Sample records for dominant wind direction

  1. Plants and ventifacts delineate late Holocene wind vectors in the Coachella Valley, USA

    USGS Publications Warehouse

    Griffiths, P.G.; Webb, R.H.; Fisher, M.; Muth, Allan

    2009-01-01

    Strong westerly winds that emanate from San Gorgonio Pass, the lowest point between Palm Springs and Los Angeles, California, dominate aeolian transport in the Coachella Valley of the western Sonoran Desert. These winds deposit sand in coppice dunes that are critical habitat for several species, including the state and federally listed threatened species Uma inornata, a lizard. Although wind directions are generally defined in this valley, the wind field has complex interactions with local topography and becomes more variable with distance from the pass. Local, dominant wind directions are preserved by growth patterns of Larrea tridentata (creosote bush), a shrub characteristic of the hot North American deserts, and ventifacts. Exceptionally long-lived, Larrea has the potential to preserve wind direction over centuries to millennia, shaped by the abrasive pruning of windward branches and the persistent training of leeward branches. Wind direction preserved in Larrea individuals and clones was mapped at 192 locations. Compared with wind data from three weather stations, Larrea vectors effectively reflect annual prevailing winds. Ventifacts measured at 24 locations record winds 10° more westerly than Larrea and appear to reflect the direction of the most erosive winds. Based on detailed mapping of local wind directions as preserved in Larrea, only the northern half of the Mission-Morongo Creek floodplain is likely to supply sand to protected U. inornata habitat in the Willow Hole ecological reserve.

  2. Dunes on Titan observed by Cassini Radar

    USGS Publications Warehouse

    Radebaugh, J.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Boubin, G.; Reffet, E.; Kirk, R.L.; Lopes, R.M.; Stofan, E.R.; Soderblom, L.; Allison, M.; Janssen, M.; Paillou, P.; Callahan, P.; Spencer, C.; ,

    2008-01-01

    Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ??30?? of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes. ?? 2007 Elsevier Inc. All rights reserved.

  3. Dust Devil Tracks and Wind Streaks in the North Polar Region of Mars: A Study of the 2007 Phoenix Mars Lander Sites

    NASA Technical Reports Server (NTRS)

    Drake, Nathan B.; Tamppari, Leslie K.; Baker, R. David; Cantor, Bruce A.; Hale, Amy S.

    2006-01-01

    The 65-72 latitude band of the North Polar Region of Mars, where the 2007 Phoenix Mars Lander will land, was studied using satellite images from the Mars Global Surveyor (MGS) Mars Orbiter Camera Narrow-Angle (MOC-NA) camera. Dust devil tracks (DDT) and wind streaks (WS) were observed and recorded as surface evidence for winds. No active dust devils (DDs) were observed. 162 MOC-NA images, 10.3% of total images, contained DDT/WS. Phoenix landing Region C (295-315W) had the highest concentration of images containing DDT/WS per number of available images (20.9%); Region D (130-150W) had the lowest (3.5%). DDT and WS direction were recorded for Phoenix landing regions A (110-130W), B (240-260W), and C to infer local wind direction. Region A showed dominant northwest-southeast DDT/WS, Region B showed dominant north-south, east-west and northeast-southwest DDT/WS, and region C showed dominant west/northwest - east/southeast DDT/ WS. Results indicate the 2007 Phoenix Lander has the highest probability of landing near DDT/WS in landing Region C. Based on DDT/WS linearity, we infer Phoenix would likely encounter directionally consistent background wind in any of the three regions.

  4. Martian Dune Ripples as Indicators of Recent Surface Wind Patterns

    NASA Astrophysics Data System (ADS)

    Johnson, M.; Zimbelman, J. R.

    2015-12-01

    Sand dunes have been shown to preserve the most recent wind patterns in their ripple formations. This investigation continues the manual documentation of ripples on Martian dunes in order to assess surface wind flow. Study sites investigated must have clear HiRISE frames and be able to represent diverse locations across the surface, decided primarily by their spread of latitude and longitude values. Additionally, frames with stereo pairs are preferred because of their ability to create digital terrain models. This will assist in efforts to relate dune slopes and obstacles to ripple patterns. The search and analysis period resulted in 40 study sites with mapped ripples. Lines were drawn perpendicular to ripple crests across three adjacent ripples in order to document both ripple wavelength from line length and inferred wind direction from azimuth. It is not possible to infer a unique wind direction from ripple orientation alone and therefore these inferred directions have a 180 degree ambiguity. Initial results from all study sites support previous observations that the Martian surface has many dune types in areas with adequate sand supply. The complexity of ripple patterns varies greatly across sites as well as within individual sites. Some areas of uniform directionality for hundreds of kilometers suggest a unimodal wind regime while overlapping patterns suggest multiple dominant winds or seasonally varying winds. In most areas, form flow related to dune shape seems to have a large effect on orientation and must be considered along with the dune type. As long as the few steep slip faces on these small dunes are avoided, form flow can be considered the dominant cause of deviation from the regional wind direction. Regional results, wind roses, and comparisons to previous work will be presented for individual sites.

  5. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones.

    PubMed

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-23

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones.

  6. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    PubMed Central

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-01

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones. PMID:29360793

  7. Winds at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Gunnlaugsson, H. P.; Taylor, P.; Lange, C.; Moores, J.; Lemmon, M.

    2008-12-01

    Local wind speeds and directions have been measured at the Phoenix landing site using the Telltale wind indicator. The Telltale is mounted on top of the meteorological mast at roughly 2 meters height above the surface. The Telltale is a mechanical anemometer consisting of a lightweight cylinder suspended by Kevlar fibers that are deflected under the action of wind. Images taken with the Surface Stereo Imager (SSI) of the Telltale deflection allows the wind speed and direction to be quantified. Winds aloft have been estimated using image series (10 images ~ 50 s apart) taken of the Zenith (Zenith Movies). In contrast enhanced images cloud like features are seen to move through the image field and give indication of directions and angular speed. Wind speeds depend on the height of where these features originate while directions are unambiguously determined. The wind data shows dominant wind directions and diurnal variations, likely caused by slope winds. Recent night time measurements show frost formation on the Telltale mirror. The results will be discussed in terms of global and slope wind modeling and the current calibration of the data is discussed. It will also be illustrated how wind data can aid in interpreting temperature fluctuations seen on the lander.

  8. Similarity scaling of turbulence in small temperate lake: implication for gas flux: implication for gas flux

    NASA Astrophysics Data System (ADS)

    Tedford, E. W.; MacIntyre, S.; Miller, S. D.; Czikowsky, M. J.

    2013-12-01

    The actively mixing layer, or surface layer, is the region of the upper mixed layer of lakes, oceans and the atmosphere directly influenced by wind, heating and cooling. Turbulence within the surface mixing layer has a direct impact on important ecological processes. The Monin-Obukhov length scale (LMO) is a critical length scale used in predicting and understanding turbulence in the actively mixed layer. On the water side of the air-water interface, LMO is defined as: LMO=-u*^3/(0.4 JB0) where u*, the shear velocity, is defined as (τ/rho)^0.5 where τ is the shear stress and rho is the density of water and JBO is the buoyancy flux at the surface. Above the depth equal to the absolute value of the Monin-Obukhov length scale (zMO), wind shear is assumed to dominate the production of turbulent kinetic energy (TKE). Below zMO, the turbulence is assumed to be suppressed when JB0 is stabilizing (warming surface waters) and enhanced when the buoyancy flux is destabilizing (cooling surface waters). Our observed dissipations were well represented using the canonical similarity scaling equations. The Monin-Obukhov length scale was generally effective in separating the surface-mixing layer into two regions: an upper region, dominated by wind shear; and a lower region, dominated by buoyancy flux. During both heating and cooling and above a depth equal to |LMO|, turbulence was dominated by wind shear and dissipation followed law of the wall scaling although was slightly augmented by buoyancy flux during both heating and cooling. Below a depth equal to |LMO| during cooling, dissipation was nearly uniform with depth. Although distinguishing between an upper region of the actively mixing layer dominated by wind stress and a lower portion dominated by buoyancy flux is typically accurate the most accurate estimates of dissipation include the effects of both wind stress and buoyancy flux throughout the actively mixed layer. We demonstrate and discuss the impact of neglecting the non-dominant forcing (buoyancy flux above zMO and wind stress below zMO) above and below zMO.

  9. Comparing wind directions inferred from Martian dust devil tracks analysis with those predicted by the Mars Climate Database

    NASA Astrophysics Data System (ADS)

    Statella, T.; Pina, P.; Silva, E. A.; Nervis Frigeri, Ary Vinicius; Neto, Frederico Gallon

    2016-10-01

    We have calculated the prevailing dust devil tracks direction as a means of verifying the Mars Climate Database (MCD) predicted wind directions accuracy. For that purpose we have applied an automatic method based on morphological openings for inferring the prevailing tracks direction in a dataset comprising 200 Mars Orbiter Camera (MOC) Narrow Angle (NA) and High Resolution Imaging Science Experiment (HiRISE) images of the Martian surface, depicting regions in the Aeolis, Eridania, Noachis, Argyre and Hellas quadrangles. The prevailing local wind directions were calculated from the MCD predicted speeds for the WE and SN wind components. The results showed that the MCD may not be able to predict accurately the locally dominant wind direction near the surface. In adittion, we confirm that the surface wind stress alone cannot produce dust lifting in the studied sites, since it never exceeds the threshold value of 0.0225 Nm-2 in the MCD.

  10. Wind direction and its linkage with Vibrio cholerae dissemination.

    PubMed

    Paz, Shlomit; Broza, Meir

    2007-02-01

    The relevance of climatic events as causative factors for cholera epidemics is well known. However, examinations of the involvement of climatic factors in intracontinental disease distribution are still absent. The spreading of cholera epidemics may be related to the dominant wind direction over land. We examined the geographic diffusion of three cholera outbreaks through their linkage with the wind direction: a) the progress of Vibrio cholerae O1 biotype El Tor in Africa during 1970-1971 and b) again in 2005-2006; and c) the rapid spread of Vibrio cholerae O139 over India during 1992-1993. We also discuss the possible influence of the wind direction on windborn dissemination by flying insects, which may serve as vectors. Analysis of air pressure data at sea level and at several altitudes over Africa, India, and Bangladesh show a correspondence between the dominant wind direction and the intracontinental spread of cholera. We explored the hypothesis that winds have assisted the progress of cholera Vibrios throughout continents. The current analysis supports the hypothesis that aeroplankton (the tiny life forms that float in the air and that may be caught and carried upward by the wind, landing far from their origin) carry the cholera bacteria from one body of water to an adjacent one. This finding may improve our understanding of how climatic factors are involved in the rapid distribution of new strains throughout a vast continental area. Awareness of the aerial transfer of Vibrio cholerae may assist health authorities by improving the prediction of the disease's geographic dissemination.

  11. ERS-1 and Seasat scatterometer measurements of ocean winds: Model functions and the directional distribution of short waves

    NASA Technical Reports Server (NTRS)

    Freilich, Michael H.; Dunbar, R. Scott

    1993-01-01

    Calculation of accurate vector winds from scatterometers requires knowledge of the relationship between backscatter cross-section and the geophysical variable of interest. As the detailed dynamics of wind generation of centimetric waves and radar-sea surface scattering at moderate incidence angles are not well known, empirical scatterometer model functions relating backscatter to winds must be developed. Less well appreciated is the fact that, given an accurate model function and some knowledge of the dominant scattering mechanisms, significant information on the amplitudes and directional distributions of centimetric roughness elements on the sea surface can be inferred. accurate scatterometer model functions can thus be used to investigate wind generation of short waves under realistic conditions. The present investigation involves developing an empirical model function for the C-band (5.3 GHz) ERS-1 scatterometer and comparing Ku-band model functions with the C-band model to infer information on the two-dimensional spectrum of centimetric roughness elements in the ocean. The C-band model function development is based on collocations of global backscatter measurements with operational surface analyses produced by meteorological agencies. Strengths and limitations of the method are discussed, and the resulting model function is validated in part through comparison with the actual distributions of backscatter cross-section triplets. Details of the directional modulation as well as the wind speed sensitivity at C-band are investigated. Analysis of persistent outliers in the data is used to infer the magnitudes of non-wind effects (such as atmospheric stratification, swell, etc.). The ERS-1 C-band instrument and the Seasat Ku-band (14.6 GHz) scatterometer both imaged waves of approximately 3.4 cm wavelength assuming that Bragg scattering is the dominant mechanism. Comparisons of the C-band and Ku-band model functions are used both to test the validity of the postulated Bragg mechanism and to investigate the directional distribution of the imaged waves under a variety of conditions where Bragg scatter is dominant.

  12. Wind-waves interactions in the Gulf of Eilat

    NASA Astrophysics Data System (ADS)

    Shani-Zerbib, Almog; Liberzon, Dan; T-SAIL Team

    2017-11-01

    The Gulf of Eilat, at the southern tip of Israel, with its elongated rectangular shape and unique diurnal wind pattern is an appealing location for wind-waves interactions research. Results of experimental work will be reported analyzing a continuous, 50 hour long, data. Using a combined array of wind and waves sensing instruments, the wave field statistics and its response to variations of wind forcing were investigated. Correlations between diurnal fluctuations in wind magnitude and direction and the wave field response will be discussed. The directional spread of waves' energy, as estimated by the Wavelet Directional Method, showed a strong response to small variations in wind flow direction attributed to the unique topography of the gulf surroundings and its bathymetry. Influenced by relatively strong winds during the light hours, the wave field was dominated by a significant amount of breakings that are well pronounced in the saturation range of waves spectra. Temporal growth and decay behavior of the waves during the morning and evening wind transition periods was examined. Sea state induced roughness, as experienced by the wind flow turbulent boundary layer, is examined in view of the critical layer theory. Israel Science Foundation Grant # 1521/15.

  13. Subtidal circulation in a deep-silled fjord: Douglas Channel, British Columbia

    NASA Astrophysics Data System (ADS)

    Wan, Di; Hannah, Charles G.; Foreman, Michael G. G.; Dosso, Stan

    2017-05-01

    Douglas Channel, a deep fjord on the west coast of British Columbia, Canada, is the main waterway in the fjord system that connects the town of Kitimat to Queen Charlotte Sound and Hecate Strait. A 200 m depth sill divides Douglas Channel into an outer and an inner basin. This study examines the low-frequency (from seasonal to meteorological bands) circulation in Douglas Channel from data collected at three moorings deployed during 2013-2015. The deep flows are dominated by a yearly renewal that takes place from May/June to early September. A dense bottom layer with a thickness of 100 m that cascades through the system at the speed of 0.1-0.2 m s-1, which is consistent with gravity currents. Estuarine flow dominates the circulation above the sill depth, and the observed landward net volume flux suggests that it is necessary to include the entire complex channel network to fully understand the estuarine circulation in the system. The influence of the wind forcing on the subtidal circulation is not only at the surface, but also at middepth. The along-channel wind dominates the surface current velocity fluctuations and the sea level response to the wind produces a velocity signal at 100-120 m in the counter-wind direction. Overall, the circulation in the seasonal and the meteorological bands is a mix of estuarine flow, direct wind-driven flow, and the barotropic and baroclinic responses to changes to the surface pressure gradient caused by the wind stress.

  14. Mapping Wind Farm Loads and Power Production - A Case Study on Horns Rev 1

    NASA Astrophysics Data System (ADS)

    Galinos, Christos; Dimitrov, Nikolay; Larsen, Torben J.; Natarajan, Anand; Hansen, Kurt S.

    2016-09-01

    This paper describes the development of a wind turbine (WT) component lifetime fatigue load variation map within an offshore wind farm. A case study on the offshore wind farm Horns Rev I is conducted with this purpose, by quantifying wake effects using the Dynamic Wake Meandering (DWM) method, which has previously been validated based on CFD, Lidar and full scale load measurements. Fully coupled aeroelastic load simulations using turbulent wind conditions are conducted for all wind directions and mean wind speeds between cut-in and cut-out using site specific turbulence level measurements. Based on the mean wind speed and direction distribution, the representative 20-year lifetime fatigue loads are calculated. It is found that the heaviest loaded WT is not the same when looking at blade root, tower top or tower base components. The blade loads are mainly dominated by the wake situations above rated wind speed and the highest loaded blades are in the easternmost row as the dominating wind direction is from West. Regarding the tower components, the highest loaded WTs are also located towards the eastern central location. The turbines with highest power production are, not surprisingly, the ones facing a free sector towards west and south. The power production results of few turbines are compared with SCADA data. The results of this paper are expected to have significance for operation and maintenance planning, where the schedules for inspection and service activities can be adjusted to the requirements arising from the varying fatigue levels. Furthermore, the results can be used in the context of remaining fatigue lifetime assessment and planning of decommissioning.

  15. Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument

    NASA Technical Reports Server (NTRS)

    Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.

    2014-01-01

    Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.

  16. The Crab Pulsar and Relativistic Wind

    NASA Astrophysics Data System (ADS)

    Coroniti, F. V.

    2017-12-01

    The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belu, Radian; Koracin, Darko

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  18. Do trees fall downhill? Relationship between treefall direction and slope-aspect and wind in eight old-growth oak stands in the central hardwood forest

    Treesearch

    James S. Rentch

    2011-01-01

    This study examined the relationship between direction of treefall and slope-aspect, and prevailing wind in eight old-growth stands where single-tree canopy gaps characterize the dominant disturbance regime. All live and downed trees were inventoried in 0.45-ha sample plots. To determine crown asymmetry, crown sizes of live trees were measured along two perpendicular...

  19. The effect of wind on the dispersal of a tropical small river plume

    NASA Astrophysics Data System (ADS)

    Zhao, Junpeng; Gong, Wenping; Shen, Jian

    2018-03-01

    Wanquan River is a small river located in Hainan, a tropical island in China. As the third largest river in Hainan, the river plume plays an important role in the regional terrigenous mass transport, coastal circulation, and the coral reef's ecosystem. Studies have shown that wind forcings significantly influence river plume dynamics. In this study, wind effects on the dispersal of the river plume and freshwater transport were examined numerically using a calibrated, unstructured, finite volume numerical model (FVCOM). Both wind direction and magnitude were determined to influence plume dispersal. Northeasterly (downwelling-favorable) winds drove freshwater down-shelf while southeasterly (onshore) winds drove water up-shelf (in the sense of Kelvin wave propagation), and were confined near the coast. Southwesterly (upwelling-favorable) and north-westerly (offshore) winds transport more freshwater offshore. The transport flux is decomposed into an advection, a vertical shear, and an oscillatory component. The advection flux dominates the freshwater transport in the coastal area and the vertical shear flux is dominant in the offshore area. For the upwelling-favorable wind, the freshwater transport becomes more controlled by the advection transport with an increase in wind stress, due to enhanced vertical mixing. The relative importance of wind forcing and buoyancy force was investigated. It was found that, when the Wedderburn number is larger than one, the plume was dominated by wind forcing, although the importance of wind varies in different parts of the plume. The water column stratification decreased as a whole under the prevailing southwesterly wind, with the exception of the up-shelf and offshore areas.

  20. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    DOE PAGES

    Belu, Radian; Koracin, Darko

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  1. Effects of prevailing winds on turbidity of a shallow estuary.

    PubMed

    Cho, Hyun Jung

    2007-06-01

    Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation) collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were responsible for the long-term, large-scale turbidity pattern of the estuary, whereas the short-term changes in wind direction had differential effects on turbidity and water level in varying locations. There were temporal and spatial changes in the relationship between vertical light attenuation coefficient (Kd) and turbidity, which indicate difference in phytoplankton and color also affect Kd. This study demonstrates that the effect of wind on turbidity and water level on different shores can be identified through system-specific analyses of turbidity patterns.

  2. Effects of Prevailing Winds on Turbidity of a Shallow Estuary

    PubMed Central

    Cho, Hyun Jung

    2007-01-01

    Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation) collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were responsible for the long-term, large-scale turbidity pattern of the estuary, whereas the short-term changes in wind direction had differential effects on turbidity and water level in varying locations. There were temporal and spatial changes in the relationship between vertical light attenuation coefficient (Kd) and turbidity, which indicate difference in phytoplankton and color also affect Kd. This study demonstrates that the effect of wind on turbidity and water level on different shores can be identified through system-specific analyses of turbidity patterns. PMID:17617683

  3. PROTON HEATING IN SOLAR WIND COMPRESSIBLE TURBULENCE WITH COLLISIONS BETWEEN COUNTER-PROPAGATING WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jiansen; Tu, Chuanyi; Wang, Linghua

    Magnetohydronamic turbulence is believed to play a crucial role in heating laboratory, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. As opposed to the traditional paradigm with counter-propagating Alfvén waves (AWs), anti-sunward AWs are encountered by sunward slow magnetosonic waves (SMWs) inmore » this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond, respectively, to the dominant and sub-dominant populations of the imbalanced Elsässer variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orthogonality between the possible oscillation direction of one wave and the possible propagation direction of the other. The associated protons are revealed to exhibit bi-directional asymmetric beams in their velocity distributions: sunward beams appear in short, narrow patterns and anti-sunward in broad extended tails. It is suggested that multiple types of wave–particle interactions, i.e., cyclotron and Landau resonances with AWs and SMWs at kinetic scales, are taking place to jointly heat the protons perpendicular and in parallel.« less

  4. Wind Carved Rock

    NASA Image and Video Library

    2016-10-19

    The distinctively fluted surface and elongated hills in this image in Medusae Fossae are caused by wind erosion of a soft fine-grained rock. Called yardangs, these features are aligned with the prevailing wind direction. This wind direction would have dominated for a very long time to carve these large-scale features into the exposed rock we see today. Yardangs not only reveal the strength and direction of historic winds, but also reveal something of the host rock itself. Close inspection by HiRISE shows an absence of boulders or rubble, especially along steep yardang cliffs and buttresses. The absence of rubble and the scale of the yardangs tells us that the host rock consists only of weakly cemented fine granules in tens of meters or more thick deposits. Such deposits could have come from extended settling of volcanic ash, atmospheric dust, or accumulations of wind deposited fine sands. After a time these deposits became cemented and cohesive, illustrated by the high standing relief and exposed cliffs. http://photojournal.jpl.nasa.gov/catalog/PIA21111

  5. Field-wind Distribution and Eruption Columns: Colima Volcano, México.

    NASA Astrophysics Data System (ADS)

    Fonseca, R.; Martin, A. L.; Perez, I.

    2006-12-01

    Colima Volcano (19º51'N 103º62'W) is characterized by explosive behaviour. Recently this volcano has shown an increase in explosive activity suggesting the possibility of a subplinian event in the next future like the ones occurred in 1818 and 1913. They were characterized by eruptive columns higher than 20 Km. Considering the possibility of a new explosive event we carried out a wind study based on the radiosonde balloon data set (1980-1995) with 15 atmospheric levels. This data set was collected by Global Gridded Upper Air Statistics (GGUAS) of the European Centre for Médium Range Weather Forecast (ECMRWF). The data was processed with a cinematic model for the study of global atmospheric wind circulation. In this model the current function (vorticity) and a potential function (convergency and/or divergency) was calculated with the Poison equation, utilizing a spectral numeric model. Dominant wind direction in January-May and October-December is toward the East with variations to the East/South East. On the contrary during July-September the dominant wind direction is toward the West, South-West, North-East; East and North-East. The fluctuations related to anticyclonic circulation occur in May, July, September and November at the altitude between 5 and 18 Km. The wind model allows identification of the wind horizontal circulation during the whole year at different atmospheric levels. Moreover, the perturbations of the normal circulation have also been identified. These results are applied to an a ash fall map for ash-fall hazard zonification.

  6. Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea)

    USGS Publications Warehouse

    Grifoll, Manel; Aretxabaleta, Alfredo L.; Pelegrí, Josep L.; Espino, Manuel; Warner, John C.; Sánchez-Arcilla, Agustín

    2013-01-01

    This study characterizes the seasonal cycle of the Catalan inner-shelf circulation using observations and complementary numerical results. The relation between seasonal circulation and forcing mechanisms is explored through the depth-averaged momentum balance, for the period between May 2010 and April 2011, when velocity observations were partially available. The monthly-mean along-shelf flow is mainly controlled by the along-shelf pressure gradient and by surface and bottom stresses. During summer, fall, and winter, the along-shelf momentum balance is dominated by the barotropic pressure gradient and local winds. During spring, both wind stress and pressure gradient act in the same direction and are compensated by bottom stress. In the cross-shelf direction the dominant forces are in geostrophic balance, consistent with dynamic altimetry data.

  7. Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Grifoll, Manel; Aretxabaleta, Alfredo L.; Pelegrí, Josep L.; Espino, Manuel; Warner, John C.; Sánchez-Arcilla, Agustín.

    2013-10-01

    This study characterizes the seasonal cycle of the Catalan inner-shelf circulation using observations and complementary numerical results. The relation between seasonal circulation and forcing mechanisms is explored through the depth-averaged momentum balance, for the period between May 2010 and April 2011, when velocity observations were partially available. The monthly-mean along-shelf flow is mainly controlled by the along-shelf pressure gradient and by surface and bottom stresses. During summer, fall, and winter, the along-shelf momentum balance is dominated by the barotropic pressure gradient and local winds. During spring, both wind stress and pressure gradient act in the same direction and are compensated by bottom stress. In the cross-shelf direction the dominant forces are in geostrophic balance, consistent with dynamic altimetry data.

  8. Possibility of star (pyramid) dune development in the area of bimodal wind regime

    NASA Astrophysics Data System (ADS)

    Biejat, K.

    2012-04-01

    Star (pyramid) dunes are the largest aeolian landforms. They can occur in three types - simple, complex and compound. Development of this type of dunes is usually connected with multidirectional or complex wind regimes. The aim of this study was to verify a hypothesis that the star dunes can also develop by a bimodal wind regime and by local modifications of nearsurface wind flow directions. Field study was performed on Erg Chebbi, in southern Morocco. Several star and transverse dunes were selected for the study of their shape. The star dunes were analysed concerning their type and position in the dune field. This erg contains all of three types of star dunes together with transverse dunes. The regional wind data show that there are two dominant wind directions - NE (Chergui) and SW (Saheli). To determine the difference in shape of star dunes, we performed topographic surveying by GPS RTK. The results allowed to create 3D models of star dunes. The models were used to determine metric characteristics of star dunes, including area of dune basis, volume, and slope angles. On the basis of 3D models, primary, secondary and, on the compound dunes, tertiary arms were determined. Primary arms on each type of star dunes, as well as crestlines of transverse dunes, have dominant orientation NW-SE, perpendicular to two dominant wind directions. This clearly confirms that star dunes of Erg Chebbi develop by a bimodal wind regime In contrast to primary arms, subsidiary (secondary and tertiary) arms are not connected to general wind regime. The secondary arms of star dunes occur to be differentially developer. There are more subsidiary arms on SW sides in comparison to the E sides of the dunes where inclination of slopes is constant. It can be therefore inferred that sand has been supplied predominantly from SW direction. This is supported by distribution of the dunes on the erg. Most compound star dunes compose a chain along the E margin of the erg. Comparison of compound star dunes located in E and W parts of the erg allow inferring that there must have been differences in supply of the aeolian sand. Eastern slopes of compound star dunes developed in the W part of the erg are inclined 10-15°. This shows that significant delivery of the sand must have occurred also from NE. Eastern slopes of compound star dunes located in the E part of the erg are inclined 20-30°. It can be therefore inferred that they have functioned mainly as lee slopes and the sand was delivery from SW. This proves that location of the dunes within the erg plays a significant role in shaping wind directions responsible for delivery of the sand. Orientation of subsidiary arms does not show any relationship with general wind regime, which leads to conclusion that the subsidiary arms develop due to local diversified regime of nearsurface wind flow. This is governed by barriers such as the star dunes themselves and not by other topographic obstacles.

