels are responsive to platelet mass rather than HSC demands, suggesting additional regulation exists. Ott1 (Rbm15), a spliceosomal component originally identified as a fusion partner in t(1;22)-associated acute megakaryocytic leukemia, is also essential for maintaining HSC quiescence under stress. Ott1 controls the alternative splicing of a dominant negative isoform, Mpl-TR, capable of inhibiting HSC engraftment and attenuating Thpo signaling. Ott1, which associates with Hdac3 and the histone methyltransferase, Setd1b, binds to both c-Mpl RNA and chromatin and regulates H4 acetylation and H3K4me3 marks. Histone deacetylase or histone methyltransferase inhibition also increases Mpl-TR levels, suggesting that Ott1 uses an underlying epigenetic mechanism to control alternative splicing of c-Mpl. Manipulation of Ott1-dependent alternative splicing may therefore provide a novel pharmacologic avenue for regulating HSC quiescence and proliferation in response to Thpo. PMID:25468569

  7. Dominant-Negative Inhibition of Prion Formation Diminished by Deletion Mutagenesis of the Prion Protein

    PubMed Central

    Zulianello, Laurence; Kaneko, Kiyotoshi; Scott, Michael; Erpel, Susanne; Han, Dong; Cohen, Fred E.; Prusiner, Stanley B.

    2000-01-01

    Polymorphic basic residues near the C terminus of the prion protein (PrP) in humans and sheep appear to protect against prion disease. In heterozygotes, inhibition of prion formation appears to be dominant negative and has been simulated in cultured cells persistently infected with scrapie prions. The results of nuclear magnetic resonance and mutagenesis studies indicate that specific substitutions at the C-terminal residues 167, 171, 214, and 218 of PrPC act as dominant-negative, inhibitors of PrPSc formation (K. Kaneko et al., Proc. Natl. Acad. Sci. USA 94:10069–10074, 1997). Trafficking of substituted PrPC to caveaola-like domains or rafts by the glycolipid anchor was required for the dominant-negative phenotype; interestingly, amino acid replacements at multiple sites were less effective than single-residue substitutions. To elucidate which domains of PrPC are responsible for dominant-negative inhibition of PrPSc formation, we analyzed whether N-terminally truncated PrP(Q218K) molecules exhibited dominant-negative effects in the conversion of full-length PrPC to PrPSc. We found that the C-terminal domain of PrP is not sufficient to impede the conversion of the full-length PrPC molecule and that N-terminally truncated molecules (with residues 23 to 88 and 23 to 120 deleted) have reduced dominant-negative activity. Whether the N-terminal region of PrP acts by stabilizing the C-terminal domain of the molecule or by modulating the binding of PrPC to an auxiliary molecule that participates in PrPSc formation remains to be established. PMID:10756050

  8. SplicePlot: a utility for visualizing splicing quantitative trait loci.

    PubMed

    Wu, Eric; Nance, Tracy; Montgomery, Stephen B

    2014-04-01

    RNA sequencing has provided unprecedented resolution of alternative splicing and splicing quantitative trait loci (sQTL). However, there are few tools available for visualizing the genotype-dependent effects of splicing at a population level. SplicePlot is a simple command line utility that produces intuitive visualization of sQTLs and their effects. SplicePlot takes mapped RNA sequencing reads in BAM format and genotype data in VCF format as input and outputs publication-quality Sashimi plots, hive plots and structure plots, enabling better investigation and understanding of the role of genetics on alternative splicing and transcript structure. Source code and detailed documentation are available at http://montgomerylab.stanford.edu/spliceplot/index.html under Resources and at Github. SplicePlot is implemented in Python and is supported on Linux and Mac OS. A VirtualBox virtual machine running Ubuntu with SplicePlot already installed is also available.

  9. Nd:YAG-laser-based time-domain reflectometry measurements of the intrinsic reflection signature from PMMA fiber splices

    NASA Astrophysics Data System (ADS)

    Lawson, Christopher M.; Michael, Robert R., Jr.; Dressel, Earl M.; Harmony, David W.

    1991-12-01

    Optical time domain reflectometry (OTDR) measurements have been performed on polished polymethylmethacrylate (PMMA) plastic fiber splices. After the dominant splice reflection sources due to surface roughness, inexact index matching, and fiber core misalignment were eliminated, an intrinsic OTDR signature 3 - 8 dB above the Rayleigh backscatter floor remained with all tested fibers. This minimum splice reflectivity exhibits characteristics that are consistent with sub-surface polymer damage and can be used for detection of PMMA fiber splices.

  10. MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing

    PubMed Central

    2014-01-01

    We have developed a novel machine-learning approach, MutPred Splice, for the identification of coding region substitutions that disrupt pre-mRNA splicing. Applying MutPred Splice to human disease-causing exonic mutations suggests that 16% of mutations causing inherited disease and 10 to 14% of somatic mutations in cancer may disrupt pre-mRNA splicing. For inherited disease, the main mechanism responsible for the splicing defect is splice site loss, whereas for cancer the predominant mechanism of splicing disruption is predicted to be exon skipping via loss of exonic splicing enhancers or gain of exonic splicing silencer elements. MutPred Splice is available at http://mutdb.org/mutpredsplice. PMID:24451234

  11. DA-Raf, a dominant-negative antagonist of the Ras-ERK pathway, is a putative tumor suppressor.

    PubMed

    Kanno, Emiri; Kawasaki, Osamu; Takahashi, Kazuya; Takano, Kazunori; Endo, Takeshi

    2018-01-01

    Activating mutations of RAS genes, particularly KRAS, are detected with high frequency in human tumors. Mutated Ras proteins constitutively activate the ERK pathway (Raf-MEK-ERK phosphorylation cascade), leading to cellular transformation and tumorigenesis. DA-Raf1 (DA-Raf) is a splicing variant of A-Raf and contains the Ras-binding domain (RBD) but lacks the kinase domain. Accordingly, DA-Raf antagonizes the Ras-ERK pathway in a dominant-negative fashion and suppresses constitutively activated K-Ras-induced cellular transformation. Thus, we have addressed whether DA-Raf serves as a tumor suppressor of Ras-induced tumorigenesis. DA-Raf(R52Q), which is generated from a single nucleotide polymorphism (SNP) in the RBD, and DA-Raf(R52W), a mutant detected in a lung cancer, neither bound to active K-Ras nor interfered with the activation of the ERK pathway. They were incapable of suppressing activated K-Ras-induced cellular transformation and tumorigenesis in mice, in which K-Ras-transformed cells were transplanted. Furthermore, although DA-Raf was highly expressed in lung alveolar epithelial type 2 (AE2) cells, its expression was silenced in AE2-derived lung adenocarcinoma cell lines with oncogenic KRAS mutations. These results suggest that DA-Raf represents a tumor suppressor protein against Ras-induced tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Ott1 (Rbm15) regulates thrombopoietin response in hematopoietic stem cells through alternative splicing of c-Mpl.

    PubMed

    Xiao, Nan; Laha, Suparna; Das, Shankar P; Morlock, Kayla; Jesneck, Jonathan L; Raffel, Glen D

    2015-02-05

    Thrombopoietin (Thpo) signaling through the c-Mpl receptor promotes either quiescence or proliferation of hematopoietic stem cells (HSCs) in a concentration-dependent manner; however, in vivo Thpo serum levels are responsive to platelet mass rather than HSC demands, suggesting additional regulation exists. Ott1 (Rbm15), a spliceosomal component originally identified as a fusion partner in t(1;22)-associated acute megakaryocytic leukemia, is also essential for maintaining HSC quiescence under stress. Ott1 controls the alternative splicing of a dominant negative isoform, Mpl-TR, capable of inhibiting HSC engraftment and attenuating Thpo signaling. Ott1, which associates with Hdac3 and the histone methyltransferase, Setd1b, binds to both c-Mpl RNA and chromatin and regulates H4 acetylation and H3K4me3 marks. Histone deacetylase or histone methyltransferase inhibition also increases Mpl-TR levels, suggesting that Ott1 uses an underlying epigenetic mechanism to control alternative splicing of c-Mpl. Manipulation of Ott1-dependent alternative splicing may therefore provide a novel pharmacologic avenue for regulating HSC quiescence and proliferation in response to Thpo. © 2015 by The American Society of Hematology.

  13. Identification of pathogenic gene mutations in LMNA and MYBPC3 that alter RNA splicing.

    PubMed

    Ito, Kaoru; Patel, Parth N; Gorham, Joshua M; McDonough, Barbara; DePalma, Steven R; Adler, Emily E; Lam, Lien; MacRae, Calum A; Mohiuddin, Syed M; Fatkin, Diane; Seidman, Christine E; Seidman, J G

    2017-07-18

    Genetic variants that cause haploinsufficiency account for many autosomal dominant (AD) disorders. Gene-based diagnosis classifies variants that alter canonical splice signals as pathogenic, but due to imperfect understanding of RNA splice signals other variants that may create or eliminate splice sites are often clinically classified as variants of unknown significance (VUS). To improve recognition of pathogenic splice-altering variants in AD disorders, we used computational tools to prioritize VUS and developed a cell-based minigene splicing assay to confirm aberrant splicing. Using this two-step procedure we evaluated all rare variants in two AD cardiomyopathy genes, lamin A/C ( LMNA ) and myosin binding protein C ( MYBPC3 ). We demonstrate that 13 LMNA and 35 MYBPC3 variants identified in cardiomyopathy patients alter RNA splicing, representing a 50% increase in the numbers of established damaging splice variants in these genes. Over half of these variants are annotated as VUS by clinical diagnostic laboratories. Familial analyses of one variant, a synonymous LMNA VUS, demonstrated segregation with cardiomyopathy affection status and altered cardiac LMNA splicing. Application of this strategy should improve diagnostic accuracy and variant classification in other haploinsufficient AD disorders.

  14. Attenuation of the suppressive activity of cellular splicing factor SRSF3 by Kaposi sarcoma–associated herpesvirus ORF57 protein is required for RNA splicing

    PubMed Central

    Majerciak, Vladimir; Lu, Mathew; Li, Xiaofan

    2014-01-01

    Kaposi sarcoma–associated herpesvirus (KSHV) ORF57 is a multifunctional post-transcriptional regulator essential for viral gene expression during KSHV lytic infection. ORF57 requires interactions with various cellular proteins for its function. Here, we identified serine/arginine-rich splicing factor 3 (SRSF3, formerly known as SRp20) as a cellular cofactor involved in ORF57-mediated splicing of KSHV K8β RNA. In the absence of ORF57, SRSF3 binds to a suboptimal K8β intron and inhibits K8β splicing. Knockdown of SRSF3 promotes K8β splicing, mimicking the effect of ORF57. The N-terminal half of ORF57 binds to the RNA recognition motif of SRSF3, which prevents SRSF3 from associating with the K8β intron RNA and therefore attenuates the suppressive effect of SRSF3 on K8β splicing. ORF57 also promotes splicing of heterologous non-KSHV transcripts that are negatively regulated by SRSF3, indicating that the effect of ORF57 on SRSF3 activity is independent of RNA target. SPEN proteins, previously identified as ORF57-interacting partners, suppress ORF57 splicing activity by displacing ORF57 from SRSF3–RNA complexes. In summary, we have identified modulation of SRSF3 activity as the molecular mechanism by which ORF57 promotes RNA splicing. PMID:25234929

  15. The Arabidopsis SR45 Splicing Factor, a Negative Regulator of Sugar Signaling, Modulates SNF1-Related Protein Kinase 1 Stability

    PubMed Central

    Barbosa, Inês C.R.

    2016-01-01

    The ability to sense and respond to sugar signals allows plants to cope with environmental and metabolic changes by adjusting growth and development accordingly. We previously reported that the SR45 splicing factor negatively regulates glucose signaling during early seedling development in Arabidopsis thaliana. Here, we show that under glucose-fed conditions, the Arabidopsis sr45-1 loss-of-function mutant contains higher amounts of the energy-sensing SNF1-Related Protein Kinase 1 (SnRK1) despite unaffected SnRK1 transcript levels. In agreement, marker genes for SnRK1 activity are upregulated in sr45-1 plants, and the glucose hypersensitivity of sr45-1 is attenuated by disruption of the SnRK1 gene. Using a high-resolution RT-PCR panel, we found that the sr45-1 mutation broadly targets alternative splicing in vivo, including that of the SR45 pre-mRNA itself. Importantly, the enhanced SnRK1 levels in sr45-1 are suppressed by a proteasome inhibitor, indicating that SR45 promotes targeting of the SnRK1 protein for proteasomal destruction. Finally, we demonstrate that SR45 regulates alternative splicing of the Arabidopsis 5PTase13 gene, which encodes an inositol polyphosphate 5-phosphatase previously shown to interact with and regulate the stability of SnRK1 in vitro, thus providing a mechanistic link between SR45 function and the modulation of degradation of the SnRK1 energy sensor in response to sugars. PMID:27436712

  16. Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants

    PubMed Central

    Bucher, Johan; Lammers, Michiel; Busscher-Lange, Jacqueline; Bonnema, Guusje; Rodenburg, Nicole; Proveniers, Marcel C. G.; Angenent, Gerco C.

    2017-01-01

    Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species exposed to temperature alterations, we showed that alternative splicing is an important mechanism in ambient temperature sensing and adaptation. We found that amongst the differentially alternatively spliced genes, splicing related genes are enriched, suggesting that the splicing machinery itself is targeted for alternative splicing when temperature changes. Moreover, we showed that many different components of the splicing machinery are targeted for ambient temperature regulated alternative splicing. Mutant analysis of a splicing related gene that was differentially spliced in two of the genotypes showed an altered flowering time response to different temperatures. We propose a two-step mechanism where temperature directly influences alternative splicing of the splicing machinery genes, followed by a second step where the altered splicing machinery affects splicing of downstream genes involved in the adaptation to altered temperatures. PMID:28257507

  17. Survival in acute myeloid leukemia is associated with NKp44 splice variants

    PubMed Central

    Hadad, Uzi; Teltsh, Omri; Edri, Avishay; Rubin, Eitan; Campbell, Kerry S.; Rosental, Benyamin; Porgador, Angel

    2016-01-01

    NKp44 is a receptor encoded by the NCR2 gene, which is expressed by cytokine-activated natural killer (NK) cells that are involved in anti-AML immunity. NKp44 has three splice variants corresponding to NKp44ITIM+ (NKp44-1) and NKp44ITIM− (NKp44-2, and NKp44-3) isoforms. RNAseq data of AML patients revealed similar survival of NKp46+NKp44+ and NKp46+NKp44− patients. However, if grouped according to the NKp44 splice variant profile, NKp44-1 expression was significantly associated with poor survival of AML patients. Moreover, activation of PBMC from healthy controls showed co-dominant expression of NKp44-1 and NKp44-3, while primary NK clones show more diverse NKp44 splice variant profiles. Cultured primary NK cells resulted in NKp44-1 dominance and impaired function associated with PCNA over-expression by target cells. This impaired functional phenotype could be rescued by blocking of NKp44 receptor. Human NK cell lines revealed co-dominant expression of NKp44-1 and NKp44-3 and showed a functional phenotype that was not inhibited by PCNA over-expression. Furthermore, transfection-based overexpression of NKp44-1, but not NKp44-2/NKp44-3, reversed the endogenous resistance of NK-92 cells to PCNA-mediated inhibition, and resulted in poor formation of stable lytic immune synapses. This research contributes to the understanding of AML prognosis by shedding new light on the functional implications of differential splicing of NKp44. PMID:27102296

  18. A novel mechanism of myostatin regulation by its alternative splicing variant during myogenesis in avian species.

    PubMed

    Shin, Sangsu; Song, Yan; Ahn, Jinsoo; Kim, Eunsoo; Chen, Paula; Yang, Shujin; Suh, Yeunsu; Lee, Kichoon

    2015-11-15

    Myostatin (MSTN) is a key negative regulator of muscle growth and development, and an increase of muscle mass is achieved by inhibiting MSTN signaling. In the current study, five alternative splicing isoforms of MSTN mRNAs in avian species were identified in various tissues. Among these five, three truncated forms of myostatin, MSTN-B, -C, and -E created premature stop codons and produced partial MSTN prodomains encoded from exon 1. MSTN-B is the second dominant isoform following full-length MSTN-A, and their expression was dynamically regulated during muscle development of chicken, turkey, and quail in vivo and in vitro. To clarify the function of MSTN-B, two stable cell lines of quail myoblasts (QM7) were generated to overexpress MSTN-A or MSTN-B. Interestingly, MSTN-B promoted both cell proliferation and differentiation similar to the function of the MSTN prodomain to counteract the negative role of MSTN on myogenesis. The coimmunoprecipitation assay revealed that MSTN-B binds to MSTN-A and reduces the generation of mature MSTN. Furthermore, the current study demonstrated that the partial prodomain encoded from exon 1 is critical for binding of MSTN-B to MSTN-A. Altogether, these data imply that alternative splicing isoforms of MSTN could negatively regulate pro-myostatin processing in muscle cells and prevent MSTN-mediated inhibition of myogenesis in avian species. Copyright © 2015 the American Physiological Society.

  19. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.

    PubMed

    Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav

    2015-04-01

    Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. LSD1 Neurospecific Alternative Splicing Controls Neuronal Excitability in Mouse Models of Epilepsy.

    PubMed

    Rusconi, Francesco; Paganini, Leda; Braida, Daniela; Ponzoni, Luisa; Toffolo, Emanuela; Maroli, Annalisa; Landsberger, Nicoletta; Bedogni, Francesco; Turco, Emilia; Pattini, Linda; Altruda, Fiorella; De Biasi, Silvia; Sala, Mariaelvina; Battaglioli, Elena

    2015-09-01

    Alternative splicing in the brain is dynamic and instrumental to adaptive changes in response to stimuli. Lysine-specific demethylase 1 (LSD1/KDM1A) is a ubiquitously expressed histone H3Lys4 demethylase that acts as a transcriptional co-repressor in complex with its molecular partners CoREST and HDAC1/2. In mammalian brain, alternative splicing of LSD1 mini-exon E8a gives rise to neuroLSD1, a neurospecific isoform that, upon phosphorylation, acts as a dominant-negative causing disassembly of the co-repressor complex and de-repression of target genes. Here we show that the LSD1/neuroLSD1 ratio changes in response to neuronal activation and such effect is mediated by neurospecific splicing factors NOVA1 and nSR100/SRRM4 together with a novel cis-silencer. Indeed, we found that, in response to epileptogenic stimuli, downregulation of NOVA1 reduces exon E8a splicing and expression of neuroLSD1. Using behavioral and EEG analyses we observed that neuroLSD1-specific null mice are hypoexcitable and display decreased seizure susceptibility. Conversely, in a mouse model of Rett syndrome characterized by hyperexcitability, we measured higher levels of NOVA1 protein and upregulation of neuroLSD1. In conclusion, we propose that, in the brain, correct ratio between LSD1 and neuroLSD1 contributes to excitability and, when altered, could represent a pathogenic event associated with neurological disorders involving altered E/I. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Human Splicing Finder: an online bioinformatics tool to predict splicing signals.

    PubMed

    Desmet, François-Olivier; Hamroun, Dalil; Lalande, Marine; Collod-Béroud, Gwenaëlle; Claustres, Mireille; Béroud, Christophe

    2009-05-01

    Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-beta Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5' and 3' splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project.

  2. Human Splicing Finder: an online bioinformatics tool to predict splicing signals

    PubMed Central

    Desmet, François-Olivier; Hamroun, Dalil; Lalande, Marine; Collod-Béroud, Gwenaëlle; Claustres, Mireille; Béroud, Christophe

    2009-01-01

    Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-β Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5′ and 3′ splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project. PMID:19339519

  3. Adaptive Significance of ERα Splice Variants in Killifish ...

    EPA Pesticide Factsheets

    The possibility that chronic, multigenerational exposure to environmental estrogens selects for adaptive hormone response phenotypes is a critical unanswered question. Embryos/larvae of killifish from an estrogenic polluted environment (New Bedford Harbor, NBH), as compared to those from a reference site, overexpress estrogen receptor a (ERa) mRNA but are hypo-responsive to estradiol (E2). Analysis of ERa mRNAs in the two populations revealed differences in splicing of the gene encoding ERa (esr1). Here we tested the transactivation functions of four differentially expressed ERa mRNAs and tracked their association with the hypo-responsive phenotype for three generations after transfer of NBH parents to a clean environment. Deletion variants ERaΔ6 and ERaΔ6 – 8 were specific to NBH killifish; had dominant negative functions in an in vitro reporter assay; and were heritable. Morpholino-mediated induction of ERaΔ6 mRNA in zebrafish embryos verified its role as a dominant negative ER on natural estrogen-responsive promoters. Alternate long (ERaL) and short (ERaS) 5'-variants were similar transcriptionally but differed in estrogen responsiveness (ERaS >> ERaL). ERaS accounted for high total ERa expression in F1 NBH embryos/ larvae but this trait was abolished by transfer to clean water. By contrast, the hypo-responsive phenotype of F1 NBH embryos/larvae persisted after long term lab holding but reverted to a normal or hyper-responsive phenotype after two or thre

  4. mRNA trans-splicing in gene therapy for genetic diseases.

    PubMed

    Berger, Adeline; Maire, Séverine; Gaillard, Marie-Claude; Sahel, José-Alain; Hantraye, Philippe; Bemelmans, Alexis-Pierre

    2016-07-01

    Spliceosome-mediated RNA trans-splicing, or SMaRT, is a promising strategy to design innovative gene therapy solutions for currently intractable genetic diseases. SMaRT relies on the correction of mutations at the post-transcriptional level by modifying the mRNA sequence. To achieve this, an exogenous RNA is introduced into the target cell, usually by means of gene transfer, to induce a splice event in trans between the exogenous RNA and the target endogenous pre-mRNA. This produces a chimeric mRNA composed partly of exons of the latter, and partly of exons of the former, encoding a sequence free of mutations. The principal challenge of SMaRT technology is to achieve a reaction as complete as possible, i.e., resulting in 100% repairing of the endogenous mRNA target. The proof of concept of SMaRT feasibility has already been established in several models of genetic diseases caused by recessive mutations. In such cases, in fact, the repair of only a portion of the mutant mRNA pool may be sufficient to obtain a significant therapeutic effect. However in the case of dominant mutations, the target cell must be freed from the majority of mutant mRNA copies, requiring a highly efficient trans-splicing reaction. This likely explains why only a few examples of SMaRT approaches targeting dominant mutations are reported in the literature. In this review, we explain in details the mechanism of trans-splicing, review the different strategies that are under evaluation to lead to efficient trans-splicing, and discuss the advantages and limitations of SMaRT. WIREs RNA 2016, 7:487-498. doi: 10.1002/wrna.1347 For further resources related to this article, please visit the WIREs website. © 2016 The Authors. WIREs RNA published by Wiley Periodicals, Inc.

  5. The Interplay of Temperature and Genotype on Patterns of Alternative Splicing in Drosophila melanogaster.

    PubMed

    Jakšić, Ana Marija; Schlötterer, Christian

    2016-09-01

    Alternative splicing is the highly regulated process of variation in the removal of introns from premessenger-RNA transcripts. The consequences of alternative splicing on the phenotype are well documented, but the impact of the environment on alternative splicing is not yet clear. We studied variation in alternative splicing among four different temperatures, 13, 18, 23, and 29°, in two Drosophila melanogaster genotypes. We show plasticity of alternative splicing with up to 10% of the expressed genes being differentially spliced between the most extreme temperatures for a given genotype. Comparing the two genotypes at different temperatures, we found <1% of the genes being differentially spliced at 18°. At extreme temperatures, however, we detected substantial differences in alternative splicing-with almost 10% of the genes having differential splicing between the genotypes: a magnitude similar to between species differences. Genes with differential alternative splicing between genotypes frequently exhibit dominant inheritance. Remarkably, the pattern of surplus of differences in alternative splicing at extreme temperatures resembled the pattern seen for gene expression intensity. Since different sets of genes were involved for the two phenotypes, we propose that purifying selection results in the reduction of differences at benign temperatures. Relaxed purifying selection at temperature extremes, on the other hand, may cause the divergence in gene expression and alternative splicing between the two strains in rarely encountered environments. Copyright © 2016 by the Genetics Society of America.

  6. Structure of the Dominant Negative S17N Mutant of Ras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nassar, N.; Singh, K; Garcia-Diaz, M

    2010-01-01

    The use of the dominant negative mutant of Ras has been crucial in elucidating the cellular signaling of Ras in response to the activation of various membrane-bound receptors. Although several point mutants of Ras exhibit a dominant negative effect, the asparagine to serine mutation at position 17 (S17N) remains the most popular and the most effective at inhibiting the activation of endogenous Ras. It is now widely accepted that the dominant negative effect is due to the ability of the mutant to sequester upstream activators and its inability to activate downstream effectors. Here, we present the crystal structure of RasS17Nmore » in the GDP-bound form. In the three molecules that populate the asymmetric unit, the Mg{sup 2+} ion that normally coordinates the {beta}-phosphate is absent because of steric hindrance from the Asn17 side chain. Instead, a Ca{sup 2+} ion is coordinating the {alpha}-phosphate. Also absent from one molecule is electron density for Phe28, a conserved residue that normally stabilizes the nucleotide's guanine base. Except for Phe28, the nucleotide makes conserved interactions with Ras. Combined, the inability of Phe28 to stabilize the guanine base and the absence of a Mg{sup 2+} ion to neutralize the negative charges on the phosphates explain the weaker affinity of GDP for Ras. Our data suggest that the absence of the Mg{sup 2+} should also dramatically affect GTP binding to Ras and the proper positioning of Thr35 necessary for the activation of switch 1 and the binding to downstream effectors, a prerequisite for the triggering of signaling pathways.« less

  7. Attenuation of the suppressive activity of cellular splicing factor SRSF3 by Kaposi sarcoma-associated herpesvirus ORF57 protein is required for RNA splicing.

    PubMed

    Majerciak, Vladimir; Lu, Mathew; Li, Xiaofan; Zheng, Zhi-Ming

    2014-11-01

    Kaposi sarcoma-associated herpesvirus (KSHV) ORF57 is a multifunctional post-transcriptional regulator essential for viral gene expression during KSHV lytic infection. ORF57 requires interactions with various cellular proteins for its function. Here, we identified serine/arginine-rich splicing factor 3 (SRSF3, formerly known as SRp20) as a cellular cofactor involved in ORF57-mediated splicing of KSHV K8β RNA. In the absence of ORF57, SRSF3 binds to a suboptimal K8β intron and inhibits K8β splicing. Knockdown of SRSF3 promotes K8β splicing, mimicking the effect of ORF57. The N-terminal half of ORF57 binds to the RNA recognition motif of SRSF3, which prevents SRSF3 from associating with the K8β intron RNA and therefore attenuates the suppressive effect of SRSF3 on K8β splicing. ORF57 also promotes splicing of heterologous non-KSHV transcripts that are negatively regulated by SRSF3, indicating that the effect of ORF57 on SRSF3 activity is independent of RNA target. SPEN proteins, previously identified as ORF57-interacting partners, suppress ORF57 splicing activity by displacing ORF57 from SRSF3-RNA complexes. In summary, we have identified modulation of SRSF3 activity as the molecular mechanism by which ORF57 promotes RNA splicing. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. Function of alternative splicing

    PubMed Central

    Kelemen, Olga; Convertini, Paolo; Zhang, Zhaiyi; Wen, Yuan; Shen, Manli; Falaleeva, Marina; Stamm, Stefan

    2017-01-01

    Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in ‘splicing programs’, which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed. PMID:22909801

  9. SpliceRover: Interpretable Convolutional Neural: Networks for Improved Splice Site Prediction.

    PubMed

    Zuallaert, Jasper; Godin, Fréderic; Kim, Mijung; Soete, Arne; Saeys, Yvan; De Neve, Wesley

    2018-06-21

    During the last decade, improvements in high-throughput sequencing have generated a wealth of genomic data. Functionally interpreting these sequences and finding the biological signals that are hallmarks of gene function and regulation is currently mostly done using automated genome annotation platforms, which mainly rely on integrated machine learning frameworks to identify different functional sites of interest, including splice sites. Splicing is an essential step in the gene regulation process, and the correct identification of splice sites is a major cornerstone in a genome annotation system. In this paper, we present SpliceRover, a predictive deep learning approach that outperforms the state-of-the-art in splice site prediction. SpliceRover uses convolutional neural networks (CNNs), which have been shown to obtain cutting edge performance on a wide variety of prediction tasks. We adapted this approach to deal with genomic sequence inputs, and show it consistently outperforms already existing approaches, with relative improvements in prediction effectiveness of up to 80.9% when measured in terms of false discovery rate. However, a major criticism of CNNs concerns their "black box" nature, as mechanisms to obtain insight into their reasoning processes are limited. To facilitate interpretability of the SpliceRover models, we introduce an approach to visualize the biologically relevant information learnt. We show that our visualization approach is able to recover features known to be important for splice site prediction (binding motifs around the splice site, presence of polypyrimidine tracts and branch points), as well as reveal new features (e.g., several types of exclusion patterns near splice sites). SpliceRover is available as a web service. The prediction tool and instructions can be found at http://bioit2.irc.ugent.be/splicerover/. Supplementary materials are available at Bioinformatics online.

  10. The Arabidopsis SR45 Splicing Factor, a Negative Regulator of Sugar Signaling, Modulates SNF1-Related Protein Kinase 1 Stability.

    PubMed

    Carvalho, Raquel F; Szakonyi, Dóra; Simpson, Craig G; Barbosa, Inês C R; Brown, John W S; Baena-González, Elena; Duque, Paula

    2016-08-01

    The ability to sense and respond to sugar signals allows plants to cope with environmental and metabolic changes by adjusting growth and development accordingly. We previously reported that the SR45 splicing factor negatively regulates glucose signaling during early seedling development in Arabidopsis thaliana Here, we show that under glucose-fed conditions, the Arabidopsis sr45-1 loss-of-function mutant contains higher amounts of the energy-sensing SNF1-Related Protein Kinase 1 (SnRK1) despite unaffected SnRK1 transcript levels. In agreement, marker genes for SnRK1 activity are upregulated in sr45-1 plants, and the glucose hypersensitivity of sr45-1 is attenuated by disruption of the SnRK1 gene. Using a high-resolution RT-PCR panel, we found that the sr45-1 mutation broadly targets alternative splicing in vivo, including that of the SR45 pre-mRNA itself. Importantly, the enhanced SnRK1 levels in sr45-1 are suppressed by a proteasome inhibitor, indicating that SR45 promotes targeting of the SnRK1 protein for proteasomal destruction. Finally, we demonstrate that SR45 regulates alternative splicing of the Arabidopsis 5PTase13 gene, which encodes an inositol polyphosphate 5-phosphatase previously shown to interact with and regulate the stability of SnRK1 in vitro, thus providing a mechanistic link between SR45 function and the modulation of degradation of the SnRK1 energy sensor in response to sugars. © 2016 American Society of Plant Biologists. All rights reserved.

  11. Evaluation of Alternative Splicing Regulators As Targets For Selective Therapy of Triple Negative (Basal) Breast Carcinoma

    DTIC Science & Technology

    2016-10-01

    KHDRBS3 and SRSF12 on tumor progression and metastasis (Task1). We analyzed the effect of KHDRBS3 depletion on the growth and migration properties of the...tumor growth during the second year of this project. Continued analysis of the splicing factor expression in primary tumor samples further supports...depletion on tumor initiation, growth and metastasis. Keywords Pre-mRNA splicing, breast cancer, KHDRBS3, SRPK1, SRSF12, metastasis

  12. Splicing-factor alterations in cancers

    PubMed Central

    Anczuków, Olga; Krainer, Adrian R.

    2016-01-01

    Tumor-associated alterations in RNA splicing result either from mutations in splicing-regulatory elements or changes in components of the splicing machinery. This review summarizes our current understanding of the role of splicing-factor alterations in human cancers. We describe splicing-factor alterations detected in human tumors and the resulting changes in splicing, highlighting cell-type-specific similarities and differences. We review the mechanisms of splicing-factor regulation in normal and cancer cells. Finally, we summarize recent efforts to develop novel cancer therapies, based on targeting either the oncogenic splicing events or their upstream splicing regulators. PMID:27530828

  13. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.

  14. Regulation of Alternative Splicing in Vivo by Overexpression of Antagonistic Splicing Factors

    NASA Astrophysics Data System (ADS)

    Caceres, Javier F.; Stamm, Stefan; Helfman, David M.; Krainer, Adrian R.

    1994-09-01

    The opposing effects of SF2/ASF and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 influence alternative splicing in vitro. SF2/ASF or hnRNP A1 complementary DNAs were transiently overexpressed in HeLa cells, and the effect on alternative splicing of several cotransfected reporter genes was measured. Increased expression of SF2/ASF activated proximal 5' splice sites, promoted inclusion of a neuron-specific exon, and prevented abnormal exon skipping. Increased expression of hnRNP A1 activated distal 5' splice sites. Therefore, variations in the intracellular levels of antagonistic splicing factors influence different modes of alternative splicing in vivo and may be a natural mechanism for tissue-specific or developmental regulation of gene expression.

  15. Landscape of the spliced leader trans-splicing mechanism in Schistosoma mansoni.

    PubMed

    Boroni, Mariana; Sammeth, Michael; Gava, Sandra Grossi; Jorge, Natasha Andressa Nogueira; Macedo, Andréa Mara; Machado, Carlos Renato; Mourão, Marina Moraes; Franco, Glória Regina

    2018-03-01

    Spliced leader dependent trans-splicing (SLTS) has been described as an important RNA regulatory process that occurs in different organisms, including the trematode Schistosoma mansoni. We identified more than seven thousand putative SLTS sites in the parasite, comprising genes with a wide spectrum of functional classes, which underlines the SLTS as a ubiquitous mechanism in the parasite. Also, SLTS gene expression levels span several orders of magnitude, showing that SLTS frequency is not determined by the expression level of the target gene, but by the presence of particular gene features facilitating or hindering the trans-splicing mechanism. Our in-depth investigation of SLTS events demonstrates widespread alternative trans-splicing (ATS) acceptor sites occurring in different regions along the entire gene body, highlighting another important role of SLTS generating alternative RNA isoforms in the parasite, besides the polycistron resolution. Particularly for introns where SLTS directly competes for the same acceptor substrate with cis-splicing, we identified for the first time additional and important features that might determine the type of splicing. Our study substantially extends the current knowledge of RNA processing by SLTS in S. mansoni, and provide basis for future studies on the trans-splicing mechanism in other eukaryotes.

  16. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells.

    PubMed

    Liang, Yang; Tebaldi, Toma; Rejeski, Kai; Joshi, Poorval; Stefani, Giovanni; Taylor, Ashley; Song, Yuanbin; Vasic, Radovan; Maziarz, Jamie; Balasubramanian, Kunthavai; Ardasheva, Anastasia; Ding, Alicia; Quattrone, Alessandro; Halene, Stephanie

    2018-06-01

    Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2 P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2 P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a "splicing-cascade" phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2 P95H , impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.

  17. Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome

    PubMed Central

    Shao, Wei; Zhao, Qiong-Yi; Wang, Xiu-Ye; Xu, Xin-Yan; Tang, Qing; Li, Muwang; Li, Xuan; Xu, Yong-Zhen

    2012-01-01

    Alternative splicing and trans-splicing events have not been systematically studied in the silkworm Bombyx mori. Here, the silkworm transcriptome was analyzed by RNA-seq. We identified 320 novel genes, modified 1140 gene models, and found thousands of alternative splicing and 58 trans-splicing events. Studies of three SR proteins show that both their alternative splicing patterns and mRNA products are conserved from insect to human, and one isoform of Srsf6 with a retained intron is expressed sex-specifically in silkworm gonads. Trans-splicing of mod(mdg4) in silkworm was experimentally confirmed. We identified integrations from a common 5′-gene with 46 newly identified alternative 3′-exons that are located on both DNA strands over a 500-kb region. Other trans-splicing events in B. mori were predicted by bioinformatic analysis, in which 12 events were confirmed by RT-PCR, six events were further validated by chimeric SNPs, and two events were confirmed by allele-specific RT-PCR in F1 hybrids from distinct silkworm lines of JS and L10, indicating that trans-splicing is more widespread in insects than previously thought. Analysis of the B. mori transcriptome by RNA-seq provides valuable information of regulatory alternative splicing events. The conservation of splicing events across species and newly identified trans-splicing events suggest that B. mori is a good model for future studies. PMID:22627775

  18. The low information content of Neurospora splicing signals: implications for RNA splicing and intron origin.

    PubMed

    Collins, Richard A; Stajich, Jason E; Field, Deborah J; Olive, Joan E; DeAbreu, Diane M

    2015-05-01

    When we expressed a small (0.9 kb) nonprotein-coding transcript derived from the mitochondrial VS plasmid in the nucleus of Neurospora we found that it was efficiently spliced at one or more of eight 5' splice sites and ten 3' splice sites, which are present apparently by chance in the sequence. Further experimental and bioinformatic analyses of other mitochondrial plasmids, random sequences, and natural nuclear genes in Neurospora and other fungi indicate that fungal spliceosomes recognize a wide range of 5' splice site and branchpoint sequences and predict introns to be present at high frequency in random sequence. In contrast, analysis of intronless fungal nuclear genes indicates that branchpoint, 5' splice site and 3' splice site consensus sequences are underrepresented compared with random sequences. This underrepresentation of splicing signals is sufficient to deplete the nuclear genome of splice sites at locations that do not comprise biologically relevant introns. Thus, the splicing machinery can recognize a wide range of splicing signal sequences, but splicing still occurs with great accuracy, not because the splicing machinery distinguishes correct from incorrect introns, but because incorrect introns are substantially depleted from the genome. © 2015 Collins et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing

    PubMed Central

    Munding, Elizabeth M.; Shiue, Lily; Katzman, Sol; Donohue, John Paul; Ares, Manuel

    2013-01-01

    Summary During meiosis in yeast, global splicing efficiency increases and then decreases. Here we provide evidence that splicing improves due to reduced competition for the splicing machinery. The timing of this regulation corresponds to repression and reactivation of ribosomal protein genes (RPGs) during meiosis. In vegetative cells RPG repression by rapamycin treatment also increases splicing efficiency. Down-regulation of the RPG-dedicated transcription factor gene IFH1 genetically suppresses two spliceosome mutations prp11-1 and prp4-1, and globally restores splicing efficiency in prp4-1 cells. We conclude that the splicing apparatus is limiting and pre-mRNAs compete. Splicing efficiency of a pre-mRNA therefore depends not just on its own concentration and affinity for limiting splicing factor(s) but also on those of competing pre-mRNAs. Competition between RNAs for limiting RNA processing factors appears to be a general condition in eukaryotic cells important for function of a variety of post-transcriptional control mechanisms including miRNA repression, polyadenylation and splicing. PMID:23891561

  20. CLAVATA1 Dominant-Negative Alleles Reveal Functional Overlap between Multiple Receptor Kinases That Regulate Meristem and Organ Development

    PubMed Central

    Diévart, Anne; Dalal, Monica; Tax, Frans E.; Lacey, Alexzandria D.; Huttly, Alison; Li, Jianming; Clark, Steven E.

    2003-01-01

    The CLAVATA1 (CLV1) receptor kinase controls stem cell number and differentiation at the Arabidopsis shoot and flower meristems. Other components of the CLV1 signaling pathway include the secreted putative ligand CLV3 and the receptor-like protein CLV2. We report evidence indicating that all intermediate and strong clv1 alleles are dominant negative and likely interfere with the activity of unknown receptor kinase(s) that have functional overlap with CLV1. clv1 dominant-negative alleles show major differences from dominant-negative alleles characterized to date in animal receptor kinase signaling systems, including the lack of a dominant-negative effect of kinase domain truncation and the ability of missense mutations in the extracellular domain to act in a dominant-negative manner. We analyzed chimeric receptor kinases by fusing CLV1 and BRASSINOSTEROID INSENSITIVE1 (BRI1) coding sequences and expressing these in clv1 null backgrounds. Constructs containing the CLV1 extracellular domain and the BRI1 kinase domain were strongly dominant negative in the regulation of meristem development. Furthermore, we show that CLV1 expressed within the pedicel can partially replace the function of the ERECTA receptor kinase. We propose the presence of multiple receptors that regulate meristem development in a functionally related manner whose interactions are driven by the extracellular domains and whose activation requires the kinase domain. PMID:12724544

  1. Polyoma virus small tumor antigen pre-mRNA splicing requires cooperation between two 3' splice sites.

    PubMed Central

    Ge, H; Noble, J; Colgan, J; Manley, J L

    1990-01-01

    We have studied splicing of the polyoma virus early region pre-mRNA in vitro. This RNA is alternatively spliced in vivo to produce mRNA encoding the large, middle-sized (MTAg), and small (StAg) tumor antigens. Our primary interest was to learn how the 48-nucleotide StAg intron is excised, because the length of this intron is significantly less than the apparent minimum established for mammalian introns. Although the products of all three splices are detected in vitro, characterization of the pathway and sequence requirements of StAg splicing suggests that splicing factors interact with the precursor RNA in an unexpected way to catalyze removal of this intron. Specifically, StAg splicing uses either of two lariat branch points, one of which is located only 4 nucleotides from the 3' splice site. Furthermore, the StAg splice absolutely requires that the alternative MTAg 3' splice site, located 14 nucleotides downstream of the StAg 3' splice site, be intact. Insertion mutations that increase or decrease the quality of the MTAg pyrimidine stretch enhance or repress StAg as well as MTAg splicing, and a single-base change in the MTAg AG splice acceptor totally blocks both splices. These results demonstrate the ability of two 3' splice sites to cooperate with each other to bring about removal of a single intron. Images PMID:2159146

  2. RNA splicing during terminal erythropoiesis.

    PubMed

    Conboy, John G

    2017-05-01

    Erythroid progenitors must accurately and efficiently splice thousands of pre-mRNAs as the cells undergo extensive changes in gene expression and cellular remodeling during terminal erythropoiesis. Alternative splicing choices are governed by interactions between RNA binding proteins and cis-regulatory binding motifs in the RNA. This review will focus on recent studies that define the genome-wide scope of splicing in erythroblasts and discuss what is known about its regulation. RNA-seq analysis of highly purified erythroblast populations has revealed an extensive program of alternative splicing of both exons and introns. During normal erythropoiesis, stage-specific splicing transitions alter the structure and abundance of protein isoforms required for optimized red cell production. Mutation or deficiency of splicing regulators underlies hematopoietic disease in myelopdysplasia syndrome patients via disrupting the splicing program. Erythroid progenitors execute an elaborate alternative splicing program that modulates gene expression posttranscriptionally, ultimately regulating the structure and function of the proteome in a differentiation stage-specific manner during terminal erythropoiesis. This program helps drive differentiation and ensure synthesis of the proper protein isoforms required to produce mechanically stable red cells. Mutation or deficiency of key splicing regulatory proteins disrupts the splicing program to cause disease.

  3. Targeting RNA Splicing for Disease Therapy

    PubMed Central

    Havens, Mallory A.; Duelli, Dominik M.

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. PMID:23512601

  4. Targeting RNA splicing for disease therapy.

    PubMed

    Havens, Mallory A; Duelli, Dominik M; Hastings, Michelle L

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. Copyright © 2013 John Wiley & Sons, Ltd.

  5. RNA splicing and splicing regulator changes in prostate cancer pathology.

    PubMed

    Munkley, Jennifer; Livermore, Karen; Rajan, Prabhakar; Elliott, David J

    2017-09-01

    Changes in mRNA splice patterns have been associated with key pathological mechanisms in prostate cancer progression. The androgen receptor (abbreviated AR) transcription factor is a major driver of prostate cancer pathology and activated by androgen steroid hormones. Selection of alternative promoters by the activated AR can critically alter gene function by switching mRNA isoform production, including creating a pro-oncogenic isoform of the normally tumour suppressor gene TSC2. A number of androgen-regulated genes generate alternatively spliced mRNA isoforms, including a prostate-specific splice isoform of ST6GALNAC1 mRNA. ST6GALNAC1 encodes a sialyltransferase that catalyses the synthesis of the cancer-associated sTn antigen important for cell mobility. Genetic rearrangements occurring early in prostate cancer development place ERG oncogene expression under the control of the androgen-regulated TMPRSS2 promoter to hijack cell behaviour. This TMPRSS2-ERG fusion gene shows different patterns of alternative splicing in invasive versus localised prostate cancer. Alternative AR mRNA isoforms play a key role in the generation of prostate cancer drug resistance, by providing a mechanism through which prostate cancer cells can grow in limited serum androgen concentrations. A number of splicing regulator proteins change expression patterns in prostate cancer and may help drive key stages of disease progression. Up-regulation of SRRM4 establishes neuronal splicing patterns in neuroendocrine prostate cancer. The splicing regulators Sam68 and Tra2β increase expression in prostate cancer. The SR protein kinase SRPK1 that modulates the activity of SR proteins is up-regulated in prostate cancer and has already given encouraging results as a potential therapeutic target in mouse models.

  6. Alternative splicing in plant immunity.

    PubMed

    Yang, Shengming; Tang, Fang; Zhu, Hongyan

    2014-06-10

    Alternative splicing (AS) occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R) genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.

  7. Transcriptome analysis of skin fibroblasts with dominant negative COL3A1 mutations provides molecular insights into the etiopathology of vascular Ehlers-Danlos syndrome

    PubMed Central

    Chiarelli, Nicola; Carini, Giulia; Zoppi, Nicoletta; Ritelli, Marco

    2018-01-01

    Vascular Ehlers-Danlos syndrome (vEDS) is a dominantly inherited connective tissue disorder caused by mutations in the COL3A1 gene that encodes type III collagen (COLLIII), which is the major expressed collagen in blood vessels and hollow organs. The majority of disease-causing variants in COL3A1 are glycine substitutions and in-frame splice mutations in the triple helix domain that through a dominant negative effect are associated with the severe clinical spectrum potentially lethal of vEDS, characterized by fragility of soft connective tissues with arterial and organ ruptures. To shed lights into molecular mechanisms underlying vEDS, we performed gene expression profiling in cultured skin fibroblasts from three patients with different structural COL3A1 mutations. Transcriptome analysis revealed significant changes in the expression levels of several genes involved in maintenance of cell redox and endoplasmic reticulum (ER) homeostasis, COLLs folding and extracellular matrix (ECM) organization, formation of the proteasome complex, and cell cycle regulation. Protein analyses showed that aberrant COLLIII expression is associated with the disassembly of many structural ECM constituents, such as fibrillins, EMILINs, and elastin, as well as with the reduction of the proteoglycans perlecan, decorin, and versican, all playing an important role in the vascular system. Furthermore, the altered distribution of the ER marker protein disulfide isomerase PDI and the strong reduction of the COLLs-modifying enzyme FKBP22 are consistent with the disturbance of ER-related homeostasis and COLLs biosynthesis and post-translational modifications, indicated by microarray analysis. Our findings add new insights into the pathophysiology of this severe vascular disorder, since they provide a picture of the gene expression changes in vEDS skin fibroblasts and highlight that dominant negative mutations in COL3A1 also affect post-translational modifications and deposition into the ECM of

  8. Transcriptome analysis of skin fibroblasts with dominant negative COL3A1 mutations provides molecular insights into the etiopathology of vascular Ehlers-Danlos syndrome.

    PubMed

    Chiarelli, Nicola; Carini, Giulia; Zoppi, Nicoletta; Ritelli, Marco; Colombi, Marina

    2018-01-01

    Vascular Ehlers-Danlos syndrome (vEDS) is a dominantly inherited connective tissue disorder caused by mutations in the COL3A1 gene that encodes type III collagen (COLLIII), which is the major expressed collagen in blood vessels and hollow organs. The majority of disease-causing variants in COL3A1 are glycine substitutions and in-frame splice mutations in the triple helix domain that through a dominant negative effect are associated with the severe clinical spectrum potentially lethal of vEDS, characterized by fragility of soft connective tissues with arterial and organ ruptures. To shed lights into molecular mechanisms underlying vEDS, we performed gene expression profiling in cultured skin fibroblasts from three patients with different structural COL3A1 mutations. Transcriptome analysis revealed significant changes in the expression levels of several genes involved in maintenance of cell redox and endoplasmic reticulum (ER) homeostasis, COLLs folding and extracellular matrix (ECM) organization, formation of the proteasome complex, and cell cycle regulation. Protein analyses showed that aberrant COLLIII expression is associated with the disassembly of many structural ECM constituents, such as fibrillins, EMILINs, and elastin, as well as with the reduction of the proteoglycans perlecan, decorin, and versican, all playing an important role in the vascular system. Furthermore, the altered distribution of the ER marker protein disulfide isomerase PDI and the strong reduction of the COLLs-modifying enzyme FKBP22 are consistent with the disturbance of ER-related homeostasis and COLLs biosynthesis and post-translational modifications, indicated by microarray analysis. Our findings add new insights into the pathophysiology of this severe vascular disorder, since they provide a picture of the gene expression changes in vEDS skin fibroblasts and highlight that dominant negative mutations in COL3A1 also affect post-translational modifications and deposition into the ECM of

  9. Genome wide identification of aberrant alternative splicing events in myotonic dystrophy type 2.

    PubMed

    Perfetti, Alessandra; Greco, Simona; Fasanaro, Pasquale; Bugiardini, Enrico; Cardani, Rosanna; Garcia-Manteiga, Jose M; Manteiga, Jose M Garcia; Riba, Michela; Cittaro, Davide; Stupka, Elia; Meola, Giovanni; Martelli, Fabio

    2014-01-01

    Myotonic dystrophy type 2 (DM2) is a genetic, autosomal dominant disease due to expansion of tetraplet (CCTG) repetitions in the first intron of the ZNF9/CNBP gene. DM2 is a multisystemic disorder affecting the skeletal muscle, the heart, the eye and the endocrine system. According to the proposed pathological mechanism, the expanded tetraplets have an RNA toxic effect, disrupting the splicing of many mRNAs. Thus, the identification of aberrantly spliced transcripts is instrumental for our understanding of the molecular mechanisms underpinning the disease. The aim of this study was the identification of new aberrant alternative splicing events in DM2 patients. By genome wide analysis of 10 DM2 patients and 10 controls (CTR), we identified 273 alternative spliced exons in 218 genes. While many aberrant splicing events were already identified in the past, most were new. A subset of these events was validated by qPCR assays in 19 DM2 and 15 CTR subjects. To gain insight into the molecular pathways involving the identified aberrantly spliced genes, we performed a bioinformatics analysis with Ingenuity system. This analysis indicated a deregulation of development, cell survival, metabolism, calcium signaling and contractility. In conclusion, our genome wide analysis provided a database of aberrant splicing events in the skeletal muscle of DM2 patients. The affected genes are involved in numerous pathways and networks important for muscle physio-pathology, suggesting that the identified variants may contribute to DM2 pathogenesis.

  10. Genome Wide Identification of Aberrant Alternative Splicing Events in Myotonic Dystrophy Type 2

    PubMed Central

    Fasanaro, Pasquale; Bugiardini, Enrico; Cardani, Rosanna; Manteiga, Jose M. Garcia.; Riba, Michela; Cittaro, Davide; Stupka, Elia; Meola, Giovanni; Martelli, Fabio

    2014-01-01

    Myotonic dystrophy type 2 (DM2) is a genetic, autosomal dominant disease due to expansion of tetraplet (CCTG) repetitions in the first intron of the ZNF9/CNBP gene. DM2 is a multisystemic disorder affecting the skeletal muscle, the heart, the eye and the endocrine system. According to the proposed pathological mechanism, the expanded tetraplets have an RNA toxic effect, disrupting the splicing of many mRNAs. Thus, the identification of aberrantly spliced transcripts is instrumental for our understanding of the molecular mechanisms underpinning the disease. The aim of this study was the identification of new aberrant alternative splicing events in DM2 patients. By genome wide analysis of 10 DM2 patients and 10 controls (CTR), we identified 273 alternative spliced exons in 218 genes. While many aberrant splicing events were already identified in the past, most were new. A subset of these events was validated by qPCR assays in 19 DM2 and 15 CTR subjects. To gain insight into the molecular pathways involving the identified aberrantly spliced genes, we performed a bioinformatics analysis with Ingenuity system. This analysis indicated a deregulation of development, cell survival, metabolism, calcium signaling and contractility. In conclusion, our genome wide analysis provided a database of aberrant splicing events in the skeletal muscle of DM2 patients. The affected genes are involved in numerous pathways and networks important for muscle physio-pathology, suggesting that the identified variants may contribute to DM2 pathogenesis. PMID:24722564

  11. Dominant Negative Pleiotrophin Induces Tetraploidy and Aneuploidy in U87MG Human Glioblastoma Cells

    PubMed Central

    Chang, Yunchao; Berenson, James R.; Wang, Zhaoyi; Deuel, Thomas F.

    2007-01-01

    Summary Pleiotrophin (PTN, Ptn) is an 18 kD secretory cytokine that is expressed in many human cancers, including glioblastoma. In previous experiments, interruption of the constitutive PTN signaling in human U87MG glioblastoma cells that inappropriately express endogenous Ptn reversed their rapid growth in vitro and their malignant phenotype in vivo. To seek a mechanism for the effect of the dominant negative PTN, flow cytometry was used to compare the profiles of U87MG cells and four clones of U87MG cells that express the dominant negative PTN (U87MG/PTN 1–40 cells); here, we report that the dominant negative PTN in U87MG cells induces tetraploidy and aneuploidy and arrests the tetraploid and aneuploid cells in the G1 phase of the cell cycle. The data suggest that PTN signaling may have a critical role in chromosomal segregation and cell cycle progression; the data suggest induction of tetraploidy and aneuploidy in U87MG glioblastoma cells may be an important mechanism that contributes to the loss of the malignant phenotype of U87MG cells. PMID:17067552

  12. Spliced RNA of woodchuck hepatitis virus.

    PubMed

    Ogston, C W; Razman, D G

    1992-07-01

    Polymerase chain reaction was used to investigate RNA splicing in liver of woodchucks infected with woodchuck hepatitis virus (WHV). Two spliced species were detected, and the splice junctions were sequenced. The larger spliced RNA has an intron of 1300 nucleotides, and the smaller spliced sequence shows an additional downstream intron of 1104 nucleotides. We did not detect singly spliced sequences from which the smaller intron alone was removed. Control experiments showed that spliced sequences are present in both RNA and DNA in infected liver, showing that the viral reverse transcriptase can use spliced RNA as template. Spliced sequences were detected also in virion DNA prepared from serum. The upstream intron produces a reading frame that fuses the core to the polymerase polypeptide, while the downstream intron causes an inframe deletion in the polymerase open reading frame. Whereas the splicing patterns in WHV are superficially similar to those reported recently in hepatitis B virus, we detected no obvious homology in the coding capacity of spliced RNAs from these two viruses.

  13. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level

    PubMed Central

    Abascal, Federico; Ezkurdia, Iakes; Rodriguez-Rivas, Juan; Rodriguez, Jose Manuel; del Pozo, Angela; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L.

    2015-01-01

    Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved—all the homologous exons we identified evolved over 460 million years ago—and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles. PMID:26061177

  14. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy.

    PubMed

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-05-28

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1.

  15. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy

    PubMed Central

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S.; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-01-01

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1. PMID:26018658

  16. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing.

    PubMed

    Melangath, Geetha; Sen, Titash; Kumar, Rakesh; Bawa, Pushpinder; Srinivasan, Subha; Vijayraghavan, Usha

    2017-01-01

    Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3'ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5'ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5'ss in dtd1+ intron 1 and of an upstream alternative 3'ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5'ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5' ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3'ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional recourse of gene

  17. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing

    PubMed Central

    Kumar, Rakesh; Bawa, Pushpinder; Srinivasan, Subha

    2017-01-01

    Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3’ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5’ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5’ss in dtd1+ intron 1 and of an upstream alternative 3’ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5’ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5’ ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3’ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional

  18. Prognostic impact of alternative splicing-derived hMENA isoforms in resected, node-negative, non-small-cell lung cancer

    PubMed Central

    Sperduti, Isabella; Iapicca, Pierluigi; Visca, Paolo; Alessandrini, Gabriele; Antoniani, Barbara; Pilotto, Sara; Ludovini, Vienna; Vannucci, Jacopo; Bellezza, Guido; Sidoni, Angelo; Tortora, Giampaolo; Radisky, Derek C.; Crinò, Lucio; Cognetti, Francesco; Facciolo, Francesco; Mottolese, Marcella

    2014-01-01

    Risk assessment and treatment choice remain a challenge in early non-small-cell lung cancer (NSCLC). Alternative splicing is an emerging source for diagnostic, prognostic and therapeutic tools. Here, we investigated the prognostic value of the actin cytoskeleton regulator hMENA and its isoforms, hMENA11a and hMENAΔv6, in early NSCLC. The epithelial hMENA11a isoform was expressed in NSCLC lines expressing E-CADHERIN and was alternatively expressed with hMENAΔv6. Enforced expression of hMENAΔv6 or hMENA11a increased or decreased the invasive ability of A549 cells, respectively. hMENA isoform expression was evaluated in 248 node-negative NSCLC. High pan-hMENA and low hMENA11a were the only independent predictors of shorter disease-free and cancer-specific survival, and low hMENA11a was an independent predictor of shorter overall survival, at multivariate analysis. Patients with low pan-hMENA/high hMENA11a expression fared significantly better (P≤0.0015) than any other subgroup. Such hybrid variable was incorporated with T-size and number of resected lymph nodes into a 3-class-risk stratification model, which strikingly discriminated between different risks of relapse, cancer-related death, and death. The model was externally validated in an independent dataset of 133 patients. Relative expression of hMENA splice isoforms is a powerful prognostic factor in early NSCLC, complementing clinical parameters to accurately predict individual patient risk. PMID:25373410

  19. An in vivo genetic screen for genes involved in spliced leader trans-splicing indicates a crucial role for continuous de novo spliced leader RNP assembly.

    PubMed

    Philippe, Lucas; Pandarakalam, George C; Fasimoye, Rotimi; Harrison, Neale; Connolly, Bernadette; Pettitt, Jonathan; Müller, Berndt

    2017-08-21

    Spliced leader (SL) trans-splicing is a critical element of gene expression in a number of eukaryotic groups. This process is arguably best understood in nematodes, where biochemical and molecular studies in Caenorhabditis elegans and Ascaris suum have identified key steps and factors involved. Despite this, the precise details of SL trans-splicing have yet to be elucidated. In part, this is because the systematic identification of the molecules involved has not previously been possible due to the lack of a specific phenotype associated with defects in this process. We present here a novel GFP-based reporter assay that can monitor SL1 trans-splicing in living C. elegans. Using this assay, we have identified mutants in sna-1 that are defective in SL trans-splicing, and demonstrate that reducing function of SNA-1, SNA-2 and SUT-1, proteins that associate with SL1 RNA and related SmY RNAs, impairs SL trans-splicing. We further demonstrate that the Sm proteins and pICln, SMN and Gemin5, which are involved in small nuclear ribonucleoprotein assembly, have an important role in SL trans-splicing. Taken together these results provide the first in vivo evidence for proteins involved in SL trans-splicing, and indicate that continuous replacement of SL ribonucleoproteins consumed during trans-splicing reactions is essential for effective trans-splicing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Aberrant Splicing Induced by Dysregulated Rbfox2 Produces Enhanced Function of CaV1.2 Calcium Channel and Vascular Myogenic Tone in Hypertension.

    PubMed

    Zhou, Yingying; Fan, Jia; Zhu, Huayuan; Ji, Li; Fan, Wenyong; Kapoor, Isha; Wang, Yue; Wang, Yuan; Zhu, Guoqing; Wang, Juejin

    2017-12-01

    Calcium influx from activated voltage-gated calcium channel Ca V 1.2 in vascular smooth muscle cells is indispensable for maintaining myogenic tone and blood pressure. The function of Ca V 1.2 channel can be optimized by alternative splicing, one of post-transcriptional modification mechanisms. The splicing factor Rbfox2 is known to regulate the Ca V 1.2 pre-mRNA alternative splicing events during neuronal development. However, Rbfox2's roles in modulating the key function of vascular Ca V 1.2 channel and in the pathogenesis of hypertension remain elusive. Here, we report that the proportion of Ca V 1.2 channels with alternative exon 9* is increased by 10.3%, whereas that with alternative exon 33 is decreased by 10.5% in hypertensive arteries. Surprisingly, the expression level of Rbfox2 is increased ≈3-folds, presumably because of the upregulation of a dominant-negative isoform of Rbfox2. In vascular smooth muscle cells, we find that knockdown of Rbfox2 dynamically increases alternative exon 9*, whereas decreases exon 33 inclusion of Ca V 1.2 channels. By patch-clamp studies, we show that diminished Rbfox2-induced alternative splicing shifts the steady-state activation and inactivation curves of vascular Ca V 1.2 calcium channel to hyperpolarization, which makes the window current potential to more negative. Moreover, siRNA-mediated knockdown of Rbfox2 increases the pressure-induced vascular myogenic tone of rat mesenteric artery. Taken together, our data indicate that Rbfox2 modulates the functions of vascular Ca V 1.2 calcium channel by dynamically regulating the expressions of alternative exons 9* and 33, which in turn affects the vascular myogenic tone. Therefore, our work suggests a key role for Rbfox2 in hypertension, which provides a rational basis for designing antihypertensive therapies. © 2017 American Heart Association, Inc.

  1. Splice site mutations in GH1 detected in previously (Genetically) undiagnosed families with congenital isolated growth hormone deficiency type II.

    PubMed

    Kempers, M J E; van der Crabben, S N; de Vroede, M; Alfen-van der Velden, J; Netea-Maier, R T; Duim, R A J; Otten, B J; Losekoot, M; Wit, J M

    2013-01-01

    Congenital isolated growth hormone deficiency (IGHD) is a rare endocrine disorder that presents with severe proportionate growth failure. Dominant (type II) IGHD is usually caused by heterozygous mutations of GH1. The presentation of newly affected family members in 3 families with dominant IGHD in whom previous genetic testing had not demonstrated a GH1 mutation or had not been performed, prompted us to identify the underlying genetic cause. GH1 was sequenced in 3 Caucasian families with a clinical autosomal dominant IGHD. All affected family members had severe growth hormone (GH) deficiency that became apparent in the first 2 years of life. GH treatment led to a marked increase in height SDS. So far, no other pituitary dysfunctions have become apparent. In the first family a novel splice site mutation in GH1 was identified (c.172-1G>C, IVS2-1G>C). In two other families a previously reported splice site mutation (c.291+1G>A, IVS3+1G>A) was found. These data show that several years after negative genetic testing it was now possible to make a genetic diagnosis in these families with a well-defined, clearly heritable, autosomal dominant IGHD. This underscores the importance of clinical and genetic follow-up in a multidisciplinary setting. It also shows that even without a positive family history, genetic testing should be considered if the phenotype is strongly suggestive for a genetic syndrome. Identification of pathogenic mutations, like these GH1 mutations, has important clinical implications for the surveillance and genetic counseling of patients and expands our knowledge on the genotype-phenotype correlation. © 2013 S. Karger AG, Basel.

  2. Dominant-negative inhibitors of the Clostridium perfringens epsilon-toxin.

    PubMed

    Pelish, Teal M; McClain, Mark S

    2009-10-23

    The Clostridium perfringens epsilon-toxin is responsible for a severe, often lethal intoxication. In this study, we characterized dominant-negative inhibitors of the epsilon-toxin. Site-specific mutations were introduced into the gene encoding epsilon-toxin, and recombinant proteins were expressed in Escherichia coli. Paired cysteine substitutions were introduced at locations predicted to form a disulfide bond. One cysteine in each mutant was introduced into the membrane insertion domain of the toxin; the second cysteine was introduced into the protein backbone. Mutant proteins with cysteine substitutions at amino acid positions I51/A114 and at V56/F118 lacked detectable cytotoxic activity in a MDCK cell assay. Cytotoxic activity could be reconstituted in both mutant proteins by incubation with dithiothreitol, indicating that the lack of cytotoxic activity was attributable to the formation of a disulfide bond. Fluorescent labeling of the cysteines also indicated that the introduced cysteines participated in a disulfide bond. When equimolar mixtures of wild-type epsilon-toxin and mutant proteins were added to MDCK cells, the I51C/A114C and V56C/F118C mutant proteins each inhibited the activity of wild-type epsilon-toxin. Further analysis of the inhibitory activity of the I51C/A114C and V56C/F118C mutant proteins indicated that these proteins inhibit the ability of the active toxin to form stable oligomeric complexes in the context of MDCK cells. These results provide further insight into the properties of dominant-negative inhibitors of oligomeric pore-forming toxins and provide the basis for developing new therapeutics for treating intoxication by epsilon-toxin.