  9. The Wind Energy Potential of Kurdistan, Iran

    PubMed Central

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  10. Field-aligned Poynting flux observations in the high-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Gary, J. B.; Heelis, R. A.; Hanson, W. B.; Slavin, J. A.

    1994-06-01

    We have used data from Dynamics Explorer 2 to investigate the rate of conversion of electromagnetic energy into both thermal and bulk flow particle kinetic energy in the high-latitude ionosphere. The flux tube integrated conversion rate E.J can be determined from spacecraft measurements of the electric and magnetic field vectors by deriving the field-aligned Poynting flux, S∥=S.B0, where B0 is in the direction of the geomagnetic field. Determination of the Poynting flux from satellite observations is critically dependent upon the establishment of accurate values of the fields and is especially sensitive to errors in the baseline (unperturbed) geomagnetic field. We discuss our treatment of the data in some detail, particularly in regard to systematically correcting the measured magnetic field to account for attitude changes and model deficiencies. S∥ can be used to identify the relative strengths of the magnetosphere and thermospheric winds as energy drivers and we present observations demonstrating the dominance of each of these. Dominance of the magnetospheric driver is indicated by S∥ directed into the ionosphere. Electromagnetic energy is delivered to and dissipated within the region. Dominance of the neutral wind requires that the conductivity weighted neutral wind speed in the direction of the ion drift be larger than the ion drift, resulting in observations of an upward directed Poynting flux. Electromagnetic energy is generated within the ionospheric region in this case. We also present observations of a case where the neutral atmosphere motion may be reaching a state of sustained bulk flow velocity as evidenced by very small Poynting flux in the presence of large electric fields.

  11. The relative contribution of processes driving variability in flow, shear, and turbidity over a fringing coral reef: West Maui, Hawaii

    USGS Publications Warehouse

    Storlazzi, C.D.; Jaffe, B.E.

    2008-01-01

    High-frequency measurements of waves, currents and water column properties were made on a fringing coral reef off northwest Maui, Hawaii, for 15 months between 2001 and 2003 to aid in understanding the processes governing flow and turbidity over a range of time scales and their contributions to annual budgets. The summer months were characterized by consistent trade winds and small waves, and under these conditions high-frequency internal bores were commonly observed, there was little net flow or turbidity over the fore reef, and over the reef flat net flow was downwind and turbidity was high. When the trade winds waned or the wind direction deviated from the dominant trade wind orientation, strong alongshore flows occurred into the typically dominant wind direction and lower turbidity was observed across the reef. During the winter, when large storm waves impacted the study area, strong offshore flows and high turbidity occurred on the reef flat and over the fore reef. Over the course of a year, trade wind conditions resulted in the greatest net transport of turbid water due to relatively strong currents, moderate overall turbidity, and their frequent occurrence. Throughout the period of study, near-surface current directions over the fore reef varied on average by more than 41?? from those near the seafloor, and the orientation of the currents over the reef flat differed on average by more than 65?? from those observed over the fore reef. This shear occurred over relatively short vertical (order of meters) and horizontal (order of hundreds of meters) scales, causing material distributed throughout the water column, including the particles in suspension causing the turbidity (e.g. sediment or larvae) and/or dissolved nutrients and contaminants, to be transported in different directions under constant oceanographic and meteorologic forcing.

  12. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.

    2015-10-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.

  13. Observations of the effect of wind on the cooling of active lava flows

    USGS Publications Warehouse

    Keszthelyi, L.; Harris, A.J.L.; Dehn, J.

    2003-01-01

    We present the first direct observations of the cooling of active lava flows by the wind. We confirm that atmospheric convective cooling processes (i.e., the wind) dominate heat loss over the lifetime of a typical pahochoe lava flow. In fact, the heat extracted by convection is greater than predicted, especially at wind speeds less than 5 m/s and surface temperatures less than 400??C. We currently estimate that the atmospheric heat transfer coefficient is about 45-50 W m-2 K-1 for a 10 m/s wind and a surface temperature ???500??C. Further field experiments and theoretical studies should expand these results to a broader range of surface temperatures and wind speeds.

  14. Syrtis Major

    NASA Image and Video Library

    2002-05-23

    This image from NASA Mars Odyssey spacecraft is from the region of Syrtis Major, which is dominated by a low-relief shield volcano and believed to be an area of vigorous aeolian activity with strong winds in the east-west direction.

  15. Lidar arc scan uncertainty reduction through scanning geometry optimization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.

  16. Directional spectra of hurricane-generated waves in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hu, Kelin; Chen, Qin

    2011-10-01

    Hurricane-induced directional wave spectra in the Gulf of Mexico are investigated based on the measurements collected at 12 buoys during 7 hurricane events in recent years. Focusing on hurricane-generated wave spectra, we only consider the wave measurements at the buoys within eight times the radius of the hurricane maximum wind speed (Rmax) from the hurricane center. A series of numerical experiments using a third-generation spectral wave prediction model were carried out to gain insight into the mechanism controlling the directional and frequency distributions of hurricane wave energy. It is found that hurricane wave spectra are almost swell-dominated except for the right-rear quadrant of a hurricane with respect to the forward direction, where the local strong winds control the spectra. Despite the complexity of a hurricane wind field, most of the spectra are mono-modal, similar to those under fetch-limited, unidirectional winds. However, bi-modal spectra were also found in both measurements and model results. Four types of bi-modal spectra have been observed. Type I happens far away (>6 × Rmax) from a hurricane. Type II is bi-modal in frequency with significant differences in direction. It happens in the two left quadrants when the direction of hurricane winds deviates considerably from the swell direction. Type III is bi-modal in frequency in almost the same wave direction with two close peaks. It occurs when the energy of locally-generated wind-sea is only partially transferred to the swell energy by non-linear wave-wave interactions. Type IV was observed in shallow waters owing to coastal effects.

  17. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  18. Multiline Transfer and the Dynamics of Stellar Winds

    NASA Technical Reports Server (NTRS)

    Abbott, D. C.; Lucy, L. B.

    1985-01-01

    A Monte Carlo technique for treating multiline transfer in stellar winds is described. With a line list containing many thousands of transitions and with fairly realistic treatments of ionization, excitation and line formation, the resulting code allows the dynamic effects of overlapping lines the investigation of and provides the means to directly synthesize the complete spectrum of a star and its wind. It is found that the computed mass loss rate for data Puppis agrees with the observed rate. The synthesized spectrum of zeta Puppis also agrees with observational data. This confirms that line driving is the dominant acceleration mechanism in this star's wind.

  19. Wind-driven Water Bodies : a new paradigm for lake geology

    NASA Astrophysics Data System (ADS)

    Nutz, A.; Schuster, M.; Ghienne, J. F.; Roquin, C.; Bouchette, F. A.

    2015-12-01

    In this contribution we emphasize the importance in some lakes of wind-related hydrodynamic processes (fair weather waves, storm waves, and longshore, cross-shore and bottom currents) as a first order forcing for clastics remobilization and basin infill. This alternative view contrasts with more classical depositional models for lakes where fluvial-driven sedimentation and settling dominates. Here we consider three large lakes/paleo-lakes that are located in different climatic and geodynamic settings: Megalake Chad (north-central Africa), Lake Saint-Jean (Québec, Canada), and Lake Turkana (Kenya, East African Rift System). All of these three lake systems exhibit well developed modern and ancient high-energy littoral morphosedimentary structures which directly derive from wind-related hydrodynamics. The extensive paleo-shorelines of Megalake Chad are composed of beach-foredune ridges, spits, wave-dominated deltas, barriers, and wave-ravinment surface. For Lake Saint-Jean the influence of wind is also identified below the wave-base at lake bottom from erosional surfaces, and sediment drifts. In the Lake Turkana Basin, littoral landforms and deposits are identified for three different time intervals (today, Holocene, Plio-Pleistocene) evidencing that wind-driven hydrodynamics can be preserved in the geological record. Moreover, a preliminary global survey suggests that numerous modern lakes (remote sensing) and paleo-lakes (bibliographic review) behave as such. We thus coin the term "Wind-driven Water Bodies" (WWB) to refer to those lake systems where sedimentation (erosion, transport, deposition) is dominated by wind-induced hydrodynamics at any depth, as it is the case in the marine realm for shallow seas. Integrating wind forcing in lake models has strong implications for basin analysis (paleoenvironments and paleoclimates restitutions, resources exploration), but also for coastal engineering, wildlife and reservoirs management, or leisure activities.

  20. Hubble space telescope observations and geometric models of compact multipolar planetary nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsia, Chih-Hao; Chau, Wayne; Zhang, Yong

    2014-05-20

    We report high angular resolution Hubble Space Telescope observations of 10 compact planetary nebulae (PNs). Many interesting internal structures, including multipolar lobes, arcs, two-dimensional rings, tori, and halos, are revealed for the first time. These results suggest that multipolar structures are common among PNs, and these structures develop early in their evolution. From three-dimensional geometric models, we have determined the intrinsic dimensions of the lobes. Assuming the lobes are the result of interactions between later-developed fast winds and previously ejected asymptotic giant branch winds, the geometric structures of these PNs suggest that there are multiple phases of fast winds separatedmore » by temporal variations and/or directional changes. A scenario of evolution from lobe-dominated to cavity-dominated stages is presented. The results reported here will provide serious constraints on any dynamical models of PNs.« less

  1. Direct evidence for kinetic effects associated with solar wind reconnection

    PubMed Central

    Xu, Xiaojun; Wang, Yi; Wei, Fengsi; Feng, Xueshang; Deng, Xiaohua; Ma, Yonghui; Zhou, Meng; Pang, Ye; Wong, Hon-Cheng

    2015-01-01

    Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed. PMID:25628139

  2. Direct evidence for kinetic effects associated with solar wind reconnection.

    PubMed

    Xu, Xiaojun; Wang, Yi; Wei, Fengsi; Feng, Xueshang; Deng, Xiaohua; Ma, Yonghui; Zhou, Meng; Pang, Ye; Wong, Hon-Cheng

    2015-01-28

    Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed.

  3. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE PAGES

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; ...

    2016-04-13

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  4. Lidar arc scan uncertainty reduction through scanning geometry optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less

  5. Measurements of wind-waves under transient wind conditions.

    NASA Astrophysics Data System (ADS)

    Shemer, Lev; Zavadsky, Andrey

    2015-11-01

    Wind forcing in nature is always unsteady, resulting in a complicated evolution pattern that involves numerous time and space scales. In the present work, wind waves in a laboratory wind-wave flume are studied under unsteady forcing`. The variation of the surface elevation is measured by capacitance wave gauges, while the components of the instantaneous surface slope in across-wind and along-wind directions are determined by a regular or scanning laser slope gauge. The locations of the wave gauge and of the laser slope gauge are separated by few centimeters in across-wind direction. Instantaneous wind velocity was recorded simultaneously using Pitot tube. Measurements are performed at a number of fetches and for different patterns of wind velocity variation. For each case, at least 100 independent realizations were recorded for a given wind velocity variation pattern. The accumulated data sets allow calculating ensemble-averaged values of the measured parameters. Significant differences between the evolution patterns of the surface elevation and of the slope components were found. Wavelet analysis was applied to determine dominant wave frequency of the surface elevation and of the slope variation at each instant. Corresponding ensemble-averaged values acquired by different sensors were computed and compared. Analysis of the measured ensemble-averaged quantities at different fetches makes it possible to identify different stages in the wind-wave evolution and to estimate the appropriate time and length scales.

  6. A Method to Quantify the Wind and Non-wind Contribution to Year-to-year Air Quality Variation and its Application in China

    NASA Astrophysics Data System (ADS)

    LI, Y.; Lau, A. K. H.; Wong, A.; Fung, J. C. H.

    2017-12-01

    Changes in emissions and wind are often identified as the two dominant factors contributing to year-to-year variations in the concentration of primary pollutants. However, because changes in wind and emissions are intertwined, it has been difficult to quantitatively differentiate their effects on air quality directly from observed data. In particular, if the annual mean concentration of pollutants is higher than the previous year, it is difficult to identify whether the deterioration in air quality is caused by wind blowing from more polluted regions or an increase in contributing emissions. In this paper, based on wind and pollution roses, we propose a method to differentiate the effects of wind and non-wind (e.g., emissions) changes using direct observation. An index (L) is first defined to quantify the validity of the linear decomposition. The method is then validated by idealized experiments, numerical experiments and a two-year observation dataset from an actual emissions control program. Finally, we demonstrate the proposed method by studying long-term PM10 variations in Hong Kong during 2000-2011. We find that for most of the period, the linear decomposition of the changes in annual PM10 is valid (up to 90% confidence) and is dominated by the change in non-wind effects (e.g., emissions), whereas the average absolute effect from the wind variability is about 20%. Sensitivity analyses also suggest that our method should work in any location as long as the observed wind and pollution data have sufficient duration and resolution to resolve the corresponding wind and pollution roses. The method is applied for estimating the control effectiveness of the intervention programs in the Shanghai Expo, the longest socioeconomic international event held in China. The results show that integrated effect of control policies taken for improving the air quality in Shanghai are significantly effective for PM10 reduction and also effective for SO2 reduction, whereas the traffic emission control are not effective for NO2 at urban stations, though the overall emission control lead to an decrease for the city average NO2 concentration.

  7. Transport of a Power Plant Tracer Plume over Grand Canyon National Park.

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Bornstein, Robert; Lindsey, Charles G.

    1999-08-01

    Meteorological and air-quality data, as well as surface tracer concentration values, were collected during 1990 to assess the impacts of Navajo Generating Station (NGS) emissions on Grand Canyon National Park (GCNP) air quality. These data have been used in the present investigation to determine between direct and indirect transport routes taken by the NGS plume to produce measured high-tracer concentration events at GCNP.The meteorological data were used as input into a three-dimensional mass-consistent wind model, whose output was used as input into a horizontal forward-trajectory model. Calculated polluted air locations were compared with observed surface-tracer concentration values.Results show that complex-terrain features affect local wind-flow patterns during winter in the Grand Canyon area. Local channeling, decoupled canyon winds, and slope and valley flows dominate in the region when synoptic systems are weak. Direct NGS plume transport to GCNP occurs with northeasterly plume-height winds, while indirect transport to the park is caused by wind direction shifts associated with passing synoptic systems. Calculated polluted airmass positions along the modeled streak lines match measured surface-tracer observations in both space and time.

  8. Observations of an aeolian landscape: From surface to orbit in Gale Crater

    NASA Astrophysics Data System (ADS)

    Day, Mackenzie; Kocurek, Gary

    2016-12-01

    Landscapes derived solely from aeolian processes are rare on Earth because of the dominance of subaqueous processes. In contrast, aeolian-derived landscapes should typify Mars because of the absence of liquid water, the long exposure times of surfaces, and the presence of wind as the default geomorphic agent. Using the full range of available orbital and Mars Science Laboratory rover Curiosity images, wind-formed features in Gale Crater were cataloged and analyzed in order to characterize the aeolian landscape and to derive the evolution of the crater wind regime over time. Inferred wind directions show a dominance of regional northerly winds over geologic time-scales, but a dominance of topography-driven katabatic winds in modern times. Landscapes in Gale Crater show a preponderance of aeolian features at all spatial scales. Interpreted processes forming these features include first-cycle aeolian abrasion of bedrock, pervasive deflation, organization of available sand into bedforms, abundant cratering, and gravity-driven wasting, all of which occur over a background of slow physical weathering. The observed landscapes are proposed to represent a spectrum of progressive surface denudation from fractured bedrock, to retreating bedrock-capped mesas, to remnant hills capped by bedrock rubble, to desert pavement plains. This model of landscape evolution provides the mechanism by which northerly winds acting over ∼3 Ga excavated tens of thousands of cubic kilometers of material from the once sediment-filled crater, thus carving the intra-crater moat and exhuming Mount Sharp (Aeolis Mons). The current crater surface is relatively sand-starved, indicating that potential sediment deflation from the crater is greater than sediment production, and that most exhumation of Mount Sharp occurred in the ancient geologic past.

  9. A meteorological potential forecast model for acid rain in Fujian Province, China.

    PubMed

    Cai, Yi Yong; Lin, Chang Cheng; Liu, Jing Xiong; Wu, De Hui; Lian, Dong Ying; Chen, Bin Bin

    2010-05-01

    Based on the acid rain and concurrent meteorological observational data during the past 10 years in Fujian Province, China, the dependence of distribution characteristics of acid rain on season, rain rate, weather pattern and dominant airflow in four regions of Fujian Province is analyzed. On the annual average, the acid rain frequency is the highest (above 40%) in the southern and mid-eastern regions, and the lowest (16.2%) in the western region. The acid rain occurs most frequently in spring and winter, and least frequent in summer. The acid rain frequency in general increases with the increase of precipitation. It also depend on the direction of dominant airflows at 850 hPa. In the mid-eastern region, more than 40% acid rains appear when the dominant wind directions are NW, W, SW, S and SE. In the southern region, high acid rain occurrence happens when the dominant wind directions are NW, W, SW and S. In the northern region, 41.8% acid rains occur when the southwesterly is pronounced. In the western region, the southwesterly is associated with a 17% acid rain rate. The examination of meteorological sounding conditions over Fuzhou, Xiamen and Shaowu cities shows that the acid rain frequency increases with increased inversion thickness. Based on the results above, a meteorological potential forecast model for acid rain is established and tested in 2007. The result is encouraging. The model provides an objective basis for the development of acid rain forecasting operation in the province.

  10. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations

    USGS Publications Warehouse

    Hayward, Rosalyn K.; Fenton, Lori; Titus, Timothy N.

    2014-01-01

    The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90°N to 90°S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ∼60,000 km2 of medium to large-size dark dune fields and ∼15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ∼70,000 km2), and north pole (NP, ∼845,000 km2) portions of the database, bringing the global total to ∼975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40°S and 80°S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

  11. Geomorphology and drift potential of major aeolian sand deposits in Egypt

    NASA Astrophysics Data System (ADS)

    Hereher, Mohamed E.

    2018-03-01

    Aeolian sand deposits cover a significant area of the Egyptian deserts. They are mostly found in the Western Desert and Northern Sinai. In order to understand the distribution, pattern and forms of sand dunes in these dune fields it is crucial to analyze the wind regimes throughout the sandy deserts of the country. Therefore, a set of wind data acquired from twelve meteorological stations were processed in order to determine the drift potential (DP), the resultant drift potential (RDP) and the resultant drift direction (RDD) of sand in each dune field. The study showed that the significant aeolian sand deposits occur in low-energy wind environments with the dominance of linear and transverse dunes. Regions of high-energy wind environments occur in the south of the country and exhibit evidence of deflation rather than accumulation with the occurrence of migratory crescentic dunes. Analysis of the sand drift potentials and their directions help us to interpret the formation of major sand seas in Egypt. The pattern of sand drift potential/direction suggests that the sands in these seas might be inherited from exogenous sources.

  12. Climatology of Diffusion Potential Classes for Minneapolis-St. Paul.

    NASA Astrophysics Data System (ADS)

    Johnson, Allen B.; Baker, Donald G.

    1997-12-01

    This climatological study reports on the potential for atmospheric diffusion at Minneapolis-St. Paul, Minnesota, cities located in the heart of the North American continent. As such, the results can be considered typical of an urban setting within a continental climate.Data were obtained from a nearly continuous 8-yr record of vertical temperature and wind measurements made on a 152.4-m tower. Temperature lapse rates between 21.3 and 152.4 m were grouped into three stability categories: 1) isothermal-inversion, 2) subadiabatic, and 3) superadiabatic. A subdivision of each was based upon wind speeds of less than 4 m s1 and greater than or equal to 4 m s1, resulting in six classes that were examined according to wind direction, time of day, time of year and, most importantly, the associated synoptic conditions.The isothermal-inversion condition was limited to nighttime periods, especially when high pressure centers were dominant and winds were less than 4 m s1. The highest frequency of occurrence was during midsummer, while the lowest was during late fall and early winter. The subadiabatic condition was primarily a nighttime phenomenon, except for the winter season when it was also common during the day. An interesting feature of the diurnal frequencies was that a morning and evening subadiabatic peak occurred due to the transition between nighttime stable and the daytime unstable conditions. The superadiabatic condition was mainly a daytime phenomenon and dominated the early afternoon period throughout the year.The lowest diffusion potential, a result of very stable air and light winds, occurred during the nighttime period, particularly when under the influence of a high pressure center. Weak to moderate diffusion potential, found to occur with weakly stable air and light to moderate winds, was associated with the perimeter of the high pressure center and also with overcast skies near a low pressure center. This condition normally occurred during the night as well as during windy days. Moderate to high diffusion potential, resulting from superadiabatic conditions and light to moderate winds, dominated the early afternoon period. Strong nighttime ventilation was restricted to the winter season when northwesterly winds dominated the region immediately behind a cold front.

  13. Windscapes and olfactory foraging in a large carnivore

    PubMed Central

    Togunov, Ron R.; Derocher, Andrew E.; Lunn, Nicholas J.

    2017-01-01

    The theoretical optimal olfactory search strategy is to move cross-wind. Empirical evidence supporting wind-associated directionality among carnivores, however, is sparse. We examined satellite-linked telemetry movement data of adult female polar bears (Ursus maritimus) from Hudson Bay, Canada, in relation to modelled winds, in an effort to understand olfactory search for prey. In our results, the predicted cross-wind movement occurred most frequently at night during winter, the time when most hunting occurs, while downwind movement dominated during fast winds, which impede olfaction. Migration during sea ice freeze-up and break-up was also correlated with wind. A lack of orientation during summer, a period with few food resources, likely reflected reduced cross-wind search. Our findings represent the first quantitative description of anemotaxis, orientation to wind, for cross-wind search in a large carnivore. The methods are widely applicable to olfactory predators and their prey. We suggest windscapes be included as a habitat feature in habitat selection models for olfactory animals when evaluating what is considered available habitat. PMID:28402340

  14. Effects of topography on the dune forming winds on Titan

    NASA Astrophysics Data System (ADS)

    Larson, Erik J.; Toon, O. B.; Friedson, A. J.

    2013-10-01

    Cassini observed hundreds of dune fields on Titan, nearly all of which lie in the tropics and suggest westerly (from west to east) winds dominate at the surface. Most GCMs however have obtained easterly surface winds in the tropics, seemingly contradicting the wind direction suggested by the dunes. This has led to an active debate in the community about the origin of the dune forming winds on Titan and their direction and modality. This discussion is mostly driven by a study of Earth dunes seen as analogous to Titan. One can find examples of dunes on Earth that fit several wind regimes. To date only one GCM, that of Tokano (2008, 2010), has presented detailed analysis of its near surface winds and their dune forming capabilities. Despite the bulk of the wind being easterly, this GCM produces faster westerlies at equinox, thus transporting sand to the east. Our model, the Titan CAM (Friedson et al. 2009), is unable to reproduce the fast westerlies. Our GCM has been updated to include realistic topography released by the Cassini radar team. Preliminary results suggest our tropical wind regime now has net westerly winds in the tropics, albeit weak. References: Tokano, T. 2008. Icarus 194, 243-262. Tokano, T. 2010. Aeolian Research 2, 113-127. Friedson, J. et al. 2009. Planet. Sp. Sci., 57, 1931-1949.

  15. Patterns of weak, near-surface winds at Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    Tapp, R. G.

    1985-12-01

    Up to 30 months of near-surface anemograph records have been examined from 13 locations in and near Melbourne, Australia, to determine the wind patterns which existed during prolonged periods of light winds (at least 3 hours at 2 m s-1 or less). A coherent katabatic wind system was found to develop in at least part of the monitored region on approximately 30% of nights. The flow broadly followed the slope of the basin surrounding the city, with a strong flow down the main river valley, and was partly reinforced by a land breeze in bayside areas. Other valleys also acted as channels for these winds. The general tendency of these katabatic winds was to converge towards the central business district and the northern part of Port Phillip Bay adjacent to the city centre. Where winds from different directions interacted, one of the winds dominated or successive replacement occurred causing the wind direction to vary considerably during a period. There were indications that in the presence of low-level stability with a synoptic gradient wind between east and north, the gradient flow may be deflected around the major topographic barrier to the northeast of the city. The existence of such a situation would have major implications in terms of air quality due to the possibility of pollutants being recirculated in conditions when vertical diffusion was very limited.

  16. Experimental characterization of turbulent inflow noise on a full-scale wind turbine

    NASA Astrophysics Data System (ADS)

    Buck, Steven; Oerlemans, Stefan; Palo, Scott

    2016-12-01

    An extensive experimental campaign was conducted on a 108-m diameter 2.3-MW wind turbine in order to assess the effect of inflow turbulence conditions on wind turbine acoustics. Over 50 h of continuous acoustic data was acquired at power-generating wind speeds. Twelve precision microphones were used, arranged in a one rotor radius ring about the turbine tower in order to assess the directivity of the noise emission. Turbine operational and atmospheric conditions were gathered simultaneously with acoustics measurements. The testing and analysis constitute perhaps the most thorough experimental characterization of turbulent inflow noise from a wind turbine to date. Turbulence intensities typically varied between 10 percent and 35 percent, and wind speeds covered most of the operational range of the wind turbine, from cut-on to well above its rated power. A method was developed for using blade-mounted accelerometers for determining the turbulence conditions in the immediate vicinity of the blades, which are the primary turbulence noise generating bodies. The method uses the blades' vibrational energy within a specified frequency range to estimate the overall turbulence conditions by assuming a von Kármán turbulence spectrum. Using this method, a clear positive correlation is shown between turbulence intensity and noise levels. The turbulence noise is dominant at low frequencies and is primarily observed in the upwind and downwind directions. Low frequency noise increases by as much as 6 dB for the range of turbulence conditions measured. Comparisons are made between the measured turbine noise directivity and theory using a simple acoustic model of the turbine as three point-sources. Strong agreement is found between the theoretical leading edge noise directivity model and the measured low frequency noise directivity.

  17. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-09-02

    ISS013-E-75141 (2 Sept. 2006) --- Erg Oriental, Algeria is featured in this image photographed by an Expedition 13 crewmember onboard the International Space Station. One of the main interests of rainless regions like the Sahara Desert to landscape science is that the work of flowing water--mainly streams and rivers--becomes less important than the work of wind. According to scientists, over millennia, and if enough sand is available, winds can generate dunes of enormous size, arranged in regular patterns. Long, generally north-south trending linear dunes stretch across much of northeast Algeria covering a vast tract (approximately 140,000 kilometers square) of the Sahara Desert known as the Erg Oriental. Erg means dune sea in Arabic, and the term has been adopted into modern geology. Spanning this image diagonally are a series of two kilometer-wide linear dunes, comprised of red sand, from a point on the southwest margin of the erg (center point 28.9N 4.8W). The dune chains are more than 100 meters high. The "streets" between the dunes are grayer areas free of sand. Linear dune chains are usually generated roughly parallel with the dominant winds. It also seems to be true that linear dunes are built by stronger winds. This detailed view shows that smaller dunes, known as star dunes, are built on top of the linear dunes. By contrast, star dunes seem to form in weak wind regimes, with winds from different directions in each season -- resulting in characteristic "arms" snaking away from a central point. Some scientists therefore think the dunes in this image were generated in two earlier climatic phases, different from that of today. (1) During a phase when winds were stronger and dominantly from one direction (the south), major linear sand masses accumulated. (2) Later, when wind strengths declined, the star dunes formed. Modern features--known as wind streaks--on the edge of the present erg (not shown), younger than either the linear or star dunes, show that present-day sand-moving winds blow from the southwest.

  18. Active Subspaces for Wind Plant Surrogate Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Ryan N; Quick, Julian; Dykes, Katherine L

    Understanding the uncertainty in wind plant performance is crucial to their cost-effective design and operation. However, conventional approaches to uncertainty quantification (UQ), such as Monte Carlo techniques or surrogate modeling, are often computationally intractable for utility-scale wind plants because of poor congergence rates or the curse of dimensionality. In this paper we demonstrate that wind plant power uncertainty can be well represented with a low-dimensional active subspace, thereby achieving a significant reduction in the dimension of the surrogate modeling problem. We apply the active sub-spaces technique to UQ of plant power output with respect to uncertainty in turbine axial inductionmore » factors, and find a single active subspace direction dominates the sensitivity in power output. When this single active subspace direction is used to construct a quadratic surrogate model, the number of model unknowns can be reduced by up to 3 orders of magnitude without compromising performance on unseen test data. We conclude that the dimension reduction achieved with active subspaces makes surrogate-based UQ approaches tractable for utility-scale wind plants.« less

  19. Benefits of Two Turbine Rotor Diameters and Hub Heights in the Same Wind Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Stanley, Andrew P. J.; Ning, Andrew

    Significant turbine-wake interactions greatly reduce power output in a wind farm. If different turbine hub heights and rotor diameters are included in the same wind farm, the wake interference in the farm will be reduced, resulting in a lower cost of energy (COE) than a farm with identical turbines. In this paper, we present a method to model wind farm COE in farms with hub heights and rotor diameters that vary across the wind farm. We also demonstrate how to optimize these wind farms to minimize COE. The results show that COE can be greatly reduced in wind farms withmore » non-homogeneous turbines, especially when the turbines are spaced close together. For a unidirectional wind rose, including different turbine design in the wind farm has a similar decrease in COE to spreading the wind turbines farther apart. When the rotor diameter and hub height of the wind turbines in a farm are optimized uniformly, a COE decrease of 4% to 13% (depending on the grid spacing and wind shear exponent) is achieved compared to the baseline. When the rotor diameter and turbine heights are optimized non-uniformly, with two different diameters and heights throughout the farm, there is a COE decrease of 22% to 41% compared to the baseline. For a more spread wind rose with a dominant probability from the west, there is a COE decrease between 3% and 10% for uniformly optimized rotor diameter and height compared to the baseline. With two optimized rotor diameters and heights through the farm, a COE decrease of 3% to 19% is achieved. For a similar wind rose shifted such that the dominant wind direction is from the northwest, a COE decrease between 3% and 10% results from uniformly optimized wind turbines compared to the baseline. A COE decrease of 3% to 17% compared to the baseline occurs with two different turbines are optimized throughout the wind farm.« less

  20. Assessing simulated summer 10-m wind speed over China: influencing processes and sensitivities to land surface schemes

    NASA Astrophysics Data System (ADS)

    Zeng, Xin-Min; Wang, Ming; Wang, Ning; Yi, Xiang; Chen, Chaohui; Zhou, Zugang; Wang, Guiling; Zheng, Yiqun

    2018-06-01

    We assessed the sensitivity of 10-m wind speed to land surface schemes (LSSs) and the processes affecting wind speed in China during the summer of 2003 using the ARWv3 mesoscale model. The derived hydrodynamic equation, which directly reflects the effects of the processes that drive changes in the full wind speed, shows that the convection term CON (the advection effect) plays the smallest role; thus, the summer 10-m wind speed is largely dominated by the pressure gradient (PRE) and the diffusion (DFN) terms, and the equation shows that both terms are highly sensitive to the choice of LSS within the studied subareas (i.e., Northwest China, East China, and the Tibetan Plateau). For example, Northwest China had the largest DFN, with a PRE four times that of CON and the highest sensitivity of PRE to the choice of LSS, as indicated by a difference index value of 63%. Moreover, we suggest that two types of mechanisms, direct and indirect effects, affect the 10-m wind speed. Through their simulated surface fluxes (mainly the sensible heat flux), the different LSSs directly provide different amounts of heat to the surface air at local scales, which influences atmospheric stratification and the characteristics of downward momentum transport. Meanwhile, through the indirect effect, the LSS-induced changes in surface fluxes can significantly modify the distributions of the temperature and pressure fields in the lower atmosphere over larger scales. These changes alter the thermal and geostrophic winds, respectively, as well as the 10-m wind speed. Due to the differences in land properties and climates, the indirect effect (e.g., PRE) can be greater than the direct effect (e.g., DFN).

  1. THE BALMER-DOMINATED BOW SHOCK AND WIND NEBULA STRUCTURE OF {gamma}-RAY PULSAR PSR J1741-2054

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romani, Roger W.; Shaw, Michael S.; Camilo, Fernando

    2010-12-01

    We have detected an H{alpha} bow shock nebula around PSR J1741-2054, a pulsar discovered through its GeV {gamma}-ray pulsations. The pulsar is only {approx}1.''5 behind the leading edge of the shock. Optical spectroscopy shows that the nebula is non-radiative, dominated by Balmer emission. The H{alpha} images and spectra suggest that the pulsar wind momentum is equatorially concentrated and implies a pulsar space velocity {approx}150 km s{sup -1}, directed 15{sup 0} {+-} 10{sup 0} out of the plane of the sky. The complex H{alpha} profile indicates that different portions of the post-shock flow dominate line emission as gas moves along themore » nebula and provide an opportunity to study the structure of this unusual slow non-radiative shock under a variety of conditions. CXO ACIS observations reveal an X-ray pulsar wind nebula within this nebula, with a compact {approx}2.''5 equatorial structure and a trail extending several arcminutes behind. Together these data support a close ({<=}0.5 kpc) distance, a spin geometry viewed edge-on, and highly efficient {gamma}-ray production for this unusual, energetic pulsar.« less

  2. Aviation Emissions Impact Ambient Ultrafine Particle Concentrations in the Greater Boston Area.

    PubMed

    Hudda, N; Simon, M C; Zamore, W; Brugge, D; Durant, J L

    2016-08-16

    Ultrafine particles are emitted at high rates by jet aircraft. To determine the possible impacts of aviation activities on ambient ultrafine particle number concentrations (PNCs), we analyzed PNCs measured from 3 months to 3.67 years at three sites within 7.3 km of Logan International Airport (Boston, MA). At sites 4.0 and 7.3 km from the airport, average PNCs were 2- and 1.33-fold higher, respectively, when winds were from the direction of the airport compared to other directions, indicating that aviation impacts on PNC extend many kilometers downwind of Logan airport. Furthermore, PNCs were positively correlated with flight activity after taking meteorology, time of day and week, and traffic volume into account. Also, when winds were from the direction of the airport, PNCs increased with increasing wind speed, suggesting that buoyant aircraft exhaust plumes were the likely source. Concentrations of other pollutants [CO, black carbon (BC), NO, NO2, NOx, SO2, and fine particulate matter (PM2.5)] decreased with increasing wind speed when winds were from the direction of the airport, indicating a different dominant source (likely roadway traffic emissions). Except for oxides of nitrogen, other pollutants were not correlated with flight activity. Our findings point to the need for PNC exposure assessment studies to take aircraft emissions into consideration, particularly in populated areas near airports.

  3. On the Beauty of Yardangs

    NASA Image and Video Library

    2015-05-06

    Some geological materials (like solid rock) are incredibly tough, but others (like piles of volcanic ash) are quite soft. Some materials are soft enough that they can be eroded by the wind alone and yield landscapes that look like what we see in this HiRISE image. The long straight ridges seen here are called yardangs and they form on Mars (and Earth) when the wind strips away the inter-ridge material. This process is greatly aided when the wind is also blowing sand along. The sand grains do an effective job at stripping away loose material: these ridges are literally being sandblasted. Yardangs are useful features to recognize because the tell us the direction the wind is blowing in. They take a long time to form so this direction is the dominant wind orientation averaged over a long period of time (which might be quite different that the winds on Mars today). These yardangs also tell us that the surface here is made up of loose weak material and this information, in conjunction with other data, can tell us what the material is composed of and what the history of this particular site on Mars has been. http://photojournal.jpl.nasa.gov/catalog/PIA19457

  4. Wind regimes and their relation to synoptic variables using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Berkovic, Sigalit

    2018-01-01

    This study exemplifies the ability of the self-organizing maps (SOM) method to directly define well known wind regimes over Israel during the entire year, except summer period, at 12:00 UTC. This procedure may be applied at other hours and is highly relevant to future automatic climatological analysis and applications. The investigation is performed by analysing surface wind measurements from 53 Israel Meteorological Service stations. The relation between the synoptic variables and the wind regimes is revealed from the averages of ECMWF ERA-INTERIM reanalysis variables for each SOM wind regime. The inspection of wind regimes and their average geopotential anomalies has shown that wind regimes relate to the gradient of the pressure anomalies, rather than to the specific isobars pattern. Two main wind regimes - strong western and the strong eastern or northern - are well known over this region. The frequencies of the regimes according to seasons is verified. Strong eastern regimes are dominant during winter, while strong western regimes are frequent in all seasons.

  5. Factors Controlling the Position of the Martian Magnetic Pileup Boundary

    NASA Technical Reports Server (NTRS)

    Crider, D. H.; Acuna, M.; Vignes, D.; Krymskii, A.; Breus, T.; Ness, N.

    2003-01-01

    The magnetic pileup boundary (MPB) at Mars is the position where the dominant ion of the plasma changes from solar wind protons to heavy ions of planetary origin. As such, it is the obstacle to solar wind ions. We investigate the factors that influence the shape and position of the magnetic pileup boundary at Mars in order to better understand the Martian obstacle to the solar wind. Employing MGS data, we determine how the Martian MPB moves in response to factors including solar wind pressure and crustal magnetic fields. We also study the factors affecting the thickness of the MPB. Further, we compare the magnetic pileup boundary to the magnetic barrier at Venus. Direct comparison aids in our interpretation of the physics involved in the solar wind interaction with planets lacking a significant intrinsic magnetic field.

  6. The effect of oblateness and gravity darkening on the radiation driving in winds from rapidly rotating B stars

    NASA Technical Reports Server (NTRS)

    Cranmer, Steven R.; Owocki, Stanley P.

    1995-01-01

    We calculate the radiative driving force for winds around rapidly rotating oblate B stars, and we estimate the impact these forces should have on the production of a wind compressed disk. The effects of limb darkening, gravity darkening, oblateness, and an arbitrary wind velocity field are included in the computation of vector 'oblate finite disk' (OFD) factors, which depend on both radius and colatitude in the wind. The impact of limb darkening alone, with or without rotation, can increase the mass loss by as much as 10% over values computed using the standard uniformly bright spherical finite disk factor. For rapidly rotating stars, limb darkening makes 'sub-stellar' gravity darkening the dominant effect in the radial and latitudinal OFD factors, and lessens the impact of gravity darkening at other visible latitudes (nearer to the oblate limb). Thus, the radial radiative driving is generally stronger over the poles and weaker over the equator, following the gravity darkening at these latitudes. The nonradial radiative driving is considerably smaller in magnitude than the radial component, but is directed both away from the equatorial plane and in a retrograde azimuthal direction, acting to decrease the effective stellar rotation velocity. These forces thus weaken the equatorward wind compression compared to wind models computed with nonrotating finite disk factors.

  7. North Atlantic Surface Winds Examined as the Source of Warm Advection into Europe in Winter

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Angell, J. K.; Ardizzone, J.; Atlas, Robert; Schubert, S.; Starr, D.; Wu, M.-L.

    2002-01-01

    When from the southwest, North Atlantic ocean surface winds are known to bring warm and moist airmasses into central Europe in winter. By tracing backward trajectories from western Europe, we establish that these airmasses originate in the southwestern North Atlantic, in the very warm regions of the Gulf Stream. Over the eastern North Atlantic, Lt the gateway to Europe, the ocean-surface winds changed directions in the second half of the XXth century, those from the northwest and from the southeast becoming so infrequent, that the direction from the southwest became even more dominant. For the January-to-March period, the strength of south-westerlies in this region, as well as in the source region, shows in the years 1948-1995 a significant increase, above 0.2 m/sec/ decade. Based on the sensitivity of the surface temperature in Europe, slightly more than 1 C for a 1m/sec increase in the southwesterly wind, found in the previous studies, the trend in the warm advection accounts for a large part of the warming in Europe established for this period in several reports. However, for the most recent years, 1996-2001, the positive trend in the southwesterly advection appears to be is broken, which is consistent with unseasonally cold events reported in Europe in those winters. This study had, some bearing on evaluating the respective roles of the North Atlantic Oscillation and the Greenhouse Gas Global warming, GGG, in the strong winter warming observed for about half a century over the northern-latitude continents. Changes in the ocean-surface temperatures induced by GGG may have produced the dominant southwesterly direction of the North Atlantic winds. However, this implies a monotonically (apart from inherent interannual variability) increasing advection, and if the break in the trend which we observe after 1995 persists, this mechanism is counter-indicated. The 1948-1995 trend in the south-westerlies could then be considered to a large degree attributable to the North Atlantic Oscillation.

  8. Very-high-energy gamma radiation associated with the unshocked wind of the Crab pulsar

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Aharonian, F. A.

    2000-04-01

    We show that the relativistic wind of the Crab pulsar, which is commonly thought to be invisible in the region upstream of the termination shock at r<=rS~0.1pc, in fact could be directly observed through its inverse Compton (IC) γ-ray emission. This radiation is caused by illumination of the wind by low-frequency photons emitted by the pulsar, and consists of two, pulsed and unpulsed, components associated with the non-thermal (pulsed) and thermal (unpulsed) low-energy radiation of the pulsar, respectively. These two components of γ-radiation have distinct spectral characteristics, which depend essentially on the site of formation of the kinetic-energy-dominated wind, as well as on the Lorentz factor and the geometry of propagation of the wind. Thus, the search for such specific radiation components in the spectrum of the Crab Nebula can provide unique information about the unshocked pulsar wind that is not accessible at other wavelengths. In particular, we show that the comparison of the calculated flux of the unpulsed IC emission with the measured γ-ray flux of the Crab Nebula excludes the possibility of formation of a kinetic-energy-dominated wind within 5 light-cylinder radii of the pulsar, Rw>=5RL. The analysis of the pulsed IC emission, calculated under reasonable assumptions concerning the production site and angular distribution of the optical pulsed radiation, yields even tighter restrictions, namely Rw>=30RL.

  9. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site.

    PubMed

    Sullivan, R; Banfield, D; Bell, J F; Calvin, W; Fike, D; Golombek, M; Greeley, R; Grotzinger, J; Herkenhoff, K; Jerolmack, D; Malin, M; Ming, D; Soderblom, L A; Squyres, S W; Thompson, S; Watters, W A; Weitz, C M; Yen, A

    2005-07-07

    The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s(-1), most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.

  10. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site

    USGS Publications Warehouse

    Sullivan, R.; Banfield, D.; Bell, J.F.; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.; Ming, D.; Soderblom, L.A.; Squyres, S. W.; Thompson, S.; Watters, W.A.; Weitz, C.M.; Yen, A.

    2005-01-01

    The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s-1, most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.

  11. Spatial structure of directional wave spectra in hurricanes

    NASA Astrophysics Data System (ADS)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-01-01

    The spatial structure of the wave field during hurricane conditions is studied using the National Data Buoy Center directional wave buoy data set from the Caribbean Sea and the Gulf of Mexico. The buoy information, comprising the directional wave spectra during the passage of several hurricanes, was referenced to the center of the hurricane using the path of the hurricane, the propagation velocity, and the radius of the maximum winds. The directional wave spectra were partitioned into their main components to quantify the energy corresponding to the observed wave systems and to distinguish between wind-sea and swell. The findings are consistent with those found using remote sensing data (e.g., Scanning Radar Altimeter data). Based on the previous work, the highest waves are found in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal, in the vicinity of the region of maximum winds. More complex spectral shapes are observed in distant regions at the front of and in the rear quadrants of the hurricane, where there is a tendency of the spectra to become bi- and tri-modal. The dominant waves generally propagate at significant angles to the wind direction, except in the regions next to the maximum winds of the right quadrants. Evidence of waves generated by concentric eyewalls associated with secondary maximum winds was also found. The frequency spectra display some of the characteristics of the JONSWAP spectrum adjusted by Young (J Geophys Res 111:8020, 2006); however, at the spectral peak, the similarity with the Pierson-Moskowitz spectrum is clear. These results establish the basis for the use in assessing the ability of numerical models to simulate the wave field in hurricanes.

  12. Interactive Effects of Moss-Dominated Crusts and Artemisia ordosica on Wind Erosion and Soil Moisture in Mu Us Sandland, China

    PubMed Central

    Yang, Yongsheng; Bu, Chongfeng; Mu, Xingmin; Shao, Hongbo; Zhang, Kankan

    2014-01-01

    To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone, Artemisia ordosica alone, bare sand, and Artemisia ordosica combined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined with Artemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts under Artemisia ordosica was significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion. PMID:24982973

  13. Interactive effects of moss-dominated crusts and Artemisia ordosica on wind erosion and soil moisture in Mu Us sandland, China.

    PubMed

    Yang, Yongsheng; Bu, Chongfeng; Mu, Xingmin; Shao, Hongbo; Zhang, Kankan

    2014-01-01

    To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone, Artemisia ordosica alone, bare sand, and Artemisia ordosica combined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined with Artemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts under Artemisia ordosica was significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion.

  14. Surface shear stress dependence of gas transfer velocity parameterizations using DNS

    NASA Astrophysics Data System (ADS)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-10-01

    Air-water gas-exchange is studied in direct numerical simulations (DNS) of free-surface flows driven by natural convection and weak winds. The wind is modeled as a constant surface-shear-stress and the gas-transfer is modeled via a passive scalar. The simulations are characterized via a Richardson number Ri=Bν/u*4 where B, ν, and u* are the buoyancy flux, kinematic viscosity, and friction velocity respectively. The simulations comprise 0Ric or kg=AShearu*Sc-n, Ri

  15. Circulation on the Inner-Shelf of Long Bay, South Carolina: Vertical Current Variability and Evidence for Cross-Shelf Variation in Near-Bed Currents

    NASA Astrophysics Data System (ADS)

    Gutierrez, B. T.; Voulgaris, G.; Work, P. A.; Seim, H.; Warner, J. C.

    2004-12-01

    Cross-shelf variations of near-bed currents and variations in vertical flow were investigated on the inner shelf of Long Bay, South Carolina during the spring and fall of 2001. Current meters sampled near-bed currents at six locations as well as vertical current profiles at three of the sites. The observations showed that the tides accounted for approximately 45-66% of the flow variability. The dominant tidal component, the semi-diurnal constituent M2, exhibited tidal ellipse orientations that are increasingly aligned with the coast closer to the shore. The largest M2 current magnitudes were identified closest to shore and over the top of a sand shoal located 5.5 km offshore of Myrtle Beach. The remaining flow variability was associated with sub-tidal flows which respond to the passage of low-pressure systems across the region. These weather systems were characterized by periods of southwesterly winds in advance of low-pressure centers followed by northeasterly winds as the systems passed over the study area. When strong southwesterly winds persisted, surface flow was oriented approximately in the direction of the wind. At the same time near-bottom flows were also directed to the northeast in the direction of the wind except during periods of stratification when vertical current profiles suggest near-bed onshore flow. The stratified flows were observed mainly during the spring deployment. For periods of strong northeasterly winds, currents were directed alongshore to the southwest and exhibited little variation throughout the water column. These observations are consistent with recent field and modeling studies for the inner-shelf. Comparison of the near-bed flow measurements during the fall deployment revealed a cross-shore gradient in alongshore flow during periods of strong northeasterly winds. During these episodes flows at the offshore measurement stations were oriented in the direction of the wind, while flows closest to shore occurred in the opposite direction. These observations reveal 1) conditions which contribute to cross-shore transport and 2) the presence of an alongshore flow gradient which may affect sediment transport patterns during certain meteorological conditions.

  16. Evaluation of wind regimes and their impact on vertical mixing and coupling in a moderately dense forest

    NASA Astrophysics Data System (ADS)

    Wunder, Tobias; Ehrnsperger, Laura; Thomas, Christoph

    2017-04-01

    In the last decades much attention has been devoted to improving our understanding of organized motions in plant canopies. Particularly the impact of coherent structures on turbulent flows and vertical mixing in near-neutral conditions has been the focus of many experimental and modeling studies. Despite this progress, the weak-wind subcanopy airflow in concert with stable or weak-wind above-canopy conditions remains poorly understood. In these conditions, evidence is mounting that larger-scale motions, so called sub-meso motions which occupy time scales from minutes to hours and spatial scales from tens of meters to kilometers, dominate transport and turbulent mixing particularly in the subcanopy, because of generally weaker background flow as a result of the enhanced friction due to the plant material. We collected observations from a network of fast-response sensor across the vertical and horizontal dimensions during the INTRAMIX experiment at the Fluxnet site Waldstein/ Weidenbrunnen (DE-Bay) in a moderately dense Norway spruce (Picea Abies) forest over a period of ten weeks. Its main goal was to investigate the role of the submeso-structures on the turbulent wind field and the mixing mechanisms including coherent structures. In a first step, coupling regimes differentiating between weak and strong flows and day- and nighttime-conditions are determined. Subsequently, each of the regimes is analyzed for its dominant flow dynamics identified by wavelet analysis. It is hypothesized that strong vertical wind directional shear does not necessarily indicate a decoupling of vertical layers, but on the contrary may create situations of significant coupling of the sub-canopy with the canopy layers above. Moreover, rapid changes of wind direction or even reversals may generate substantial turbulence and induce intermittent coupling on a variety of time scales. The overarching goal is to improve diagnostics for vertical mixing in plant canopies incorporating turbulence and submeso-motions and to develop a classification of flow modes capable of representing the main driving mechanisms of mixing in forest canopies.

  17. Indonesian Rainfall Characteristic Based on the EAR and WPR Data Analysis

    NASA Astrophysics Data System (ADS)

    Hermawan, Eddy

    2010-05-01

    As one of the most real product of the joint research between RISH (Research Institute for Sustainable Humanosphere) of Kyoto University, Japan with the National Institute of Aeronautics and Space (LAPAN), is being applied the Equatorial Atmosphere Radar (EAR) at Kototabang, Bukittinggi, West Sumatera that has already operated since June, 2001. The other one, since March 2007, has also operated the other radar that called as WPR (Wind Profiling Radar) at Pontianak and Biak station under the JAMSTEC (Japan Marine Science Technology), Japan. Those radars give a good chance for the Indonesian young scientist to apply those data in applicable research for many people. One of them is the behavior of Indonesian rainfall variability over Kototabang, Pontianak, and Biak, respectively. This is very important, since rainfall is one of the most important parameter that has direct effect to daily living, not only in wet season (suspected related to flooding) or dry season (suspected related to drought) than normal condition. We understood that until now, no many significant result obtained from those data, especially from WPR, not only since that data is still new one, but also related well to the limitation of the other suppport data, facility (hardware and software), also the man power (reseracher) working on that data analysis. Based on this condition, the main purpose of this study is to investigate the Indonesian rainfall behavior, especially over Kototabang, Pontianak, and Biak, respectively. The others are we would like to investigate the pattern of zonal wind variation along the Indian Ocean passing away to Indonesia region, to investigate the MJO (Madden Julian Oscillation) phenomenon, and to investigate the relationship or correlation between rainfall and zonal wind variation. The results show that in the wet season (DJF=December-January-February), Kototabang and surrounded area is dominated by the Westerly wind that mostly contains of water vapor. While, in the dry season (JJA=June-July-August), the Easterly wind dominates this area. This condition, is a little bit different with Pontianak that mostly is dominated by the Westerly wind, both in wet and dry season. While, in Biak, the Easterly wind dominates, both in wet and dry season. We found also the zonal wind propagation over those cities, Kototabang, Pontianak, and Biak are about 45 days, 45 days, and 55 days oscillation. Although, we found a small positive correlation between the zonal wind variation with rainfall intensity over those area (below than 0.5), but it is still significant statistically. Keywords : EAR, WPR, HARIMAU, and Rainfall

  18. Preliminary Study of the Effect of the Proposed Long Lake Valley Project Operation on the Transport of Larval Suckers in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.

    2009-01-01

    A hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to explore the effects of the operation of proposed offstream storage at Long Lake Valley on transport of larval suckers through the Upper Klamath and Agency Lakes system during May and June, when larval fish leave spawning sites in the Williamson River and springs along the eastern shoreline and become entrained in lake currents. A range in hydrologic conditions was considered, including historically high and low outflows and inflows, lake elevations, and the operation of pumps between Upper Klamath Lake and storage in Long Lake Valley. Two wind-forcing scenarios were considered: one dominated by moderate prevailing winds and another dominated by a strong reversal of winds from the prevailing direction. On the basis of 24 model simulations that used all combinations of hydrology and wind forcing, as well as With Project and No Action scenarios, it was determined that the biggest effect of project operations on larval transport was the result of alterations in project management of the elevation in Upper Klamath Lake and the outflow at the Link River and A Canal, rather than the result of pumping operations. This was because, during the spring time period of interest, the amount of water pumped between Upper Klamath Lake and Long Lake Valley was generally small. The dominant effect was that an increase in lake elevation would result in more larvae in the Williamson River delta and in Agency Lake, an effect that was enhanced under conditions of wind reversal. A decrease in lake elevation accompanied by an increase in the outflow at the Link River had the opposite effect on larval concentration and residence time.