  3. Splice isoform-specific suppression of the Cav2.1 variant underlying spinocerebellar ataxia type 6.

    PubMed

    Tsou, Wei-Ling; Soong, Bing-Wen; Paulson, Henry L; Rodríguez-Lebrón, Edgardo

    2011-09-01

    Spinocerebellar ataxia type 6 (SCA6) is an inherited neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the Ca(V)2.1 voltage-gated calcium channel subunit (CACNA1A). There is currently no treatment for this debilitating disorder and thus a pressing need to develop preventative therapies. RNA interference (RNAi) has proven effective at halting disease progression in several models of spinocerebellar ataxia (SCA), including SCA types 1 and 3. However, in SCA6 and other dominantly inherited neurodegenerative disorders, RNAi-based strategies that selectively suppress expression of mutant alleles may be required. Using a Ca(V)2.1 mini-gene reporter system, we found that pathogenic CAG expansions in Ca(V)2.1 enhance splicing activity at the 3'end of the transcript, leading to a CAG repeat length-dependent increase in the levels of a polyQ-encoding Ca(V)2.1 mRNA splice isoform and the resultant disease protein. Taking advantage of this molecular phenomenon, we developed a novel splice isoform-specific (SIS)-RNAi strategy that selectively targets the polyQ-encoding Ca(V)2.1 splice variant. Selective suppression of transiently expressed and endogenous polyQ-encoding Ca(V)2.1 splice variants was achieved in a variety of cell-based models including a human neuronal cell line, using a new artificial miRNA-like delivery system. Moreover, the efficacy of gene silencing correlated with effective intracellular recognition and processing of SIS-RNAi miRNA mimics. These results lend support to the preclinical development of SIS-RNAi as a potential therapy for SCA6 and other dominantly inherited diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Antisense Masking of an hnRNP A1/A2 Intronic Splicing Silencer Corrects SMN2 Splicing in Transgenic Mice

    PubMed Central

    Hua, Yimin; Vickers, Timothy A.; Okunola, Hazeem L.; Bennett, C. Frank; Krainer, Adrian R.

    2008-01-01

    survival of motor neuron 2, centromeric (SMN2) is a gene that modifies the severity of spinal muscular atrophy (SMA), a motor-neuron disease that is the leading genetic cause of infant mortality. Increasing inclusion of SMN2 exon 7, which is predominantly skipped, holds promise to treat or possibly cure SMA; one practical strategy is the disruption of splicing silencers that impair exon 7 recognition. By using an antisense oligonucleotide (ASO)-tiling method, we systematically screened the proximal intronic regions flanking exon 7 and identified two intronic splicing silencers (ISSs): one in intron 6 and a recently described one in intron 7. We analyzed the intron 7 ISS by mutagenesis, coupled with splicing assays, RNA-affinity chromatography, and protein overexpression, and found two tandem hnRNP A1/A2 motifs within the ISS that are responsible for its inhibitory character. Mutations in these two motifs, or ASOs that block them, promote very efficient exon 7 inclusion. We screened 31 ASOs in this region and selected two optimal ones to test in human SMN2 transgenic mice. Both ASOs strongly increased hSMN2 exon 7 inclusion in the liver and kidney of the transgenic animals. Our results show that the high-resolution ASO-tiling approach can identify cis-elements that modulate splicing positively or negatively. Most importantly, our results highlight the therapeutic potential of some of these ASOs in the context of SMA. PMID:18371932

  5. The positive and negative framing of affirmative action: a group dominance perspective.

    PubMed

    Haley, Hillary; Sidanius, Jim

    2006-05-01

    Using a sample of 328 White, Latino, and Black Los Angeles County adults, the authors examined the tendency to employ various affirmative action "frames" (e.g., affirmative action as a "tie-breaking" device or as a quota-based policy). All three groups agreed about which frames cast affirmative action in a positive light and which cast it in a negative light. Although minorities had a tendency to frame affirmative action in terms that most people find morally acceptable, Whites had a tendency to frame affirmative action in terms most people find unacceptable. In addition, compared to minorities, Whites were less supportive of affirmative action regardless of how it was framed. LISREL modeling also was employed to test two competing models regarding predictors of the tendency to use frames that one personally finds to be relatively negative versus positive. Consistent with the expectations of social dominance theory and a motivated cognition perspective, the authors found that social dominance orientation (SDO) had significant net direct and indirect effects on one's framing of affirmative action.

  6. The Human Splicing Factor ASF/SF2 can Specifically Recognize Pre-mRNA 5' Splice Sites

    NASA Astrophysics Data System (ADS)

    Zuo, Ping; Manley, James L.

    1994-04-01

    ASF/SF2 is a human protein previously shown to function in in vitro pre-mRNA splicing as an essential factor necessary for all splices and also as an alternative splicing factor, capable of switching selection of 5' splice sites. To begin to study the protein's mechanism of action, we have investigated the RNA binding properties of purified recombinant ASF/SF2. Using UV crosslinking and gel shift assays, we demonstrate that the RNA binding region of ASF/SF2 can interact with RNA in a sequence-specific manner, recognizing the 5' splice site in each of two different pre-mRNAs. Point mutations in the 5' splice site consensus can reduce binding by as much as a factor of 100, with the largest effects observed in competition assays. These findings support a model in which ASF/SF2 aids in the recognition of pre-mRNA 5' splice sites.

  7. Random Splicing of Several Exons Caused by a Single Base Change in the Target Exon of CRISPR/Cas9 Mediated Gene Knockout.

    PubMed

    Kapahnke, Marcel; Banning, Antje; Tikkanen, Ritva

    2016-12-14

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated sequence 9 (CRISPR/Cas9) system is widely used for genome editing purposes as it facilitates an efficient knockout of a specific gene in, e.g. cultured cells. Targeted double-strand breaks are introduced to the target sequence of the guide RNAs, which activates the cellular DNA repair mechanism for non-homologous-end-joining, resulting in unprecise repair and introduction of small deletions or insertions. Due to this, sequence alterations in the coding region of the target gene frequently cause frame-shift mutations, facilitating degradation of the mRNA. We here show that such CRISPR/Cas9-mediated alterations in the target exon may also result in altered splicing of the respective pre-mRNA, most likely due to mutations of splice-regulatory sequences. Using the human FLOT-1 gene as an example, we demonstrate that such altered splicing products also give rise to aberrant protein products. These may potentially function as dominant-negative proteins and thus interfere with the interpretation of the data generated with these cell lines. Since most researchers only control the consequences of CRISPR knockout at genomic and protein level, our data should encourage to also check the alterations at the mRNA level.

  8. An unusual spliced variant of DELLA protein, a negative regulator of gibberellin signaling, in lettuce.

    PubMed

    Sawada, Yoshiaki; Umetsu, Asami; Komatsu, Yuki; Kitamura, Jun; Suzuki, Hiroyuki; Asami, Tadao; Fukuda, Machiko; Honda, Ichiro; Mitsuhashi, Wataru; Nakajima, Masatoshi; Toyomasu, Tomonobu

    2012-01-01

    DELLA proteins are negative regulators of the signaling of gibberellin (GA), a phytohormone regulating plant growth. DELLA degradation is triggered by its interaction with GID1, a soluble GA receptor, in the presence of bioactive GA. We isolated cDNA from a spliced variant of LsDELLA1 mRNA in lettuce, and named it LsDELLA1sv. It was deduced that LsDELLA1sv encodes truncated LsDELLA1, which has DELLA and VHYNP motifs at the N terminus but lacks part of the C-terminal GRAS domain. The recombinant LsDELLA1sv protein interacted with both Arabidopsis GID1 and lettuce GID1s in the presence of GA. A yeast two-hybrid assay suggested that LsDELLA1sv interacted with LsDELLA1. The ratio of LsDELLA1sv to LsDELLA1 transcripts was higher in flower samples at the late reproductive stage and seed samples (dry seeds and imbibed seeds) than in the other organ samples examined. This study suggests that LsDELLA1sv is a possible modulator of GA signaling in lettuce.

  9. Alternative Splicing Generates a Novel Truncated Cav1.2 Channel in Neonatal Rat Heart*

    PubMed Central

    Liao, Ping; Yu, Dejie; Hu, Zhenyu; Liang, Mui Cheng; Wang, Jue Jin; Yu, Chye Yun; Ng, Gandi; Yong, Tan Fong; Soon, Jia Lin; Chua, Yeow Leng; Soong, Tuck Wah

    2015-01-01

    L-type Cav1.2 Ca2+ channel undergoes extensive alternative splicing, generating functionally different channels. Alternatively spliced Cav1.2 Ca2+ channels have been found to be expressed in a tissue-specific manner or under pathological conditions. To provide a more comprehensive understanding of alternative splicing in Cav1.2 channel, we systematically investigated the splicing patterns in the neonatal and adult rat hearts. The neonatal heart expresses a novel 104-bp exon 33L at the IVS3-4 linker that is generated by the use of an alternative acceptor site. Inclusion of exon 33L causes frameshift and C-terminal truncation. Whole-cell electrophysiological recordings of Cav1.233L channels expressed in HEK 293 cells did not detect any current. However, when co-expressed with wild type Cav1.2 channels, Cav1.233L channels reduced the current density and altered the electrophysiological properties of the wild type Cav1.2 channels. Interestingly, the truncated 3.5-domain Cav1.233L channels also yielded a dominant negative effect on Cav1.3 channels, but not on Cav3.2 channels, suggesting that Cavβ subunits is required for Cav1.233L regulation. A biochemical study provided evidence that Cav1.233L channels enhanced protein degradation of wild type channels via the ubiquitin-proteasome system. Although the physiological significance of the Cav1.233L channels in neonatal heart is still unknown, our report demonstrates the ability of this novel truncated channel to modulate the activity of the functional Cav1.2 channels. Moreover, the human Cav1.2 channel also contains exon 33L that is developmentally regulated in heart. Unexpectedly, human exon 33L has a one-nucleotide insertion that allowed in-frame translation of a full Cav1.2 channel. An electrophysiological study showed that human Cav1.233L channel is a functional channel but conducts Ca2+ ions at a much lower level. PMID:25694430

  10. The neurogenetics of alternative splicing

    PubMed Central

    Vuong, Celine K.; Black, Douglas L.; Zheng, Sika

    2016-01-01

    Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that regulate splicing, both during development and in the adult brain. PMID:27094079

  11. Spliced-leader RNA trans splicing in a chordate, Oikopleura dioica, with a compact genome.

    PubMed

    Ganot, Philippe; Kallesøe, Torben; Reinhardt, Richard; Chourrout, Daniel; Thompson, Eric M

    2004-09-01

    trans splicing of a spliced-leader RNA (SL RNA) to the 5' ends of mRNAs has been shown to have a limited and sporadic distribution among eukaryotes. Within metazoans, only nematodes are known to process polycistronic pre-mRNAs, produced from operon units of transcription, into mature monocistronic mRNAs via an SL RNA trans-splicing mechanism. Here we demonstrate that a chordate with a highly compact genome, Oikopleura dioica, now joins Caenorhabditis elegans in coupling trans splicing with processing of polycistronic transcipts. We identified a single SL RNA which associates with Sm proteins and has a trimethyl guanosine cap structure reminiscent of spliceosomal snRNPs. The same SL RNA, estimated to be trans-spliced to at least 25% of O. dioica mRNAs, is used for the processing of both isolated or first cistrons and downstream cistrons in a polycistronic precursor. Remarkably, intercistronic regions in O. dioica are far more reduced than those in either nematodes or kinetoplastids, implying minimal cis-regulatory elements for coupling of 3'-end formation and trans splicing. Copyright 2004 American Society for Microbiology

  12. Alternative Splicing of a Novel Inducible Exon Diversifies the CASK Guanylate Kinase Domain

    PubMed Central

    Dembowski, Jill A.; An, Ping; Scoulos-Hanson, Maritsa; Yeo, Gene; Han, Joonhee; Fu, Xiang-Dong; Grabowski, Paula J.

    2012-01-01

    Alternative pre-mRNA splicing has a major impact on cellular functions and development with the potential to fine-tune cellular localization, posttranslational modification, interaction properties, and expression levels of cognate proteins. The plasticity of regulation sets the stage for cells to adjust the relative levels of spliced mRNA isoforms in response to stress or stimulation. As part of an exon profiling analysis of mouse cortical neurons stimulated with high KCl to induce membrane depolarization, we detected a previously unrecognized exon (E24a) of the CASK gene, which encodes for a conserved peptide insertion in the guanylate kinase interaction domain. Comparative sequence analysis shows that E24a appeared selectively in mammalian CASK genes as part of a >3,000 base pair intron insertion. We demonstrate that a combination of a naturally defective 5′ splice site and negative regulation by several splicing factors, including SC35 (SRSF2) and ASF/SF2 (SRSF1), drives E24a skipping in most cell types. However, this negative regulation is countered with an observed increase in E24a inclusion after neuronal stimulation and NMDA receptor signaling. Taken together, E24a is typically a skipped exon, which awakens during neuronal stimulation with the potential to diversify the protein interaction properties of the CASK polypeptide. PMID:23008758

  13. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules

    PubMed Central

    Berkers, Celia R.; de Jong, Annemieke; Schuurman, Karianne G.; Linnemann, Carsten; Meiring, Hugo D.; Janssen, Lennert; Neefjes, Jacques J.; Schumacher, Ton N. M.; Rodenko, Boris

    2015-01-01

    Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I–restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags. PMID:26401003

  14. The fitness cost of mis-splicing is the main determinant of alternative splicing patterns.

    PubMed

    Saudemont, Baptiste; Popa, Alexandra; Parmley, Joanna L; Rocher, Vincent; Blugeon, Corinne; Necsulea, Anamaria; Meyer, Eric; Duret, Laurent

    2017-10-30

    Most eukaryotic genes are subject to alternative splicing (AS), which may contribute to the production of protein variants or to the regulation of gene expression via nonsense-mediated messenger RNA (mRNA) decay (NMD). However, a fraction of splice variants might correspond to spurious transcripts and the question of the relative proportion of splicing errors to functional splice variants remains highly debated. We propose a test to quantify the fraction of AS events corresponding to errors. This test is based on the fact that the fitness cost of splicing errors increases with the number of introns in a gene and with expression level. We analyzed the transcriptome of the intron-rich eukaryote Paramecium tetraurelia. We show that in both normal and in NMD-deficient cells, AS rates strongly decrease with increasing expression level and with increasing number of introns. This relationship is observed for AS events that are detectable by NMD as well as for those that are not, which invalidates the hypothesis of a link with the regulation of gene expression. Our results show that in genes with a median expression level, 92-98% of observed splice variants correspond to errors. We observed the same patterns in human transcriptomes and we further show that AS rates correlate with the fitness cost of splicing errors. These observations indicate that genes under weaker selective pressure accumulate more maladaptive substitutions and are more prone to splicing errors. Thus, to a large extent, patterns of gene expression variants simply reflect the balance between selection, mutation, and drift.

  15. Alternative splicing and the progesterone receptor in breast cancer

    PubMed Central

    Cork, David MW; Lennard, Thomas WJ; Tyson-Capper, Alison J

    2008-01-01

    Progesterone receptor status is a marker for hormone responsiveness and disease prognosis in breast cancer. Progesterone receptor negative tumours have generally been shown to have a poorer prognosis than progesterone receptor positive tumours. The observed loss of progesterone receptor could be through a range of mechanisms, including the generation of alternatively spliced progesterone receptor variants that are not detectable by current screening methods. Many progesterone receptor mRNA variants have been described with deletions of various whole, multiple or partial exons that encode differing protein functional domains. These variants may alter the progestin responsiveness of a tissue and contribute to the abnormal growth associated with breast cancer. Absence of specific functional domains from these spliced variants may also make them undetectable or indistinguishable from full length progesterone receptor by conventional antibodies. A comprehensive investigation into the expression profile and activity of progesterone receptor spliced variants in breast cancer is required to advance our understanding of tumour hormone receptor status. This, in turn, may aid the development of new biomarkers of disease prognosis and improve adjuvant treatment decisions. PMID:18557990

  16. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes

    PubMed Central

    Ebstein, F.; Textoris-Taube, K.; Keller, C.; Golnik, R.; Vigneron, N.; Van den Eynde, B. J.; Schuler-Thurner, B.; Schadendorf, D.; Lorenz, F. K. M.; Uckert, W.; Urban, S.; Lehmann, A.; Albrecht-Koepke, N.; Janek, K.; Henklein, P.; Niewienda, A.; Kloetzel, P. M.; Mishto, M.

    2016-01-01

    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119

  17. SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts.

    PubMed

    Ryan, Michael C; Cleland, James; Kim, RyangGuk; Wong, Wing Chung; Weinstein, John N

    2012-09-15

    SpliceSeq is a resource for RNA-Seq data that provides a clear view of alternative splicing and identifies potential functional changes that result from splice variation. It displays intuitive visualizations and prioritized lists of results that highlight splicing events and their biological consequences. SpliceSeq unambiguously aligns reads to gene splice graphs, facilitating accurate analysis of large, complex transcript variants that cannot be adequately represented in other formats. SpliceSeq is freely available at http://bioinformatics.mdanderson.org/main/SpliceSeq:Overview. The application is a Java program that can be launched via a browser or installed locally. Local installation requires MySQL and Bowtie. mryan@insilico.us.com Supplementary data are available at Bioinformatics online.

  18. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...

  19. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...

  20. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...

  1. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cable reel or other power feed cable payout-retrieval system. However, a temporary splice may be made to... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent...

  2. A serine–arginine-rich (SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii

    PubMed Central

    Yeoh, Lee M.; Goodman, Christopher D.; Hall, Nathan E.; van Dooren, Giel G.; McFadden, Geoffrey I.; Ralph, Stuart A.

    2015-01-01

    Single genes are often subject to alternative splicing, which generates alternative mature mRNAs. This phenomenon is widespread in animals, and observed in over 90% of human genes. Recent data suggest it may also be common in Apicomplexa. These parasites have small genomes, and economy of DNA is evolutionarily favoured in this phylum. We investigated the mechanism of alternative splicing in Toxoplasma gondii, and have identified and localized TgSR3, a homologue of ASF/SF2 (alternative-splicing factor/splicing factor 2, a serine-arginine–rich, or SR protein) to a subnuclear compartment. In addition, we conditionally overexpressed this protein, which was deleterious to growth. qRT-PCR was used to confirm perturbation of splicing in a known alternatively-spliced gene. We performed high-throughput RNA-seq to determine the extent of splicing modulated by this protein. Current RNA-seq algorithms are poorly suited to compact parasite genomes, and hence we complemented existing tools by writing a new program, GeneGuillotine, that addresses this deficiency by segregating overlapping reads into distinct genes. In order to identify the extent of alternative splicing, we released another program, JunctionJuror, that detects changes in intron junctions. Using this program, we identified about 2000 genes that were constitutively alternatively spliced in T. gondii. Overexpressing the splice regulator TgSR3 perturbed alternative splicing in over 1000 genes. PMID:25870410

  3. Alternative RNA splicing and cancer

    PubMed Central

    Liu, Sali; Cheng, Chonghui

    2015-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells. PMID:23765697

  4. Splice isoform-specific suppression of the CaV2.1 variant underlying Spinocerebellar ataxia type 6

    PubMed Central

    Tsou, Wei-Ling; Soong, Bing-Wen; Paulson, Henry L.; Rodríguez-Lebrón, Edgardo

    2011-01-01

    Spinocerebellar ataxia type 6 (SCA6) is an inherited neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the CaV2.1 voltage-gated calcium channel subunit (CACNA1A). There is currently no treatment for this debilitating disorder and thus a pressing need to develop preventative therapies. RNA interference (RNAi) has proven effective at halting disease progression in several models of spinocerebellar ataxia (SCA), including SCA types 1 and 3. However, in SCA6 and other dominantly inherited neurodegenerative disorders, RNAi-based strategies that selectively suppress expression of mutant alleles may be required. Using a CaV2.1 mini-gene reporter system, we found that pathogenic CAG expansions in CaV2.1 enhance splicing activity at the 3′end of the transcript, leading to a CAG repeat length-dependent increase in the levels of a polyQ-encoding CaV2.1 mRNA splice isoform and the resultant disease protein. Taking advantage of this molecular phenomenon, we developed a novel splice isoform-specific (SIS)-RNAi strategy that selectively targets the polyQ-encoding CaV2.1 splice variant. Selective suppression of transiently expressed and endogenous polyQ-encoding CaV2.1 splice variants was achieved in a variety of cell-based models including a human neuronal cell line, using a new artificial miRNA-like delivery system. Moreover, the efficacy of gene silencing correlated with effective intracellular recognition and processing of SIS-RNAi miRNA mimics. These results lend support to the preclinical development of SIS-RNAi as a potential therapy for SCA6 and other dominantly inherited diseases. PMID:21550405

  5. SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts

    PubMed Central

    Ryan, Michael C.; Cleland, James; Kim, RyangGuk; Wong, Wing Chung; Weinstein, John N.

    2012-01-01

    Summary: SpliceSeq is a resource for RNA-Seq data that provides a clear view of alternative splicing and identifies potential functional changes that result from splice variation. It displays intuitive visualizations and prioritized lists of results that highlight splicing events and their biological consequences. SpliceSeq unambiguously aligns reads to gene splice graphs, facilitating accurate analysis of large, complex transcript variants that cannot be adequately represented in other formats. Availability and implementation: SpliceSeq is freely available at http://bioinformatics.mdanderson.org/main/SpliceSeq:Overview. The application is a Java program that can be launched via a browser or installed locally. Local installation requires MySQL and Bowtie. Contact: mryan@insilico.us.com Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22820202

  6. Methods for Characterization of Alternative RNA Splicing.

    PubMed

    Harvey, Samuel E; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing "minigene" in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest.

  7. Mutual interdependence of splicing and transcription elongation.

    PubMed

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  8. Modelling reveals kinetic advantages of co-transcriptional splicing.

    PubMed

    Aitken, Stuart; Alexander, Ross D; Beggs, Jean D

    2011-10-01

    Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.

  9. Aberrant alternative splicing is another hallmark of cancer.

    PubMed

    Ladomery, Michael

    2013-01-01

    The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks.

  10. Genetic therapies for RNA mis-splicing diseases.

    PubMed

    Hammond, Suzan M; Wood, Matthew J A

    2011-05-01

    RNA mis-splicing diseases account for up to 15% of all inherited diseases, ranging from neurological to myogenic and metabolic disorders. With greatly increased genomic sequencing being performed for individual patients, the number of known mutations affecting splicing has risen to 50-60% of all disease-causing mutations. During the past 10years, genetic therapy directed toward correction of RNA mis-splicing in disease has progressed from theoretical work in cultured cells to promising clinical trials. In this review, we discuss the use of antisense oligonucleotides to modify splicing as well as the principles and latest work in bifunctional RNA, trans-splicing and modification of U1 and U7 snRNA to target splice sites. The success of clinical trials for modifying splicing to treat Duchenne muscular dystrophy opens the door for the use of splicing modification for most of the mis-splicing diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Modeling of surface-dominated plasmas: from electric thruster to negative ion source.

    PubMed

    Taccogna, F; Schneider, R; Longo, S; Capitelli, M

    2008-02-01

    This contribution shows two important applications of the particle-in-cell/monte Carlo technique on ion sources: modeling of the Hall thruster SPT-100 for space propulsion and of the rf negative ion source for ITER neutral beam injection. In the first case translational degrees of freedom are involved, while in the second case inner degrees of freedom (vibrational levels) are excited. Computational results show how in both cases, plasma-wall and gas-wall interactions play a dominant role. These are secondary electron emission from the lateral ceramic wall of SPT-100 and electron capture from caesiated surfaces by positive ions and atoms in the rf negative ion source.

  12. Subgroup Specific Alternative Splicing in Medulloblastoma

    PubMed Central

    Kloosterhof, Nanne K; Northcott, Paul A; Yu, Emily PY; Shih, David; Peacock, John; Grajkowska, Wieslawa; van Meter, Timothy; Eberhart, Charles G; Pfister, Stefan; Marra, Marco A; Weiss, William A; Scherer, Stephen W; Rutka, James T; French, Pim J; Taylor, Michael D

    2014-01-01

    Medulloblastoma is comprised of four distinct molecular variants: WNT, SHH, Group 3, and Group 4. We analyzed alternative splicing usage in 14 normal cerebellar samples and 103 medulloblastomas of known subgroup. Medulloblastoma samples have a statistically significant increase in alternative splicing as compared to normal fetal cerebella (2.3-times; P<6.47E-8). Splicing patterns are distinct and specific between molecular subgroups. Unsupervised hierarchical clustering of alternative splicing events accurately assigns medulloblastomas to their correct subgroup. Subgroup-specific splicing and alternative promoter usage was most prevalent in Group 3 (19.4%) and SHH (16.2%) medulloblastomas, while observed less frequently in WNT (3.2%), and Group 4 (9.3%) tumors. Functional annotation of alternatively spliced genes reveals over-representation of genes important for neuronal development. Alternative splicing events in medulloblastoma may be regulated in part by the correlative expression of antisense transcripts, suggesting a possible mechanism affecting subgroup specific alternative splicing. Our results identify additional candidate markers for medulloblastoma subgroup affiliation, further support the existence of distinct subgroups of the disease, and demonstrate an additional level of transcriptional heterogeneity between medulloblastoma subgroups. PMID:22358458

  13. Homologous SV40 RNA trans-splicing

    PubMed Central

    Eul, Joachim; Patzel, Volker

    2013-01-01

    Simian Virus 40 (SV40) is a polyomavirus found in both monkeys and humans, which causes cancer in some animal models. In humans, SV40 has been reported to be associated with cancers but causality has not been proven yet. The transforming activity of SV40 is mainly due to its 94-kD large T antigen, which binds to the retinoblastoma (pRb) and p53 tumor suppressor proteins, and thereby perturbs their functions. Here we describe a 100 kD super T antigen harboring a duplication of the pRB binding domain that was associated with unusual high cell transformation activity and that was generated by a novel mechanism involving homologous RNA trans-splicing of SV40 early transcripts in transformed rodent cells. Enhanced trans-splice activity was observed in clones carrying a single point mutation in the large T antigen 5′ donor splice site (ss). This mutation impaired cis-splicing in favor of an alternative trans-splice reaction via a cryptic 5′ss within a second cis-spliced SV40 pre-mRNA molecule and enabled detectable gene expression. Next to the cryptic 5′ss we identified additional trans-splice helper functions, including putative dimerization domains and a splice enhancer sequence. Our findings suggest RNA trans-splicing as a SV40-intrinsic mechanism that supports the diversification of viral RNA and phenotypes. PMID:24178438

  14. SMITten by the Speed of Splicing.

    PubMed

    Johnson, Tracy L; Ares, Manuel

    2016-04-07

    Splicing occurs co-transcriptionally, but relative rates of splicing and transcription that might reveal mechanisms of their coordinated control have remained mysterious. Now, Carrillo Oesterreich et al. show that the fastest introns are gone nearly as soon as the 3' splice site is transcribed and that introns have distinct splicing kinetics with respect to polymerase progression along the gene. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Prominent dominant negative effect of a mutant Fas molecule lacking death domain on cell-mediated induction of apoptosis.

    PubMed

    Yokota, Aya; Takeuchi, Emiko; Iizuka, Misao; Ikegami, Yuko; Takayama, Hajime; Shinohara, Nobukata

    2005-01-01

    Using a panel of transfectant B lymphoma cells expressing varying amounts of the mutant Fas together with the endogenous wild type Fas, semi-quantitative studies on the dominant negative effect of a murine mutant Fas molecule lacking death domain were carried out. In anti-Fas antibody-mediated induction of apoptosis, the mutant molecules exerted significant dominant-negative effect only when their expression level was comparable to or higher than that of wild type molecules, or when exposed to low amounts of the antibody. The inhibitory effect was accompanied by the failure in DISC formation in spite of Fas aggregation. When they were subjected to T cell-mediated Fas-based induction of apoptosis, however, the dominant negative effect was prominent such that the expression of even a small amount of the mutant molecules resulted in significant inhibition. Such a strong inhibitory effect explains the dominant phenotype of this type of mutant Fas molecules in ALPS heterozygous patients and also implies that the physiological effectors for Fas in vivo are cells, i.e., FasL-expressing activated T cells.

  16. Alternative Splicing in Neurogenesis and Brain Development.

    PubMed

    Su, Chun-Hao; D, Dhananjaya; Tarn, Woan-Yuh

    2018-01-01

    Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.

  17. The splicing activator DAZAP1 integrates splicing control into MEK/Erk-regulated cell proliferation and migration

    NASA Astrophysics Data System (ADS)

    Choudhury, Rajarshi; Roy, Sreerupa Ghose; Tsai, Yihsuan S.; Tripathy, Ashutosh; Graves, Lee M.; Wang, Zefeng

    2014-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a critical stage of gene regulation in response to environmental stimuli. Here we show that DAZAP1, an RNA-binding protein involved in mammalian development and spermatogenesis, promotes inclusion of weak exons through specific recognition of diverse cis-elements. The carboxy-terminal proline-rich domain of DAZAP1 interacts with and neutralizes general splicing inhibitors, and is sufficient to activate splicing when recruited to pre-mRNA. This domain is phosphorylated by the MEK/Erk (extracellular signal-regulated protein kinase) pathway and this modification is essential for the splicing regulatory activity and the nuclear/cytoplasmic translocation of DAZAP1. Using mRNA-seq, we identify endogenous splicing events regulated by DAZAP1, many of which are involved in maintaining cell growth. Knockdown or over-expression of DAZAP1 causes a cell proliferation defect. Taken together, these studies reveal a molecular mechanism that integrates splicing control into MEK/Erk-regulated cell proliferation.

  18. The splicing activator DAZAP1 integrates splicing control into MEK/Erk regulated cell proliferation and migration

    PubMed Central

    Choudhury, Rajarshi; Roy, Sreerupa Ghose; Tsai, Yihsuan S.; Tripathy, Ashutosh; Graves, Lee M.; Wang, Zefeng

    2014-01-01

    Alternative splicing of pre-mRNA is a critical stage of gene regulation in response to environmental stimuli. Here we show that DAZAP1, an RNA binding protein involved in mammalian development and spermatogenesis, promotes inclusion of weak exons through specific recognition of diverse cis-elements. The C-terminal proline-rich domain of DAZAP1 interacts with and neutralizes general splicing inhibitors, and is sufficient to activate splicing when recruited to pre-mRNA. This domain is phosphorylated by the MEK/Erk pathway and this modification is essential for the splicing regulatory activity and the nuclear/cytoplasmic translocation of DAZAP1. Using mRNA-seq we identify endogenous splicing events regulated by DAZAP1, many of which are involved in maintaining cell growth. Knockdown or over-expression of DAZAP1 causes a cell proliferation defect. Taken together, these studies reveal a molecular mechanism that integrates splicing control into MEK/Erk regulated cell proliferation. PMID:24452013

  19. COMMUNICATION: Alternative splicing and genomic stability

    NASA Astrophysics Data System (ADS)

    Cahill, Kevin

    2004-06-01

    Alternative splicing allows an organism to make different proteins in different cells at different times, all from the same gene. In a cell that uses alternative splicing, the total length of all the exons is much shorter than in a cell that encodes the same set of proteins without alternative splicing. This economical use of exons makes genes more stable during reproduction and development because a genome with a shorter exon length is more resistant to harmful mutations. Genomic stability may be the reason why higher vertebrates splice alternatively. For a broad class of alternatively spliced genes, a formula is given for the increase in their stability.

  20. Adaptive thermal control of stem gravitropism through alternative RNA splicing in Arabidopsis

    PubMed Central

    Ryu, Jae Yong; Kim, Joo-Young; Park, Chung-Mo

    2015-01-01

    Gravitropism is an important growth movement in response to gravity in virtually all higher plants: the roots showing positive gravitropism and the shoots showing negative gravitropism. The gravitropic orientation of plant organs is also influenced by environmental factors, such as light and temperature. It is known that a zinc finger (ZF)-containing transcription factor SHOOT GRAVITROPISM 5/INDETERMINATE DOMAIN 15 (SGR5/IDD15) mediates the early events of gravitropic responses occurring in inflorescence stems. We have recently found that SGR5 gene undergoes alternative splicing to produce 2 protein variants, the full-size SGR5α transcription factor and the truncated SGR5β form lacking functional ZF motifs. The SGR5β form inhibits SGR5α function possibly by forming nonfunctional heterodimers that are excluded from DNA binding. Notably, SGR5 alternative splicing is accelerated at high temperatures, resulting in a high-level accumulation of SGR5β proteins. Accordingly, transgenic plants overexpressing SGR5β exhibit a reduction in the negative gravitropism of inflorescence stems, as observed in the SGR5-defective mutant. It is proposed that the thermos-responsive alternative splicing of SGR5 gene provides an adaptation strategy by which plants protect the shoots from aerial heat frequently occurring in natural habitats. PMID:26452406

  1. Adaptive thermal control of stem gravitropism through alternative RNA splicing in Arabidopsis.

    PubMed

    Ryu, Jae Yong; Kim, Joo-Young; Park, Chung-Mo

    2015-01-01

    Gravitropism is an important growth movement in response to gravity in virtually all higher plants: the roots showing positive gravitropism and the shoots showing negative gravitropism. The gravitropic orientation of plant organs is also influenced by environmental factors, such as light and temperature. It is known that a zinc finger (ZF)-containing transcription factor SHOOT GRAVITROPISM 5/INDETERMINATE DOMAIN 15 (SGR5/IDD15) mediates the early events of gravitropic responses occurring in inflorescence stems. We have recently found that SGR5 gene undergoes alternative splicing to produce 2 protein variants, the full-size SGR5α transcription factor and the truncated SGR5β form lacking functional ZF motifs. The SGR5β form inhibits SGR5α function possibly by forming nonfunctional heterodimers that are excluded from DNA binding. Notably, SGR5 alternative splicing is accelerated at high temperatures, resulting in a high-level accumulation of SGR5β proteins. Accordingly, transgenic plants overexpressing SGR5β exhibit a reduction in the negative gravitropism of inflorescence stems, as observed in the SGR5-defective mutant. It is proposed that the thermos-responsive alternative splicing of SGR5 gene provides an adaptation strategy by which plants protect the shoots from aerial heat frequently occurring in natural habitats.

  2. Mutations in PRPF31 Inhibit Pre-mRNA Splicing of Rhodopsin Gene and Cause Apoptosis of Retinal Cells

    PubMed Central

    Yuan, Liya; Kawada, Mariko; Havlioglu, Necat; Tang, Hao; Wu, Jane Y.

    2007-01-01

    Mutations in human PRPF31 gene have been identified in patients with autosomal dominant retinitis pigmentosa (adRP). To begin to understand mechanisms by which defects in this general splicing factor cause retinal degeneration, we examined the relationship between PRPF31 and pre-mRNA splicing of photoreceptor-specific genes. We used a specific anti-PRPF31 antibody to immunoprecipitate splicing complexes from retinal cells and identified the transcript of rhodopsin gene (RHO) among RNA species associated with PRPF31-containing complexes. Mutant PRPF31 proteins significantly inhibited pre-mRNA splicing of intron 3 in RHO gene. In primary retinal cell cultures, expression of the mutant PRPF31 proteins reduced rhodopsin expression and caused apoptosis of rhodopsin-positive retinal cells. This primary retinal culture assay provides an in vitro model to study photoreceptor cell death caused by PRPF31 mutations. Our results demonstrate that mutations in PRPF31 gene affect RHO pre-mRNA splicing and reveal a link between PRPF31 and RHO, two major adRP genes. PMID:15659613

  3. The Novel α4B Murine α4 Integrin Protein Splicing Variant Inhibits α4 Protein-dependent Cell Adhesion*

    PubMed Central

    Kouro, Hitomi; Kon, Shigeyuki; Matsumoto, Naoki; Miyashita, Tomoe; Kakuchi, Ayaka; Ashitomi, Dai; Saitoh, Kodai; Nakatsuru, Takuya; Togi, Sumihito; Muromoto, Ryuta; Matsuda, Tadashi

    2014-01-01

    Integrins affect the motility of multiple cell types to control cell survival, growth, or differentiation, which are mediated by cell-cell and cell-extracellular matrix interactions. We reported previously that the α9 integrin splicing variant, SFα9, promotes WT α9 integrin-dependent adhesion. In this study, we introduced a new murine α4 integrin splicing variant, α4B, which has a novel short cytoplasmic tail. In inflamed tissues, the expression of α4B, as well as WT α4 integrin, was up-regulated. Cells expressing α4B specifically bound to VCAM-1 but not other α4 integrin ligands, such as fibronectin CS1 or osteopontin. The binding of cells expressing WT α4 integrin to α4 integrin ligands is inhibited by coexpression of α4B. Knockdown of α4B in metastatic melanoma cell lines results in a significant increase in lung metastasis. Expression levels of WT α4 integrin are unaltered by α4B, with α4B acting as a regulatory subunit for WT α4 integrin by a dominant-negative effect or inhibiting α4 integrin activation. PMID:24755217

  4. Genetics of alternative splicing evolution during sunflower domestication.

    PubMed

    Smith, Chris C R; Tittes, Silas; Mendieta, J Paul; Collier-Zans, Erin; Rowe, Heather C; Rieseberg, Loren H; Kane, Nolan C

    2018-06-11

    Alternative splicing enables organisms to produce the diversity of proteins necessary for multicellular life by using relatively few protein-coding genes. Although differences in splicing have been identified among divergent taxa, the shorter-term evolution of splicing is understudied. The origins of novel splice forms, and the contributions of alternative splicing to major evolutionary transitions, are largely unknown. This study used transcriptomes of wild and domesticated sunflowers to examine splice differentiation and regulation during domestication. We identified substantial splicing divergence between wild and domesticated sunflowers, mainly in the form of intron retention. Transcripts with divergent splicing were enriched for seed-development functions, suggesting that artificial selection impacted splicing patterns. Mapping of quantitative trait loci (QTLs) associated with 144 differential splicing cases revealed primarily trans -acting variation affecting splicing patterns. A large proportion of identified QTLs contain known spliceosome proteins and are associated with splicing variation in multiple genes. Examining a broader set of wild and domesticated sunflower genotypes revealed that most differential splicing patterns in domesticated sunflowers likely arose from standing variation in wild Helianthus annuus and gained frequency during the domestication process. However, several domesticate-associated splicing patterns appear to be introgressed from other Helianthus species. These results suggest that sunflower domestication involved selection on pleiotropic regulatory alleles. More generally, our findings indicate that substantial differences in isoform abundances arose rapidly during a recent evolutionary transition and appear to contribute to adaptation and population divergence.

  5. A negative regulatory role in mouse cardiac transplantation for a splice variant of CD80.

    PubMed

    Bugeon, Laurence; Wong, Kenneth K; Rankin, Alasdair M; Hargreaves, Roseanna E G; Dallman, Margaret J

    2006-11-27

    Members of the B7 costimulatory protein family (CD80 and CD86) play a determining role in allograft rejection. Both CD80 and CD86 have naturally occurring splice variants whose roles in transplantation are unknown. Full length CD80 has two immunoglobulin (Ig)-like domains in the extracellular portion, IgC and IgV. In mouse, the isoform IgV-CD80 lacks the IgC-like domain. Here we analyzed the role of mouse IgV-CD80 in heart allograft rejection and search for equivalent splice variants in human. Mice made deficient for full-length CD80 but which retain expression of the shorter IgV-CD80 (CD80 mice) were used as donor or recipient of a heart allograft. Recipient animals were untreated or pretreated with alloantigen expressing cells and/or treated with CD80 and CTLA4 monoclonal antibodies (mAbs). Recipients expressing IgV-CD80 but not full length CD80 exhibited a slight prolongation in survival of either wild-type (Wt) or CD80 grafts. More dramatically, CD80 animals pretreated with donor alloantigen exhibited permanent graft survival, whereas their Wt counterparts rejected their grafts with a median survival of 24 days. This prolonged survival was due to the expression of IgV-CD80 in recipients since treatment with CD80 mAb abrogated the beneficial effect observed. We identified and report here a similar isoform of CD80 from human cDNA encoding a putative soluble, IgV-containing protein. IgV-CD80 bearing recipients show enhanced allograft survival especially after donor alloantigen pretreatment. This together with data from other species suggests that regulation delivered by splice variants of CD80 significantly modulates immunity and may be common across the species.

  6. Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene.

    PubMed

    Lupton, S D; Brunton, L L; Kalberg, V A; Overell, R W

    1991-06-01

    The hygromycin phosphotransferase gene was fused in-frame with the herpes simplex virus type 1 thymidine kinase gene. The resulting fusion gene (termed HyTK) confers hygromycin B resistance for dominant positive selection and ganciclovir sensitivity for negative selection and provides a means by which these selectable phenotypes may be expressed and regulated as a single genetic entity.

  7. Splicing Wires Permanently With Explosives

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1990-01-01

    Explosive joining process developed to splice wires by enclosing and metallurgically bonding wires within copper sheets. Joints exhibit many desirable characteristics, 100-percent conductivity and strength, no heat-induced annealing, no susceptibility to corrosion in contacts between dissimilar metals, and stability at high temperature. Used to join wires to terminals, as well as to splice wires. Applicable to telecommunications industry, in which millions of small wires spliced annually.

  8. Lessons from non-canonical splicing

    PubMed Central

    Ule, Jernej

    2016-01-01

    Recent improvements in experimental and computational techniques used to study the transcriptome have enabled an unprecedented view of RNA processing, revealing many previously unknown non-canonical splicing events. This includes cryptic events located far from the currently annotated exons, and unconventional splicing mechanisms that have important roles in regulating gene expression. These non-canonical splicing events are a major source of newly emerging transcripts during evolution, especially when they involve sequences derived from transposable elements. They are therefore under precise regulation and quality control, which minimises their potential to disrupt gene expression. While non-canonical splicing can lead to aberrant transcripts that cause many diseases, we also explain how it can be exploited for new therapeutic strategies. PMID:27240813

  9. Identification of cis-Acting Elements and Splicing Factors Involved in the Regulation of BIM Pre-mRNA Splicing

    PubMed Central

    Juan, Wen Chun; Roca, Xavier; Ong, S. Tiong

    2014-01-01

    Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3′ end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes. PMID:24743263

  10. Identification of cis-acting elements and splicing factors involved in the regulation of BIM Pre-mRNA splicing.

    PubMed

    Juan, Wen Chun; Roca, Xavier; Ong, S Tiong

    2014-01-01

    Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3' end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes.

  11. Transcriptome-wide analysis of alternative RNA splicing events in Epstein-Barr virus-associated gastric carcinomas

    PubMed Central

    Armero, Victoria E. S.; Tremblay, Marie-Pier; Allaire, Andréa; Boudreault, Simon; Martenon-Brodeur, Camille; Duval, Cyntia; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S.

    2017-01-01

    Multiple human diseases including cancer have been associated with a dysregulation in RNA splicing patterns. In the current study, modifications to the global RNA splicing landscape of cellular genes were investigated in the context of Epstein-Barr virus-associated gastric cancer. Global alterations to the RNA splicing landscape of cellular genes was examined in a large-scale screen from 295 primary gastric adenocarcinomas using high-throughput RNA sequencing data. RT-PCR analysis, mass spectrometry, and co-immunoprecipitation studies were also used to experimentally validate and investigate the differential alternative splicing (AS) events that were observed through RNA-seq studies. Our study identifies alterations in the AS patterns of approximately 900 genes such as tumor suppressor genes, transcription factors, splicing factors, and kinases. These findings allowed the identification of unique gene signatures for which AS is misregulated in both Epstein-Barr virus-associated gastric cancer and EBV-negative gastric cancer. Moreover, we show that the expression of Epstein–Barr nuclear antigen 1 (EBNA1) leads to modifications in the AS profile of cellular genes and that the EBNA1 protein interacts with cellular splicing factors. These findings provide insights into the molecular differences between various types of gastric cancer and suggest a role for the EBNA1 protein in the dysregulation of cellular AS. PMID:28493890

  12. Transcriptome-wide analysis of alternative RNA splicing events in Epstein-Barr virus-associated gastric carcinomas.

    PubMed

    Armero, Victoria E S; Tremblay, Marie-Pier; Allaire, Andréa; Boudreault, Simon; Martenon-Brodeur, Camille; Duval, Cyntia; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Bisaillon, Martin

    2017-01-01

    Multiple human diseases including cancer have been associated with a dysregulation in RNA splicing patterns. In the current study, modifications to the global RNA splicing landscape of cellular genes were investigated in the context of Epstein-Barr virus-associated gastric cancer. Global alterations to the RNA splicing landscape of cellular genes was examined in a large-scale screen from 295 primary gastric adenocarcinomas using high-throughput RNA sequencing data. RT-PCR analysis, mass spectrometry, and co-immunoprecipitation studies were also used to experimentally validate and investigate the differential alternative splicing (AS) events that were observed through RNA-seq studies. Our study identifies alterations in the AS patterns of approximately 900 genes such as tumor suppressor genes, transcription factors, splicing factors, and kinases. These findings allowed the identification of unique gene signatures for which AS is misregulated in both Epstein-Barr virus-associated gastric cancer and EBV-negative gastric cancer. Moreover, we show that the expression of Epstein-Barr nuclear antigen 1 (EBNA1) leads to modifications in the AS profile of cellular genes and that the EBNA1 protein interacts with cellular splicing factors. These findings provide insights into the molecular differences between various types of gastric cancer and suggest a role for the EBNA1 protein in the dysregulation of cellular AS.

  13. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent, shall be made in a trailing cable within 25 feet of the machine unless the machine is equipped with a...

  14. Molecular Basis of the Dominant Negative Effect of a Glycine Transporter 2 Mutation Associated with Hyperekplexia*

    PubMed Central

    Arribas-González, Esther; de Juan-Sanz, Jaime; Aragón, Carmen; López-Corcuera, Beatriz

    2015-01-01

    Hyperekplexia or startle disease is a rare clinical syndrome characterized by an exaggerated startle in response to trivial tactile or acoustic stimuli. This neurological disorder can have serious consequences in neonates, provoking brain damage and/or sudden death due to apnea episodes and cardiorespiratory failure. Hyperekplexia is caused by defective inhibitory glycinergic neurotransmission. Mutations in the human SLC6A5 gene encoding the neuronal GlyT2 glycine transporter are responsible for the presynaptic form of the disease. GlyT2 mediates synaptic glycine recycling, which constitutes the main source of releasable transmitter at glycinergic synapses. Although the majority of GlyT2 mutations detected so far are recessive, a dominant negative mutant that affects GlyT2 trafficking does exist. In this study, we explore the properties and structural alterations of the S512R mutation in GlyT2. We analyze its dominant negative effect that retains wild-type GlyT2 in the endoplasmic reticulum (ER), preventing surface expression. We show that the presence of an arginine rather than serine 512 provoked transporter misfolding, enhanced association to the ER-chaperone calnexin, altered association with the coat-protein complex II component Sec24D, and thereby impeded ER exit. The S512R mutant formed oligomers with wild-type GlyT2 causing its retention in the ER. Overexpression of calnexin rescued wild-type GlyT2 from the dominant negative effect of the mutant, increasing the amount of transporter that reached the plasma membrane and dampening the interaction between the wild-type and mutant GlyT2. The ability of chemical chaperones to overcome the dominant negative effect of the disease mutation on the wild-type transporter was demonstrated in heterologous cells and primary neurons. PMID:25480793

  15. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.

    PubMed

    Xiong, Hui Y; Alipanahi, Babak; Lee, Leo J; Bretschneider, Hannes; Merico, Daniele; Yuen, Ryan K C; Hua, Yimin; Gueroussov, Serge; Najafabadi, Hamed S; Hughes, Timothy R; Morris, Quaid; Barash, Yoseph; Krainer, Adrian R; Jojic, Nebojsa; Scherer, Stephen W; Blencowe, Benjamin J; Frey, Brendan J

    2015-01-09

    To facilitate precision medicine and whole-genome annotation, we developed a machine-learning technique that scores how strongly genetic variants affect RNA splicing, whose alteration contributes to many diseases. Analysis of more than 650,000 intronic and exonic variants revealed widespread patterns of mutation-driven aberrant splicing. Intronic disease mutations that are more than 30 nucleotides from any splice site alter splicing nine times as often as common variants, and missense exonic disease mutations that have the least impact on protein function are five times as likely as others to alter splicing. We detected tens of thousands of disease-causing mutations, including those involved in cancers and spinal muscular atrophy. Examination of intronic and exonic variants found using whole-genome sequencing of individuals with autism revealed misspliced genes with neurodevelopmental phenotypes. Our approach provides evidence for causal variants and should enable new discoveries in precision medicine. Copyright © 2015, American Association for the Advancement of Science.

  16. Genome-wide analysis of alternative splicing in medulloblastoma identifies splicing patterns characteristic of normal cerebellar development

    PubMed Central

    Menghi, Francesca; Jacques, Thomas S.; Barenco, Martino; Schwalbe, Ed C.; Clifford, Steven C.; Hubank, Mike; Ham, Jonathan

    2011-01-01

    Alternative splicing is an important mechanism for the generation of protein diversity at a post-transcriptional level. Modifications in the splicing patterns of several genes have been shown to contribute to the malignant transformation of different tissue types. In this study, we used the Affymetrix Exon arrays to investigate patterns of differential splicing between paediatric medulloblastomas and normal cerebellum on a genome-wide scale. Of the 1262 genes identified as potentially generating tumour-associated splice forms, we selected 14 examples of differential splicing of known cassette exons and successfully validated 11 of them by RT-PCR. The pattern of differential splicing of three validated events was characteristic for the molecular subset of Sonic Hedgehog (Shh)-driven medulloblastomas, suggesting that their unique gene signature includes the expression of distinctive transcript variants. Generally, we observed that tumour and normal fetal cerebellar samples shared significantly lower exon inclusion rates compared to normal adult cerebellum. We investigated whether tumour-associated splice forms were expressed in primary cultures of Shh-dependent mouse cerebellar granule cell precursors (GCPs) and found that Shh caused a decrease in the cassette exon inclusion rate of five out of the seven tested genes. Furthermore, we observed a significant increase in exon inclusion between post-natal days 7 and 14 of mouse cerebellar development, at the time when GCPs mature into post-mitotic neurons. We conclude that inappropriate splicing frequently occurs in human medulloblastomas and may be linked to the activation of developmental signalling pathways and a failure of cerebellar precursor cells to differentiate. PMID:21248070

  17. When SUMO met splicing.

    PubMed

    Pozzi, Berta; Mammi, Pablo; Bragado, Laureano; Giono, Luciana E; Srebrow, Anabella

    2018-05-09

    Spliceosomal proteins have been revealed as SUMO conjugation targets. Moreover, we have reported that many of these are in a SUMO-conjugated form when bound to a pre-mRNA substrate during a splicing reaction. We demonstrated that SUMOylation of Prp3 (PRPF3), a component of the U4/U6 di-snRNP, is required for U4/U6•U5 tri-snRNP formation and/or recruitment to active spliceosomes. Expanding upon our previous results, we have shown that the splicing factor SRSF1 stimulates SUMO conjugation to several spliceosomal proteins. Given the relevance of the splicing process, as well as the complex and dynamic nature of its governing machinery, the spliceosome, the molecular mechanisms that modulate its function represent an attractive topic of research. We posit that SUMO conjugation could represent a way of modulating spliceosome assembly and thus, splicing efficiency. How cycles of SUMOylation/de-SUMOylation of spliceosomal proteins become integrated throughout the highly choreographed spliceosomal cycle awaits further investigation.

  18. [Deregulation of pre-messenger RNA splicing and rare diseases].

    PubMed

    de la Grange, Pierre

    2016-12-01

    Most of protein-coding human genes are subjected to alternative pre-mRNA splicing. This mechanism is highly regulated to precisely modulate detection of specific splice sites. This regulation is under control of the spliceosome and several splicing factors are also required to modulate the alternative usage of splice sites. Splicing factors and spliceosome components recognize splicing signals and regulatory sequences of the pre-mRNAs. These splicing sequences make splicing susceptible to polymorphisms and mutations. Examples of associations between human rare diseases and defects in pre-messenger RNA splicing are accumulating. Although many alterations are caused by mutations in splicing sequence (i.e., cis acting mutations), recent studies described the disruptive impact of mutations within spliceosome components or splicing factors (i.e., trans acting mutations). Following growing of knowledge regarding splicing regulation, several approaches have been developed to compensate for the effect of deleterious mutations and to restore sufficient amounts of functional protein. © 2016 médecine/sciences – Inserm.

  19. The RNA Splicing Response to DNA Damage.

    PubMed

    Shkreta, Lulzim; Chabot, Benoit

    2015-10-29

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.

  20. Evolutionary Insights into RNA trans-Splicing in Vertebrates

    PubMed Central

    Lei, Quan; Li, Cong; Zuo, Zhixiang; Huang, Chunhua; Cheng, Hanhua; Zhou, Rongjia

    2016-01-01

    Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide new regulatory mechanisms for gene expression. An increasing amount of evidence indicates that trans-splicing occurs frequently in both physiological and pathological processes. In addition, mRNA reprogramming based on trans-splicing has been successfully applied in RNA-based therapies for human genetic diseases. Nevertheless, clarifying the extent and evolution of trans-splicing in vertebrates and developing detection methods for trans-splicing remain challenging. In this review, we summarize previous research, highlight recent advances in trans-splicing, and discuss possible splicing mechanisms and functions from an evolutionary viewpoint. PMID:26966239

  1. A study of alternative splicing in the pig

    PubMed Central

    2010-01-01

    Background Since at least half of the genes in mammalian genomes are subjected to alternative splicing, alternative pre-mRNA splicing plays an important contribution to the complexity of the mammalian proteome. Expressed sequence tags (ESTs) provide evidence of a great number of possible alternative isoforms. With the EST resource for the domestic pig now containing more than one million porcine ESTs, it is possible to identify alternative splice forms of the individual transcripts in this species from the EST data with some confidence. Results The pig EST data generated by the Sino-Danish Pig Genome project has been assembled with publicly available ESTs and made available in the PigEST database. Using the Distiller package 2,515 EST clusters with candidate alternative isoforms were identified in the EST data with high confidence. In agreement with general observations in human and mouse, we find putative splice variants in about 30% of the contigs with more than 50 ESTs. Based on the criteria that a minimum of two EST sequences confirmed each splice event, a list of 100 genes with the most distinct tissue-specific alternative splice events was generated from the list of candidates. To confirm the tissue specificity of the splice events, 10 genes with functional annotation were randomly selected from which 16 individual splice events were chosen for experimental verification by quantitative PCR (qPCR). Six genes were shown to have tissue specific alternatively spliced transcripts with expression patterns matching those of the EST data. The remaining four genes had tissue-restricted expression of alternative spliced transcripts. Five out of the 16 splice events that were experimentally verified were found to be putative pig specific. Conclusions In accordance with human and rodent studies we estimate that approximately 30% of the porcine genes undergo alternative splicing. We found a good correlation between EST predicted tissue-specificity and experimentally

  2. Dominant-negative TLR5 polymorphism reduces adaptive immune response to flagellin and negatively associates with Crohn's disease.

    PubMed

    Gewirtz, Andrew T; Vijay-Kumar, Matam; Brant, Steven R; Duerr, Richard H; Nicolae, Dan L; Cho, Judy H

    2006-06-01

    Crohn's disease (CD) is associated with elevated adaptive immunity to commensal microbes, with flagellin being a dominant antigen. In light of heightened awareness of the importance of innate immunity in regulating adaptive immunity and ambiguity as to the role of CD-associated immune responses in CD pathophysiology, we sought to determine whether natural acquisition of immune responses to flagellin were regulated by the innate immune flagellin receptor toll-like receptor 5 (TLR5) and determine whether persons carrying a recently defined common dominant-negative TLR5 polymorphism (TLR5-stop) might be protected from developing CD. Carriage rates of a recently defined dominant-negative TLR5 polymorphism (TLR5-stop) and levels of serum immunoreactivity to bacterial products were measured in inflammatory bowel disease patients, first-degree relatives, and unrelated controls. We observed that, in healthy subjects, persons carrying TLR5-stop had significantly lower levels of flagellin-specific IgG and IgA but had similar levels of total and LPS-specific Ig. Moreover, we observed that, among Jewish subjects, the carriage rate of TLR5-stop (in heterozygous state) was significantly less in CD patients, but not ulcerative colitis (UC) patients, compared with unaffected relatives and unrelated controls (5.4, 0.9, 6.0, and 6.5% for unaffected relatives, CD, UC, and unrelated Jewish controls, respectively, n = 296, 215, 185, and 416, respectively; P = 0.037 by likelihood calculation for CD vs. controls), indicating that TLR5-stop can protect persons of Jewish ethnicity against CD. We did not observe a significant association of TLR5-stop with CD in a non-Jewish cohort (11.1, 10.4, and 11.7% for unaffected relatives, CD, and UC, respectively; n = 841, 543, and 300 for unaffected relatives, respectively). These results demonstrate that natural acquisition of immune responses to flagellin are regulated by TLR5 and suggest that immune responses to flagellin are not merely

  3. ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease.

    PubMed

    Sangermano, Riccardo; Khan, Mubeen; Cornelis, Stéphanie S; Richelle, Valerie; Albert, Silvia; Garanto, Alejandro; Elmelik, Duaa; Qamar, Raheel; Lugtenberg, Dorien; van den Born, L Ingeborgh; Collin, Rob W J; Cremers, Frans P M

    2018-01-01

    Stargardt disease is caused by variants in the ABCA4 gene, a significant part of which are noncanonical splice site (NCSS) variants. In case a gene of interest is not expressed in available somatic cells, small genomic fragments carrying potential disease-associated variants are tested for splice abnormalities using in vitro splice assays. We recently discovered that when using small minigenes lacking the proper genomic context, in vitro results do not correlate with splice defects observed in patient cells. We therefore devised a novel strategy in which a bacterial artificial chromosome was employed to generate midigenes, splice vectors of varying lengths (up to 11.7 kb) covering almost the entire ABCA4 gene. These midigenes were used to analyze the effect of all 44 reported and three novel NCSS variants on ABCA4 pre-mRNA splicing. Intriguingly, multi-exon skipping events were observed, as well as exon elongation and intron retention. The analysis of all reported NCSS variants in ABCA4 allowed us to reveal the nature of aberrant splicing events and to classify the severity of these mutations based on the residual fraction of wild-type mRNA. Our strategy to generate large overlapping splice vectors carrying multiple exons, creating a toolbox for robust and high-throughput analysis of splice variants, can be applied to all human genes. © 2018 Sangermano et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Alternative RNA splicing and gastric cancer.

    PubMed

    Li, Ying; Yuan, Yuan

    2017-07-01

    Alternative splicing (AS) linked to diseases, especially to tumors. Recently, more and more studies focused on the relationship between AS and gastric cancer (GC). This review surveyed the hot topic from four aspects: First, the common types of AS in cancer, including exon skipping, intron retention, mutually exclusive exon, alternative 5 ' or 3' splice site, alternative first or last exon and alternative 3' untranslated regions. Second, basic mechanisms of AS and its relationship with cancer. RNA splicing in eukaryotes follows the GT-AG rule by both cis-elements and trans-acting factors regulatory. Through RNA splicing, different proteins with different forms and functions can be produced and may be associated with carcinogenesis. Third, AS types of GC-related genes and their splicing variants. In this paper, we listed 10 common genes with AS and illustrated its possible molecular mechanisms owing to genetic variation (mutation and /or polymorphism). Fourth, the splicing variants of GC-associated genes and gastric carcinogenesis, invasion and metastasis. Many studies have found that the different splicing variants of the same gene are differentially expressed in GC and its precancerous diseases, suggesting AS has important implications in GC development. Taking together, this review highlighted the role of AS and splicing variants in the process of GC. We hope that this is not only beneficial to advances in the study field of GC, but also can provide valuable information to other similar tumor research.Although we already know some gene splicing and splicing variants play an important role in the development of GC, but many phenomena and mechanisms are still unknown. For example, how the tumor microenvironment and signal transduction pathway effect the forming and function of AS? Unfortunately, this review did not cover the contents because the current study is limited. It is no doubt that clarifying the phenomena and mechanisms of these unknown may help to reveal

  5. The RNA Splicing Response to DNA Damage

    PubMed Central

    Shkreta, Lulzim; Chabot, Benoit

    2015-01-01

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging. PMID:26529031

  6. Alternative splicing of inner-ear-expressed genes.

    PubMed

    Wang, Yanfei; Liu, Yueyue; Nie, Hongyun; Ma, Xin; Xu, Zhigang

    2016-09-01

    Alternative splicing plays a fundamental role in the development and physiological function of the inner ear. Inner-ear-specific gene splicing is necessary to establish the identity and maintain the function of the inner ear. For example, exon 68 of Cadherin 23 (Cdh23) gene is subject to inner-ear-specific alternative splicing, and as a result, Cdh23(+ 68) is only expressed in inner ear hair cells. Alternative splicing along the tonotopic axis of the cochlea contributes to frequency tuning, particularly in lower vertebrates, such as chickens and turtles. Differential splicing of Kcnma1, which encodes for the α subunit of the Ca(2+)-activated K(+) channel (BK channel), has been suggested to affect the channel gating properties and is important for frequency tuning. Consequently, deficits in alternative splicing have been shown to cause hearing loss, as we can observe in Bronx Waltzer (bv) mice and Sfswap mutant mice. Despite the advances in this field, the regulation of alternative splicing in the inner ear remains elusive. Further investigation is also needed to clarify the mechanism of hearing loss caused by alternative splicing deficits.

  7. Therapeutic targeting of RNA splicing in myelodysplasia.

    PubMed

    Kim, Young Joon; Abdel-Wahab, Omar

    2017-07-01

    Genomic analysis of patients with myelodysplastic syndromes (MDS) has identified that mutations within genes encoding RNA splicing factors represent the most common class of genetic alterations in MDS. These mutations primarily affect SF3B1, SRSF2, U2AF1, and ZRSR2. Current data suggest that these mutations perturb RNA splicing catalysis in a manner distinct from loss of function but how exactly the global changes in RNA splicing imparted by these mutations result in MDS is not well delineated. At the same time, cells bearing mutations in RNA splicing factors are exquisitely dependent on the presence of the remaining wild-type (WT) allele to maintain residual normal splicing for cell survival. The high frequency of these mutations in MDS, combined with their mutual exclusivity and noteworthy dependence on the WT allele, make targeting RNA splicing attractive in MDS. To this end, two promising therapeutic approaches targeting RNA splicing are being tested clinically currently. These include molecules targeting core RNA splicing catalysis by interfering with the ability of the SF3b complex to interact with RNA, as well as molecules degrading the auxiliary RNA splicing factor RBM39. The preclinical and clinical evaluation of these compounds are discussed here in addition to their potential as therapies for spliceosomal mutant MDS. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Optimal fusion offset in splicing photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Jin, Wa; Bi, Weihong; Fu, Guangwei

    2013-08-01

    Heat transfer is very complicate in fusion splicing process of photonic crystal fibers (PCFs) due to different structures and sizes of air hole, which requires different fusion splicing power and offsets of heat source. Based on the heat transfer characteristics, this paper focus on the optimal splicing offset splicing the single mode fiber and PCFs with a CO2 laser irradiation. The theory and experiments both show that the research results can effectively calculate the optimal fusion splicing offset and guide the practical splicing between PCFs and SMFs.

  9. A transcriptionally active estrogen receptor mutant is a novel type of dominant negative inhibitor of estrogen action.

    PubMed

    McInerney, E M; Ince, B A; Shapiro, D J; Katzenellenbogen, B S

    1996-12-01

    We have characterized a human estrogen receptor (ER) mutant, V364E, which has a single amino acid substitution in its hormone-binding domain. This ER mutant is fully active or even superactive at saturating levels of estradiol (10(-8) M E2) yet has the capacity to act as a strong dominant negative inhibitor of the wild type ER. In transient transfection assays using ER-negative Chinese hamster ovary (CHO) cells and two different estrogen response element (ERE)-containing promoter reporter genes, V364E treated with 10(-8) M E2 exhibited approximately 250% and 100% of the activity of the wild type ER with these two promoter contexts, respectively. Despite the high activity of V364E when present alone in cells, coexpression of both V364E and wild type ER causes a significant decrease in overall ER-mediated transcriptional activity. On the TATA promoter, where V364E was more inhibitory, estrogen-stimulated activity was reduced by approximately 50% at a 1:1 ratio of mutant to wild type ER expression vector, and at a 10:1 ratio, 75% of ER activity was inhibited. V364E was expressed at lower levels than wild type ER and has a approximately 40-fold lower affinity for E2 compared with wild type ER. In promoter interference assays, V364E exhibited a strict dependence upon E2 for binding to an ERE. Surprisingly, even when V364E was unable to bind to ERE DNA (i.e. either at low E2 concentration or by mutation of its DNA-binding domain), this mutant retained full dominant negative activity. This highly active ER mutant is, thus, able to repress ER-mediated transcription when the mutant and wild type ER are present together in cells, even without DNA binding. Since competition for ERE binding and the formation of inactive heterodimers cannot fully account for the dominant negative activity of V364E, it is probable that altered interactions with proteins important in ER-mediated transcription play a key role in the repression of transcription by V364E. The properties and probable

  10. Alternative Splicing and Tissue-specific Elastin Misassembly Act as Biological Modifiers of Human Elastin Gene Frameshift Mutations Associated with Dominant Cutis Laxa*

    PubMed Central

    Sugitani, Hideki; Hirano, Eiichi; Knutsen, Russell H.; Shifren, Adrian; Wagenseil, Jessica E.; Ciliberto, Christopher; Kozel, Beth A.; Urban, Zsolt; Davis, Elaine C.; Broekelmann, Thomas J.; Mecham, Robert P.