  19. Wind Tunnel Measurement of Turbulent and Advective Scalar Fluxes: A Case Study on Intersection Ventilation

    PubMed Central

    Kukačka, Libor; Nosek, Štĕpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2012-01-01

    The objective of this study is to determine processes of pollution ventilation in the X-shaped street intersection in an idealized symmetric urban area for the changing approach flow direction. A unique experimental setup for simultaneous wind tunnel measurement of the flow velocity and the tracer gas concentration in a high temporal resolution is assembled. Advective horizontal and vertical scalar fluxes are computed from averaged measured velocity and concentration data within the street intersection. Vertical advective and turbulent scalar fluxes are computed from synchronized velocity and concentration signals measured in the plane above the intersection. All the results are obtained for five approach flow directions. The influence of the approach flow on the advective and turbulent fluxes is determined. The contribution of the advective and turbulent flux to the ventilation is discussed. Wind direction with the best dispersive conditions in the area is found. The quadrant analysis is applied to the synchronized signals of velocity and concentration fluctuation to determine events with the dominant contribution to the momentum flux and turbulent scalar flux. PMID:22649290

  20. Wind tunnel measurement of turbulent and advective scalar fluxes: a case study on intersection ventilation.

    PubMed

    Kukačka, Libor; Nosek, Štĕpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2012-01-01

    The objective of this study is to determine processes of pollution ventilation in the X-shaped street intersection in an idealized symmetric urban area for the changing approach flow direction. A unique experimental setup for simultaneous wind tunnel measurement of the flow velocity and the tracer gas concentration in a high temporal resolution is assembled. Advective horizontal and vertical scalar fluxes are computed from averaged measured velocity and concentration data within the street intersection. Vertical advective and turbulent scalar fluxes are computed from synchronized velocity and concentration signals measured in the plane above the intersection. All the results are obtained for five approach flow directions. The influence of the approach flow on the advective and turbulent fluxes is determined. The contribution of the advective and turbulent flux to the ventilation is discussed. Wind direction with the best dispersive conditions in the area is found. The quadrant analysis is applied to the synchronized signals of velocity and concentration fluctuation to determine events with the dominant contribution to the momentum flux and turbulent scalar flux.

  1. Shelter Index and a simple wind speed parameter to characterize vegetation control of sand transport threshold and Flu

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Nield, J. M.; Nickling, W. G.; Furtak-Cole, E.

    2014-12-01

    Wind erosion and dust emissions occur in many dryland environments from a range of surfaces with different types and amounts of vegetation. Understanding how vegetation modulates these processes remains a research challenge. Here we present results from a study that examines the relationship between an index of shelter (SI=distance from a point to the nearest upwind vegetation/vegetation height) and particle threshold expressed as the ratio of wind speed measured at 0.45 times the mean plant height divided by the wind speed at 17 m when saltation commences, and saltation flux. The results are used to evaluate SI as a parameter to characterize the influence of vegetation on local winds and sediment transport conditions. Wind speed, wind direction, saltation activity and point saltation flux were measured at 35 locations in defined test areas (~13,000 m2) in two vegetation communities: mature streets of mesquite covered nebkhas and incipient nebkhas dominated by low mesquite plants. Measurement positions represent the most open areas, and hence those places most susceptible to wind erosion among the vegetation elements. Shelter index was calculated for each measurement position for each 10° wind direction bin using digital elevation models for each site acquired using terrestrial laser scanning. SI can show the susceptibility to wind erosion at different time scales, i.e., event, seasonal, or annual, but in a supply-limited system it can fail to define actual flux amounts due to a lack of knowledge of the distribution of sediment across the surface of interest with respect to the patterns of SI.

  2. Does the Alfvén wave wreck the large-scale magnetic cloud structure?

    NASA Astrophysics Data System (ADS)

    Raghav, Anil N.; Kule, Ankita

    2018-06-01

    Alfvén waves are primal and pervasive in space plasmas and significantly contributes to microscale fluctuations in the solar wind and some heliospheric processes. Here, we demonstrate the first observable distinct feature of Alfvén wave while propagating from magnetic cloud to trailing solar wind. The Walén test is used to confirm their presence in selected regions. The amplitude ratio of inward to outward Alfvén waves is employed to establish their flow direction. The dominant inward flow is observed in magnetic cloud whereas trailing solar wind shows the dominant outward flow of Alfvén waves. The observed reduction in Walén slope and correlation coefficient within magnetic cloud suggest (i) the simultaneous presence of an inward & outward Alfvén waves and/or (ii) a possibility of magnetic reconnection and/or (iii) development of thermal anisotropy and/or (iv) dissipation of Alfvénic fluctuations. The study implies that either the Alfvén waves dissipate in the magnetic cloud or its presence can lead to disruption of the magnetic cloud structure.

  3. Temperature And Wind Velocity Oscillations Along a Gentle Slope During Sea-Breeze Events

    NASA Astrophysics Data System (ADS)

    Bastin, Sophie; Drobinski, Philippe

    2005-03-01

    The flow structure on a gentle slope at Vallon d’Ol in the northern suburbs of Marseille in southern France has been documented by means of surface wind and temperature measurements collected from 7 June to 14 July 2001 during the ESCOMPTE experiment. The analysis of the time series reveals temperature and wind speed oscillations during several nights (about 60--90 min oscillation period) and several days (about 120-180 min oscillation period) during the whole observing period. Oscillating katabatic winds have been reported in the literature from theoretical, experimental and numerical studies. In the present study, the dynamics of the observed oscillating katabatic winds are in good agreement with the theory.In contrast to katabatic winds, no daytime observations of oscillating anabatic upslope flows have ever been published to our knowledge, probably because of temperature inversion break-up that inhibits upslope winds. The present paper shows that cold air advection by a sea breeze generates a mesoscale horizontal temperature gradient, and hence baroclinicity in the atmosphere, which then allows low-frequency oscillations, similar to a katabatic flow. An expression for the oscillation period is derived that accounts for the contribution of the sea-breeze induced mesoscale horizontal temperature gradient. The theoretical prediction of the oscillation period is compared to the measurements, and good agreement is found. The statistical analysis of the wind flow at Vallon d’Ol shows a dominant north-easterly to easterly flow pattern for nighttime oscillations and a dominant south-westerly flow pattern for daytime oscillations. These results are consistent with published numerical simulation results that show that the air drains off the mountain along the maximum slope direction, which in the studied case is oriented south-west to north-east.

  4. Short time-scale wind forced variability in the Río de la Plata Estuary and its role on ichthyoplankton retention

    NASA Astrophysics Data System (ADS)

    Simionato, C. G.; Berasategui, A.; Meccia, V. L.; Acha, M.; Mianzan, H.

    2008-01-01

    The Río de la Plata Estuary presents a strong bottom salinity front located over a submerged shoal. Apparently favored by retention processes, it is a spawning ground for several coastal fishes. This estuary is very shallow and essentially wind driven and, moreover, in time scales relevant to biota, estuarine circulation is wind dominated and highly variable. Two intriguing questions are, therefore, how this system can favor retention and what the involved mechanisms are. This paper qualitatively explores mechanisms involved in the estuary where retention is favored applying numerical simulations in which neutral particles - simulating fish eggs and early larvae - are released along the bottom frontal zone and tracked for different wind conditions. Results suggest that retentive features can be a consequence of estuarine response to natural wind variability acting over bathymetric features. For winds from most directions, particles either remain trapped near their launching position or move northeastward to southwestward along the shoal. As alternation of winds that favor along-shoal motion is the dominant feature of wind variability in the region, a retentive scenario results from prevailing wind variability. Additionally, winds that tend to export particles with a poor chance of being restored to the front are neither frequent nor persistent. Results show, therefore, that physical forcing alone might generate a retentive scenario at the inner part of this estuary. The physical retention mechanism is more effective for bottom than for surface launched particles. Wind statistics indicate that the proposed mechanism has different implications for retention along the seasons. Spring is the most favorable season, followed by summer, when particles would have a larger propensity to reach the southern area of the estuary (Samborombón Bay). Fall and winter are increasingly less favorable. All these features are consistent with patterns observed in the region in organisms having different life history traits.

  5. Climatology of Global Swell-Atmosphere Interaction

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro

    2016-04-01

    At the ocean surface wind sea and swell waves coexist. Wind sea waves are locally generated growing waves strongly linked to the overlaying wind field. Waves that propagate away from their generation area, throughout entire ocean basins, are called swell. Swell waves do not receive energy from local wind. Ocean wind waves can be seen as the "gearbox" between the atmosphere and the ocean, and are of critical importance to the coupled atmosphere-ocean system, since they modulate most of the air-sea interaction processes and exchanges, particularly the exchange of momentum. This modulation is most of the times sea-state dependent, i.e., it is a function of the prevalence of one type of waves over the other. The wave age parameter, defined as the relative speed between the peak wave and the wind (c_p⁄U_10), has been largely used in different aspects of the air-sea interaction theory and in practical modeling solutions of wave-atmosphere coupled model systems. The wave age can be used to assess the development of the sea state but also the prevalence (domination) of wind sea or swell waves at the ocean surface. The presence of fast-running waves (swell) during light winds (at high wave age regimes) induces an upward momentum flux, directed from the water surface to the atmosphere. This upward directed momentum has an impact in the lower marine atmospheric boundary layer (MABL): on the one hand it changes the vertical wind speed profile by accelerating the flow at the first few meters (inducing the so called "wave-driven wind"), and on the other hand it changes the overall MABL turbulence structure by limiting the wind shear - in some observed and modeled situations the turbulence is said to have "collapse". The swell interaction with the lower MABL is a function of the wave age but also of the swell steepness, since steeper waves loose more energy into the atmosphere as their energy attenuates. This interaction can be seen as highest in areas where swells are steepest, but also where the wind speed is lowest and consequently the wave age is high. A detailed global climatology of the wave age and swell steepness parameters, based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis is presented. It will be shown, in line with previous studies, that the global climatological patterns of the wave age confirm the global dominance of the World Ocean by swell waves. The areas of the ocean where the highest interaction of swell waves and the lower atmosphere can be expected are also presented.

  6. DROPOUT OF DIRECTIONAL ELECTRON INTENSITIES IN LARGE SOLAR ENERGETIC PARTICLE EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lun C.; Reames, Donald V., E-mail: ltan@umd.edu

    2016-01-10

    In the “gradual” solar energetic particle (SEP) event during solar cycle 23 we have observed the dispersionless modulation (“dropout”) in directional intensities of nonrelativistic electrons. The average duration of dropout periods is ∼0.8 hr, which is consistent with the correlation scale of solar wind turbulence. During the dropout period electrons could display scatter-free transport in an intermittent way. Also, we have observed a decrease in the anisotropic index of incident electrons with increasing electron energy (E{sub e}), while the index of scattered/reflected electrons is nearly independent of E{sub e}. We hence perform an observational examination of the correlation between the anisotropicmore » index of low-energy scattered/reflected electrons and the signature of the locally measured solar wind turbulence in the dissipation range, which is responsible for resonant scattering of nonrelativistic electrons. Since during the dropout period the slab turbulence fraction is dominant (0.8 ± 0.1), we pay close attention to the effect of slab fraction on the correlation examined. Our observation is consistent with the simulation result that in the dominance of the slab turbulence component there should exist a dispatched structure of magnetic flux tubes, along which electrons could be transported in a scatter-free manner. Since a similar phenomenon is exhibited in the “impulsive” SEP event, electron dropout should be a transport effect. Therefore, being different from most ion dropout events, which are due to a compact flare source, the dropout of directional electron intensities should be caused by the change of turbulence status in the solar wind.« less

  7. Measuring AGN & Starburst Wind Properties with ALMA

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Chatterjee, Suchetana; Nyland, Kristina; Kimball, Amy; Mason, Brian; Rocha, Graca

    2018-01-01

    The Sunyaev-Zeldovich (SZ) effect is one of the few ways to constrain the energetically-dominant hot component of winds from AGN and starbursts. Studies of stacked data from Planck and ground-based mm/submm single dish telescopes have found significant detections of SZ from quasars, but contamination from other phenomena are hard to rule out given the large beams of single dishes. Direct detection of these winds is just feasible with observations with current facilities (VLA and ALMA), but with ngVLA we should be able to go beyond detections, and start to map the SZ effect around these objects. In this poster I will present predictions for the detectability of SZ decrements from AGN and hyperluminous starbursts using ngVLA parameters.

  8. An Investigation of the Sources of Earth-directed Solar Wind during Carrington Rotation 2053

    NASA Astrophysics Data System (ADS)

    Fazakerley, A. N.; Harra, L. K.; van Driel-Gesztelyi, L.

    2016-06-01

    In this work we analyze multiple sources of solar wind through a full Carrington Rotation (CR 2053) by analyzing the solar data through spectroscopic observations of the plasma upflow regions and the in situ data of the wind itself. Following earlier authors, we link solar and in situ observations by a combination of ballistic backmapping and potential-field source-surface modeling. We find three sources of fast solar wind that are low-latitude coronal holes. The coronal holes do not produce a steady fast wind, but rather a wind with rapid fluctuations. The coronal spectroscopic data from Hinode’s Extreme Ultraviolet Imaging Spectrometer show a mixture of upflow and downflow regions highlighting the complexity of the coronal hole, with the upflows being dominant. There is a mix of open and multi-scale closed magnetic fields in this region whose (interchange) reconnections are consistent with the up- and downflows they generate being viewed through an optically thin corona, and with the strahl directions and freeze-in temperatures found in in situ data. At the boundary of slow and fast wind streams there are three short periods of enhanced-velocity solar wind, which we term intermediate based on their in situ characteristics. These are related to active regions that are located beside coronal holes. The active regions have different magnetic configurations, from bipolar through tripolar to quadrupolar, and we discuss the mechanisms to produce this intermediate wind, and the important role that the open field of coronal holes adjacent to closed-field active regions plays in the process.

  9. Organised Motion in a Tall Spruce Canopy: Temporal Scales, Structure Spacing and Terrain Effects

    NASA Astrophysics Data System (ADS)

    Thomas, Christoph; Foken, Thomas

    2007-01-01

    This study investigates the organised motion near the canopy-atmosphere interface of a moderately dense spruce forest in heterogeneous, complex terrain. Wind direction is used to assess differences in topography and surface properties. Observations were obtained at several heights above and within the canopy using sonic anemometers and fast-response gas analysers over the course of several weeks. Analysed variables include the three-dimensional wind vector, the sonic temperature, and the concentration of carbon dioxide. Wavelet analysis was used to extract the organised motion from time series and to derive its temporal scales. Spectral Fourier analysis was deployed to compute power spectra and phase spectra. Profiles of temporal scales of ramp-like coherent structures in the vertical and longitudinal wind components showed a reversed variation with height and were of similar size within the canopy. Temporal scales of scalar fields were comparable to those of the longitudinal wind component suggesting that the lateral scalar transport dominates. The existence of a 1 power law in the longitudinal power spectra was confirmed for a few cases only, with a majority showing a clear 5/3 decay. The variation of effective scales of organised motion in the longitudinal velocity and temperature were found to vary with atmospheric stability, suggesting that both Kelvin-Helmholtz instabilities and attached eddies dominate the flow with increasing convectional forcing. The canopy mixing-layer analogy was observed to be applicable for ramp-like coherent structures in the vertical wind component for selected wind directions only. Departures from the prediction of m = Λ w L {/s -1} = 8 10 (where Λ w is the streamwise spacing of coherent structures in the vertical wind w and L s is a canopy shear length scale) were caused by smaller shear length scales associated with large-scale changes in the terrain as well as the vertical structure of the canopy. The occurrence of linear gravity waves was related to a rise in local topography and can therefore be referred to as mountain-type gravity waves. Temporal scales of wave motion and ramp-like coherent structures were observed to be comparable.

  10. Effects of internal loading on phosphorus distribution in the Taihu Lake driven by wind waves and lake currents.

    PubMed

    Huang, Lei; Fang, Hongwei; He, Guojian; Jiang, Helong; Wang, Changhui

    2016-12-01

    Wind-driven sediment resuspension exerts significant effects on the P behavior in shallow lake ecosystems. In this study, a comprehensive dynamic phosphorus (P) model that integrates hydrodynamic, wind wave and sediment transport is proposed to assess the importance of internal P cycling due to sediment resuspension on water column P levels. The primary contribution of the model is detailed modeling and rigorous coupling of sediment and P dynamics. The proposed model is applied to predict the P behavior in the shallow Taihu Lake, which is the third largest lake in China, and quantitatively estimate the effects of wind waves and lake currents on P release and distribution. Both the prevailing southeast winds in summer and northwest winds in winter are applied for the simulation, and different wind speeds of 5 m/s and 10 m/s are also considered. Results show that sediment resuspension and the resulting P release have a dominant effect on P levels in Taihu Lake, and likely similar shallow lakes. Wind-driven waves at higher wind speeds significantly enhance sediment resuspension and suspended sediment concentration (SSC). Total P concentration in the water column is also increased but not in proportion to the SSC. The different lake circulations resulting from the different prevailing wind directions also affect the distribution of suspended sediment and P around the lake ultimately influencing where eutrophication is likely to occur. The proposed model demonstrates that internal cycling in the lake is a dominant factor in the lake P and must be considered when trying to manage water quality in this and similar lakes. The model is used to demonstrate the potential effectiveness of remediation of an area where historical releases have led to P accumulation on overall lake quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Observational study of surface wind along a sloping surface over mountainous terrain during winter

    NASA Astrophysics Data System (ADS)

    Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk

    2018-03-01

    The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.

  12. Effect of rain on Ku-band scatterometer wind measurements

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Shimada, Masanobu

    1991-01-01

    The impact of precipitation on scatterometer wind measurements is investigated. A model is developed which includes the effects of rain attenuation, rain backscatter, and storm horizontal structure. Rain attenuation is found to be the dominant error source at low radar incidence angles and high wind speeds. Volume backscatter from the rain-loaded atmosphere, however, is found to dominate for high incidence angles and low wind speeds.

  13. Wind-induced circulation in a large tropical lagoon: Chetumal Bay

    NASA Astrophysics Data System (ADS)

    Palacios, E.; Carrillo, L.

    2013-05-01

    Chetumal Bay is a large tropical lagoon located at the Mesoamerican Reef System. Windinduced circulation in this basin was investigated by using direct measurements of current, sea level, and 2d barotropic numerical model. Acoustic Doppler Profiler (ADP) transects covering the north of Chetumal Bay during two campaigns September 2006 and March 2007 were used. The 2d barotropic numerical model was ROMs based and wind forced. Wind information was obtained from a meteorological station located at ECOSUR Chetumal. Sea level data was collected from a pressure sensor deployed in the lagoon. A seasonal pattern of circulation was observed. From observations, during September 2006, a northward flow was shown in most part of the bay and a southward flow in the eastern coast was observed with velocities ranged from 6 cm s-1 to 36 cm s-1. In March 2007, the current pattern was more complex; divergences and converges were identified. The dominant circulation was northward in eastern portion, and southward in the central and western zone. The average current speed was 6 cm s-1 with maximum values of 26 -34 cm s-1. During September 2006 predominant wind was easternsoutheastern and during March 2007, northerly wind events were recorded. Sea level amplitude responded quickly to changes in the magnitude and direction of the wind. Results of sea level and circulation from the 2d barotropic numerical model agreed with observations at first approximation.

  14. The correction of infrasound signals for upper atmospheric winds

    NASA Technical Reports Server (NTRS)

    Mutschlecner, J. Paul; Whitaker, Rodney W.

    1990-01-01

    Infrasound waves propagate in the atmosphere by a well known mechanism produced by refraction of the waves, return to earth, and reflection at the surface into the atmosphere for subsequent bounces. A figure illustrates this phenomenon with results from a ray trace model. In this instance three rays are returned to earth from a region centered at about 50 kilometers in altitude and two from a region near 110 kilometers in altitude. The control of the wave refraction is largely dominated by the temperature-height profile and inversions; however, a major influence is also produced by the atmospheric wind profile. Another figure illustrates the considerable ray differences for rays moving in the wind direction (to the right) and in the counter direction (to the left). It obviously can be expected that infrasonic signal amplitudes will be greatly influenced by the winds in the atmosphere. The seasonal variation of the high altitude atmospheric winds is well documented. A third figure illustrates this with average statistics on the observed zonal wind in the region of 50 plus or minus 5 kilometers in altitude. The results are based upon a survey by Webb; Webb terms this parameterization the Stratospheric Circulation Index (SCI). The very strong seasonal variation has the ability to exert a major seasonal influence on infrasonic signals. The purpose here is to obtain a method for the correction of this effect.

  15. Turbulent convection in geostrophic circulation with wind and buoyancy forcing

    NASA Astrophysics Data System (ADS)

    Sohail, Taimoor; Gayen, Bishakhdatta; Hogg, Andy

    2017-11-01

    We conduct a direct numerical simulation of geostrophic circulation forced by surface wind and buoyancy to model a circumpolar ocean. The imposed buoyancy forcing (represented by Rayleigh number) drives a zonal current and supports small-scale convection in the buoyancy destabilizing region. In addition, we observe eddy activity which transports heat southward, supporting a large amount of heat uptake. Increasing wind stress enhances the meridional buoyancy gradient, triggering more eddy activity inside the boundary layer. Therefore, heat uptake increases with higher wind stress. The majority of dissipation is confined within the surface boundary layer, while mixing is dominant inside the convective plume and the buoyancy destabilizing region of the domain. The relative strength of the mixing and dissipation in the system can be expressed by mixing efficiency. This study finds that mixing is much greater than viscous dissipation, resulting in higher values of mixing efficiency than previously used. Supported by Australian Research Council Grant DP140103706.

  16. Does the scatterometer see wind speed or friction velocity?

    NASA Technical Reports Server (NTRS)

    Donelan, M. A.; Pierson, W. J., Jr.

    1984-01-01

    Studies of radar backscatter from the sea surface are referred either to the wind speed, U, or friction velocity, u(sub *). Bragg scattering theory suggests that these variations in backscatter are directly related to the height of the capillary-gravity waves modulated by the larger waves in tilt and by straining of the short wave field. The question then arises as to what characteristic of the wind field is most probably correlated with the wave number spectrum of the capillary-gravity waves. The justification for selecting U as the appropriate meteorological parameter to be associated with backscatter from L-band to Ku-band are reviewed. Both theoretical reasons and experimental evidence are used to demonstrate that the dominant parameter is U/C(lambda) where U is the wind speed at a height of about lambda/2 for waves having a phase speed of C(lambda).

  17. Sub-tidal Circulation in a deep-silled fjord: Douglas Channel, British Columbia (Canada)

    NASA Astrophysics Data System (ADS)

    Wan, Di; Hannah, Charles; Foreman, Mike

    2016-04-01

    Douglas Channel, a deep fjord on the west coast of British Columbia, Canada, is the main waterway in Kitimat fjord system that opens to Queen Charlotte Sound and Hecate Strait. The fjord is separated from the open shelf by a broad sill that is about 150 m deep, and there is another sill (200 m) that separates the fjord into an outer and an inner basin. This study examines the low-frequency (from seasonal to meteorological bands) circulation in Douglas Channel from data collected from three moorings deployed during 2013-2015, and the water property observations collected during six cruises (2014 and 2015). Estuarine flow dominates the circulation above the sill-depth. The deep flows are dominated by a yearly renewal that takes place from early June to September, and this dense water renews both basins in the form of gravity currents at 0.1 - 0.2 m/s with a thickness of 100 m. At other times of the year, the deep flow structures and water properties suggest horizontal and vertical processes and support the re-circulation idea in the inner and the outer basins. The near surface current velocity fluctuations are dominated by the along-channel wind. Overall, the circulation in the meteorological band is a mix of the estuarine flow, direct wind driven flow, and the baroclinic response to changes to the surface pressure gradient caused by the wind driven currents.

  18. Orographic forcing of dune forming winds on Titan

    NASA Astrophysics Data System (ADS)

    Larson, E. J.; Toon, O. B.; Friedson, A. J.

    2013-12-01

    Cassini has observed hundreds of dune fields on Titan, nearly all of which lie in the tropics and suggest westerly (from west to east) winds dominate at the surface [1,2]. Most GCMs however have obtained easterly surface winds in the tropics, seemingly contradicting the wind direction suggested by the dunes. This has led to an active debate in the community about the origin of the dune forming winds on Titan and their direction and modality. This discussion is mostly driven by a study of Earth dunes seen as analogous to Titan [1,2,3]. One can find examples of dunes on Earth that fit several wind regimes. To date only one GCM, that of Tokano [4,5], has presented detailed analysis of its near surface winds and their dune forming capabilities. Despite the bulk of the wind being easterly, this GCM produces faster westerlies at equinox, thus transporting sand to the east. Our model, the Titan CAM [6], is unable to reproduce the fast westerlies, although it is possible we are not outputting frequently enough to catch them. Our GCM has been updated to include realistic topography released by the Cassini radar team. Preliminary results suggest our tropical wind regime now has net westerly winds in the tropics, albeit weak. References: [1], Lorenz, R. et al. 2006. Science, 312, 724-727. [2], Radebaugh, J. et al. 2008. Icarus, 194, 690-703. [3] Rubin, D. and Hesp, P. 2009. Nature Geoscience 2, 653-658. [4] Tokano, T. 2008. Icarus 194, 243-262. [5] Tokano, T. 2010. Aeolian Research 2, 113-127. [6] Friedson, J. et al. 2009. Planetary Space Science, 57, 1931-1949.

  19. Wind-US Code Contributions to the First AIAA Shock Boundary Layer Interaction Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Vyas, Manan A.; Yoder, Dennis A.

    2013-01-01

    This report discusses the computations of a set of shock wave/turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock/boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Four turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Baseline and Shear Stress Transport k-omega two-equation models, and an explicit algebraic stress k-omega formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.

  20. Poster 17: Methane storms as a driver of Titan's dune orientation.

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Barth, Erika; Rafkin, Scot; Narteau, Clement; Lebonnois, Sebastien; Rodriguez, Sebastien; Courech Du Pont, Sylvain; Lucas, Antoine

    2016-06-01

    Titan's equatorial regions are covered by eastward oriented linear dunes [1,2]. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs) at these latitudes, oriented westward as trade winds on Earth. We propose that Titan's dune orientation is actually determined by equinoctial tropical methane storms producing a coupling with superrotation and dune formation [3]. Using meso-scale simulations of convective methane clouds [4] with a GCM wind profile featuring the superrotation [5,6], we show that Titan's storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport. Using GCM wind calculations and analogies with terrestrial dune fields [7], we show that Titan's dune propagation occurs eastward under these conditions. Finally, this scenario combining global circulation winds and methane storms can explain other major features of Titan's dunes as the divergence from the equator or the dune size and spacing. It also implies an equatorial origin of Titan's dune sand and a possible occurence of dust storms.

  1. Initial Assessment of Acoustic Source Visibility with a 24-Element Microphone Array in the Arnold Engineering Development Center 80- by 120-Foot Wind Tunnel at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Horne, William C.

    2011-01-01

    Measurements of background noise were recently obtained with a 24-element phased microphone array in the test section of the Arnold Engineering Development Center 80- by120-Foot Wind Tunnel at speeds of 50 to 100 knots (27.5 to 51.4 m/s). The array was mounted in an aerodynamic fairing positioned with array center 1.2m from the floor and 16 m from the tunnel centerline, The array plate was mounted flush with the fairing surface as well as recessed in. (1.27 cm) behind a porous Kevlar screen. Wind-off speaker measurements were also acquired every 15 on a 10 m semicircular arc to assess directional resolution of the array with various processing algorithms, and to estimate minimum detectable source strengths for future wind tunnel aeroacoustic studies. The dominant background noise of the facility is from the six drive fans downstream of the test section and first set of turning vanes. Directional array response and processing methods such as background-noise cross-spectral-matrix subtraction suggest that sources 10-15 dB weaker than the background can be detected.

  2. Analytical framework for modeling of long-range transport of fungal plant epidemics

    NASA Astrophysics Data System (ADS)

    Kogan, Oleg; O'Keeffe, Kevin; Schneider, David; Myers, Christopher; Analytical FrameworksInfectious Disease Dynamics Team

    2015-03-01

    A new framework for the study of long-range transport of fungal plant epidemics is proposed. The null nonlinear model includes advective transport through the free atmosphere, spore production on the ground, and transfer of spores between the ground and the advective atmospheric layer. The competition between the growth wave on the ground and the effect of the wind is most strongly reflected in upwind fronts, which can propagate into the wind for exponential initial conditions. If the rate of spore transfer into the advective layer is below critical, this happens for initital conditions with arbitrary steepness. Upwind fronts from localized initial conditions will propagate in the direction of the wind above this critical parameter, and will not propagate below it. On the other hand, the speed of the downwind front does not have a strong dependence on the rate of spore transfer between the advective layer and the ground. Thus, even vanishingly small, but finite transfer rates result in a substantial epidemic wave in the direction of the wind. We also consider the effect of an additional, random-walk like mechanism of transport through the near-ground atmospheric boundary layer, and attempt to understand which route dominates the transport over long distances.

  3. Scalar Fluxes Near a Tall Building in an Aligned Array of Rectangular Buildings

    NASA Astrophysics Data System (ADS)

    Fuka, Vladimír; Xie, Zheng-Tong; Castro, Ian P.; Hayden, Paul; Carpentieri, Matteo; Robins, Alan G.

    2018-04-01

    Scalar dispersion from ground-level sources in arrays of buildings is investigated using wind-tunnel measurements and large-eddy simulation (LES). An array of uniform-height buildings of equal dimensions and an array with an additional single tall building (wind tunnel) or a periodically repeated tall building (LES) are considered. The buildings in the array are aligned and form long streets. The sensitivity of the dispersion pattern to small changes in wind direction is demonstrated. Vertical scalar fluxes are decomposed into the advective and turbulent parts and the influences of wind direction and of the presence of the tall building on the scalar flux components are evaluated. In the uniform-height array turbulent scalar fluxes are dominant, whereas the tall building produces an increase of the magnitude of advective scalar fluxes that yields the largest component. The presence of the tall building causes either an increase or a decrease to the total vertical scalar flux depending on the position of the source with respect to the tall building. The results of the simulations can be used to develop parametrizations for street-canyon dispersion models and enhance their capabilities in areas with tall buildings.

  4. An empirical polytrope law for solar wind thermal electrons between 0.45 and 4.76 AU - Voyager 2 and Mariner 10

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Scudder, J. D.

    1980-01-01

    In this paper empirical evidence is presented that between 0.4 and 5 AU the thermal portion (but not all) of the solar wind electron population obeys a polytrope relation. It is also shown that this functional relationship is a member of a broader class of possible laws required of a steady state, fully ionized plasma whose proper frame electric field is dominated by the polarization electric field. The empirically determined, thermodynamically interesting value of the polytrope index (1.175) is virtually that predicted (1.16) by the theoretical considerations of Scudder and Olbert (1979). Strong, direct, empirical evidence for the nearly isothermal behavior of solar wind electrons as has been indirectly argued in the literature for some time is provided.

  5. Quasi-Equilibrium States in the Tropics Simulated by a Cloud-Resolving Model. Part 1; Specific Features and Budget Analysis

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Starr, David OC. (Technical Monitor)

    2001-01-01

    A series of long-term integrations using the two-dimensional Goddard Cumulus Ensemble (GCE) model were performed by altering imposed environmental components to produce various quasi-equilibrium thermodynamic states. Model results show that the genesis of a warm/wet quasi-equilibrium state is mainly due to either strong vertical wind shear (from nudging) or large surface fluxes (from strong surface winds), while a cold/dry quasi-equilibrium state is attributed to a remarkably weakened mixed-wind shear (from vertical mixing due to deep convection) along with weak surface winds. In general, latent heat flux and net large-scale temperature forcing, the two dominant physical processes, dominate in the beginning stage of the simulated convective systems, then considerably weaken in the final stage, which leads to quasi-equilibrium states. A higher thermodynamic regime is found to produce a larger rainfall amount, as convective clouds are the leading source of rainfall over stratiform clouds even though the former occupy much less area. Moreover, convective clouds are more likely to occur in the presence of strong surface winds (latent heat flux), while stratiform clouds (especially the well-organized type) are favored in conditions with strong wind shear (large-scale forcing). The convective systems, which consist of distinct cloud types due to the variation in horizontal winds, are also found to propagate differently. Accordingly, convective systems with mixed-wind shear generally propagate in the direction of shear, while the system with strong (multidirectional) wind shear propagates in a more complex way. Based on the results from the temperature (Q1) and moisture (Q2) budgets, cloud-scale eddies are found to act as a hydrodynamic 'vehicle' that cascades the heat and moisture vertically. Several other specific features such as atmospheric stability, CAPE, and mass fluxes are also investigated and found to be significantly different between diverse quasi-equilibrium states. Detailed comparisons between the various states are presented.

  6. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    PubMed

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  7. Effects of wind on the dynamics of the central jet during drop impact onto a deep-water surface

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Wang, An; Wang, Shuang; Dai, Dejun

    2018-05-01

    The cavity and central jet generated by the impact of a single water drop on a deep-water surface in a wind field are experimentally studied. Different experiments are performed by varying the impacting drop diameter and wind speed. The contour profile histories of the cavity (also called crater) and central jet (also called stalk) are measured in detail with a backlit cinematic shadowgraph technique. The results show that shortly after the drop hits the water surface an asymmetrical cavity appears along the wind direction, with a train of capillary waves on the cavity wall. This is followed by the formation of an inclined central jet at the location of the drop impact. It is found that the wind has little effect on the penetration depth of the cavity at the early stage of the cavity expansion, but markedly changes the capillary waves during the retraction of the cavity. The capillary waves in turn shift the position of the central jet formation leeward. The dynamics of the central jet are dominated by two mechanisms: (i) the oblique drop impact produced by the wind and (ii) the wind drag force directly acting on the jet. The maximum height of the central jet, called the stalk height, is drastically affected by the wind, and the nondimensional stalk height H /D decreases with increasing θ Re-1 , where D is the drop diameter, θ is the impingement angle of drop impact, and Re=ρaUwD /μa is the Reynolds number with air density ρa, wind speed Uw, and air viscosity μa.

  8. Examples of the Influence of Turbine Wakes on Downwind Power Output, Surface Wind Speed, Turbulence and Flow Convergence in Large Wind Farms

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Rajewski, D. A.; Lundquist, J. K.; Doorenbos, R. K.

    2014-12-01

    We have analyzed turbine power and concurrent wind speed, direction and turbulence data from surface 10-m flux towers in a large wind farm for experiments during four summer periods as part of the Crop Wind Energy Experiment (CWEX). We use these data to analyze surface differences for a near-wake (within 2.5 D of the turbine line), far wake (17 D downwind of the turbine line), and double wake (impacted by two lines of turbines about 34 D downwind of the first turbine line) locations. Composites are categorized by10 degree directional intervals and three ambient stability categories as defined by Rajewski et al. (2013): neutral (|z/L|<0.05), stable (z/L>0.05) and unstable (z/L<-0.05), where z is the height of the measurement and L is the Monin-Obhukov length. The dominant influence of the turbines is under stably stratified conditions (i. e., mostly at night). A 25% to 40% increase in mean wind speed occurs when turbine wakes are moving over the downwind station at a distance of 2.8 D and 5.4 D (D = fan diameter). For the double wake condition (flux station leeward of two lines of turbines) we find a daytime (unstable conditions) speed reduction of 20% for southerly wind, but for nighttime (stable conditions) the surface speeds are enhancedby 40-60% for SSW-SW winds. The speedup is reduced as wind directions shift to the west. We interpret these speed variations as due to the rotation of the wake and interaction (or not) with higher speed air above the rotor layer in highly sheared nocturnal low-level jet conditions. From a cluster of flux stations and three profiling lidars deployed within and around a cluster of turbines in 2013 (CWEX-13) we found evidence of mesoscale influences. In particular, surface convergence (wind direction deflection of 10-20 degrees) was observed during periods of low nighttime winds (hub-height winds of 4-6 m/s) with power reduction of 50-75%. This is consistent with a similar range of deflection observed from a line of turbines in CWEX-11, In the mid to late afternoon hours when hub-height wind speeds are between 5-10 m/s convergence periods have been observed, with power enhancements of 20-40% at several locations around the farm.

  9. Observations of plan-view sand ripple behavior and spectral wave climate on the inner shelf of San Pedro Bay, California

    USGS Publications Warehouse

    Xu, J. P.

    2005-01-01

    Concurrent video images of sand ripples and current meter measurements of directional wave spectra are analyzed to study the relations between waves and wave-generated sand ripples. The data were collected on the inner shelf off Huntington Beach, California, at 15 m water depth, where the sea floor is comprised of well-sorted very fine sands (D50=92 ??m), during the winter of 2002. The wave climate, which was controlled by southerly swells (12-18 s period) and westerly wind waves (5-10 s period), included three wave types: (A) uni-modal, swells only; (B) bi-modal, swells dominant; and (C) bi-modal, wind-wave dominant. Each wave type has distinct relations with the plan-view shapes of ripples that are classified into five types: (1) sharp-crested, two-dimensional (2-D) ripples; (2) sharp-crested, brick-pattern, 3-D ripples; (3) bifurcated, 3-D ripples; (4) round-crested, shallow, 3-D ripples; and (5) flat bed. The ripple spacing is very small and varies between 4.5 and 7.5 cm. These ripples are anorbital as ripples in many field studies. Ripple orientation is only correlated with wave directions during strong storms (wave type C). In a poly-modal, multi-directional spectral wave environment, the use of the peak parameters (frequency, direction), a common practice when spectral wave measurements are unavailable, may lead to significant errors in boundary layer and sediment transport calculations. ?? 2004 Elsevier Ltd. All rights reserved.

  10. [Analysis of acid rain characteristics of Lin'an Regional Background Station using long-term observation data].

    PubMed

    Li, Zheng-Quan; Ma, Hao; Mao, Yu-Ding; Feng, Tao

    2014-02-01

    Using long-term observation data of acid rain at Lin'an Regional Background Station (Lin'an RBS), this paper studied the interannual and monthly variations of acid rain, the reasons for the variations, and the relationships between acid rain and meteorological factors. The results showed that interannual variation of acid rain at Lin'an RBS had a general increasing trend in which there were two obvious intensifying processes and two distinct weakening processes, during the period ranging from 1985 to 2012. In last two decades, the monthly variation of acid rain at Lin'an RBS indicated that rain acidity and frequency of severe acid rain were increasing but the frequency of weak acid rain was decreasing when moving towards bilateral side months of July. Acid rain occurrence was affected by rainfall intensity, wind speed and wind direction. High frequency of severe acid rain and low frequency of weak acid rain were on days with drizzle, but high frequency of weak acid rain and low frequency of severe acid rain occurred on rainstorm days. With wind speed upgrading, the frequency of acid rain and the proportion of severe acid rain were declining, the pH value of precipitation was reducing too. Another character is that daily dominant wind direction of weak acid rain majorly converged in S-W section ,however that of severe acid rain was more likely distributed in N-E section. The monthly variation of acid rain at Lin'an RBS was mainly attributed to precipitation variation, the increasing and decreasing of monthly incoming wind from SSE-WSW and NWN-ENE sections of wind direction. The interannual variation of acid rain could be due to the effects of energy consumption raising and significant green policies conducted in Zhejiang, Jiangsu and Shanghai.

  11. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  12. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; La Peyre, M.K.; Caldwell, A.; Piazza, S.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable. ?? 2009 Elsevier B.V.

  13. A LIGHT CURVE ANALYSIS OF CLASSICAL NOVAE: FREE-FREE EMISSION VERSUS PHOTOSPHERIC EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachisu, Izumi; Kato, Mariko, E-mail: hachisu@ea.c.u-tokyo.ac.jp, E-mail: mariko@educ.cc.keio.ac.jp

    2015-01-10

    We analyzed light curves of seven relatively slower novae, PW Vul, V705 Cas, GQ Mus, RR Pic, V5558 Sgr, HR Del, and V723 Cas, based on an optically thick wind theory of nova outbursts. For fast novae, free-free emission dominates the spectrum in optical bands rather than photospheric emission, and nova optical light curves follow the universal decline law. Faster novae blow stronger winds with larger mass-loss rates. Because the brightness of free-free emission depends directly on the wind mass-loss rate, faster novae show brighter optical maxima. In slower novae, however, we must take into account photospheric emission because of theirmore » lower wind mass-loss rates. We calculated three model light curves of free-free emission, photospheric emission, and their sum for various white dwarf (WD) masses with various chemical compositions of their envelopes and fitted reasonably with observational data of optical, near-IR (NIR), and UV bands. From light curve fittings of the seven novae, we estimated their absolute magnitudes, distances, and WD masses. In PW Vul and V705 Cas, free-free emission still dominates the spectrum in the optical and NIR bands. In the very slow novae, RR Pic, V5558 Sgr, HR Del, and V723 Cas, photospheric emission dominates the spectrum rather than free-free emission, which makes a deviation from the universal decline law. We have confirmed that the absolute brightnesses of our model light curves are consistent with the distance moduli of four classical novae with known distances (GK Per, V603 Aql, RR Pic, and DQ Her). We also discussed the reason why the very slow novae are about ∼1 mag brighter than the proposed maximum magnitude versus rate of decline relation.« less

  14. Characterization of Optical Properties of Desert Dust and Other Aerosols Using Postive Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M.

    2017-12-01

    To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Ångström exponents and single scattering albedo over the measurement period. As expected, the scattering coefficient was dominated by large desert dust particles with low Ångström scattering exponent. Especially from February to June the Ångström scattering exponent was clearly lower and scattering coefficients higher than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10- PM2.5) mass concentrations to characterise aerosols from different sources. Analysis revealed three clearly different types of sources, anthropogenic, BC source and desert dust. These factors have clearly different seasonal and diurnal variation. The contribution of desert dust factor was dominating from February to May, whereas the contribution of anthropogenic factor is quite steady over the whole year. We estimated the mass absorption and scattering efficiencies for the factors and they agreed well with earlier observations. Hence, this method could be used to distinguish aerosol source characteristics, at least in fairly simple cases.

  15. Effects of Hurricane Katrina on the forest structure of taxodium distichum swamps of the Gulf Coast, USA

    USGS Publications Warehouse

    Middleton, B.A.

    2009-01-01

    Hurricane Katrina pushed mixed Taxodium distichum forests toward a dominance of Taxodium distichum (baldcypress) and Nyssa aquatica (water tupelo) because these species had lower levels of susceptibility to wind damage than other woody species. This study documents the volume of dead versus live material of woody trees and shrubs of T. distichum swamps following Hurricane Katrina along the Gulf Coast of Mississippi and Louisiana. Pearl River Wildlife Management Area near Canton, Mississippi had the highest winds of the study areas, and these forests were located in the northeast quadrant of Hurricane Katrina (sustained wind 151 kph (94 mph)). Jean Lafitte National Historical Park and Preserve south of New Orleans had medium to high winds (sustained winds 111 kph (69 mph) at the New Orleans lakefront). Cat Island National Wildlife Refuge had a lower level of winds and was positioned on the western edge of the storm. The forests at Pearl River and to a lesser extent at Jean Lafitte had the highest amount of structural damage in the study. For Cat Island, Jean Lafitte, and Pearl River, the total volume of dead material (debris) was 50, 80, and 370 m3 ha-1, respectively. The ratio of dead to live volume was 0.010, 0.082, and 0.039, respectively. For both of the dominant species, T. distichum and N. aquatica, the percentage of dead to live volume was less than 1. Subdominant species including Acer rubrum, Liquidambar styraciflua, Quercus lyrata, and Quercus nigra were more damaged by the storm at both Pearl River and Jean Lafitte. Only branches were damaged by Hurricane Katrina at Cat Island. Shrubs such as Morella cerifera, Euonymous sp., and Vaccinium sp. were often killed by the storm, while other species such as Cephalanthus occidentalis, Forestiera acuminata, and Cornus florida were not killed. Despite the fact that Hurricane Katrina was a Category 3 storm and struck Pearl River and Jean Lafitte fairly directly, dominant species of the T. distichum swamps were relatively little affected, even though certain subdominant and shrub species were completely removed from the species composition. ?? 2009 The Society of Wetland Scientists.

  16. Aeolian Features of Scandia Cavi

    NASA Image and Video Library

    2015-09-30

    This image from NASA Mars Reconnaissance Orbiter spacecraft shows modified barchan dunes with shapes that resemble raptor claws. The unusual morphology of these dunes suggests a limited supply of windblown sand. Winds likely blew from the northeast resulting in elongate dunes with an asymmetric downwind point. The transverse crests of the smaller ripples/mega-ripple bed-forms surrounding the dune, echo the dominant downwind direction towards the southwest. This locality is in the Northern Lowlands directly east of Dokka Crater in Scandia Cavi. http://photojournal.jpl.nasa.gov/catalog/PIA19962

  17. Evolution of Turbulence in the Expanding Solar Wind, a Numerical Study

    NASA Astrophysics Data System (ADS)

    Dong, Yue; Verdini, Andrea; Grappin, Roland

    2014-10-01

    We study the evolution of turbulence in the solar wind by solving numerically the full three-dimensional (3D) magnetohydrodynamic (MHD) equations embedded in a radial mean wind. The corresponding equations (expanding box model or EBM) have been considered earlier but never integrated in 3D simulations. Here, we follow the development of turbulence from 0.2 AU up to about 1.5 AU. Starting with isotropic spectra scaling as k -1, we observe a steepening toward a k -5/3 scaling in the middle of the wave number range and formation of spectral anisotropies. The advection of a plasma volume by the expanding solar wind causes a non-trivial stretching of the volume in directions transverse to radial and the selective decay of the components of velocity and magnetic fluctuations. These two effects combine to yield the following results. (1) Spectral anisotropy: gyrotropy is broken, and the radial wave vectors have most of the power. (2) Coherent structures: radial streams emerge that resemble the observed microjets. (3) Energy spectra per component: they show an ordering in good agreement with the one observed in the solar wind at 1 AU. The latter point includes a global dominance of the magnetic energy over kinetic energy in the inertial and f -1 range and a dominance of the perpendicular-to-the-radial components over the radial components in the inertial range. We conclude that many of the above properties are the result of evolution during transport in the heliosphere, and not just the remnant of the initial turbulence close to the Sun.

  18. Nightside electron precipitation at Mars: Geographic variability and dependence on solar wind conditions

    NASA Astrophysics Data System (ADS)

    Lillis, Robert J.; Brain, David A.

    2013-06-01

    Electron precipitation is usually the dominant source of energy input to the nightside Martian atmosphere, with consequences for ionospheric densities, chemistry, electrodynamics, communications, and navigation. We examine downward-traveling superthermal electron flux on the Martian nightside from May 1999 to November 2006 at 400 km altitude and 2 A.M. local time. Electron precipitation is geographically organized by crustal magnetic field strength and elevation angle, with higher fluxes occurring in regions of weak and/or primarily vertical crustal fields, while stronger and more horizontal fields retard electron access to the atmosphere. We investigate how these crustal field-organized precipitation patterns vary with proxies for solar wind (SW) pressure and interplanetary magnetic field (IMF) direction. Generally, higher precipitating fluxes accompany higher SW pressures. Specifically, we identify four characteristic spectral behaviors: (1) "stable" regions where fluxes increase mildly with SW pressure, (2) "high-flux" regions where accelerated (peaked) spectra are more common and where fluxes below ~500 eV are largely independent of SW pressure, (3) permanent plasma voids, and (4) intermittent plasma voids where fluxes depend strongly on SW pressure. The locations, sizes, shapes, and absence/existence of these plasma voids vary significantly with solar wind pressure proxy and moderately with IMF proxy direction; average precipitating fluxes are 40% lower in strong crustal field regions and 15% lower globally for approximately southwest proxy directions compared with approximately northeast directions. This variation of the strength and geographic pattern of the shielding effect of Mars' crustal fields exemplifies the complex interaction between those fields and the solar wind.

  19. Determining magnetospheric ULF wave activity from external drivers using the most influential solar wind parameters

    NASA Astrophysics Data System (ADS)

    Bentley, S.; Watt, C.; Owens, M. J.

    2017-12-01

    Ultra-low frequency (ULF) waves in the magnetosphere are involved in the energisation and transport of radiation belt particles and are predominantly driven by the external solar wind. By systematically examining the instantaneous relative contribution of non-derived solar wind parameters and accounting for their interdependencies using fifteen years of ground-based measurements (CANOPUS) at a single frequency and magnetic latitude, we conclude that the dominant causal parameters for ground-based ULF wave power are solar wind speed v, interplanetary magnetic field component Bz and summed power in number density perturbations δNp. We suggest that these correspond to driving by the Kelvin-Helmholtz instability, flux transfer events and direct perturbations from solar wind structures sweeping past. We will also extend our analysis to a stochastic wave model at multiple magnetic latitudes that will be used in future to predict background ULF wave power across the radiation belts in different magnetic local time sectors, and to examine the relative contribution of the parameters v, Bz and var(Np) in these sectors.

  20. The Greenland Sea Odden: Intra- and inter-annual variability

    USGS Publications Warehouse

    Russell, C.A.; Fischer, K.W.; Shuchman, R.A.; Josberger, E.G.

    1997-01-01

    The "Odden" is a large sea ice feature that forms in the East Greenland Sea which generally forms at the beginning of the winter season and can cover 300,000 km2. Throughout the winter, the outer edge of the Odden may advance and retreat by several hundred kilometers on time scales of a few days to weeks. Satellite passive microwave observations from 1978 through 1995 provide a continuous record of the spatial and temporal variations of this extremely dynamic phenomenon. The 17 year record shows both strong inter- and intra-annual variations in Odden extent and temporal behavior. An analysis of the satellite passive microwave derived ice area and extent time series along with meteorological data from the Arctic Drifting Buoy Network determined the meteorological forcing required for Odden growth, maintenance and decay. The key meteorological parameters which cause the rapid ice formation and decay associated with the Odden are, in order of importance, air temperature, wind speed, and wind direction. Atmospheric pressure was found not to play a significant role in the Odden events. Air temperature and wind direction are the dominant variables with temperatures below -9.5??C and winds from the west required to trigger significant Odden ice formation events. ??2004 Copyright SPIE - The International Society for Optical Engineering.

  1. Atmospheric transport of pesticides in the Sacramento, California, metropolitan area, 1996-1997

    USGS Publications Warehouse

    Majewski, Michael S.; Baston, David S.

    2002-01-01

    Weekly composite, bulk air was sampled with respect to wind speed and direction from January 1996 through December 1997 in one urban and two agricultural locations in Sacramento County, California. The sampling sites were located along a north-south transect, the dominant directions of the prevailing winds. The samples were analyzed for a variety of current-use pesticides, including dormant orchard spray insecticides and rice herbicides. A variety of pesticides were detected throughout the year, predominantly chlorpyrifos, diazinon, and trifluralin. The data obtained during the winter and spring suggest that some pesticides used in agricultural areas become airborne and may be transported into the urban area. Confirmation of this drift is difficult, however, because these three predominant pesticides, as well as other detected pesticides, also are heavily used in the urban environment. The spring data clearly show that molinate and thiobencarb, two herbicides used only in rice production, do drift into the urban environment.

  2. Assessing spring direct mortality to avifauna from wind energy facilities in the Dakotas

    USGS Publications Warehouse

    Graff, Brianna J.; Jenks, Jonathan A.; Stafford, Joshua D.; Jensen, Kent C.; Grovenburg, Troy W.

    2016-01-01

    The Northern Great Plains (NGP) contains much of the remaining temperate grasslands, an ecosystem that is one of the most converted and least protected in the world. Within the NGP, the Prairie Pothole Region (PPR) provides important habitat for >50% of North America's breeding waterfowl and many species of shorebirds, waterbirds, and grassland songbirds. This region also has high wind energy potential, but the effects of wind energy developments on migratory and resident bird and bat populations in the NGP remains understudied. This is troubling considering >2,200 wind turbines are actively generating power in the region and numerous wind energy projects have been proposed for development in the future. Our objectives were to estimate avian and bat fatality rates for wind turbines situated in cropland- and grassland-dominated landscapes, document species at high risk to direct mortality, and assess the influence of habitat variables on waterfowl mortality at 2 wind farms in the NGP. From 10 March to 7 June 2013–2014, we completed 2,398 searches around turbines for carcasses at the Tatanka Wind Farm (TAWF) and the Edgeley-Kulm Wind Farm (EKWF) in South Dakota and North Dakota. During spring, we found 92 turbine-related mortalities comprising 33 species and documented a greater diversity of species (n = 30) killed at TAWF (predominately grassland) than at EKWF (n = 9; predominately agricultural fields). After accounting for detection rates, we estimated spring mortality of 1.86 (SE = 0.22) deaths/megawatt (MW) at TAWF and 2.55 (SE = 0.51) deaths/MW at EKWF. Waterfowl spring (Mar–Jun) fatality rates were 0.79 (SE = 0.11) and 0.91 (SE = 0.10) deaths/MW at TAWF and EKWF, respectively. Our results suggest that future wind facility siting decisions consider avoiding grassland habitats and locate turbines in pre-existing fragmented and converted habitat outside of high densities of breeding waterfowl and major migration corridors.

  3. Understanding the Rising Phase of the PM2.5 Concentration Evolution in Large China Cities

    PubMed Central

    Lv, Baolei; Cai, Jun; Xu, Bing; Bai, Yuqi

    2017-01-01

    Long-term air quality observations are seldom analyzed from a dynamic view. This study analyzed fine particulate matter (PM2.5) pollution processes using long-term PM2.5 observations in three Chinese cities. Pollution processes were defined as linearly growing PM2.5 concentrations following the criteria of coefficient of determination R2 > 0.8 and duration time T ≥ 18 hrs. The linear slopes quantitatively measured pollution levels by PM2.5 concentrations rising rates (PMRR, μg/(m3·hr)). The 741, 210 and 193 pollution processes were filtered out, respectively, in Beijing (BJ), Shanghai (SH), and Guangzhou (GZ). Then the relationships between PMRR and wind speed, wind direction, 24-hr backward points, gaseous pollutants (CO, NO2 and SO2) concentrations, and regional PM2.5 levels were studied. Inverse relationships existed between PMRR and wind speed. The wind directions and 24-hr backward points converged in specific directions indicating long-range transport. Gaseous pollutants concentrations increased at variable rates in the three cities with growing PMRR values. PM2.5 levels at the upwind regions of BJ and SH increased at high PMRRs. Regional transport dominated the PM2.5 pollution processes of SH. In BJ, both local contributions and regional transport increased during high-PMRR pollution processes. In GZ, PM2.5 pollution processes were mainly caused by local emissions. PMID:28440282

  4. Diode Laser Diagnostics of High Speed Flows (Postprint)

    DTIC Science & Technology

    2006-10-01

    Tests were conducted in the Research Cell 18 direct connect wind tunnel facility at WPAFB. TDLAS was used to detect water and oxygen at...the measurements and provide, in essence, an internal standard for the development of the oxygen sensor . American Institute of Aeronautics and...definitely improves SNR if fast flow noise dominates as in this case. The improved optical and electronic TDLAS system detected water and oxygen at

  5. Great Barrier Reef, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Along the coast of Queensland, Australia (18.0S, 147.5E), timbered foothills of the Great Dividing Range separate the semi-arid interior of Queensland from the farmlands of the coastal plains. Prominent cleared areas in the forest indicate deforestation for farm and pasture lands. Offshore, islands and the Great Barrier Reef display sand banks along the southern sides of the structures indicating a dominant southerly wind and current direction.