    2012-01-01

    Elastin is the extracellular matrix protein in vertebrates that provides elastic recoil to blood vessels, the lung, and skin. Because the elastin gene has undergone significant changes in the primate lineage, modeling elastin diseases in non-human animals can be problematic. To investigate the pathophysiology underlying a class of elastin gene mutations leading to autosomal dominant cutis laxa, we engineered a cutis laxa mutation (single base deletion) into the human elastin gene contained in a bacterial artificial chromosome. When expressed as a transgene in mice, mutant elastin was incorporated into elastic fibers in the skin and lung with adverse effects on tissue function. In contrast, only low levels of mutant protein incorporated into aortic elastin, which explains why the vasculature is relatively unaffected in this disease. RNA stability studies found that alternative exon splicing acts as a modifier of disease severity by influencing the spectrum of mutant transcripts that survive nonsense-mediated decay. Our results confirm the critical role of the C-terminal region of tropoelastin in elastic fiber assembly and suggest tissue-specific differences in the elastin assembly pathway. PMID:22573328

  11. Alternative Splicing as a Target for Cancer Treatment.

    PubMed

    Martinez-Montiel, Nancy; Rosas-Murrieta, Nora Hilda; Anaya Ruiz, Maricruz; Monjaraz-Guzman, Eduardo; Martinez-Contreras, Rebeca

    2018-02-11

    Alternative splicing is a key mechanism determinant for gene expression in metazoan. During alternative splicing, non-coding sequences are removed to generate different mature messenger RNAs due to a combination of sequence elements and cellular factors that contribute to splicing regulation. A different combination of splicing sites, exonic or intronic sequences, mutually exclusive exons or retained introns could be selected during alternative splicing to generate different mature mRNAs that could in turn produce distinct protein products. Alternative splicing is the main source of protein diversity responsible for 90% of human gene expression, and it has recently become a hallmark for cancer with a full potential as a prognostic and therapeutic tool. Currently, more than 15,000 alternative splicing events have been associated to different aspects of cancer biology, including cell proliferation and invasion, apoptosis resistance and susceptibility to different chemotherapeutic drugs. Here, we present well established and newly discovered splicing events that occur in different cancer-related genes, their modification by several approaches and the current status of key tools developed to target alternative splicing with diagnostic and therapeutic purposes.

  12. Repair of pre-mRNA splicing

    PubMed Central

    Nlend, Rachel Nlend; Meyer, Kathrin

    2010-01-01

    Recent analyses of complete genomes have revealed that alternative splicing became more prevalent and important during eukaryotic evolution. Alternative splicing augments the protein repertoire—particularly that of the human genome—and plays an important role in the development and function of differentiated cell types. However, splicing is also extremely vulnerable, and defects in the proper recognition of splicing signals can give rise to a variety of diseases. In this review, we discuss splicing correction therapies, by using the inherited disease Spinal Muscular Atrophy (SMA) as an example. This lethal early childhood disorder is caused by deletions or other severe mutations of SMN1, a gene coding for the essential survival of motoneurons protein. A second gene copy present in humans and few non-human primates, SMN2, can only partly compensate for the defect because of a single nucleotide change in exon 7 that causes this exon to be skipped in the majority of mRNAs. Thus SMN2 is a prime therapeutic target for SMA. In recent years, several strategies based on small molecule drugs, antisense oligonucleotides or in vivo expressed RNAs have been developed that allow a correction of SMN2 splicing. For some of these, a therapeutic benefit has been demonstrated in mouse models for SMA. This means that clinical trials of such splicing therapies for SMA may become possible in the near future. PMID:20523126

  13. Evolution of a tissue-specific splicing network

    PubMed Central

    Taliaferro, J. Matthew; Alvarez, Nehemiah; Green, Richard E.; Blanchette, Marco; Rio, Donald C.

    2011-01-01

    Alternative splicing of precursor mRNA (pre-mRNA) is a strategy employed by most eukaryotes to increase transcript and proteomic diversity. Many metazoan splicing factors are members of multigene families, with each member having different functions. How these highly related proteins evolve unique properties has been unclear. Here we characterize the evolution and function of a new Drosophila splicing factor, termed LS2 (Large Subunit 2), that arose from a gene duplication event of dU2AF50, the large subunit of the highly conserved heterodimeric general splicing factor U2AF (U2-associated factor). The quickly evolving LS2 gene has diverged from the splicing-promoting, ubiquitously expressed dU2AF50 such that it binds a markedly different RNA sequence, acts as a splicing repressor, and is preferentially expressed in testes. Target transcripts of LS2 are also enriched for performing testes-related functions. We therefore propose a path for the evolution of a new splicing factor in Drosophila that regulates specific pre-mRNAs and contributes to transcript diversity in a tissue-specific manner. PMID:21406555

  14. Alcoholism and alternative splicing of candidate genes.

    PubMed

    Sasabe, Toshikazu; Ishiura, Shoichi

    2010-04-01

    Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.

  15. Mutations of RNA splicing factors in hematological malignancies.

    PubMed

    Shukla, Girish C; Singh, Jagjit

    2017-11-28

    Systematic large-scale cancer genomic studies have produced numerous significant findings. These studies have not only revealed new cancer-promoting genes, but they also have identified cancer-promoting functions of previously known "housekeeping" genes. These studies have identified numerous mutations in genes which play a fundamental role in nuclear precursor mRNA splicing. Somatic mutations and copy number variation in many of the splicing factors which participate in the formation of multiple spliceosomal complexes appear to play a role in many cancers and in particular in myelodysplastic syndromes (MDS). Mutated proteins seem to interfere with the recognition of the authentic splice sites (SS) leading to utilization of suboptimal alternative splicing sites generating aberrantly spliced mRNA isoforms. This short review is focusing on the function of the splice factors involved in the formation of splicing complexes and potential mechanisms which affect usage of the authentic splice site recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Manananggal - a novel viewer for alternative splicing events.

    PubMed

    Barann, Matthias; Zimmer, Ralf; Birzele, Fabian

    2017-02-21

    Alternative splicing is an important cellular mechanism that can be analyzed by RNA sequencing. However, identification of splicing events in an automated fashion is error-prone. Thus, further validation is required to select reliable instances of alternative splicing events (ASEs). There are only few tools specifically designed for interactive inspection of ASEs and available visualization approaches can be significantly improved. Here, we present Manananggal, an application specifically designed for the identification of splicing events in next generation sequencing data. Manananggal includes a web application for visual inspection and a command line tool that allows for ASE detection. We compare the sashimi plots available in the IGV Viewer, the DEXSeq splicing plots and SpliceSeq to the Manananggal interface and discuss the advantages and drawbacks of these tools. We show that sashimi plots (such as those used by the IGV Viewer and SpliceSeq) offer a practical solution for simple ASEs, but also indicate short-comings for highly complex genes. Manananggal is an interactive web application that offers functions specifically tailored to the identification of alternative splicing events that other tools are lacking. The ability to select a subset of isoforms allows an easier interpretation of complex alternative splicing events. In contrast to SpliceSeq and the DEXSeq splicing plot, Manananggal does not obscure the gene structure by showing full transcript models that makes it easier to determine which isoforms are expressed and which are not.

  17. Language study on Spliced Semigraph using Folding techniques

    NASA Astrophysics Data System (ADS)

    Thiagarajan, K.; Padmashree, J.

    2018-04-01

    In this paper, we proposed algorithm to identify cut vertices and cut edges for n-Cut Spliced Semigraph and splicing the n-Cut Spliced Semigraph using cut vertices else cut edges or combination of cut vertex and cut edge and applying sequence of folding to the spliced semigraph to obtain the semigraph quadruple η(S)=(2, 1, 1, 1). We observed that the splicing and folding using both cut vertices and cut edges is applicable only for n-Cut Spliced Semigraph where n > 2. Also, we transformed the spliced semigraph into tree structure and studied the language for the semigraph with n+2 vertices and n+1 semivertices using Depth First Edge Sequence algorithm and obtain the language structure with sequence of alphabet ‘a’ and ‘b’.

  18. Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing.

    PubMed

    Shkreta, Lulzim; Bell, Brendan; Revil, Timothée; Venables, Julian P; Prinos, Panagiotis; Elela, Sherif Abou; Chabot, Benoit

    2013-01-01

    For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5' splice site and the U2AF65/U2AF35 complex to the 3' splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively

  19. Thermopriming triggers splicing memory in Arabidopsis.

    PubMed

    Ling, Yu; Serrano, Natalia; Gao, Ge; Atia, Mohamed; Mokhtar, Morad; Woo, Yong H; Bazin, Jeremie; Veluchamy, Alaguraj; Benhamed, Moussa; Crespi, Martin; Gehring, Christoph; Reddy, A S N; Mahfouz, Magdy M

    2018-04-27

    Abiotic and biotic stresses limit crop productivity. Exposure to a non-lethal stress, referred to as priming, can allow plants to survive subsequent and otherwise lethal conditions; the priming effect persists even after a prolonged stress-free period. However, the molecular mechanisms underlying priming are not fully understood. Here, we investigated the molecular basis of heat-shock memory and the role of priming in Arabidopsis thaliana. Comprehensive analysis of transcriptome-wide changes in gene expression and alternative splicing in primed and non-primed plants revealed that alternative splicing functions as a novel component of heat-shock memory. We show that priming of plants with a non-lethal heat stress results in de-repression of splicing after a second exposure to heat stress. By contrast, non-primed plants showed significant repression of splicing. These observations link 'splicing memory' to the ability of plants to survive subsequent and otherwise lethal heat stress. This newly discovered priming-induced splicing memory may represent a general feature of heat-stress responses in plants and other organisms as many of the key components are conserved among eukaryotes. Furthermore, this finding could facilitate the development of novel approaches to improve plant survival under extreme heat stress.

  20. A Short Isoform of Human Cytomegalovirus US3 Functions as a Dominant Negative Inhibitor of the Full-Length Form

    PubMed Central

    Shin, Jinwook; Park, Boyoun; Lee, Sungwook; Kim, Youngkyun; Biegalke, Bonita J.; Kang, Seongman; Ahn, Kwangseog

    2006-01-01

    Human cytomegalovirus encodes four unique short (US) region proteins, each of which is independently sufficient for causing the down-regulation of major histocompatibility complex (MHC) class I molecules on the cell surface. This down-regulation enables infected cells to evade recognition by cytotoxic T lymphocytes (CTLs) but makes them vulnerable to lysis by natural killer (NK) cells, which lyse those cells that lack MHC class I molecules. The 22-kDa US3 glycoprotein is able to down-regulate the surface expression of MHC class I molecules by dual mechanisms: direct endoplasmic reticulum retention by physical association and/or tapasin inhibition. The alternative splicing of the US3 gene generates two additional products, including 17-kDa and 3.5-kDa truncated isoforms; however, the functional significance of these isoforms during viral infection is unknown. Here, we describe a novel mode of self-regulation of US3 function that uses the endogenously produced truncated isoform. The truncated isoform itself neither binds to MHC class I molecules nor prevents the full-length US3 from interacting with MHC class I molecules. Instead, the truncated isoform associates with tapasin and competes with full-length US3 for binding to tapasin; thus, it suppresses the action of US3 that causes the disruption of the function of tapasin. Our results indicate that the truncated isoform of the US3 locus acts as a dominant negative regulator of full-length US3 activity. These data reflect the manner in which the virus has developed temporal survival strategies during viral infection against immune surveillance involving both CTLs and NK cells. PMID:16699020

  1. A short isoform of human cytomegalovirus US3 functions as a dominant negative inhibitor of the full-length form.

    PubMed

    Shin, Jinwook; Park, Boyoun; Lee, Sungwook; Kim, Youngkyun; Biegalke, Bonita J; Kang, Seongman; Ahn, Kwangseog

    2006-06-01

    Human cytomegalovirus encodes four unique short (US) region proteins, each of which is independently sufficient for causing the down-regulation of major histocompatibility complex (MHC) class I molecules on the cell surface. This down-regulation enables infected cells to evade recognition by cytotoxic T lymphocytes (CTLs) but makes them vulnerable to lysis by natural killer (NK) cells, which lyse those cells that lack MHC class I molecules. The 22-kDa US3 glycoprotein is able to down-regulate the surface expression of MHC class I molecules by dual mechanisms: direct endoplasmic reticulum retention by physical association and/or tapasin inhibition. The alternative splicing of the US3 gene generates two additional products, including 17-kDa and 3.5-kDa truncated isoforms; however, the functional significance of these isoforms during viral infection is unknown. Here, we describe a novel mode of self-regulation of US3 function that uses the endogenously produced truncated isoform. The truncated isoform itself neither binds to MHC class I molecules nor prevents the full-length US3 from interacting with MHC class I molecules. Instead, the truncated isoform associates with tapasin and competes with full-length US3 for binding to tapasin; thus, it suppresses the action of US3 that causes the disruption of the function of tapasin. Our results indicate that the truncated isoform of the US3 locus acts as a dominant negative regulator of full-length US3 activity. These data reflect the manner in which the virus has developed temporal survival strategies during viral infection against immune surveillance involving both CTLs and NK cells.

  2. Alternative splicing and the evolution of phenotypic novelty.

    PubMed

    Bush, Stephen J; Chen, Lu; Tovar-Corona, Jaime M; Urrutia, Araxi O

    2017-02-05

    Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Author(s).

  3. Alternative splicing and the evolution of phenotypic novelty

    PubMed Central

    Bush, Stephen J.; Chen, Lu; Tovar-Corona, Jaime M.

    2017-01-01

    Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994117

  4. IRAS: High-Throughput Identification of Novel Alternative Splicing Regulators.

    PubMed

    Zheng, S

    2016-01-01

    Alternative splicing is a fundamental regulatory process of gene expression. Defects in alternative splicing can lead to various diseases, and modification of disease-causing splicing events presents great therapeutic promise. Splicing outcome is commonly affected by extracellular stimuli and signaling cascades that converge on RNA-binding splicing regulators. These trans-acting factors recognize cis-elements in pre-mRNA transcripts to affect spliceosome assembly and splice site choices. Identification of these splicing regulators and/or upstream modulators has been difficult and traditionally done by piecemeal. High-throughput screening strategies to find multiple regulators of exon splicing have great potential to accelerate the discovery process, but typically confront low sensitivity and low specificity of screening assays. Here we describe a unique screening strategy, IRAS (identifying regulators of alternative splicing), using a pair of dual-output minigene reporters to allow for sensitive detection of exon splicing changes. Each dual-output reporter produces green fluorescent protein (GFP) and red fluorescent protein (RFP) fluorescent signals to assay the two spliced isoforms exclusively. The two complementary minigene reporters alter GFP/RFP output ratios in the opposite direction in response to splicing change. Applying IRAS in cell-based high-throughput screens allows sensitive and specific identification of splicing regulators and modulators for any alternative exons of interest. In comparison to previous high-throughput screening methods, IRAS substantially enhances the specificity of the screening assay. This strategy significantly eliminates false positives without sacrificing sensitive identification of true regulators of splicing. © 2016 Elsevier Inc. All rights reserved.

  5. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    PubMed Central

    Meyer, Katja; Koester, Tino; Staiger, Dorothee

    2015-01-01

    Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance. PMID:26213982

  6. Autosomal Dominant Growth Hormone Deficiency (Type II).

    PubMed

    Alatzoglou, Kyriaki S; Kular, Dalvir; Dattani, Mehul T

    2015-06-01

    Isolated growth hormone deficiency (IGHD) is the commonest pituitary hormone deficiency resulting from congenital or acquired causes, although for most patients its etiology remains unknown. Among the known factors, heterozygous mutations in the growth hormone gene (GH1) lead to the autosomal dominant form of GHD, also known as type II GHD. In many cohorts this is the commonest form of congenital isolated GHD and is mainly caused by mutations that affect the correct splicing of GH-1. These mutations cause skipping of the third exon and lead to the production of a 17.5-kDa GH isoform that exerts a dominant negative effect on the secretion of the wild type GH. The identification of these mutations has clinical implications for the management of patients, as there is a well-documented correlation between the severity of the phenotype and the increased expression of the 17.5-kDa isoform. Patients with type II GHD have a variable height deficit and severity of GHD and may develop additional pituitary hormone defiencies over time, including ACTH, TSH and gonadotropin deficiencies. Therefore, their lifelong follow-up is recommended. Detailed studies on the effect of heterozygous GH1 mutations on the trafficking, secretion and action of growth hormone can elucidate their mechanism on a cellular level and may influence future treatment options for GHD type II.

  7. Hereditary cancer genes are highly susceptible to splicing mutations

    PubMed Central

    Soemedi, Rachel; Maguire, Samantha; Murray, Michael F.; Monaghan, Sean F.

    2018-01-01

    Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5′ and 3′ splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing. PMID:29505604

  8. Effects of eye dominance (left vs. right) and cannabis use on intermanual coordination and negative symptoms in schizophrenia patients.

    PubMed

    Gorynia, Inge; Schwaiger, Markus; Heinz, Andreas

    2014-12-01

    Based on the previous findings, it has been assumed that in schizophrenia patients, eye dominance and cannabis use will affect negative symptoms and intermanual coordination (IMC), an index of interhemispheric communication. But eye dominance, specifically the clinical findings for it, has been neglected in schizophrenia research. We therefore investigated its effects in 52 right-handed (36 right-eyed and 16 left-eyed) and 51 left-handed (35 left-eyed and 16 right-eyed) schizophrenia in-patients without and with drug use. Eye dominance affected IMC in all schizophrenia patients. When comparing right- and left-handers, we found that this result was only significant in the right-handed patients and in the smaller subgroup without drug use. In the right-handers, left eye dominance-like left-handedness-was associated with higher values in IMC and less pronounced manifestation of negative symptoms, right eye dominance was not. Thus, left-eyed right-handers may be more closely related to left-handers than to right-handers. In accordance with the results from the literature, we suggest that these findings are due to better interhemispheric connections and less impairment of white matter structures, especially in right-hemispheric regions. Moreover, cannabis use was related to higher scores in IMC and less pronounced negative symptoms, but only in the right-eyed and not in the left-eyed right-handers or in the left-handers. Hence, differences in eye dominance and handedness may be partially responsible for different results in interhemispheric connections among cannabis users. In conclusion, both eye dominance and use of cannabis should be taken into account when assessing clinical symptoms in schizophrenia patients.

  9. Survey of gene splicing algorithms based on reads.

    PubMed

    Si, Xiuhua; Wang, Qian; Zhang, Lei; Wu, Ruo; Ma, Jiquan

    2017-11-02

    Gene splicing is the process of assembling a large number of unordered short sequence fragments to the original genome sequence as accurately as possible. Several popular splicing algorithms based on reads are reviewed in this article, including reference genome algorithms and de novo splicing algorithms (Greedy-extension, Overlap-Layout-Consensus graph, De Bruijn graph). We also discuss a new splicing method based on the MapReduce strategy and Hadoop. By comparing these algorithms, some conclusions are drawn and some suggestions on gene splicing research are made.

  10. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types.

    PubMed

    Kilian, A; Bowtell, D D; Abud, H E; Hime, G R; Venter, D J; Keese, P K; Duncan, E L; Reddel, R R; Jefferson, R A

    1997-11-01

    Telomerase is a multicomponent reverse transcriptase enzyme that adds DNA repeats to the ends of chromosomes using its RNA component as a template for synthesis. Telomerase activity is detected in the germline as well as the majority of tumors and immortal cell lines, and at low levels in several types of normal cells. We have cloned a human gene homologous to a protein from Saccharomyces cerevisiae and Euplotes aediculatus that has reverse transcriptase motifs and is thought to be the catalytic subunit of telomerase in those species. This gene is present in the human genome as a single copy sequence with a dominant transcript of approximately 4 kb in a human colon cancer cell line, LIM1215. The cDNA sequence was determined using clones from a LIM1215 cDNA library and by RT-PCR, cRACE and 3'RACE on mRNA from the same source. We show that the gene is expressed in several normal tissues, telomerase-positive post-crisis (immortal) cell lines and various tumors but is not expressed in the majority of normal tissues analyzed, pre-crisis (non-immortal) cells and telomerase-negative immortal (ALT) cell lines. Multiple products were identified by RT-PCR using primers within the reverse transcriptase domain. Sequencing of these products suggests that they arise by alternative splicing. Strikingly, various tumors, cell lines and even normal tissues (colonic crypt and testis) showed considerable differences in the splicing patterns. Alternative splicing of the telomerase catalytic subunit transcript may be important for the regulation of telomerase activity and may give rise to proteins with different biochemical functions.

  11. RNA Splicing: Regulation and Dysregulation in the Heart.

    PubMed

    van den Hoogenhof, Maarten M G; Pinto, Yigal M; Creemers, Esther E

    2016-02-05

    RNA splicing represents a post-transcriptional mechanism to generate multiple functional RNAs or proteins from a single transcript. The evolution of RNA splicing is a prime example of the Darwinian function follows form concept. A mutation that leads to a new mRNA (form) that encodes for a new functional protein (function) is likely to be retained, and this way, the genome has gradually evolved to encode for genes with multiple isoforms, thereby creating an enormously diverse transcriptome. Advances in technologies to characterize RNA populations have led to a better understanding of RNA processing in health and disease. In the heart, alternative splicing is increasingly being recognized as an important layer of post-transcriptional gene regulation. Moreover, the recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and SF3B1, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the major and minor spliceosome, the factors controlling RNA splicing, and the role of alternative splicing in cardiac development and disease. © 2016 American Heart Association, Inc.

  12. Spliced leader RNA trans-splicing discovered in copepods

    NASA Astrophysics Data System (ADS)

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A.; Sturm, Nancy R.; Liu, Guangxing; Zhang, Huan

    2015-12-01

    Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3‧-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods.

  13. Widespread alternative and aberrant splicing revealed by lariat sequencing

    PubMed Central

    Stepankiw, Nicholas; Raghavan, Madhura; Fogarty, Elizabeth A.; Grimson, Andrew; Pleiss, Jeffrey A.

    2015-01-01

    Alternative splicing is an important and ancient feature of eukaryotic gene structure, the existence of which has likely facilitated eukaryotic proteome expansions. Here, we have used intron lariat sequencing to generate a comprehensive profile of splicing events in Schizosaccharomyces pombe, amongst the simplest organisms that possess mammalian-like splice site degeneracy. We reveal an unprecedented level of alternative splicing, including alternative splice site selection for over half of all annotated introns, hundreds of novel exon-skipping events, and thousands of novel introns. Moreover, the frequency of these events is far higher than previous estimates, with alternative splice sites on average activated at ∼3% the rate of canonical sites. Although a subset of alternative sites are conserved in related species, implying functional potential, the majority are not detectably conserved. Interestingly, the rate of aberrant splicing is inversely related to expression level, with lowly expressed genes more prone to erroneous splicing. Although we validate many events with RNAseq, the proportion of alternative splicing discovered with lariat sequencing is far greater, a difference we attribute to preferential decay of aberrantly spliced transcripts. Together, these data suggest the spliceosome possesses far lower fidelity than previously appreciated, highlighting the potential contributions of alternative splicing in generating novel gene structures. PMID:26261211

  14. Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa

    PubMed Central

    Pan, Xinyuan; Chen, Xue; Liu, Xiaoxing; Gao, Xiang; Kang, Xiaoli; Xu, Qihua; Chen, Xuejuan; Zhao, Kanxing; Zhang, Xiumei; Chu, Qiaomei; Wang, Xiuying

    2014-01-01

    Purpose Seven genes involved in precursor mRNA (pre-mRNA) splicing have been implicated in autosomal dominant retinitis pigmentosa (adRP). We sought to detect mutations in all seven genes in Chinese families with RP, to characterize the relevant phenotypes, and to evaluate the prevalence of mutations in splicing genes in patients with adRP. Methods Six unrelated families from our adRP cohort (42 families) and two additional families with RP with uncertain inheritance mode were clinically characterized in the present study. Targeted sequence capture with next-generation massively parallel sequencing (NGS) was performed to screen mutations in 189 genes including all seven pre-mRNA splicing genes associated with adRP. Variants detected with NGS were filtered with bioinformatics analyses, validated with Sanger sequencing, and prioritized with pathogenicity analysis. Results Mutations in pre-mRNA splicing genes were identified in three individual families including one novel frameshift mutation in PRPF31 (p.Leu366fs*1) and two known mutations in SNRNP200 (p.Arg681His and p.Ser1087Leu). The patients carrying SNRNP200 p.R681H showed rapid disease progression, and the family carrying p.S1087L presented earlier onset ages and more severe phenotypes compared to another previously reported family with p.S1087L. In five other families, we identified mutations in other RP-related genes, including RP1 p. Ser781* (novel), RP2 p.Gln65* (novel) and p.Ile137del (novel), IMPDH1 p.Asp311Asn (recurrent), and RHO p.Pro347Leu (recurrent). Conclusions Mutations in splicing genes identified in the present and our previous study account for 9.5% in our adRP cohort, indicating the important role of pre-mRNA splicing deficiency in the etiology of adRP. Mutations in the same splicing gene, or even the same mutation, could correlate with different phenotypic severities, complicating the genotype–phenotype correlation and clinical prognosis. PMID:24940031

  15. Dominant-negative suppression of big brain ion channel activity by mutation of a conserved glutamate in the first transmembrane domain.

    PubMed

    Yool, Andrea J

    2007-01-01

    The neurogenic protein Drosophila big brain (BIB), which is involved in the process of neuroblast determination, and the water channel aquaporin-1 (AQP1) are among a subset of the major intrinsic protein (MIP) channels that have been found to show gated monovalent cation channel activity. A glutamate residue in the first transmembrane (M1) domain is conserved throughout the MIP family. Mutation of this residue to asparagine in BIB (E71N) knocks out ion channel activity, and when coexpressed with BIB wild-type as shown here generates a dominant-negative effect on ion channel function, measured in the Xenopus oocyte expression system using two-electrode voltage clamp. cRNAs for wild-type and mutant BIB or AQP1 channels were injected individually or as mixtures. The magnitude of the BIB ionic conductance response was greatly reduced by coexpression of the mutant E71N subunit, suggesting a dominant-negative mechanism of action. The analogous mutation in AQP1 (E17N) did not impair ion channel activation by cGMP, but did knock out water channel function, although not via a dominant-negative effect. This contrast in sensitivity between BIB and AQP1 to mutation of the M1 glutamate suggests the possibility of interesting structural differences in the molecular basis of the ion permeation between these two classes of channels. The dominant-negative construct of BIB could be a tool for testing a role for BIB ion channels during nervous system development in Drosophila. The neurogenic protein Drosophila big brain (BIB), which is involved in the process of neuroblast determination, and the water channel aquaporin-1 (AQP1) are among a subset of the major intrinsic protein (MIP) channels that have been found to show gated monovalent cation channel activity. A glutamate residue in the first transmembrane (M1) domain is conserved throughout the MIP family. Mutation of this residue to asparagine in BIB (E71N) knocks out ion channel activity, and when coexpressed with BIB wild

  16. An alternative splicing program promotes adipose tissue thermogenesis

    PubMed Central

    Vernia, Santiago; Edwards, Yvonne JK; Han, Myoung Sook; Cavanagh-Kyros, Julie; Barrett, Tamera; Kim, Jason K; Davis, Roger J

    2016-01-01

    Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia. DOI: http://dx.doi.org/10.7554/eLife.17672.001 PMID:27635635

  17. 0-6652 : spliced Texas girder bridges.

    DOT National Transportation Integrated Search

    2015-02-01

    Spliced girder technology continues to attract : attention due to its versatility over traditional : prestressed concrete highway bridge construction. : By joining multiple precast concrete girders using : post-tensioning, spliced girder technology :...

  18. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives.

    PubMed

    Williams, R M; Rimsky, S; Buc, H

    1996-08-01

    Twelve different dominant negative mutants of the Escherichia coli nucleoid-associated protein, H-NS, have been selected and characterized in vivo. The mutants are all severely defective in promoter repression activity in a strain lacking H-NS, and they all disrupt the repression normally exerted by H-NS at two of its target promoters. From the locations of the alterations in these mutants, which result in both large truncations and amino acid substitutions, we propose that H-NAS contains at least two distinct domains. The in vitro protein-protein cross-linking data presented in this report indicate that the proposed N-terminal domain of H-NS has a role in H-NS multimerization. StpA is a protein with known structural and functional homologies to H-NS. We have analyzed the extent of these homologies by constructing and studying StpA mutants predicted to be dominant negative. Our data indicate that the substitutions and deletions found in dominant negative H-NS have similar effects in the context of StpA. We conclude that the domain organizations and functions in StpA and H-NS are closely related. Furthermore, dominant negative H-NS can disrupt the activity of native StpA, and reciprocally, dominant negative StpA can disrupt the activity of native H-NS. We demonstrate that the N-terminal domain of H-NS can be chemically cross-linked to both full-length H-NS and StpA. We account for these observations by proposing that H-NS and StpA have the ability to form hybrid species.

  19. Hypoxia leads to significant changes in alternative splicing and elevated expression of CLK splice factor kinases in PC3 prostate cancer cells.

    PubMed

    Bowler, Elizabeth; Porazinski, Sean; Uzor, Simon; Thibault, Philippe; Durand, Mathieu; Lapointe, Elvy; Rouschop, Kasper M A; Hancock, John; Wilson, Ian; Ladomery, Michael

    2018-04-02

    Mounting evidence suggests that one of the ways that cells adapt to hypoxia is through alternative splicing. The aim of this study was firstly to examine the effect of hypoxia on the alternative splicing of cancer associated genes using the prostate cancer cell line PC3 as a model. Secondly, the effect of hypoxia on the expression of several regulators of splicing was examined. PC3 cells were grown in 1% oxygen in a hypoxic chamber for 48 h, RNA extracted and sent for high throughput PCR analysis at the RNomics platform at the University of Sherbrooke, Canada. Genes whose exon inclusion rate PSI (ψ) changed significantly were identified, and their altered exon inclusion rates verified by RT-PCR in three cell lines. The expression of splice factors and splice factor kinases in response to hypoxia was examined by qPCR and western blotting. The splice factor kinase CLK1 was inhibited with the benzothiazole TG003. In PC3 cells the exon inclusion rate PSI (ψ) was seen to change by > 25% in 12 cancer-associated genes; MBP, APAF1, PUF60, SYNE2, CDC42BPA, FGFR10P, BTN2A2, UTRN, RAP1GDS1, PTPN13, TTC23 and CASP9 (caspase 9). The expression of the splice factors SRSF1, SRSF2, SRSF3, SAM68, HuR, hnRNPA1, and of the splice factor kinases SRPK1 and CLK1 increased significantly in hypoxia. We also observed that the splice factor kinase CLK3, but not CLK2 and CLK4, was also induced in hypoxic DU145 prostate, HT29 colon and MCF7 breast cancer cell lines. Lastly, we show that the inhibition of CLK1 in PC3 cells with the benzothiazole TG003 increased expression of the anti-apoptotic isoform caspase 9b. Significant changes in alternative splicing of cancer associated genes occur in prostate cancer cells in hypoxic conditions. The expression of several splice factors and splice factor kinases increases during hypoxia, in particular the Cdc-like splice factor kinases CLK1 and CLK3. We suggest that in hypoxia the elevated expression of these regulators of splicing helps cells adapt

  20. Alternative Splicing Control of Abiotic Stress Responses.

    PubMed

    Laloum, Tom; Martín, Guiomar; Duque, Paula

    2018-02-01

    Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress. Notably, mounting evidence indicates that alternative splicing regulates stress responses largely by targeting the abscisic acid (ABA) pathway. We review here current understanding of post-transcriptional control of plant stress tolerance via alternative splicing and discuss research challenges for the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evolution of Nova-Dependent Splicing Regulation in the Brain

    PubMed Central

    Živin, Marko; Darnell, Robert B

    2007-01-01

    A large number of alternative exons are spliced with tissue-specific patterns, but little is known about how such patterns have evolved. Here, we study the conservation of the neuron-specific splicing factors Nova1 and Nova2 and of the alternatively spliced exons they regulate in mouse brain. Whereas Nova RNA binding domains are 94% identical across vertebrate species, Nova-dependent splicing silencer and enhancer elements (YCAY clusters) show much greater divergence, as less than 50% of mouse YCAY clusters are conserved at orthologous positions in the zebrafish genome. To study the relation between the evolution of tissue-specific splicing and YCAY clusters, we compared the brain-specific splicing of Nova-regulated exons in zebrafish, chicken, and mouse. The presence of YCAY clusters in lower vertebrates invariably predicted conservation of brain-specific splicing across species, whereas their absence in lower vertebrates correlated with a loss of alternative splicing. We hypothesize that evolution of Nova-regulated splicing in higher vertebrates proceeds mainly through changes in cis-acting elements, that tissue-specific splicing might in some cases evolve in a single step corresponding to evolution of a YCAY cluster, and that the conservation level of YCAY clusters relates to the functions encoded by the regulated RNAs. PMID:17937501

  2. The combinatorial control of alternative splicing in C. elegans

    PubMed Central

    2017-01-01

    Normal development requires the right splice variants to be made in the right tissues at the right time. The core splicing machinery is engaged in all splicing events, but which precise splice variant is made requires the choice between alternative splice sites—for this to occur, a set of splicing factors (SFs) must recognize and bind to short RNA motifs in the pre-mRNA. In C. elegans, there is known to be extensive variation in splicing patterns across development, but little is known about the targets of each SF or how multiple SFs combine to regulate splicing. Here we combine RNA-seq with in vitro binding assays to study how 4 different C. elegans SFs, ASD-1, FOX-1, MEC-8, and EXC-7, regulate splicing. The 4 SFs chosen all have well-characterised biology and well-studied loss-of-function genetic alleles, and all contain RRM domains. Intriguingly, while the SFs we examined have varied roles in C. elegans development, they show an unexpectedly high overlap in their targets. We also find that binding sites for these SFs occur on the same pre-mRNAs more frequently than expected suggesting extensive combinatorial control of splicing. We confirm that regulation of splicing by multiple SFs is often combinatorial and show that this is functionally significant. We also find that SFs appear to combine to affect splicing in two modes—they either bind in close proximity within the same intron or they appear to bind to separate regions of the intron in a conserved order. Finally, we find that the genes whose splicing are regulated by multiple SFs are highly enriched for genes involved in the cytoskeleton and in ion channels that are key for neurotransmission. Together, this shows that specific classes of genes have complex combinatorial regulation of splicing and that this combinatorial regulation is critical for normal development to occur. PMID:29121637

  3. Aberrant and alternative splicing in skeletal system disease.

    PubMed

    Fan, Xin; Tang, Liling

    2013-10-01

    The main function of skeletal system is to support the body and help movement. A variety of factors can lead to skeletal system disease, including age, exercise, and of course genetic makeup and expression. Pre-mRNA splicing plays a crucial role in gene expression, by creating multiple protein variants with different biological functions. The recent studies show that several skeletal system diseases are related to pre-mRNA splicing. This review focuses on the relationship between pre-mRNA splicing and skeletal system disease. On the one hand, splice site mutation that leads to aberrant splicing often causes genetic skeletal system disease, like COL1A1, SEDL and LRP5. On the other hand, alternative splicing without genomic mutation may generate some marker protein isoforms, for example, FN, VEGF and CD44. Therefore, understanding the relationship between pre-mRNA splicing and skeletal system disease will aid in uncovering the mechanism of disease and contribute to the future development of gene therapy. © 2013 Elsevier B.V. All rights reserved.

  4. Schizophyllum commune has an extensive and functional alternative splicing repertoire

    PubMed Central

    Gehrmann, Thies; Pelkmans, Jordi F.; Lugones, Luis G.; Wösten, Han A. B.; Abeel, Thomas; Reinders, Marcel J. T.

    2016-01-01

    Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically. PMID:27659065

  5. Schizophyllum commune has an extensive and functional alternative splicing repertoire

    DOE PAGES

    Gehrmann, Thies; Pelkmans, Jordi F.; Lugones, Luis G.; ...

    2016-09-23

    Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regionsmore » (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Finally, taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically.« less

  6. RNA splicing factors as oncoproteins and tumor suppressors

    PubMed Central

    Dvinge, Heidi; Kim, Eunhee; Abdel-Wahab, Omar; Bradley, Robert K.

    2016-01-01

    Preface The recent genomic characterization of cancers has revealed recurrent somatic point mutations and copy number changes affecting genes encoding RNA splicing factors. Initial studies of these ‘spliceosomal mutations’ suggest that the proteins bearing these mutations exhibit altered splice site and/or exon recognition preferences relative to their wild-type counterparts, resulting in cancer-specific mis-splicing. Such changes in the splicing machinery may create novel vulnerabilities in cancer cells that can be therapeutically exploited using compounds that can influence the splicing process. Further studies to dissect the biochemical, genomic, and biological effects of spliceosomal mutations are critical for the development of cancer therapies targeted to these mutations. PMID:27282250

  7. Preparation of cell-free splicing extracts from Saccharomyces cerevisiae.

    PubMed

    Ares, Manuel

    2013-10-01

    Much of our understanding of the mechanism of splicing comes from the analysis of cell extracts able to carry out splicing complex formation and splicing reactions in vitro using exogenously added synthetic model pre-mRNA transcripts. This protocol describes the preparation of whole-cell extracts from the budding yeast Saccharomyces cerevisiae. These extracts can be used to dissect the biochemical steps of the splicing reaction and to determine the macromolecules, cofactors, and substrate features necessary for successful splicing.

  8. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; splices. 75.810... § 75.810 High-voltage trailing cables; splices. [Statutory Provisions] In the case of high-voltage cables used as trailing cables, temporary splices shall not be used and all permanent splices shall be...

  9. FineSplice, enhanced splice junction detection and quantification: a novel pipeline based on the assessment of diverse RNA-Seq alignment solutions.

    PubMed

    Gatto, Alberto; Torroja-Fungairiño, Carlos; Mazzarotto, Francesco; Cook, Stuart A; Barton, Paul J R; Sánchez-Cabo, Fátima; Lara-Pezzi, Enrique

    2014-04-01

    Alternative splicing is the main mechanism governing protein diversity. The recent developments in RNA-Seq technology have enabled the study of the global impact and regulation of this biological process. However, the lack of standardized protocols constitutes a major bottleneck in the analysis of alternative splicing. This is particularly important for the identification of exon-exon junctions, which is a critical step in any analysis workflow. Here we performed a systematic benchmarking of alignment tools to dissect the impact of design and method on the mapping, detection and quantification of splice junctions from multi-exon reads. Accordingly, we devised a novel pipeline based on TopHat2 combined with a splice junction detection algorithm, which we have named FineSplice. FineSplice allows effective elimination of spurious junction hits arising from artefactual alignments, achieving up to 99% precision in both real and simulated data sets and yielding superior F1 scores under most tested conditions. The proposed strategy conjugates an efficient mapping solution with a semi-supervised anomaly detection scheme to filter out false positives and allows reliable estimation of expressed junctions from the alignment output. Ultimately this provides more accurate information to identify meaningful splicing patterns. FineSplice is freely available at https://sourceforge.net/p/finesplice/.

  10. The influence of Argonaute proteins on alternative RNA splicing.

    PubMed

    Batsché, Eric; Ameyar-Zazoua, Maya

    2015-01-01

    Alternative splicing of precursor RNAs is an important process in multicellular species because it impacts several aspects of gene expression: from the increase of protein repertoire to the level of expression. A large body of evidences demonstrates that factors regulating chromatin and transcription impact the outcomes of alternative splicing. Argonaute (AGO) proteins were known to play key roles in the regulation of gene expression at the post-transcriptional level. More recently, their role in the nucleus of human somatic cells has emerged. Here, we will discuss some of the nuclear functions of AGO, with special emphasis on alternative splicing. The AGO-mediated modulation of alternative splicing is based on several properties of these proteins: their binding to transcripts on chromatin and their interactions with many proteins, especially histone tail-modifying enzymes, HP1γ and splicing factors. AGO proteins may favor a decrease in the RNA-polymerase II kinetics at actively transcribed genes leading to the modulation of alternative splicing decisions. They could also influence alternative splicing through their interaction with core components of the splicing machinery and several splicing factors. We will discuss the modes of AGO recruitment on chromatin at active genes. We suggest that long intragenic antisense transcripts (lincRNA) might be an important feature of genes containing splicing events regulated by AGO. © 2014 John Wiley & Sons, Ltd.

  11. Probing Dominant Negative Behavior of Glucocorticoid Receptor β through a Hybrid Structural and Biochemical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Jungki; Perera, Lalith; Krahn, Juno M.

    ABSTRACT Glucocorticoid receptor β (GRβ) is associated with glucocorticoid resistance via dominant negative regulation of GRα. To better understand how GRβ functions as a dominant negative inhibitor of GRα at a molecular level, we determined the crystal structure of the ligand binding domain of GRβ complexed with the antagonist RU-486. The structure reveals that GRβ binds RU-486 in the same ligand binding pocket as GRα, and the unique C-terminal amino acids of GRβ are mostly disordered. Binding energy analysis suggests that these C-terminal residues of GRβ do not contribute to RU-486 binding. Intriguingly, the GRβ/RU-486 complex binds corepressor peptide withmore » affinity similar to that of a GRα/RU-486 complex, despite the lack of helix 12. Our biophysical and biochemical analyses reveal that in the presence of RU-486, GRβ is found in a conformation that favors corepressor binding, potentially antagonizing GRα function. This study thus presents an unexpected molecular mechanism by which GRβ could repress transcription.« less

  12. Diversification of the muscle proteome through alternative splicing.

    PubMed

    Nakka, Kiran; Ghigna, Claudia; Gabellini, Davide; Dilworth, F Jeffrey

    2018-03-06

    Skeletal muscles express a highly specialized proteome that allows the metabolism of energy sources to mediate myofiber contraction. This muscle-specific proteome is partially derived through the muscle-specific transcription of a subset of genes. Surprisingly, RNA sequencing technologies have also revealed a significant role for muscle-specific alternative splicing in generating protein isoforms that give specialized function to the muscle proteome. In this review, we discuss the current knowledge with respect to the mechanisms that allow pre-mRNA transcripts to undergo muscle-specific alternative splicing while identifying some of the key trans-acting splicing factors essential to the process. The importance of specific splicing events to specialized muscle function is presented along with examples in which dysregulated splicing contributes to myopathies. Though there is now an appreciation that alternative splicing is a major contributor to proteome diversification, the emergence of improved "targeted" proteomic methodologies for detection of specific protein isoforms will soon allow us to better appreciate the extent to which alternative splicing modifies the activity of proteins (and their ability to interact with other proteins) in the skeletal muscle. In addition, we highlight a continued need to better explore the signaling pathways that contribute to the temporal control of trans-acting splicing factor activity to ensure specific protein isoforms are expressed in the proper cellular context. An understanding of the signal-dependent and signal-independent events driving muscle-specific alternative splicing has the potential to provide us with novel therapeutic strategies to treat different myopathies.

  13. Factors influencing alternative splice site utilization in vivo.

    PubMed Central

    Fu, X Y; Manley, J L

    1987-01-01

    To study factors that influence the choice of alternative pre-mRNA splicing pathways, we introduced plasmids expressing either wild-type or mutated simian virus 40 (SV40) early regions into tissue culture cells and then measured the quantities of small-t and large-T RNAs produced. One important element controlling splice site selection was found to be the size of the intron removed in the production of small-t mRNA; expansion of this intron (from 66 to 77 or more nucleotides) resulted in a substantial increase in the amount of small-t mRNA produced relative to large-T mRNA. This suggests that in the normal course of SV40 early pre-mRNA processing, large-T splicing is at a competitive advantage relative to small-t splicing because of the small size of the latter intron. Several additional features of the pre-mRNA that can influence splice site selection were also identified by analyzing the effects of mutations containing splice site duplications. These include the strengths of competing 5' splice sites and the relative positions of splice sites in the pre-mRNA. Finally, we showed that the ratio of small-t to large-T mRNA was 10 to 15-fold greater in human 293 cells than in HeLa cells or other mammalian cell types. These results suggest the existence of cell-specific trans-acting factors that can dramatically alter the pattern of splice site selection in a pre-mRNA. Images PMID:3029566

  14. PASTA: splice junction identification from RNA-Sequencing data

    PubMed Central

    2013-01-01

    Background Next generation transcriptome sequencing (RNA-Seq) is emerging as a powerful experimental tool for the study of alternative splicing and its regulation, but requires ad-hoc analysis methods and tools. PASTA (Patterned Alignments for Splicing and Transcriptome Analysis) is a splice junction detection algorithm specifically designed for RNA-Seq data, relying on a highly accurate alignment strategy and on a combination of heuristic and statistical methods to identify exon-intron junctions with high accuracy. Results Comparisons against TopHat and other splice junction prediction software on real and simulated datasets show that PASTA exhibits high specificity and sensitivity, especially at lower coverage levels. Moreover, PASTA is highly configurable and flexible, and can therefore be applied in a wide range of analysis scenarios: it is able to handle both single-end and paired-end reads, it does not rely on the presence of canonical splicing signals, and it uses organism-specific regression models to accurately identify junctions. Conclusions PASTA is a highly efficient and sensitive tool to identify splicing junctions from RNA-Seq data. Compared to similar programs, it has the ability to identify a higher number of real splicing junctions, and provides highly annotated output files containing detailed information about their location and characteristics. Accurate junction data in turn facilitates the reconstruction of the splicing isoforms and the analysis of their expression levels, which will be performed by the remaining modules of the PASTA pipeline, still under development. Use of PASTA can therefore enable the large-scale investigation of transcription and alternative splicing. PMID:23557086

  15. Heart failure-associated changes in RNA splicing of sarcomere genes.

    PubMed

    Kong, Sek Won; Hu, Yong Wu; Ho, Joshua W K; Ikeda, Sadakatsu; Polster, Sean; John, Ranjit; Hall, Jennifer L; Bisping, Egbert; Pieske, Burkert; dos Remedios, Cristobal G; Pu, William T

    2010-04-01

    Alternative mRNA splicing is an important mechanism for regulation of gene expression. Altered mRNA splicing occurs in association with several types of cancer, and a small number of disease-associated changes in splicing have been reported in heart disease. However, genome-wide approaches have not been used to study splicing changes in heart disease. We hypothesized that mRNA splicing is different in diseased hearts compared with control hearts. We used the Affymetrix Exon array to globally evaluate mRNA splicing in left ventricular myocardial RNA from controls (n=15) and patients with ischemic cardiomyopathy (n=15). We observed a broad and significant decrease in mRNA splicing efficiency in heart failure, which affected some introns to a greater extent than others. The profile of mRNA splicing separately clustered ischemic cardiomyopathy and control samples, suggesting distinct changes in mRNA splicing between groups. Reverse transcription-polymerase chain reaction validated 9 previously unreported alternative splicing events. Furthermore, we demonstrated that splicing of 4 key sarcomere genes, cardiac troponin T (TNNT2), cardiac troponin I (TNNI3), myosin heavy chain 7 (MYH7), and filamin C, gamma (FLNC), was significantly altered in ischemic cardiomyopathy and in dilated cardiomyopathy and aortic stenosis. In aortic stenosis samples, these differences preceded the onset of heart failure. Remarkably, the ratio of minor to major splice variants of TNNT2, MYH7, and FLNC classified independent test samples as control or disease with >98% accuracy. Our data indicate that mRNA splicing is broadly altered in human heart disease and that patterns of aberrant RNA splicing accurately assign samples to control or disease classes.

  16. A mutational analysis of U12-dependent splice site dinucleotides

    PubMed Central

    DIETRICH, ROSEMARY C.; FULLER, JOHN D.; PADGETT, RICHARD A.

    2005-01-01

    Introns spliced by the U12-dependent minor spliceosome are divided into two classes based on their splice site dinucleotides. The /AU-AC/ class accounts for about one-third of U12-dependent introns in humans, while the /GU-AG/ class accounts for the other two-thirds. We have investigated the in vivo and in vitro splicing phenotypes of mutations in these dinucleotide sequences. A 5′ A residue can splice to any 3′ residue, although C is preferred. A 5′ G residue can splice to 3′ G or U residues with a preference for G. Little or no splicing was observed to 3′ A or C residues. A 5′ U or C residue is highly deleterious for U12-dependent splicing, although some combinations, notably 5′ U to 3′ U produced detectable spliced products. The dependence of 3′ splice site activity on the identity of the 5′ residue provides evidence for communication between the first and last nucleotides of the intron. Most mutants in the second position of the 5′ splice site and the next to last position of the 3′ splice site were defective for splicing. Double mutants of these residues showed no evidence of communication between these nucleotides. Varying the distance between the branch site and the 3′ splice site dinucleotide in the /GU-AG/ class showed that a somewhat larger range of distances was functional than for the /AU-AC/ class. The optimum branch site to 3′ splice site distance of 11–12 nucleotides appears to be the same for both classes. PMID:16043500

  17. Alternative splicing in cancers: From aberrant regulation to new therapeutics.

    PubMed

    Song, Xiaowei; Zeng, Zhenyu; Wei, Huanhuan; Wang, Zefeng

    2018-03-01

    Alternative splicing is one of the most common mechanisms for gene regulation in humans, and plays a vital role to increase the complexity of functional proteins. In this article, we seek to provide a general review on the relationships between alternative splicing and tumorigenesis. We briefly introduce the basic rules for regulation of alternative splicing, and discuss recent advances on dynamic regulation of alternative splicing in cancers by highlighting the roles of a variety of RNA splicing factors in tumorigenesis. We further discuss several important questions regarding the splicing of long noncoding RNAs and back-splicing of circular RNAs in cancers. Finally, we discuss the current technologies that can be used to manipulate alternative splicing and serve as potential cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Novel Method to Screen for Dominant Negative ATM Mutations in Familial Breast Cancer

    DTIC Science & Technology

    2005-04-01

    carry dominant negative mutation in ATM due to natural variation amongst LCLs. Microarrays have been performed to determine differences in gene expression... genes that are altered in their expression in ATMmutation carriers. The validation of this data in carriers of different ATM mutation indicated that the...heterozygous carriers of T727 1 G mutation display a gene expression phenotype that appears identical to carriers of protein truncating mutations in

  19. Peptidic tools applied to redirect alternative splicing events.

    PubMed

    Nancy, Martínez-Montiel; Nora, Rosas-Murrieta; Rebeca, Martínez-Contreras

    2015-05-01

    Peptides are versatile and attractive biomolecules that can be applied to modulate genetic mechanisms like alternative splicing. In this process, a single transcript yields different mature RNAs leading to the production of protein isoforms with diverse or even antagonistic functions. During splicing events, errors can be caused either by mutations present in the genome or by defects or imbalances in regulatory protein factors. In any case, defects in alternative splicing have been related to several genetic diseases including muscular dystrophy, Alzheimer's disease and cancer from almost every origin. One of the most effective approaches to redirect alternative splicing events has been to attach cell-penetrating peptides to oligonucleotides that can modulate a single splicing event and restore correct gene expression. Here, we summarize how natural existing and bioengineered peptides have been applied over the last few years to regulate alternative splicing and genetic expression. Under different genetic and cellular backgrounds, peptides have been shown to function as potent vehicles for splice correction, and their therapeutic benefits have reached clinical trials and patenting stages, emphasizing the use of regulatory peptides as an exciting therapeutic tool for the treatment of different genetic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Mis-Spliced Lr34 Transcript Events in Winter Wheat.

    PubMed

    Fang, Tilin; Carver, Brett F; Hunger, Robert M; Yan, Liuling

    2017-01-01

    Lr34 in wheat is a non-race-specific gene that confers resistance against multiple fungal pathogens. The resistant allele Lr34 and the susceptible allele Lr34s can be distinguished by three polymorphisms that cause alternation of deduced amino acid sequences of Lr34 at the protein level. In seedlings of a cultivar carrying the resistant Lr34r allele, only a portion (35%) of its transcripts was correctly spliced and the majority (65%) of its transcripts were incorrectly spliced due to multiple mis-splicing events. Lr34 mis-splicing events were also observed at adult plant age when this gene exerts its function. All of the mis-spliced Lr34r cDNA transcripts observed in this study resulted in a premature stop codon due to a shift of the open reading frame; hence, the mis-spliced Lr34r cDNAs were deduced to encode incomplete proteins. Even if a cultivar has a functional Lr34 gene, its transcripts might not completely splice in a correct pattern. These findings suggested that the partial resistance conferred by a quantitative gene might be due to mis-splicing events in its transcripts; hence, the resistance of the gene could be increased by eliminating or mutating regulators that cause mis-splicing events in wheat.

  1. Cardiac CRFR1 Expression Is Elevated in Human Heart Failure and Modulated by Genetic Variation and Alternative Splicing

    PubMed Central

    Lewis, Kathy A.; Perrin, Marilyn H.; Sweet, Wendy E.; Moravec, Christine S.; Tang, W. H. Wilson; Huising, Mark O.; Troughton, Richard W.; Cameron, Vicky A.

    2016-01-01

    Corticotropin-releasing factor (CRF) and the CRF-related peptides, urocortin (Ucn)-1, Ucn2, and Ucn3 signal through receptors CRFR1 and CRFR2 to restore homeostasis in response to stress. The Ucns exert potent cardioprotective effects and may have clinical utility in heart failure. To explore the activity of this system in the heart, we measured the levels of myocardial gene expression of the CRF/Ucn family of ligands/receptors and investigated genetic variation and alternative splicing of CRFR1 in 110 heart failure patients and 108 heart donors. Using quantitative real-time PCR, we detected CRFR1, CRFR2, CRF, Ucn1, Ucn2, and Ucn3 in all samples. CRFR2α was the most abundant receptor and Ucn3 the most abundant ligand, both in patients and donors. Compared with donors, cardiac expression of CRFR1, CRF, and Ucn3 was higher (P < .001) and CRFR2α lower (P = .012) in patients. In patients and donors, genetic variation within CRFR1, represented by the chromosome 17q21.31 inversion polymorphism, was associated with markedly higher CRFR1 expression (P < .001), making CRFR1 and CRFR2α expression almost equivalent in some patients. A novel, truncated splice variant of CRFR1, designated CRFR1j, was identified and shown to exert a dominant-negative effect on CRFR1 signaling in vitro. The novel variant was expressed in a greater proportion of patients (60%) than donors (3%, P < .001). In summary, cardiac expression of CRFR1, CRF, and Ucn3 genes is elevated in heart failure and may contribute to the activation of the CRF/Ucn system in these patients. A common variant within the CRFR1 gene and a novel CRFR1 splice variant may modulate CRFR1 expression and signaling. PMID:27754786

  2. Splicing regulatory factors, ageing and age-related disease.

    PubMed

    Latorre, Eva; Harries, Lorna W

    2017-07-01

    Alternative splicing is a co-transcriptional process, which allows for the production of multiple transcripts from a single gene and is emerging as an important control point for gene expression. Alternatively expressed isoforms often have antagonistic function and differential temporal or spatial expression patterns, yielding enormous plasticity and adaptability to cells and increasing their ability to respond to environmental challenge. The regulation of alternative splicing is critical for numerous cellular functions in both pathological and physiological conditions, and deregulated alternative splicing is a key feature of common chronic diseases. Isoform choice is controlled by a battery of splicing regulatory proteins, which include the serine arginine rich (SRSF) proteins and the heterogeneous ribonucleoprotein (hnRNP) classes of genes. These important splicing regulators have been implicated in age-related disease, and in the ageing process itself. This review will outline the important contribution of splicing regulator proteins to ageing and age-related disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Comprehensive analysis of titin protein isoform and alternative splicing in normal and mutant rats.

    PubMed

    Li, Shijun; Guo, Wei; Schmitt, Benjamin M; Greaser, Marion L

    2012-04-01

    Titin is a giant protein with multiple functions in cardiac and skeletal muscles. Rat cardiac titin undergoes developmental isoform transition from the neonatal 3.7 MDa N2BA isoform to primarily the adult 2.97 MDa N2B isoform. An autosomal dominant mutation dramatically altered this transformation. Titins from eight skeletal muscles: Tibialis Anterior (TA), Longissimus Dorsi (LD) and Gastrocnemius (GA), Extensor Digitorum Longus (ED), Soleus (SO), Psoas (PS), Extensor Oblique (EO), and Diaphram (DI) were characterized in wild type and in homozygous mutant (Hm) rats with a titin splicing defect. Results showed that the developmental reduction in titin size is eliminated in the mutant rat so that the titins in all investigated skeletal muscles remain large in the adult. The alternative splicing of titin mRNA was found repressed by this mutation, a result consistent with the large titin isoform in the mutant. The developmental pattern of titin mRNA alternative splicing differs between heart and skeletal muscles. The retention of intron 49 reveals a possible mechanism for the absence of the N2B unique region in the expressed titin protein of skeletal muscle. © 2011 Wiley Periodicals, Inc.

  4. A saga of cancer epigenetics: linking epigenetics to alternative splicing.

    PubMed

    Narayanan, Sathiya Pandi; Singh, Smriti; Shukla, Sanjeev

    2017-03-07

    The discovery of an increasing number of alternative splicing events in the human genome highlighted that ∼94% of genes generate alternatively spliced transcripts that may produce different protein isoforms with diverse functions. It is now well known that several diseases are a direct and indirect consequence of aberrant splicing events in humans. In addition to the conventional mode of alternative splicing regulation by ' cis ' RNA-binding sites and ' trans' RNA-binding proteins, recent literature provides enormous evidence for epigenetic regulation of alternative splicing. The epigenetic modifications may regulate alternative splicing by either influencing the transcription elongation rate of RNA polymerase II or by recruiting a specific splicing regulator via different chromatin adaptors. The epigenetic alterations and aberrant alternative splicing are known to be associated with various diseases individually, but this review discusses/highlights the latest literature on the role of epigenetic alterations in the regulation of alternative splicing and thereby cancer progression. This review also points out the need for further studies to understand the interplay between epigenetic modifications and aberrant alternative splicing in cancer progression. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  5. Dominant-Negative Mutants of a Toxin Subunit: An Approach to Therapy of Anthrax

    NASA Astrophysics Data System (ADS)

    Sellman, Bret R.; Mourez, Michael; John Collier, R.

    2001-04-01

    The protective antigen moiety of anthrax toxin translocates the toxin's enzymic moieties to the cytosol of mammalian cells by a mechanism that depends on its ability to heptamerize and insert into membranes. We identified dominant-negative mutants of protective antigen that co-assemble with the wild-type protein and block its ability to translocate the enzymic moieties across membranes. These mutants strongly inhibited toxin action in cell culture and in an animal intoxication model, suggesting that they could be useful in therapy of anthrax.

  6. Design of RNA splicing analysis null models for post hoc filtering of Drosophila head RNA-Seq data with the splicing analysis kit (Spanki).

    PubMed

    Sturgill, David; Malone, John H; Sun, Xia; Smith, Harold E; Rabinow, Leonard; Samson, Marie-Laure; Oliver, Brian

    2013-11-09

    The production of multiple transcript isoforms from one gene is a major source of transcriptome complexity. RNA-Seq experiments, in which transcripts are converted to cDNA and sequenced, allow the resolution and quantification of alternative transcript isoforms. However, methods to analyze splicing are underdeveloped and errors resulting in incorrect splicing calls occur in every experiment. We used RNA-Seq data to develop sequencing and aligner error models. By applying these error models to known input from simulations, we found that errors result from false alignment to minor splice motifs and antisense stands, shifted junction positions, paralog joining, and repeat induced gaps. By using a series of quantitative and qualitative filters, we eliminated diagnosed errors in the simulation, and applied this to RNA-Seq data from Drosophila melanogaster heads. We used high-confidence junction detections to specifically interrogate local splicing differences between transcripts. This method out-performed commonly used RNA-seq methods to identify known alternative splicing events in the Drosophila sex determination pathway. We describe a flexible software package to perform these tasks called Splicing Analysis Kit (Spanki), available at http://www.cbcb.umd.edu/software/spanki. Splice-junction centric analysis of RNA-Seq data provides advantages in specificity for detection of alternative splicing. Our software provides tools to better understand error profiles in RNA-Seq data and improve inference from this new technology. The splice-junction centric approach that this software enables will provide more accurate estimates of differentially regulated splicing than current tools.

  7. Identification of a splicing enhancer in MLH1 using COMPARE a new assay for determination of relative RNA splicing efficiencies

    PubMed Central

    Xu, Dong-Qing; Mattox, William

    2006-01-01

    Exonic splicing enhancers (ESEs) are sequences that facilitate recognition of splice sites and prevent exon-skipping. Because ESEs are often embedded within proteincoding sequences, alterations in them can also often be interpreted as nonsense, missense or silent mutations. To correctly interpret exonic mutations and their roles in disease, it is important to develop strategies that identify ESE mutations. Potential ESEs can be found computationally in many exons but it has proven difficult to predict if a given mutation will have effects on splicing based on sequence alone. Here we describe a flexible in vitro method that can be used to functionally compare the effects of multiple sequence variants on ESE activity in a single in vitro splicing reaction. We have applied this method in parallel with conventional splicing assays to test for a splicing enhancer in exon 17 of the human MLH1 gene. Point mutations associated with hereditary nonpolyposis colorectal cancer (HNPCC) have previously been found to correlate with exon-skipping in both lymphocytes and tumors from patients. We show that sequences from this exon can replace an ESE from the mouse IgM gene to support RNA splicing in HeLa nuclear extracts. ESE activity was reduced by HNPCC point mutations in codon 659 indicating that their primary effect is on splicing. Surprisingly the strongest enhancer function mapped to a different region of the exon upstream of this codon. Together our results indicate that HNPCC point mutations in codon 659 affect an auxillary element that augments the enhancer function to ensure exon inclusion. PMID:16357104

  8. CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation.

    PubMed

    Wang, Huajing; Sun, William

    2017-01-28

    With the discovery of the CRISPR/Cas9 technology, genome editing could be performed in a rapid, precise and effective manner. Its potential applications in functional interrogation of cancer-causing genes and cancer therapy have been extensively explored. In this study, we demonstrated the use of the CRISPR/Cas9 system to directly target the oncogene HER2. Directing Cas9 to exons of the HER2 gene inhibited cell growth in breast cancer cell lines that harbor amplification of the HER2 locus. The inhibitory effect was potentiated with the addition of PARP inhibitors. Unexpectedly, CRISPR-induced mutations did not significantly affect the level of HER2 protein expression. Instead, CRISPR targeting appeared to exert its effect through a dominant negative mutation. This HER2 mutant interfered with the MAPK/ERK axis of HER2 downstream signaling. Our work provides a novel mechanism underlying the anti-cancer effects of HER2-targeting by CRISPR/Cas9, which is distinct from the clinical drug Herceptin. In addition, it opens up the possibility that incomplete CRISPR targeting of certain oncogenes could still have therapeutic value by generation of dominant negative mutants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Connecting the dots: chromatin and alternative splicing in EMT

    PubMed Central

    Warns, Jessica A.; Davie, James R.; Dhasarathy, Archana

    2015-01-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process. PMID:26291837

  10. Connecting the dots: chromatin and alternative splicing in EMT.

    PubMed

    Warns, Jessica A; Davie, James R; Dhasarathy, Archana

    2016-02-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.

  11. Splice assembly tool and method of splicing

    DOEpatents

    Silva, Frank A.

    1980-01-01

    A splice assembly tool for assembling component parts of an electrical conductor while producing a splice connection between electrical cables therewith, comprises a first structural member adaptable for supporting force applying means thereon, said force applying means enabling a rotary force applied manually thereto to be converted to a longitudinal force for subsequent application against a first component part of said electrical connection, a second structural member adaptable for engaging a second component part in a manner to assist said first structural member in assembling the component parts relative to one another and transmission means for conveying said longitudinal force between said first and said second structural members, said first and said second structural members being coupled to one another by said transmission means, wherein at least one of said component parts comprises a tubular elastomeric sleeve and said force applying means provides a relatively high mechanical advantage when said rotary force is applied thereto so as to facilitate assembly of said at least one tubular elastomeric sleeve about said other component part in an interference fit manner.

  12. Interplay between DMD Point Mutations and Splicing Signals in Dystrophinopathy Phenotypes

    PubMed Central

    Juan-Mateu, Jonàs; González-Quereda, Lidia; Rodríguez, Maria José; Verdura, Edgard; Lázaro, Kira; Jou, Cristina; Nascimento, Andrés; Jiménez-Mallebrera, Cecilia; Colomer, Jaume; Monges, Soledad; Lubieniecki, Fabiana; Foncuberta, Maria Eugenia; Pascual-Pascual, Samuel Ignacio; Molano, Jesús; Baiget, Montserrat; Gallano, Pia

    2013-01-01

    DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements. PMID:23536893

  13. iCLIP Predicts the Dual Splicing Effects of TIA-RNA Interactions

    PubMed Central

    Briese, Michael; Zarnack, Kathi; Luscombe, Nicholas M.; Rot, Gregor; Zupan, Blaž; Curk, Tomaž; Ule, Jernej

    2010-01-01

    The regulation of alternative splicing involves interactions between RNA-binding proteins and pre-mRNA positions close to the splice sites. T-cell intracellular antigen 1 (TIA1) and TIA1-like 1 (TIAL1) locally enhance exon inclusion by recruiting U1 snRNP to 5′ splice sites. However, effects of TIA proteins on splicing of distal exons have not yet been explored. We used UV-crosslinking and immunoprecipitation (iCLIP) to find that TIA1 and TIAL1 bind at the same positions on human RNAs. Binding downstream of 5′ splice sites was used to predict the effects of TIA proteins in enhancing inclusion of proximal exons and silencing inclusion of distal exons. The predictions were validated in an unbiased manner using splice-junction microarrays, RT-PCR, and minigene constructs, which showed that TIA proteins maintain splicing fidelity and regulate alternative splicing by binding exclusively downstream of 5′ splice sites. Surprisingly, TIA binding at 5′ splice sites silenced distal cassette and variable-length exons without binding in proximity to the regulated alternative 3′ splice sites. Using transcriptome-wide high-resolution mapping of TIA-RNA interactions we evaluated the distal splicing effects of TIA proteins. These data are consistent with a model where TIA proteins shorten the time available for definition of an alternative exon by enhancing recognition of the preceding 5′ splice site. Thus, our findings indicate that changes in splicing kinetics could mediate the distal regulation of alternative splicing. PMID:21048981

  14. Dynamic integration of splicing within gene regulatory pathways

    PubMed Central

    Braunschweig, Ulrich; Gueroussov, Serge; Plocik, Alex; Graveley, Brenton R.; Blencowe, Benjamin J.