  6. Venus' upper atmospheric dynamical structure from ground-based observations shortly before and after Venus' inferior conjunction 2009

    NASA Astrophysics Data System (ADS)

    Sornig, M.; Sonnabend, G.; Stupar, D.; Kroetz, P.; Nakagawa, H.; Mueller-Wodarg, I.

    2013-07-01

    Investigations on the dynamical structure of Venus upper atmosphere were carried out by infrared heterodyne Doppler wind measurements shortly before and after the venusian inferior conjunction on March 27, 2009. The Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) has been installed at the McMath-Pierce Solar Telescope on Kitt Peak, Arizona, USA to detect non-local thermodynamical equilibrium (non-LTE) emission lines of CO2 at a wavelength of 10.5 μm. These solar induced emission lines originate at a pressure level of 1 μbar corresponding to an altitude level of 110 ± 10 km. From the frequency position of the spectral lines we directly derived Doppler winds without any additional information. The high spatial resolution with a field-of-view of 1.6 arcsec compared to an apparent diameter of Venus of 57 arcsec allowed to collect information at different latitudes of the illuminated planet. Line of sight wind velocities between 189 ± 11 m/s and 41 ± 14 m/s were detected along the illuminated evening (western) limb in March and along the bright morning (eastern) limb in April. Single observations at the evening and morning terminator do not show a systematic difference of wind velocities. The measured wind is uniform at low and mid latitudes. In March a lower mean value of 134 ± 1 m/s was found compared to April where we retrieved a value of 141 ± 1 m/s. Poleward of a latitude of 50° we observed a strong decrease in wind speed down to 41 ± 14 m/s. In addition to the pure line of sight wind velocities we used the observing geometry for additional interpretations regarding a global flow from the subsolar point to the antisolar point (SS-AS flow) and a global retrograde superrotational zonal wind (RSZ). The estimations indicate a dominating SS-AS flow with a maximum wind velocity at the terminator of 138 ± 1 m/s at low and mid latitudes. No indication of a global RSZ component was found. Corresponding wind values for the latter yield wind velocities in the zonal direction between+20 m/s (retrograde direction) and -20 m/s (prograde direction) at different latitudes. An inversion of the wind direction is in disagreement with a global RSZ behavior. The comprehensive dataset was used to investigate short term wind variabilities and changes up to 58 m/s within few days were found. We included a detailed comparison of concurrent single position observations with sub-millimeter measurements (Clancy, R.T., Sandor, B.J., Moriarty-Schieven, G. [2012]. Icarus 217, 794-812) suggesting a cross terminator gradient at certain latitudes. A detailed interpretation of the observed time dependent behavior by global circulation models including wave activities will be addressed in future work.

  7. Nearshore circulation on a sea breeze dominated beach during intense wind events

    NASA Astrophysics Data System (ADS)

    Torres-Freyermuth, Alec; Puleo, Jack A.; DiCosmo, Nick; Allende-Arandía, Ma. Eugenia; Chardón-Maldonado, Patricia; López, José; Figueroa-Espinoza, Bernardo; de Alegria-Arzaburu, Amaia Ruiz; Figlus, Jens; Roberts Briggs, Tiffany M.; de la Roza, Jacobo; Candela, Julio

    2017-12-01

    A field experiment was conducted on the northern Yucatan coast from April 1 to April 12, 2014 to investigate the role of intense wind events on coastal circulation from the inner shelf to the swash zone. The study area is characterized by a micro-tidal environment, low-energy wave conditions, and a wide and shallow continental shelf. Furthermore, easterly trade winds, local breezes, and synoptic-scale events, associated with the passage of cold-fronts known as Nortes, are ubiquitous in this region. Currents were measured concurrently at different cross-shore locations during both local and synoptic-scale intense wind events to investigate the influence of different forcing mechanisms (i.e., large-scale currents, winds, tides, and waves) on the nearshore circulation. Field observations revealed that nearshore circulation across the shelf is predominantly alongshore-directed (westward) during intense winds. However, the mechanisms responsible for driving instantaneous spatial and temporal current variability depend on the weather conditions and the across-shelf location. During local strong sea breeze events (W > 10 m s-1 from the NE) occurring during spring tide, westward circulation is controlled by the tides, wind, and waves at the inner-shelf, shallow waters, and inside the surf/swash zone, respectively. The nearshore circulation is relaxed during intense land breeze events (W ≈ 9 m s-1 from the SE) associated with the low atmospheric pressure system that preceded a Norte event. During the Norte event (Wmax≈ 15 m s-1 from the NNW), westward circulation dominated outside the surf zone and was correlated to the Yucatan Current, whereas wave breaking forces eastward currents inside the surf/swash zone. The latter finding implies the existence of large alongshore velocity shear at the offshore edge of the surf zone during the Norte event, which enhances mixing between the surf zone and the inner shelf. These findings suggest that both sea breezes and Nortes play an important role in sediment and pollutant transport along/across the nearshore of the Yucatan shelf.

  8. A wind turbine hybrid simulation framework considering aeroelastic effects

    NASA Astrophysics Data System (ADS)

    Song, Wei; Su, Weihua

    2015-04-01

    In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.

  9. The Fluid Mechanics of Natural Ventilation

    NASA Astrophysics Data System (ADS)

    Linden, P. F.

    1999-01-01

    Natural ventilation of buildings is the flow generated by temperature differences and by the wind. The governing feature of this flow is the exchange between an interior space and the external ambient. Although the wind may often appear to be the dominant driving mechanism, in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of ventilation are discussed: mixing ventilation, in which the interior is at an approximately uniform temperature, and displacement ventilation, where there is strong internal stratification. The dynamics of these buoyancy-driven flows are considered, and the effects of wind on them are examined. The aim behind this work is to give designers rules and intuition on how air moves within a building; the research reveals a fascinating branch of fluid mechanics.

  10. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less

  11. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    DOE PAGES

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...

    2015-03-06

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less

  12. Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices.

    PubMed

    Hasegawa, H; Fujimoto, M; Phan, T-D; Rème, H; Balogh, A; Dunlop, M W; Hashimoto, C; Tandokoro, R

    2004-08-12

    Establishing the mechanisms by which the solar wind enters Earth's magnetosphere is one of the biggest goals of magnetospheric physics, as it forms the basis of space weather phenomena such as magnetic storms and aurorae. It is generally believed that magnetic reconnection is the dominant process, especially during southward solar-wind magnetic field conditions when the solar-wind and geomagnetic fields are antiparallel at the low-latitude magnetopause. But the plasma content in the outer magnetosphere increases during northward solar-wind magnetic field conditions, contrary to expectation if reconnection is dominant. Here we show that during northward solar-wind magnetic field conditions-in the absence of active reconnection at low latitudes-there is a solar-wind transport mechanism associated with the nonlinear phase of the Kelvin-Helmholtz instability. This can supply plasma sources for various space weather phenomena.

  13. The most intense current sheets in the high-speed solar wind near 1 AU

    NASA Astrophysics Data System (ADS)

    Podesta, John J.

    2017-03-01

    Electric currents in the solar wind plasma are investigated using 92 ms fluxgate magnetometer data acquired in a high-speed stream near 1 AU. The minimum resolvable scale is roughly 0.18 s in the spacecraft frame or, using Taylor's "frozen turbulence" approximation, one proton inertial length di in the plasma frame. A new way of identifying current sheets is developed that utilizes a proxy for the current density J obtained from the derivatives of the three orthogonal components of the observed magnetic field B. The most intense currents are identified as 5σ events, where σ is the standard deviation of the current density. The observed 5σ events are characterized by an average scale size of approximately 3di along the flow direction of the solar wind, a median separation of around 50di or 100di along the flow direction of the solar wind, and a peak current density on the order of 0.5 pA/cm2. The associated current-carrying structures are consistent with current sheets; however, the planar geometry of these structures cannot be confirmed using single-point, single-spacecraft measurements. If Taylor's hypothesis continues to hold for the energetically dominant fluctuations at kinetic scales 1

  14. Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple

    NASA Astrophysics Data System (ADS)

    Squyres, S. W.; Arvidson, R. E.; Bollen, D.; Bell, J. F.; Brückner, J.; Cabrol, N. A.; Calvin, W. M.; Carr, M. H.; Christensen, P. R.; Clark, B. C.; Crumpler, L.; Des Marais, D. J.; d'Uston, C.; Economou, T.; Farmer, J.; Farrand, W. H.; Folkner, W.; Gellert, R.; Glotch, T. D.; Golombek, M.; Gorevan, S.; Grant, J. A.; Greeley, R.; Grotzinger, J.; Herkenhoff, K. E.; Hviid, S.; Johnson, J. R.; Klingelhöfer, G.; Knoll, A. H.; Landis, G.; Lemmon, M.; Li, R.; Madsen, M. B.; Malin, M. C.; McLennan, S. M.; McSween, H. Y.; Ming, D. W.; Moersch, J.; Morris, R. V.; Parker, T.; Rice, J. W.; Richter, L.; Rieder, R.; Schröder, C.; Sims, M.; Smith, M.; Smith, P.; Soderblom, L. A.; Sullivan, R.; Tosca, N. J.; Wänke, H.; Wdowiak, T.; Wolff, M.; Yen, A.

    2006-12-01

    The Mars Exploration Rover Opportunity touched down at Meridiani Planum in January 2004 and since then has been conducting observations with the Athena science payload. The rover has traversed more than 5 km, carrying out the first outcrop-scale investigation of sedimentary rocks on Mars. The rocks of Meridiani Planum are sandstones formed by eolian and aqueous reworking of sand grains that are composed of mixed fine-grained siliciclastics and sulfates. The siliciclastic fraction was produced by chemical alteration of a precursor basalt. The sulfates are dominantly Mg-sulfates and also include Ca-sulfates and jarosite. The stratigraphic section observed to date is dominated by eolian bedforms, with subaqueous current ripples exposed near the top of the section. After deposition, interaction with groundwater produced a range of diagenetic features, notably the hematite-rich concretions known as ``blueberries.'' The bedrock at Meridiani is highly friable and has undergone substantial erosion by wind-transported basaltic sand. This sand, along with concretions and concretion fragments eroded from the rock, makes up a soil cover that thinly and discontinuously buries the bedrock. The soil surface exhibits both ancient and active wind ripples that record past and present wind directions. Loose rocks on the soil surface are rare and include both impact ejecta and meteorites. While Opportunity's results show that liquid water was once present at Meridiani Planum below and occasionally at the surface, the environmental conditions recorded were dominantly arid, acidic, and oxidizing and would have posed some significant challenges to the origin of life.

  15. A Broad Continuum of Aeolian Impact Ripple Sizes on Mars is Allowed by Low Dynamic Wind Pressures

    NASA Astrophysics Data System (ADS)

    Sullivan, R. J., Jr.; Kok, J. F.; Yizhaq, H.

    2017-12-01

    Aeolian impact ripples are generated by impacts of wind-blown sand grains, and are common in environments with loose sand on Earth and Mars. Previous work has shown that, within a fully developed saltation cloud, impact ripple height grows upward into the boundary layer until limited by the effects of increasing wind dynamic pressure at the crest (e.g., lengthening of splash trajectories, or direct entrainment of grains by the wind). On Earth, this process limits ripples of well-sorted 250 µm dune sands to heights of millimeters, and strong winds can impose sufficient lateral dynamic pressure to flatten and erase these ripples. Rover observations show much larger ripple-like bedforms on Mars, raising questions about their formative mechanism. Here, we hypothesize that two factors allow impact ripples to grow much higher on Mars than on Earth: (1) previous work predicts a much larger difference between impact threshold and fluid threshold wind speeds on Mars than on Earth; and (2) recent analysis has revealed how low saltation flux can be initiated and sustained well below fluid threshold on Mars, allowing impact ripples to migrate entirely under prevailing conditions of relatively low wind speeds in the thin martian atmosphere. Under these circumstances, martian ripples would need to grow much larger than on Earth before reaching their maximum height limited by wind dynamic pressure effects. Because the initial size of impact ripples is similar on Mars and Earth, this should generate a much broader continuum of impact ripple sizes on Mars. Compared with Earth, far more time should be needed on Mars for impact ripples to achieve their maximum possible size. Consequently, in cases where wind azimuths are mixed but one azimuth is more dominant than others, martian impact ripples of all sizes can exist together in the same setting, with the largest examples reflecting the most common/formative wind azimuths. In cases where wind azimuth is not dominated by a single azimuth over others, ripple height should vary with orientation and the maximum possible height might never have the chance to be achieved. Our hypothesis could explain the wide range of observed ripple sizes on Mars having wavelengths from cm to several m, and suggests that the largest martian ripples are in fact large impact ripples.

  16. Evolution of turbulence in the expanding solar wind, a numerical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yue; Grappin, Roland; Verdini, Andrea, E-mail: Yue.Dong@lpp.polytechnique.fr, E-mail: verdini@arcetri.astro.it, E-mail: grappin@lpp.polytechnique.fr

    2014-10-01

    We study the evolution of turbulence in the solar wind by solving numerically the full three-dimensional (3D) magnetohydrodynamic (MHD) equations embedded in a radial mean wind. The corresponding equations (expanding box model or EBM) have been considered earlier but never integrated in 3D simulations. Here, we follow the development of turbulence from 0.2 AU up to about 1.5 AU. Starting with isotropic spectra scaling as k {sup –1}, we observe a steepening toward a k {sup –5/3} scaling in the middle of the wave number range and formation of spectral anisotropies. The advection of a plasma volume by the expandingmore » solar wind causes a non-trivial stretching of the volume in directions transverse to radial and the selective decay of the components of velocity and magnetic fluctuations. These two effects combine to yield the following results. (1) Spectral anisotropy: gyrotropy is broken, and the radial wave vectors have most of the power. (2) Coherent structures: radial streams emerge that resemble the observed microjets. (3) Energy spectra per component: they show an ordering in good agreement with the one observed in the solar wind at 1 AU. The latter point includes a global dominance of the magnetic energy over kinetic energy in the inertial and f {sup –1} range and a dominance of the perpendicular-to-the-radial components over the radial components in the inertial range. We conclude that many of the above properties are the result of evolution during transport in the heliosphere, and not just the remnant of the initial turbulence close to the Sun.« less

  17. The US Navy Coupled Ocean-Wave Prediction System

    DTIC Science & Technology

    2014-09-01

    Stokes drift to be the dominant wave effect and that it increased surface drift speeds by 35% and veered the current in the direction of the wind...ocean model has been modified to incorporate the effect of the Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum...for fourth-order differences for horizontal baroclinic pressure gradients and for interpolation of Coriolis terms. There is an option to use the

  18. Early Spring in Europe: A Result of More Dominant North-Atlantic Southwesterlies?

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Atlas, R.; Chase, T. N.; Chou, S.-H.; Jusem, J. C.; Pielke, R. A., Sr.; Rogers, J.; Russell, G. L.; Schubert, S. D.; Sud, Y. C.; hide

    2000-01-01

    Abstract A 1999 study reports an advancement of spring in Europe by 0.2 days per year in the 30 years since 1960. Our analysis indicates that this trend results directly from a change in the late-winter surface winds over the eastern North Atlantic: the southwesterly direction became more dominant, and the speed of these southwesterlies increased slightly. Splitting the 52-year NCEP reanalysis dataset into the First Half, FH (1948-1973)), and the Second Half, SH (1974-1999), we analyze the wind direction for the February mean at three sites at 45N: site A at 30W, site B at 20W, and site C at 10W. The incidence (number of years) of the southwesterlies in SH Vs. (FH) at these sites respectively increased in SH as follows: 24(18), 19(12), 14(l 1); whereas the incidence of northeasterlies decreased: 0(2), 1(2), and 1(6). When the February mean wind is southwesterly, the monthly mean sensible heat flux from the ocean at these sites takes zero or slightly negative values, that is, the surface air is warmer than the ocean. Analyzing the scenario in the warm late winter 1990, we observe that the sensible heat flux from the ocean surface in February 1990 shows a "tongue" of negative values extending southwest from southern England to 7N. This indicates that the source of the maritime air advected into Europe lies to the south of the "tongue." Streamline analysis suggests that the Southwestern or southcentral North Atlantic is the source. For February 1990, we find strong, ascending motions over Europe at 700 mb, up to -0.4 Pa/s as monthly averages. Associated with the unstable low-levels of the troposphere are positive rain and cloud anomalies. Thus, positive in situ feedback over land in late winter (when shortwave absorption is not significant) apparently further enhances the surface temperature through an increase in the greenhouse effect due to increased water vapor and cloudiness.

  19. Characteristics and Mechanisms of Low-Level Jets in the Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Wei, W.; Wu, B. G.; Ye, X. X.; Wang, H. X.; Zhang, H. S.

    2013-12-01

    A dataset obtained using a wind-profile radar located at the Yangtze River Delta in China (N, E) in 2009 was used to investigate the characteristics and evolution of low-level jets (LLJs) along the east China coast. The study investigated the daily and seasonal structures of LLJs as well as several possible causes. A total of 1,407 1-h LLJ periods were detected based on an adaptive definition that enabled determination of four LLJ categories. The majority (77 %) of LLJs were found to have speeds 14.0 m s (maximum of 34.6 m s and occur at an average altitude below 600 m (76 % of the observed LLJs). The dominant direction of the LLJs was from the south-south-west, which accounted for nearly 32 %, with the second most common wind direction ranging from to , albeit with a number of stronger LLJs from the west-south-west. A comparison of LLJs and South-west Jets revealed that the frequencies of occurrence in summer are totally different. Results also revealed that in spring and summer, most LLJs originate from the south-south-west, whereas in autumn and winter, north-east is the dominant direction of origin. The peak heights of LLJs tended to be higher in winter than in other seasons. The horizontal wind speed and peak height of the LLJs displayed pronounced diurnal cycles. The Hilbert-Huang transform technique was applied to demonstrate that the intrinsic mode functions with a cycle of nearly 23 h at levels below 800 m, and the instantaneous amplitudes of inertial events (0.0417-0.0476 h frequencies) have large values at 300-600 m. The variations in the occurrences of LLJs suggested connections between the formation mechanisms of LLJs and the South-west Jet stream, steady occupation of synoptic-scale pressure system, and land-sea temperature contrasts.

  20. Wind-driven circulation patterns in a shallow estuarine lake: St Lucia, South Africa

    NASA Astrophysics Data System (ADS)

    Schoen, Julia H.; Stretch, Derek D.; Tirok, Katrin

    2014-06-01

    The spatiotemporal structure of wind-driven circulation patterns and associated water exchanges or residence times can drive important bio-hydrodynamic interactions in shallow lakes and estuaries. The St Lucia estuarine lake in South Africa is an example of such a system. It is a UNESCO World Heritage Site and RAMSAR wetland of international importance but no detailed research on its circulation patterns has previously been undertaken. In this study, a hydrodynamic model was used to investigate the structure of these circulations to provide insights into their role in transport and water exchange processes. A strong diurnal temporal pattern of wind speeds, together with directional switching between two dominant directions, drives intermittent water exchanges and mixing between the lake basins. “High speed flows in shallow nearshore areas with slower upwind counter-flows in deeper areas, linked by circulatory gyres, are key features of the circulation”. These patterns are strongly influenced by the complex geometry of St Lucia and constrictions in the system. Water exchange time scales are non-homogeneous with some basin extremities having relatively long residence times. The influence of the circulation patterns on biological processes is discussed.

  1. Solar Wind Proton Temperature Anisotropy: Linear Theory and WIND/SWE Observations

    NASA Technical Reports Server (NTRS)

    Hellinger, P.; Travnicek, P.; Kasper, J. C.; Lazarus, A. J.

    2006-01-01

    We present a comparison between WIND/SWE observations (Kasper et al., 2006) of beta parallel to p and T perpendicular to p/T parallel to p (where beta parallel to p is the proton parallel beta and T perpendicular to p and T parallel to p are the perpendicular and parallel proton are the perpendicular and parallel proton temperatures, respectively; here parallel and perpendicular indicate directions with respect to the ambient magnetic field) and predictions of the Vlasov linear theory. In the slow solar wind, the observed proton temperature anisotropy seems to be constrained by oblique instabilities, by the mirror one and the oblique fire hose, contrary to the results of the linear theory which predicts a dominance of the proton cyclotron instability and the parallel fire hose. The fast solar wind core protons exhibit an anticorrelation between beta parallel to c and T perpendicular to c/T parallel to c (where beta parallel to c is the core proton parallel beta and T perpendicular to c and T parallel to c are the perpendicular and parallel core proton temperatures, respectively) similar to that observed in the HELIOS data (Marsch et al., 2004).

  2. Interaction of the Local Interstellar Medium with the Heliosphere: Role of the Interior and Exterior Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Barnes, Aaron; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    A complete model of the global interaction between the solar wind and the local interstellar medium must take account of interstellar neutral atoms, interstellar ionized gas, solar and galactic magnetic fields, galactic and anomalous cosmic rays. For now, however, in view of the many uncertainties about conditions in the interstellar medium, etc., all models must be regarded as highly idealized and incomplete. In the present review I concentrate on the role of magnetic fields of solar and interstellar origin. The former, the interior field, has negligible influence on the unshocked solar wind; the immediate post-shock solar wind is probably low-beta, so that the interior magnetic field is still unimportant, but this situation changes as the plasma flows through the heliosheath, and a ridge of strong magnetic field may form to separate materials of polar and equatorial origin. The exterior (interstellar) field is likely to play an important role in determining the global morphology of the system outside the termination shock. If the exterior field is strong enough, it can compress the heliosphere (although exterior neutral and/or ionized hydrogen may play the dominant role). Even if the interstellar magnetic field does not provide the dominant pressure, its orientation can substantially affect the configuration of the heliosphere, especially the location and orientation of the heliospheric discontinuities. The configurations can be quite different for the situations in which the field and flow are (a) aligned or (b) transverse. Obliquity of the field produces asymmetry in the geometry of the system; in particular the noses of heliopause and interstellar bow shock are shifted away from the interstellar flow direction, and in opposite directions, due to the asymmetric draping of the magnetic field.

  3. Twistact techno-economic analysis for wind turbine applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, Brian Thomas; Koplow, Jeffrey P.; Vanness, Justin William

    This report is the final deliverable for a techno-economic analysis of the Sandia National Laboratories-developed Twistact rotary electrical conductor. The U.S. Department of Energy Wind Energy Technologies Office supported a team of researchers at Sandia National Laboratories and the National Renewable Energy Laboratory to evaluate the potential of the Twistact technology to serve as a viable replacement to rare-earth materials used in permanent-magnet direct-drive wind turbine generators. This report compares three detailed generator models, two as baseline technologies and a third incorporating the Twistact technology. These models are then used to calculate the levelized cost of energy (LCOE) for threemore » comparable offshore wind plants using the three generator topologies. The National Renewable Energy Laboratorys techno-economic analysis indicates that Twistact technology can be used to design low-maintenance, brush-free, and wire-wound (instead of rare-earth-element (REE) permanent-magnet), direct-drive wind turbine generators without a significant change in LCOE and generation efficiency. Twistact technology acts as a hedge against sources of uncertain costs for direct-drive generators. On the one hand, for permanent-magnet direct-drive (PMDD) generators, the long-term price of REEs may increase due to increases in future demand, from electric vehicles and other technologies, whereas the supply remains limited and geographically concentrated. The potential higher prices in the future adversely affect the cost competitiveness of PMDD generators and may thwart industry investment in the development of the technology for wind turbine applications. Twistact technology can eliminate industry risk around the uncertainty of REE price and availability. Traditional wire-wound direct-drive generators experience reliability issues and higher maintenance costs because of the wear on the contact brushes necessary for field excitation. The brushes experience significant wear and require regular replacement over the lifetime of operation (on the order of a year or potentially less time). For offshore wind applications, the focus of this study, maintenance costs are higher than typical land-based systems due to the added time it often requires to access the site for repairs. Thus, eliminating the need for regular brush replacements reduces the uncertain costs and energy production losses associated with maintenance and replacement of contact brushes. Further, Twistact has a relatively negligible impact on LCOE but hedges risks associated with the current dominant designs for direct-drive generators for PMDD REE price volatility and wire-wound generator contact brush reliability. A final section looks at the overall supply chain of REEs considering the supply-side and demand-side drivers that encourage the risk of depending on these materials to support future deployment of not only wind energy but other industries as well.« less

  4. Droplet Depinning on Inclined Surfaces at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    White, Edward; Singh, Natasha; Lee, Sungyon

    2017-11-01

    Contact angle hysteresis enables a sessile liquid drop to adhere to a solid surface when the surface is inclined, the drop is exposed to gas-phase flow, or the drop is exposed to both forcing modalities. Previous work by Schmucker and White (2012.DFD.M4.6) identified critical depinning Weber numbers for water drops subject to gravity- and wind-dominated forcing. This work extends the Schmucker and White data and finds the critical depinning Weber number obeys a two-slope linear model. Under pure wind forcing at Reynolds numbers above 1500 and with zero surface inclination, Wecrit = 8.0 . For non-zero inclinations, α, Wecrit decreases proportionally to A Bo sinα where A is the drop aspect ratio and Bo is its Bond number. The same relationship holds for α < 0 when gravity resists depinning by wind. Above We 4 , depinning is dominated by wind forcing; at We < 4 , depinning is gravity dominated. While Wecrit depends linearly on A Bo sinα in both forcing regimes, the slopes of the the limit lines depend on the forcing regime. The difference is attributed to different drop shapes and contact angle distributions that arise depending on whether wind or gravity dominates the depinning behavior. Supported by the National Science Foundation through Grant CBET-1605947.

  5. Statistical distribution of wind speeds and directions globally observed by NSCAT

    NASA Astrophysics Data System (ADS)

    Ebuchi, Naoto

    1999-05-01

    In order to validate wind vectors derived from the NASA scatterometer (NSCAT), statistical distributions of wind speeds and directions over the global oceans are investigated by comparing with European Centre for Medium-Range Weather Forecasts (ECMWF) wind data. Histograms of wind speeds and directions are calculated from the preliminary and reprocessed NSCAT data products for a period of 8 weeks. For wind speed of the preliminary data products, excessive low wind distribution is pointed out through comparison with ECMWF winds. A hump at the lower wind speed side of the peak in the wind speed histogram is discernible. The shape of the hump varies with incidence angle. Incompleteness of the prelaunch geophysical model function, SASS 2, tentatively used to retrieve wind vectors of the preliminary data products, is considered to cause the skew of the wind speed distribution. On the contrary, histograms of wind speeds of the reprocessed data products show consistent features over the whole range of incidence angles. Frequency distribution of wind directions relative to spacecraft flight direction is calculated to assess self-consistency of the wind directions. It is found that wind vectors of the preliminary data products exhibit systematic directional preference relative to antenna beams. This artificial directivity is also considered to be caused by imperfections in the geophysical model function. The directional distributions of the reprocessed wind vectors show less directivity and consistent features, except for very low wind cases.