    2013-01-01

    Precursor mRNA splicing is one of the most highly regulated processes in metazoan species. In addition to generating vast repertoires of RNAs and proteins, splicing has a profound impact on other gene regulatory layers, including mRNA transcription, turnover, transport and translation. Conversely, factors regulating chromatin and transcription complexes impact the splicing process. This extensive cross-talk between gene regulatory layers takes advantage of dynamic spatial, physical and temporal organizational properties of the cell nucleus, and further emphasizes the importance of developing a multidimensional understanding of splicing control. PMID:23498935

  15. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  16. Low resistance splices for HTS devices and applications

    NASA Astrophysics Data System (ADS)

    Lalitha, S. L.

    2017-09-01

    This paper discusses the preparation methodology and performance evaluation of low resistance splices made of the second generation (2G) high-temperature superconductor (HTS). These splices are required in a broad spectrum of HTS devices including a large aperture, high-field solenoid built in the laboratory to demonstrate a superconducting magnetic energy storage (SMES) device. Several pancake coils are assembled in the form of a nested solenoid, and each coil requires a hundred meters or more of 2G (RE)BCO tape. However, commercial availability of this superconductor with a very uniform physical properties is currently limited to shorter piece lengths. This necessitates us having splices to inter-connect the tape pieces within a pancake coil, between adjacent pancake coils, and to attach HTS current leads to the magnet assembly. As a part of the optimization and qualification of splicing process, a systematic study was undertaken to analyze the electrical performance of splices in two different configurations suitable for this magnet assembly: lap joint and spiral joint. The electrical performance is quantified in terms of the resistance of splices estimated from the current-voltage characteristics. It has been demonstrated that a careful application of this splicing technique can generate lap joints with resistance less than 1 nΩ at 77 K.

  17. Nemaline myopathy and distal arthrogryposis associated with an autosomal recessive TNNT3 splice variant.

    PubMed

    Sandaradura, Sarah A; Bournazos, Adam; Mallawaarachchi, Amali; Cummings, Beryl B; Waddell, Leigh B; Jones, Kristi J; Troedson, Christopher; Sudarsanam, Annapurna; Nash, Benjamin M; Peters, Gregory B; Algar, Elizabeth M; MacArthur, Daniel G; North, Kathryn N; Brammah, Susan; Charlton, Amanda; Laing, Nigel G; Wilson, Meredith J; Davis, Mark R; Cooper, Sandra T

    2018-03-01

    A male neonate presented with severe weakness, hypotonia, contractures and congenital scoliosis. Skeletal muscle specimens showed marked atrophy and degeneration of fast fibers with striking nemaline rods and hypertrophy of slow fibers that were ultrastructurally normal. A neuromuscular gene panel identified a homozygous essential splice variant in TNNT3 (chr11:1956150G > A, NM_006757.3:c.681+1G > A). TNNT3 encodes skeletal troponin-T fast and is associated with autosomal dominant distal arthrogryposis. TNNT3 has not previously been associated with nemaline myopathy (NM), a rare congenital myopathy linked to defects in proteins associated with thin filament structure and regulation. cDNA studies confirmed pathogenic consequences of the splice variant, eliciting exon-skipping and intron retention events leading to a frameshift. Western blot showed deficiency of troponin-T fast protein with secondary loss of troponin-I fast . We establish a homozygous splice variant in TNNT3 as the likely cause of severe congenital NM with distal arthrogryposis, characterized by specific involvement of Type-2 fibers and deficiency of troponin-T fast . © 2017 Wiley Periodicals, Inc.

  18. Alternative splicing of mutually exclusive exons--a review.

    PubMed

    Pohl, Martin; Bortfeldt, Ralf H; Grützmann, Konrad; Schuster, Stefan

    2013-10-01

    Alternative splicing (AS) of pre-mRNAs in higher eukaryotes and several viruses is one major source of protein diversity. Usually, the following major subtypes of AS are distinguished: exon skipping, intron retention, and alternative 3' and 5' splice sites. Moreover, mutually exclusive exons (MXEs) represent a rare subtype. In the splicing of MXEs, two (or more) splicing events are not independent anymore, but are executed or disabled in a coordinated manner. In this review, several bioinformatics approaches for analyzing MXEs are presented and discussed. In particular, we revisit suitable definitions and nomenclatures, and bioinformatics tools for finding MXEs, adjacent and non-adjacent MXEs, clustered and grouped MXEs. Moreover, the molecular mechanisms for splicing MXEs proposed in the literature are reviewed and discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Regulation of alternative mRNA splicing: old players and new perspectives.

    PubMed

    Dvinge, Heidi

    2018-06-01

    Nearly all human multi-exon genes are subject to alternative splicing in one or more cell types. The splicing machinery, therefore, has to select between multiple splice sites in a context-dependent manner, relying on sequence features in cis and trans-acting splicing regulators that either promote or repress splice site recognition and spliceosome assembly. However, the functional coupling between multiple gene regulatory layers signifies that splicing can also be modulated by transcriptional or epigenetic characteristics. Other, less obvious, aspects of alternative splicing have come to light in recent years, often involving core components of the spliceosome previously thought to perform a basal rather than a regulatory role in splicing. Together this paints a highly dynamic picture of splicing regulation, where the final splice site choice is governed by the entire transcriptional environment of a gene and its cellular context. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Design of RNA splicing analysis null models for post hoc filtering of Drosophila head RNA-Seq data with the splicing analysis kit (Spanki)

    PubMed Central

    2013-01-01

    Background The production of multiple transcript isoforms from one gene is a major source of transcriptome complexity. RNA-Seq experiments, in which transcripts are converted to cDNA and sequenced, allow the resolution and quantification of alternative transcript isoforms. However, methods to analyze splicing are underdeveloped and errors resulting in incorrect splicing calls occur in every experiment. Results We used RNA-Seq data to develop sequencing and aligner error models. By applying these error models to known input from simulations, we found that errors result from false alignment to minor splice motifs and antisense stands, shifted junction positions, paralog joining, and repeat induced gaps. By using a series of quantitative and qualitative filters, we eliminated diagnosed errors in the simulation, and applied this to RNA-Seq data from Drosophila melanogaster heads. We used high-confidence junction detections to specifically interrogate local splicing differences between transcripts. This method out-performed commonly used RNA-seq methods to identify known alternative splicing events in the Drosophila sex determination pathway. We describe a flexible software package to perform these tasks called Splicing Analysis Kit (Spanki), available at http://www.cbcb.umd.edu/software/spanki. Conclusions Splice-junction centric analysis of RNA-Seq data provides advantages in specificity for detection of alternative splicing. Our software provides tools to better understand error profiles in RNA-Seq data and improve inference from this new technology. The splice-junction centric approach that this software enables will provide more accurate estimates of differentially regulated splicing than current tools. PMID:24209455

  1. Defective control of pre–messenger RNA splicing in human disease

    PubMed Central

    Shkreta, Lulzim

    2016-01-01

    Examples of associations between human disease and defects in pre–messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies. PMID:26728853

  2. Protein arginine methylation of Npl3 promotes splicing of the SUS1 intron harboring non-consensus 5' splice site and branch site.

    PubMed

    Muddukrishna, Bhavana; Jackson, Christopher A; Yu, Michael C

    2017-06-01

    Protein arginine methylation occurs on spliceosomal components and spliceosome-associated proteins, but how this modification contributes to their function in pre-mRNA splicing remains sparse. Here we provide evidence that protein arginine methylation of the yeast SR-/hnRNP-like protein Npl3 plays a role in facilitating efficient splicing of the SUS1 intron that harbors a non-consensus 5' splice site and branch site. In yeast cells lacking the major protein arginine methyltransferase HMT1, we observed a change in the co-transcriptional recruitment of the U1 snRNP subunit Snp1 and Npl3 to pre-mRNAs harboring both consensus (ECM33 and ASC1) and non-consensus (SUS1) 5' splice site and branch site. Using an Npl3 mutant that phenocopies wild-type Npl3 when expressed in Δhmt1 cells, we showed that the arginine methylation of Npl3 is responsible for this. Examination of pre-mRNA splicing efficiency in these mutants reveals the requirement of Npl3 methylation for the efficient splicing of SUS1 intron 1, but not of ECM33 or ASC1. Changing the 5' splice site and branch site in SUS1 intron 1 to the consensus form restored splicing efficiency in an Hmt1-independent manner. Results from biochemical studies show that methylation of Npl3 promotes its optimal association with the U1 snRNP through its association with the U1 snRNP subunit Mud1. Based on these data, we propose a model in which Hmt1, via arginine methylation of Npl3, facilitates U1 snRNP engagement with the pre-mRNA to promote usage of non-consensus splice sites by the splicing machinery. Published by Elsevier B.V.

  3. Digital holographic microtomography of fusion spliced optical fibers

    NASA Astrophysics Data System (ADS)

    Deng, Yating; Xiao, Wen; Ma, Xichao; Pan, Feng

    2017-03-01

    In this paper, we report three-dimensional(3D) measurement results of structural parameters of fusion spliced optical fibers using digital holographic microtomography. A holographic setup in microscopy configuration with the sample-fixed and setup-rotating scheme is established. A series of holograms is recorded from various incident angles. Then the filtered backprojection algorithm is applied to reconstruct the 3D refractive index (RI) distributions of the fusion spliced optical fibers inserted in the index-matching liquid. Experimental results exhibit the internal and external shapes of three kinds of fusion splices between different fibers, including a single-mode fiber(SMF) and a multimode fiber, an SMF and a panda polarization maintaining fiber (Panda PMF), and an SMF and a bow-tie polarization maintaining fiber (Bow-Tie PMF). With 3D maps of RI, it is intuitive to observe internal structural details of fused fibers and evaluate the splicing quality. This paper describes a powerful method for non-invasive microscopic measurement of fiber splicing. Furthermore, it provides the possibility of detecting fiber splicing loss by 3D structures.

  4. MeCP2 regulates Tet1-catalyzed demethylation, CTCF binding, and learning-dependent alternative splicing of the BDNF gene in Turtle

    PubMed Central

    Zheng, Zhaoqing; Ambigapathy, Ganesh; Keifer, Joyce

    2017-01-01

    MECP2 mutations underlying Rett syndrome cause widespread misregulation of gene expression. Functions for MeCP2 other than transcriptional are not well understood. In an ex vivo brain preparation from the pond turtle Trachemys scripta elegans, an intraexonic splicing event in the brain-derived neurotrophic factor (BDNF) gene generates a truncated mRNA transcript in naïve brain that is suppressed upon classical conditioning. MeCP2 and its partners, splicing factor Y-box binding protein 1 (YB-1) and methylcytosine dioxygenase 1 (Tet1), bind to BDNF chromatin in naïve but dissociate during conditioning; the dissociation correlating with decreased DNA methylation. Surprisingly, conditioning results in new occupancy of BDNF chromatin by DNA insulator protein CCCTC-binding factor (CTCF), which is associated with suppression of splicing in conditioning. Knockdown of MeCP2 shows it is instrumental for splicing and inhibits Tet1 and CTCF binding thereby negatively impacting DNA methylation and conditioning-dependent splicing regulation. Thus, mutations in MECP2 can have secondary effects on DNA methylation and alternative splicing. DOI: http://dx.doi.org/10.7554/eLife.25384.001 PMID:28594324

  5. Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain.

    PubMed

    Wang, Guohao; Yang, Huaqiang; Yan, Sen; Wang, Chuan-En; Liu, Xudong; Zhao, Bentian; Ouyang, Zhen; Yin, Peng; Liu, Zhaoming; Zhao, Yu; Liu, Tao; Fan, Nana; Guo, Lin; Li, Shihua; Li, Xiao-Jiang; Lai, Liangxue

    2015-09-03

    TAR DNA-binding protein 43 (TDP-43) is a nuclear protein, but it is redistributed in the neuronal cytoplasm in both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Because small transgenic animal models often lack cytoplasmic TDP-43, how the cytoplasmic accumulation of TDP-43 contributes to these diseases remains unclear. The current study is aimed at studying the mechanism of cytoplasmic pathology of TDP-43. We established transgenic pigs expressing mutant TDP-43 (M337V). This pig model shows severe phenotypes and early death. We found that transgenic TDP-43 is also distributed in the cytoplasm of neuronal cells in the spinal cord and brain. Transgenic TDP-43 interacts with PSF, an RNA splicing factor that associates with NeuN to regulate neuronal RNA splicing. The interaction of TDP-43, PSF and NeuN causes PSF and NeuN mislocalize into the neuronal cytoplasm in transgenic pigs. Consistently, abnormal PSF-related neuronal RNA splicing is seen in TDP-43 transgenic pigs. The cytoplasmic localization of PSF and NeuN as well as abnormal PSF-related neuronal RNA splicing was also found in ALS patient brains. Our findings from a large mammalian model suggest that cytoplasmic mutant TDP-43 could reduce the nuclear function of RNA splicing factors, contributing to neuropathology.

  6. Prognostic impact of mRNA levels of osteopontin splice variants in soft tissue sarcoma patients.

    PubMed

    Hahnel, Antje; Wichmann, Henri; Greither, Thomas; Kappler, Matthias; Würl, Peter; Kotzsch, Matthias; Taubert, Helge; Vordermark, Dirk; Bache, Matthias

    2012-04-02

    It is well known that osteopontin (OPN) plays an important role in tumor progression and that a high OPN expression level in several tumor entities correlates with poor prognosis in cancer patients. However, little is known about the prognostic relevance of the OPN mRNA splice variants. We analyzed the mRNA expression levels of different OPN splice variants in tumor tissue of 124 soft tissue sarcoma (STS) patients. Quantitative real-time PCR (qRT-PCR) was used to analyze the mRNA expression level of three OPN splice variants (OPN-a, -b and -c). The multivariate Cox's proportional hazard regression model revealed that high mRNA expression levels of OPN splice variants are significantly associated with poor prognosis in STS patients (n = 124). Women (n = 68) with high mRNA expression levels of OPN-a and OPN-b have an especially elevated risk of tumor-related death (OPN-a: RR = 3.0, P = 0.01, CI = 1.3-6.8; OPN-b: RR = 3.4, P = 0.01, CI = 1.4-8.2). In particular, we found that high mRNA expression levels of OPN-b and OPN-c correlated with a high risk of tumor-related death in STS patients that received radiotherapy (n = 52; OPN-b: RR = 10.3, P < 0.01, CI = 2.0-53.7; OPN-c: RR = 11.4, P < 0.01, CI = 2.2-59.3). Our study shows that elevated mRNA expression levels of OPN splice variants are negative prognostic and predictive markers for STS patients. Further studies are needed to clarify the impact of the OPN splice variants on prognosis.

  7. Superconducting cable-in-conduit low resistance splice

    DOEpatents

    Artman, Thomas A.

    2003-06-24

    A low resistance splice connects two cable-in-conduit superconductors to each other. Dividing collars for arranging sub-cable units from each conduit are provided, along with clamping collars for mating each sub-cable wire assembly to form mated assemblies. The mated assemblies ideally can be accomplished by way of splicing collar. The mated assemblies are cooled by way of a flow of coolant, preferably helium. A method for implementing such a splicing is also described.

  8. RNA splicing, cell signaling, and response to therapies.

    PubMed

    Abou Faycal, Cherine; Gazzeri, Sylvie; Eymin, Beatrice

    2016-01-01

    PremRNA alternative splicing is more a rule than an exception as it affects more than 90% of multiexons genes and plays a key role in proteome diversity. Here, we discuss some recent studies published in the extensively growing field linking RNA splicing and cancer. These last years, the development of high-throughput studies together with appropriate bioinformatic tools have led to the identification of new cancer-specific splicing patterns that allow to distinguish various cancer types, and provide new prognosis biomarkers. In addition, the functional consequences of hot spot mutations affecting various components of the spliceosome machinery in cancers have been described. As an example, missplicing of the enhancer of zeste homolog 2 histone methyltransferase premRNA in response to hot spot mutation of the splicing factor SRSF2 was found to participate to the pathogenesis of myelodysplastic syndrome. Moreover, proofs of principle that targeting the RNA splicing machinery can be used to correct aberrant missplicing, kill oncogene-driven cancer cells, or reverse resistance of tumor cells to targeted therapies have been done. As another example, the core spliceosomal function was recently found to be critical for the survival of Myc-driven breast cancer cells, rendering them hypersensitive to spliceosome inhibitors. Dysregulation of premRNA alternative splicing appears to be one of the hallmarks of cancer. The characterization of novel splicing signatures in cancer as well as the identification of original signaling networks involving RNA splicing regulators should allow to decipher novel oncogenic mechanisms and to develop new therapeutic strategies.

  9. Mechanisms and Regulation of Alternative Pre-mRNA Splicing

    PubMed Central

    Lee, Yeon

    2015-01-01

    Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA–protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA–RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions. PMID:25784052

  10. PathwaySplice: An R package for unbiased pathway analysis of alternative splicing in RNA-Seq data.

    PubMed

    Yan, Aimin; Ban, Yuguang; Gao, Zhen; Chen, Xi; Wang, Lily

    2018-04-24

    Pathway analysis of alternative splicing would be biased without accounting for the different number of exons or junctions associated with each gene, because genes with higher number of exons or junctions are more likely to be included in the "significant" gene list in alternative splicing. We present PathwaySplice, an R package that (1) Performs pathway analysis that explicitly adjusts for the number of exons or junctions associated with each gene; (2) Visualizes selection bias due to different number of exons or junctions for each gene and formally tests for presence of bias using logistic regression; (3) Supports gene sets based on the Gene Ontology terms, as well as more broadly defined gene sets (e.g. MSigDB) or user defined gene sets; (4) Identifies the significant genes driving pathway significance and (5) Organizes significant pathways with an enrichment map, where pathways with large number of overlapping genes are grouped together in a network graph. https://bioconductor.org/packages/release/bioc/html/PathwaySplice.html. lily.wangg@gmail.com, xi.steven.chen@gmail.com.

  11. Autosomal Dominant Retinal Dystrophies Caused by a Founder Splice Site Mutation, c.828+3A>T, in PRPH2 and Protein Haplotypes in trans as Modifiers

    PubMed Central

    Shankar, Suma P.; Hughbanks-Wheaton, Dianna K.; Birch, David G.; Sullivan, Lori S.; Conneely, Karen N.; Bowne, Sara J.; Stone, Edwin M.; Daiger, Stephen P.

    2016-01-01

    Purpose We determined the phenotypic variation, disease progression, and potential modifiers of autosomal dominant retinal dystrophies caused by a splice site founder mutation, c.828+3A>T, in the PRPH2 gene. Methods A total of 62 individuals (19 families) harboring the PRPH2 c.828+3A>T mutation, had phenotype analysis by fundus appearance, electrophysiology, and visual fields. The PRPH2 haplotypes in trans were sequenced for potential modifying variants and generalized estimating equations (GEE) used for statistical analysis. Results Several distinct phenotypes caused by the PRPH2 c.828+3A>T mutation were observed and fell into two clinical categories: Group I (N = 44) with mild pattern dystrophies (PD) and Group II (N = 18) with more severe cone-rod dystrophy (CRD), retinitis pigmentosa (RP), and central areolar chorioretinal dystrophy (CACD). The PRPH2 Gln304-Lys310-Asp338 protein haplotype in trans was found in Group I only (29.6% vs. 0%), whereas the Glu304-Lys310-Gly338 haplotype was predominant in Group II (94.4% vs. 70.4%). Generalized estimating equations analysis for PD versus the CRD/CACD/RP phenotypes in individuals over 43 years alone with the PRPH2 haplotypes in trans and age as predictors, adjusted for correlation within families, confirmed a significant effect of haplotype on severity (P = 0.03) with an estimated odds ratio of 7.16 (95% confidence interval [CI] = [2.8, 18.4]). Conclusions The PRPH2 c.828+3A>T mutation results in multiple distinct phenotypes likely modified by protein haplotypes in trans; the odds of having the CACD/RP-like phenotype (versus the PD phenotype) are 7.16 times greater with a Glu304-Lys310-Gly338 haplotype in trans. Further functional studies of the modifying haplotypes in trans and PRPH2 splice variants may offer therapeutic targets. PMID:26842753

  12. The behavior of bonded doubler splices for composite sandwich panels

    NASA Technical Reports Server (NTRS)

    Zeller, T. A.; Weisahaar, T. A.

    1980-01-01

    The results of an investigation into the behavior of adhesively bonded doubler splices of two composite material sandwich panels are presented. The splices are studied from three approaches: analytical; numerical (finite elements); and experimental. Several parameters that characterize the splice are developed to determine their influence upon joint strength. These parameters are: doubler overlap length; core stiffness; laminate bending stiffness; the size of the gap between the spliced sandwich panels; and room and elevated temperatures. Similarities and contrasts between these splices and the physically similar single and double lap joints are discussed. The results of this investigation suggest several possible approaches to improving the strength of the sandwich splices.

  13. Can the HIV-1 splicing machinery be targeted for drug discovery?

    PubMed Central

    Dlamini, Zodwa; Hull, Rodney

    2017-01-01

    HIV-1 is able to express multiple protein types and isoforms from a single 9 kb mRNA transcript. These proteins are also expressed at particular stages of viral development, and this is achieved through the control of alternative splicing and the export of these transcripts from the nucleus. The nuclear export is controlled by the HIV protein Rev being required to transport incompletely spliced and partially spliced mRNA from the nucleus where they are normally retained. This implies a close relationship between the control of alternate splicing and the nuclear export of mRNA in the control of HIV-1 viral proliferation. This review discusses both the processes. The specificity and regulation of splicing in HIV-1 is controlled by the use of specific splice sites as well as exonic splicing enhancer and exonic splicing silencer sequences. The use of these silencer and enhancer sequences is dependent on the serine arginine family of proteins as well as the heterogeneous nuclear ribonucleoprotein family of proteins that bind to these sequences and increase or decrease splicing. Since alternative splicing is such a critical factor in viral development, it presents itself as a promising drug target. This review aims to discuss the inhibition of splicing, which would stall viral development, as an anti-HIV therapeutic strategy. In this review, the most recent knowledge of splicing in human immunodeficiency viral development and the latest therapeutic strategies targeting human immunodeficiency viral splicing are discussed. PMID:28331370

  14. Interplay between estrogen receptor and AKT in Estradiol-induced alternative splicing

    PubMed Central

    2013-01-01

    Background Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ERα) and their ligands promote alternative splicing. The endogenous targets of ERα:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ERα on E2-induced splicing are unknown. Methods MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ERα binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. Results We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ERα cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ERα binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ERα and splicing factors, influenced ERα:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen

  15. Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo

    Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding tomore » the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.« less

  16. Low resistance splices for HTS devices and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalitha, S. L.

    This paper discusses the preparation methodology and performance evaluation of low resistance splices made of the second generation (2G) high-temperature superconductor (HTS). These splices are required in a broad spectrum of HTS devices including a large aperture, high-field solenoid built in the laboratory to demonstrate a superconducting magnetic energy storage (SMES) device. Several pancake coils are assembled in the form of a nested solenoid, and each coil requires a hundred meters or more of 2G (RE)BCO tape. However, commercial availability of this superconductor with a very uniform physical properties is currently limited to shorter piece lengths. This necessitates us havingmore » splices to inter-connect the tape pieces within a pancake coil, between adjacent pancake coils, and to attach HTS current leads to the magnet assembly. As a part of the optimization and qualification of splicing process, a systematic study was undertaken to analyze the electrical performance of splices in two different configurations suitable for this magnet assembly: lap joint and spiral joint. The electrical performance is quantified in terms of the resistance of splices estimated from the current-voltage characteristics. Finally, It has been demonstrated that a careful application of this splicing technique can generate lap joints with resistance less than 1 nΩ at 77 K.« less

  17. Low resistance splices for HTS devices and applications

    DOE PAGES

    Lalitha, S. L.

    2017-06-30

    This paper discusses the preparation methodology and performance evaluation of low resistance splices made of the second generation (2G) high-temperature superconductor (HTS). These splices are required in a broad spectrum of HTS devices including a large aperture, high-field solenoid built in the laboratory to demonstrate a superconducting magnetic energy storage (SMES) device. Several pancake coils are assembled in the form of a nested solenoid, and each coil requires a hundred meters or more of 2G (RE)BCO tape. However, commercial availability of this superconductor with a very uniform physical properties is currently limited to shorter piece lengths. This necessitates us havingmore » splices to inter-connect the tape pieces within a pancake coil, between adjacent pancake coils, and to attach HTS current leads to the magnet assembly. As a part of the optimization and qualification of splicing process, a systematic study was undertaken to analyze the electrical performance of splices in two different configurations suitable for this magnet assembly: lap joint and spiral joint. The electrical performance is quantified in terms of the resistance of splices estimated from the current-voltage characteristics. Finally, It has been demonstrated that a careful application of this splicing technique can generate lap joints with resistance less than 1 nΩ at 77 K.« less

  18. Aberrant splicing in maize rough endosperm3 reveals a conserved role for U12 splicing in eukaryotic multicellular development

    PubMed Central

    Barbazuk, W. Brad

    2017-01-01

    RNA splicing of U12-type introns functions in human cell differentiation, but it is not known whether this class of introns has a similar role in plants. The maize ROUGH ENDOSPERM3 (RGH3) protein is orthologous to the human splicing factor, ZRSR2. ZRSR2 mutations are associated with myelodysplastic syndrome (MDS) and cause U12 splicing defects. Maize rgh3 mutants have aberrant endosperm cell differentiation and proliferation. We found that most U12-type introns are retained or misspliced in rgh3. Genes affected in rgh3 and ZRSR2 mutants identify cell cycle and protein glycosylation as common pathways disrupted. Transcripts with retained U12-type introns can be found in polysomes, suggesting that splicing efficiency can alter protein isoforms. The rgh3 mutant protein disrupts colocalization with a known ZRSR2-interacting protein, U2AF2. These results indicate conserved function for RGH3/ZRSR2 in U12 splicing and a deeply conserved role for the minor spliceosome to promote cell differentiation from stem cells to terminal fates. PMID:28242684

  19. Widespread Use of Non-productive Alternative Splice Sites in Saccharomyces cerevisiae

    PubMed Central

    Kawashima, Tadashi; Douglass, Stephen; Gabunilas, Jason; Pellegrini, Matteo; Chanfreau, Guillaume F.

    2014-01-01

    Saccharomyces cerevisiae has been used as a model system to investigate the mechanisms of pre-mRNA splicing but only a few examples of alternative splice site usage have been described in this organism. Using RNA-Seq analysis of nonsense-mediated mRNA decay (NMD) mutant strains, we show that many S. cerevisiae intron-containing genes exhibit usage of alternative splice sites, but many transcripts generated by splicing at these sites are non-functional because they introduce premature termination codons, leading to degradation by NMD. Analysis of splicing mutants combined with NMD inactivation revealed the role of specific splicing factors in governing the use of these alternative splice sites and identified novel functions for Prp17p in enhancing the use of branchpoint-proximal upstream 3′ splice sites and for Prp18p in suppressing the usage of a non-canonical AUG 3′-splice site in GCR1. The use of non-productive alternative splice sites can be increased in stress conditions in a promoter-dependent manner, contributing to the down-regulation of genes during stress. These results show that alternative splicing is frequent in S. cerevisiae but masked by RNA degradation and that the use of alternative splice sites in this organism is mostly aimed at controlling transcript levels rather than increasing proteome diversity. PMID:24722551

  20. The power of fission: yeast as a tool for understanding complex splicing.

    PubMed

    Fair, Benjamin Jung; Pleiss, Jeffrey A

    2017-06-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression. Many metazoans, including humans, regulate alternative splicing patterns to generate expansions of their proteome from a limited number of genes. Importantly, a considerable fraction of human disease causing mutations manifest themselves through altering the sequences that shape the splicing patterns of genes. Thus, understanding the mechanistic bases of this complex pathway will be an essential component of combating these diseases. Dating almost to the initial discovery of splicing, researchers have taken advantage of the genetic tractability of budding yeast to identify the components and decipher the mechanisms of splicing. However, budding yeast lacks the complex splicing machinery and alternative splicing patterns most relevant to humans. More recently, many researchers have turned their efforts to study the fission yeast, Schizosaccharomyces pombe, which has retained many features of complex splicing, including degenerate splice site sequences, the usage of exonic splicing enhancers, and SR proteins. Here, we review recent work using fission yeast genetics to examine pre-mRNA splicing, highlighting its promise for modeling the complex splicing seen in higher eukaryotes.

  1. Pre-mRNA mis-splicing of sarcomeric genes in heart failure.

    PubMed

    Zhu, Chaoqun; Chen, Zhilong; Guo, Wei

    2017-08-01

    Pre-mRNA splicing is an important biological process that allows production of multiple proteins from a single gene in the genome, and mainly contributes to protein diversity in eukaryotic organisms. Alternative splicing is commonly governed by RNA binding proteins to meet the ever-changing demands of the cell. However, the mis-splicing may lead to human diseases. In the heart of human, mis-regulation of alternative splicing has been associated with heart failure. In this short review, we focus on alternative splicing of sarcomeric genes and review mis-splicing related heart failure with relatively well studied Sarcomeric genes and splicing mechanisms with identified regulatory factors. The perspective of alternative splicing based therapeutic strategies in heart failure has also been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A missense mutation in the cholesteryl ester transfer protein gene with possible dominant effects on plasma high density lipoproteins.

    PubMed Central

    Takahashi, K; Jiang, X C; Sakai, N; Yamashita, S; Hirano, K; Bujo, H; Yamazaki, H; Kusunoki, J; Miura, T; Kussie, P

    1993-01-01

    Plasma HDL are a negative risk factor for atherosclerosis. Cholesteryl ester transfer protein (CETP; 476 amino acids) transfers cholesteryl ester from HDL to other lipoproteins. Subjects with homozygous CETP deficiency caused by a gene splicing defect have markedly elevated HDL; however, heterozygotes have only mild increases in HDL. We describe two probands with a CETP missense mutation (442 D:G). Although heterozygous, they have threefold increases in HDL concentration and markedly decreased plasma CETP mass and activity, suggesting that the mutation has dominant effects on CETP and HDL in vivo. Cellular expression of mutant cDNA results in secretion of only 30% of wild type CETP activity. Moreover, coexpression of wild type and mutant cDNAs leads to inhibition of wild type secretion and activity. The dominant effects of the CETP missense mutation during cellular expression probably explains why the probands have markedly increased HDL in the heterozygous state, and suggests that the active molecular species of CETP may be multimeric. Images PMID:8408659

  3. DiffSplice: the genome-wide detection of differential splicing events with RNA-seq

    PubMed Central

    Hu, Yin; Huang, Yan; Du, Ying; Orellana, Christian F.; Singh, Darshan; Johnson, Amy R.; Monroy, Anaïs; Kuan, Pei-Fen; Hammond, Scott M.; Makowski, Liza; Randell, Scott H.; Chiang, Derek Y.; Hayes, D. Neil; Jones, Corbin; Liu, Yufeng; Prins, Jan F.; Liu, Jinze

    2013-01-01

    The RNA transcriptome varies in response to cellular differentiation as well as environmental factors, and can be characterized by the diversity and abundance of transcript isoforms. Differential transcription analysis, the detection of differences between the transcriptomes of different cells, may improve understanding of cell differentiation and development and enable the identification of biomarkers that classify disease types. The availability of high-throughput short-read RNA sequencing technologies provides in-depth sampling of the transcriptome, making it possible to accurately detect the differences between transcriptomes. In this article, we present a new method for the detection and visualization of differential transcription. Our approach does not depend on transcript or gene annotations. It also circumvents the need for full transcript inference and quantification, which is a challenging problem because of short read lengths, as well as various sampling biases. Instead, our method takes a divide-and-conquer approach to localize the difference between transcriptomes in the form of alternative splicing modules (ASMs), where transcript isoforms diverge. Our approach starts with the identification of ASMs from the splice graph, constructed directly from the exons and introns predicted from RNA-seq read alignments. The abundance of alternative splicing isoforms residing in each ASM is estimated for each sample and is compared across sample groups. A non-parametric statistical test is applied to each ASM to detect significant differential transcription with a controlled false discovery rate. The sensitivity and specificity of the method have been assessed using simulated data sets and compared with other state-of-the-art approaches. Experimental validation using qRT-PCR confirmed a selected set of genes that are differentially expressed in a lung differentiation study and a breast cancer data set, demonstrating the utility of the approach applied on

  4. Splicing fidelity: DEAD/H-box ATPases as molecular clocks.

    PubMed

    Koodathingal, Prakash; Staley, Jonathan P

    2013-07-01

    The spliceosome discriminates against suboptimal substrates, both during assembly and catalysis, thereby enhancing specificity during pre-mRNA splicing. Central to such fidelity mechanisms are a conserved subset of the DEAD- and DEAH-box ATPases, which belong to a superfamily of proteins that mediate RNP rearrangements in almost all RNA-dependent processes in the cell. Through an investigation of the mechanisms contributing to the specificity of 5' splice site cleavage, two related reports, one from our lab and the other from the Cheng lab, have provided insights into fidelity mechanisms utilized by the spliceosome. In our work, we found evidence for a kinetic proofreading mechanism in splicing in which the DEAH-box ATPase Prp16 discriminates against substrates undergoing slow 5' splice site cleavage. Additionally, our study revealed that discriminated substrates are discarded through a general spliceosome disassembly pathway, mediated by another DEAH-box ATPase Prp43. In their work, Tseng et al. described the underlying molecular events through which Prp16 discriminates against a splicing substrate during 5' splice site cleavage. Here, we present a synthesis of these two studies and, additionally, provide the first biochemical evidence for discrimination of a suboptimal splicing substrate just prior to 5' splice site cleavage. Together, these findings support a general mechanism for a ubiquitous superfamily of ATPases in enhancing specificity during RNA-dependent processes in the cell.

  5. Functional domains of the human splicing factor ASF/SF2.

    PubMed Central

    Zuo, P; Manley, J L

    1993-01-01

    The human splicing factor ASF/SF2 displays two predominant activities in in vitro splicing assays: (i) it is an essential factor apparently required for all splices and (ii) it is able to switch utilization of alternative 5' splice sites in a concentration-dependent manner. ASF/SF2 is the prototype of a family of proteins typified by the presence of one or two RNP-type RNA binding domains (RBDs) and a region highly enriched in repeating arginine-serine dipeptides (RS regions). Here we describe a functional analysis of ASF/SF2, which defines several regions essential for one, or both, of its two principal activities, and provides insights into how this type of protein functions in splicing. Two isoforms of the protein, which arise from alternative splicing, are by themselves inactive, but each can block the activity of ASF/SF2, thereby functioning as splicing repressors. Some, but not all, mutations in the RS region prevent ASF/SF2 from functioning as an essential splicing factor. However, the entire RS region can be deleted without reducing splice site switching activity, indicating that it is not absolutely required for interaction with other splicing factors. Experiments with deletion and substitution mutants reveal that the protein contains two related, but highly diverged, RBDs, and that both are essential for activity. Each RBD by itself retains the ability to bind RNA, although optimal binding requires both domains. Images PMID:8223481

  6. SpliceCenter: A suite of web-based bioinformatic applications for evaluating the impact of alternative splicing on RT-PCR, RNAi, microarray, and peptide-based studies

    PubMed Central

    Ryan, Michael C; Zeeberg, Barry R; Caplen, Natasha J; Cleland, James A; Kahn, Ari B; Liu, Hongfang; Weinstein, John N

    2008-01-01

    Background Over 60% of protein-coding genes in vertebrates express mRNAs that undergo alternative splicing. The resulting collection of transcript isoforms poses significant challenges for contemporary biological assays. For example, RT-PCR validation of gene expression microarray results may be unsuccessful if the two technologies target different splice variants. Effective use of sequence-based technologies requires knowledge of the specific splice variant(s) that are targeted. In addition, the critical roles of alternative splice forms in biological function and in disease suggest that assay results may be more informative if analyzed in the context of the targeted splice variant. Results A number of contemporary technologies are used for analyzing transcripts or proteins. To enable investigation of the impact of splice variation on the interpretation of data derived from those technologies, we have developed SpliceCenter. SpliceCenter is a suite of user-friendly, web-based applications that includes programs for analysis of RT-PCR primer/probe sets, effectors of RNAi, microarrays, and protein-targeting technologies. Both interactive and high-throughput implementations of the tools are provided. The interactive versions of SpliceCenter tools provide visualizations of a gene's alternative transcripts and probe target positions, enabling the user to identify which splice variants are or are not targeted. The high-throughput batch versions accept user query files and provide results in tabular form. When, for example, we used SpliceCenter's batch siRNA-Check to process the Cancer Genome Anatomy Project's large-scale shRNA library, we found that only 59% of the 50,766 shRNAs in the library target all known splice variants of the target gene, 32% target some but not all, and 9% do not target any currently annotated transcript. Conclusion SpliceCenter provides unique, user-friendly applications for assessing the impact of transcript variation on the design and

  7. Differential molecular and behavioural alterations in mouse models of GABRG2 haploinsufficiency versus dominant negative mutations associated with human epilepsy

    PubMed Central

    Warner, Timothy A.; Shen, Wangzhen; Huang, Xuan; Liu, Zhong; Macdonald, Robert L.; Kang, Jing-Qiong

    2016-01-01

    Genetic epilepsy is a common disorder with phenotypic variation, but the basis for the variation is unknown. Comparing the molecular pathophysiology of mutations in the same epilepsy gene may provide mechanistic insights into the phenotypic heterogeneity. GABRG2 is an established epilepsy gene, and mutations in it produce epilepsy syndromes with varying severities. The disease phenotype in some cases may be caused by simple loss of subunit function (functional haploinsufficiency), while others may be caused by loss-of-function plus dominant negative suppression and other cellular toxicity. Detailed molecular defects and the corresponding seizures and related comorbidities resulting from haploinsufficiency and dominant negative mutations, however, have not been compared. Here we compared two mouse models of GABRG2 loss-of-function mutations associated with epilepsy with different severities, Gabrg2+/Q390X knockin (KI) and Gabrg2+/- knockout (KO) mice. Heterozygous Gabrg2+/Q390XKI mice are associated with a severe epileptic encephalopathy due to a dominant negative effect of the mutation, while heterozygous Gabrg2+/- KO mice are associated with mild absence epilepsy due to simple haploinsufficiency. Unchanged at the transcriptional level, KI mice with severe epilepsy had neuronal accumulation of mutant γ2 subunits, reduced remaining functional wild-type subunits in dendrites and synapses, while KO mice with mild epilepsy had no intracellular accumulation of the mutant subunits and unaffected biogenesis of the remaining wild-type subunits. Consequently, KI mice with dominant negative mutations had much less wild-type receptor expression, more severe seizures and behavioural comorbidities than KO mice. This work provides insights into the pathophysiology of epilepsy syndrome heterogeneity and designing mechanism-based therapies. PMID:27340224

  8. TANK-Binding Kinase 1 (TBK1) Isoforms Negatively Regulate Type I Interferon Induction by Inhibiting TBK1-IRF3 Interaction and IRF3 Phosphorylation.

    PubMed

    Hu, Yi Wei; Zhang, Jie; Wu, Xiao Man; Cao, Lu; Nie, Pin; Chang, Ming Xian

    2018-01-01

    TANK-binding kinase 1 (TBK1) is an important serine/threonine-protein kinase that mediates phosphorylation and nuclear translocation of IRF3, which contributes to induction of type I interferons (IFNs) in the innate antiviral response. In mammals, TBK1 spliced isoform negatively regulates the virus-triggered IFN-β signaling pathway by disrupting the interaction between retinoic acid-inducible gene I (RIG-I) and mitochondria antiviral-signaling protein (MAVS). However, it is still unclear whether alternative splicing patterns and the function of TBK1 isoform(s) exist in teleost fish. In this study, we identify two alternatively spliced isoforms of TBK1 from zebrafish, termed TBK1_tv1 and TBK1_tv2. Both TBK1_tv1 and TBK1_tv2 contain an incomplete STKc_TBK1 domain. Moreover, the UBL_TBK1_like domain is also missing for TBK1_tv2. TBK1_tv1 and TBK1_tv2 are expressed in zebrafish larvae. Overexpression of TBK1_tv1 and TBK1_tv2 inhibits RIG-I-, MAVS-, TBK1-, and IRF3-mediated activation of IFN promoters in response to spring viremia of carp virus infection. Also, TBK1_tv1 and TBK1_tv2 inhibit expression of IFNs and IFN-stimulated genes induced by MAVS and TBK1 . Mechanistically, TBK1_tv1 and TBK1_tv2 competitively associate with TBK1 and IRF3 to disrupt the formation of a functional TBK1-IRF3 complex, impeding the phosphorylation of IRF3 mediated by TBK1. Collectively, these results demonstrate that TBK1 spliced isoforms are dominant negative regulators in the RIG-I/MAVS/TBK1/IRF3 antiviral pathway by targeting the functional TBK1-IRF3 complex formation. Identification and functional characterization of piscine TBK1 spliced isoforms may contribute to understanding the role of TBK1 expression in innate antiviral response.

  9. Integrative Analysis of Many RNA-Seq Datasets to Study Alternative Splicing

    PubMed Central

    Li, Wenyuan; Dai, Chao; Kang, Shuli; Zhou, Xianghong Jasmine

    2014-01-01

    Alternative splicing is an important gene regulatory mechanism that dramatically increases the complexity of the proteome. However, how alternative splicing is regulated and how transcription and splicing are coordinated are still poorly understood, and functions of transcript isoforms have been studied only in a few limited cases. Nowadays, RNA-seq technology provides an exceptional opportunity to study alternative splicing on genome-wide scales and in an unbiased manner. With the rapid accumulation of data in public repositories, new challenges arise from the urgent need to effectively integrate many different RNA-seq datasets for study alterative splicing. This paper discusses a set of advanced computational methods that can integrate and analyze many RNA-seq datasets to systematically identify splicing modules, unravel the coupling of transcription and splicing, and predict the functions of splicing isoforms on a genome-wide scale. PMID:24583115

  10. Small Molecule Modulators of Pre-mRNA Splicing in Cancer Therapy.

    PubMed

    Salton, Maayan; Misteli, Tom

    2016-01-01

    Pre-mRNA splicing is a fundamental process in mammalian gene expression and alternative RNA splicing plays a considerable role in generating protein diversity. RNA splicing events are also key to the pathology of numerous diseases, particularly cancers. Some tumors are molecularly addicted to specific RNA splicing isoforms making interference with pre-mRNA processing a viable therapeutic strategy. Several RNA splicing modulators have recently been characterized, some showing promise in preclinical studies. While the targets of most splicing modulators are constitutive RNA processing components, possibly leading to undesirable side effects, selectivity for individual splicing events has been observed. Given the high prevalence of splicing defects in cancer, small molecule modulators of RNA processing represent a potentially promising novel therapeutic strategy in cancer treatment. Here, we review their reported effects, mechanisms, and limitations. Published by Elsevier Ltd.

  11. Vitamin D and alternative splicing of RNA

    PubMed Central

    Zhou, Rui; Chun, Rene F.; Lisse, Thomas S.; Garcia, Alejandro J.; Xu, Jianzhong; Adams, John S.; Hewison, Martin

    2014-01-01

    The active form of vitamin D (1α,25-dihydroxyvitamin D, 1,25(OH)2D) exerts its genomic effects via binding to a nuclear high-affinity vitamin D receptor (VDR). Recent deep sequencing analysis of VDR binding locations across the complete genome has significantly expanded our understanding of the actions of vitamin D and VDR on gene transcription. However, these studies have also promoted appreciation of the extra-transcriptional impact of vitamin D on gene expression. It is now clear that vitamin D interacts with the epigenome via effects on DNA methylation, histone acetylation, and microRNA generation to maintain normal biological functions. There is also increasing evidence that vitamin D can influence pre-mRNA constitutive splicing and alternative splicing, although the mechanism for this remains unclear. Pre-mRNA splicing has long been thought to be a post-transcription RNA processing event, but current data indicate that this occurs co-transcriptionally. Several steroid hormones have been recognized to coordinately control gene transcription and pre-mRNA splicing through the recruitment of nuclear receptor co-regulators that can both control gene transcription and splicing. The current review will discuss this concept with specific reference to vitamin D, and the potential role of heterogeneous nuclear ribonucleoprotein C (hnRNPC), a nuclear factor with an established function in RNA splicing. hnRNPC, has been shown to be involved in the VDR transcriptional complex as a vitamin D-response element-binding protein (VDRE-BP), and may act as a coupling factor linking VDR-directed gene transcription with RNA splicing. In this way hnRNPC may provide an additional mechanism for the fine-tuning of vitamin D-regulated target gene expression. PMID:25447737

  12. Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5' but not the 3' splice site inhibit intron processing in Nicotiana plumbaginifolia.

    PubMed

    Liu, H X; Goodall, G J; Kole, R; Filipowicz, W

    1995-01-16

    We have performed a systematic study of the effect of artificial hairpins on pre-mRNA splicing in protoplasts of a dicot plant, Nicotiana plumbaginifolia. Hairpins with a potential to form 18 or 24 bp stems strongly inhibit splicing when they sequester the 5' splice site or are placed in the middle of short introns. However, similar 24 bp hairpins sequestering the 3' splice site do not prevent this site from being used as an acceptor. Utilization of the stem-located 3' site requires that the base of the stem is separated from the upstream 5' splice site by a minimum of approximately 45 nucleotides and that another 'helper' 3' splice site is present downstream of the stem. The results indicate that the spliceosome or factors associated with it may have a potential to unfold secondary structure present in the downstream portion of the intron, prior to or at the step of the 3' splice site selection. The finding that the helper 3' site is required for utilization of the stem-located acceptor confirms and extends previous observations, obtained with HeLa cell in vitro splicing systems, indicating that the 3' splice site may be recognized at least twice during spliceosome assembly.

  13. 30 CFR 75.604 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permanent splicing of trailing cables. 75.604... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.604 Permanent splicing of trailing cables. [Statutory Provisions] When permanent splices in trailing cables are made...

  14. HSA: a heuristic splice alignment tool.

    PubMed

    Bu, Jingde; Chi, Xuebin; Jin, Zhong

    2013-01-01

    RNA-Seq methodology is a revolutionary transcriptomics sequencing technology, which is the representative of Next generation Sequencing (NGS). With the high throughput sequencing of RNA-Seq, we can acquire much more information like differential expression and novel splice variants from deep sequence analysis and data mining. But the short read length brings a great challenge to alignment, especially when the reads span two or more exons. A two steps heuristic splice alignment tool is generated in this investigation. First, map raw reads to reference with unspliced aligner--BWA; second, split initial unmapped reads into three equal short reads (seeds), align each seed to the reference, filter hits, search possible split position of read and extend hits to a complete match. Compare with other splice alignment tools like SOAPsplice and Tophat2, HSA has a better performance in call rate and efficiency, but its results do not as accurate as the other software to some extent. HSA is an effective spliced aligner of RNA-Seq reads mapping, which is available at https://github.com/vlcc/HSA.

  15. Alternative splicing: a novel mechanism of regulation identified in the chorismate mutase gene of the potato cyst nematode Globodera rostochiensis.

    PubMed

    Lu, Shun-Wen; Tian, Duanhua; Borchardt-Wier, Harmony B; Wang, Xiaohong

    2008-11-01

    Chorismate mutase (CM) secreted from the stylet of plant-parasitic nematodes plays an important role in plant parasitism. We isolated and characterized a new nematode CM gene (Gr-cm-1) from the potato cyst nematode, Globodera rostochiensis. The Gr-cm-1 gene was found to exist in the nematode genome as a single-copy gene that has two different alleles, Gr-cm-1A and Gr-cm-1B, both of which could give rise to two different mRNA transcripts of Gr-cm-1 and Gr-cm-1-IRII. In situ mRNA hybridization showed that the Gr-cm-1 gene was exclusively expressed within the subventral oesophageal gland cells of the nematode. Gr-cm-1 was demonstrated to encode a functional CM (GR-CM-1) potentially having a dimeric structure as the secreted bacterial *AroQ CMs. Gr-cm-1-IRII, generated by retention of intron 2 of the Gr-cm-1 pre-mRNA through alternative splicing (AS), would encode a truncated protein (GR-CM-1t) lacking the CM domain with no CM activity. The quantitative real-time reverse transcription-PCR assay revealed that splicing of the Gr-cm-1 gene was developmentally regulated; Gr-cm-1 was up-regulated whereas Gr-cm-1-IRII was down-regulated in early nematode parasitic stages compared to the preparasitic juvenile stage. Low-temperature SDS-PAGE analysis revealed that GR-CM-1 could form homodimers when expressed in Escherichia coli and the dimerization domain was retained in the truncated GR-CM-1t protein. The specific interaction between the two proteins was demonstrated in yeast. Our data suggested that the novel splice variant might function as a dominant negative isoform through heterodimerization with the full-length GR-CM-1 protein and that AS may represent an important mechanism for regulating CM activity during nematode parasitism.

  16. 30 CFR 75.603 - Temporary splice of trailing cable.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. [Statutory Provision] One temporary splice may be made in any trailing cable...

  17. 30 CFR 77.602 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permanent splicing of trailing cables. 77.602... COAL MINES Trailing Cables § 77.602 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be: (a) Mechanically strong with adequate electrical conductivity; (b...

  18. Oncogenes and RNA splicing of human tumor viruses

    PubMed Central

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-01-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein–Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis. PMID:26038756

  19. Genome-wide mapping of alternative splicing in Arabidopsis thaliana

    PubMed Central

    Filichkin, Sergei A.; Priest, Henry D.; Givan, Scott A.; Shen, Rongkun; Bryant, Douglas W.; Fox, Samuel E.; Wong, Weng-Keen; Mockler, Todd C.

    2010-01-01

    Alternative splicing can enhance transcriptome plasticity and proteome diversity. In plants, alternative splicing can be manifested at different developmental stages, and is frequently associated with specific tissue types or environmental conditions such as abiotic stress. We mapped the Arabidopsis transcriptome at single-base resolution using the Illumina platform for ultrahigh-throughput RNA sequencing (RNA-seq). Deep transcriptome sequencing confirmed a majority of annotated introns and identified thousands of novel alternatively spliced mRNA isoforms. Our analysis suggests that at least ∼42% of intron-containing genes in Arabidopsis are alternatively spliced; this is significantly higher than previous estimates based on cDNA/expressed sequence tag sequencing. Random validation confirmed that novel splice isoforms empirically predicted by RNA-seq can be detected in vivo. Novel introns detected by RNA-seq were substantially enriched in nonconsensus terminal dinucleotide splice signals. Alternative isoforms with premature termination codons (PTCs) comprised the majority of alternatively spliced transcripts. Using an example of an essential circadian clock gene, we show that intron retention can generate relatively abundant PTC+ isoforms and that this specific event is highly conserved among diverse plant species. Alternatively spliced PTC+ isoforms can be potentially targeted for degradation by the nonsense mediated mRNA decay (NMD) surveillance machinery or regulate the level of functional transcripts by the mechanism of regulated unproductive splicing and translation (RUST). We demonstrate that the relative ratios of the PTC+ and reference isoforms for several key regulatory genes can be considerably shifted under abiotic stress treatments. Taken together, our results suggest that like in animals, NMD and RUST may be widespread in plants and may play important roles in regulating gene expression. PMID:19858364

  20. Analysis of splicing in vitro using extracts of Saccharomyces cerevisiae.

    PubMed

    Ares, Manuel

    2013-10-01

    In vitro splicing studies are a powerful means of investigating the requirements and mechanisms of action of the many components of the splicing apparatus. The ability to add and subtract components, purify activities, and reconstitute activity, as well as to expose the apparatus to chemical probes of various types, allows a far more mechanistically detailed view of the process to emerge than is available from genetic or in vivo studies alone. Two kinds of activities are assayed during in vitro splicing. The first concerns the chemical conversion of the substrate pre-mRNA into splicing intermediates and products and is usually visualized using a labeled substrate followed by separation on a denaturing gel. The second concerns the assembly of noncovalent complexes between the substrate and the myriad components of the splicing apparatus. This is also visualized using a labeled substrate, but the separation of complexes is achieved using native gel electrophoresis or gradient sedimentation. In this protocol, we describe the splicing reaction and its preparation for analysis by denaturing gels and native splicing complex gels. We also provide conditions for depletion of ATP, a critical cofactor that is hydrolyzed during numerous key steps in spliceosome assembly and splicing progression.

  1. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins

    DOE PAGES

    Brooks, Angela N.; Duff, Michael O.; May, Gemma; ...

    2015-08-20

    Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected themore » splicing of pre-mRNAs encoding other splicing regulators. In conclusion, this large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.« less

  2. Identifying RNA splicing factors using IFT genes in Chlamydomonas reinhardtii.

    PubMed

    Lin, Huawen; Zhang, Zhengyan; Iomini, Carlo; Dutcher, Susan K

    2018-03-01

    Intraflagellar transport moves proteins in and out of flagella/cilia and it is essential for the assembly of these organelles. Using whole-genome sequencing, we identified splice site mutations in two IFT genes, IFT81 ( fla9 ) and IFT121 ( ift121-2 ), which lead to flagellar assembly defects in the unicellular green alga Chlamydomonas reinhardtii The splicing defects in these ift mutants are partially corrected by mutations in two conserved spliceosome proteins, DGR14 and FRA10. We identified a dgr14 deletion mutant, which suppresses the 3' splice site mutation in IFT81 , and a frameshift mutant of FRA10 , which suppresses the 5' splice site mutation in IFT121 Surprisingly, we found dgr14-1 and fra10 mutations suppress both splice site mutations. We suggest these two proteins are involved in facilitating splice site recognition/interaction; in their absence some splice site mutations are tolerated. Nonsense mutations in SMG1 , which is involved in nonsense-mediated decay, lead to accumulation of aberrant transcripts and partial restoration of flagellar assembly in the ift mutants. The high density of introns and the conservation of noncore splicing factors, together with the ease of scoring the ift mutant phenotype, make Chlamydomonas an attractive organism to identify new proteins involved in splicing through suppressor screening. © 2018 The Authors.

  3. Electrical-splicing connector

    NASA Technical Reports Server (NTRS)

    Stringer, E. J.

    1977-01-01

    Connection can be made without removing insulation, and connector case insulates splice. Device can be made in various sizes and saves time, especially when working on prototype boards with several interconnecting test leads.

  4. The emerging role of alternative splicing in senescence and aging.

    PubMed

    Deschênes, Mathieu; Chabot, Benoit

    2017-10-01

    Deregulation of precursor mRNA splicing is associated with many illnesses and has been linked to age-related chronic diseases. Here we review recent progress documenting how defects in the machinery that performs intron removal and controls splice site selection contribute to cellular senescence and organismal aging. We discuss the functional association linking p53, IGF-1, SIRT1, and ING-1 splice variants with senescence and aging, and review a selection of splicing defects occurring in accelerated aging (progeria), vascular aging, and Alzheimer's disease. Overall, it is becoming increasingly clear that changes in the activity of splicing factors and in the production of key splice variants can impact cellular senescence and the aging phenotype. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Systematic profiling of alternative splicing signature reveals prognostic predictor for ovarian cancer.

    PubMed

    Zhu, Junyong; Chen, Zuhua; Yong, Lei

    2018-02-01

    The majority of genes are alternatively spliced and growing evidence suggests that alternative splicing is modified in cancer and is associated with cancer progression. Systematic analysis of alternative splicing signature in ovarian cancer is lacking and greatly needed. We profiled genome-wide alternative splicing events in 408 ovarian serous cystadenocarcinoma (OV) patients in TCGA. Seven types of alternative splicing events were curated and prognostic analyses were performed with predictive models and splicing network built for OV patients. Among 48,049 mRNA splicing events in 10,582 genes, we detected 2,611 alternative splicing events in 2,036 genes which were significant associated with overall survival of OV patients. Exon skip events were the most powerful prognostic factors among the seven types. The area under the curve of the receiver-operator characteristic curve for prognostic predictor, which was built with top significant alternative splicing events, was 0.937 at 2,000 days of overall survival, indicating powerful efficiency in distinguishing patient outcome. Interestingly, splicing correlation network suggested obvious trends in the role of splicing factors in OV. In summary, we built powerful prognostic predictors for OV patients and uncovered interesting splicing networks which could be underlying mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Functional Properties of a Newly Identified C-terminal Splice Variant of Cav1.3 L-type Ca2+ Channels*

    PubMed Central

    Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E.; Sinnegger-Brauns, Martina J.; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra

    2011-01-01

    An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Cav1.3 L-type Ca2+ channels (Cav1.3L) is a major determinant of their voltage- and Ca2+-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Cav1.342A channels that activate at a more negative voltage range and exhibit more pronounced Ca2+-dependent inactivation. Here we describe the discovery of a novel short splice variant (Cav1.343S) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Cav1.342A, still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Cav1.343S also activated at more negative voltages like Cav1.342A but Ca2+-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Cav1.3L. The presence of the proximal C terminus in Cav1.343S channels preserved their modulation by distal C terminus-containing Cav1.3- and Cav1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca2+ influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Cav1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca2+ channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca2+ accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca2+-induced neurodegenerative processes. PMID:21998310

  7. Coupling between alternative polyadenylation and alternative splicing is limited to terminal introns.

    PubMed

    Movassat, Maliheh; Crabb, Tara L; Busch, Anke; Yao, Chengguo; Reynolds, Derrick J; Shi, Yongsheng; Hertel, Klemens J

    2016-07-02

    Alternative polyadenylation has been implicated as an important regulator of gene expression. In some cases, alternative polyadenylation is known to couple with alternative splicing to influence last intron removal. However, it is unknown whether alternative polyadenylation events influence alternative splicing decisions at upstream exons. Knockdown of the polyadenylation factors CFIm25 or CstF64 in HeLa cells was used as an approach in identifying alternative polyadenylation and alternative splicing events on a genome-wide scale. Although hundreds of alternative splicing events were found to be differentially spliced in the knockdown of CstF64, genes associated with alternative polyadenylation did not exhibit an increased incidence of alternative splicing. These results demonstrate that the coupling between alternative polyadenylation and alternative splicing is usually limited to defining the last exon. The striking influence of CstF64 knockdown on alternative splicing can be explained through its effects on UTR selection of known splicing regulators such as hnRNP A2/B1, thereby indirectly influencing splice site selection. We conclude that changes in the expression of the polyadenylation factor CstF64 influences alternative splicing through indirect effects.

  8. Targeting GH-1 splicing as a novel pharmacological strategy for growth hormone deficiency type II.

    PubMed

    Miletta, Maria Consolata; Flück, Christa E; Mullis, Primus-E

    2017-01-15

    Isolated growth hormone deficiency type II (IGHD II) is a rare genetic splicing disorder characterized by reduced growth hormone (GH) secretion and short stature. It is mainly caused by autosomal dominant-negative mutations within the growth hormone gene (GH-1) which results in missplicing at the mRNA level and the subsequent loss of exon 3, producing the 17.5-kDa GH isoform: a mutant and inactive GH protein that reduces the stability and the secretion of the 22-kDa GH isoform, the main biologically active GH form. At present, patients suffering from IGHD II are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent the toxic effects of the 17.5-kDa mutant on the pituitary gland, which may eventually lead to other hormonal deficiencies. As the severity of the disease inversely correlates with the 17.5-kDa/22-kDa ratio, increasing the inclusion of exon 3 is expected to ameliorate disease symptoms. This review focuses on the recent advances in experimental and therapeutic strategies applicable to treat IGHD II in clinical and preclinical contexts. Several avenues for alternative IGHD II therapy will be discussed including the use of small interfering RNA (siRNA) and short hairpin RNA (shRNA) constructs that specifically target the exon 3-deleted transcripts as well as the application of histone deacetylase inhibitors (HDACi) and antisense oligonucleotides (AONs) to enhance full-length GH-1 transcription, correct GH-1 exon 3 splicing and manipulate GH pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Systematic Analysis of Splice-Site-Creating Mutations in Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasinghe, Reyka G.; Cao, Song; Gao, Qingsong

    For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs) across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared tomore » missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Finally, our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases.« less

  10. Systematic Analysis of Splice-Site-Creating Mutations in Cancer

    DOE PAGES

    Jayasinghe, Reyka G.; Cao, Song; Gao, Qingsong; ...

    2018-04-05

    For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs) across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared tomore » missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Finally, our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases.« less

  11. Long-time dynamics through parallel trajectory splicing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, Danny; Cubuk, Ekin D.; Waterland, Amos

    2015-11-24

    Simulating the atomistic evolution of materials over long time scales is a longstanding challenge, especially for complex systems where the distribution of barrier heights is very heterogeneous. Such systems are difficult to investigate using conventional long-time scale techniques, and the fact that they tend to remain trapped in small regions of configuration space for extended periods of time strongly limits the physical insights gained from short simulations. We introduce a novel simulation technique, Parallel Trajectory Splicing (ParSplice), that aims at addressing this problem through the timewise parallelization of long trajectories. The computational efficiency of ParSplice stems from a speculation strategymore » whereby predictions of the future evolution of the system are leveraged to increase the amount of work that can be concurrently performed at any one time, hence improving the scalability of the method. ParSplice is also able to accurately account for, and potentially reuse, a substantial fraction of the computational work invested in the simulation. We validate the method on a simple Ag surface system and demonstrate substantial increases in efficiency compared to previous methods. As a result, we then demonstrate the power of ParSplice through the study of topology changes in Ag 42Cu 13 core–shell nanoparticles.« less

  12. Context-dependent control of alternative splicing by RNA-binding proteins

    PubMed Central

    Fu, Xiang-Dong; Ares, Manuel

    2015-01-01

    Sequence-specific RNA-binding proteins (RBPs) bind to pre-mRNA to control alternative splicing, but it is not yet possible to read the ‘splicing code’ that dictates splicing regulation on the basis of genome sequence. Each alternative splicing event is controlled by multiple RBPs, the combined action of which creates a distribution of alternatively spliced products in a given cell type. As each cell type expresses a distinct array of RBPs, the interpretation of regulatory information on a given RNA target is exceedingly dependent on the cell type. RBPs also control each other’s functions at many levels, including by mutual modulation of their binding activities on specific regulatory RNA elements. In this Review, we describe some of the emerging rules that govern the highly context-dependent and combinatorial nature of alternative splicing regulation. PMID:25112293

  13. Base pairing between the 3' exon and an internal guide sequence increases 3' splice site specificity in the Tetrahymena self-splicing rRNA intron.

    PubMed Central

    Suh, E R; Waring, R B

    1990-01-01

    It has been proposed that recognition of the 3' splice site in many group I introns involves base pairing between the start of the 3' exon and a region of the intron known as the internal guide sequence (R. W. Davies, R. B. Waring, J. Ray, T. A. Brown, and C. Scazzocchio, Nature [London] 300:719-724, 1982). We have examined this hypothesis, using the self-splicing rRNA intron from Tetrahymena thermophila. Mutations in the 3' exon that weaken this proposed pairing increased use of a downstream cryptic 3' splice site. Compensatory mutations in the guide sequence that restore this pairing resulted in even stronger selection of the normal 3' splice site. These changes in 3' splice site usage were more pronounced in the background of a mutation (414A) which resulted in an adenine instead of a guanine being the last base of the intron. These results show that the proposed pairing (P10) plays an important role in ensuring that cryptic 3' splice sites are selected against. Surprisingly, the 414A mutation alone did not result in activation of the cryptic 3' splice site. Images PMID:2342465

  14. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    PubMed Central

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular

  15. Analysis of splicing complexes on native gels.

    PubMed

    Ares, Manuel

    2013-10-01

    Splicing requires a complex set of ATP-dependent macromolecular associations that lead to the rearrangement of just a few covalent bonds in the pre-mRNA substrate. Seeing only the covalent bonds breaking and forming is seeing only a very small part of the process. Analysis of native splicing complexes into which the radiolabeled substrate has been assembled, but not necessarily completely reacted, has provided a good understanding of the process. This protocol describes a gel method for detecting and analyzing yeast splicing complexes formed in vitro on a radiolabeled pre-mRNA substrate. Complexes formed during the splicing reaction are quenched by dilution and addition of an excess of RNA, which is thought to strip nonspecifically bound proteins from the labeled substrate RNA. After loading on a low-percentage, low-cross-linking ratio composite agarose-acrylamide gel (in 10% glycerol), labeled bands are detected. These can be extracted and shown to contain small nuclear RNAs (snRNAs) and partly reacted pre-mRNA.

  16. A Challenging Pie to Splice: Drugging the Spliceosome.

    PubMed

    León, Brian; Kashyap, Manoj K; Chan, Warren C; Krug, Kelsey A; Castro, Januario E; La Clair, James J; Burkart, Michael D

    2017-09-25

    Since its discovery in 1977, the study of alternative RNA splicing has revealed a plethora of mechanisms that had never before been documented in nature. Understanding these transitions and their outcome at the level of the cell and organism has become one of the great frontiers of modern chemical biology. Until 2007, this field remained in the hands of RNA biologists. However, the recent identification of natural product and synthetic modulators of RNA splicing has opened new access to this field, allowing for the first time a chemical-based interrogation of RNA splicing processes. Simultaneously, we have begun to understand the vital importance of splicing in disease, which offers a new platform for molecular discovery and therapy. As with many natural systems, gaining clear mechanistic detail at the molecular level is key towards understanding the operation of any biological machine. This minireview presents recent lessons learned in this emerging field of RNA splicing chemistry and chemical biology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Functional impact of splice isoform diversity in individual cells

    PubMed Central

    Yap, Karen; Makeyev, Eugene V.