  6. 3D Airflow patterns over coastal foredunes: implications for aeolian sediment transport

    NASA Astrophysics Data System (ADS)

    Jackson, Derek W. T.; Cooper, Andrew G.; Baas, Andreas C. W.; Lynch, Kevin; Beyers, Meiring

    2010-05-01

    A fundamental criterion for the development of coastal sand dunes is usually highlighted as a significant onshore wind component of the local wind field. The presence of large sand dune systems on coasts where the predominant wind blows offshore is therefore difficult to explain and usually they are attributed to the past occurrence of onshore winds and, by implication, subsequent changes in climate. Recent studies have shown that offshore winds can be deflected or 'steered' by existing dunes so that their direction changes. This can occur to such an extent that a process known as 'flow reversal' can arise, whereby the initially offshore wind actually flows onshore at the beach. This process is important because it can cause sand to be blown from the beach and into the dunes, causing them to grow. This may be central in explaining the presence of extensive dunes on coasts where the dominant wind is offshore, but is also important in how dunes recover after periods of wave erosion during storms. Offshore winds have traditionally been excluded from sediment budget calculations for coastal dunes, but when they do transport sand onshore, this may have been an important oversight leading to significant underestimates of the volume of sand being transported by wind. This work investigates the controls on the processes and the mechanisms involved in deformation of the flow and resulting sediment transport at coastal foredunes in Northern Ireland. We use a combination of field measurement of wind and sediment transport coupled with state-of-the-art aerodynamic modelling using computational fluid dynamics (CFD) and 3-D sonic anemometry. Our working hypothesis is that offshore winds contribute substantially to foredune behaviour on leeside coasts. Preliminary results show strong reverse flow eddies in the seaward side of the foredunes during offshore wind events. These secondary flow reversals have been above velocity threshold and are transport capable. Using CFD modelling across a high resolution LIDAR surface of the dunes and beach we have isolated key areas of wind direction and velocity patterns which are important in aeolian transport budgets. Results are particularly important in post-storm recovery of foredunes damaged under wave action as offshore winds can initiate significant onshore transport, re-supplying the backbeach and foredune zones.

  7. Changes to extreme wave climates of islands within the Western Tropical Pacific throughout the 21st century under RCP 4.5 and RCP 8.5, with implications for island vulnerability and sustainability

    USGS Publications Warehouse

    Shope, James B.; Storlazzi, Curt; Erikson, Li; Hegermiller, Christie

    2016-01-01

    Waves are the dominant influence on coastal morphology and ecosystem structure of tropical Pacific islands. Wave heights, periods, and directions for the 21st century were projected using near-surface wind fields from four atmosphere-ocean coupled global climate models (GCM) under representative concentration pathways (RCP) 4.5 and 8.5. GCM-derived wind fields forced the global WAVEWATCH-III wave model to generate hourly time-series of bulk wave parameters around 25 islands in the mid to western tropical Pacific Ocean for historical (1976–2005), mid-, and end-of-century time periods. Extreme significant wave heights decreased (~10.0%) throughout the 21st century under both climate scenarios compared to historical wave conditions and the higher radiative forcing 8.5 scenario displayed a greater and more widespread decrease in extreme significant wave heights compared to the lower forcing 4.5 scenario. An exception was for the end-of-century June–August season. Offshore of islands in the central equatorial Pacific, extreme significant wave heights displayed the largest changes from historical values. The frequency of extreme events during December–February decreased under RCP 8.5, whereas the frequency increased under RCP 4.5. Mean wave directions often rotated more than 30° clockwise at several locations during June–August, which could indicate a weakening of the trade winds’ influence on extreme wave directions and increasing dominance of Southern Ocean swell or eastern shift of storm tracks. The projected changes in extreme wave heights, directions of extreme events, and frequencies at which extreme events occur will likely result in changes to the morphology and sustainability of island nations.

  8. WIND1 Promotes Shoot Regeneration through Transcriptional Activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis[OPEN

    PubMed Central

    Ohnuma, Mariko; Kurata, Tetsuya; Nakata, Masaru; Ohme-Takagi, Masaru

    2017-01-01

    Many plant species display remarkable developmental plasticity and regenerate new organs after injury. Local signals produced by wounding are thought to trigger organ regeneration but molecular mechanisms underlying this control remain largely unknown. We previously identified an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) as a central regulator of wound-induced cellular reprogramming in plants. In this study, we demonstrate that WIND1 promotes callus formation and shoot regeneration by upregulating the expression of the ENHANCER OF SHOOT REGENERATION1 (ESR1) gene, which encodes another AP2/ERF transcription factor in Arabidopsis thaliana. The esr1 mutants are defective in callus formation and shoot regeneration; conversely, its overexpression promotes both of these processes, indicating that ESR1 functions as a critical driver of cellular reprogramming. Our data show that WIND1 directly binds the vascular system-specific and wound-responsive cis-element-like motifs within the ESR1 promoter and activates its expression. The expression of ESR1 is strongly reduced in WIND1-SRDX dominant repressors, and ectopic overexpression of ESR1 bypasses defects in callus formation and shoot regeneration in WIND1-SRDX plants, supporting the notion that ESR1 acts downstream of WIND1. Together, our findings uncover a key molecular pathway that links wound signaling to shoot regeneration in plants. PMID:28011694

  9. Emission of hydrogen energetic neutral atoms from the Martian subsolar magnetosheath

    NASA Astrophysics Data System (ADS)

    Wang, X.-D.; Alho, M.; Jarvinen, R.; Kallio, E.; Barabash, S.; Futaana, Y.

    2016-01-01

    We have simulated the hydrogen energetic neutral atom (ENA) emissions from the subsolar magnetosheath of Mars using a hybrid model of the proton plasma charge exchanging with the Martian exosphere to study statistical features revealed from the observations of the Neutral Particle Detectors on Mars Express. The simulations reproduce well the observed enhancement of the hydrogen ENA emissions from the dayside magnetosheath in directions perpendicular to the Sun-Mars line. Our results show that the neutralized protons from the shocked solar wind are the dominant ENA population rather than those originating from the pickup planetary ions. The simulation also suggests that the observed stronger ENA emissions in the direction opposite to the solar wind convective electric field result from a stronger proton flux in the same direction at the lower magnetosheath; i.e., the proton fluxes in the magnetosheath are not cylindrically symmetric. We also confirm the observed increasing of the ENA fluxes with the solar wind dynamical pressure in the simulations. This feature is associated with a low altitude of the induced magnetic boundary when the dynamic pressure is high and the magnetosheath protons can reach to a denser exosphere, and thus, the charge exchange rate becomes higher. Overall, the analysis suggests that kinetic effects play an important and pronounced role in the morphology of the hydrogen ENA distribution and the plasma environment at Mars, in general.

  10. Dust and nutrient enrichment by wind erosion from Danish soils in dependence of tillage direction

    NASA Astrophysics Data System (ADS)

    Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.

    2016-04-01

    Wind erosion is a selective process, which promotes erosion of fine particles. Therefore, it can be assumed that increasing erosion rates are generally associated with increasing loss of dust sized particles and nutrients. However, this selective process is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. Since tillage ridges are often the only protection measure available on poorly aggregated soils in absence of a protective vegetation cover, it is very important to know which orientation respective to the dominant wind direction provides best protection. This knowledge could be very helpful for planning erosion protection measures on fields with high wind erosion susceptibility. The main objective of this study, therefore, was to determine the effect of tillage direction on dust and nutrient mobilization by wind, using wind tunnel simulations. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios - flat surface, parallel tillage, perpendicular tillage. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 μm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.

  11. A stationary phase solution for mountain waves with application to mesospheric mountain waves generated by Auckland Island

    NASA Astrophysics Data System (ADS)

    Broutman, Dave; Eckermann, Stephen D.; Knight, Harold; Ma, Jun

    2017-01-01

    A relatively general stationary phase solution is derived for mountain waves from localized topography. It applies to hydrostatic, nonhydrostatic, or anelastic dispersion relations, to arbitrary localized topography, and to arbitrary smooth vertically varying background temperature and vector wind profiles. A simple method is introduced to compute the ray Jacobian that quantifies the effects of horizontal geometrical spreading in the stationary phase solution. The stationary phase solution is applied to mesospheric mountain waves generated by Auckland Island during the Deep Propagating Gravity Wave Experiment. The results are compared to a Fourier solution. The emphasis is on interpretations involving horizontal geometrical spreading. The results show larger horizontal geometrical spreading for nonhydrostatic waves than for hydrostatic waves in the region directly above the island; the dominant effect of horizontal geometrical spreading in the lower ˜30 km of the atmosphere, compared to the effects of refraction and background density variation; and the enhanced geometrical spreading due to directional wind in the approach to a critical layer in the mesosphere.

  12. Lidar Measurements of Tropospheric Wind Profiles with the Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Mathur, Savyasachee; Chen, Huailin

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. A variety of direct detection Doppler wind lidar measurements have recently been reported indicating the growing interest in this area. Our program at Goddard has concentrated on the development of the edge technique for lidar wind measurements. Implementations of the edge technique using either the aerosol or molecular backscatter for the Doppler wind measurement have been described. The basic principles have been verified in lab and atmospheric lidar wind experiments. The lidar measurements were obtained with an aerosol edge technique lidar operating at 1064 nm. These measurements demonstrated high spatial resolution (22 m) and high velocity sensitivity (rms variances of 0.1 m/s) in the planetary boundary layer (PBL). The aerosol backscatter is typically high in the PBL and the effects of the molecular backscatter can often be neglected. However, as was discussed in the original edge technique paper, the molecular contribution to the signal is significant above the boundary layer and a correction for the effects of molecular backscatter is required to make wind measurements. In addition, the molecular signal is a dominant source of noise in regions where the molecular to aerosol ratio is large since the energy monitor channel used in the single edge technique measures the sum of the aerosol and molecular signals. To extend the operation of the edge technique into the free troposphere we have developed a variation of the edge technique called the double edge technique. In this paper a ground based aerosol double edge lidar is described and the first measurements of wind profiles in the free troposphere obtained with this lidar will be presented.

  13. Assessment of the effects of environmental radiation on wind chill equivalent temperatures.

    PubMed

    Shitzer, Avraham

    2008-09-01

    Combinations of wind-driven convection and environmental radiation in cold weather, make the environment "feel" colder. The relative contributions of these mechanisms, which form the basis for estimating wind chill equivalent temperatures (WCETs), are studied over a wide range of environmental conditions. Distinction is made between direct solar radiation and environmental radiation. Solar radiation, which is not included in the analysis, has beneficial effects, as it counters and offsets some of the effects due to wind and low air temperatures. Environmental radiation effects, which are included, have detrimental effects in enhancing heat loss from the human body, thus affecting the overall thermal sensation due to the environment. The analysis is performed by a simple, steady-state analytical model of human-environment thermal interaction using upper and lower bounds of environmental radiation heat exchange. It is shown that, over a wide range of relevant air temperatures and reported wind speeds, convection heat losses dominate over environmental radiation. At low wind speeds radiation contributes up to about 23% of the overall heat loss from exposed skin areas. Its relative contributions reduce considerably as the time of the exposure prolongs and exposed skin temperatures drop. At still higher wind speeds, environmental radiation effects become much smaller contributing about 5% of the total heat loss. These values fall well within the uncertainties associated with the parameter values assumed in the computation of WCETs. It is also shown that environmental radiation effects may be accommodated by adjusting reported wind speeds slightly above their reported values.

  14. Local diurnal wind-driven variabiity and upwelling in a small coastal embayment

    NASA Astrophysics Data System (ADS)

    Walter, R. K.; Reid, E. C.; Davis, K. A.; Armenta, K. J.; Merhoff, K.; Nidzieko, N.

    2017-12-01

    The oceanic response to high-frequency local diurnal wind forcing is examined in a small coastal embayment located along an understudied stretch of the central California coast. We show that local diurnal wind forcing is the dominant control on nearshore temperature variability and circulation patterns. A complex empirical orthogonal function (CEOF) analysis of velocities in San Luis Obispo Bay reveals that the first-mode CEOF amplitude time series, which accounts for 47.9% of the variance, is significantly coherent with the local wind signal at the diurnal frequency and aligns with periods of weak and strong wind forcing. The diurnal evolution of the hydrographic structure and circulation in the bay is examined using both individual events and composite-day averages. During the late afternoon, the local wind strengthens and results in a sheared flow with near-surface warm waters directed out of the bay and a compensating flow of colder waters into the bay over the bottom portion of the water column. This cold water intrusion into the bay causes isotherms to shoal toward the surface and delivers subthermocline waters to shallow reaches of the bay, representing a mechanism for small-scale upwelling. When the local winds relax, the warm water mass advects back into the bay in the form of a buoyant plume front. Local diurnal winds are expected to play an important role in nearshore dynamics and local upwelling in other small coastal embayments with important implications for various biological and ecological processes.

  15. Local diurnal wind-driven variability and upwelling in a small coastal embayment

    NASA Astrophysics Data System (ADS)

    Walter, Ryan K.; Reid, Emma C.; Davis, Kristen A.; Armenta, Kevin J.; Merhoff, Kevin; Nidzieko, Nicholas J.

    2017-02-01

    The oceanic response to high-frequency local diurnal wind forcing is examined in a small coastal embayment located along an understudied stretch of the central California coast. We show that local diurnal wind forcing is the dominant control on nearshore temperature variability and circulation patterns. A complex empirical orthogonal function (CEOF) analysis of velocities in San Luis Obispo Bay reveals that the first-mode CEOF amplitude time series, which accounts for 47.9% of the variance, is significantly coherent with the local wind signal at the diurnal frequency and aligns with periods of weak and strong wind forcing. The diurnal evolution of the hydrographic structure and circulation in the bay is examined using both individual events and composite-day averages. During the late afternoon, the local wind strengthens and results in a sheared flow with near-surface warm waters directed out of the bay and a compensating flow of colder waters into the bay over the bottom portion of the water column. This cold water intrusion into the bay causes isotherms to shoal toward the surface and delivers subthermocline waters to shallow reaches of the bay, representing a mechanism for small-scale upwelling. When the local winds relax, the warm water mass advects back into the bay in the form of a buoyant plume front. Local diurnal winds are expected to play an important role in nearshore dynamics and local upwelling in other small coastal embayments with important implications for various biological and ecological processes.

  16. The Ly(alpha) Line Profiles of Ultraluminous Infrared Galaxies: Fast Winds and Lyman Continuum Leakage

    NASA Technical Reports Server (NTRS)

    Martin, Crystal L.; Dijkstra, Mark; Henry, Alaina L.; Soto, Kurt T.; Danforth, Charles W.; Wong, Joseph

    2015-01-01

    We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly(alpha) emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly(alpha) profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km/s in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly(alpha) line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly(alpha) attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly(alpha) photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly(alpha) and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly(alpha) emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs.

  17. Occurrence characteristics of medium-scale gravity waves observed in OH and OI nightglow over Adelaide (34.5°S, 138.5°E)

    NASA Astrophysics Data System (ADS)

    Ding, F.; Yuan, H.; Wan, W.; Reid, I. M.; Woithe, J. M.

    2004-07-01

    This paper presents a 7 year climatology describing medium-scale gravity waves observed in the menopause region covering the years from 1995 to 2001. The data comes from the OI and OH airglow observations of the three-field photometer employed at the University of Adelaide's Buckland Park, Australia (34.5°S, 138.5°E). About 1300 gravity wave events (AGW) are identified during the years 1995-2001. These AGW events usually persist for between 40 min and 4 hours. The magnitudes range from 1% to 14% of the background intensities and peak at 2% for OI observations and at 3% for OH observations. The observed periods range from 10 to 30 min, and the horizontal phase speeds range from 20 to 250 m s-1, with dominant wave scales of 17 min, 70 m s-1 for OI observations and 20 min, 40 m s-1 for OH observations. The intrinsic parameters are obtained by using medium-frequency (MF) wind data observed at the same place. The occurrence frequency of AGW events peaks at 13 min, 40 m s-1 for both OI and OH observations. The occurrence rate of gravity waves has a major peak in summer and a minor peak in winter. There is an obvious dominating southeastward direction for gravity waves, with azimuths of 160° in summer and 130° in winter. Studies for gravity waves observed in various locations show a similar tendency of propagating meridionally toward the summer pole. This implies that the tendency of propagating toward the summer pole may be a global trend for medium-scale gravity waves observed in the mesopause region. During summer, gravity waves propagate against winds measured by MF radar in their dominating direction. Using the ray tracing method, we found that the seasonal variation of winds limits the access of gravity waves to the observation height through reflection and critical coupling, which is one of the causes leading to the seasonal behavior of gravity waves observed over Adelaide.

  18. Wind and Lava

    NASA Image and Video Library

    2006-11-27

    In this image wind seems to be the dominant process, but lava flows are still recognizable from the surface texture. It appears that the lava flow top left is relatively thin, and the material below is easily eroded by the wind

  19. Phytoplankton pigment patterns and wind forcing off central California

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.; Barksdale, Brett

    1991-01-01

    Mesoscale variability in phytoplankton pigment distributions of central California during the spring-summer upwelling season are studied via a 4-yr time series of high-resolution coastal zone color scanner imagery. Empirical orthogonal functions are used to decompose the time series of spatial images into its dominant modes of variability. The coupling between wind forcing of the upper ocean and phytoplankton distribution on mesoscales is investigated. Wind forcing, in particular the curl of the wind stress, was found to play an important role in the distribution of phytoplankton pigment in the California Current. The spring transition varies in timing and intensity from year to year but appears to be a recurrent feature associated with the rapid onset of the upwelling-favorable winds. Although the underlying dynamics may be dominated by processes other than forcing by wind stress curl, it appears that curl may force the variability of the filaments and hence the pigment patterns.

  20. Elsaesser variable analysis of fluctuations in the ion foreshock and undisturbed solar wind

    NASA Technical Reports Server (NTRS)

    Labelle, James; Treumann, Rudolf A.; Marsch, Eckart

    1994-01-01

    Magnetohydrodynamics (MHD) fluctuations in the solar wind have been investigated previously by use of Elsaesser variables. In this paper, we present a comparison of the spectra of Elsaesser variables in the undisturbed solar wind at 1 AU and in the ion foreshock in front of the Earth. Both observations take place under relatively strong solar wind flow speed conditions (approximately equal 600 km/s). In the undisturbed solar wind we find that outward propagating Alfven waves dominate, as reported by other observers. In the ion foreshock the situation is more complex, with neither outward nor inward propagation dominating over the entire range investigated (1-10 mHz). Measurements of the Poynting vectors associated with the fluctuations are consistent with the Elsaesser variable analysis. These results generally support interpretations of the Elsaesser variables which have been made based strictly on solar wind data and provide additional insight into the nature of the ion foreshock turbulence.

  1. Climatology of mesopause region nocturnal temperature, zonal wind, and sodium density observed by sodium lidar over Hefei, China (32°N, 117°E)

    NASA Astrophysics Data System (ADS)

    Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.

    2017-12-01

    The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.

  2. Forest impact estimated with NOAA AVHRR and landsat TM data related to an empirical hurricane wind-field distribution

    USGS Publications Warehouse

    Ramsey, Elijah W.; Hodgson, M.E.; Sapkota, S.K.; Nelson, G.A.

    2001-01-01

    An empirical model was used to relate forest type and hurricane-impact distribution with wind speed and duration to explain the variation of hurricane damage among forest types along the Atchafalaya River basin of coastal Louisiana. Forest-type distribution was derived from Landsat Thematic Mapper image data, hurricane-impact distribution from a suite of transformed advanced very high resolution radiometer images, and wind speed and duration from a wind-field model. The empirical model explained 73%, 84%, and 87% of the impact variances for open, hardwood, and cypress-tupelo forests, respectively. These results showed that the estimated impact for each forest type was highly related to the duration and speed of extreme winds associated with Hurricane Andrew in 1992. The wind-field model projected that the highest wind speeds were in the southern basin, dominated by cypress-tupelo and open forests, while lower wind speeds were in the northern basin, dominated by hardwood forests. This evidence could explain why, on average, the impact to cypress-tupelos was more severe than to hardwoods, even though cypress-tupelos are less susceptible to wind damage. Further, examination of the relative importance of wind speed in explaining the impact severity to each forest type showed that the impact to hardwood forests was mainly related to tropical-depression to tropical-storm force wind speeds. Impacts to cypress-tupelo and open forests (a mixture of willows and cypress-tupelo) were broadly related to tropical-storm force wind speeds and by wind speeds near and somewhat in excess of hurricane force. Decoupling the importance of duration from speed in explaining the impact severity to the forests could not be fully realized. Most evidence, however, hinted that impact severity was positively related to higher durations at critical wind speeds. Wind-speed intervals, which were important in explaining the impact severity on hardwoods, showed that higher durations, but not the highest wind speeds, were concentrated in the northern basin, dominated by hardwoods. The extreme impacts associated with the cypress-tupelo forests in the southeast corner of the basin intersected the highest durations as well as the highest wind speeds. ?? 2001 Published by Elsevier Science Inc.

  3. Observation and simulation of near-surface wind and its variation with topography in Urumqi, West China

    NASA Astrophysics Data System (ADS)

    Jin, Lili; Li, Zhenjie; He, Qing; Miao, Qilong; Zhang, Huqiang; Yang, Xinghua

    2016-12-01

    Near-surface wind measurements obtained with five 100-m meteorology towers, 39 regional automatic stations, and simulations by the Weather Research and Forecasting (WRF) model were used to investigate the spatial structure of topography-driven flows in the complex urban terrain of Urumqi, China. The results showed that the wind directions were mainly northerly and southerly within the reach of 100 m above ground in the southern suburbs, urban area, and northern suburbs, which were consistent with the form of the Urumqi gorge. Strong winds were observed in southern suburbs, whereas the winds in the urban, northern suburbs, and northern rural areas were weak. Static wind occurred more frequently in the urban and northern rural areas than in the southern suburbs. In the southern suburbs, wind speed was relatively high throughout the year and did not show significant seasonal variations. The average annual wind speed in this region varied among 1.9-5.5, 1.1-3.6, 1.2-4.3, 1.2-4.3, and 1.1-3.5 m s -1 within the reach of 100 m above ground at Yannanlijiao, Shuitashan, Liyushan, Hongguangshan, and Midong, respectively. The flow characteristics comprised more airflows around the mountain, where the convergence and divergence were dominated by the terrain in eastern and southwestern Urumqi. Further analysis showed that there was a significant mountain-valley wind in spring, summer, and autumn, which occurred more frequently in spring and summer for 10-11 h in urban and northern suburbs. During daytime, there was a northerly valley wind, whereas at night there was a southerly mountain wind. The conversion time from the mountain wind to the valley wind was during 0800-1000 LST (Local Standard Time), while the conversion from the valley wind to the mountain wind was during 1900-2100 LST. The influence of the mountain-valley wind in Urumqi City was most obvious at 850 hPa, according to the WRF model.

  4. Wind farm density and harvested power in very large wind farms: A low-order model

    NASA Astrophysics Data System (ADS)

    Cortina, G.; Sharma, V.; Calaf, M.

    2017-07-01

    In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.

  5. Avian sensitivity to mortality: prioritising migratory bird species for assessment at proposed wind farms.

    PubMed

    Desholm, Mark

    2009-06-01

    Wind power generation is likely to constitute one of the most extensive human physical exploitation activities of European marine areas in the near future. The many millions of migrating birds that pass these man-made obstacles are protected by international obligations and the subject of public concerns. Yet some bird species are more sensitive to bird-wind turbine mortality than others. This study developed a simple and logical framework for ranking bird species with regard to their relative sensitivity to bird-wind turbine-collisions, and applied it to a data set comprising 38 avian migrant species at the Nysted offshore wind farm in Denmark. Two indicators were selected to characterize the sensitivity of each individual species: 1) relative abundance and 2) demographic sensitivity (elasticity of population growth rate to changes in adult survival). In the case-study from the Nysted offshore wind farm, birds of prey and waterbirds dominated the group of high priority species and only passerines showed a low risk of being impacted by the wind farm. Even where passerines might be present in very high numbers, they often represent insignificant segments of huge reference populations that, from a demographic point of view, are relatively insensitive to wind farm-related adult mortality. It will always be important to focus attention and direct the resources towards the most sensitive species to ensure cost-effective environmental assessments in the future, and in general, this novel index seems capable of identifying the species that are at high risk of being adversely affected by wind farms.

  6. Barchan Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 April 2004 One of the simplest forms a sand dune can take is the barchan. The term, apparently, comes from the Arabic word for crescent-shaped dunes. They form in areas with a single dominant wind direction that are also not overly-abundant in sand. The barchan dunes shown here were imaged in March 2004 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) as it passed over a crater in western Arabia Terra near 21.1oN, 17.6oW. The horns and steep slope on each dune, known as the slip face, point toward the south, indicating prevailing winds from the north (top). The picture covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

  7. Climate related trends and meteorological conditions in European Arctic region - Porsanger fjord, Norway

    NASA Astrophysics Data System (ADS)

    Cieszyńska, Agata; Stramska, Małgorzata

    2017-04-01

    Climate change has significant effect on the Arctic environment, where global trends are amplified. In this study, we have focused on the Porsanger fjord, located in European Arctic in the coastal region of the Barents Sea. We have analyzed climate related trends and meteorological condititions in the area of interest. Meteorological data included wind speed and direction, air temperature (AT) and precipitation from Era-Interim reanalysis (1986-2015) and local observations (1996-2015) from Lakselv (L, fjord's head area) and Honningsvaag (H - fjord's exit area). Our results confirm that this region is undergoing climate change related warming, which is indicated by rising air temperatures. Based on long-term reanalysis data, estimated trends for air temperature (AT) in Porsanger fjord are: 0.0536 °C year-1 at fjord's exit and 0.0428 °C year-1 at fjord's head. The results show that climate change does not seem to have a significant effect on long-term changes of wind speed and precipitation in the Porsanger fjord. Statistical analysis underlined significant spatial variability of meteorological conditions inside the fjord. For example, there are large differences in the annual cycle of AT with monthly mean January and July values of -8.4 and 12.6 °C in L and -2.5 and 10.1 °C in H. Dominant wind directions in Lakselv are S and SSE, while in Honningsvaag S and SSW directions prevail. Strong wind events (above 12 m s-1) are more frequent in H than in L. Annual cycle is characterized by stronger winds in winter and seasonality of wind direction. Precipitation for a given location can change by about 50% between years and varies spatially. Synoptic scale and within day variability are extremely intense in the area of interest. Air temperature and wind speed and direction can change dramatically in hours. In addition, regular patterns of the daily cycle of AT have different intensity in L and H. It is interesting to note that in spring/summer season, the daily cycle of air temperature difference between L and H is also strong and has an influence on winds. Estimates of land-originated water discharge (derived from the E-Hype model) show seasonal cycle with the maximum runoff in late spring/early summer. The main features of climate related trends and the effects of oceanic/continental interactions, presented in this study, shape the environment of the fjord and are possible to be analogous in other Norwegian fjords with comparable geographical location. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).