    2016-01-01

    Alternative pre-mRNA splicing provides an effective means for expanding coding capacity of eukaryotic genomes. Recent studies suggest that co-expression of different splice isoforms may increase diversity of RNAs and proteins at a single-cell level. A pertinent question in the field is whether such co-expression is biologically meaningful or, rather, represents insufficiently stringent splicing regulation. Here we argue that isoform co-expression may produce functional outcomes that are difficult and sometimes impossible to achieve using other regulation strategies. Far from being a ‘splicing noise’, co-expression is often established through co-ordinated activity of specific cis-elements and trans-acting factors. Further work in this area may uncover new biological functions of alternative splicing (AS) and generate important insights into mechanisms allowing different cell types to attain their unique molecular identities. PMID:27528755

  18. Functional impact of splice isoform diversity in individual cells.

    PubMed

    Yap, Karen; Makeyev, Eugene V

    2016-08-15

    Alternative pre-mRNA splicing provides an effective means for expanding coding capacity of eukaryotic genomes. Recent studies suggest that co-expression of different splice isoforms may increase diversity of RNAs and proteins at a single-cell level. A pertinent question in the field is whether such co-expression is biologically meaningful or, rather, represents insufficiently stringent splicing regulation. Here we argue that isoform co-expression may produce functional outcomes that are difficult and sometimes impossible to achieve using other regulation strategies. Far from being a 'splicing noise', co-expression is often established through co-ordinated activity of specific cis-elements and trans-acting factors. Further work in this area may uncover new biological functions of alternative splicing (AS) and generate important insights into mechanisms allowing different cell types to attain their unique molecular identities. © 2016 The Author(s).

  19. Staufen1s role as a splicing factor and a disease modifier in Myotonic Dystrophy Type I

    PubMed Central

    Bondy-Chorney, Emma; Crawford Parks, Tara E.; Ravel-Chapuis, Aymeric; Jasmin, Bernard J.; Côté, Jocelyn

    2016-01-01

    ABSTRACT In a recent issue of PLOS Genetics, we reported that the double-stranded RNA-binding protein, Staufen1, functions as a disease modifier in the neuromuscular disorder Myotonic Dystrophy Type I (DM1). In this work, we demonstrated that Staufen1 regulates the alternative splicing of exon 11 of the human Insulin Receptor, a highly studied missplicing event in DM1, through Alu elements located in an intronic region. Furthermore, we found that Staufen1 overexpression regulates numerous alternative splicing events, potentially resulting in both positive and negative effects in DM1. Here, we discuss our major findings and speculate on the details of the mechanisms by which Staufen1 could regulate alternative splicing, in both normal and DM1 conditions. Finally, we highlight the importance of disease modifiers, such as Staufen1, in the DM1 pathology in order to understand the complex disease phenotype and for future development of new therapeutic strategies. PMID:27695661

  20. Reflections on protein splicing: structures, functions and mechanisms

    PubMed Central

    Anraku, Yasuhiro; Satow, Yoshinori

    2009-01-01

    Twenty years ago, evidence that one gene produces two enzymes via protein splicing emerged from structural and expression studies of the VMA1 gene in Saccharomyces cerevisiae. VMA1 consists of a single open reading frame and contains two independent genetic information for Vma1p (a catalytic 70-kDa subunit of the vacuolar H+-ATPase) and VDE (a 50-kDa DNA endonuclease) as an in-frame spliced insert in the gene. Protein splicing is a posttranslational cellular process, in which an intervening polypeptide termed as the VMA1 intein is self-catalytically excised out from a nascent 120-kDa VMA1 precursor and two flanking polypeptides of the N- and C-exteins are ligated to produce the mature Vma1p. Subsequent studies have demonstrated that protein splicing is not unique to the VMA1 precursor and there are many operons in nature, which implement genetic information editing at protein level. To elucidate its structure-directed chemical mechanisms, a series of biochemical and crystal structural studies has been carried out with the use of various VMA1 recombinants. This article summarizes a VDE-mediated self-catalytic mechanism for protein splicing that is triggered and terminated solely via thiazolidine intermediates with tetrahedral configurations formed within the splicing sites where proton ingress and egress are driven by balanced protonation and deprotonation. PMID:19907126

  1. scaRNAs regulate splicing and vertebrate heart development.

    PubMed

    Patil, Prakash; Kibiryeva, Nataliya; Uechi, Tamayo; Marshall, Jennifer; O'Brien, James E; Artman, Michael; Kenmochi, Naoya; Bittel, Douglas C

    2015-08-01

    Alternative splicing (AS) plays an important role in regulating mammalian heart development, but a link between misregulated splicing and congenital heart defects (CHDs) has not been shown. We reported that more than 50% of genes associated with heart development were alternatively spliced in the right ventricle (RV) of infants with tetralogy of Fallot (TOF). Moreover, there was a significant decrease in the level of 12 small cajal body-specific RNAs (scaRNAs) that direct the biochemical modification of specific nucleotides in spliceosomal RNAs. We sought to determine if scaRNA levels influence patterns of AS and heart development. We used primary cells derived from the RV of infants with TOF to show a direct link between scaRNA levels and splice isoforms of several genes that regulate heart development (e.g., GATA4, NOTCH2, DAAM1, DICER1, MBNL1 and MBNL2). In addition, we used antisense morpholinos to knock down the expression of two scaRNAs (scarna1 and snord94) in zebrafish and saw a corresponding disruption of heart development with an accompanying alteration in splice isoforms of cardiac regulatory genes. Based on these combined results, we hypothesize that scaRNA modification of spliceosomal RNAs assists in fine tuning the spliceosome for dynamic selection of mRNA splice isoforms. Our results are consistent with disruption of splicing patterns during early embryonic development leading to insufficient communication between the first and second heart fields, resulting in conotruncal misalignment and TOF. Our findings represent a new paradigm for determining the mechanisms underlying congenital cardiac malformations. Copyright © 2015. Published by Elsevier B.V.

  2. Mechanism of protein splicing of the Pyrococcus abyssi lon protease intein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Kevin M.; Schufreider, Ann K.; McGill, Melissa A.

    2010-12-17

    Research highlights: {yields} The Pyrococcus abyssi lon protease intein promotes efficient protein splicing. {yields} Inteins with mutations that interfere with individual steps of splicing do not promote unproductive side reactions. {yields} The intein splices with Lys in place of the highly conserved penultimate His. {yields} The intein is flanked by a Gly-rich region at its C terminus that may increase the efficiency of the third step of splicing, Asn cyclization coupled to peptide bond cleavage. -- Abstract: Protein splicing is a post-translational process by which an intervening polypeptide, the intein, excises itself from the flanking polypeptides, the exteins, coupled tomore » ligation of the exteins. The lon protease of Pyrococcus abyssi (Pab) is interrupted by an intein. When over-expressed as a fusion protein in Escherichia coli, the Pab lon protease intein can promote efficient protein splicing. Mutations that block individual steps of splicing generally do not lead to unproductive side reactions, suggesting that the intein tightly coordinates the splicing process. The intein can splice, although it has Lys in place of the highly conserved penultimate His, and mutants of the intein in the C-terminal region lead to the accumulation of stable branched-ester intermediate.« less

  3. Rapid degradation of dominant-negative Rab27 proteins in vivo precludes their use in transgenic mouse models

    PubMed Central

    Ramalho, José S; Anders, Ross; Jaissle, Gesine B; Seeliger, Mathias W; Huxley, Clare; Seabra, Miguel C

    2002-01-01

    Background Transgenic mice have proven to be a powerful system to study normal and pathological gene functions. Here we describe an attempt to generate a transgenic mouse model for choroideremia (CHM), a slow-onset X-linked retinal degeneration caused by mutations in the Rab Escort Protein-1 (REP1) gene. REP1 is part of the Rab geranylgeranylation machinery, a modification that is essential for Rab function in membrane traffic. The loss of REP1 in CHM patients may trigger retinal degeneration through its effects on Rab proteins. We have previously reported that Rab27a is the Rab most affected in CHM lymphoblasts and hypothesised that the selective dysfunction of Rab27a (and possibly a few other Rab GTPases) plays an essential role in the retinal degenerative process. Results To investigate this hypothesis, we generated several lines of dominant-negative, constitutively-active and wild-type Rab27a (and Rab27b) transgenic mice whose expression was driven either by the pigment cell-specific tyrosinase promoter or the ubiquitous β-actin promoter. High levels of mRNA and protein were observed in transgenic lines expressing wild-type or constitutively active Rab27a and Rab27b. However, only modest levels of transgenic protein were expressed. Pulse-chase experiments suggest that the dominant-negative proteins, but not the constitutively-active or wild type proteins, are rapidly degraded. Consistently, no significant phenotype was observed in our transgenic lines. Coat-colour was normal, indicating normal Rab27a activity. Retinal function as determined by fundoscopy, angiography, electroretinography and histology was also normal. Conclusions We suggest that the instability of the dominant-negative mutant Rab27 proteins in vivo precludes the use of this approach to generate mouse models of disease caused by Rab27 GTPases. PMID:12401133

  4. Prognostic alternative mRNA splicing signature in non-small cell lung cancer.

    PubMed

    Li, Yuan; Sun, Nan; Lu, Zhiliang; Sun, Shouguo; Huang, Jianbing; Chen, Zhaoli; He, Jie

    2017-05-01

    Alternative splicing provides a major mechanism to generate protein diversity. Increasing evidence suggests a link of dysregulation of splicing associated with cancer. Genome-wide alternative splicing profiling in lung cancer remains largely unstudied. We generated alternative splicing profiles in 491 lung adenocarcinoma (LUAD) and 471 lung squamous cell carcinoma (LUSC) patients in TCGA using RNA-seq data, prognostic models and splicing networks were built by integrated bioinformatics analysis. A total of 3691 and 2403 alternative splicing events were significantly associated with patient survival in LUAD and LUSC, respectively, including EGFR, CD44, PIK3C3, RRAS2, MAPKAP1 and FGFR2. The area under the curve of the receiver-operator characteristic curve for prognostic predictor in NSCLC was 0.817 at 2000 days of overall survival which were also over 0.8 in LUAD and LUSC, separately. Interestingly, splicing correlation networks uncovered opposite roles of splicing factors in LUAD and LUSC. We created prognostic predictors based on alternative splicing events with high performances for risk stratification in NSCLC patients and uncovered interesting splicing networks in LUAD and LUSC which could be underlying mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Muscle-Specific Mis-Splicing and Heart Disease Exemplified by RBM20.

    PubMed

    Rexiati, Maimaiti; Sun, Mingming; Guo, Wei

    2018-01-05

    Alternative splicing is an essential post-transcriptional process to generate multiple functional RNAs or proteins from a single transcript. Progress in RNA biology has led to a better understanding of muscle-specific RNA splicing in heart disease. The recent discovery of the muscle-specific splicing factor RNA-binding motif 20 (RBM20) not only provided great insights into the general alternative splicing mechanism but also demonstrated molecular mechanism of how this splicing factor is associated with dilated cardiomyopathy. Here, we review our current knowledge of muscle-specific splicing factors and heart disease, with an emphasis on RBM20 and its targets, RBM20-dependent alternative splicing mechanism, RBM20 disease origin in induced Pluripotent Stem Cells (iPSCs), and RBM20 mutations in dilated cardiomyopathy. In the end, we will discuss the multifunctional role of RBM20 and manipulation of RBM20 as a potential therapeutic target for heart disease.

  6. The capsid-spacer peptide 1 Gag processing intermediate is a dominant-negative inhibitor of HIV-1 maturation.

    PubMed

    Checkley, Mary Ann; Luttge, Benjamin G; Soheilian, Ferri; Nagashima, Kunio; Freed, Eric O

    2010-04-25

    The human immunodeficiency virus type 1 (HIV-1) maturation inhibitor bevirimat disrupts virus replication by inhibiting the cleavage of the capsid-spacer peptide 1 (CA-SP1) Gag processing intermediate to mature CA. The observation that bevirimat delays but does not completely block CA-SP1 processing suggests that the presence of uncleaved CA-SP1 may disrupt the maturation process in trans. In this study, we validate this hypothesis by using a genetic approach to demonstrate that a non-cleavable CA-SP1 mutant exerts a dominant-negative effect on maturation of wild-type HIV-1. In contrast, a mutant in which cleavage can occur internally within SP1 is significantly less potent as a dominant-negative inhibitor. We also show that bevirimat blocks processing at both the major CA-SP1 cleavage site and the internal site. These data underscore the importance of full CA-SP1 processing for HIV-1 maturation and highlight the therapeutic potential of inhibitors that target this Gag cleavage event. Published by Elsevier Inc.

  7. Osmosensation in TRPV2 dominant negative expressing skeletal muscle fibres.

    PubMed

    Zanou, Nadège; Mondin, Ludivine; Fuster, Clarisse; Seghers, François; Dufour, Inès; de Clippele, Marie; Schakman, Olivier; Tajeddine, Nicolas; Iwata, Yuko; Wakabayashi, Shigeo; Voets, Thomas; Allard, Bruno; Gailly, Philippe

    2015-09-01

    Increased plasma osmolarity induces intracellular water depletion and cell shrinkage (CS) followed by activation of a regulatory volume increase (RVI). In skeletal muscle, the hyperosmotic shock-induced CS is accompanied by a small membrane depolarization responsible for a release of Ca(2+) from intracellular pools. Hyperosmotic shock also induces phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK). TRPV2 dominant negative expressing fibres challenged with hyperosmotic shock present a slower membrane depolarization, a diminished Ca(2+) response, a smaller RVI response, a decrease in SPAK phosphorylation and defective muscle function. We suggest that hyperosmotic shock induces TRPV2 activation, which accelerates muscle cell depolarization and allows the subsequent Ca(2+) release from the sarcoplasmic reticulum, activation of the Na(+) -K(+) -Cl(-) cotransporter by SPAK, and the RVI response. Increased plasma osmolarity induces intracellular water depletion and cell shrinkage followed by activation of a regulatory volume increase (RVI). In skeletal muscle, this is accompanied by transverse tubule (TT) dilatation and by a membrane depolarization responsible for a release of Ca(2+) from intracellular pools. We observed that both hyperosmotic shock-induced Ca(2+) transients and RVI were inhibited by Gd(3+) , ruthenium red and GsMTx4 toxin, three inhibitors of mechanosensitive ion channels. The response was also completely absent in muscle fibres overexpressing a non-permeant, dominant negative (DN) mutant of the transient receptor potential, V2 isoform (TRPV2) ion channel, suggesting the involvement of TRPV2 or of a TRP isoform susceptible to heterotetramerization with TRPV2. The release of Ca(2+) induced by hyperosmotic shock was increased by cannabidiol, an activator of TRPV2, and decreased by tranilast, an inhibitor of TRPV2, suggesting a role for the TRPV2 channel itself. Hyperosmotic shock-induced membrane depolarization was impaired in TRPV2

  8. Osmosensation in TRPV2 dominant negative expressing skeletal muscle fibres

    PubMed Central

    Zanou, Nadège; Mondin, Ludivine; Fuster, Clarisse; Seghers, François; Dufour, Inès; de Clippele, Marie; Schakman, Olivier; Tajeddine, Nicolas; Iwata, Yuko; Wakabayashi, Shigeo; Voets, Thomas; Allard, Bruno; Gailly, Philippe

    2015-01-01

    Abstract Increased plasma osmolarity induces intracellular water depletion and cell shrinkage followed by activation of a regulatory volume increase (RVI). In skeletal muscle, this is accompanied by transverse tubule (TT) dilatation and by a membrane depolarization responsible for a release of Ca2+ from intracellular pools. We observed that both hyperosmotic shock-induced Ca2+ transients and RVI were inhibited by Gd3+, ruthenium red and GsMTx4 toxin, three inhibitors of mechanosensitive ion channels. The response was also completely absent in muscle fibres overexpressing a non-permeant, dominant negative (DN) mutant of the transient receptor potential, V2 isoform (TRPV2) ion channel, suggesting the involvement of TRPV2 or of a TRP isoform susceptible to heterotetramerization with TRPV2. The release of Ca2+ induced by hyperosmotic shock was increased by cannabidiol, an activator of TRPV2, and decreased by tranilast, an inhibitor of TRPV2, suggesting a role for the TRPV2 channel itself. Hyperosmotic shock-induced membrane depolarization was impaired in TRPV2-DN fibres, suggesting that TRPV2 activation triggers the release of Ca2+ from the sarcoplasmic reticulum by depolarizing TTs. RVI requires the sequential activation of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and NKCC1, a Na+–K+–Cl− cotransporter, allowing ion entry and driving osmotic water flow. In fibres overexpressing TRPV2-DN as well as in fibres in which Ca2+ transients were abolished by the Ca2+ chelator BAPTA, the level of P-SPAKSer373 in response to hyperosmotic shock was reduced, suggesting a modulation of SPAK phosphorylation by intracellular Ca2+. We conclude that TRPV2 is involved in osmosensation in skeletal muscle fibres, acting in concert with P-SPAK-activated NKCC1. Key points Increased plasma osmolarity induces intracellular water depletion and cell shrinkage (CS) followed by activation of a regulatory volume increase (RVI). In skeletal muscle, the hyperosmotic shock

  9. Systematic Analysis of Splice-Site-Creating Mutations in Cancer.

    PubMed

    Jayasinghe, Reyka G; Cao, Song; Gao, Qingsong; Wendl, Michael C; Vo, Nam Sy; Reynolds, Sheila M; Zhao, Yanyan; Climente-González, Héctor; Chai, Shengjie; Wang, Fang; Varghese, Rajees; Huang, Mo; Liang, Wen-Wei; Wyczalkowski, Matthew A; Sengupta, Sohini; Li, Zhi; Payne, Samuel H; Fenyö, David; Miner, Jeffrey H; Walter, Matthew J; Vincent, Benjamin; Eyras, Eduardo; Chen, Ken; Shmulevich, Ilya; Chen, Feng; Ding, Li

    2018-04-03

    For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs) across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. SASD: the Synthetic Alternative Splicing Database for identifying novel isoform from proteomics

    PubMed Central

    2013-01-01

    Background Alternative splicing is an important and widespread mechanism for generating protein diversity and regulating protein expression. High-throughput identification and analysis of alternative splicing in the protein level has more advantages than in the mRNA level. The combination of alternative splicing database and tandem mass spectrometry provides a powerful technique for identification, analysis and characterization of potential novel alternative splicing protein isoforms from proteomics. Therefore, based on the peptidomic database of human protein isoforms for proteomics experiments, our objective is to design a new alternative splicing database to 1) provide more coverage of genes, transcripts and alternative splicing, 2) exclusively focus on the alternative splicing, and 3) perform context-specific alternative splicing analysis. Results We used a three-step pipeline to create a synthetic alternative splicing database (SASD) to identify novel alternative splicing isoforms and interpret them at the context of pathway, disease, drug and organ specificity or custom gene set with maximum coverage and exclusive focus on alternative splicing. First, we extracted information on gene structures of all genes in the Ensembl Genes 71 database and incorporated the Integrated Pathway Analysis Database. Then, we compiled artificial splicing transcripts. Lastly, we translated the artificial transcripts into alternative splicing peptides. The SASD is a comprehensive database containing 56,630 genes (Ensembl gene IDs), 95,260 transcripts (Ensembl transcript IDs), and 11,919,779 Alternative Splicing peptides, and also covering about 1,956 pathways, 6,704 diseases, 5,615 drugs, and 52 organs. The database has a web-based user interface that allows users to search, display and download a single gene/transcript/protein, custom gene set, pathway, disease, drug, organ related alternative splicing. Moreover, the quality of the database was validated with comparison to other

  11. LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes

    PubMed Central

    Singh, Parmit Kumar; Plumb, Matthew R.; Ferris, Andrea L.; Iben, James R.; Wu, Xiaolin; Fadel, Hind J.; Luke, Brian T.; Esnault, Caroline; Poeschla, Eric M.; Hughes, Stephen H.; Kvaratskhelia, Mamuka; Levin, Henry L.

    2015-01-01

    The host chromatin-binding factor LEDGF/p75 interacts with HIV-1 integrase and directs integration to active transcription units. To understand how LEDGF/p75 recognizes transcription units, we sequenced 1 million HIV-1 integration sites isolated from cultured HEK293T cells. Analysis of integration sites showed that cancer genes were preferentially targeted, raising concerns about using lentivirus vectors for gene therapy. Additional analysis led to the discovery that introns and alternative splicing contributed significantly to integration site selection. These correlations were independent of transcription levels, size of transcription units, and length of the introns. Multivariate analysis with five parameters previously found to predict integration sites showed that intron density is the strongest predictor of integration density in transcription units. Analysis of previously published HIV-1 integration site data showed that integration density in transcription units in mouse embryonic fibroblasts also correlated strongly with intron number, and this correlation was absent in cells lacking LEDGF. Affinity purification showed that LEDGF/p75 is associated with a number of splicing factors, and RNA sequencing (RNA-seq) analysis of HEK293T cells lacking LEDGF/p75 or the LEDGF/p75 integrase-binding domain (IBD) showed that LEDGF/p75 contributes to splicing patterns in half of the transcription units that have alternative isoforms. Thus, LEDGF/p75 interacts with splicing factors, contributes to exon choice, and directs HIV-1 integration to transcription units that are highly spliced. PMID:26545813

  12. The evolutionary landscape of intergenic trans-splicing events in insects

    PubMed Central

    Kong, Yimeng; Zhou, Hongxia; Yu, Yao; Chen, Longxian; Hao, Pei; Li, Xuan

    2015-01-01

    To explore the landscape of intergenic trans-splicing events and characterize their functions and evolutionary dynamics, we conduct a mega-data study of a phylogeny containing eight species across five orders of class Insecta, a model system spanning 400 million years of evolution. A total of 1,627 trans-splicing events involving 2,199 genes are identified, accounting for 1.58% of the total genes. Homology analysis reveals that mod(mdg4)-like trans-splicing is the only conserved event that is consistently observed in multiple species across two orders, which represents a unique case of functional diversification involving trans-splicing. Thus, evolutionarily its potential for generating proteins with novel function is not broadly utilized by insects. Furthermore, 146 non-mod trans-spliced transcripts are found to resemble canonical genes from different species. Trans-splicing preserving the function of ‘breakup' genes may serve as a general mechanism for relaxing the constraints on gene structure, with profound implications for the evolution of genes and genomes. PMID:26521696

  13. Alternative pre-mRNA splicing of Toll-like receptor signaling components in peripheral blood mononuclear cells from patients with ARDS.

    PubMed

    Blumhagen, Rachel Z; Hedin, Brenna R; Malcolm, Kenneth C; Burnham, Ellen L; Moss, Marc; Abraham, Edward; Huie, Tristan J; Nick, Jerry A; Fingerlin, Tasha E; Alper, Scott

    2017-11-01

    A key physiological feature of acute respiratory distress syndrome (ARDS) is inflammation. Toll-like receptor (TLR) signaling is required to combat the infection that underlies many ARDS cases but also contributes to pathological inflammation. Several TLR signaling pathway genes encoding positive effectors of inflammation also produce alternatively spliced mRNAs encoding negative regulators of inflammation. An imbalance between these isoforms could contribute to pathological inflammation and disease severity. To determine whether splicing in TLR pathways is altered in patients with ARDS, we monitored alternative splicing of MyD88 and IRAK1 , two genes that function in multiple TLR pathways. The MyD88 and IRAK1 genes produce long proinflammatory mRNAs (MyD88 L and IRAK1) and shorter anti-inflammatory mRNAs (MyD88 S and IRAK1c). We quantified mRNA encoding inflammatory cytokines and MyD88 and IRAK1 isoforms in peripheral blood mononuclear cells (PBMCs) from 104 patients with ARDS and 30 healthy control subjects. We found that MyD88 pre-mRNA splicing is altered in patients with ARDS in a proinflammatory direction. We also observed altered MyD88 isoform levels in a second critically ill patient cohort, suggesting that these changes may not be unique to ARDS. Early in ARDS, PBMC IRAK1c levels were associated with patient survival. Despite the similarities in MyD88 and IRAK1 alternative splicing observed in previous in vitro studies, there were differences in how MyD88 and IRAK1 alternative splicing was altered in patients with ARDS. We conclude that pre-mRNA splicing of TLR signaling genes is altered in patients with ARDS, and further investigation of altered splicing may lead to novel prognostic and therapeutic approaches. Copyright © 2017 the American Physiological Society.

  14. High-throughput alternative splicing detection using dually constrained correspondence analysis (DCCA).

    PubMed

    Baty, Florent; Klingbiel, Dirk; Zappa, Francesco; Brutsche, Martin

    2015-12-01

    Alternative splicing is an important component of tumorigenesis. Recent advent of exon array technology enables the detection of alternative splicing at a genome-wide scale. The analysis of high-throughput alternative splicing is not yet standard and methodological developments are still needed. We propose a novel statistical approach-Dually Constrained Correspondence Analysis-for the detection of splicing changes in exon array data. Using this methodology, we investigated the genome-wide alteration of alternative splicing in patients with non-small cell lung cancer treated by bevacizumab/erlotinib. Splicing candidates reveal a series of genes related to carcinogenesis (SFTPB), cell adhesion (STAB2, PCDH15, HABP2), tumor aggressiveness (ARNTL2), apoptosis, proliferation and differentiation (PDE4D, FLT3, IL1R2), cell invasion (ETV1), as well as tumor growth (OLFM4, FGF14), tumor necrosis (AFF3) or tumor suppression (TUSC3, CSMD1, RHOBTB2, SERPINB5), with indication of known alternative splicing in a majority of genes. DCCA facilitates the identification of putative biologically relevant alternative splicing events in high-throughput exon array data. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The Sound of Dominance: Vocal Precursors of Perceived Dominance during Interpersonal Influence.

    ERIC Educational Resources Information Center

    Tusing, Kyle James; Dillard, James Price

    2000-01-01

    Determines the effects of vocal cues on judgments of dominance in an interpersonal influence context. Indicates that mean amplitude and amplitude standard deviation were positively associated with dominance judgments, whereas speech rate was negatively associated with dominance judgments. Finds that mean fundamental frequency was positively…

  16. Drosha Promotes Splicing of a Pre-microRNA-like Alternative Exon

    PubMed Central

    Havens, Mallory A.; Reich, Ashley A.; Hastings, Michelle L.

    2014-01-01

    The ribonuclease III enzyme Drosha has a central role in the biogenesis of microRNA (miRNA) by binding and cleaving hairpin structures in primary RNA transcripts into precursor miRNAs (pre-miRNAs). Many miRNA genes are located within protein-coding host genes and cleaved by Drosha in a manner that is coincident with splicing of introns by the spliceosome. The close proximity of splicing and pre-miRNA biogenesis suggests a potential for co-regulation of miRNA and host gene expression, though this relationship is not completely understood. Here, we describe a cleavage-independent role for Drosha in the splicing of an exon that has a predicted hairpin structure resembling a Drosha substrate. We find that Drosha can cleave the alternatively spliced exon 5 of the eIF4H gene into a pre-miRNA both in vitro and in cells. However, the primary role of Drosha in eIF4H gene expression is to promote the splicing of exon 5. Drosha binds to the exon and enhances splicing in a manner that depends on RNA structure but not on cleavage by Drosha. We conclude that Drosha can function like a splicing enhancer and promote exon inclusion. Our results reveal a new mechanism of alternative splicing regulation involving a cleavage-independent role for Drosha in splicing. PMID:24786770

  17. Revisiting PC1/3 Mutants: Dominant-Negative Effect of Endoplasmic Reticulum-Retained Mutants.

    PubMed

    Blanco, Elias H; Ramos-Molina, Bruno; Lindberg, Iris

    2015-10-01

    Prohormone convertase 1/3 (PC1/3), encoded by the gene PCSK1, is critical for peptide hormone synthesis. An increasing number of studies have shown that inactivating mutations in PCSK1 are correlated with endocrine pathologies ranging from intestinal dysfunction to morbid obesity, whereas the common nonsynonymous polymorphisms rs6232 (N221D) and rs6234-rs6235 (Q665E-S690T) are highly associated with obesity risk. In this report, we revisited the biochemical and cellular properties of PC1/3 variants in the context of a wild-type PC1/3 background instead of the S357G hypermorph background used for all previous studies. In the wild-type background the PC1/3 N221D variant exhibited 30% lower enzymatic activity in a fluorogenic assay than wild-type PC1/3; this inhibition was greater than that detected in an equivalent experiment using the PC1/3 S357G background. A PC1/3 variant with the linked carboxyl-terminal polymorphisms Q665E-S690T did not show this difference. We also analyzed the biochemical properties of 2 PC1/3 mutants, G209R and G593R, which are retained in the endoplasmic reticulum (ER), and studied their effects on wild-type PC1/3. The expression of ER-retained mutants induced ER stress markers and also resulted in dominant-negative blockade of wild-type PC1/3 prodomain cleavage and decreased expression of wild-type PC1/3, suggesting facilitation of the entry of wild-type protein to a degradative proteasomal pathway. Dominant-negative effects of PC1/3 mutations on the expression and maturation of wild-type protein, with consequential effects on PC1/3 availability, add a new element which must be considered in population and clinical studies of this gene.

  18. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems.

    PubMed

    Gallego-Paez, L M; Bordone, M C; Leote, A C; Saraiva-Agostinho, N; Ascensão-Ferreira, M; Barbosa-Morais, N L

    2017-09-01

    Alternative pre-mRNA splicing is a tightly controlled process conducted by the spliceosome, with the assistance of several regulators, resulting in the expression of different transcript isoforms from the same gene and increasing both transcriptome and proteome complexity. The differences between alternative isoforms may be subtle but enough to change the function or localization of the translated proteins. A fine control of the isoform balance is, therefore, needed throughout developmental stages and adult tissues or physiological conditions and it does not come as a surprise that several diseases are caused by its deregulation. In this review, we aim to bring the splicing machinery on stage and raise the curtain on its mechanisms and regulation throughout several systems and tissues of the human body, from neurodevelopment to the interactions with the human microbiome. We discuss, on one hand, the essential role of alternative splicing in assuring tissue function, diversity, and swiftness of response in these systems or tissues, and on the other hand, what goes wrong when its regulatory mechanisms fail. We also focus on the possibilities that splicing modulation therapies open for the future of personalized medicine, along with the leading techniques in this field. The final act of the spliceosome, however, is yet to be fully revealed, as more knowledge is needed regarding the complex regulatory network that coordinates alternative splicing and how its dysfunction leads to disease.

  19. Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing

    NASA Astrophysics Data System (ADS)

    Nguyen, Anh H.; Lee, Jong Uk; Sim, Sang Jun

    2016-02-01

    RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ~29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.

  20. Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs' dystrophy.

    PubMed

    Hu, Jiaxin; Rong, Ziye; Gong, Xin; Zhou, Zhengyang; Sharma, Vivek K; Xing, Chao; Watts, Jonathan K; Corey, David R; Mootha, V Vinod

    2018-03-15

    Fuchs' endothelial corneal dystrophy (FECD) is the most common repeat expansion disorder. FECD impacts 4% of U.S. population and is the leading indication for corneal transplantation. Most cases are caused by an expanded intronic CUG tract in the TCF4 gene that forms nuclear foci, sequesters splicing factors and impairs splicing. We investigated the sense and antisense RNA landscape at the FECD gene and find that the sense-expanded repeat transcript is the predominant species in patient corneas. In patient tissue, sense foci number were negatively correlated with age and showed no correlation with sex. Each endothelial cell has ∼2 sense foci and each foci is single RNA molecule. We designed antisense oligonucleotides (ASOs) to target the mutant-repetitive RNA and demonstrated potent inhibition of foci in patient-derived cells. Ex vivo treatment of FECD human corneas effectively inhibits foci and reverses pathological changes in splicing. FECD has the potential to be a model for treating many trinucleotide repeat diseases and targeting the TCF4 expansion with ASOs represents a promising therapeutic strategy to prevent and treat FECD.

  1. Splice junction mutations at the Menkes locus that maintain some proper splicing are associated with milder clinical phenotypes, including typical occipital horn syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaler, S.G.; Gahl, W.A.

    1994-09-01

    Menkes disease is an X linked recessive disorder of copper metabolism produced by abnormalities in a gene that encodes a copper transporting ATPase. The clinical spectrum of Menkes disease includes a range of neurological severity from the classical type to the occipital horn syndrome (OHS) in which slightly subnormal intelligence or signs of autonomic dysfunction are the only neurologic abnormalities. We previously documented a distinctive, less severe Menkes phenotype associated with a +3 intronic splice donor mutation at the 3{prime} end of the gene in which exon skipping occurred but some normally spliced message was also detectable. We now reportmore » a similar splicing mutation in a patient with a typical OHS phenotype an A to G transition at the 2 exonic position of a splice donor site in the middle of the Menkes coding sequence. Some normally sized transcripts are evident by RT-PCR of lymphoblast mRNA from this individual, as well as 2 truncated fragments generated by exon skipping and activation of a cryptic splice acceptor site, respectively. The predicted effect of the mutation on the gene product involves a serine to glycine substitution in a noncritical region of the Menkes ATPase from the patient`s normally sized message, and premature termination due to translational frameshift in both truncated transcripts. The mutation eliminates a Dde 1 restriction site in the gene which provided a method to rapidly screen other family members, and revealed that the patient`s mother is a non-carrier. The mutational base change was not present in 25 normal X chromosomes studied. Preliminary analysis of the Menkes locus in 5 other Menkes disease families indicates aberrant mRNA splicing in 2. Our findings confirm allelism at the Menkes locus, indicate that splice mutations are relatively common mutational event in Menkes disease, and suggest that splice mutations in which some normal splicing is preserved may underlie milder Menkes disease variants, including OHS.« less

  2. Conditional Toxin Splicing Using a Split Intein System.

    PubMed

    Alford, Spencer C; O'Sullivan, Connor; Howard, Perry L

    2017-01-01

    Protein toxin splicing mediated by split inteins can be used as a strategy for conditional cell ablation. The approach requires artificial fragmentation of a potent protein toxin and tethering each toxin fragment to a split intein fragment. The toxin-intein fragments are, in turn, fused to dimerization domains, such that addition of a dimerizing agent reconstitutes the split intein. These chimeric toxin-intein fusions remain nontoxic until the dimerizer is added, resulting in activation of intein splicing and ligation of toxin fragments to form an active toxin. Considerations for the engineering and implementation of conditional toxin splicing (CTS) systems include: choice of toxin split site, split site (extein) chemistry, and temperature sensitivity. The following method outlines design criteria and implementation notes for CTS using a previously engineered system for splicing a toxin called sarcin, as well as for developing alternative CTS systems.

  3. Hierarchy of Certain Types of DNA Splicing Systems

    NASA Astrophysics Data System (ADS)

    Yusof, Yuhani; Sarmin, Nor Haniza; Goode, T. Elizabeth; Mahmud, Mazri; Heng, Fong Wan

    A Head splicing system (H-system)consists of a finite set of strings (words) written over a finite alphabet, along with a finite set of rules that acts on the strings by iterated cutting and pasting to create a splicing language. Any interpretation that is aligned with Tom Head's original idea is one in which the strings represent double-stranded deoxyribonucleic acid (dsDNA) and the rules represent the cutting and pasting action of restriction enzymes and ligase, respectively. A new way of writing the rule sets is adopted so as to make the biological interpretation transparent. This approach is used in a formal language- theoretic analysis of the hierarchy of certain classes of splicing systems, namely simple, semi-simple and semi-null splicing systems. The relations between such systems and their associated languages are given as theorems, corollaries and counterexamples.

  4. [Alternative splicing regulation: implications in cancer diagnosis and treatment].

    PubMed

    Martínez-Montiel, Nancy; Rosas-Murrieta, Nora; Martínez-Contreras, Rebeca

    2015-04-08

    The accurate expression of the genetic information is regulated by processes like mRNA splicing, proposed after the discoveries of Phil Sharp and Richard Roberts, who demonstrated the existence of intronic sequences, present in almost every structural eukaryotic gene, which should be precisely removed. This intron removal is called "splicing", which generates different proteins from a single mRNA, with different or even antagonistic functions. We currently know that alternative splicing is the most important source of protein diversity, given that 70% of the human genes undergo splicing and that mutations causing defects in this process could originate up to 50% of genetic diseases, including cancer. When these defects occur in genes involved in cell adhesion, proliferation and cell cycle regulation, there is an impact on cancer progression, rising the opportunity to diagnose and treat some types of cancer according to a particular splicing profile. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  5. 30 CFR 57.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Splices and repairs of power cables. 57.12013... Electricity Surface and Underground § 57.12013 Splices and repairs of power cables. Permanent splices and repairs made in power cables, including the ground conductor where provided, shall be— (a) Mechanically...

  6. 30 CFR 57.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Splices and repairs of power cables. 57.12013... Electricity Surface and Underground § 57.12013 Splices and repairs of power cables. Permanent splices and repairs made in power cables, including the ground conductor where provided, shall be— (a) Mechanically...

  7. 30 CFR 57.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Splices and repairs of power cables. 57.12013... Electricity Surface and Underground § 57.12013 Splices and repairs of power cables. Permanent splices and repairs made in power cables, including the ground conductor where provided, shall be— (a) Mechanically...

  8. 30 CFR 57.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Splices and repairs of power cables. 57.12013... Electricity Surface and Underground § 57.12013 Splices and repairs of power cables. Permanent splices and repairs made in power cables, including the ground conductor where provided, shall be— (a) Mechanically...

  9. 30 CFR 57.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Splices and repairs of power cables. 57.12013... Electricity Surface and Underground § 57.12013 Splices and repairs of power cables. Permanent splices and repairs made in power cables, including the ground conductor where provided, shall be— (a) Mechanically...

  10. Alternative Splicing of STAT3 Is Affected by RNA Editing.

    PubMed

    Goldberg, Lior; Abutbul-Amitai, Mor; Paret, Gideon; Nevo-Caspi, Yael

    2017-05-01

    A-to-I RNA editing, carried out by adenosine deaminase acting on RNA (ADAR) enzymes, is an epigenetic phenomenon of posttranscriptional modifications on pre-mRNA. RNA editing in intronic sequences may influence alternative splicing of flanking exons. We have previously shown that conditions that induce editing result in elevated expression of signal transducer and activator of transcription 3 (STAT3), preferentially the alternatively-spliced STAT3β isoform. Mechanisms regulating alternative splicing of STAT3 have not been elucidated. STAT3 undergoes A-to-I RNA editing in an intron residing in proximity to the alternatively spliced exon. We hypothesized that RNA editing plays a role in regulating alternative splicing toward STAT3β. In this study we extend our observation connecting RNA editing to the preferential induction of STAT3β expression. We study the involvement of ADAR1 in STAT3 editing and reveal the connection between editing and alternative splicing of STAT3. Deferoaxamine treatment caused the induction in STAT3 RNA editing and STAT3β expression. Silencing ADAR1 caused a decrease in STAT3 editing and expression with a preferential decrease in STAT3β. Cells transfected with a mutated minigene showed preferential splicing toward the STAT3β transcript. Editing in the STAT3 intron is performed by ADAR1 and affects STAT3 alternative splicing. These results suggest that RNA editing is one of the molecular mechanisms regulating the expression of STAT3β.

  11. The role played by alternative splicing in antigenic variability in human endo-parasites.

    PubMed

    Hull, Rodney; Dlamini, Zodwa

    2014-01-28

    Endo-parasites that affect humans include Plasmodium, the causative agent of malaria, which remains one of the leading causes of death in human beings. Despite decades of research, vaccines to this and other endo-parasites remain elusive. This is in part due to the hyper-variability of the parasites surface proteins. Generally these surface proteins are encoded by a large family of genes, with only one being dominantly expressed at certain life stages. Another layer of complexity can be introduced through the alternative splicing of these surface proteins. The resulting isoforms may differ from each other with regard to cell localisation, substrate affinities and functions. They may even differ in structure to the extent that they are no longer recognised by the host's immune system. In many cases this leads to changes in the N terminus of these proteins. The geographical localisation of endo-parasitic infections around the tropics and the highest incidences of HIV-1 infection in the same areas, adds a further layer of complexity as parasitic infections affect the host immune system resulting in higher HIV infection rates, faster disease progression, and an increase in the severity of infections and complications in HIV diagnosis. This review discusses some examples of parasite surface proteins that are alternatively spliced in trypanosomes, Plasmodium and the parasitic worm Schistosoma as well as what role alternate splicing may play in the interaction between HIV and these endo-parasites.

  12. Low loss fusion splicing of micron scale silica fibers.

    PubMed

    Pal, Parama; Knox, Wayne H

    2008-07-21

    Tapered micron-sized optical fibers may be important in the future for development of microscale integrated photonic devices. Complex photonic circuits require many devices and a robust technique for interconnection. We demonstrate splicing of four micron diameter step-index air-clad silica microfibers using a CO2 laser. We obtain splice losses lower than 0.3%. Compared with evanescent coupling of microfibers, our splices are more mechanically stable and efficient.

  13. Tissue-specific alternative splicing of TCF7L2

    PubMed Central

    Prokunina-Olsson, Ludmila; Welch, Cullan; Hansson, Ola; Adhikari, Neeta; Scott, Laura J.; Usher, Nicolle; Tong, Maurine; Sprau, Andrew; Swift, Amy; Bonnycastle, Lori L.; Erdos, Michael R.; He, Zhi; Saxena, Richa; Harmon, Brennan; Kotova, Olga; Hoffman, Eric P.; Altshuler, David; Groop, Leif; Boehnke, Michael; Collins, Francis S.; Hall, Jennifer L.

    2009-01-01

    Common variants in the transcription factor 7-like 2 (TCF7L2) gene have been identified as the strongest genetic risk factors for type 2 diabetes (T2D). However, the mechanisms by which these non-coding variants increase risk for T2D are not well-established. We used 13 expression assays to survey mRNA expression of multiple TCF7L2 splicing forms in up to 380 samples from eight types of human tissue (pancreas, pancreatic islets, colon, liver, monocytes, skeletal muscle, subcutaneous adipose tissue and lymphoblastoid cell lines) and observed a tissue-specific pattern of alternative splicing. We tested whether the expression of TCF7L2 splicing forms was associated with single nucleotide polymorphisms (SNPs), rs7903146 and rs12255372, located within introns 3 and 4 of the gene and most strongly associated with T2D. Expression of two splicing forms was lower in pancreatic islets with increasing counts of T2D-associated alleles of the SNPs: a ubiquitous splicing form (P = 0.018 for rs7903146 and P = 0.020 for rs12255372) and a splicing form found in pancreatic islets, pancreas and colon but not in other tissues tested here (P = 0.009 for rs12255372 and P = 0.053 for rs7903146). Expression of this form in glucose-stimulated pancreatic islets correlated with expression of proinsulin (r2 = 0.84–0.90, P < 0.00063). In summary, we identified a tissue-specific pattern of alternative splicing of TCF7L2. After adjustment for multiple tests, no association between expression of TCF7L2 in eight types of human tissue samples and T2D-associated genetic variants remained significant. Alternative splicing of TCF7L2 in pancreatic islets warrants future studies. GenBank Accession Numbers: FJ010164–FJ010174. PMID:19602480

  14. Splice Site Mutations in the ATP7A Gene

    PubMed Central

    Møller, Lisbeth Birk

    2011-01-01

    Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12 mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations identified in 12 patients with milder phenotypes were predicted to have no significant effect on splicing, which concurs with the presence of wild-type transcript in 7 out of 9 patients investigated in vivo. Both the in silico predictions and the in vivo results support the hypothesis previously suggested by us and others, that the presence of some wild-type transcript is correlated to a milder phenotype. PMID:21494555

  15. Boric acid reversibly inhibits the second step of pre-mRNA splicing.

    PubMed

    Shomron, Noam; Ast, Gil

    2003-09-25

    Several approaches have been used to identify the factors involved in mRNA splicing. None of them, however, comprises a straightforward reversible method for inhibiting the second step of splicing using an external reagent other than a chelator. This investigation demonstrates that the addition of boric acid to an in vitro pre-mRNA splicing reaction causes a dose-dependent reversible inhibition effect on the second step of splicing. The mechanism of action does not involve chelation of several metal ions; hindrance of 3' splice-site; or binding to hSlu7. This study presents a novel method for specific reversible inhibition of the second step of pre-mRNA splicing.

  16. The structural basis of the dominant negative phenotype of the Gαi1β1γ2 G203A/A326S heterotrimer

    PubMed Central

    Liu, Ping; Jia, Ming-zhu; Zhou, X Edward; De Waal, Parker W; Dickson, Bradley M; Liu, Bo; Hou, Li; Yin, Yan-ting; Kang, Yan-yong; Shi, Yi; Melcher, Karsten; Xu, H Eric; Jiang, Yi

    2016-01-01

    Aim: Dominant negative mutant G proteins have provided critical insight into the mechanisms of G protein-coupled receptor (GPCR) signaling, but the mechanisms underlying the dominant negative characteristics are not completely understood. The aim of this study was to determine the structure of the dominant negative Gαi1β1γ2 G203A/A326S complex (Gi-DN) and to reveal the structural basis of the mutation-induced phenotype of Gαi1β1γ2. Methods: The three subunits of the Gi-DN complex were co-expressed with a baculovirus expression system. The Gi-DN heterotrimer was purified, and the structure of its complex with GDP was determined through X-ray crystallography. Results: The Gi-DN heterotrimer structure revealed a dual mechanism underlying the dominant negative characteristics. The mutations weakened the hydrogen bonding network between GDP/GTP and the binding pocket residues, and increased the interactions in the Gα-Gβγ interface. Concomitantly, the Gi-DN heterotrimer adopted a conformation, in which the C-terminus of Gαi and the N-termini of both the Gβ and Gγ subunits were more similar to the GPCR-bound state compared with the wild type complex. From these structural observations, two additional mutations (T48F and D272F) were designed that completely abolish the GDP binding of the Gi-DN heterotrimer. Conclusion: Overall, the results suggest that the mutations impede guanine nucleotide binding and Gα-Gβγ protein dissociation and favor the formation of the G protein/GPCR complex, thus blocking signal propagation. In addition, the structure provides a rationale for the design of other mutations that cause dominant negative effects in the G protein, as exemplified by the T48F and D272F mutations. PMID:27498775

  17. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.

    PubMed

    Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A

    2013-01-01

    Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.

  18. U2AF1 mutations alter splice site recognition in hematological malignancies.

    PubMed

    Ilagan, Janine O; Ramakrishnan, Aravind; Hayes, Brian; Murphy, Michele E; Zebari, Ahmad S; Bradley, Philip; Bradley, Robert K

    2015-01-01

    Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 alter its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in patients, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1's zinc finger domains. © 2015 Ilagan et al.; Published by Cold Spring Harbor Laboratory Press.

  19. 30 CFR 75.830 - Splicing and repair of trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Splicing and repair of trailing cables. 75.830... High-Voltage Longwalls § 75.830 Splicing and repair of trailing cables. (a) Splices and repairs. (1... and repairs to high-voltage trailing cables must be made: (i) Only by a qualified person trained in...

  20. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition.

    PubMed

    Chen, Wei; Feng, Peng-Mian; Lin, Hao; Chou, Kuo-Chen

    2014-01-01

    In eukaryotic genes, exons are generally interrupted by introns. Accurately removing introns and joining exons together are essential processes in eukaryotic gene expression. With the avalanche of genome sequences generated in the postgenomic age, it is highly desired to develop automated methods for rapid and effective detection of splice sites that play important roles in gene structure annotation and even in RNA splicing. Although a series of computational methods were proposed for splice site identification, most of them neglected the intrinsic local structural properties. In the present study, a predictor called "iSS-PseDNC" was developed for identifying splice sites. In the new predictor, the sequences were formulated by a novel feature-vector called "pseudo dinucleotide composition" (PseDNC) into which six DNA local structural properties were incorporated. It was observed by the rigorous cross-validation tests on two benchmark datasets that the overall success rates achieved by iSS-PseDNC in identifying splice donor site and splice acceptor site were 85.45% and 87.73%, respectively. It is anticipated that iSS-PseDNC may become a useful tool for identifying splice sites and that the six DNA local structural properties described in this paper may provide novel insights for in-depth investigations into the mechanism of RNA splicing.

  1. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches

    PubMed Central

    Chen, Mo; Manley, James L.

    2010-01-01

    Alternative splicing of mRNA precursors provides an important means of genetic control and is a crucial step in the expression of most genes. Alternative splicing markedly affects human development, and its misregulation underlies many human diseases. Although the mechanisms of alternative splicing have been studied extensively, until the past few years we had not begun to realize fully the diversity and complexity of alternative splicing regulation by an intricate protein–RNA network. Great progress has been made by studying individual transcripts and through genome-wide approaches, which together provide a better picture of the mechanistic regulation of alternative pre-mRNA splicing. PMID:19773805

  2. MYCN controls an alternative RNA splicing program in high-risk metastatic neuroblastoma

    PubMed Central

    Zhang, Shile; Wei, Jun S.; Li, Samuel Q.; Badgett, Tom C.; Song, Young K.; Agarwal, Saurabh; Coarfa, Cristian; Tolman, Catherine; Hurd, Laura; Liao, Hongling; He, Jianbin; Wen, Xinyu; Liu, Zhihui; Thiele, Carol J.; Westermann, Frank; Asgharzadeh, Shahab; Seeger, Robert C.; Maris, John M.; Auvil, Jamie M Guidry; Smith, Malcolm A; Kolaczyk, Eric D; Shohet, Jason; Khan, Javed

    2016-01-01

    The molecular mechanisms underlying the aggressive behavior of MYCN driven neuroblastoma (NBL) is under intense investigation; however, little is known about the impact of this family of transcription factors on the splicing program. Here we used high-throughput RNA sequencing to systematically study the expression of RNA isoforms in stage 4 MYCN-amplified NBL, an aggressive subtype of metastatic NBL. We show that MYCN-amplified NBL tumors display a distinct gene splicing pattern affecting multiple cancer hallmark functions. Six splicing factors displayed unique differential expression patterns in MYCN-amplified tumors and cell lines, and the binding motifs for some of these splicing factors are significantly enriched in differentially-spliced genes. Direct binding of MYCN to promoter regions of the splicing factors PTBP1 and HNRNPA1 detected by ChIP-seq demonstrates MYCN controls the splicing pattern by direct regulation of the expression of these key splicing factors. Furthermore, high expression of PTBP1 and HNRNPA1 was significantly associated with poor overall survival of stage4 NBL patients (p≤0.05). Knocking down PTBP1, HNRNPA1 and their downstream target PKM2, an isoform of pro-tumor-growth, result in repressed growth of NBL cells. Therefore, our study reveals a novel role of MYCN in controlling global splicing program through regulation of splicing factors in addition to its well-known role in the transcription program. These findings suggest a therapeutically potential to target the key splicing factors or gene isoforms in high-risk NBL with MYCN-amplification. PMID:26683771

  3. MYCN controls an alternative RNA splicing program in high-risk metastatic neuroblastoma.

    PubMed

    Zhang, Shile; Wei, Jun S; Li, Samuel Q; Badgett, Tom C; Song, Young K; Agarwal, Saurabh; Coarfa, Cristian; Tolman, Catherine; Hurd, Laura; Liao, Hongling; He, Jianbin; Wen, Xinyu; Liu, Zhihui; Thiele, Carol J; Westermann, Frank; Asgharzadeh, Shahab; Seeger, Robert C; Maris, John M; Guidry Auvil, Jamie M; Smith, Malcolm A; Kolaczyk, Eric D; Shohet, Jason; Khan, Javed

    2016-02-28

    The molecular mechanisms underlying the aggressive behavior of MYCN driven neuroblastoma (NBL) is under intense investigation; however, little is known about the impact of this family of transcription factors on the splicing program. Here we used high-throughput RNA sequencing to systematically study the expression of RNA isoforms in stage 4 MYCN-amplified NBL, an aggressive subtype of metastatic NBL. We show that MYCN-amplified NBL tumors display a distinct gene splicing pattern affecting multiple cancer hallmark functions. Six splicing factors displayed unique differential expression patterns in MYCN-amplified tumors and cell lines, and the binding motifs for some of these splicing factors are significantly enriched in differentially-spliced genes. Direct binding of MYCN to promoter regions of the splicing factors PTBP1 and HNRNPA1 detected by ChIP-seq demonstrates that MYCN controls the splicing pattern by direct regulation of the expression of these key splicing factors. Furthermore, high expression of PTBP1 and HNRNPA1 was significantly associated with poor overall survival of stage4 NBL patients (p ≤ 0.05). Knocking down PTBP1, HNRNPA1 and their downstream target PKM2, an isoform of pro-tumor-growth, result in repressed growth of NBL cells. Therefore, our study reveals a novel role of MYCN in controlling global splicing program through regulation of splicing factors in addition to its well-known role in the transcription program. These findings suggest a therapeutically potential to target the key splicing factors or gene isoforms in high-risk NBL with MYCN-amplification. Published by Elsevier Ireland Ltd.

  4. Dominant negative retinoic acid receptor initiates tumor formation in mice.

    PubMed

    Kupumbati, Tara S; Cattoretti, Giorgio; Marzan, Christine; Farias, Eduardo F; Taneja, Reshma; Mira-y-Lopez, Rafael

    2006-03-24

    Retinoic acid suppresses cell growth and promotes cell differentiation, and pharmacological retinoic acid receptor (RAR) activation is anti-tumorigenic. This begs the question of whether chronic physiological RAR activation by endogenous retinoids is likewise anti-tumorigenic. To address this question, we generated transgenic mice in which expression of a ligand binding defective dominant negative RARalpha (RARalphaG303E) was under the control of the mouse mammary tumor virus (MMTV) promoter. The transgene was expressed in the lymphoid compartment and in the mammary epithelium. Observation of aging mice revealed that transgenic mice, unlike their wild type littermates, developed B cell lymphomas at high penetrance, with a median latency of 40 weeks. MMTV-RARalphaG303E lymphomas were high grade Pax-5+, surface H+L Ig negative, CD69+ and BCL6- and cytologically and phenotypically resembled human adult high grade (Burkitt's or lymphoblastic) lymphomas. We postulated that mammary tumors might arise after a long latency period as seen in other transgenic models of breast cancer. We tested this idea by transplanting transgenic epithelium into the cleared fat pads of wild type hosts, thus bypassing lymphomagenesis. At 17 months post-transplantation, a metastatic mammary adenocarcinoma developed in one of four transplanted glands whereas no tumors developed in sixteen of sixteen endogenous glands with wild type epithelium. These findings suggest that physiological RAR activity may normally suppress B lymphocyte and mammary epithelial cell growth and that global RAR inactivation is sufficient to initiate a stochastic process of tumor development requiring multiple transforming events. Our work makes available to the research community a new animal resource that should prove useful as an experimental model of aggressive sporadic lymphoma in immunologically uncompromised hosts. We anticipate that it may also prove useful as a model of breast cancer.

  5. Transcriptional expression analysis of survivin splice variants reveals differential expression of survivin-3α in breast cancer.

    PubMed

    Moniri Javadhesari, Solmaz; Gharechahi, Javad; Hosseinpour Feizi, Mohammad Ali; Montazeri, Vahid; Halimi, Monireh

    2013-04-01

    Survivin, which is a novel member of the inhibitor of apoptosis family proteins, is known to play an important role in the regulation of cell cycle and apoptosis. Differential expression of survivin in tumor tissues introduces it as a new candidate molecular marker for cancer. Here we investigated the expression of survivin and its splice variants in breast tumors, as well as normal adjacent tissues obtained from the same patients. Thirty five tumors and 17 normal adjacent tissues from women diagnosed with breast cancer were explored in this study. Differential expression of different survivin splice variants was detected and semiquantitatively analyzed using reverse transcription-polymerase chain reaction. Results showed that survivin and its splice variants were differentially expressed in tumor specimens compared with normal adjacent tissues. The expression of survivin-3B and survivin-3α was specifically detected in tumor tissues compared with normal adjacent ones (53% in tumor tissues compared to 5% in normal adjacent for survivin-3B and 65% in tumor tissues and 0.0% in normal adjacent tissues for survivin-3α). Statistical analysis showed that survivin and survivin-ΔEx3 were upregulated in benign (90%, p<0.034) and malignant (76%, p<0.042) tumors, respectively. On the other hand, our results showed that survivin-2α (100% of the cases) was the dominant expressed variant of survivin in breast cancer. The data presented here showed that survivin splice variants were differentially expressed in benign and malignant breast cancer tissues, suggesting their potential role in breast cancer development. Differential expression of survivin-2α and survivin-3α splice variants highlights their usefulness as new candidate markers for breast cancer diagnosis and prognosis.

  6. Novel Somatic Mutation in LEMD3 Splice Site Results in Buschke-Ollendorff Syndrome with Polyostotic Melorheostosis and Osteopoikilosis.

    PubMed

    Gutierrez, Daniel; Cooper, Kevin D; Mitchell, Anna L; Cohn, Heather I

    2015-01-01

    Buschke-Ollendorff syndrome is a rare autosomal dominant disorder caused by loss of function in LEMD3, resulting in connective tissue nevi and varying bone dysplasia. Although typically benign, we describe a novel LEMD3 splice site mutation (IVS12 + 1delG) in a 13-year-old boy with Buschke-Ollendorff syndrome presenting with severe skeletal deformities, polyostotic melorheostosis, and osteopoikilosis. © 2015 Wiley Periodicals, Inc.

  7. Miniature fiber Fabry-Perot sensors based on fusion splicing

    NASA Astrophysics Data System (ADS)

    Zhu, Jia-li; Wang, Ming; Yang, Chun-di; Wang, Ting-ting

    2013-03-01

    Fiber-optic Fabry-Perot (F-P) sensors are widely investigated because they have several advantages over conventional sensors, such as immunity to electromagnetic interference, ability to operate under bad environments, high sensitivity and the potential for multiplexing. A new method to fabricate micro-cavity Fabry-Perot interferometer is introduced, which is fusion splicing a section of conventional single-mode fiber (SMF) and a section of hollow core or solid core photonic crystal fiber (PCF) together to form a micro-cavity at the splice joint. The technology of fusion splicing is discussed, and two miniature optical fiber sensors based on Fabry-Perot interference using fusion splicing are presented. The two sensors are completely made of fused silica, and have good high-temperature capability.

  8. Serine/Arginine-Rich Splicing Factor 3 and Heterogeneous Nuclear Ribonucleoprotein A1 Regulate Alternative RNA Splicing and Gene Expression of Human Papillomavirus 18 through Two Functionally Distinguishable cis Elements.

    PubMed

    Ajiro, Masahiko; Tang, Shuang; Doorbar, John; Zheng, Zhi-Ming

    2016-10-15

    Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis-regulatory elements and trans-acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans-acting splicing factors. Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans-acting factors contributing to HPV18 alternative RNA splicing have been discovered in this

  9. Serine/Arginine-Rich Splicing Factor 3 and Heterogeneous Nuclear Ribonucleoprotein A1 Regulate Alternative RNA Splicing and Gene Expression of Human Papillomavirus 18 through Two Functionally Distinguishable cis Elements

    PubMed Central

    Ajiro, Masahiko; Tang, Shuang; Doorbar, John

    2016-01-01

    ABSTRACT Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis-regulatory elements and trans-acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans-acting splicing factors. IMPORTANCE Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans-acting factors contributing to HPV18 alternative RNA splicing have been

  10. Exploiting differential RNA splicing patterns: a potential new group of therapeutic targets in cancer.

    PubMed

    Jyotsana, Nidhi; Heuser, Michael

    2018-02-01

    Mutations in genes associated with splicing have been found in hematologic malignancies, but also in solid cancers. Aberrant cancer specific RNA splicing either results from mutations or misexpression of the spliceosome genes directly, or from mutations in splice sites of oncogenes or tumor suppressors. Areas covered: In this review, we present molecular targets of aberrant splicing in various malignancies, information on existing and emerging therapeutics against such targets, and strategies for future drug development. Expert opinion: Alternative splicing is an important mechanism that controls gene expression, and hence pharmacologic and genetic control of aberrant alternative RNA splicing has been proposed as a potential therapy in cancer. To identify and validate aberrant RNA splicing patterns as therapeutic targets we need to (1) characterize the most common genetic aberrations of the spliceosome and of splice sites, (2) understand the dysregulated downstream pathways and (3) exploit in-vivo disease models of aberrant splicing. Antisense oligonucleotides show promising activity, but will benefit from improved delivery tools. Inhibitors of mutated splicing factors require improved specificity, as alternative and aberrant splicing are often intertwined like two sides of the same coin. In summary, targeting aberrant splicing is an early but emerging field in cancer treatment.

  11. Functional properties of a newly identified C-terminal splice variant of Cav1.3 L-type Ca2+ channels.

    PubMed

    Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E; Sinnegger-Brauns, Martina J; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra

    2011-12-09

    An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Ca(v)1.3 L-type Ca(2+) channels (Ca(v)1.3(L)) is a major determinant of their voltage- and Ca(2+)-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Ca(v)1.3(42A) channels that activate at a more negative voltage range and exhibit more pronounced Ca(2+)-dependent inactivation. Here we describe the discovery of a novel short splice variant (Ca(v)1.3(43S)) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Ca(v)1.3(42A), still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Ca(v)1.3(43S) also activated at more negative voltages like Ca(v)1.3(42A) but Ca(2+)-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Ca(v)1.3(L). The presence of the proximal C terminus in Ca(v)1.3(43S) channels preserved their modulation by distal C terminus-containing Ca(v)1.3- and Ca(v)1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca(2+) influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Ca(v)1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca(2+) channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca(2+) accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca(2+)-induced neurodegenerative processes.

  12. Phosphoproteomics reveals that glycogen synthase kinase-3 phosphorylates multiple splicing factors and is associated with alternative splicing

    PubMed Central

    Shinde, Mansi Y.; Sidoli, Simone; Kulej, Katarzyna; Mallory, Michael J.; Radens, Caleb M.; Reicherter, Amanda L.; Myers, Rebecca L.; Barash, Yoseph; Lynch, Kristen W.; Garcia, Benjamin A.; Klein, Peter S.

    2017-01-01

    Glycogen synthase kinase-3 (GSK-3) is a constitutively active, ubiquitously expressed protein kinase that regulates multiple signaling pathways. In vitro kinase assays and genetic and pharmacological manipulations of GSK-3 have identified more than 100 putative GSK-3 substrates in diverse cell types. Many more have been predicted on the basis of a recurrent GSK-3 consensus motif ((pS/pT)XXX(S/T)), but this prediction has not been tested by analyzing the GSK-3 phosphoproteome. Using stable isotope labeling of amino acids in culture (SILAC) and MS techniques to analyze the repertoire of GSK-3–dependent phosphorylation in mouse embryonic stem cells (ESCs), we found that ∼2.4% of (pS/pT)XXX(S/T) sites are phosphorylated in a GSK-3–dependent manner. A comparison of WT and Gsk3a;Gsk3b knock-out (Gsk3 DKO) ESCs revealed prominent GSK-3–dependent phosphorylation of multiple splicing factors and regulators of RNA biosynthesis as well as proteins that regulate transcription, translation, and cell division. Gsk3 DKO reduced phosphorylation of the splicing factors RBM8A, SRSF9, and PSF as well as the nucleolar proteins NPM1 and PHF6, and recombinant GSK-3β phosphorylated these proteins in vitro. RNA-Seq of WT and Gsk3 DKO ESCs identified ∼190 genes that are alternatively spliced in a GSK-3–dependent manner, supporting a broad role for GSK-3 in regulating alternative splicing. The MS data also identified posttranscriptional regulation of protein abundance by GSK-3, with ∼47 proteins (1.4%) whose levels increased and ∼78 (2.4%) whose levels decreased in the absence of GSK-3. This study provides the first unbiased analysis of the GSK-3 phosphoproteome and strong evidence that GSK-3 broadly regulates alternative splicing. PMID:28916722

  13. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia

    PubMed Central

    Alaa el Din, Ferdos; Patri, Sylvie; Thoreau, Vincent; Rodriguez-Ballesteros, Montserrat; Hamade, Eva; Bailly, Sabine; Gilbert-Dussardier, Brigitte; Abou Merhi, Raghida; Kitzis, Alain

    2015-01-01

    Hereditary Hemorrhagic Telangiectasia syndrome (HHT) or Rendu-Osler-Weber (ROW) syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1or ALK1) genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1), the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val) affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7) was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore, our data demonstrate that functional and splicing analyses together, represent two robust diagnostic tools to be used by geneticists confronted with novel or conflicted ACVRL1 mutations. PMID:26176610

  14. Designing oligo libraries taking alternative splicing into account

    NASA Astrophysics Data System (ADS)

    Shoshan, Avi; Grebinskiy, Vladimir; Magen, Avner; Scolnicov, Ariel; Fink, Eyal; Lehavi, David; Wasserman, Alon

    2001-06-01

    We have designed sequences for DNA microarrays and oligo libraries, taking alternative splicing into account. Alternative splicing is a common phenomenon, occurring in more than 25% of the human genes. In many cases, different splice variants have different functions, are expressed in different tissues or may indicate different stages of disease. When designing sequences for DNA microarrays or oligo libraries, it is very important to take into account the sequence information of all the mRNA transcripts. Therefore, when a gene has more than one transcript (as a result of alternative splicing, alternative promoter sites or alternative poly-adenylation sites), it is very important to take all of them into account in the design. We have used the LEADS transcriptome prediction system to cluster and assemble the human sequences in GenBank and design optimal oligonucleotides for all the human genes with a known mRNA sequence based on the LEADS predictions.

  15. A novel COL11A1 mutation affecting splicing in a patient with Stickler syndrome.

    PubMed

    Kohmoto, Tomohiro; Naruto, Takuya; Kobayashi, Haruka; Watanabe, Miki; Okamoto, Nana; Masuda, Kiyoshi; Imoto, Issei; Okamoto, Nobuhiko

    2015-01-01

    Stickler syndrome is a clinically and genetically heterogeneous collagenopathy characterized by ocular, auditory, skeletal and orofacial abnormalities, commonly occurring as an autosomal dominant trait. We conducted target resequencing to analyze candidate genes associated with known clinical phenotypes from a 4-year-old girl with Stickler syndrome. We detected a novel heterozygous intronic mutation (NM_001854.3:c.3168+5G>A) in COL11A1 that may impair splicing, which was suggested by in silico prediction and a minigene assay.

  16. A novel COL11A1 mutation affecting splicing in a patient with Stickler syndrome

    PubMed Central

    Kohmoto, Tomohiro; Naruto, Takuya; Kobayashi, Haruka; Watanabe, Miki; Okamoto, Nana; Masuda, Kiyoshi; Imoto, Issei; Okamoto, Nobuhiko

    2015-01-01

    Stickler syndrome is a clinically and genetically heterogeneous collagenopathy characterized by ocular, auditory, skeletal and orofacial abnormalities, commonly occurring as an autosomal dominant trait. We conducted target resequencing to analyze candidate genes associated with known clinical phenotypes from a 4-year-old girl with Stickler syndrome. We detected a novel heterozygous intronic mutation (NM_001854.3:c.3168+5G>A) in COL11A1 that may impair splicing, which was suggested by in silico prediction and a minigene assay. PMID:27081549

  17. Transcriptome Bioinformatical Analysis of Vertebrate Stages of Schistosoma japonicum Reveals Alternative Splicing Events

    PubMed Central

    Wang, Xinye; Xu, Xindong; Lu, Xingyu; Zhang, Yuanbin; Pan, Weiqing

    2015-01-01

    Alternative splicing is a molecular process that contributes greatly to the diversification of proteome and to gene functions. Understanding the mechanisms of stage-specific alternative splicing can provide a better understanding of the development of eukaryotes and the functions of different genes. Schistosoma japonicum is an infectious blood-dwelling trematode with a complex lifecycle that causes the tropical disease schistosomiasis. In this study, we analyzed the transcriptome of Schistosoma japonicum to discover alternative splicing events in this parasite, by applying RNA-seq to cDNA library of adults and schistosomula. Results were validated by RT-PCR and sequencing. We found 11,623 alternative splicing events among 7,099 protein encoding genes and average proportion of alternative splicing events per gene was 42.14%. We showed that exon skip is the most common type of alternative splicing events as found in high eukaryotes, whereas intron retention is the least common alternative splicing type. According to intron boundary analysis, the parasite possesses same intron boundaries as other organisms, namely the classic “GT-AG” rule. And in alternative spliced introns or exons, this rule is less strict. And we have attempted to detect alternative splicing events in genes encoding proteins with signal peptides and transmembrane helices, suggesting that alternative splicing could change subcellular locations of specific gene products. Our results indicate that alternative splicing is prevalent in this parasitic worm, and that the worm is close to its hosts. The revealed secretome involved in alternative splicing implies new perspective into understanding interaction between the parasite and its host. PMID:26407301

  18. Dysferlin rescue by spliceosome-mediated pre-mRNA trans-splicing targeting introns harbouring weakly defined 3' splice sites.

    PubMed

    Philippi, Susanne; Lorain, Stéphanie; Beley, Cyriaque; Peccate, Cécile; Précigout, Guillaume; Spuler, Simone; Garcia, Luis

    2015-07-15

    The modification of the pre-mRNA cis-splicing process employing a pre-mRNA trans-splicing molecule (PTM) is an attractive strategy for the in situ correction of genes whose careful transcription regulation and full-length expression is determinative for protein function, as it is the case for the dysferlin (DYSF, Dysf) gene. Loss-of-function mutations of DYSF result in different types of muscular dystrophy mainly manifesting as limb girdle muscular dystrophy 2B (LGMD2B) and Miyoshi muscular dystrophy 1 (MMD1). We established a 3' replacement strategy for mutated DYSF pre-mRNAs induced by spliceosome-mediated pre-mRNA trans-splicing (SmaRT) by the use of a PTM. In contrast to previously established SmaRT strategies, we particularly focused on the identification of a suitable pre-mRNA target intron other than the optimization of the PTM design. By targeting DYSF pre-mRNA introns harbouring differentially defined 3' splice sites (3' SS), we found that target introns encoding weakly defined 3' SSs were trans-spliced successfully in vitro in human LGMD2B myoblasts as well as in vivo in skeletal muscle of wild-type and Dysf(-/-) mice. For the first time, we demonstrate rescue of Dysf protein by SmaRT in vivo. Moreover, we identified concordant qualities among the successfully targeted Dysf introns and targeted endogenous introns in previously reported SmaRT approaches that might facilitate a selective choice of target introns in future SmaRT strategies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria.

    PubMed

    Yoshihisa, Tohru; Yunoki-Esaki, Kaori; Ohshima, Chie; Tanaka, Nobuyuki; Endo, Toshiya

    2003-08-01

    Pre-tRNA splicing has been believed to occur in the nucleus. In yeast, the tRNA splicing endonuclease that cleaves the exon-intron junctions of pre-tRNAs consists of Sen54p, Sen2p, Sen34p, and Sen15p and was thought to be an integral membrane protein of the inner nuclear envelope. Here we show that the majority of Sen2p, Sen54p, and the endonuclease activity are not localized in the nucleus, but on the mitochondrial surface. The endonuclease is peripherally associated with the cytosolic surface of the outer mitochondrial membrane. A Sen54p derivative artificially fixed on the mitochondria as an integral membrane protein can functionally replace the authentic Sen54p, whereas mutant proteins defective in mitochondrial localization are not fully active. sen2 mutant cells accumulate unspliced pre-tRNAs in the cytosol under the restrictive conditions, and this export of the pre-tRNAs partly depends on Los1p, yeast exportin-t. It is difficult to explain these results from the view of tRNA splicing in the nucleus. We rather propose a new possibility that tRNA splicing occurs on the mitochondrial surface in yeast.

  20. Evolutionary conservation and regulation of particular alternative splicing events in plant SR proteins

    PubMed Central

    Kalyna, Maria; Lopato, Sergiy; Voronin, Viktor; Barta, Andrea

    2006-01-01

    Alternative splicing is an important mechanism for fine tuning of gene expression at the post-transcriptional level. SR proteins govern splice site selection and spliceosome assembly. The Arabidopsis genome encodes 19 SR proteins, several of which have no orthologues in metazoan. Three of the plant specific subfamilies are characterized by the presence of a relatively long alternatively spliced intron located in their first RNA recognition motif, which potentially results in an extremely truncated protein. In atRSZ33, a member of the RS2Z subfamily, this alternative splicing event was shown to be autoregulated. Here we show that atRSp31, a member of the RS subfamily, does not autoregulate alternative splicing of its similarily positioned intron. Interestingly, this alternative splicing event is regulated by atRSZ33. We demonstrate that the positions of these long introns and their capability for alternative splicing are conserved from green algae to flowering plants. Moreover, in particular alternative splicing events the splicing signals are embedded into highly conserved sequences. In different taxa, these conserved sequences occur in at least one gene within a subfamily. The evolutionary preservation of alternative splice forms together with highly conserved intron features argues for additional functions hidden in the genes of these plant-specific SR proteins. PMID:16936312

  1. Measurement of Resistance and Strength of Conductor Splices in the Mice Coupling Magnets

    NASA Astrophysics Data System (ADS)

    Xu, F. Y.; Pan, H.; Wu, H.; Lui, X. K.; Li, E.; Green, M. A.; Dietderich, D.; Higley, H. C.; Tam, D. G.; Trillaud, F.; Wang, Li

    2010-04-01

    The superconducting magnets for the Muon Ionization Cooling Experiment [1] (MICE) use a copper based Nb-Ti conductor with un-insulated dimensions of 0.95 by 1.60 mm. There may be as many as twelve splices in one MICE superconducting coupling coil. These splices are to be wound in the coil. The conductor splices produce Joule heating, which may cause the magnet to quench. A technique of making conductor splices was developed by ICST. Two types of 1-meter long of soldered lap-joints have been tested. Side-by-side splices and up-down one splices were studied theoretically and experimentally using two types of soft solder made of eutectic tin-lead solder and tin-silver solder. The resistances of the splices made by ICST were tested at LBNL at liquid helium temperatures over a range of magnetic fields up to 5 T. The breaking strength of 250 mm long splices was also measured at room temperature and liquid nitrogen temperature.

  2. Trans splicing in Leishmania enriettii and identification of ribonucleoprotein complexes containing the spliced leader and U2 equivalent RNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.I.; Wirth, D.F.

    1988-06-01

    The 5' ends of Leishmania mRNAs contain an identical 35-nucleotide sequence termed the spliced leader (SL) or 5' mini-exon. The SL sequence is at the 5' end of an 85-nucleotide primary transcript that contains a consensus eucaryotic 5' intron-exon splice junction immediately 3' to the SL. The SL is added to protein-coding genes immediately 3' to a consensus eucaryotic 3' intron-exon splice junction. The authors' previous work demonstrated possible intermediates in discontinuous mRNA processing that contain the 50 nucleotides of the SL primary transcript 3' to the SL, the SL intron sequence (SLIS). These RNAs have a 5' terminus atmore » the splice junction of the SL and the SLIS. The authors examined a Leishmania nuclear extract for these RNAs in ribonucleoprotein (RNP) particles. Density centrifugation analysis showed that the SL RNA is predominately in RNP complexes at 60S, while the SLIS-containing RNAs are in complexes at 40S. They also demonstrated that the SLIS can be released from polyadenylated RNA by incubation with a HeLa cell extract containing debranching enzymatic activity. These data suggested that Leishmania enriettii mRNAs are assembled by bimolecular or trans splicing as has been recently demonstrated for Trypanosoma brucei. Furthermore, they determined the partial sequence of the Leishmania U2 equivalent RNA and demonstrated that it cosediments with the SL RNA at 60S in a nuclear extract. These RNP particles may be analogous to so-called spliceosomes that have been demonstrated in other systems.« less

  3. Coordinated tissue-specific regulation of adjacent alternative 3′ splice sites in C. elegans

    PubMed Central

    Ragle, James Matthew; Katzman, Sol; Akers, Taylor F.; Barberan-Soler, Sergio; Zahler, Alan M.

    2015-01-01

    Adjacent alternative 3′ splice sites, those separated by ≤18 nucleotides, provide a unique problem in the study of alternative splicing regulation; there is overlap of the cis-elements that define the adjacent sites. Identification of the intron's 3′ end depends upon sequence elements that define the branchpoint, polypyrimidine tract, and terminal AG dinucleotide. Starting with RNA-seq data from germline-enriched and somatic cell-enriched Caenorhabditis elegans samples, we identify hundreds of introns with adjacent alternative 3′ splice sites. We identify 203 events that undergo tissue-specific alternative splicing. For these, the regulation is monodirectional, with somatic cells preferring to splice at the distal 3′ splice site (furthest from the 5′ end of the intron) and germline cells showing a distinct shift toward usage of the adjacent proximal 3′ splice site (closer to the 5′ end of the intron). Splicing patterns in somatic cells follow C. elegans consensus rules of 3′ splice site definition; a short stretch of pyrimidines preceding an AG dinucleotide. Splicing in germline cells occurs at proximal 3′ splice sites that lack a preceding polypyrimidine tract, and in three instances the germline-specific site lacks the AG dinucleotide. We provide evidence that use of germline-specific proximal 3′ splice sites is conserved across Caenorhabditis species. We propose that there are differences between germline and somatic cells in the way that the basal splicing machinery functions to determine the intron terminus. PMID:25922281

  4. Splicing regulation and dysregulation of cholinergic genes expressed at the neuromuscular junction.

    PubMed

    Ohno, Kinji; Rahman, Mohammad Alinoor; Nazim, Mohammad; Nasrin, Farhana; Lin, Yingni; Takeda, Jun-Ichi; Masuda, Akio

    2017-08-01

    We humans have evolved by acquiring diversity of alternative RNA metabolisms including alternative means of splicing and transcribing non-coding genes, and not by acquiring new coding genes. Tissue-specific and developmental stage-specific alternative RNA splicing is achieved by tightly regulated spatiotemporal regulation of expressions and activations of RNA-binding proteins that recognize their cognate splicing cis-elements on nascent RNA transcripts. Genes expressed at the neuromuscular junction are also alternatively spliced. In addition, germline mutations provoke aberrant splicing by compromising binding of RNA-binding proteins, and cause congenital myasthenic syndromes (CMS). We present physiological splicing mechanisms of genes for agrin (AGRN), acetylcholinesterase (ACHE), MuSK (MUSK), acetylcholine receptor (AChR) α1 subunit (CHRNA1), and collagen Q (COLQ) in human, and their aberration in diseases. Splicing isoforms of AChE T , AChE H , and AChE R are generated by hnRNP H/F. Skipping of MUSK exon 10 makes a Wnt-insensitive MuSK isoform, which is unique to human. Skipping of exon 10 is achieved by coordinated binding of hnRNP C, YB-1, and hnRNP L to exon 10. Exon P3A of CHRNA1 is alternatively included to generate a non-functional AChR α1 subunit in human. Molecular dissection of splicing mutations in patients with CMS reveals that exon P3A is alternatively skipped by hnRNP H, polypyrimidine tract-binding protein 1, and hnRNP L. Similarly, analysis of an exonic mutation in COLQ exon 16 in a CMS patient discloses that constitutive splicing of exon 16 requires binding of serine arginine-rich splicing factor 1. Intronic and exonic splicing mutations in CMS enable us to dissect molecular mechanisms underlying alternative and constitutive splicing of genes expressed at the neuromuscular junction. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  5. Spliced integrated retrotransposed element (SpIRE) formation in the human genome.

    PubMed

    Larson, Peter A; Moldovan, John B; Jasti, Naveen; Kidd, Jeffrey M; Beck, Christine R; Moran, John V

    2018-03-01

    Human Long interspersed element-1 (L1) retrotransposons contain an internal RNA polymerase II promoter within their 5' untranslated region (UTR) and encode two proteins, (ORF1p and ORF2p) required for their mobilization (i.e., retrotransposition). The evolutionary success of L1 relies on the continuous retrotransposition of full-length L1 mRNAs. Previous studies identified functional splice donor (SD), splice acceptor (SA), and polyadenylation sequences in L1 mRNA and provided evidence that a small number of spliced L1 mRNAs retrotransposed in the human genome. Here, we demonstrate that the retrotransposition of intra-5'UTR or 5'UTR/ORF1 spliced L1 mRNAs leads to the generation of spliced integrated retrotransposed elements (SpIREs). We identified a new intra-5'UTR SpIRE that is ten times more abundant than previously identified SpIREs. Functional analyses demonstrated that both intra-5'UTR and 5'UTR/ORF1 SpIREs lack Cis-acting transcription factor binding sites and exhibit reduced promoter activity. The 5'UTR/ORF1 SpIREs also produce nonfunctional ORF1p variants. Finally, we demonstrate that sequence changes within the L1 5'UTR over evolutionary time, which permitted L1 to evade the repressive effects of a host protein, can lead to the generation of new L1 splicing events, which, upon retrotransposition, generates a new SpIRE subfamily. We conclude that splicing inhibits L1 retrotransposition, SpIREs generally represent evolutionary "dead-ends" in the L1 retrotransposition process, mutations within the L1 5'UTR alter L1 splicing dynamics, and that retrotransposition of the resultant spliced transcripts can generate interindividual genomic variation.

  6. Function of Apollo (SNM1B) at telomere highlighted by a splice variant identified in a patient with Hoyeraal–Hreidarsson syndrome

    PubMed Central

    Touzot, Fabien; Callebaut, Isabelle; Soulier, Jean; Gaillard, Laetitia; Azerrad, Chantal; Durandy, Anne; Fischer, Alain; de Villartay, Jean-Pierre; Revy, Patrick

    2010-01-01

    Telomeres, the protein–DNA complexes at the ends of linear chromosomes, are protected and regulated by the shelterin molecules, the telomerase complex, and other accessory factors, among which is Apollo, a DNA repair factor of the β-lactamase/β-CASP family. Impaired telomere protection in humans causes dyskeratosis congenita and Hoyeraal–Hreidarsson (HH) syndrome, characterized by premature aging, bone marrow failure, and immunodeficiency. We identified a unique Apollo splice variant (designated Apollo-Δ) in fibroblasts from a patient with HH syndrome. Apollo-Δ generates a dominant negative form of Apollo lacking the telomeric repeat-binding factor homology (TRFH)-binding motif (TBM) required for interaction with the shelterin TRF2 at telomeres. Apollo-Δ hampers the proper replication of telomeres, leading to major telomeric dysfunction and cellular senescence, but maintains its DNA interstrand cross-link repair function in the whole genome. These results identify Apollo as a crucial actor in telomere maintenance in vivo, independent of its function as a general DNA repair factor. PMID:20479256

  7. Function of Apollo (SNM1B) at telomere highlighted by a splice variant identified in a patient with Hoyeraal-Hreidarsson syndrome.

    PubMed

    Touzot, Fabien; Callebaut, Isabelle; Soulier, Jean; Gaillard, Laetitia; Azerrad, Chantal; Durandy, Anne; Fischer, Alain; de Villartay, Jean-Pierre; Revy, Patrick

    2010-06-01

    Telomeres, the protein-DNA complexes at the ends of linear chromosomes, are protected and regulated by the shelterin molecules, the telomerase complex, and other accessory factors, among which is Apollo, a DNA repair factor of the beta-lactamase/beta-CASP family. Impaired telomere protection in humans causes dyskeratosis congenita and Hoyeraal-Hreidarsson (HH) syndrome, characterized by premature aging, bone marrow failure, and immunodeficiency. We identified a unique Apollo splice variant (designated Apollo-Delta) in fibroblasts from a patient with HH syndrome. Apollo-Delta generates a dominant negative form of Apollo lacking the telomeric repeat-binding factor homology (TRFH)-binding motif (TBM) required for interaction with the shelterin TRF2 at telomeres. Apollo-Delta hampers the proper replication of telomeres, leading to major telomeric dysfunction and cellular senescence, but maintains its DNA interstrand cross-link repair function in the whole genome. These results identify Apollo as a crucial actor in telomere maintenance in vivo, independent of its function as a general DNA repair factor.

  8. Sensing and splicing applications of small core Ge-doped photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Brueckner, Sven; Kobelke, Jens; Rothhardt, Manfred; Ecke, Wolfgang; Willsch, Reinhardt; Bartelt, Hartmut

    2008-04-01

    Sensor related properties of a small core (4.1μm) Ge-doped photonic crystal fiber (PCF) are being reported. Fiber Bragg gratings with 35% and almost 100 % reflectivity were written in the Ge-doped PCF before and after hydrogen loading, respectively, by use of a UV laser. A 5.6pm/°C temperature sensitivity of the FBG was observed. Additionally, a novel method is demonstrated to splice such PCF by use of a commercial fusion splicer with default splice parameters for standard single mode fibers (SMF). No parameter adjustments are required to splice the PCF to various SMFs and a low splice loss of 1.0 ~ 1.4dB can be achieved. No splice interface emerges at the splice joint, which is of advantage for the sensing applications of such a PCF.

  9. TopHat: discovering splice junctions with RNA-Seq

    PubMed Central

    Trapnell, Cole; Pachter, Lior; Salzberg, Steven L.

    2009-01-01

    Motivation: A new protocol for sequencing the messenger RNA in a cell, known as RNA-Seq, generates millions of short sequence fragments in a single run. These fragments, or ‘reads’, can be used to measure levels of gene expression and to identify novel splice variants of genes. However, current software for aligning RNA-Seq data to a genome relies on known splice junctions and cannot identify novel ones. TopHat is an efficient read-mapping algorithm designed to align reads from an RNA-Seq experiment to a reference genome without relying on known splice sites. Results: We mapped the RNA-Seq reads from a recent mammalian RNA-Seq experiment and recovered more than 72% of the splice junctions reported by the annotation-based software from that study, along with nearly 20 000 previously unreported junctions. The TopHat pipeline is much faster than previous systems, mapping nearly 2.2 million reads per CPU hour, which is sufficient to process an entire RNA-Seq experiment in less than a day on a standard desktop computer. We describe several challenges unique to ab initio splice site discovery from RNA-Seq reads that will require further algorithm development. Availability: TopHat is free, open-source software available from http://tophat.cbcb.umd.edu Contact: cole@cs.umd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19289445

  10. Human Splice-Site Prediction with Deep Neural Networks.

    PubMed

    Naito, Tatsuhiko

    2018-04-18

    Accurate splice-site prediction is essential to delineate gene structures from sequence data. Several computational techniques have been applied to create a system to predict canonical splice sites. For classification tasks, deep neural networks (DNNs) have achieved record-breaking results and often outperformed other supervised learning techniques. In this study, a new method of splice-site prediction using DNNs was proposed. The proposed system receives an input sequence data and returns an answer as to whether it is splice site. The length of input is 140 nucleotides, with the consensus sequence (i.e., "GT" and "AG" for the donor and acceptor sites, respectively) in the middle. Each input sequence model is applied to the pretrained DNN model that determines the probability that an input is a splice site. The model consists of convolutional layers and bidirectional long short-term memory network layers. The pretraining and validation were conducted using the data set tested in previously reported methods. The performance evaluation results showed that the proposed method can outperform the previous methods. In addition, the pattern learned by the DNNs was visualized as position frequency matrices (PFMs). Some of PFMs were very similar to the consensus sequence. The trained DNN model and the brief source code for the prediction system are uploaded. Further improvement will be achieved following the further development of DNNs.

  11. Unusual Intron Conservation near Tissue-Regulated Exons Found by Splicing Microarrays

    PubMed Central

    Sugnet, Charles W; Srinivasan, Karpagam; Clark, Tyson A; O'Brien, Georgeann; Cline, Melissa S; Wang, Hui; Williams, Alan; Kulp, David; Blume, John E; Haussler, David; Ares, Manuel

    2006-01-01

    Alternative splicing contributes to both gene regulation and protein diversity. To discover broad relationships between regulation of alternative splicing and sequence conservation, we applied a systems approach, using oligonucleotide microarrays designed to capture splicing information across the mouse genome. In a set of 22 adult tissues, we observe differential expression of RNA containing at least two alternative splice junctions for about 40% of the 6,216 alternative events we could detect. Statistical comparisons identify 171 cassette exons whose inclusion or skipping is different in brain relative to other tissues and another 28 exons whose splicing is different in muscle. A subset of these exons is associated with unusual blocks of intron sequence whose conservation in vertebrates rivals that of protein-coding exons. By focusing on sets of exons with similar regulatory patterns, we have identified new sequence motifs implicated in brain and muscle splicing regulation. Of note is a motif that is strikingly similar to the branchpoint consensus but is located downstream of the 5′ splice site of exons included in muscle. Analysis of three paralogous membrane-associated guanylate kinase genes reveals that each contains a paralogous tissue-regulated exon with a similar tissue inclusion pattern. While the intron sequences flanking these exons remain highly conserved among mammalian orthologs, the paralogous flanking intron sequences have diverged considerably, suggesting unusually complex evolution of the regulation of alternative splicing in multigene families. PMID:16424921

  12. Fluorescence Reporter-Based Genome-Wide RNA Interference Screening to Identify Alternative Splicing Regulators.

    PubMed

    Misra, Ashish; Green, Michael R

    2017-01-01

    Alternative splicing is a regulated process that leads to inclusion or exclusion of particular exons in a pre-mRNA transcript, resulting in multiple protein isoforms being encoded by a single gene. With more than 90 % of human genes known to undergo alternative splicing, it represents a major source for biological diversity inside cells. Although in vitro splicing assays have revealed insights into the mechanisms regulating individual alternative splicing events, our global understanding of alternative splicing regulation is still evolving. In recent years, genome-wide RNA interference (RNAi) screening has transformed biological research by enabling genome-scale loss-of-function screens in cultured cells and model organisms. In addition to resulting in the identification of new cellular pathways and potential drug targets, these screens have also uncovered many previously unknown mechanisms regulating alternative splicing. Here, we describe a method for the identification of alternative splicing regulators using genome-wide RNAi screening, as well as assays for further validation of the identified candidates. With modifications, this method can also be adapted to study the splicing regulation of pre-mRNAs that contain two or more splice isoforms.

  13. Identification of Mutations Causing Aberrant Termination and Deficient Splice Donor Site on the HBA1 Gene.

    PubMed

    Farashi, Samaneh; Vakili, Shadi; Garous, Negin F; Ashki, Mehri; Forouzesh Pour, Fatemeh; Zeinali, Fatemeh; Rad, Fariba; Imanian, Hashem; Azarkeivan, Azita; Najmabadi, Hossein

    2016-01-01

    α-Thalassemia (α-thal) is a common genetic disorder in Iran and many parts of the world. Genetic defects on the α-globin gene cluster can result in α-thal that may develop a clinical phenotype varying from almost asymptomatic to a lethal hemolytic anemia. In the present study, four Iranian individuals with hypochromic microcytic anemia, who revealed none of the known mutations responsible for α-thal, were subjected for further investigations. The thalassemic phenotype of these patients resulted from abnormal RNA splicing sites owing to a missense at the splice donor site, a truncated protein or hemoglobin (Hb) variants as a result of two different substitutions on the α1-globin gene. The clinical presentation of mild anemia in these individuals showed the contribution of these novel mutations in α-thal in spite of the dominantly expressed α2-globin gene. This study describes hematological manifestations of subjects carrying some novel mutations comparable to the reported phenotype of α(+)-thal trait.

  14. Helicase-inactivating mutations as a basis for dominant negative phenotypes

    PubMed Central

    Wu, Yuliang

    2010-01-01

    There is ample evidence from studies of both unicellular and multicellular organisms that helicase-inactivating mutations lead to cellular dysfunction and disease phenotypes. In this review, we will discuss the mechanisms underlying the basis for abnormal phenotypes linked to mutations in genes encoding DNA helicases. Recent evidence demonstrates that a clinically relevant patient missense mutation in Fanconi Anemia Complementation Group J exerts detrimental effects on the biochemical activities of the FANC J helicase, and these molecular defects are responsible for aberrant genomic stability and a poor DNA damage response. The ability of FANC J to use the energy from AT P hydrolysis to produce the force required to unwind duplex or G-quadruplex DNA structures or destabilize protein bound to DNA is required for its DNA repair functions in vivo. Strikingly, helicase-inactivating mutations can exert a spectrum of dominant negative phenotypes, indicating that expression of the mutant helicase protein potentially interferes with normal DNA metabolism and has an effect on basic cellular processes such as DNA replication, the DNA damage response and protein trafficking. This review emphasizes that future studies of clinically relevant mutations in helicase genes will be important to understand the molecular pathologies of the associated diseases and their impact on heterozygote carriers. PMID:20980836

  15. Purifying Selection on Exonic Splice Enhancers in Intronless Genes

    PubMed Central

    Savisaar, Rosina; Hurst, Laurence D.

    2016-01-01

    Exonic splice enhancers (ESEs) are short nucleotide motifs, enriched near exon ends, that enhance the recognition of the splice site and thus promote splicing. Are intronless genes under selection to avoid these motifs so as not to attract the splicing machinery to an mRNA that should not be spliced, thereby preventing the production of an aberrant transcript? Consistent with this possibility, we find that ESEs in putative recent retrocopies are at a higher density and evolving faster than those in other intronless genes, suggesting that they are being lost. Moreover, intronless genes are less dense in putative ESEs than intron-containing ones. However, this latter difference is likely due to the skewed base composition of intronless sequences, a skew that is in line with the general GC richness of few exon genes. Indeed, after controlling for such biases, we find that both intronless and intron-containing genes are denser in ESEs than expected by chance. Importantly, nucleotide-controlled analysis of evolutionary rates at synonymous sites in ESEs indicates that the ESEs in intronless genes are under purifying selection in both human and mouse. We conclude that on the loss of introns, some but not all, ESE motifs are lost, the remainder having functions beyond a role in splice promotion. These results have implications for the design of intronless transgenes and for understanding the causes of selection on synonymous sites. PMID:26802218

  16. Unusual splice site mutations disrupt FANCA exon 8 definition.

    PubMed

    Mattioli, Chiara; Pianigiani, Giulia; De Rocco, Daniela; Bianco, Anna Monica Rosaria; Cappelli, Enrico; Savoia, Anna; Pagani, Franco

    2014-07-01

    The pathological role of mutations that affect not conserved splicing regulatory sequences can be difficult to determine. In a patient with Fanconi anemia, we identified two unpredictable splicing mutations that act on either sides of FANCA exon 8. In patients-derived cells and in minigene splicing assay, we showed that both an apparently benign intronic c.710-5T>C transition and the nonsense c.790C>T substitution induce almost complete exon 8 skipping. Site-directed mutagenesis experiments indicated that the c.710-5T>C transition affects a polypyrimidine tract where most of the thymidines cannot be compensated by cytidines. The c.790C>T mutation located in position -3 relative to the donor site induce exon 8 skipping in an NMD-independent manner and complementation experiments with modified U1 snRNAs showed that U1 snRNP is only partially involved in the splicing defect. Our results highlight the importance of performing splicing functional assay for correct identification of disease-causing mechanism of genomic variants and provide mechanistic insights on how these two FANCA mutations affect exon 8 definition. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Inference of alternative splicing from RNA-Seq data with probabilistic splice graphs

    PubMed Central

    LeGault, Laura H.; Dewey, Colin N.

    2013-01-01

    Motivation: Alternative splicing and other processes that allow for different transcripts to be derived from the same gene are significant forces in the eukaryotic cell. RNA-Seq is a promising technology for analyzing alternative transcripts, as it does not require prior knowledge of transcript structures or genome sequences. However, analysis of RNA-Seq data in the presence of genes with large numbers of alternative transcripts is currently challenging due to efficiency, identifiability and representation issues. Results: We present RNA-Seq models and associated inference algorithms based on the concept of probabilistic splice graphs, which alleviate these issues. We prove that our models are often identifiable and demonstrate that our inference methods for quantification and differential processing detection are efficient and accurate. Availability: Software implementing our methods is available at http://deweylab.biostat.wisc.edu/psginfer. Contact: cdewey@biostat.wisc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23846746

  18. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure.

    PubMed

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J; Rau, Christoph D; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2016-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload-induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease.

  19. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure

    PubMed Central

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J.; Rau, Christoph D.; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M.; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2015-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload–induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease. PMID:26619120

  20. Antiapoptotic and Trophic Effects of Dominant-Negative Forms of Dual Leucine Zipper Kinase in Dopamine Neurons of the Substantia Nigra In Vivo

    PubMed Central

    Chen, Xiqun; Rzhetskaya, Margarita; Kareva, Tatyana; Bland, Ross; During, Matthew J.; Tank, A. William; Kholodilov, Nikolai; Burke, Robert E.

    2009-01-01

    There is extensive evidence that the mitogen-activated protein kinase (MAPK) signaling cascade mediates programmed cell death in neurons. However, current evidence that the mixed linage kinases (MLKs), upstream in this cascade, mediate cell death is based, in the in vivo context, entirely on pharmacological approaches. The compounds used in these studies have neither complete specificity nor selectivity among these kinases. Therefore, to better address the molecular specificity of the MLKs in mediating neuron death, we used dominant-negative constructs delivered by AAV (adenoassociated virus) vector transfer. We assessed effects in a neurotoxin model of parkinsonism, in which neuroprotection by pharmacologic MLK inhibition has been reported. We find that two dominant-negative forms of dual leucine zipper kinase (DLK) inhibit apoptosis and enhance long-term survival of dopamine neurons, but a dominant negative of MLK3 does not. Interestingly, the kinase-dead form of DLK not only blocks apoptosis but also has trophic effects on dopamine neurons. Although the MAPK cascade activates a number of downstream cell death mediators, we find that inhibition of DLK correlates closely with blockade of phosphorylation of c-jun and prevention of cell death. We conclude that DLK acts primarily through c-jun phosphorylation to mediate cell death in this model. PMID:18199767

  1. Optimal chroma-like channel design for passive color image splicing detection

    NASA Astrophysics Data System (ADS)

    Zhao, Xudong; Li, Shenghong; Wang, Shilin; Li, Jianhua; Yang, Kongjin

    2012-12-01

    Image splicing is one of the most common image forgeries in our daily life and due to the powerful image manipulation tools, image splicing is becoming easier and easier. Several methods have been proposed for image splicing detection and all of them worked on certain existing color channels. However, the splicing artifacts vary in different color channels and the selection of color model is important for image splicing detection. In this article, instead of finding an existing color model, we propose a color channel design method to find the most discriminative channel which is referred to as optimal chroma-like channel for a given feature extraction method. Experimental results show that both spatial and frequency features extracted from the designed channel achieve higher detection rate than those extracted from traditional color channels.

  2. Dominant negative mutant of ionotropic glutamate receptor subunit GluR3: implications for the role of a cysteine residue for its channel activity and pharmacological properties.

    PubMed Central

    Watase, K; Sekiguchi, M; Matsui, T A; Tagawa, Y; Wada, K

    1997-01-01

    We reported that a 33-amino-acid deletion (from tyrosine-715 to glycine-747) in a putative extracellular loop of GluR3 produced a mutant that exhibited dominant negative effects upon the functional expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors [Sekiguchi et al. (1994) J. Biol. Chem. 269, 14559-14565]. In this study, we searched for a key residue in the dominant negative effects to explore the mechanism and examined the role of the residue in the function of the AMPA receptor. We prepared 20 GluR3 mutants with amino acid substitutions within the 33-amino-acid-region, and dominant negative effects were tested electrophysiologically in Xenopus oocytes co-expressing the mutant and normal subunits. Among the mutants, only a GluR3 mutant in which an original cysteine (Cys)-722 was replaced by alanine exhibited a dominant negative effect comparable with that of the original mutant in which the entire 33-amino-acid segment is deleted. The co-expression of the Cys-722 mutant did not inhibit the translation of normal subunits in oocytes. The Cys-722 mutant formed a functional homomeric receptor with significantly higher affinity for glutamate or kainate than a homomeric GluR3 receptor. The Cys-722 mutation greatly enhanced the sensitivity of GluR3 for aniracetam, which alters kinetic properties of AMPA receptors. The kainate-induced currents in oocytes expressing the Cys-722 mutant alone showed strong inward rectification. These results suggest that the Cys-722 in GluR3 is important for dominant negative effects and plays a crucial role in the determination of pharmacological properties in AMPA receptor function. PMID:9065754

  3. A Systems-Level Analysis Reveals Circadian Regulation of Splicing in Colorectal Cancer.

    PubMed

    El-Athman, Rukeia; Fuhr, Luise; Relógio, Angela

    2018-06-20

    Accumulating evidence points to a significant role of the circadian clock in the regulation of splicing in various organisms, including mammals. Both dysregulated circadian rhythms and aberrant pre-mRNA splicing are frequently implicated in human disease, in particular in cancer. To investigate the role of the circadian clock in the regulation of splicing in a cancer progression context at the systems-level, we conducted a genome-wide analysis and compared the rhythmic transcriptional profiles of colon carcinoma cell lines SW480 and SW620, derived from primary and metastatic sites of the same patient, respectively. We identified spliceosome components and splicing factors with cell-specific circadian expression patterns including SRSF1, HNRNPLL, ESRP1, and RBM 8A, as well as altered alternative splicing events and circadian alternative splicing patterns of output genes (e.g., VEGFA, NCAM1, FGFR2, CD44) in our cellular model. Our data reveals a remarkable interplay between the circadian clock and pre-mRNA splicing with putative consequences in tumor progression and metastasis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Spliced integrated retrotransposed element (SpIRE) formation in the human genome

    PubMed Central

    Larson, Peter A.; Moldovan, John B.; Jasti, Naveen; Kidd, Jeffrey M.; Beck, Christine R.; Moran, John V.

    2018-01-01

    Human Long interspersed element-1 (L1) retrotransposons contain an internal RNA polymerase II promoter within their 5′ untranslated region (UTR) and encode two proteins, (ORF1p and ORF2p) required for their mobilization (i.e., retrotransposition). The evolutionary success of L1 relies on the continuous retrotransposition of full-length L1 mRNAs. Previous studies identified functional splice donor (SD), splice acceptor (SA), and polyadenylation sequences in L1 mRNA and provided evidence that a small number of spliced L1 mRNAs retrotransposed in the human genome. Here, we demonstrate that the retrotransposition of intra-5′UTR or 5′UTR/ORF1 spliced L1 mRNAs leads to the generation of spliced integrated retrotransposed elements (SpIREs). We identified a new intra-5′UTR SpIRE that is ten times more abundant than previously identified SpIREs. Functional analyses demonstrated that both intra-5′UTR and 5′UTR/ORF1 SpIREs lack Cis-acting transcription factor binding sites and exhibit reduced promoter activity. The 5′UTR/ORF1 SpIREs also produce nonfunctional ORF1p variants. Finally, we demonstrate that sequence changes within the L1 5′UTR over evolutionary time, which permitted L1 to evade the repressive effects of a host protein, can lead to the generation of new L1 splicing events, which, upon retrotransposition, generates a new SpIRE subfamily. We conclude that splicing inhibits L1 retrotransposition, SpIREs generally represent evolutionary “dead-ends” in the L1 retrotransposition process, mutations within the L1 5′UTR alter L1 splicing dynamics, and that retrotransposition of the resultant spliced transcripts can generate interindividual genomic variation. PMID:29505568

  5. RNA structure in splicing: An evolutionary perspective.

    PubMed

    Lin, Chien-Ling; Taggart, Allison J; Fairbrother, William G

    2016-09-01

    Pre-mRNA splicing is a key post-transcriptional regulation process in which introns are excised and exons are ligated together. A novel class of structured intron was recently discovered in fish. Simple expansions of complementary AC and GT dimers at opposite boundaries of an intron were found to form a bridging structure, thereby enforcing correct splice site pairing across the intron. In some fish introns, the RNA structures are strong enough to bypass the need of regulatory protein factors for splicing. Here, we discuss the prevalence and potential functions of highly structured introns. In humans, structured introns usually arise through the co-occurrence of C and G-rich repeats at intron boundaries. We explore the potentially instructive example of the HLA receptor genes. In HLA pre-mRNA, structured introns flank the exons that encode the highly polymorphic β sheet cleft, making the processing of the transcript robust to variants that disrupt splicing factor binding. While selective forces that have shaped HLA receptor are fairly atypical, numerous other highly polymorphic genes that encode receptors contain structured introns. Finally, we discuss how the elevated mutation rate associated with the simple repeats that often compose structured intron can make structured introns themselves rapidly evolving elements.

  6. A novel protein factor is required for use of distal alternative 5' splice sites in vitro.

    PubMed Central

    Harper, J E; Manley, J L

    1991-01-01

    Adenovirus E1A pre-mRNA was used as a model to examine alternative 5' splice site selection during in vitro splicing reactions. Strong preference for the downstream 13S 5' splice site over the upstream 12S or 9S 5' splice sites was observed. However, the 12S 5' splice site was used efficiently when a mutant pre-mRNA lacking the 13S 5' splice site was processed, and 12S splicing from this substrate was not reduced by 13S splicing from a separate pre-mRNA, demonstrating that 13S splicing reduced 12S 5' splice site selection through a bona fide cis-competition. DEAE-cellulose chromatography of nuclear extract yielded two fractions with different splicing activities. The bound fraction contained all components required for efficient splicing of simple substrates but was unable to utilize alternative 5' splice sites. In contrast, the flow-through fraction, which by itself was inactive, contained an activity required for alternative splicing and was shown to stimulate 12S and 9S splicing, while reducing 13S splicing, when added to reactions carried out by the bound fraction. Furthermore, the activity, which we have called distal splicing factor (DSF), enhanced utilization of an upstream 5' splice site on a simian virus 40 early pre-mRNA, suggesting that the factor acts in a position-dependent, substrate-independent fashion. Several lines of evidence are presented suggesting that DSF is a non-small nuclear ribonucleoprotein protein. Finally, we describe a functional interaction between DSF and ASF, a protein that enhances use of downstream 5' splice sites. Images PMID:1658620

  7. A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila

    PubMed Central

    Gao, Jun-Li; Fan, Yu-Jie; Wang, Xiu-Ye; Zhang, Yu; Pu, Jia; Li, Liang; Shao, Wei; Zhan, Shuai; Hao, Jianjiang

    2015-01-01

    Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5′ intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5′ intron finds the 3′ introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5′ intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing. PMID:25838544

  8. Dominant-negative diabetes insipidus and other endocrinopathies

    PubMed Central

    Phillips, John A.

    2003-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) in humans is an autosomal dominant disorder caused by a variety of mutations in the arginine vasopressin (AVP) precursor. A new report demonstrates how heterozygosity for an AVP mutation causes FNDI (see the related article beginning on page 1697). Using an AVP knock-in mutation in mice, the study shows that FNDI is caused by retention of AVP precursors and progressive loss of AVP-producing neurons. PMID:14660740

  9. Alternative RNA splicing of leucocyte tissue transglutaminase in coeliac disease.

    PubMed

    Arbildi, P; Sóñora, C; Del Río, N; Marqués, J M; Hernández, A

    2018-05-01

    Tissue transglutaminase is a ubiquitous and multifunctional protein that contributes to several processes such as apoptosis/survival, efferocytosis, inflammation and tissue repairing under physiological and pathological conditions. Several activities can be associated with well-established functional domains; in addition, four RNA alternative splice variants have been described, characterized by sequence divergences and residues deletion at the C-terminal domains. Tissue transglutaminase is recognized as the central player in the physiopathology of coeliac disease (CD) mainly through calcium-dependent enzymatic activities. It can be hypothesized that differential regulation of tissue transglutaminase splice variants expression in persons with CD contributes to pathology by altering the protein functionality. We characterized the expression pattern of RNA alternative splice variants by RT-PCR in peripheral cells from patients with CD under free gluten diet adhesion; we considered inflammatory parameters and specific antibodies as markers of the stage of disease. We found significant higher expression of both the full length and the shortest C-truncated splice variants in leucocytes from patients with CD in comparison with healthy individuals. As tissue transglutaminase expression and canonical enzymatic activity are linked to inflammation, we studied the RNA expression of inflammatory cytokines in peripheral leucocytes of persons with CD in relation with splice variants expression; interestingly, we found that recently diagnosed patients showed significant correlation between both the full length and the shortest alternative spliced variants with IL-1 expression. Our results points that regulation of alternative splicing of tissue transglutaminase could account for the complex physiopathology of CD. © 2018 The Foundation for the Scandinavian Journal of Immunology.

  10. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides.

    PubMed

    Igreja, Susana; Clarke, Luka A; Botelho, Hugo M; Marques, Luís; Amaral, Margarida D

    2016-02-01

    Cystic fibrosis (CF), the most common life-threatening genetic disease in Caucasians, is caused by ∼2,000 different mutations in the CF transmembrane conductance regulator (CFTR) gene. A significant fraction of these (∼13%) affect pre-mRNA splicing for which novel therapies have been somewhat neglected. We have previously described the effect of the CFTR splicing mutation c.2657+5G>A in IVS16, showing that it originates transcripts lacking exon 16 as well as wild-type transcripts. Here, we tested an RNA-based antisense oligonucleotide (AON) strategy to correct the aberrant splicing caused by this mutation. Two AONs (AON1/2) complementary to the pre-mRNA IVS16 mutant region were designed and their effect on splicing was assessed at the RNA and protein levels, on intracellular protein localization and function. To this end, we used the 2657+5G>A mutant CFTR minigene stably expressed in HEK293 Flp-In cells that express a single copy of the transgene. RNA data from AON1-treated mutant cells show that exon 16 inclusion was almost completely restored (to 95%), also resulting in increased levels of correctly localized CFTR protein at the plasma membrane (PM) and with increased function. A novel two-color CFTR splicing reporter minigene developed here allowed the quantitative monitoring of splicing by automated microscopy localization of CFTR at the PM. The AON strategy is thus a promising therapeutic approach for the specific correction of alternative splicing. © 2015 WILEY PERIODICALS, INC.

  11. Hypoxia regulates alternative splicing of HIF and non-HIF target genes.

    PubMed

    Sena, Johnny A; Wang, Liyi; Heasley, Lynn E; Hu, Cheng-Jun

    2014-09-01

    Hypoxia is a common characteristic of many solid tumors. The hypoxic microenvironment stabilizes hypoxia-inducible transcription factor 1α (HIF1α) and 2α (HIF2α/EPAS1) to activate gene transcription, which promotes tumor cell survival. The majority of human genes are alternatively spliced, producing RNA isoforms that code for functionally distinct proteins. Thus, an effective hypoxia response requires increased HIF target gene expression as well as proper RNA splicing of these HIF-dependent transcripts. However, it is unclear if and how hypoxia regulates RNA splicing of HIF targets. This study determined the effects of hypoxia on alternative splicing (AS) of HIF and non-HIF target genes in hepatocellular carcinoma cells and characterized the role of HIF in regulating AS of HIF-induced genes. The results indicate that hypoxia generally promotes exon inclusion for hypoxia-induced, but reduces exon inclusion for hypoxia-reduced genes. Mechanistically, HIF activity, but not hypoxia per se is found to be necessary and sufficient to increase exon inclusion of several HIF targets, including pyruvate dehydrogenase kinase 1 (PDK1). PDK1 splicing reporters confirm that transcriptional activation by HIF is sufficient to increase exon inclusion of PDK1 splicing reporter. In contrast, transcriptional activation of a PDK1 minigene by other transcription factors in the absence of endogenous HIF target gene activation fails to alter PDK1 RNA splicing. This study demonstrates a novel function of HIF in regulating RNA splicing of HIF target genes. ©2014 American Association for Cancer Research.

  12. Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors

    PubMed Central

    Risso, Guillermo J.; Pawellek, Andrea; Ule, Jernej; Lamond, Angus I.; Kornblihtt, Alberto R.

    2012-01-01

    Chromatin structure is an important factor in the functional coupling between transcription and mRNA processing, not only by regulating alternative splicing events, but also by contributing to exon recognition during constitutive splicing. We observed that depolarization of neuroblastoma cell membrane potential, which triggers general histone acetylation and regulates alternative splicing, causes a concentration of SR proteins in nuclear speckles. This prompted us to analyze the effect of chromatin structure on splicing factor distribution and dynamics. Here, we show that induction of histone hyper-acetylation results in the accumulation in speckles of multiple splicing factors in different cell types. In addition, a similar effect is observed after depletion of the heterochromatic protein HP1α, associated with repressive chromatin. We used advanced imaging approaches to analyze in detail both the structural organization of the speckle compartment and nuclear distribution of splicing factors, as well as studying direct interactions between splicing factors and their association with chromatin in vivo. The results support a model where perturbation of normal chromatin structure decreases the recruitment efficiency of splicing factors to nascent RNAs, thus causing their accumulation in speckles, which buffer the amount of free molecules in the nucleoplasm. To test this, we analyzed the recruitment of the general splicing factor U2AF65 to nascent RNAs by iCLIP technique, as a way to monitor early spliceosome assembly. We demonstrate that indeed histone hyper-acetylation decreases recruitment of U2AF65 to bulk 3′ splice sites, coincident with the change in its localization. In addition, prior to the maximum accumulation in speckles, ∼20% of genes already show a tendency to decreased binding, while U2AF65 seems to increase its binding to the speckle-located ncRNA MALAT1. All together, the combined imaging and biochemical approaches support a model where chromatin

  13. [Genetic diagnostics of pathogenic splicing abnormalities in the clinical laboratory--pitfalls and screening approaches].

    PubMed

    Niimi, Hideki; Ogawa, Tomomi; Note, Rhougou; Hayashi, Shirou; Ueno, Tomohiro; Harada, Kenu; Uji, Yoshinori; Kitajima, Isao

    2010-12-01

    In recent years, genetic diagnostics of pathogenic splicing abnormalities are increasingly recognized as critically important in the clinical genetic diagnostics. It is reported that approximately 10% of pathogenic mutations causing human inherited diseases are splicing mutations. Nonetheless, it is still difficult to identify splicing abnormalities in routine genetic diagnostic settings. Here, we studied two different kinds of cases with splicing abnormalities. The first case is a protein S deficiency. Nucleotide analyses revealed that the proband had a previously reported G to C substitution in the invariant AG dinucleotide at the splicing acceptor site of intronl/exon2, which produces multiple splicing abnormalities resulting in protein S deficiency. The second case is an antithrombin (AT) deficiency. This proband had a previously reported G to A substitution, at nucleotide position 9788 in intron 4, 14 bp in front of exon 5, which created a de novo exon 5 splice site and resulted in AT deficiency. From a practical standpoint, we discussed the pitfalls, attentions, and screening approaches in genetic diagnostics of pathogenic splicing abnormalities. Due to the difficulty with full-length sequence analysis of introns, and the lack of RNA samples, splicing mutations may escape identification. Although current genetic testing remains to be improved, to screen for splicing abnormalities more efficiently, it is significant to use an appropriate combination of various approaches such as DNA and/or RNA samples, splicing mutation databases, bioinformatic tools to detect splice sites and cis-regulatory elements, and in vitro and/or in vivo experimentally methods as needed.

  14. Independence between pre-mRNA splicing and DNA methylation in an isogenic minigene resource.

    PubMed

    Nanan, Kyster K; Ocheltree, Cody; Sturgill, David; Mandler, Mariana D; Prigge, Maria; Varma, Garima; Oberdoerffer, Shalini

    2017-12-15

    Actively transcribed genes adopt a unique chromatin environment with characteristic patterns of enrichment. Within gene bodies, H3K36me3 and cytosine DNA methylation are elevated at exons of spliced genes and have been implicated in the regulation of pre-mRNA splicing. H3K36me3 is further responsive to splicing, wherein splicing inhibition led to a redistribution and general reduction over gene bodies. In contrast, little is known of the mechanisms supporting elevated DNA methylation at actively spliced genic locations. Recent evidence associating the de novo DNA methyltransferase Dnmt3b with H3K36me3-rich chromatin raises the possibility that genic DNA methylation is influenced by splicing-associated H3K36me3. Here, we report the generation of an isogenic resource to test the direct impact of splicing on chromatin. A panel of minigenes of varying splicing potential were integrated into a single FRT site for inducible expression. Profiling of H3K36me3 confirmed the established relationship to splicing, wherein levels were directly correlated with splicing efficiency. In contrast, DNA methylation was equivalently detected across the minigene panel, irrespective of splicing and H3K36me3 status. In addition to revealing a degree of independence between genic H3K36me3 and DNA methylation, these findings highlight the generated minigene panel as a flexible platform for the query of splicing-dependent chromatin modifications. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  15. Operon Conservation and the Evolution of trans-Splicing in the Phylum Nematoda

    PubMed Central

    Guiliano, David B; Blaxter, Mark L

    2006-01-01

    The nematode Caenorhabditis elegans is unique among model animals in that many of its genes are cotranscribed as polycistronic pre-mRNAs from operons. The mechanism by which these operonic transcripts are resolved into mature mRNAs includes trans-splicing to a family of SL2-like spliced leader exons. SL2-like spliced leaders are distinct from SL1, the major spliced leader in C. elegans and other nematode species. We surveyed five additional nematode species, representing three of the five major clades of the phylum Nematoda, for the presence of operons and the use of trans-spliced leaders in resolution of polycistronic pre-mRNAs. Conserved operons were found in Pristionchus pacificus, Nippostrongylus brasiliensis, Strongyloides ratti, Brugia malayi, and Ascaris suum. In nematodes closely related to the rhabditine C. elegans, a related family of SL2-like spliced leaders is used for operonic transcript resolution. However, in the tylenchine S. ratti operonic transcripts are resolved using a family of spliced leaders related to SL1. Non-operonic genes in S. ratti may also receive these SL1 variants. In the spirurine nematodes B. malayi and A. suum operonic transcripts are resolved using SL1. Mapping these phenotypes onto the robust molecular phylogeny for the Nematoda suggests that operons evolved before SL2-like spliced leaders, which are an evolutionary invention of the rhabditine lineage. PMID:17121468

  16. Spliced leader RNA of trypanosomes: in vivo mutational analysis reveals extensive and distinct requirements for trans splicing and cap4 formation.

    PubMed Central

    Lücke, S; Xu, G L; Palfi, Z; Cross, M; Bellofatto, V; Bindereif, A

    1996-01-01

    In trypanosomes mRNAs are generated through trans splicing. The spliced leader (SL) RNA, which donates the 5'-terminal mini-exon to each of the protein coding exons, plays a central role in the trans splicing process. We have established in vivo assays to study in detail trans splicing, cap4 modification, and RNP assembly of the SL RNA in the trypanosomatid species Leptomonas seymouri. First, we found that extensive sequences within the mini-exon are required for SL RNA function in vivo, although a conserved length of 39 nt is not essential. In contrast, the intron sequence appears to be surprisingly tolerant to mutation; only the stem-loop II structure is indispensable. The asymmetry of the sequence requirements in the stem I region suggests that this domain may exist in different functional conformations. Second, distinct mini-exon sequences outside the modification site are important for efficient cap4 formation. Third, all SL RNA mutations tested allowed core RNP assembly, suggesting flexible requirements for core protein binding. In sum, the results of our mutational analysis provide evidence for a discrete domain structure of the SL RNA and help to explain the strong phylogenetic conservation of the mini-exon sequence and of the overall SL RNA secondary structure; they also suggest that there may be certain differences between trans splicing in nematodes and trypanosomes. This approach provides a basis for studying RNA-RNA interactions in the trans spliceosome. Images PMID:8861965

  17. Histone and RNA-binding protein interaction creates crosstalk network for regulation of alternative splicing.

    PubMed

    Kim, Yong-Eun; Park, Chungoo; Kim, Kyoon Eon; Kim, Kee K

    2018-04-30

    Alternative splicing is an essential process in eukaryotes, as it increases the complexity of gene expression by generating multiple proteins from a single pre-mRNA. However, information on the regulatory mechanisms for alternative splicing is lacking, because splicing occurs over a short period via the transient interactions of proteins within functional complexes of the spliceosome. Here, we investigated in detail the molecular mechanisms connecting alternative splicing with epigenetic mechanisms. We identified interactions between histone proteins and splicing factors such as Rbfox2, Rbfox3, and splicing factor proline and glutamine rich protein (SFPQ) by in vivo crosslinking and immunoprecipitation. Furthermore, we confirmed that splicing factors were bound to specific modified residues of histone proteins. Additionally, changes in histone methylation due to histone methyltransferase inhibitor treatment notably affected alternative splicing in selected genes. Therefore, we suggested that there may be crosstalk mechanisms connecting histone modifications and RNA-binding proteins that increase the local concentration of RNA-binding proteins in alternative exon loci of nucleosomes by binding specific modified histone proteins, leading to alternative splicing. This crosstalk mechanism may play a major role in epigenetic processes such as histone modification and the regulation of alternative splicing. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Pre-mRNA splicing in cancer: the relevance in oncogenesis, treatment and drug resistance.

    PubMed

    Wojtuszkiewicz, Anna; Assaraf, Yehuda G; Maas, Marielle J P; Kaspers, Gertjan J L; Jansen, Gerrit; Cloos, Jacqueline

    2015-05-01

    Aberrant pre-mRNA splicing in cancer is emerging as an important determinant of oncogenesis, response to treatment and anticancer drug resistance. At the same time, the spliceosome has become a target for a novel class of pre-clinical chemotherapeutics with a potential future application in cancer treatment. Taken together, these findings offer novel opportunities for the enhancement of the efficacy of cancer therapy. This review presents a comprehensive overview of the molecular mechanisms involved in splicing and current developments regarding splicing aberrations in relation to several aspects of cancer formation and therapy. Identified mutations in the various components of the spliceosome and their implications for cancer prognosis are delineated. Moreover, the contribution of abnormal splicing patterns as well as deregulated splicing factors to chemoresistance is discussed, along with novel splicing-based therapeutic approaches. Significant progress has been made in deciphering the role of splicing factors in cancer including carcinogenesis and drug resistance. Splicing-based prognostic tools as well as therapeutic options hold great potential towards improvements in cancer therapy. However, gaining more in-depth molecular insight into the consequences of mutations in various components of the splicing machinery as well as of cellular effects of spliceosome inhibition is a prerequisite to establish the role of splicing in tumor progression and treatment options, respectively.

  19. RNA splicing regulated by RBFOX1 is essential for cardiac function in zebrafish.

    PubMed

    Frese, Karen S; Meder, Benjamin; Keller, Andreas; Just, Steffen; Haas, Jan; Vogel, Britta; Fischer, Simon; Backes, Christina; Matzas, Mark; Köhler, Doreen; Benes, Vladimir; Katus, Hugo A; Rottbauer, Wolfgang

    2015-08-15

    Alternative splicing is one of the major mechanisms through which the proteomic and functional diversity of eukaryotes is achieved. However, the complex nature of the splicing machinery, its associated splicing regulators and the functional implications of alternatively spliced transcripts are only poorly understood. Here, we investigated the functional role of the splicing regulator rbfox1 in vivo using the zebrafish as a model system. We found that loss of rbfox1 led to progressive cardiac contractile dysfunction and heart failure. By using deep-transcriptome sequencing and quantitative real-time PCR, we show that depletion of rbfox1 in zebrafish results in an altered isoform expression of several crucial target genes, such as actn3a and hug. This study underlines that tightly regulated splicing is necessary for unconstrained cardiac function and renders the splicing regulator rbfox1 an interesting target for investigation in human heart failure and cardiomyopathy. © 2015. Published by The Company of Biologists Ltd.

  20. Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models.

    PubMed

    Iwata, Yuko; Katanosaka, Yuki; Arai, Yuji; Shigekawa, Munekazu; Wakabayashi, Shigeo

    2009-03-01

    Muscular dystrophy is a severe degenerative disorder of skeletal muscle characterized by progressive muscle weakness. One subgroup of this disease is caused by a defect in the gene encoding one of the components of the dystrophin-glycoprotein complex, resulting in a significant disruption of membrane integrity and/or stability and, consequently, a sustained increase in the cytosolic Ca(2+) concentration ([Ca(2+)](i)). In the present study, we demonstrate that muscular dystrophy is ameliorated in two animal models, dystrophin-deficient mdx mice and delta-sarcoglycan-deficient BIO14.6 hamsters by dominant-negative inhibition of the transient receptor potential cation channel, TRPV2, a principal candidate for Ca(2+)-entry pathways. When transgenic (Tg) mice expressing a TRPV2 mutant in muscle were crossed with mdx mice, the [Ca(2+)](i) increase in muscle fibers was reduced by dominant-negative inhibition of endogenous TRPV2. Furthermore, histological, biochemical and physiological indices characterizing dystrophic pathology, such as an increased number of central nuclei and fiber size variability/fibrosis/apoptosis, elevated serum creatine kinase levels, and reduced muscle performance, were all ameliorated in the mdx/Tg mice. Similar beneficial effects were also observed in the muscles of BIO14.6 hamsters infected with adenovirus carrying mutant TRPV2. We propose that TRPV2 is a principal Ca(2+)-entry route leading to a sustained [Ca(2+)](i) increase and muscle degeneration, and that it is a promising therapeutic target for the treatment of muscular dystrophy.

  1. Identification of Alternative Splice Variants Using Unique Tryptic Peptide Sequences for Database Searches.

    PubMed

    Tran, Trung T; Bollineni, Ravi C; Strozynski, Margarita; Koehler, Christian J; Thiede, Bernd

    2017-07-07

    Alternative splicing is a mechanism in eukaryotes by which different forms of mRNAs are generated from the same gene. Identification of alternative splice variants requires the identification of peptides specific for alternative splice forms. For this purpose, we generated a human database that contains only unique tryptic peptides specific for alternative splice forms from Swiss-Prot entries. Using this database allows an easy access to splice variant-specific peptide sequences that match to MS data. Furthermore, we combined this database without alternative splice variant-1-specific peptides with human Swiss-Prot. This combined database can be used as a general database for searching of LC-MS data. LC-MS data derived from in-solution digests of two different cell lines (LNCaP, HeLa) and phosphoproteomics studies were analyzed using these two databases. Several nonalternative splice variant-1-specific peptides were found in both cell lines, and some of them seemed to be cell-line-specific. Control and apoptotic phosphoproteomes from Jurkat T cells revealed several nonalternative splice variant-1-specific peptides, and some of them showed clear quantitative differences between the two states.

  2. RNA splicing process analysis for identifying antisense oligonucleotide inhibitors with padlock probe-based isothermal amplification.

    PubMed

    Ren, Xiaojun; Deng, Ruijie; Wang, Lida; Zhang, Kaixiang; Li, Jinghong

    2017-08-01

    RNA splicing, which mainly involves two transesterification steps, is a fundamental process of gene expression and its abnormal regulation contributes to serious genetic diseases. Antisense oligonucleotides (ASOs) are genetic control tools that can be used to specifically control genes through alteration of the RNA splicing pathway. Despite intensive research, how ASOs or various other factors influence the multiple processes of RNA splicing still remains obscure. This is largely due to an inability to analyze the splicing efficiency of each step in the RNA splicing process with high sensitivity. We addressed this limitation by introducing a padlock probe-based isothermal amplification assay to achieve quantification of the specific products in different splicing steps. With this amplified assay, the roles that ASOs play in RNA splicing inhibition in the first and second steps could be distinguished. We identified that 5'-ASO could block RNA splicing by inhibiting the first step, while 3'-ASO could block RNA splicing by inhibiting the second step. This method provides a versatile tool for assisting efficient ASO design and discovering new splicing modulators and therapeutic drugs.

  3. Long-range RNA pairings contribute to mutually exclusive splicing

    PubMed Central

    Yue, Yuan; Yang, Yun; Dai, Lanzhi; Cao, Guozheng; Chen, Ran; Hong, Weiling; Liu, Baoping; Shi, Yang; Meng, Yijun; Shi, Feng; Xiao, Mu; Jin, Yongfeng

    2016-01-01

    Mutually exclusive splicing is an important means of increasing the protein repertoire, by which the Down's syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 different isoforms in Drosophila melanogaster. However, the regulatory mechanisms remain obscure due to the complexity of the Dscam exon cluster. Here, we reveal a molecular model for the regulation of the mutually exclusive splicing of the serpent pre-mRNA based on competition between upstream and downstream RNA pairings. Such dual RNA pairings confer fine tuning of the inclusion of alternative exons. Moreover, we demonstrate that the splicing outcome of alternative exons is mediated in relative pairing strength-correlated mode. Combined comparative genomics analysis and experimental evidence revealed similar bidirectional structural architectures in exon clusters 4 and 9 of the Dscam gene. Our findings provide a novel mechanistic framework for the regulation of mutually exclusive splicing and may offer potentially applicable insights into long-range RNA–RNA interactions in gene regulatory networks. PMID:26554032

  4. Research on Splicing Method of Digital Relic Fragment Model

    NASA Astrophysics Data System (ADS)

    Yan, X.; Hu, Y.; Hou, M.

    2018-04-01

    In the course of archaeological excavation, a large number of pieces of cultural relics were unearthed, and the restoration of these fragments was done manually by traditional arts and crafts experts. In this process, cultural relics experts often try to splice the existing cultural relics, and then use adhesive to stick together the fragments of correct location, which will cause irreversible secondary damage to cultural relics. In order to minimize such damage, the surveyors combine 3D laser scanning with computer technology, and use the method of establishing digital cultural relics fragments model to make virtual splicing of cultural relics. The 3D software on the common market can basically achieve the model translation and rotation, using this two functions can be achieved manually splicing between models, mosaic records after the completion of the specific location of each piece of fragments, so as to effectively reduce the damage to the relics had tried splicing process.

  5. Global regulation of alternative RNA splicing by the SR-rich protein RBM39.

    PubMed

    Mai, Sanyue; Qu, Xiuhua; Li, Ping; Ma, Qingjun; Cao, Cheng; Liu, Xuan

    2016-08-01

    RBM39 is a serine/arginine-rich RNA-binding protein that is highly homologous to the splicing factor U2AF65. However, the role of RBM39 in alternative splicing is poorly understood. In this study, RBM39-mediated global alternative splicing was investigated using RNA-Seq and genome-wide RBM39-RNA interactions were mapped via cross-linking and immunoprecipitation coupled with deep sequencing (CLIP-Seq) in wild-type and RBM39-knockdown MCF-7 cells. RBM39 was involved in the up- or down-regulation of the transcript levels of various genes. Hundreds of alternative splicing events regulated by endogenous RBM39 were identified. The majority of these events were cassette exons. Genes containing RBM39-regulated alternative exons were found to be linked to G2/M transition, cellular response to DNA damage, adherens junctions and endocytosis. CLIP-Seq analysis showed that the binding site of RBM39 was mainly in proximity to 5' and 3' splicing sites. Considerable RBM39 binding to mRNAs encoding proteins involved in translation was observed. Of particular importance, ~20% of the alternative splicing events that were significantly regulated by RBM39 were similarly regulated by U2AF65. RBM39 is extensively involved in alternative splicing of RNA and helps regulate transcript levels. RBM39 may modulate alternative splicing similarly to U2AF65 by either directly binding to RNA or recruiting other splicing factors, such as U2AF65. The current study offers a genome-wide view of RBM39's regulatory function in alternative splicing. RBM39 may play important roles in multiple cellular processes by regulating both alternative splicing of RNA molecules and transcript levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Disturbed expression of type 1 iodothyronine deiodinase splice variants in human renal cancer.

    PubMed

    Piekielko-Witkowska, Agnieszka; Master, Adam; Wojcicka, Anna; Boguslawska, Joanna; Brozda, Izabela; Tanski, Zbigniew; Nauman, Alicja

    2009-10-01

    Alternative splicing, one of the sources of protein diversity, is often disturbed in cancer. Type 1 iodothyronine deiodinase (DIO1) catalyzes deiodination of thyroxine generating triiodothyronine, an important regulator of cell proliferation and differentiation. The expression of DIO1 is disturbed in different types of cancer. The aim of the study was to analyze the alternative splicing of DIO1 and its possible disturbance in renal cancer. Using real-time PCR, we analyzed 19 tissue samples (T) of renal cancer and 19 matched control samples (C) of the opposite pole of the kidney, not infiltrated by tumor, and 6 control samples (N) (nonneoplastic kidney abnormalities). Cloning of DIO1 mRNA isoforms revealed 11 different transcripts, among them 7 new splice variants, not previously reported. The expression of all variants of DIO1 was dramatically (>90%) and significantly (p < or = 0.0003) lowered in samples T compared to control samples C. The ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center was lowered in samples T compared with control samples C, suggesting disturbed alternative splicing of DIO1. The expression of mRNA of splicing factors SF2/ASF (splicing factor-2/alternative-splicing factor) and hnRNPA1 (heterogeneous ribonucleoprotein A1), regulating 5'-splice site selection, was significantly but not proportionally lowered in samples T compared to samples C. The mRNA ratio of splicing factors SF2/ASF and hnRNPA1 correlated with the ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center in controls C but not in samples T. Our results show that the expression and alternative splicing of DIO1 mRNA is disturbed in renal cancer, possibly due to changes in expression of splicing factors SF2/ASF and hnRNPA1.

  7. Methodology of splicing large air filling factor suspended core photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Jaroszewicz, L. R.; Murawski, M.; Nasilowski, T.; Stasiewicz, K.; Marć, P.; Szymański, M.; Mergo, P.

    2011-06-01

    We report the methodology of effective low-loss fusion splicing a photonic crystal fibre (PCF) to itself as well as to a standard single mode fibre (SMF). Distinctly from other papers in this area, we report on the results for splicing suspended core (SC) PCF having tiny core and non-Gaussian shape of guided beam. We show that studied splices exhibit transmission losses strongly dispersive and non-reciprocal in view of light propagation direction. Achieved splicing losses, defined as larger decrease in transmitted optical power comparing both propagation directions, are equal to 2.71 ±0.25 dB, 1.55 ±0.25 dB at 1550 nm for fibre SC PCF spliced to itself and to SMF, respectively.

  8. Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones.

    PubMed

    Highley, J Robin; Kirby, Janine; Jansweijer, Joeri A; Webb, Philip S; Hewamadduma, Channa A; Heath, Paul R; Higginbottom, Adrian; Raman, Rohini; Ferraiuolo, Laura; Cooper-Knock, Johnathan; McDermott, Christopher J; Wharton, Stephen B; Shaw, Pamela J; Ince, Paul G

    2014-10-01

    Loss of nuclear TDP-43 characterizes sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether (1) RNA splicing dysregulation is present in lower motor neurones in ALS and in a motor neurone-like cell model; and (2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurones obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. We found altered expression of spliceosome components in motor neurones and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43-depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, which were not present in fibroblasts from patients with sporadic or SOD1-related ALS. Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurones, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism. © 2014 British Neuropathological Society.

  9. Fine-Scale Variation and Genetic Determinants of Alternative Splicing across Individuals

    PubMed Central

    Coulombe-Huntington, Jasmin; Lam, Kevin C. L.; Dias, Christel; Majewski, Jacek

    2009-01-01

    Recently, thanks to the increasing throughput of new technologies, we have begun to explore the full extent of alternative pre–mRNA splicing (AS) in the human transcriptome. This is unveiling a vast layer of complexity in isoform-level expression differences between individuals. We used previously published splicing sensitive microarray data from lymphoblastoid cell lines to conduct an in-depth analysis on splicing efficiency of known and predicted exons. By combining publicly available AS annotation with a novel algorithm designed to search for AS, we show that many real AS events can be detected within the usually unexploited, speculative majority of the array and at significance levels much below standard multiple-testing thresholds, demonstrating that the extent of cis-regulated differential splicing between individuals is potentially far greater than previously reported. Specifically, many genes show subtle but significant genetically controlled differences in splice-site usage. PCR validation shows that 42 out of 58 (72%) candidate gene regions undergo detectable AS, amounting to the largest scale validation of isoform eQTLs to date. Targeted sequencing revealed a likely causative SNP in most validated cases. In all 17 incidences where a SNP affected a splice-site region, in silico splice-site strength modeling correctly predicted the direction of the micro-array and PCR results. In 13 other cases, we identified likely causative SNPs disrupting predicted splicing enhancers. Using Fst and REHH analysis, we uncovered significant evidence that 2 putative causative SNPs have undergone recent positive selection. We verified the effect of five SNPs using in vivo minigene assays. This study shows that splicing differences between individuals, including quantitative differences in isoform ratios, are frequent in human populations and that causative SNPs can be identified using in silico predictions. Several cases affected disease-relevant genes and it is likely

  10. Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters.

    PubMed

    Wang, Yiping; Bartelt, Hartmut; Brueckner, Sven; Kobelke, Jens; Rothhardt, Manfred; Mörl, Klaus; Ecke, Wolfgang; Willsch, Reinhardt

    2008-05-12

    A novel technique for splicing a small core Ge-doped photonic crystal fiber (PCF) was demonstrated using a commercial fusion splicer with default discharge parameters for the splicing of two standard single mode fibers (SMFs). Additional discharge parameter adjustments are not required to splice the PCF to several different SMFs. A low splice loss of 1.0 approximately 1.4 dB is achieved. Low or no light reflection is expected at the splice joint due to the complete fusion of the two fiber ends. The splice joint has a high bending strength and does not break when the bending radius is decreased to 4 mm.

  11. Regulation of alternative splicing by the circadian clock and food related cues

    PubMed Central

    2012-01-01

    Background The circadian clock orchestrates daily rhythms in metabolism, physiology and behaviour that allow organisms to anticipate regular changes in their environment, increasing their adaptation. Such circadian phenotypes are underpinned by daily rhythms in gene expression. Little is known, however, about the contribution of post-transcriptional processes, particularly alternative splicing. Results Using Affymetrix mouse exon-arrays, we identified exons with circadian alternative splicing in the liver. Validated circadian exons were regulated in a tissue-dependent manner and were present in genes with circadian transcript abundance. Furthermore, an analysis of circadian mutant Vipr2-/- mice revealed the existence of distinct physiological pathways controlling circadian alternative splicing and RNA binding protein expression, with contrasting dependence on Vipr2-mediated physiological signals. This view was corroborated by the analysis of the effect of fasting on circadian alternative splicing. Feeding is an important circadian stimulus, and we found that fasting both modulates hepatic circadian alternative splicing in an exon-dependent manner and changes the temporal relationship with transcript-level expression. Conclusions The circadian clock regulates alternative splicing in a manner that is both tissue-dependent and concurrent with circadian transcript abundance. This adds a novel temporal dimension to the regulation of mammalian alternative splicing. Moreover, our results demonstrate that circadian alternative splicing is regulated by the interaction between distinct physiological cues, and illustrates the capability of single genes to integrate circadian signals at different levels of regulation. PMID:22721557

  12. Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome

    PubMed Central

    Li, Ronghui; Dong, Qiping; Yuan, Xinni; Zeng, Xin; Gao, Yu; Li, Hongda; Keles, Sunduz; Wang, Zefeng; Chang, Qiang

    2016-01-01

    Mutations in the human MECP2 gene cause Rett syndrome (RTT), a severe neurodevelopmental disorder that predominantly affects girls. Despite decades of work, the molecular function of MeCP2 is not fully understood. Here we report a systematic identification of MeCP2-interacting proteins in the mouse brain. In addition to transcription regulators, we found that MeCP2 physically interacts with several modulators of RNA splicing, including LEDGF and DHX9. These interactions are disrupted by RTT causing mutations, suggesting that they may play a role in RTT pathogenesis. Consistent with the idea, deep RNA sequencing revealed misregulation of hundreds of splicing events in the cortex of Mecp2 knockout mice. To reveal the functional consequence of altered RNA splicing due to the loss of MeCP2, we focused on the regulation of the splicing of the flip/flop exon of Gria2 and other AMPAR genes. We found a significant splicing shift in the flip/flop exon toward the flop inclusion, leading to a faster decay in the AMPAR gated current and altered synaptic transmission. In summary, our study identified direct physical interaction between MeCP2 and splicing factors, a novel MeCP2 target gene, and established functional connection between a specific RNA splicing change and synaptic phenotypes in RTT mice. These results not only help our understanding of the molecular function of MeCP2, but also reveal potential drug targets for future therapies. PMID:27352031

  13. Understanding pre-mRNA splicing through crystallography.

    PubMed

    Espinosa, Sara; Zhang, Lingdi; Li, Xueni; Zhao, Rui

    2017-08-01

    Crystallography is a powerful tool to determine the atomic structures of proteins and RNAs. X-ray crystallography has been used to determine the structure of many splicing related proteins and RNAs, making major contributions to our understanding of the molecular mechanism and regulation of pre-mRNA splicing. Compared to other structural methods, crystallography has its own advantage in the high-resolution structural information it can provide and the unique biological questions it can answer. In addition, two new crystallographic methods - the serial femtosecond crystallography and 3D electron crystallography - were developed to overcome some of the limitations of traditional X-ray crystallography and broaden the range of biological problems that crystallography can solve. This review discusses the theoretical basis, instrument requirements, troubleshooting, and exciting potential of these crystallographic methods to further our understanding of pre-mRNA splicing, a critical event in gene expression of all eukaryotes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Rare splicing defects of FAS underly severe recessive autoimmune lymphoproliferative syndrome.

    PubMed

    Agrebi, N; Ben-Mustapha, I; Matoussi, N; Dhouib, N; Ben-Ali, M; Mekki, N; Ben-Ahmed, M; Larguèche, B; Ben Becher, S; Béjaoui, M; Barbouche, M R

    2017-10-01

    Autoimmune lymphoproliferative syndrome (ALPS) is a prototypic disorder of impaired apoptosis characterized by autoimmune features and lymphoproliferation. Heterozygous germline or somatic FAS mutations associated with preserved protein expression have been described. Very rare cases of homozygous germline FAS mutations causing severe autosomal recessive form of ALPS with a complete defect of Fas expression have been reported. We report two unrelated patients from highly inbred North African population showing a severe ALPS phenotype and an undetectable Fas surface expression. Two novel homozygous mutations have been identified underlying rare splicing defects mechanisms. The first mutation breaks a branch point sequence and the second alters a regulatory exonic splicing site. These splicing defects induce the skipping of exon 6 encoding the transmembrane domain of CD95. Our findings highlight the requirement of tight regulation of FAS exon 6 splicing for balanced alternative splicing and illustrate the importance of such studies in highly consanguineous populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Arc fusion splicing of photonic crystal fibers to standard single mode fibers

    NASA Astrophysics Data System (ADS)

    Borzycki, Krzysztof; Kobelke, Jens; Schuster, Kay; Wójcik, Jan

    2010-04-01

    Coupling a photonic crystal fiber (PCF) to measuring instruments or optical subsystems is often done by splicing it to short lengths of single mode fiber (SMF) used for interconnections, as SMF is standardized, widely available and compatible with most fiber optic components and measuring instruments. This paper presents procedures and results of loss measurements during fusion splicing of five PCFs tested at NIT laboratory within activities of COST Action 299 "FIDES". Investigated silica-based fibers had 80-200 μm cladding diameter and were designed as single mode. A standard splicing machine designed for telecom fibers was used, but splicing procedure and arc power were tailored to each PCF. Splice loss varied between 0.7 and 2.8 dB at 1550 nm. Splices protected with heat-shrinkable sleeves served well for gripping fibers during mechanical tests and survived temperature cycling from -30°C to +70°C with stable loss. Collapse of holes in the PCF was limited by reducing fusion time to 0.2-0.5 s; additional measures included reduction of discharge power and shifting SMF-PCF contact point away from the axis of electrodes. Unfortunately, short fusion time sometimes precluded proper smoothing of glass surface, leading to a trade-off between splice loss and strength.

  16. Judging the similarity of soundscapes does not require categorization: evidence from spliced stimuli.

    PubMed

    Aucouturier, Jean-Julien; Defreville, Boris

    2009-04-01

    This study uses an audio signal transformation, splicing, to create an experimental situation where human listeners judge the similarity of audio signals, which they cannot easily categorize. Splicing works by segmenting audio signals into 50-ms frames, then shuffling and concatenating these frames back in random order. Splicing a signal masks the identification of the categories that it normally elicits: For instance, human participants cannot easily identify the sound of cars in a spliced recording of a city street. This study compares human performance on both normal and spliced recordings of soundscapes and music. Splicing is found to degrade human similarity performance significantly less for soundscapes than for music: When two spliced soundscapes are judged similar to one another, the original recordings also tend to sound similar. This establishes that humans are capable of reconstructing consistent similarity relations between soundscapes without relying much on the identification of the natural categories associated with such signals, such as their constituent sound sources. This finding contradicts previous literature and points to new ways to conceptualize the different ways in which humans perceive soundscapes and music.

  17. The determinants of alternative RNA splicing in human cells.

    PubMed

    Ramanouskaya, Tatsiana V; Grinev, Vasily V

    2017-12-01

    Alternative splicing represents an important level of the regulation of gene function in eukaryotic organisms. It plays a critical role in virtually every biological process within an organism, including regulation of cell division and cell death, differentiation of tissues in the embryo and the adult organism, as well as in cellular response to diverse environmental factors. In turn, studies of the last decade have shown that alternative splicing itself is controlled by different mechanisms. Unfortunately, there is no clear understanding of how these diverse mechanisms, or determinants, regulate and constrain the set of alternative RNA species produced from any particular gene in every cell of the human body. Here, we provide a consolidated overview of alternative splicing determinants including RNA-protein interactions, epigenetic regulation via chromatin remodeling, coupling of transcription-to-alternative splicing, effect of secondary structures in pre-RNA, and function of the RNA quality control systems. We also extensively and critically discuss some mechanistic insights on coordinated inclusion/exclusion of exons during the formation of mature RNA molecules. We conclude that the final structure of RNA is pre-determined by a complex interplay between cis- and trans-acting factors. Altogether, currently available empirical data significantly expand our understanding of the functioning of the alternative splicing machinery of cells in normal and pathological conditions. On the other hand, there are still many blind spots that require further deep investigations.

  18. RNA splicing in a new rhabdovirus from Culex mosquitoes.

    PubMed

    Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko

    2011-07-01

    Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae.

  19. QUANTIFYING ALTERNATIVE SPLICING FROM PAIRED-END RNA-SEQUENCING DATA.

    PubMed

    Rossell, David; Stephan-Otto Attolini, Camille; Kroiss, Manuel; Stöcker, Almond

    2014-03-01

    RNA-sequencing has revolutionized biomedical research and, in particular, our ability to study gene alternative splicing. The problem has important implications for human health, as alternative splicing may be involved in malfunctions at the cellular level and multiple diseases. However, the high-dimensional nature of the data and the existence of experimental biases pose serious data analysis challenges. We find that the standard data summaries used to study alternative splicing are severely limited, as they ignore a substantial amount of valuable information. Current data analysis methods are based on such summaries and are hence sub-optimal. Further, they have limited flexibility in accounting for technical biases. We propose novel data summaries and a Bayesian modeling framework that overcome these limitations and determine biases in a non-parametric, highly flexible manner. These summaries adapt naturally to the rapid improvements in sequencing technology. We provide efficient point estimates and uncertainty assessments. The approach allows to study alternative splicing patterns for individual samples and can also be the basis for downstream analyses. We found a several fold improvement in estimation mean square error compared popular approaches in simulations, and substantially higher consistency between replicates in experimental data. Our findings indicate the need for adjusting the routine summarization and analysis of alternative splicing RNA-seq studies. We provide a software implementation in the R package casper.

  20. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays.

    PubMed

    Johnson, Jason M; Castle, John; Garrett-Engele, Philip; Kan, Zhengyan; Loerch, Patrick M; Armour, Christopher D; Santos, Ralph; Schadt, Eric E; Stoughton, Roland; Shoemaker, Daniel D

    2003-12-19

    Alternative pre-messenger RNA (pre-mRNA) splicing plays important roles in development, physiology, and disease, and more than half of human genes are alternatively spliced. To understand the biological roles and regulation of alternative splicing across different tissues and stages of development, systematic methods are needed. Here, we demonstrate the use of microarrays to monitor splicing at every exon-exon junction in more than 10,000 multi-exon human genes in 52 tissues and cell lines. These genome-wide data provide experimental evidence and tissue distributions for thousands of known and novel alternative splicing events. Adding to previous studies, the results indicate that at least 74% of human multi-exon genes are alternatively spliced.

  1. Parameter optimization of fusion splicing of photonic crystal fibers and conventional fibers to increase strength

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxi; Zhang, Zuchen; Song, Jingming; Wu, Chunxiao; Song, Ningfang

    2015-03-01

    A splicing parameter optimization method to increase the tensile strength of splicing joint between photonic crystal fiber (PCF) and conventional fiber is demonstrated. Based on the splicing recipes provided by splicer or fiber manufacturers, the optimal values of some major splicing parameters are obtained in sequence, and a conspicuous improvement in the mechanical strength of splicing joints between PCFs and conventional fibers is validated through experiments.

  2. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations.

    PubMed

    Pellagatti, Andrea; Armstrong, Richard N; Steeples, Violetta; Sharma, Eshita; Repapi, Emmanouela; Singh, Shalini; Sanchi, Andrea; Radujkovic, Aleksandar; Horn, Patrick; Dolatshad, Hamid; Roy, Swagata; Broxholme, John; Lockstone, Helen; Taylor, Stephen; Giagounidis, Aristoteles; Vyas, Paresh; Schuh, Anna; Hamblin, Angela; Papaemmanuil, Elli; Killick, Sally; Malcovati, Luca; Hennrich, Marco L; Gavin, Anne-Claude; Ho, Anthony D; Luft, Thomas; Hellström-Lindberg, Eva; Cazzola, Mario; Smith, Christopher W J; Smith, Stephen; Boultwood, Jacqueline

    2018-06-21

    SF3B1, SRSF2 and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the impact of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34 + cells of 84 MDS patients. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whilst several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms which independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the impact of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology. Copyright © 2018 American Society of Hematology.

  3. Aberrant RNA splicing and mutations in spliceosome complex in acute myeloid leukemia.

    PubMed

    Zhou, Jianbiao; Chng, Wee-Joo

    2017-01-01

    The spliceosome, the cellular splicing machinery, regulates RNA splicing of messenger RNA precursors (pre-mRNAs) into maturation of protein coding RNAs. Recurrent mutations and copy number changes in genes encoding spliceosomal proteins and splicing regulatory factors have tumor promoting or suppressive functions in hematological malignancies, as well as some other cancers. Leukemia stem cell (LSC) populations, although rare, are essential contributors of treatment failure and relapse. Recent researches have provided the compelling evidence that link the erratic spicing activity to the LSC phenotype in acute myeloid leukemia (AML). In this article, we describe the diverse roles of aberrant splicing in hematological malignancies, particularly in AML and their contributions to the characteristics of LSC. We review these promising strategies to exploit the addiction of aberrant spliceosomal machinery for anti-leukemic therapy with aim to eradicate LSC. However, given the complexity and plasticity of spliceosome and not fully known functions of splicing in cancer, the challenges facing the development of the therapeutic strategies targeting RAN splicing are highlighted and future directions are discussed too.

  4. Inhibition of vemurafenib-resistant melanoma by interference with pre-mRNA splicing

    PubMed Central

    Salton, Maayan; Kasprzak, Wojciech K.; Voss, Ty; Shapiro, Bruce A.; Poulikakos, Poulikos I.; Misteli, Tom

    2015-01-01

    Mutations in the serine/threonine kinase BRAF are found in more than 60% of melanomas. The most prevalent melanoma mutation is BRAF(V600E), which constitutively activates downstream MAPK signaling. Vemurafenib is a potent RAF kinase inhibitor with remarkable clinical activity in BRAF(V600E)-positive melanoma tumors. However, patients rapidly develop resistance to vemurafenib treatment. One resistance mechanism is the emergence of BRAF alternative splicing isoforms leading to elimination of the RAS-binding domain. Here we identify interference with pre-mRNA splicing as a mechanism to combat vemurafenib resistance. We find that small molecule pre-mRNA splicing modulators reduce BRAF3-9 production and limit in-vitro cell growth of vemurafenib-resistant cells. In xenograft models, interference with pre-mRNA splicing prevents tumor formation and slows growth of vemurafenib-resistant tumors. Our results identify an intronic mutation as a molecular basis for RNA splicing-mediated RAF inhibitor resistance and we identify pre-mRNA splicing interference as a potential therapeutic strategy for drug resistance in BRAF melanoma. PMID:25971842

  5. Inhibition of vemurafenib-resistant melanoma by interference with pre-mRNA splicing.

    PubMed

    Salton, Maayan; Kasprzak, Wojciech K; Voss, Ty; Shapiro, Bruce A; Poulikakos, Poulikos I; Misteli, Tom

    2015-05-14

    Mutations in the serine/threonine kinase BRAF are found in more than 60% of melanomas. The most prevalent melanoma mutation is BRAF(V600E), which constitutively activates downstream MAPK signalling. Vemurafenib is a potent RAF kinase inhibitor with remarkable clinical activity in BRAF(V600E)-positive melanoma tumours. However, patients rapidly develop resistance to vemurafenib treatment. One resistance mechanism is the emergence of BRAF alternative splicing isoforms leading to elimination of the RAS-binding domain. Here we identify interference with pre-mRNA splicing as a mechanism to combat vemurafenib resistance. We find that small-molecule pre-mRNA splicing modulators reduce BRAF3-9 production and limit in-vitro cell growth of vemurafenib-resistant cells. In xenograft models, interference with pre-mRNA splicing prevents tumour formation and slows growth of vemurafenib-resistant tumours. Our results identify an intronic mutation as the molecular basis for a RNA splicing-mediated RAF inhibitor resistance mechanism and we identify pre-mRNA splicing interference as a potential therapeutic strategy for drug resistance in BRAF melanoma.

  6. Novel association of familial testicular germ cell tumor and autosomal dominant polycystic kidney disease with PKD1 mutation.

    PubMed

    Truscott, Laurel; Gell, Joanna; Chang, Vivian Y; Lee, Hane; Strom, Samuel P; Pillai, Rex; Sisk, Anthony; Martinez-Agosto, Julian A; Anderson, Martin; Federman, Noah

    2017-01-01

    Adolescent brothers were diagnosed with testicular germ cell tumors within the same month. Both were found to have multiple renal cysts on pretreatment imaging done for staging. The proband, his brother, and their mother, were all found to have a novel splice variant in intron 8 of the PKD1 gene by clinical exome sequencing. This is the second family reported with both familial testicular germ cell tumor (FTGCT) and autosomal dominant polycystic kidney disease (ADPKD), and the first described association of FTGCT with a splice variant in PKD1. We suggest that this novel variant in PKD1 may convey increased risk for FTGCT in addition to causing ADPKD. © 2016 Wiley Periodicals, Inc.

  7. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice.

    PubMed

    Cheng, Q; Zhou, Y; Liu, Z; Zhang, L; Song, G; Guo, Z; Wang, W; Qu, X; Zhu, Y; Yang, D

    2015-03-01

    As sessile organisms, plants have evolved a wide range of defence pathways to cope with environmental stress such as heat shock. However, the molecular mechanism of these defence pathways remains unclear in rice. In this study, we found that OsHSFA2d, a heat shock transcriptional factor, encodes two main splice variant proteins, OsHSFA2dI and OsHSFA2dII in rice. Under normal conditions, OsHSFA2dII is the dominant but transcriptionally inactive spliced form. However, when the plant suffers heat stress, OsHSFA2d is alternatively spliced into a transcriptionally active form, OsHSFA2dI, which participates in the heat stress response (HSR). Further study found that this alternative splicing was induced by heat shock rather than photoperiod. We found that OsHSFA2dI is localised to the nucleus, whereas OsHSFA2dII is localised to the nucleus and cytoplasm. Moreover, expression of the unfolded protein response (UNFOLDED PROTEIN RESPONSE) sensors, OsIRE1, OsbZIP39/OsbZIP60 and the UNFOLDED PROTEIN RESPONSE marker OsBiP1, was up-regulated. Interestingly, OsbZIP50 was also alternatively spliced under heat stress, indicating that UNFOLDED PROTEIN RESPONSE signalling pathways were activated by heat stress to re-establish cellular protein homeostasis. We further demonstrated that OsHSFA2dI participated in the unfolded protein response by regulating expression of OsBiP1. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Divergent biophysical properties, gating mechanisms, and possible functions of the two skeletal muscle Ca(V)1.1 calcium channel splice variants.

    PubMed

    Tuluc, Petronel; Flucher, Bernhard E

    2011-12-01

    Voltage-gated calcium channels are multi-subunit protein complexes that specifically allow calcium ions to enter the cell in response to membrane depolarization. But, for many years it seemed that the skeletal muscle calcium channel Ca(V)1.1 is the exception. The classical splice variant Ca(V)1.1a activates slowly, has a very small current amplitude and poor voltage sensitivity. In fact adult muscle fibers work perfectly well even in the absence of calcium influx. Recently a new splice variant of the skeletal muscle calcium channel Ca(V)1.1e has been characterized. The lack of the 19 amino acid exon 29 in this splice variant results in a rapidly activating calcium channel with high current amplitude and good voltage sensitivity. Ca(V)1.1e is the dominant channel in embryonic muscle, where the expression of this high calcium-conducting Ca(V)1.1 isoform readily explains developmental processes depending on L-type calcium currents. Moreover, the availability of these two structurally similar but functionally distinct channel variants facilitates the analysis of the molecular mechanisms underlying the unique current properties of the classical Ca(V)1.1a channel.

  9. Splicing of designer exons informs a biophysical model for exon definition

    PubMed Central

    Arias, Mauricio A.; Chasin, Lawrence A.

    2015-01-01

    Pre-mRNA molecules in humans contain mostly short internal exons flanked by longer introns. To explain the removal of such introns, exon recognition instead of intron recognition has been proposed. We studied this exon definition using designer exons (DEs) made up of three prototype modules of our own design: an exonic splicing enhancer (ESE), an exonic splicing silencer (ESS), and a Reference Sequence (R) predicted to be neither. Each DE was examined as the central exon in a three-exon minigene. DEs made of R modules showed a sharp size dependence, with exons shorter than 14 nt and longer than 174 nt splicing poorly. Changing the strengths of the splice sites improved longer exon splicing but worsened shorter exon splicing, effectively displacing the curve to the right. For the ESE we found, unexpectedly, that its enhancement efficiency was independent of its position within the exon. For the ESS we found a step-wise positional increase in its effects; it was most effective at the 3′ end of the exon. To apply these results quantitatively, we developed a biophysical model for exon definition of internal exons undergoing cotranscriptional splicing. This model features commitment to inclusion before the downstream exon is synthesized and competition between skipping and inclusion fates afterward. Collision of both exon ends to form an exon definition complex was incorporated to account for the effect of size; ESE/ESS effects were modeled on the basis of stabilization/destabilization. This model accurately predicted the outcome of independent experiments on more complex DEs that combined ESEs and ESSs. PMID:25492963

  10. Dominant-Negative TGF-β Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation And Augments Prostate Cancer Eradication.

    PubMed

    Kloss, Christopher C; Lee, Jihyun; Zhang, Aaron; Chen, Fang; Melenhorst, Jan Joseph; Lacey, Simon F; Maus, Marcela V; Fraietta, Joseph A; Zhao, Yangbing; June, Carl H

    2018-05-08

    Cancer has an impressive ability to evolve multiple processes to evade therapies. While immunotherapies and vaccines have shown great promise, particularly in certain solid tumors such as prostate cancer, they have been met with resistance from tumors that use a multitude of mechanisms of immunosuppression to limit effectiveness. Prostate cancer, in particular, secretes transforming growth factor β (TGF-β) as a means to inhibit immunity while allowing for cancer progression. Blocking TGF-β signaling in T cells increases their ability to infiltrate, proliferate, and mediate antitumor responses in prostate cancer models. We tested whether the potency of chimeric antigen receptor (CAR) T cells directed to prostate-specific membrane antigen (PSMA) could be enhanced by the co-expression of a dominant-negative TGF-βRII (dnTGF-βRII). Upon expression of the dominant-negative TGF-βRII in CAR T cells, we observed increased proliferation of these lymphocytes, enhanced cytokine secretion, resistance to exhaustion, long-term in vivo persistence, and the induction of tumor eradication in aggressive human prostate cancer mouse models. Based on our observations, we initiated a phase I clinical trial to assess these CAR T cells as a novel approach for patients with relapsed and refractory metastatic prostate cancer (ClinicalTrials.gov: NCT03089203). Copyright © 2018. Published by Elsevier Inc.

  11. Selective aggregation of the splicing factor Hsh155 suppresses splicing upon genotoxic stress.

    PubMed

    Mathew, Veena; Tam, Annie S; Milbury, Karissa L; Hofmann, Analise K; Hughes, Christopher S; Morin, Gregg B; Loewen, Christopher J R; Stirling, Peter C

    2017-12-04

    Upon genotoxic stress, dynamic relocalization events control DNA repair as well as alterations of the transcriptome and proteome, enabling stress recovery. How these events may influence one another is only partly known. Beginning with a cytological screen of genome stability proteins, we find that the splicing factor Hsh155 disassembles from its partners and localizes to both intranuclear and cytoplasmic protein quality control (PQC) aggregates under alkylation stress. Aggregate sequestration of Hsh155 occurs at nuclear and then cytoplasmic sites in a manner that is regulated by molecular chaperones and requires TORC1 activity signaling through the Sfp1 transcription factor. This dynamic behavior is associated with intron retention in ribosomal protein gene transcripts, a decrease in splicing efficiency, and more rapid recovery from stress. Collectively, our analyses suggest a model in which some proteins evicted from chromatin and undergoing transcriptional remodeling during stress are targeted to PQC sites to influence gene expression changes and facilitate stress recovery. © 2017 Mathew et al.

  12. Splicing Efficiently Couples Optical Fibers

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1985-01-01

    Method of splicing single-mode optical fibers results in very low transmission losses through joined fiber ends. Coupling losses between joined optical-fiber ends only 0.1 dB. Method needs no special operator training.

  13. Long-range RNA pairings contribute to mutually exclusive splicing.

    PubMed

    Yue, Yuan; Yang, Yun; Dai, Lanzhi; Cao, Guozheng; Chen, Ran; Hong, Weiling; Liu, Baoping; Shi, Yang; Meng, Yijun; Shi, Feng; Xiao, Mu; Jin, Yongfeng

    2016-01-01

    Mutually exclusive splicing is an important means of increasing the protein repertoire, by which the Down's syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 different isoforms in Drosophila melanogaster. However, the regulatory mechanisms remain obscure due to the complexity of the Dscam exon cluster. Here, we reveal a molecular model for the regulation of the mutually exclusive splicing of the serpent pre-mRNA based on competition between upstream and downstream RNA pairings. Such dual RNA pairings confer fine tuning of the inclusion of alternative exons. Moreover, we demonstrate that the splicing outcome of alternative exons is mediated in relative pairing strength-correlated mode. Combined comparative genomics analysis and experimental evidence revealed similar bidirectional structural architectures in exon clusters 4 and 9 of the Dscam gene. Our findings provide a novel mechanistic framework for the regulation of mutually exclusive splicing and may offer potentially applicable insights into long-range RNA-RNA interactions in gene regulatory networks. © 2015 Yue et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. TSVdb: a web-tool for TCGA splicing variants analysis.

    PubMed

    Sun, Wenjie; Duan, Ting; Ye, Panmeng; Chen, Kelie; Zhang, Guanling; Lai, Maode; Zhang, Honghe

    2018-05-29

    Collaborative projects such as The Cancer Genome Atlas (TCGA) have generated various -omics and clinical data on cancer. Many computational tools have been developed to facilitate the study of the molecular characterization of tumors using data from the TCGA. Alternative splicing of a gene produces splicing variants, and accumulating evidence has revealed its essential role in cancer-related processes, implying the urgent need to discover tumor-specific isoforms and uncover their potential functions in tumorigenesis. We developed TSVdb, a web-based tool, to explore alternative splicing based on TCGA samples with 30 clinical variables from 33 tumors. TSVdb has an integrated and well-proportioned interface for visualization of the clinical data, gene expression, usage of exons/junctions and splicing patterns. Researchers can interpret the isoform expression variations between or across clinical subgroups and estimate the relationships between isoforms and patient prognosis. TSVdb is available at http://www.tsvdb.com , and the source code is available at https://github.com/wenjie1991/TSVdb . TSVdb will inspire oncologists and accelerate isoform-level advances in cancer research.

  15. Genomic overview of mRNA 5′-leader trans-splicing in the ascidian Ciona intestinalis

    PubMed Central

    Satou, Yutaka; Hamaguchi, Makoto; Takeuchi, Keisuke; Hastings, Kenneth E. M.; Satoh, Nori

    2006-01-01

    Although spliced leader (SL) trans-splicing in the chordates was discovered in the tunicate Ciona intestinalis there has been no genomic overview analysis of the extent of trans-splicing or the make-up of the trans-spliced and non-trans-spliced gene populations of this model organism. Here we report such an analysis for Ciona based on the oligo-capping full-length cDNA approach. We randomly sampled 2078 5′-full-length ESTs representing 668 genes, or 4.2% of the entire genome. Our results indicate that Ciona contains a single major SL, which is efficiently trans-spliced to mRNAs transcribed from a specific set of genes representing ∼50% of the total number of expressed genes, and that individual trans-spliced mRNA species are, on average, 2–3-fold less abundant than non-trans-spliced mRNA species. Our results also identify a relationship between trans-splicing status and gene functional classification; ribosomal protein genes fall predominantly into the non-trans-spliced category. In addition, our data provide the first evidence for the occurrence of polycistronic transcription in Ciona. An interesting feature of the Ciona polycistronic transcription units is that the great majority entirely lack intercistronic sequences. PMID:16822859

  16. Splice loss requirements in multi-mode fiber mode-division-multiplex transmission links.

    PubMed

    Warm, Stefan; Petermann, Klaus

    2013-01-14

    We investigate numerically the influence of fiber splices and fiber connectors to the statistics of mode dependent loss (MDL) and multiple-input multiple-output (MIMO) outage capacity in mode multiplexed multi-mode fiber links. Our results indicate required splice losses much lower than currently feasible to achieve a reasonable outage capacity in long-haul transmission systems. Splice losses as low as 0.03dB may effectively lead to an outage of MIMO channels after only a few hundred kilometers transmission length. In a first approximation, the relative capacity solely depends on the accumulated splice loss and should be less than ≈ 2dB to ensure a relative capacity of 90%. We also show that discrete mode permutation (mixing) within the transmission line may effectively increase the maximum transmission distance by a factor of 5 for conventional splice losses.

  17. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture.

    PubMed

    Pai, Athma A; Henriques, Telmo; McCue, Kayla; Burkholder, Adam; Adelman, Karen; Burge, Christopher B

    2017-12-27

    Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning ('intron definition') or exon-spanning ('exon definition') pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila , using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60-70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly low variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing.

  18. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis

    PubMed Central

    2014-01-01

    Background The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. Results We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5′ splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Conclusion Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock

  19. Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice.

    PubMed

    Gomez-Sintes, Raquel; Bortolozzi, Analia; Artigas, Francesc; Lucas, José J

    2014-09-01

    Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase with constitutive activity involved in cellular architecture, gene expression, cell proliferation, fate decision and apoptosis, among others. GSK-3 expression is particularly high in brain where it may be involved in neurological and psychiatric disorders such as Alzheimer׳s disease, bipolar disorder and major depression. A link with schizophrenia is suggested by the antipsychotic drug-induced GSK-3 regulation and by the involvement of the Akt/GSK-3 pathway in dopaminergic neurotransmission. Taking advantage of the previous development of dominant negative GSK-3 transgenic mice (Tg) showing a selective reduction of GSK-3 activity in forebrain neurons but not in dopaminergic neurons, we explored the relationship between GSK-3 and dopaminergic neurotransmission in vivo. In microdialysis experiments, local quinpirole (DA D2-R agonist) in dorsal striatum reduced dopamine (DA) release significantly less in Tg mice than in wild-type (WT) mice. However, local SKF-81297 (selective DA D1-R agonist) in dorsal striatum reduced DA release equally in both control and Tg mice indicating a comparable function of DA D1-R in the direct striato-nigral pathway. Likewise, systemic quinpirole administration - acting preferentially on presynaptic DA D2- autoreceptors to modulate DA release-reduced striatal DA release similarly in both control and Tg mice. Quinpirole reduced locomotor activity and induced c-fos expression in globus pallidus (both striatal DA D2-R-mediated effects) significantly more in WT than in Tg mice. Taking together, the present results show that dominant negative GSK-3 transgenic mice show reduced DA D2-R-mediated function in striatum and further support a link between dopaminergic neurotransmission and GSK-3 activity. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  20. Gene therapy of uterine leiomyomas: adenovirus-mediated expression of dominant negative estrogen receptor inhibits tumor growth in nude mice.

    PubMed

    Al-Hendy, Ayman; Lee, Eun J; Wang, Hui Q; Copland, John A

    2004-11-01

    Leiomyomas (fibroids) are common estrogen-dependent uterine tumors with no effective medicinal treatment; hysterectomy is the mainstay of management. This study was undertaken to investigate a potential therapy for leiomyoma; we used a mutated dominant-negative estrogen receptor gene delivered via an adenoviral vector (Ad-ER-DN). Ad-ER-DN transduction, in both human and rat leiomyoma cell lines, induced an increase in both caspase-3 levels and BAX/Bcl-2 ratio with evident apoptosis in the TdT-mediated dUTP nick-end labeling assay. In nude mice, rat leiomyoma cells ex vivo transduced with Ad-ER-DN supported significantly smaller tumors compared with Ad-LacZ-treated cells 5 weeks after implantation. In mice treated by direct intratumor injection into preexisting lesions, Ad-ER-DN caused immediate overall arrest of tumor growth. The Ad-ER-DN-treated tumors demonstrated severely inhibited cell proliferation (BrdU index) and a marked increase in the number of apoptotic cells (TdT-mediated dUTP nick-end labeling index). Dominant-negative estrogen receptor gene therapy may provide a nonsurgical treatment option for women with symptomatic uterine fibroids who want to preserve their uteri.

  1. How do messenger RNA splicing alterations drive myelodysplasia?

    PubMed Central

    2017-01-01

    Mutations in RNA splicing factors are the single most common class of genetic alterations in myelodysplastic syndrome (MDS) patients. Although much has been learned about how these mutations affect splicing at a global- and transcript-specific level, critical questions about the role of these mutations in MDS development and maintenance remain. Here we present the questions to be addressed in order to understand the unique enrichment of these mutations in MDS. PMID:28348147

  2. Regulation of hippocampal synaptic plasticity thresholds and changes in exploratory and learning behavior in dominant negative NPR-B mutant rats

    PubMed Central

    Barmashenko, Gleb; Buttgereit, Jens; Herring, Neil; Bader, Michael; Özcelik, Cemil; Manahan-Vaughan, Denise; Braunewell, Karl H.

    2014-01-01

    The second messenger cyclic GMP affects synaptic transmission and modulates synaptic plasticity and certain types of learning and memory processes. The impact of the natriuretic peptide receptor B (NPR-B) and its ligand C-type natriuretic peptide (CNP), one of several cGMP producing signaling systems, on hippocampal synaptic plasticity and learning is, however, less well understood. We have previously shown that the NPR-B ligand CNP increases the magnitude of long-term depression (LTD) in hippocampal area CA1, while reducing the induction of long-term potentiation (LTP). We have extended this line of research to show that bidirectional plasticity is affected in the opposite way in rats expressing a dominant-negative mutant of NPR-B (NSE-NPR-BΔKC) lacking the intracellular guanylyl cyclase domain under control of a promoter for neuron-specific enolase. The brain cells of these transgenic rats express functional dimers of the NPR-B receptor containing the dominant-negative NPR-BΔKC mutant, and therefore show decreased CNP-stimulated cGMP-production in brain membranes. The NPR-B transgenic rats display enhanced LTP but reduced LTD in hippocampal slices. When the frequency-dependence of synaptic modification to afferent stimulation in the range of 1–100 Hz was assessed in transgenic rats, the threshold for both, LTP and LTD induction, was shifted to lower frequencies. In parallel, NPR-BΔKC rats exhibited an enhancement in exploratory and learning behavior. These results indicate that bidirectional plasticity and learning and memory mechanism are affected in transgenic rats expressing a dominant-negative mutant of NPR-B. Our data substantiate the hypothesis that NPR-B-dependent cGMP signaling has a modulatory role for synaptic information storage and learning. PMID:25520616

  3. Quantitative imaging of single mRNA splice variants in living cells

    NASA Astrophysics Data System (ADS)

    Lee, Kyuwan; Cui, Yi; Lee, Luke P.; Irudayaraj, Joseph

    2014-06-01

    Alternative messenger RNA (mRNA) splicing is a fundamental process of gene regulation, and errors in RNA splicing are known to be associated with a variety of different diseases. However, there is currently a lack of quantitative technologies for monitoring mRNA splice variants in cells. Here, we show that a combination of plasmonic dimer probes and hyperspectral imaging can be used to detect and quantify mRNA splice variants in living cells. The probes are made from gold nanoparticles functionalized with oligonucleotides and can hybridize to specific mRNA sequences, forming nanoparticle dimers that exhibit distinct spectral shifts due to plasmonic coupling. With this approach, we show that the spatial and temporal distribution of three selected splice variants of the breast cancer susceptibility gene, BRCA1, can be monitored at single-copy resolution by measuring the hybridization dynamics of the nanoplasmonic dimers. Our study provides insights into RNA and its transport in living cells, which could improve our understanding of cellular protein complexes, pharmacogenomics, genetic diagnosis and gene therapies.

  4. Global impact of RNA splicing on transcriptome remodeling in the heart.

    PubMed

    Gao, Chen; Wang, Yibin

    2012-08-01

    In the eukaryotic transcriptome, both the numbers of genes and different RNA species produced by each gene contribute to the overall complexity. These RNA species are generated by the utilization of different transcriptional initiation or termination sites, or more commonly, from different messenger RNA (mRNA) splicing events. Among the 30,000+ genes in human genome, it is estimated that more than 95% of them can generate more than one gene product via alternative RNA splicing. The protein products generated from different RNA splicing variants can have different intracellular localization, activity, or tissue-distribution. Therefore, alternative RNA splicing is an important molecular process that contributes to the overall complexity of the genome and the functional specificity and diversity among different cell types. In this review, we will discuss current efforts to unravel the full complexity of the cardiac transcriptome using a deep-sequencing approach, and highlight the potential of this technology to uncover the global impact of RNA splicing on the transcriptome during development and diseases of the heart.

  5. RNA editing in nascent RNA affects pre-mRNA splicing

    PubMed Central

    Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Yang, Yun; Lin, Xianzhi; Tran, Stephen; Yang, Ei-Wen; Quinones-Valdez, Giovanni

    2018-01-01

    In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3′ acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites. PMID:29724793

  6. TSUNAMI: an antisense method to phenocopy splicing-associated diseases in animals

    PubMed Central

    Sahashi, Kentaro; Hua, Yimin; Ling, Karen K.Y.; Hung, Gene; Rigo, Frank; Horev, Guy; Katsuno, Masahisa; Sobue, Gen; Ko, Chien-Ping; Bennett, C. Frank; Krainer, Adrian R.

    2012-01-01

    Antisense oligonucleotides (ASOs) are versatile molecules that can be designed to specifically alter splicing patterns of target pre-mRNAs. Here we exploit this feature to phenocopy a genetic disease. Spinal muscular atrophy (SMA) is a motor neuron disease caused by loss-of-function mutations in the SMN1 gene. The related SMN2 gene expresses suboptimal levels of functional SMN protein due to alternative splicing that skips exon 7; correcting this defect—e.g., with ASOs—is a promising therapeutic approach. We describe the use of ASOs that exacerbate SMN2 missplicing and phenocopy SMA in a dose-dependent manner when administered to transgenic Smn−/− mice. Intracerebroventricular ASO injection in neonatal mice recapitulates SMA-like progressive motor dysfunction, growth impairment, and shortened life span, with α-motor neuron loss and abnormal neuromuscular junctions. These SMA-like phenotypes are prevented by a therapeutic ASO that restores correct SMN2 splicing. We uncovered starvation-induced splicing changes, particularly in SMN2, which likely accelerate disease progression. These results constitute proof of principle that ASOs designed to cause sustained splicing defects can be used to induce pathogenesis and rapidly and accurately model splicing-associated diseases in animals. This approach allows the dissection of pathogenesis mechanisms, including spatial and temporal features of disease onset and progression, as well as testing of candidate therapeutics. PMID:22895255

  7. Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia

    PubMed Central

    Axelrod, Felicia B.; Liebes, Leonard; Gold-von Simson, Gabrielle; Mendoza, Sandra; Mull, James; Leyne, Maire; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio; Slaugenhaupt, Susan A.

    2011-01-01

    Familial dysautonomia (FD) is caused by an intronic splice mutation in the IKBKAP gene that leads to partial skipping of exon 20 and tissue-specific reduction in I-κ-B kinase complex associated protein/ elongation protein 1 (IKAP/ELP-1) expression. Kinetin (6-furfurylaminopurine) has been shown to improve splicing and increase wild-type IKBKAP mRNA and IKAP protein expression in FD cell lines and carriers. To determine if oral kinetin treatment could alter mRNA splicing in FD subjects and was tolerable, we administered kinetin to eight FD individuals homozygous for the splice mutation. Subjects received 23.5 mg/Kg/day for 28 days. An increase in wild-type IKBKAP mRNA expression in leukocytes was noted after eight days in six of eight individuals; after 28 days the mean increase as compared to baseline was significant (p=0.002). We have demonstrated that kinetin is tolerable in this medically fragile population. Not only did kinetin produce the desired effect on splicing in FD patients, but also that effect appears to improve with time despite lack of dose change. This is the first report of a drug that produces in vivo mRNA splicing changes in individuals with FD and supports future long-term trials to determine if kinetin will prove therapeutic in FD patients. PMID:21775922

  8. Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF.

    PubMed

    Zheng, Ximeng; Debord, Benoît; Vincetti, Luca; Beaudou, Benoît; Gérôme, Frédéric; Benabid, Fetah

    2016-06-27

    We report for the first time on tapering inhibited coupling (IC) hypocycloid-core shape Kagome hollow-core photonic crystal fibers whilst maintaining their delicate core-contour negative curvature with a down-ratio as large as 2.4. The transmission loss of down-tapered sections reaches a figure as low as 0.07 dB at 1550 nm. The tapered IC fibers are also spliced to standard SMF with a total insertion loss of 0.48 dB. These results show that all-fiber photonic microcells with the ultra-low loss hypocycloid core-contour Kagome fibers is now possible.

  9. Expanding the action of duplex RNAs into the nucleus: redirecting alternative splicing

    PubMed Central

    Liu, Jing; Hu, Jiaxin; Corey, David R.

    2012-01-01

    Double-stranded RNAs are powerful agents for silencing gene expression in the cytoplasm of mammalian cells. The potential for duplex RNAs to control expression in the nucleus has received less attention. Here, we investigate the ability of small RNAs to redirect splicing. We identify RNAs targeting an aberrant splice site that restore splicing and production of functional protein. RNAs can target sequences within exons or introns and affect the inclusion of exons within SMN2 and dystrophin, genes responsible for spinal muscular atrophy and Duchenne muscular dystrophy, respectively. Duplex RNAs recruit argonaute 2 (AGO2) to pre-mRNA transcripts and altered splicing requires AGO2 expression. AGO2 promotes transcript cleavage in the cytoplasm, but recruitment of AGO2 to pre-mRNAs does not reduce transcript levels, exposing a difference between cytoplasmic and nuclear pathways. Involvement of AGO2 in splicing, a classical nuclear process, reinforces the conclusion from studies of RNA-mediated transcriptional silencing that RNAi pathways can be adapted to function in the mammalian nucleus. These data provide a new strategy for controlling splicing and expand the reach of small RNAs within the nucleus of mammalian cells. PMID:21948593

  10. Alternative Splicing in Breast Cancer and the Potential Development of Therapeutic Tools.

    PubMed

    Martínez-Montiel, Nancy; Anaya-Ruiz, Maricruz; Pérez-Santos, Martín; Martínez-Contreras, Rebeca D

    2017-10-05

    Alternative splicing is a key molecular mechanism now considered as a hallmark of cancer that has been associated with the expression of distinct isoforms during the onset and progression of the disease. The leading cause of cancer-related deaths in women worldwide is breast cancer, and even when the role of alternative splicing in this type of cancer has been established, the function of this mechanism in breast cancer biology is not completely decoded. In order to gain a comprehensive view of the role of alternative splicing in breast cancer biology and development, we summarize here recent findings regarding alternative splicing events that have been well documented for breast cancer evolution, considering its prognostic and therapeutic value. Moreover, we analyze how the response to endocrine and chemical therapies could be affected due to alternative splicing and differential expression of variant isoforms. With all this knowledge, it becomes clear that targeting alternative splicing represents an innovative approach for breast cancer therapeutics and the information derived from current studies could guide clinical decisions with a direct impact in the clinical advances for breast cancer patients nowadays.

  11. Quaking and PTB control overlapping splicing regulatory networks during muscle cell differentiation

    PubMed Central

    Hall, Megan P.; Nagel, Roland J.; Fagg, W. Samuel; Shiue, Lily; Cline, Melissa S.; Perriman, Rhonda J.; Donohue, John Paul; Ares, Manuel

    2013-01-01

    Alternative splicing contributes to muscle development, but a complete set of muscle-splicing factors and their combinatorial interactions are unknown. Previous work identified ACUAA (“STAR” motif) as an enriched intron sequence near muscle-specific alternative exons such as Capzb exon 9. Mass spectrometry of myoblast proteins selected by the Capzb exon 9 intron via RNA affinity chromatography identifies Quaking (QK), a protein known to regulate mRNA function through ACUAA motifs in 3′ UTRs. We find that QK promotes inclusion of Capzb exon 9 in opposition to repression by polypyrimidine tract-binding protein (PTB). QK depletion alters inclusion of 406 cassette exons whose adjacent intron sequences are also enriched in ACUAA motifs. During differentiation of myoblasts to myotubes, QK levels increase two- to threefold, suggesting a mechanism for QK-responsive exon regulation. Combined analysis of the PTB- and QK-splicing regulatory networks during myogenesis suggests that 39% of regulated exons are under the control of one or both of these splicing factors. This work provides the first evidence that QK is a global regulator of splicing during muscle development in vertebrates and shows how overlapping splicing regulatory networks contribute to gene expression programs during differentiation. PMID:23525800

  12. Metal boot permits fabrication of hermetically sealed splices in metal sheathed instrumentation cables

    NASA Technical Reports Server (NTRS)

    Chambers, G.

    1966-01-01

    Metal boot splices hard sheathed instrumentation cables used with high temperature strain gages and thermocouples. Silver brazing the conductors together, hermetically seals the splice. This boot is a highly reliable sealed splice which is equally effective at cryogenic temperatures, high temperatures, nuclear environments, and combinations of the above.

  13. On splice site prediction using weight array models: a comparison of smoothing techniques

    NASA Astrophysics Data System (ADS)

    Taher, Leila; Meinicke, Peter; Morgenstern, Burkhard

    2007-11-01

    In most eukaryotic genes, protein-coding exons are separated by non-coding introns which are removed from the primary transcript by a process called "splicing". The positions where introns are cut and exons are spliced together are called "splice sites". Thus, computational prediction of splice sites is crucial for gene finding in eukaryotes. Weight array models are a powerful probabilistic approach to splice site detection. Parameters for these models are usually derived from m-tuple frequencies in trusted training data and subsequently smoothed to avoid zero probabilities. In this study we compare three different ways of parameter estimation for m-tuple frequencies, namely (a) non-smoothed probability estimation, (b) standard pseudo counts and (c) a Gaussian smoothing procedure that we recently developed.

  14. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture

    PubMed Central

    Pai, Athma A; Henriques, Telmo; McCue, Kayla; Burkholder, Adam; Adelman, Karen

    2017-01-01

    Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning (‘intron definition’) or exon-spanning (‘exon definition’) pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60–70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly low variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing. PMID:29280736

  15. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture

    DOE PAGES

    Pai, Athma A.; Henriques, Telmo; McCue, Kayla; ...

    2017-12-27

    Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning (‘intron definition’) or exon-spanning (‘exon definition’) pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60–70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly lowmore » variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing.« less

  16. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, Athma A.; Henriques, Telmo; McCue, Kayla

    Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning (‘intron definition’) or exon-spanning (‘exon definition’) pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60–70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly lowmore » variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing.« less

  17. An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets.

    PubMed

    Stanescu, Ana; Caragea, Doina

    2015-01-01

    Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework.

  18. An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets

    PubMed Central

    2015-01-01

    Background Recent biochemical advances have led to inexpensive, time-efficient production of massive volumes of raw genomic data. Traditional machine learning approaches to genome annotation typically rely on large amounts of labeled data. The process of labeling data can be expensive, as it requires domain knowledge and expert involvement. Semi-supervised learning approaches that can make use of unlabeled data, in addition to small amounts of labeled data, can help reduce the costs associated with labeling. In this context, we focus on the problem of predicting splice sites in a genome using semi-supervised learning approaches. This is a challenging problem, due to the highly imbalanced distribution of the data, i.e., small number of splice sites as compared to the number of non-splice sites. To address this challenge, we propose to use ensembles of semi-supervised classifiers, specifically self-training and co-training classifiers. Results Our experiments on five highly imbalanced splice site datasets, with positive to negative ratios of 1-to-99, showed that the ensemble-based semi-supervised approaches represent a good choice, even when the amount of labeled data consists of less than 1% of all training data. In particular, we found that ensembles of co-training and self-training classifiers that dynamically balance the set of labeled instances during the semi-supervised iterations show improvements over the corresponding supervised ensemble baselines. Conclusions In the presence of limited amounts of labeled data, ensemble-based semi-supervised approaches can successfully leverage the unlabeled data to enhance supervised ensembles learned from highly imbalanced data distributions. Given that such distributions are common for many biological sequence classification problems, our work can be seen as a stepping stone towards more sophisticated ensemble-based approaches to biological sequence annotation in a semi-supervised framework. PMID:26356316

  19. Mutations in DSTYK and dominant urinary tract malformations.

    PubMed

    Sanna-Cherchi, Simone; Sampogna, Rosemary V; Papeta, Natalia; Burgess, Katelyn E; Nees, Shannon N; Perry, Brittany J; Choi, Murim; Bodria, Monica; Liu, Yan; Weng, Patricia L; Lozanovski, Vladimir J; Verbitsky, Miguel; Lugani, Francesca; Sterken, Roel; Paragas, Neal; Caridi, Gianluca; Carrea, Alba; Dagnino, Monica; Materna-Kiryluk, Anna; Santamaria, Giuseppe; Murtas, Corrado; Ristoska-Bojkovska, Nadica; Izzi, Claudia; Kacak, Nilgun; Bianco, Beatrice; Giberti, Stefania; Gigante, Maddalena; Piaggio, Giorgio; Gesualdo, Loreto; Vukic, Durdica Kosuljandic; Vukojevic, Katarina; Saraga-Babic, Mirna; Saraga, Marijan; Gucev, Zoran; Allegri, Landino; Latos-Bielenska, Anna; Casu, Domenica; State, Matthew; Scolari, Francesco; Ravazzolo, Roberto; Kiryluk, Krzysztof; Al-Awqati, Qais; D'Agati, Vivette D; Drummond, Iain A; Tasic, Velibor; Lifton, Richard P; Ghiggeri, Gian Marco; Gharavi, Ali G

    2013-08-15

    Congenital abnormalities of the kidney and the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and the etiologic factors are poorly understood. We performed genomewide linkage analysis and whole-exome sequencing in a family with an autosomal dominant form of congenital abnormalities of the kidney or urinary tract (seven affected family members). We also performed a sequence analysis in 311 unrelated patients, as well as histologic and functional studies. Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single, rare, deleterious variant within these linkage intervals, a heterozygous splice-site mutation in the dual serine-threonine and tyrosine protein kinase gene (DSTYK). This variant, which resulted in aberrant splicing of messenger RNA, was present in all affected family members. Additional, independent DSTYK mutations, including nonsense and splice-site mutations, were detected in 7 of 311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in developmental defects in multiple organs, which suggested loss of fibroblast growth factor (FGF) signaling. Consistent with this finding is the observation that DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated phosphorylation of extracellular-signal-regulated kinase (ERK), the principal signal downstream of receptor tyrosine kinases. We detected independent DSTYK mutations in 2.3% of patients with congenital abnormalities of the kidney or urinary tract, a finding that suggests that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling. (Funded by the National Institutes of Health and others.).

  20. Mutations in DSTYK and Dominant Urinary Tract Malformations

    PubMed Central

    Sanna-Cherchi, Simone; Nees, Shannon N.; Perry, Brittany J.; Choi, Murim; Bodria, Monica; Liu, Yan; Weng, Patricia L.; Lozanovski, Vladimir J.; Verbitsky, Miguel; Lugani, Francesca; Sterken, Roel; Paragas, Neal; Caridi, Gianluca; Carrea, Alba; Dagnino, Monica; Materna-Kiryluk, Anna; Santamaria, Giuseppe; Murtas, Corrado; Ristoska-Bojkovska, Nadica; Izzi, Claudia; Kacak, Nilgun; Bianco, Beatrice; Giberti, Stefania; Gigante, Maddalena; Piaggio, Giorgio; Gesualdo, Loreto; Vukic, Durdica Kosuljandic; Vukojevic, Katarina; Saraga-Babic, Mirna; Saraga, Marijan; Gucev, Zoran; Allegri, Landino; Latos-Bielenska, Anna; Casu, Domenica; State, Matthew; Scolari, Francesco; Ravazzolo, Roberto; Kiryluk, Krzysztof; Al-Awqati, Qais; D'Agati, Vivette D.; Drummond, Iain A.; Tasic, Velibor; Lifton, Richard P.; Ghiggeri, Gian Marco; Gharavi, Ali G.

    2013-01-01

    BACKGROUND Congenital abnormalities of the kidney and the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and the etiologic factors are poorly understood. METHODS We performed genomewide linkage analysis and whole-exome sequencing in a family with an autosomal dominant form of congenital abnormalities of the kidney or urinary tract (seven affected family members). We also performed a sequence analysis in 311 unrelated patients, as well as histologic and functional studies. RESULTS Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single, rare, deleterious variant within these linkage intervals, a heterozygous splice-site mutation in the dual serine–threonine and tyrosine protein kinase gene (DSTYK). This variant, which resulted in aberrant splicing of messenger RNA, was present in all affected family members. Additional, independent DSTYK mutations, including nonsense and splice-site mutations, were detected in 7 of 311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in developmental defects in multiple organs, which suggested loss of fibroblast growth factor (FGF) signaling. Consistent with this finding is the observation that DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated phosphorylation of extracellular-signal-regulated kinase (ERK), the principal signal downstream of receptor tyrosine kinases. CONCLUSIONS We detected independent DSTYK mutations in 2.3% of patients with congenital abnormalities of the kidney or urinary tract, a finding that suggests that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling. (Funded by the National Institutes of Health and

  1. Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation.

    PubMed

    Cao, Wenguang; Razanau, Aleh; Feng, Dairong; Lobo, Vincent G; Xie, Jiuyong

    2012-09-01

    The molecular basis of cell signal-regulated alternative splicing at the 3' splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3' splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3' splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3' splice site usage.

  2. Protein kinase WNK3 regulates the neuronal splicing factor Fox-1.

    PubMed

    Lee, A-Young; Chen, Wei; Stippec, Steve; Self, Jon; Yang, Fan; Ding, Xiaojun; Chen, She; Juang, Yu-Chi; Cobb, Melanie H

    2012-10-16

    We report an action of the protein kinase WNK3 on the neuronal mRNA splicing factor Fox-1. Fox-1 splices mRNAs encoding proteins important in synaptic transmission and membrane excitation. WNK3, implicated in the control of neuronal excitability through actions on ion transport, binds Fox-1 and inhibits its splicing activity in a kinase activity-dependent manner. Phosphorylation of Fox-1 by WNK3 does not change its RNA binding capacity; instead, WNK3 increases the cytoplasmic localization of Fox-1, thereby suppressing Fox-1-dependent splicing. These findings demonstrate a role of WNK3 in RNA processing. Considering the implication of WNK3 and Fox-1 in disorders of neuronal development such as autism, WNK3 may offer a target for treatment of Fox-1-induced disease.

  3. Stripping and splicing polyimide-coated fibers

    NASA Astrophysics Data System (ADS)

    Duke, Douglas; Kanda, Yoshiharu; Tobita, Kenyo; Yamauchi, Ryozo

    2011-05-01

    Polyimide is often used as a coating material for optical fibers used in high temperature environments such as aerospace or oil and gas sensor applications. Unfortunately, polyimide coating is very difficult to strip by conventional mechanical stripping methods. The glass fiber is easily damaged if the stripping process is not extremely well controlled. Stripping the polyimide coating by heating with a flame or arc typically results in a significant reduction in fiber strength. Strength may be maintained by using hot acid stripping, however the use of the strong hot acid presents safety hazards and also requires controlled and safe waste disposal. Another issue with polyimide coating is variability of the coating diameter from various manufacturers or due to different polyimide coating processes. This not only complicates the polyimide stripping issue, but also presents problems with precise clamping and alignment during splicing, especially when it is necessary to splice with a short cleave length. In this paper, we present new polyimide coating stripping technology. The significant feature of this stripping technology is achievement of good strength while avoiding the use of hot acid or heating. We also developed a new specialty fiber fusion splicer that enables precise alignment and splicing regardless of the variability of polyimide coating diameter, even when clamping on the coating.

  4. An EMT–Driven Alternative Splicing Program Occurs in Human Breast Cancer and Modulates Cellular Phenotype

    PubMed Central

    Flytzanis, Nicholas C.; Balsamo, Michele; Condeelis, John S.; Oktay, Maja H.; Burge, Christopher B.; Gertler, Frank B.

    2011-01-01

    Epithelial-mesenchymal transition (EMT), a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA–Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT–dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell–cell junction formation, and regulation of cell migration, were enriched among EMT–associated alternatively splicing events. Our analysis suggested that most EMT–associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT–associated splicing pattern. Expression of EMT–associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT–dependent splicing changes occur commonly in human tumors. The functional significance of EMT–associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT–associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression. PMID:21876675

  5. Transcriptome analysis reveals the complexity of alternative splicing regulation in the fungus Verticillium dahliae.

    PubMed

    Jin, Lirong; Li, Guanglin; Yu, Dazhao; Huang, Wei; Cheng, Chao; Liao, Shengjie; Wu, Qijia; Zhang, Yi

    2017-02-06

    Alternative splicing (AS) regulation is extensive and shapes the functional complexity of higher organisms. However, the contribution of alternative splicing to fungal biology is not well studied. This study provides sequences of the transcriptomes of the plant wilt pathogen Verticillium dahliae, using two different strains and multiple methods for cDNA library preparations. We identified alternatively spliced mRNA isoforms in over a half of the multi-exonic fungal genes. Over one-thousand isoforms involve TopHat novel splice junction; multiple types of combinatory alternative splicing patterns were identified. We showed that one Verticillium gene could use four different 5' splice sites and two different 3' donor sites to produce up to five mature mRNAs, representing one of the most sophisticated alternative splicing model in eukaryotes other than animals. Hundreds of novel intron types involving a pair of new splice sites were identified in the V. dahliae genome. All the types of AS events were validated by using RT-PCR. Functional enrichment analysis showed that AS genes are involved in most known biological functions and enriched in ATP biosynthesis, sexual/asexual reproduction, morphogenesis, signal transduction etc., predicting that the AS regulation modulates mRNA isoform output and shapes the V. dahliae proteome plasticity of the pathogen in response to the environmental and developmental changes. These findings demonstrate the comprehensive alternative splicing mechanisms in a fungal plant pathogen, which argues the importance of this fungus in developing complicate genome regulation strategies in eukaryotes.

  6. The chromatin remodeling complex Swi/Snf regulates splicing of meiotic transcripts in Saccharomyces cerevisiae

    PubMed Central

    Douglass, Stephen; Galivanche, Anoop R.

    2017-01-01

    Abstract Despite its relatively streamlined genome, there are important examples of regulated RNA splicing in Saccharomyces cerevisiae, such as splicing of meiotic transcripts. Like other eukaryotes, S. cerevisiae undergoes a dramatic reprogramming of gene expression during meiosis, including regulated splicing of a number of crucial meiosis-specific RNAs. Splicing of a subset of these is dependent upon the splicing activator Mer1. Here we show a crucial role for the chromatin remodeler Swi/Snf in regulation of splicing of meiotic genes and find that the complex affects meiotic splicing in two ways. First, we show that Swi/Snf regulates nutrient-dependent downregulation of ribosomal protein encoding RNAs, leading to the redistribution of spliceosomes from this abundant class of intron-containing RNAs (the ribosomal protein genes) to Mer1-regulated transcripts. We also demonstrate that Mer1 expression is dependent on Snf2, its acetylation state and histone H3 lysine 9 acetylation at the MER1 locus. Hence, Snf2 exerts systems level control of meiotic gene expression through two temporally distinct mechanisms, demonstrating that it is a key regulator of meiotic splicing in S. cerevisiae. We also reveal an evolutionarily conserved mechanism whereby the cell redirects its energy from maintaining its translational capacity to the process of meiosis. PMID:28637241

  7. FOX-2 Dependent Splicing of Ataxin-2 Transcript Is Affected by Ataxin-1 Overexpression

    PubMed Central

    Welzel, Franziska; Kaehler, Christian; Isau, Melanie; Hallen, Linda; Lehrach, Hans; Krobitsch, Sylvia

    2012-01-01

    Alternative splicing is a fundamental posttranscriptional mechanism for controlling gene expression, and splicing defects have been linked to various human disorders. The splicing factor FOX-2 is part of a main protein interaction hub in a network related to human inherited ataxias, however, its impact remains to be elucidated. Here, we focused on the reported interaction between FOX-2 and ataxin-1, the disease-causing protein in spinocerebellar ataxia type 1. In this line, we further evaluated this interaction by yeast-2-hybrid analyses and co-immunoprecipitation experiments in mammalian cells. Interestingly, we discovered that FOX-2 localization and splicing activity is affected in the presence of nuclear ataxin-1 inclusions. Moreover, we observed that FOX-2 directly interacts with ataxin-2, a protein modulating spinocerebellar ataxia type 1 pathogenesis. Finally, we provide evidence that splicing of pre-mRNA of ataxin-2 depends on FOX-2 activity, since reduction of FOX-2 levels led to increased skipping of exon 18 in ataxin-2 transcripts. Most striking, we observed that ataxin-1 overexpression has an effect on this splicing event as well. Thus, our results demonstrate that FOX-2 is involved in splicing of ataxin-2 transcripts and that this splicing event is altered by overexpression of ataxin-1. PMID:22666429

  8. SAM68 is a physiological regulator of SMN2 splicing in spinal muscular atrophy

    PubMed Central

    Pagliarini, Vittoria; Pelosi, Laura; Bustamante, Maria Blaire; Nobili, Annalisa; Berardinelli, Maria Grazia; D’Amelio, Marcello; Musarò, Antonio

    2015-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of motor neurons in patients with null mutations in the SMN1 gene. The almost identical SMN2 gene is unable to compensate for this deficiency because of the skipping of exon 7 during pre–messenger RNA (mRNA) processing. Although several splicing factors can modulate SMN2 splicing in vitro, the physiological regulators of this disease-causing event are unknown. We found that knockout of the splicing factor SAM68 partially rescued body weight and viability of SMAΔ7 mice. Ablation of SAM68 function promoted SMN2 splicing and expression in SMAΔ7 mice, correlating with amelioration of SMA-related defects in motor neurons and skeletal muscles. Mechanistically, SAM68 binds to SMN2 pre-mRNA, favoring recruitment of the splicing repressor hnRNP A1 and interfering with that of U2AF65 at the 3′ splice site of exon 7. These findings identify SAM68 as the first physiological regulator of SMN2 splicing in an SMA mouse model. PMID:26438828

  9. Intragenic DNA methylation and BORIS-mediated cancer-specific splicing contribute to the Warburg effect

    PubMed Central

    Singh, Smriti; Narayanan, Sathiya Pandi; Biswas, Kajal; Gupta, Amit; Ahuja, Neha; Yadav, Sandhya; Panday, Rajendra Kumar; Samaiya, Atul; Sharan, Shyam K.

    2017-01-01

    Aberrant alternative splicing and epigenetic changes are both associated with various cancers, but epigenetic regulation of alternative splicing in cancer is largely unknown. Here we report that the intragenic DNA methylation-mediated binding of Brother of Regulator of Imprinted Sites (BORIS) at the alternative exon of Pyruvate Kinase (PKM) is associated with cancer-specific splicing that promotes the Warburg effect and breast cancer progression. Interestingly, the inhibition of DNA methylation, BORIS depletion, or CRISPR/Cas9-mediated deletion of the BORIS binding site leads to a splicing switch from cancer-specific PKM2 to normal PKM1 isoform. This results in the reversal of the Warburg effect and the inhibition of breast cancer cell growth, which may serve as a useful approach to inhibit the growth of breast cancer cells. Importantly, our results show that in addition to PKM splicing, BORIS also regulates the alternative splicing of several genes in a DNA methylation-dependent manner. Our findings highlight the role of intragenic DNA methylation and DNA binding protein BORIS in cancer-specific splicing and its role in tumorigenesis. PMID:29073069

  10. Regulatory RNA binding proteins contribute to the transcriptome-wide splicing alterations in human cellular senescence.

    PubMed

    Dong, Qiongye; Wei, Lei; Zhang, Michael Q; Wang, Xiaowo

    2018-06-24

    Dysregulation of mRNA splicing has been observed in certain cellular senescence process. However, the common splicing alterations on the whole transcriptome shared by various types of senescence are poorly understood. In order to systematically identify senescence-associated transcriptomic changes in genome-wide scale, we collected RNA sequencing datasets of different human cell types with a variety of senescence-inducing methods from public databases and performed meta-analysis. First, we discovered that a group of RNA binding proteins were consistently down-regulated in diverse senescent samples and identified 406 senescence-associated common differential splicing events. Then, eight differentially expressed RNA binding proteins were predicted to regulate these senescence-associated splicing alterations through an enrichment analysis of their RNA binding information, including motif scanning and enhanced cross-linking immunoprecipitation data. In addition, we constructed the splicing regulatory modules that might contribute to senescence-associated biological processes. Finally, it was confirmed that knockdown of the predicted senescence-associated potential splicing regulators through shRNAs in HepG2 cell line could result in senescence-like splicing changes. Taken together, our work demonstrated a broad range of common changes in mRNA splicing switches and detected their central regulatory RNA binding proteins during senescence. These findings would help to better understand the coordinating splicing alterations in cellular senescence.

  11. Single Molecule Cluster Analysis Identifies Signature Dynamic Conformations along the Splicing Pathway

    PubMed Central

    Blanco, Mario R.; Martin, Joshua S.; Kahlscheuer, Matthew L.; Krishnan, Ramya; Abelson, John; Laederach, Alain; Walter, Nils G.

    2016-01-01

    The spliceosome is the dynamic RNA-protein machine responsible for faithfully splicing introns from precursor messenger RNAs (pre-mRNAs). Many of the dynamic processes required for the proper assembly, catalytic activation, and disassembly of the spliceosome as it acts on its pre-mRNA substrate remain poorly understood, a challenge that persists for many biomolecular machines. Here, we developed a fluorescence-based Single Molecule Cluster Analysis (SiMCAn) tool to dissect the manifold conformational dynamics of a pre-mRNA through the splicing cycle. By clustering common dynamic behaviors derived from selectively blocked splicing reactions, SiMCAn was able to identify signature conformations and dynamic behaviors of multiple ATP-dependent intermediates. In addition, it identified a conformation adopted late in splicing by a 3′ splice site mutant, invoking a mechanism for substrate proofreading. SiMCAn presents a novel framework for interpreting complex single molecule behaviors that should prove widely useful for the comprehensive analysis of a plethora of dynamic cellular machines. PMID:26414013

  12. A mechanism underlying position-specific regulation of alternative splicing

    PubMed Central

    Hamid, Fursham M.

    2017-01-01

    Abstract Many RNA-binding proteins including a master regulator of splicing in developing brain and muscle, polypyrimidine tract-binding protein 1 (PTBP1), can either activate or repress alternative exons depending on the pre-mRNA recruitment position. When bound upstream or within regulated exons PTBP1 tends to promote their skipping, whereas binding to downstream sites often stimulates inclusion. How this switch is orchestrated at the molecular level is poorly understood. Using bioinformatics and biochemical approaches we show that interaction of PTBP1 with downstream intronic sequences can activate natural cassette exons by promoting productive docking of the spliceosomal U1 snRNP to a suboptimal 5′ splice site. Strikingly, introducing upstream PTBP1 sites to this circuitry leads to a potent splicing repression accompanied by the assembly of an exonic ribonucleoprotein complex with a tightly bound U1 but not U2 snRNP. Our data suggest a molecular mechanism underlying the transition between a better-known repressive function of PTBP1 and its role as a bona fide splicing activator. More generally, we argue that the functional outcome of individual RNA contacts made by an RNA-binding protein is subject to extensive context-specific modulation.

  13. A role for exon sequences in alternative splicing of the human fibronectin gene.

    PubMed Central

    Mardon, H J; Sebastio, G; Baralle, F E

    1987-01-01

    Exon EDIIIA of the fibronectin (Fn) gene is alternatively spliced via pathways which either skip or include the whole exon in the messenger RNA (mRNA). We have investigated the role of EDIIIA exon sequences in the human Fn gene in determining alternative splicing of this exon during transient expression of alpha globin/Fn minigene hybrids in HeLa cells. We demonstrate that a DNA sequence of 81bp within the central region of exon EDIIIA is required for alternative splicing during processing of the primary transcript to generate both EDIIIA+ and EDIIIA- mRNA's. Furthermore, alternative splicing of EDIIIA only occurs when this sequence is present in the correct orientation since when it is in antisense orientation splicing always occurs via exon-skipping generating EDIIIA- mRNA. Images PMID:3671064

  14. Crystal structure, mutational analysis and RNA-dependent ATPase activity of the yeast DEAD-box pre-mRNA splicing factor Prp28

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacewicz, Agata; Schwer, Beate; Smith, Paul

    Yeast Prp28 is a DEAD-box pre-mRNA splicing factor implicated in displacing U1 snRNP from the 5' splice site. Here we report that the 588-aa Prp28 protein consists of a trypsin-sensitive 126-aa N-terminal segment (of which aa 1–89 are dispensable for Prp28 function in vivo) fused to a trypsin-resistant C-terminal catalytic domain. Purified recombinant Prp28 and Prp28-(127–588) have an intrinsic RNA-dependent ATPase activity, albeit with a low turnover number. The crystal structure of Prp28-(127–588) comprises two RecA-like domains splayed widely apart. AMPPNP•Mg 2+ is engaged by the proximal domain, with proper and specific contacts from Phe194 and Gln201 (Q motif) tomore » the adenine nucleobase. The triphosphate moiety of AMPPNP•Mg 2+ is not poised for catalysis in the open domain conformation. Guided by the Prp28•AMPPNP structure, and that of the Drosophila Vasa•AMPPNP•Mg 2+•RNA complex, we targeted 20 positions in Prp28 for alanine scanning. ATP-site components Asp341 and Glu342 (motif II) and Arg527 and Arg530 (motif VI) and RNA-site constituent Arg476 (motif Va) are essential for Prp28 activity in vivo. Synthetic lethality of double-alanine mutations highlighted functionally redundant contacts in the ATP-binding (Phe194-Gln201, Gln201-Asp502) and RNA-binding (Arg264-Arg320) sites. As a result, overexpression of defective ATP-site mutants, but not defective RNA-site mutants, elicited severe dominant-negative growth defects.« less

  15. Crystal structure, mutational analysis and RNA-dependent ATPase activity of the yeast DEAD-box pre-mRNA splicing factor Prp28

    DOE PAGES

    Jacewicz, Agata; Schwer, Beate; Smith, Paul; ...

    2014-10-10

    Yeast Prp28 is a DEAD-box pre-mRNA splicing factor implicated in displacing U1 snRNP from the 5' splice site. Here we report that the 588-aa Prp28 protein consists of a trypsin-sensitive 126-aa N-terminal segment (of which aa 1–89 are dispensable for Prp28 function in vivo) fused to a trypsin-resistant C-terminal catalytic domain. Purified recombinant Prp28 and Prp28-(127–588) have an intrinsic RNA-dependent ATPase activity, albeit with a low turnover number. The crystal structure of Prp28-(127–588) comprises two RecA-like domains splayed widely apart. AMPPNP•Mg 2+ is engaged by the proximal domain, with proper and specific contacts from Phe194 and Gln201 (Q motif) tomore » the adenine nucleobase. The triphosphate moiety of AMPPNP•Mg 2+ is not poised for catalysis in the open domain conformation. Guided by the Prp28•AMPPNP structure, and that of the Drosophila Vasa•AMPPNP•Mg 2+•RNA complex, we targeted 20 positions in Prp28 for alanine scanning. ATP-site components Asp341 and Glu342 (motif II) and Arg527 and Arg530 (motif VI) and RNA-site constituent Arg476 (motif Va) are essential for Prp28 activity in vivo. Synthetic lethality of double-alanine mutations highlighted functionally redundant contacts in the ATP-binding (Phe194-Gln201, Gln201-Asp502) and RNA-binding (Arg264-Arg320) sites. As a result, overexpression of defective ATP-site mutants, but not defective RNA-site mutants, elicited severe dominant-negative growth defects.« less

  16. Role of a Dual Splicing and Amino Acid Code in Myopia, Cone Dysfunction and Cone Dystrophy Associated with L/M Opsin Interchange Mutations

    PubMed Central

    Greenwald, Scott H.; Kuchenbecker, James A.; Rowlan, Jessica S.; Neitz, Jay; Neitz, Maureen

    2017-01-01

    Purpose Human long (L) and middle (M) wavelength cone opsin genes are highly variable due to intermixing. Two L/M cone opsin interchange mutants, designated LIAVA and LVAVA, are associated with clinical diagnoses, including red-green color vision deficiency, blue cone monochromacy, cone degeneration, myopia, and Bornholm Eye Disease. Because the protein and splicing codes are carried by the same nucleotides, intermixing L and M genes can cause disease by affecting protein structure and splicing. Methods Genetically engineered mice were created to allow investigation of the consequences of altered protein structure alone, and the effects on cone morphology were examined using immunohistochemistry. In humans and mice, cone function was evaluated using the electroretinogram (ERG) under L/M- or short (S) wavelength cone isolating conditions. Effects of LIAVA and LVAVA genes on splicing were evaluated using a minigene assay. Results ERGs and histology in mice revealed protein toxicity for the LVAVA but not for the LIAVA opsin. Minigene assays showed that the dominant messenger RNA (mRNA) was aberrantly spliced for both variants; however, the LVAVA gene produced a small but significant amount of full-length mRNA and LVAVA subjects had correspondingly reduced ERG amplitudes. In contrast, the LIAVA subject had no L/M cone ERG. Conclusions Dramatic differences in phenotype can result from seemingly minor differences in genotype through divergent effects on the dual amino acid and splicing codes. Translational Relevance The mechanism by which individual mutations contribute to clinical phenotypes provides valuable information for diagnosis and prognosis of vision disorders associated with L/M interchange mutations, and it informs strategies for developing therapies. PMID:28516000

  17. Alternative Splicing of Four Trafficking Genes Regulates Myofiber Structure and Skeletal Muscle Physiology.

    PubMed

    Giudice, Jimena; Loehr, James A; Rodney, George G; Cooper, Thomas A

    2016-11-15

    During development, transcriptional and post-transcriptional networks are coordinately regulated to drive organ maturation. Alternative splicing contributes by producing temporal-specific protein isoforms. We previously found that genes undergoing splicing transitions during mouse postnatal heart development are enriched for vesicular trafficking and membrane dynamics functions. Here, we show that adult trafficking isoforms are also expressed in adult skeletal muscle and hypothesize that striated muscle utilizes alternative splicing to generate specific isoforms required for function of adult tissue. We deliver morpholinos into flexor digitorum brevis muscles in adult mice to redirect splicing of four trafficking genes to the fetal isoforms. The splicing switch results in multiple structural and functional defects, including transverse tubule (T-tubule) disruption and dihydropyridine receptor alpha (DHPR) and Ryr1 mislocalization, impairing excitation-contraction coupling, calcium handling, and force generation. The results demonstrate a previously unrecognized role for trafficking functions in adult muscle tissue homeostasis and a specific requirement for the adult splice variants. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Pre-mRNA splicing repression triggers abiotic stress signaling in plants.

    PubMed

    Ling, Yu; Alshareef, Sahar; Butt, Haroon; Lozano-Juste, Jorge; Li, Lixin; Galal, Aya A; Moustafa, Ahmed; Momin, Afaque A; Tashkandi, Manal; Richardson, Dale N; Fujii, Hiroaki; Arold, Stefan; Rodriguez, Pedro L; Duque, Paula; Mahfouz, Magdy M

    2017-01-01

    Alternative splicing (AS) of precursor RNAs enhances transcriptome plasticity and proteome diversity in response to diverse growth and stress cues. Recent work has shown that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various inhibitors of AS. Here, we show that the macrolide pladienolide B (PB) inhibits constitutive splicing and AS in plants. Also, our RNA sequencing (RNA-seq) data revealed that PB mimics abiotic stress signals including salt, drought and abscisic acid (ABA). PB activates the abiotic stress- and ABA-responsive reporters RD29A::LUC and MAPKKK18::uidA in Arabidopsis thaliana and mimics the effects of ABA on stomatal aperture. Genome-wide analysis of AS by RNA-seq revealed that PB perturbs the splicing machinery and leads to a striking increase in intron retention and a reduction in other forms of AS. Interestingly, PB treatment activates the ABA signaling pathway by inhibiting the splicing of clade A PP2C phosphatases while still maintaining to some extent the splicing of ABA-activated SnRK2 kinases. Taken together, our data establish PB as an inhibitor and modulator of splicing and a mimic of abiotic stress signals in plants. Thus, PB reveals the molecular underpinnings of the interplay between stress responses, ABA signaling and post-transcriptional regulation in plants. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  19. New discoveries of old SON: a link between RNA splicing and cancer.

    PubMed

    Hickey, Christopher J; Kim, Jung-Hyun; Ahn, Eun-Young Erin

    2014-02-01

    The SON protein is a ubiquitously expressed DNA- and RNA-binding protein primarily localized to nuclear speckles. Although several early studies implicated SON in DNA-binding, tumorigenesis and apoptosis, functional significance of this protein had not been recognized until recent studies discovered SON as a novel RNA splicing co-factor. During constitutive RNA splicing, SON ensures efficient intron removal from the transcripts containing suboptimal splice sites. Importantly, SON-mediated splicing is required for proper processing of selective transcripts related to cell cycle, microtubules, centrosome maintenance, and genome stability. Moreover, SON regulates alternative splicing of RNAs from the genes involved in apoptosis and epigenetic modification. In addition to the role in RNA splicing, SON has an ability to suppress transcriptional activation at certain promoter/enhancer DNA sequences. Considering the multiple SON target genes which are directly involved in cell proliferation, genome stability and chromatin modifications, SON is an emerging player in gene regulation during cancer development and progression. Here, we summarize available information from several early studies on SON, and highlight recent discoveries describing molecular mechanisms of SON-mediated gene regulation. We propose that our future effort on better understanding of diverse SON functions would reveal novel targets for cancer therapy. © 2013 Wiley Periodicals, Inc.

  20. Analysis of Alternative Pre-RNA Splicing in the Mouse Retina Using a Fluorescent Reporter.

    PubMed

    Murphy, Daniel; Kolandaivelu, Saravanan; Ramamurthy, Visvanathan; Stoilov, Peter

    2016-01-01

    In vivo alternative splicing is controlled in a tissue and cell type specific manner. Often individual cellular components of complex tissues will express different splicing programs. Thus, when studying splicing in multicellular organisms it is critical to determine the exon inclusion levels in individual cells positioned in the context of their native tissue or organ. Here we describe how a fluorescent splicing reporter in combination with in vivo electroporation can be used to visualize alternative splicing in individual cells within mature tissues. In a test case we show how the splicing of a photoreceptor specific exon can be visualized within the mouse retina. The retina was chosen as an example of a complex tissue that is fragile and whose cells cannot be studied in culture. With minor modifications to the injection and electroporation procedure, the protocol we outline can be applied to other tissues and organs.

  1. The bromodomain protein BRD4 regulates splicing during heat shock

    PubMed Central

    Hussong, Michelle; Kaehler, Christian; Kerick, Martin; Grimm, Christina; Franz, Alexandra; Timmermann, Bernd; Welzel, Franziska; Isensee, Jörg; Hucho, Tim; Krobitsch, Sylvia; Schweiger, Michal R.

    2017-01-01

    The cellular response to heat stress is an ancient and evolutionarily highly conserved defence mechanism characterised by the transcriptional up-regulation of cyto-protective genes and a partial inhibition of splicing. These features closely resemble the proteotoxic stress response during tumor development. The bromodomain protein BRD4 has been identified as an integral member of the oxidative stress as well as of the inflammatory response, mainly due to its role in the transcriptional regulation process. In addition, there are also several lines of evidence implicating BRD4 in the splicing process. Using RNA-sequencing we found a significant increase in splicing inhibition, in particular intron retentions (IR), following heat treatment in BRD4-depleted cells. This leads to a decrease of mRNA abundancy of the affected transcripts, most likely due to premature termination codons. Subsequent experiments revealed that BRD4 interacts with the heat shock factor 1 (HSF1) such that under heat stress BRD4 is recruited to nuclear stress bodies and non-coding SatIII RNA transcripts are up-regulated. These findings implicate BRD4 as an important regulator of splicing during heat stress. Our data which links BRD4 to the stress induced splicing process may provide novel mechanisms of BRD4 inhibitors in regard to anti-cancer therapies. PMID:27536004

  2. The bromodomain protein BRD4 regulates splicing during heat shock.

    PubMed

    Hussong, Michelle; Kaehler, Christian; Kerick, Martin; Grimm, Christina; Franz, Alexandra; Timmermann, Bernd; Welzel, Franziska; Isensee, Jörg; Hucho, Tim; Krobitsch, Sylvia; Schweiger, Michal R

    2017-01-09

    The cellular response to heat stress is an ancient and evolutionarily highly conserved defence mechanism characterised by the transcriptional up-regulation of cyto-protective genes and a partial inhibition of splicing. These features closely resemble the proteotoxic stress response during tumor development. The bromodomain protein BRD4 has been identified as an integral member of the oxidative stress as well as of the inflammatory response, mainly due to its role in the transcriptional regulation process. In addition, there are also several lines of evidence implicating BRD4 in the splicing process. Using RNA-sequencing we found a significant increase in splicing inhibition, in particular intron retentions (IR), following heat treatment in BRD4-depleted cells. This leads to a decrease of mRNA abundancy of the affected transcripts, most likely due to premature termination codons. Subsequent experiments revealed that BRD4 interacts with the heat shock factor 1 (HSF1) such that under heat stress BRD4 is recruited to nuclear stress bodies and non-coding SatIII RNA transcripts are up-regulated. These findings implicate BRD4 as an important regulator of splicing during heat stress. Our data which links BRD4 to the stress induced splicing process may provide novel mechanisms of BRD4 inhibitors in regard to anti-cancer therapies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. RNA editing in nascent RNA affects pre-mRNA splicing.

    PubMed

    Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Yang, Yun; Lin, Xianzhi; Tran, Stephen; Yang, Ei-Wen; Quinones-Valdez, Giovanni; Xiao, Xinshu

    2018-06-01

    In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3' acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites. © 2018 Hsiao et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation

    PubMed Central

    Cao, Wenguang; Razanau, Aleh; Feng, Dairong; Lobo, Vincent G.; Xie, Jiuyong

    2012-01-01

    The molecular basis of cell signal-regulated alternative splicing at the 3′ splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3′ splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3′ splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3′ splice site usage. PMID:22684629

  5. Non-coding functions of alternative pre-mRNA splicing in development

    PubMed Central

    Mockenhaupt, Stefan; Makeyev, Eugene V.

    2015-01-01

    A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. PMID:26493705

  6. APPRIS: annotation of principal and alternative splice isoforms

    PubMed Central

    Rodriguez, Jose Manuel; Maietta, Paolo; Ezkurdia, Iakes; Pietrelli, Alessandro; Wesselink, Jan-Jaap; Lopez, Gonzalo; Valencia, Alfonso; Tress, Michael L.

    2013-01-01

    Here, we present APPRIS (http://appris.bioinfo.cnio.es), a database that houses annotations of human splice isoforms. APPRIS has been designed to provide value to manual annotations of the human genome by adding reliable protein structural and functional data and information from cross-species conservation. The visual representation of the annotations provided by APPRIS for each gene allows annotators and researchers alike to easily identify functional changes brought about by splicing events. In addition to collecting, integrating and analyzing reliable predictions of the effect of splicing events, APPRIS also selects a single reference sequence for each gene, here termed the principal isoform, based on the annotations of structure, function and conservation for each transcript. APPRIS identifies a principal isoform for 85% of the protein-coding genes in the GENCODE 7 release for ENSEMBL. Analysis of the APPRIS data shows that at least 70% of the alternative (non-principal) variants would lose important functional or structural information relative to the principal isoform. PMID:23161672

  7. Extraction, integration and analysis of alternative splicing and protein structure distributed information

    PubMed Central

    D'Antonio, Matteo; Masseroli, Marco

    2009-01-01

    Background Alternative splicing has been demonstrated to affect most of human genes; different isoforms from the same gene encode for proteins which differ for a limited number of residues, thus yielding similar structures. This suggests possible correlations between alternative splicing and protein structure. In order to support the investigation of such relationships, we have developed the Alternative Splicing and Protein Structure Scrutinizer (PASS), a Web application to automatically extract, integrate and analyze human alternative splicing and protein structure data sparsely available in the Alternative Splicing Database, Ensembl databank and Protein Data Bank. Primary data from these databases have been integrated and analyzed using the Protein Identifier Cross-Reference, BLAST, CLUSTALW and FeatureMap3D software tools. Results A database has been developed to store the considered primary data and the results from their analysis; a system of Perl scripts has been implemented to automatically create and update the database and analyze the integrated data; a Web interface has been implemented to make the analyses easily accessible; a database has been created to manage user accesses to the PASS Web application and store user's data and searches. Conclusion PASS automatically integrates data from the Alternative Splicing Database with protein structure data from the Protein Data Bank. Additionally, it comprehensively analyzes the integrated data with publicly available well-known bioinformatics tools in order to generate structural information of isoform pairs. Further analysis of such valuable information might reveal interesting relationships between alternative splicing and protein structure differences, which may be significantly associated with different functions. PMID:19828075

  8. Splicing Factor 1 Modulates Dietary Restriction and TORC1 Pathway Longevity in C. elegans

    PubMed Central

    Heintz, Caroline; Escoubas, Caroline; Zhang, Yue; Weir, Heather J.; Dutta, Sneha; Silva-García, Carlos Giovanni; Bruun, Gitte Hoffmann; Morantte, Ianessa; Hoxhaj, Gerta; Manning, Brendan D.; Andresen, Brage S.; Mair, William B.

    2016-01-01

    Ageing is driven by a loss of transcriptional and protein homeostasis1–3 and is the key risk factor for multiple chronic diseases. Interventions that attenuate or reverse systemic dysfunction seen with age therefore have potential to reduce overall disease risk in the elderly. Pre-mRNA splicing is a fundamental link between gene expression and the proteome, and deregulation of the splicing machinery is linked to multiple age-related chronic diseases4,5. However, the role of splicing homeostasis in healthy ageing remains unclear. Here we demonstrate that pre-mRNA splicing homeostasis is a biomarker and predictor of life expectancy in Caenorhabditis elegans. Using transcriptomics and in-depth splicing analysis in young and old animals fed ad libitum or on dietary restriction (DR), we find defects in global pre-mRNA splicing with age that are reduced by DR via the branch point binding protein (BBP)/splicing factor 1 (SFA-1). We show that SFA-1 is specifically required for lifespan extension both by DR, and modulation of TORC1 pathway components AMPK, RAGA-1 and RSKS-1/S6 Kinase. Lastly, we demonstrate that overexpression of SFA-1 is sufficient to extend lifespan. Together, these data demonstrate a role for RNA splicing homeostasis in DR longevity and suggest modulation of specific spliceosome components can prolong healthy ageing. PMID:27919065

  9. Skipping of Exons by Premature Termination of Transcription and Alternative Splicing within Intron-5 of the Sheep SCF Gene: A Novel Splice Variant

    PubMed Central

    Saravanaperumal, Siva Arumugam; Pediconi, Dario; Renieri, Carlo; La Terza, Antonietta

    2012-01-01

    Stem cell factor (SCF) is a growth factor, essential for haemopoiesis, mast cell development and melanogenesis. In the hematopoietic microenvironment (HM), SCF is produced either as a membrane-bound (−) or soluble (+) forms. Skin expression of SCF stimulates melanocyte migration, proliferation, differentiation, and survival. We report for the first time, a novel mRNA splice variant of SCF from the skin of white merino sheep via cloning and sequencing. Reverse transcriptase (RT)-PCR and molecular prediction revealed two different cDNA products of SCF. Full-length cDNA libraries were enriched by the method of rapid amplification of cDNA ends (RACE-PCR). Nucleotide sequencing and molecular prediction revealed that the primary 1519 base pair (bp) cDNA encodes a precursor protein of 274 amino acids (aa), commonly known as ‘soluble’ isoform. In contrast, the shorter (835 and/or 725 bp) cDNA was found to be a ‘novel’ mRNA splice variant. It contains an open reading frame (ORF) corresponding to a truncated protein of 181 aa (vs 245 aa) with an unique C-terminus lacking the primary proteolytic segment (28 aa) right after the D175G site which is necessary to produce ‘soluble’ form of SCF. This alternative splice (AS) variant was explained by the complete nucleotide sequencing of splice junction covering exon 5-intron (5)-exon 6 (948 bp) with a premature termination codon (PTC) whereby exons 6 to 9/10 are skipped (Cassette Exon, CE 6–9/10). We also demonstrated that the Northern blot analysis at transcript level is mediated via an intron-5 splicing event. Our data refine the structure of SCF gene; clarify the presence (+) and/or absence (−) of primary proteolytic-cleavage site specific SCF splice variants. This work provides a basis for understanding the functional role and regulation of SCF in hair follicle melanogenesis in sheep beyond what was known in mice, humans and other mammals. PMID:22719917

  10. Alternative splicing of natriuretic peptide A and B receptor transcripts in the rat brain.

    PubMed

    Francoeur, F; Gossard, F; Hamet, P; Tremblay, J

    1995-12-01

    1. In the present study we searched for variants of alternative splicing of guanylyl cyclase A and B mRNA in rats in vivo. 2. Guanylyl cyclase A2 and guanylyl cyclase B2 isoforms of guanylyl cyclase produced by alternative splicing leading to the deletion of exon 9 of both transcripts were quantified in several rat organs. 3. Only one alternative splicing was found in the regulatory domain, encoded by exons 8-15. 4. Quantification of the guanylyl cyclase B2 isoform in different rat organs and in cultured aortic smooth muscle cells showed that this alternative splicing was tissue-specific and occurred predominantly in the central nervous system where the alternatively spliced variant represented more than 50% of the guanylyl cyclase B mRNA. 5. The same alternative splicing existed for guanylyl cyclase A mRNA but at very low levels in the organs studied. 6. Alternative splicing of guanylyl cyclase B exon 9 in the brain may play an important role in signal transduction, since the expressed protein possesses a constitutionally active guanylyl cyclase acting independently of C-type natriuretic peptide regulation.

  11. Authoritarianism, dominance and assertiveness.

    PubMed

    Ray, J J

    1981-08-01

    It is shown that there are definitions of the three constructs of authoritarianism, dominance and assertiveness which read very similarly; so much so that no distinction is immediately evident. It is proposed that authoritarianism might be conceived as aggressive dominance and at least some types of assertiveness as nonaggressive dominance. A new scale of Dominance suitable for general population use was produced, and compared with the existing Ray (1976) behavior inventory of authoritarianism. Both scales showed highly significant correlations with peer rated dominance and submission (the latter being negative in sign) but only the authoritarianism scale showed significant correlations with rated aggressiveness and rigidity. It was concluded that the new definitions could be operationalized into valid scales.

  12. Numerical and experimental analysis of fusion offset in splicing photonic crystal fiber with CO2 laser

    NASA Astrophysics Data System (ADS)

    Jin, Wa; Bi, Weihong; Fu, Guangwei

    2014-09-01

    Single mode fibers (SMFs) need more fusion energy than PCFs during a splicing process, and it is necessary to make some offsets of the center of heat source toward to the SMFs. Based on the study of characteristics of heat transfer of PCFs and SMFs during splicing process with CO2 laser as the heat source, this paper reports the first systematic analysis of the optimal splicing offset of splicing SMFs and PCFs in theory and experiments. The results show that fusion splicing offsets can be applied to control the air-hole collapse and realize the practical splicing process between PCFs and SMFs with low loss.

  13. A Role for SMN Exon 7 Splicing in the Selective Vulnerability of Motor Neurons in Spinal Muscular Atrophy

    PubMed Central

    Ruggiu, Matteo; McGovern, Vicki L.; Lotti, Francesco; Saieva, Luciano; Li, Darrick K.; Kariya, Shingo; Monani, Umrao R.; Burghes, Arthur H. M.

    2012-01-01

    Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by homozygous loss of the Survival Motor Neuron 1 (SMN1) gene. In the absence of SMN1, inefficient inclusion of exon 7 in transcripts from the nearly identical SMN2 gene results in ubiquitous SMN decrease but selective motor neuron degeneration. Here we investigated whether cell type-specific differences in the efficiency of exon 7 splicing contribute to the vulnerability of SMA motor neurons. We show that normal motor neurons express markedly lower levels of full-length SMN mRNA from SMN2 than do other cells in the spinal cord. This is due to inefficient exon 7 splicing that is intrinsic to motor neurons under normal conditions. We also find that SMN depletion in mammalian cells decreases exon 7 inclusion through a negative feedback loop affecting the splicing of its own mRNA. This mechanism is active in vivo and further decreases the efficiency of exon 7 inclusion specifically in motor neurons of severe-SMA mice. Consistent with expression of lower levels of full-length SMN, we find that SMN-dependent downstream molecular defects are exacerbated in SMA motor neurons. These findings suggest a mechanism to explain the selective vulnerability of motor neurons to loss of SMN1. PMID:22037760

  14. Sex determination in insects: a binary decision based on alternative splicing.

    PubMed

    Salz, Helen K

    2011-08-01

    The gene regulatory networks that control sex determination vary between species. Despite these differences, comparative studies in insects have found that alternative splicing is reiteratively used in evolution to control expression of the key sex-determining genes. Sex determination is best understood in Drosophila where activation of the RNA binding protein-encoding gene Sex-lethal is the central female-determining event. Sex-lethal serves as a genetic switch because once activated it controls its own expression by a positive feedback splicing mechanism. Sex fate choice in is also maintained by self-sustaining positive feedback splicing mechanisms in other dipteran and hymenopteran insects, although different RNA binding protein-encoding genes function as the binary switch. Studies exploring the mechanisms of sex-specific splicing have revealed the extent to which sex determination is integrated with other developmental regulatory networks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. The spliced leader trans-splicing mechanism in different organisms: molecular details and possible biological roles

    PubMed Central

    Bitar, Mainá; Boroni, Mariana; Macedo, Andréa M.; Machado, Carlos R.; Franco, Glória R.

    2013-01-01

    The spliced leader (SL) is a gene that generates a functional ncRNA that is composed of two regions: an intronic region of unknown function (SLi) and an exonic region (SLe), which is transferred to the 5′ end of independent transcripts yielding mature mRNAs, in a process known as spliced leader trans-splicing (SLTS). The best described function for SLTS is to solve polycistronic transcripts into monocistronic units, specifically in Trypanosomatids. In other metazoans, it is speculated that the SLe addition could lead to increased mRNA stability, differential recruitment of the translational machinery, modification of the 5′ region or a combination of these effects. Although important aspects of this mechanism have been revealed, several features remain to be elucidated. We have analyzed 157 SLe sequences from 148 species from seven phyla and found a high degree of conservation among the sequences of species from the same phylum, although no considerable similarity seems to exist between sequences of species from different phyla. When analyzing case studies, we found evidence that a given SLe will always be related to a given set of transcripts in different species from the same phylum, and therefore, different SLe sequences from the same species would regulate different sets of transcripts. In addition, we have observed distinct transcript categories to be preferential targets for the SLe addition in different phyla. This work sheds light into crucial and controversial aspects of the SLTS mechanism. It represents a comprehensive study concerning various species and different characteristics of this important post-transcriptional regulatory mechanism. PMID:24130571

  16. The in vivo use of alternate 3'-splice sites in group I introns.

    PubMed

    Sellem, C H; Belcour, L

    1994-04-11

    Alternative splicing of group I introns has been postulated as a possible mechanism that would ensure the translation of proteins encoded into intronic open reading frames, discontinuous with the upstream exon and lacking an initiation signal. Alternate splice sites were previously depicted according to secondary structures of several group I introns. We present here strong evidence that, in the case of Podospora anserina nad 1-i4 and cox1-i7 mitochondrial introns, alternative splicing events do occur in vivo. Indeed, by PCR experiments we have detected molecules whose sequence is precisely that expected if the predicted alternate 3'-splice sites were used.

  17. Right Hemispheric Dominance in Processing of Unconscious Negative Emotion

    ERIC Educational Resources Information Center

    Sato, Wataru; Aoki, Satoshi

    2006-01-01

    Right hemispheric dominance in unconscious emotional processing has been suggested, but remains controversial. This issue was investigated using the subliminal affective priming paradigm combined with unilateral visual presentation in 40 normal subjects. In either left or right visual fields, angry facial expressions, happy facial expressions, or…

  18. Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae

    PubMed Central

    Sorenson, Matthew R.; Jha, Deepak K.; Ucles, Stefanie A.; Flood, Danielle M.; Strahl, Brian D.; Stevens, Scott W.; Kress, Tracy L.

    2016-01-01

    ABSTRACT Co-transcriptional splicing takes place in the context of a highly dynamic chromatin architecture, yet the role of chromatin restructuring in coordinating transcription with RNA splicing has not been fully resolved. To further define the contribution of histone modifications to pre-mRNA splicing in Saccharomyces cerevisiae, we probed a library of histone point mutants using a reporter to monitor pre-mRNA splicing. We found that mutation of H3 lysine 36 (H3K36) – a residue methylated by Set2 during transcription elongation – exhibited phenotypes similar to those of pre-mRNA splicing mutants. We identified genetic interactions between genes encoding RNA splicing factors and genes encoding the H3K36 methyltransferase Set2 and the demethylase Jhd1 as well as point mutations of H3K36 that block methylation. Consistent with the genetic interactions, deletion of SET2, mutations modifying the catalytic activity of Set2 or H3K36 point mutations significantly altered expression of our reporter and reduced splicing of endogenous introns. These effects were dependent on the association of Set2 with RNA polymerase II and H3K36 dimethylation. Additionally, we found that deletion of SET2 reduces the association of the U2 and U5 snRNPs with chromatin. Thus, our study provides the first evidence that H3K36 methylation plays a role in co-transcriptional RNA splicing in yeast. PMID:26821844

  19. Non-coding functions of alternative pre-mRNA splicing in development.

    PubMed

    Mockenhaupt, Stefan; Makeyev, Eugene V

    2015-12-01

    A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Alternative splicing of SMPD1 coding for acid sphingomyelinase in major depression.

    PubMed

    Rhein, Cosima; Reichel, Martin; Kramer, Marcel; Rotter, Andrea; Lenz, Bernd; Mühle, Christiane; Gulbins, Erich; Kornhuber, Johannes

    2017-02-01

    Major depressive disorder (MDD) is a psychiatric disorder characterized by key symptoms that include depressed mood and a loss of interest and pleasure. A recently developed pathogenic model of MDD involves disturbed neurogenesis in the hippocampus, where the acid sphingomyelinase (ASM)/ceramide system plays an important role and is proposed as a molecular target for antidepressant action. Because alternative splicing of SMPD1 mRNA, coding for ASM, is relevant for the regulation of ASM enzymatic activity, we investigated the frequency of alternatively spliced ASM isoforms in peripheral blood cells of MDD patients versus healthy controls. Because the full-length transcript variant 1 of SMPD1 (termed ASM-1) is the only known form within the splicing pattern that encodes an enzymatically fully active ASM, we determined a fraction of splice isoforms deviating from ASM-1 using PCR amplification and capillary electrophoresis with laser-induced fluorescence analysis. ASM alternative splicing events occurred significantly less frequently in MDD patients compared to healthy subjects. After 5 days of antidepressant treatment, the frequency of alternatively spliced ASM isoforms decreased in those patients who were treated with a functional inhibitor of ASM activity (FIASMA) but remained constant in MDD patients treated with other antidepressant drugs. This effect was more pronounced when healthy male volunteers were treated with the FIASMAs fluoxetine or paroxetine, in contrast to a placebo group. Patients were treated with different antidepressant drugs, depending on individual parameters and disease courses. This study shows that the ASM alternative splicing pattern could be a biological target with diagnostic relevance and could serve as a novel biomarker for MDD. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. RNA Splicing in a New Rhabdovirus from Culex Mosquitoes▿†

    PubMed Central

    Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko

    2011-01-01

    Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae. PMID:21507977

  2. Microprocessor-dependent processing of Splice site Overlapping microRNA exons does not result in changes in alternative splicing.

    PubMed

    Pianigiani, Giulia; Licastro, Danilo; Fortugno, Paola; Castiglia, Daniele; Petrovic, Ivana; Pagani, Franco

    2018-06-12

    MicroRNAs are found throughout the genome and are processed by the microprocessor complex (MPC) from longer precursors. Some precursor miRNAs overlap intron:exon junctions. These Splice site Overlapping microRNAs (SO-miRNAs) are mostly located in coding genes. It has been intimated, in the rarer examples of SO-miRNAs in non-coding RNAs, that the competition between the spliceosome and the MPC modulates alternative splicing. However, the effect of this overlap on coding transcripts is unknown. Unexpectedly, we show that neither Drosha silencing nor SF3b1 silencing changed the inclusion ratio of SO-miRNA exons. Two SO-miRNAs, located in genes that code for basal membrane proteins, are known to inhibit proliferation in primary keratinocytes. These SO-miRNAs were upregulated during differentiation and the host mRNAs were downregulated, but again there was no change in inclusion ratio of the SO-miRNA exons. Interestingly, Drosha silencing increased nascent RNA density, on chromatin, downstream of SO-miRNA exons. Overall our data suggest a novel mechanism for regulating gene expression in which MPC-dependent cleavage of SO-miRNA exons could cause premature transcriptional termination of coding genes rather than affecting alternative splicing. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. Enhanced splicing correction effect by an oligo-aspartic acid-PNA conjugate and cationic carrier complexes.

    PubMed

    Bae, Yun Mi; Kim, Myung Hee; Yu, Gwang Sig; Um, Bong Ho; Park, Hee Kyung; Lee, Hyun-il; Lee, Kang Taek; Suh, Yung Doug; Choi, Joon Sig

    2014-02-10

    Peptide nucleic acids (PNAs) are synthetic structural analogues of DNA and RNA. They recognize specific cellular nucleic acid sequences and form stable complexes with complementary DNA or RNA. Here, we designed an oligo-aspartic acid-PNA conjugate and showed its enhanced delivery into cells with high gene correction efficiency using conventional cationic carriers, such as polyethylenimine (PEI) and Lipofectamine 2000. The negatively charged oligo-aspartic acid-PNA (Asp(n)-PNA) formed complexes with PEI and Lipofectamine, and the resulting Asp(n)-PNA/PEI and Asp(n)-PNA/Lipofectamine complexes were introduced into cells. We observed significantly enhanced cellular uptake of Asp(n)-PNA by cationic carriers and detected an active splicing correction effect even at nanomolar concentrations. We found that the splicing correction efficiency of the complex depended on the kind of the cationic carriers and on the number of repeating aspartic acid units. By enhancing the cellular uptake efficiency of PNAs, these results may provide a novel platform technology of PNAs as bioactive substances for their biological and therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Genome-wide association between DNA methylation and alternative splicing in an invertebrate

    PubMed Central

    2012-01-01

    Background Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. Results We generated RNA deep sequencing data (RNA-seq) to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. Conclusions This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice variants by positively

  5. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications.

    PubMed

    Pellagatti, Andrea; Boultwood, Jacqueline

    2017-01-01

    Splicing factor gene mutations are the most frequent mutations found in patients with the myeloid malignancy myelodysplastic syndrome (MDS), suggesting that spliceosomal dysfunction plays a major role in disease pathogenesis. The aberrantly spliced target genes and deregulated cellular pathways associated with the commonly mutated splicing factor genes in MDS (SF3B1, SRSF2 and U2AF1) are being identified, illuminating the molecular mechanisms underlying MDS. Emerging data from mouse modeling studies indicate that the presence of splicing factor gene mutations can lead to bone marrow hematopoietic stem/myeloid progenitor cell expansion, impaired hematopoiesis and dysplastic differentiation that are hallmarks of MDS. Importantly, recent evidence suggests that spliceosome inhibitors and splicing modulators may have therapeutic value in the treatment of splicing factor mutant myeloid malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. RBFOX2 Is an Important Regulator of Mesenchymal Tissue-Specific Splicing in both Normal and Cancer Tissues

    PubMed Central

    Venables, Julian P.; Brosseau, Jean-Philippe; Gadea, Gilles; Klinck, Roscoe; Prinos, Panagiotis; Beaulieu, Jean-François; Lapointe, Elvy; Durand, Mathieu; Thibault, Philippe; Tremblay, Karine; Rousset, François; Tazi, Jamal; Abou Elela, Sherif

    2013-01-01

    Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing. PMID:23149937

  7. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development.

    PubMed

    Szabo, Linda; Morey, Robert; Palpant, Nathan J; Wang, Peter L; Afari, Nastaran; Jiang, Chuan; Parast, Mana M; Murry, Charles E; Laurent, Louise C; Salzman, Julia

    2015-06-16

    The pervasive expression of circular RNA is a recently discovered feature of gene expression in highly diverged eukaryotes, but the functions of most circular RNAs are still unknown. Computational methods to discover and quantify circular RNA are essential. Moreover, discovering biological contexts where circular RNAs are regulated will shed light on potential functional roles they may play. We present a new algorithm that increases the sensitivity and specificity of circular RNA detection by discovering and quantifying circular and linear RNA splicing events at both annotated and un-annotated exon boundaries, including intergenic regions of the genome, with high statistical confidence. Unlike approaches that rely on read count and exon homology to determine confidence in prediction of circular RNA expression, our algorithm uses a statistical approach. Using our algorithm, we unveiled striking induction of general and tissue-specific circular RNAs, including in the heart and lung, during human fetal development. We discover regions of the human fetal brain, such as the frontal cortex, with marked enrichment for genes where circular RNA isoforms are dominant. The vast majority of circular RNA production occurs at major spliceosome splice sites; however, we find the first examples of developmentally induced circular RNAs processed by the minor spliceosome, and an enriched propensity of minor spliceosome donors to splice into circular RNA at un-annotated, rather than annotated, exons. Together, these results suggest a potentially significant role for circular RNA in human development.

  8. Analysis of alternative splicing associated with aging and neurodegeneration in the human brain

    PubMed Central

    Tollervey, James R.; Wang, Zhen; Hortobágyi, Tibor; Witten, Joshua T.; Zarnack, Kathi; Kayikci, Melis; Clark, Tyson A.; Schweitzer, Anthony C.; Rot, Gregor; Curk, Tomaž; Zupan, Blaž; Rogelj, Boris; Shaw, Christopher E.; Ule, Jernej

    2011-01-01

    Age is the most important risk factor for neurodegeneration; however, the effects of aging and neurodegeneration on gene expression in the human brain have most often been studied separately. Here, we analyzed changes in transcript levels and alternative splicing in the temporal cortex of individuals of different ages who were cognitively normal, affected by frontotemporal lobar degeneration (FTLD), or affected by Alzheimer's disease (AD). We identified age-related splicing changes in cognitively normal individuals and found that these were present also in 95% of individuals with FTLD or AD, independent of their age. These changes were consistent with increased polypyrimidine tract binding protein (PTB)–dependent splicing activity. We also identified disease-specific splicing changes that were present in individuals with FTLD or AD, but not in cognitively normal individuals. These changes were consistent with the decreased neuro-oncological ventral antigen (NOVA)–dependent splicing regulation, and the decreased nuclear abundance of NOVA proteins. As expected, a dramatic down-regulation of neuronal genes was associated with disease, whereas a modest down-regulation of glial and neuronal genes was associated with aging. Whereas our data indicated that the age-related splicing changes are regulated independently of transcript-level changes, these two regulatory mechanisms affected expression of genes with similar functions, including metabolism and DNA repair. In conclusion, the alternative splicing changes identified in this study provide a new link between aging and neurodegeneration. PMID:21846794

  9. Postnatal Expression of V2 Vasopressin Receptor Splice Variants in the Rat Cerebellum

    PubMed Central

    Vargas, Karina J.; Sarmiento, José M.; Ehrenfeld, Pamela; Añazco, Carolina C.; Villanueva, Carolina I.; Carmona, Pamela L.; Brenet, Marianne; Navarro, Javier; Müller-Esterl, Werner; Figueroa, Carlos D.; González, Carlos B.

    2010-01-01

    The V2 vasopressin receptor gene contains an alternative splice site in exon-3, which leads to the generation of two splice variants (V2a and V2b) first identified in the kidney. The open reading frame of the alternatively spliced V2b transcripten codes a truncated receptor, showing the same amino acid sequence as the canonical V2a receptor up to the 6th transmembrane segment, but displaying a distinct sequence to the corresponding 7th transmembrane segment and C-terminal domain relative to the V2a receptor. Here, we demonstrate the postnatal expression of V2a and V2b variants in the rat cerebellum. Most importantly, we showed by in situ hybridization and immunocytochemistry that both V2 splice variants were preferentially expressed in Purkinje cells, from early to late postnatal development. In addition, both variants were transiently expressed in the neuroblastic external granule cells and Bergmann fibers. These results indicate that the cellular distributions of both splice variants are developmentally regulated, and suggest that the transient expression of the V2 receptor is involved in the mechanisms of cerebellar cytodifferentiation by AVP. Finally, transfected CHO-K1 .expressing similar amounts of both V2 splice variants, as that found in the cerebellum, showed a significant reduction in the surface expression of V2a receptors, suggesting that the differential expression of the V2 splice variants regulate the vasopressin signaling in the cerebellum. PMID:19281786

  10. Experimental Assessment of Splicing Variants Using Expression Minigenes and Comparison with In Silico Predictions

    PubMed Central

    Sharma, Neeraj; Sosnay, Patrick R.; Ramalho, Anabela S.; Douville, Christopher; Franca, Arianna; Gottschalk, Laura B.; Park, Jeenah; Lee, Melissa; Vecchio-Pagan, Briana; Raraigh, Karen S.; Amaral, Margarida D.; Karchin, Rachel; Cutting, Garry R.

    2015-01-01

    Assessment of the functional consequences of variants near splice sites is a major challenge in the diagnostic laboratory. To address this issue, we created expression minigenes (EMGs) to determine the RNA and protein products generated by splice site variants (n = 10) implicated in cystic fibrosis (CF). Experimental results were compared with the splicing predictions of eight in silico tools. EMGs containing the full-length Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) coding sequence and flanking intron sequences generated wild-type transcript and fully processed protein in Human Embryonic Kidney (HEK293) and CF bronchial epithelial (CFBE41o-) cells. Quantification of variant induced aberrant mRNA isoforms was concordant using fragment analysis and pyrosequencing. The splicing patterns of c.1585−1G>A and c.2657+5G>A were comparable to those reported in primary cells from individuals bearing these variants. Bioinformatics predictions were consistent with experimental results for 9/10 variants (MES), 8/10 variants (NNSplice), and 7/10 variants (SSAT and Sroogle). Programs that estimate the consequences of mis-splicing predicted 11/16 (HSF and ASSEDA) and 10/16 (Fsplice and SplicePort) experimentally observed mRNA isoforms. EMGs provide a robust experimental approach for clinical interpretation of splice site variants and refinement of in silico tools. PMID:25066652

  11. Structure of the human myelin/oligodendrocyte glycoprotein gene and multiple alternative spliced isoforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham-Dinh, D.; Gaspera, D.B.; Dautigny, A.

    1995-09-20

    Myelin/oligodendrocyte glycoprotein (MOG), a special component of the central nervous system localization on the outermost lamellae of mature myelin, is a member of the immunoglobulin superfamily. We report here the organization of the human MOG gene, which spans approximately 17 kb, and the characterization of six MOG mRNA splicing variants. The intron/exon structure of the human MOG gene confirmed the splicing pattern, supporting the hypothesis that mRNA isoforms could arise by alternative splicing of a single gene. In addition to the eight exons coding for the major MOG isoform, the human MOG gene also contains 3` region, a previously unknownmore » alternatively spliced coding exon, VIA. Alternative utilization of two acceptor splicing sites for exon VIII could produce two different C-termini. The nucleotide sequences presented here may be a useful tool to study further possible involvement if the MOG gene in hereditary neurological disorders. 23 refs., 5 figs.« less

  12. cis-acting intron mutations that affect the efficiency of avian retroviral RNA splicing: implication for mechanisms of control.

    PubMed Central

    Katz, R A; Kotler, M; Skalka, A M

    1988-01-01

    The full-length retroviral RNA transcript serves as (i) mRNA for the gag and pol gene products, (ii) genomic RNA that is assembled into progeny virions, and (iii) a pre-mRNA for spliced subgenomic mRNAs. Therefore, a balance of spliced and unspliced RNA is required to generate the appropriate levels of protein and RNA products for virion production. We have introduced an insertion mutation near the avian sarcoma virus env splice acceptor site that results in a significant increase in splicing to form functional env mRNA. The mutant virus is replication defective, but phenotypic revertant viruses that have acquired second-site mutations near the splice acceptor site can be isolated readily. Detailed analysis of one of these viruses revealed that a single nucleotide change at -20 from the splice acceptor site, within the original mutagenic insert, was sufficient to restore viral growth and significantly decrease splicing efficiency compared with the original mutant and wild-type viruses. Thus, minor sequence alterations near the env splice acceptor site can produce major changes in the balance of spliced and unspliced RNAs. Our results suggest a mechanism of control in which splicing is modulated by cis-acting sequences at the env splice acceptor site. Furthermore, this retroviral system provides a powerful genetic method for selection and analysis of mutations that affect splicing control. Images PMID:2839694

  13. High-throughput sequence analysis of Ciona intestinalis SL trans-spliced mRNAs: alternative expression modes and gene function correlates.

    PubMed

    Matsumoto, Jun; Dewar, Ken; Wasserscheid, Jessica; Wiley, Graham B; Macmil, Simone L; Roe, Bruce A; Zeller, Robert W; Satou, Yutaka; Hastings, Kenneth E M

    2010-05-01

    Pre-mRNA 5' spliced-leader (SL) trans-splicing occurs in some metazoan groups but not in others. Genome-wide characterization of the trans-spliced mRNA subpopulation has not yet been reported for any metazoan. We carried out a high-throughput analysis of the SL trans-spliced mRNA population of the ascidian tunicate Ciona intestinalis by 454 Life Sciences (Roche) pyrosequencing of SL-PCR-amplified random-primed reverse transcripts of tailbud embryo RNA. We obtained approximately 250,000 high-quality reads corresponding to 8790 genes, approximately 58% of the Ciona total gene number. The great depth of this data revealed new aspects of trans-splicing, including the existence of a significant class of "infrequently trans-spliced" genes, accounting for approximately 28% of represented genes, that generate largely non-trans-spliced mRNAs, but also produce trans-spliced mRNAs, in part through alternative promoter use. Thus, the conventional qualitative dichotomy of trans-spliced versus non-trans-spliced genes should be supplanted by a more accurate quantitative view recognizing frequently and infrequently trans-spliced gene categories. Our data include reads representing approximately 80% of Ciona frequently trans-spliced genes. Our analysis also revealed significant use of closely spaced alternative trans-splice acceptor sites which further underscores the mechanistic similarity of cis- and trans-splicing and indicates that the prevalence of +/-3-nt alternative splicing events at tandem acceptor sites, NAGNAG, is driven by spliceosomal mechanisms, and not nonsense-mediated decay, or selection at the protein level. The breadth of gene representation data enabled us to find new correlations between trans-splicing status and gene function, namely the overrepresentation in the frequently trans-spliced gene class of genes associated with plasma/endomembrane system, Ca(2+) homeostasis, and actin cytoskeleton.

  14. Genome-wide analysis of alternative splicing during dendritic cell response to a bacterial challenge.

    PubMed

    Rodrigues, Raquel; Grosso, Ana Rita; Moita, Luís

    2013-01-01

    The immune system relies on the plasticity of its components to produce appropriate responses to frequent environmental challenges. Dendritic cells (DCs) are critical initiators of innate immunity and orchestrate the later and more specific adaptive immunity. The generation of diversity in transcriptional programs is central for effective immune responses. Alternative splicing is widely considered a key generator of transcriptional and proteomic complexity, but its role has been rarely addressed systematically in immune cells. Here we used splicing-sensitive arrays to assess genome-wide gene- and exon-level expression profiles in human DCs in response to a bacterial challenge. We find widespread alternative splicing events and splicing factor transcriptional signatures induced by an E. coli challenge to human DCs. Alternative splicing acts in concert with transcriptional modulation, but these two mechanisms of gene regulation affect primarily distinct functional gene groups. Alternative splicing is likely to have an important role in DC immunobiology because it affects genes known to be involved in DC development, endocytosis, antigen presentation and cell cycle arrest.

  15. Bipartite functions of the CREB co-activators selectively direct alternative splicing or transcriptional activation

    PubMed Central

    Amelio, Antonio L; Caputi, Massimo; Conkright, Michael D

    2009-01-01

    The CREB regulated transcription co-activators (CRTCs) regulate many biological processes by integrating and converting environmental inputs into transcriptional responses. Although the mechanisms by which CRTCs sense cellular signals are characterized, little is known regarding how CRTCs contribute to the regulation of cAMP inducible genes. Here we show that these dynamic regulators, unlike other co-activators, independently direct either pre-mRNA splice-site selection or transcriptional activation depending on the cell type or promoter context. Moreover, in other scenarios, the CRTC co-activators coordinately regulate transcription and splicing. Mutational analyses showed that CRTCs possess distinct functional domains responsible for regulating either pre-mRNA splicing or transcriptional activation. Interestingly, the CRTC1–MAML2 oncoprotein lacks the splicing domain and is incapable of altering splice-site selection despite robustly activating transcription. The differential usage of these distinct domains allows CRTCs to selectively mediate multiple facets of gene regulation, indicating that co-activators are not solely restricted to coordinating alternative splicing with increase in transcriptional activity. PMID:19644446

  16. Comprehensive splicing functional analysis of DNA variants of the BRCA2 gene by hybrid minigenes

    PubMed Central

    2012-01-01

    Introduction The underlying pathogenic mechanism of a large fraction of DNA variants of disease-causing genes is the disruption of the splicing process. We aimed to investigate the effect on splicing of the BRCA2 variants c.8488-1G > A (exon 20) and c.9026_9030del (exon 23), as well as 41 BRCA2 variants reported in the Breast Cancer Information Core (BIC) mutation database. Methods DNA variants were analyzed with the splicing prediction programs NNSPLICE and Human Splicing Finder. Functional analyses of candidate variants were performed by lymphocyte RT-PCR and/or hybrid minigene assays. Forty-one BIC variants of exons 19, 20, 23 and 24 were bioinformatically selected and generated by PCR-mutagenesis of the wild type minigenes. Results Lymphocyte RT-PCR of c.8488-1G > A showed intron 19 retention and a 12-nucleotide deletion in exon 20, whereas c.9026_9030del did not show any splicing anomaly. Minigene analysis of c.8488-1G > A displayed the aforementioned aberrant isoforms but also exon 20 skipping. We further evaluated the splicing outcomes of 41 variants of four BRCA2 exons by minigene analysis. Eighteen variants presented splicing aberrations. Most variants (78.9%) disrupted the natural splice sites, whereas four altered putative enhancers/silencers and had a weak effect. Fluorescent RT-PCR of minigenes accurately detected 14 RNA isoforms generated by cryptic site usage, exon skipping and intron retention events. Fourteen variants showed total splicing disruptions and were predicted to truncate or eliminate essential domains of BRCA2. Conclusions A relevant proportion of BRCA2 variants are correlated with splicing disruptions, indicating that RNA analysis is a valuable tool to assess the pathogenicity of a particular DNA change. The minigene system is a straightforward and robust approach to detect variants with an impact on splicing and contributes to a better knowledge of this gene expression step. PMID:22632462

  17. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner and...

  18. Exon definition as a potential negative force against intron losses in evolution.

    PubMed

    Niu, Deng-Ke

    2008-11-13

    Previous studies have indicated that the wide variation in intron density (the number of introns per gene) among different eukaryotes largely reflects varying degrees of intron loss during evolution. The most popular model, which suggests that organisms lose introns through a mechanism in which reverse-transcribed cDNA recombines with the genomic DNA, concerns only one mutational force. Using exons as the units of splicing-site recognition, exon definition constrains the length of exons. An intron-loss event results in fusion of flanking exons and thus a larger exon. The large size of the newborn exon may cause splicing errors, i.e., exon skipping, if the splicing of pre-mRNAs is initiated by exon definition. By contrast, if the splicing of pre-mRNAs is initiated by intron definition, intron loss does not matter. Exon definition may thus be a selective force against intron loss. An organism with a high frequency of exon definition is expected to experience a low rate of intron loss throughout evolution and have a high density of spliceosomal introns. The majority of spliceosomal introns in vertebrates may be maintained during evolution not because of potential functions, but because of their splicing mechanism (i.e., exon definition). Further research is required to determine whether exon definition is a negative force in maintaining the high intron density of vertebrates. This article was reviewed by Dr. Scott W. Roy (nominated by Dr. John Logsdon), Dr.Eugene V. Koonin, and Dr. Igor B. Rogozin (nominated by Dr. Mikhail Gelfand). For the full reviews,please go to the Reviewers' comments section.

  19. Extremely small-core photonic crystal fiber fusion splicing with a single-mode fiber

    NASA Astrophysics Data System (ADS)

    Tiburcio, Bruno D.; Fernandes, Gil M.; Pinto, Armando N.

    2013-11-01

    We present a low-loss fusion splicing of a non-linear photonic-crystal fiber (NL-PCF) with a single-mode fiber (SMF), helped by an intermediate fiber, using a electric-arc splicer. We also analysed the splice loss between SMF and intermediate fiber, as a function of the electrical discharge duration, to achieve a low-loss transition between SMF and intermediate fiber, through a thermally expanded core splice (TEC). The NL-PCF has a external cladding diameter of 105 μm, a core diameter of 1.7 μm and mode-field diameter (MFD) of 1.5 μm. We also performed mechanical strength tests to verify the robustness of the splice joints obtained.

  20. Alterations in expression pattern of splicing factors in epithelial ovarian cancer and its clinical impact.

    PubMed

    Iborra, Severine; Hirschfeld, Marc; Jaeger, Markus; Zur Hausen, Axel; Braicu, Iona; Sehouli, Jalid; Gitsch, Gerald; Stickeler, Elmar

    2013-07-01

    Alternative splicing represents an important nuclear mechanism in the posttranscriptional regulation of gene expression, which is frequently altered during tumorigenesis. Previously, we described marked changes in alternative splicing of the CD44 gene in ovarian and breast cancer as well as specific induction of distinct splicing factors during tumor development. The present study was focused on the expression profiles of different splicing factors, including classical serine-arginine (SR) proteins including ASF/SF2, hTra2β1, hTra2α, and Y-box-binding protein (YB-1) in physiological and malignant epithelial ovarian tissue to evaluate their expression pattern with regard to tumor development and disease progression. Expression levels of the different splicing factors were analyzed in physiological epithelial ovarian tissue samples, primary tumors, and metastatic samples of patients with a diagnosis of epithelial ovarian cancer using quantified reverse transcription polymerase chain reaction analysis. We examined more closely the splicing factor hTra2β1 using Western blot analysis and immunohistochemistry. The analysis revealed a marked and specific induction of ASF/SF2, SRp20, hTra2β1, and YB-1 in primary tumors as well as in their metastatic sites. However, in our patient cohort, no induction was seen for the other investigated splicing factors SRp55, SRp40, and hTra2α. Our results suggest a specific induction of distinct splicing factors in ovarian cancer tumorigenesis. The involvement of hTra2β1, YB-1, SRp20, and ASF/SF2 in exon recognition and alternative splicing may be important for gene regulation of alternatively spliced genes like CD44 with potential functional consequences in this tumor type leading to progression and metastasis.