  8. Influence of the surface drag coefficient (young waves) on the current structure of the Berre lagoon

    NASA Astrophysics Data System (ADS)

    Alekseenko, Elena; Roux, Bernard; Kharif, Christian; Sukhinov, Alexander; Kotarba, Richard; Fougere, Dominique; Chen, Paul Gang

    2013-04-01

    Due to the shallowness, currents and hydrodynamics of Berre lagoon (South of France) are closely conditioned by the bottom topography, and wind affects the entire water column, as for many other Mediterranean lagoons (Perez-Ruzafa, 2011). Wind stress, which is caused by moving atmospheric disturbance, is known to have a major influence in lagoon water circulation. According to the numerical simulation for the main directions of the wind: N-NW, S-SE and W (wind speed of 80 km/h) it is observed that the current is maximal alongshore in the wind direction; the bottom nearshore current being larger in shallower area. This fact is coherent with fundamental principle of wind-driven flows in closed or partially closed basins which states that in shallow water the dominant force balance is between surface wind stress and bottom friction, yielding a current in the direction of the wind (Mathieu et al, 2002, Hunter and Hearn, 1987; Hearn and Hunter,1990). A uniform wind stress applied at the surface of a basin of variable depth sets up a circulation pattern characterized by relatively strong barotropic coastal currents in the direction of the wind, with return flow occurring over the deeper regions (Csanady, 1967; Csanady, 1971). One of the key parameters characterizing the wind stress formulation is a surface drag coefficient (Cds). Thus, an effect of a surface drag coefficient, in the range 0.0016 - 0.0032, will be analyzed in this work. The value of surface drag coefficient Cds = 0.0016 used in our previous studies (Alekseenko et al., 2012), would correspond to mature waves (open sea). But, in the case of semi-closed lagoonal ecosystem, it would be more appropriate to consider "young waves" mechanism. A dependency of this coefficient in terms of the wind speed is given by Young (1999) in both cases of mature waves and young waves. For "young waves" generated at a wind speed of 80 km/h, Cds = 0.0032. So, the influence of Cds on the vertical profile of the velocity in the water column is analyzed in the range 0.0016 - 0.0032. For the three main wind directions considered in this work, for a wind speed of 80 km/h, the complex current structure of the Berre lagoon is analysed. In the nearshore zones, strong alongshore downwind currents are generated, reaching values of the order of 1m/s (up to 1.5 m/s) at the free surface, and 0.5 - 0.6 m/s at the bottom. References Alekseenko E., B. Roux, A. Sukhinov, R. Kotarba, D. Fougere. Coastal hydrodynamics in a windy lagoon; submitted to Computers and Fluids, oct. 2012 Csanady G. T.: Large-scale motion in the Great Lakes, Journal of Geophysical Research, 72(16), 4151-4161, 1967. Csanady G. T. : Baroclinic boundary currents and long edge-waves in basins with sloping shores. J. Physical Oceanography 1(2):92-104, 1971. Hunter, J.R. and Hearn, C.J.: Lateral and vertical variations in the wind-driven circulations in long, shallow lakes, Journal of Geophysical Research, 92 (C12), 1987. Hearn, C.J. and Hunter, J.R.: A note on the equivalence of some two- and three-dimensional models of wind-driven barotropic flow in shallow seas, Applied Mathematical Modelling, 14, 553-556, 1990. Mathieu P.P., Deleersnijder E., Cushman-Roisin B., Beckers J.M. and Bolding K.: The role of topography in small well-mixed bays, with application to the lagoon of Mururoa. Continental Shelf research, 22(9), 1379-1395, 2002. A. Pérez-Ruzafa, C. Marcos, I.M. Pérez-Ruzafa (2011). Mediterranean coastal lagoons in an ecosystem and aquatic resources management context//Physics and Chemistry of the Earth, Parts A/B/C, Volume 36, Issues 5-6, 2011, Pages 160-166 Young I.R., Wind generated ocean waves. Ocean Engineering Series Editors. Elsevier, 1999, ISBN: 0-08-043317-0.

  9. Expertise effects in cutaneous wind perception.

    PubMed

    Pluijms, Joost P; Cañal-Bruland, Rouwen; Bergmann Tiest, Wouter M; Mulder, Fabian A; Savelsbergh, Geert J P

    2015-08-01

    We examined whether expertise effects are present in cutaneous wind perception. To this end, we presented wind stimuli consisting of different wind directions and speeds in a wind simulator. The wind simulator generated wind stimuli from 16 directions and with three speeds by means of eight automotive wind fans. Participants were asked to judge cutaneously perceived wind directions and speeds without having access to any visual or auditory information. Expert sailors (n = 6), trained to make the most effective use of wind characteristics, were compared to less-skilled sailors (n = 6) and to a group of nonsailors (n = 6). The results indicated that expert sailors outperformed nonsailors in perceiving wind direction (i.e., smaller mean signed errors) when presented with low wind speeds. This suggests that expert sailors are more sensitive in picking up differences in wind direction, particularly when confronted with low wind speeds that demand higher sensitivity.

  10. Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels by means of a slender wedge probe and direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Wagner, Alexander; Schülein, Erich; Petervari, René; Hannemann, Klaus; Ali, Syed R. C.; Cerminara, Adriano; Sandham, Neil D.

    2018-05-01

    Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels were conducted by means of a slender wedge probe and direct numerical simulation. The study comprises comparative tunnel noise measurements at Mach 3, 6 and 7.4 in two Ludwieg tube facilities and a shock tunnel. Surface pressure fluctuations were measured over a wide range of frequencies and test conditions including harsh test environments not accessible to measurement techniques such as pitot probes and hot-wire anemometry. Quantitative results of the tunnel noise are provided in frequency ranges relevant for hypersonic boundary layer transition. In combination with the experimental studies, direct numerical simulations of the leading-edge receptivity to fast and slow acoustic waves were performed for the slender wedge probe at conditions corresponding to the experimental free-stream conditions. The receptivity to fast acoustic waves was found to be characterized by an early amplification of the induced fast mode. For slow acoustic waves an initial decay was found close to the leading edge. At all Mach numbers, and for all considered frequencies, the leading-edge receptivity to fast acoustic waves was found to be higher than the receptivity to slow acoustic waves. Further, the effect of inclination angles of the acoustic wave with respect to the flow direction was investigated. The combined numerical and experimental approach in the present study confirmed the previous suggestion that the slow acoustic wave is the dominant acoustic mode in noisy hypersonic wind tunnels.

  11. TURBULENCE IN THE SOLAR WIND MEASURED WITH COMET TAIL TEST PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeForest, C. E.; Howard, T. A.; Matthaeus, W. H.

    2015-10-20

    By analyzing the motions of test particles observed remotely in the tail of Comet Encke, we demonstrate that the solar wind undergoes turbulent processing enroute from the Sun to the Earth and that the kinetic energy entrained in the large-scale turbulence is sufficient to explain the well-known anomalous heating of the solar wind. Using the heliospheric imaging (HI-1) camera on board NASA's STEREO-A spacecraft, we have observed an ensemble of compact features in the comet tail as they became entrained in the solar wind near 0.4 AU. We find that the features are useful as test particles, via mean-motion analysismore » and a forward model of pickup dynamics. Using population analysis of the ensemble's relative motion, we find a regime of random-walk diffusion in the solar wind, followed, on larger scales, by a surprising regime of semiconfinement that we attribute to turbulent eddies in the solar wind. The entrained kinetic energy of the turbulent motions represents a sufficient energy reservoir to heat the solar wind to observed temperatures at 1 AU. We determine the Lagrangian-frame diffusion coefficient in the diffusive regime, derive upper limits for the small scale coherence length of solar wind turbulence, compare our results to existing Eulerian-frame measurements, and compare the turbulent velocity with the size of the observed eddies extrapolated to 1 AU. We conclude that the slow solar wind is fully mixed by turbulence on scales corresponding to a 1–2 hr crossing time at Earth; and that solar wind variability on timescales shorter than 1–2 hr is therefore dominated by turbulent processing rather than by direct solar effects.« less

  12. On Lunar Exospheric Column Densities and Solar Wind Access Beyond the Terminator from ROSAT Soft X-Ray Observations of Solar Wind Charge Exchange

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Snowden, S. L.; Sarantos, M.; Benna, M.; Carter, J. A.; Cravens, T. E.; Farrell, W. M.; Fatemi, S.; Hills, H. Kent; Hodges, R. R.; hide

    2014-01-01

    We analyze the Rontgen satellite (ROSAT) position sensitive proportional counter soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the surface brightness in three wedges: two 19 deg wedges (one north and one south) 13-32 deg off the terminator toward the dark side and one wedge 38 deg wide centered on the antisolar direction. The radial profiles of both the north and the south wedges show significant limb brightening that is absent in the 38 deg wide antisolar wedge. An analysis of the soft X-ray intensity increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere based on lunar exospheric models and hybrid simulation results of solar wind access beyond the terminator. Soft X-ray imaging thus can independently infer the total lunar limb column density including all species, a property that before now has not been measured, and provide a large-scale picture of the solar wind-lunar interaction. Because the SWCX signal appears to be dominated by exospheric species arising from solar wind implantation, this technique can also determine how the exosphere varies with solar wind conditions. Now, along with Mars, Venus, and Earth, the Moon represents another solar system body at which SWCX has been observed.

  13. Evolving Waves and Turbulence in the Outer Corona and Inner Heliosphere: The Accelerating Expanding Box

    NASA Astrophysics Data System (ADS)

    Tenerani, Anna; Velli, Marco

    2017-07-01

    Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed, most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.

  14. On the origin of jets from disc-accreting magnetized stars

    NASA Astrophysics Data System (ADS)

    Lovelace, Richard V. E.; Romanova, Marina M.; Lii, Patrick; Dyda, Sergei

    2014-09-01

    A brief review of the origin of jets from disc-accreting rotating magnetized stars is given. In most models, the interior of the disc is characterized by a turbulent viscosity and magnetic diffusivity ("alpha" discs) whereas the coronal region outside the disc is treated using ideal magnetohydrodynamics (MHD). Extensive MHD simulations have established the occurrence of long-lasting outflows in the case of both slowly and rapidly rotating stars. (1) Slowly rotating stars exhibit a new type of outflow, conical winds. Conical winds are generated when stellar magnetic flux is bunched up by the inward motion of the accretion disc. Near their region of origin, the winds have a thin conical shell shape with half opening angle of ˜30°. At large distances, their toroidal magnetic field collimates the outflow forming current carrying, matter dominated jets. These winds are predominantly magnetically and not centrifugally driven. About 10-30% of the disc matter from the inner disc is launched in the conical wind. Conical winds may be responsible for episodic as well as long lasting outflows in different types of stars. (2) Rapidly rotating stars in the "propeller regime" exhibit two-component outflows. One component is similar to the matter dominated conical wind, where a large fraction of the disc matter may be ejected in this regime. The second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the open polar field lines of the star. The axial jet has a mass flux of about 10% that of the conical wind, but its energy flux, due to the Poynting flux, can be as large as for the conical wind. The jet's magnetically dominated angular momentum flux causes the star to spin down rapidly. Propeller-driven outflows may be responsible for protostellar jets and their rapid spin-down. When the artificial requirement of symmetry about the equatorial plane is dropped, the conical winds are found to come alternately from one side of the disc and then the other, even for the case where the stellar magnetic field is a centered axisymmetric dipole. Recent MHD simulations of disc accretion to rotating stars in the propeller regime have been done with no turbulent viscosity and no diffusivity. The strong turbulence observed is due to the magneto-rotational instability. This turbulence drives accretion in the disc and leads to episodic conical winds and jets.

  15. Dynamic nightside electron precipitation at Mars: ggeographical and solar wind dependence

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Brain, D. A.

    2012-12-01

    Electron precipitation is usually the dominant source of energy input to the nightside Martian atmosphere, with consequences for ionospheric densities, chemistry, electrodynamics, communications and navigation. We examine downward-traveling superthermal electron flux on the Martian nightside from May 1999 to November 2006 at 400 km altitude and 2 AM local time. Electron precipitation is geographically organized by crustal magnetic field strength and elevation angle, with higher fluxes occurring in regions of weak and/or primarily vertical crustal fields, while stronger and more horizontal fields retard electron access to the atmosphere. We investigate how these crustal field-organized precipitation patterns vary with proxies for solar wind (SW) pressure and interplanetary magnetic field (IMF) direction. Generally, higher precipitating fluxes accompany higher SW pressures. Specifically, we identify four characteristic spectral behaviors: 1) 'stable' regions where fluxes increase mildly with SW pressure, 2) 'high flux' regions where accelerated spectra are more common and where fluxes below ~500 eV are largely independent of SW pressure, 3) permanent plasma voids and 4) intermittent plasma voids where fluxes depend strongly on SW pressure. The locations, sizes, shapes and absence/existence of these plasma voids vary significantly with solar wind pressure proxy and appreciably with IMF direction proxy. Overall, average precipitating fluxes are 40% lower in strong crustal field regions and 15% lower globally for one primary IMF direction proxy compared with the other. This variation of the strength and geographic pattern of the shielding effect of Mars' crustal fields exemplifies the complex interaction between those fields and the solar wind.; Stereographic maps of nightside downward electron flux between 96 and 148 eV, measured at 2 AM local time, averaged over the period 05/1999-11/2006. The top, middle and bottom rows are for solar wind pressure proxy ranges of 0-30 nT, 30-50 nT and >50 nT. The left and right columns are for IMF direction proxy ranges of 320-140° and 140-320°. Contour lines are represented on the vertical color bars by horizontal lines.

  16. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  17. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  18. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  19. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  20. 14 CFR 139.323 - Traffic and wind direction indicators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Traffic and wind direction indicators. 139... CERTIFICATION OF AIRPORTS Operations § 139.323 Traffic and wind direction indicators. In a manner authorized by...) A wind cone that visually provides surface wind direction information to pilots. For each runway...

  1. Quantification of storm-induced bathymetric change in a back-barrier estuary

    USGS Publications Warehouse

    Ganju, Neil K.; Suttles, Steven E.; Beudin, Alexis; Nowacki, Daniel J.; Miselis, Jennifer L.; Andrews, Brian D.

    2017-01-01

    Geomorphology is a fundamental control on ecological and economic function of estuaries. However, relative to open coasts, there has been little quantification of storm-induced bathymetric change in back-barrier estuaries. Vessel-based and airborne bathymetric mapping can cover large areas quickly, but change detection is difficult because measurement errors can be larger than the actual changes over the storm timescale. We quantified storm-induced bathymetric changes at several locations in Chincoteague Bay, Maryland/Virginia, over the August 2014 to July 2015 period using fixed, downward-looking altimeters and numerical modeling. At sand-dominated shoal sites, measurements showed storm-induced changes on the order of 5 cm, with variability related to stress magnitude and wind direction. Numerical modeling indicates that the predominantly northeasterly wind direction in the fall and winter promotes southwest-directed sediment transport, causing erosion of the northern face of sandy shoals; southwesterly winds in the spring and summer lead to the opposite trend. Our results suggest that storm-induced estuarine bathymetric change magnitudes are often smaller than those detectable with methods such as LiDAR. More precise fixed-sensor methods have the ability to elucidate the geomorphic processes responsible for modulating estuarine bathymetry on the event and seasonal timescale, but are limited spatially. Numerical modeling enables interpretation of broad-scale geomorphic processes and can be used to infer the long-term trajectory of estuarine bathymetric change due to episodic events, when informed by fixed-sensor methods.

  2. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  3. MAVEN Upstream Observations of the Cycle 24 Space Weather Conditions at Mars

    NASA Astrophysics Data System (ADS)

    Lee, C. O.; Hara, T.; Halekas, J. S.; Thiemann, E.; Curry, S.; Lillis, R. J.; Larson, D. E.; Espley, J. R.; Gruesbeck, J.; Eparvier, F. G.; Li, Y.; Jian, L.; Luhmann, J. G.; Jakosky, B. M.

    2016-12-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft went into orbit around Mars during the height of the activity phase of Solar Cycle 24. The mission was designed in part to study the response of the upper atmosphere, ionosphere, and magnetosphere of Mars to solar and solar wind inputs. When MAVEN is on the Martian dayside and orbiting around its apoapsis altitude of 6200 km, the suite of instruments onboard can measure the solar wind plasma (density, velocity), interplanetary magnetic field (magnitude and direction), and particle counts of solar energetic particles (SEPs), as well as the EUV solar irradiance. We will present an overview of the upstream conditions observed to date and highlight a number of Mars-impacting space weather events due to ICMEs and SEPs. We will also present events that are triggered by corotating interaction regions (CIRs), which become more prominent beyond 1 AU and are the dominant heliospheric structures during the declining phase of the solar cycle. As part of the discussion, we will compare and contrast observations from MAVEN and ACE/WIND or STEREO-A during periods when Mars and the 1-AU observer were in solar opposition or nearly aligned along the solar wind Parker spiral.

  4. Assessment of the visual landscape impact and dominance of wind tubines in Austria using weighted viewshed maps

    NASA Astrophysics Data System (ADS)

    Schauppenlehner, Thomas; Salak, Boris; Scherhaufer, Patrick; Höltinger, Stefan; Schmidt, Johannes

    2017-04-01

    Due to efficiency reasons and broadly availability of wind, wind energy is in focus of strategies regarding the expansion of renewable energy and energy transition policies. Nevertheless, the dimensions of the wind turbines and rotating dynamics have a significant impact on the landscape scenery and recreation as well as tourism activities. This often leads to local opposition against wind energy projects and is a major criterion regarding the acceptance of wind energy. In the project TransWind, the social acceptance of wind energy is surveyed on the basis of different development scenarios for Austria. Therefore, a GIS-based viewshed indicator was developed to assess the visual impact of different development scenarios as well as the current situation using weighted - regarding distance, amount and masking - viewshed analysis. This weighted viewshed maps for Austria allows a comprehensive evaluation of existing and potential wind energy sites regarding dominance and visual impact and can contribute to the spatial development process of wind energy site. Different regions can be compared and repowering strategies can be evaluated. Due to the large project area, data resolutions, generalized assumptions (e.g. tree heights) and missing data (e.g. solitary trees, small hedges) at local level further analysis are necessary but it supports the assessment of large-scale development scenarios can be identified.

  5. Modeling of sediment transport in a saltwater lake with supplemental sandy freshwater.

    PubMed

    Liang, Li; Deng, Yun; Li, Ran; Li, Jia

    2018-06-22

    Considering the highly complex flow structure of saltwater lakes during freshwater supplementation, a three-dimensional numerical model was developed to simulate suspended sediment transport in saltwater lakes. The model was validated using measurements of the salinity and sediment concentration during a pumping test at Yamdrok Lake. The simulation results were in quantitative agreement with the measured data. The observed and simulated results also indicated that the wind stress and vertical salinity gradient have a significant influence on salinity and sediment transport in a saltwater lake. The validated model was then used to predict and analyze the contributions of wind, the supplement flow rate and salinity stratification to the sediment transport process in Yamdrok Lake during continuous river water supplementation. The simulation results showed that after the sandy river water was continuously discharged into the saltwater lake, the lateral diffusion trends of the sediment exhibited three stages: linear growth in the inflow direction, logarithmic growth in the wind direction, and stabilization. Furthermore, wind was the dominant factor in driving the lake flow pattern and sediment transport. Specifically, wind can effectively reduce the area of the sediment diffusion zone by increasing the lateral sediment carrying and dilution capacities. The effect of inflow on the lake current is negligible, but the extent of the sediment turbidity zone mainly depends on the inflow. Reducing the inflow discharge can decrease the area of the sediment turbidity zone to proportions that far exceed the proportions of inflow discharge reductions. In addition, the high-salinity lake water can support the supplemented freshwater via buoyancy forces, which weaken vertical mixing and sediment settlement and increase lake currents and sediment diffusion near the surface.

  6. Short wind waves on the ocean: Wavenumber-frequency spectra

    NASA Astrophysics Data System (ADS)

    Plant, William J.

    2015-03-01

    Dominant surface waves on the ocean exhibit a dispersion relation that confines their energy to a curve in a wavenumber-frequency spectrum. Short wind waves on the ocean, on the other hand, are advected by these dominant waves so that they do not exhibit a well-defined dispersion relation over many realizations of the surface. Here we show that the short-wave analog to the dispersion relation is a distributed spectrum in the wavenumber-frequency plane that collapses to the standard dispersion relation in the absence of long waves. We compute probability distributions of short-wave wavenumber given a (frequency, direction) pair and of short-wave frequency given a (wavenumber, direction) pair. These two probability distributions must yield a single spectrum of surface displacements as a function of wavenumber and frequency, F(k,f). We show that the folded, azimuthally averaged version of this spectrum has a "butterfly" pattern in the wavenumber-frequency plane if significant long waves are present. Integration of this spectrum over frequency yields the well-known k-3 wavenumber spectrum. When integrated over wavenumber, the spectrum yields an f-4 form that agrees with measurement. We also show that a cut through the unfolded F(k,f) at constant k produces the well-known form of moderate-incidence-angle Doppler spectra for electromagnetic scattering from the sea. This development points out the dependence of the short-wave spectrum on the amplitude of the long waves.

  7. Simulations of snow distribution and hydrology in a mountain basin

    USGS Publications Warehouse

    Hartman, Melannie D.; Baron, Jill S.; Lammers, Richard B.; Cline, Donald W.; Band, Larry E.; Liston, Glen E.; Tague, Christina L.

    1999-01-01

    We applied a version of the Regional Hydro-Ecologic Simulation System (RHESSys) that implements snow redistribution, elevation partitioning, and wind-driven sublimation to Loch Vale Watershed (LVWS), an alpine-subalpine Rocky Mountain catchment where snow accumulation and ablation dominate the hydrologic cycle. We compared simulated discharge to measured discharge and the simulated snow distribution to photogrammetrically rectified aerial (remotely sensed) images. Snow redistribution was governed by a topographic similarity index. We subdivided each hillslope into elevation bands that had homogeneous climate extrapolated from observed climate. We created a distributed wind speed field that was used in conjunction with daily measured wind speeds to estimate sublimation. Modeling snow redistribution was critical to estimating the timing and magnitude of discharge. Incorporating elevation partitioning improved estimated timing of discharge but did not improve patterns of snow cover since wind was the dominant controller of areal snow patterns. Simulating wind-driven sublimation was necessary to predict moisture losses.

  8. AmeriFlux US-Wrc Wind River Crane Site

    DOE Data Explorer

    Bible, Ken [University of Washington; Wharton, Sonia [Lawrence Livermore National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wrc Wind River Crane Site. Site Description - Wind River Field Station flux tower site is located in the T.T. Munger Research Area of the Wind River Ranger District in the Gifford Pinchot National Forest. Protected since 1926, the T.T. Munger Research Natural Area (RNA) is administered by the USDA Forest Service Pacific Northwest Research Station and Gifford Pinchot National Forest. The Douglas-fir/western hemlock dominant stand is approximately 500 years old and represents end points of several ecological gradients including age, biomass, structural complexity, and density of the dominant overstory species. A complete stand replacement fire, approximately 450-500 years ago, resulted in the initial establishment. No significant disturbances have occurred since the fire aside from those confined to small groups of single trees, such as overturn from high wind activity and mechanical damage from winter precipitation.

  9. Evaluation of low wind modeling approaches for two tall-stack databases.

    PubMed

    Paine, Robert; Samani, Olga; Kaplan, Mary; Knipping, Eladio; Kumar, Naresh

    2015-11-01

    The performance of the AERMOD air dispersion model under low wind speed conditions, especially for applications with only one level of meteorological data and no direct turbulence measurements or vertical temperature gradient observations, is the focus of this study. The analysis documented in this paper addresses evaluations for low wind conditions involving tall stack releases for which multiple years of concurrent emissions, meteorological data, and monitoring data are available. AERMOD was tested on two field-study databases involving several SO2 monitors and hourly emissions data that had sub-hourly meteorological data (e.g., 10-min averages) available using several technical options: default mode, with various low wind speed beta options, and using the available sub-hourly meteorological data. These field study databases included (1) Mercer County, a North Dakota database featuring five SO2 monitors within 10 km of the Dakota Gasification Company's plant and the Antelope Valley Station power plant in an area of both flat and elevated terrain, and (2) a flat-terrain setting database with four SO2 monitors within 6 km of the Gibson Generating Station in southwest Indiana. Both sites featured regionally representative 10-m meteorological databases, with no significant terrain obstacles between the meteorological site and the emission sources. The low wind beta options show improvement in model performance helping to reduce some of the over-prediction biases currently present in AERMOD when run with regulatory default options. The overall findings with the low wind speed testing on these tall stack field-study databases indicate that AERMOD low wind speed options have a minor effect for flat terrain locations, but can have a significant effect for elevated terrain locations. The performance of AERMOD using low wind speed options leads to improved consistency of meteorological conditions associated with the highest observed and predicted concentration events. The available sub-hourly modeling results using the Sub-Hourly AERMOD Run Procedure (SHARP) are relatively unbiased and show that this alternative approach should be seriously considered to address situations dominated by low-wind meander conditions. AERMOD was evaluated with two tall stack databases (in North Dakota and Indiana) in areas of both flat and elevated terrain. AERMOD cases included the regulatory default mode, low wind speed beta options, and use of the Sub-Hourly AERMOD Run Procedure (SHARP). The low wind beta options show improvement in model performance (especially in higher terrain areas), helping to reduce some of the over-prediction biases currently present in regulatory default AERMOD. The SHARP results are relatively unbiased and show that this approach should be seriously considered to address situations dominated by low-wind meander conditions.

  10. Measurements of Wind Velocity and Direction Using Acoustic Reflection against Wall

    NASA Astrophysics Data System (ADS)

    Saito, Ikumi; Wakatsuki, Naoto; Mizutani, Koichi; Ishii, Masahisa; Okushima, Limi; Sase, Sadanori

    2008-05-01

    The measurements of wind velocity and direction using an acoustic reflection against a wall are described. We aim to measure the spatial mean wind velocity and direction to be used for an air-conditioning system. The proposed anemometer consists of a single wall and two pairs of loudspeakers (SP) and microphones (MIC) that form a triangular shape. Two sound paths of direct and reflected waves are available. One is that of the direct wave and the other is that of the wave reflected on the wall. The times of flights (TOFs) of the direct and reflected waves can be measured using a single MIC because there is a difference in the TOF between direct and reflected waves. By using these TOFs, wind velocity and direction can be calculated. In the experiments, the wind velocities and directions were measured in a wind tunnel by changing the wind velocity. The wind direction was examined by changing the setup of the transducers. The measured values using the proposed and conventional anemometers agreed with each other. By using the wave reflected against a wall, wind velocities and directions can be measured using only two pairs of transducers, while four pairs are required in the case of conventional anemometers.

  11. The effect of the equatorially symmetric zonal winds of Saturn on its gravitational field

    NASA Astrophysics Data System (ADS)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.

    2018-04-01

    The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible way of estimating the depth is through measurement of the effect of the winds on the planet’s gravitational field. We use a self-consistent perturbation approach to study how the equatorially symmetric zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is that the variation of its gravitational field solely caused by the winds can be isolated and identified because the leading-order problem accounts exactly for rotational distortion, thereby determining the irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the observed cloud-level winds. We calculate both the variation ΔJn , n = 2, 4, 6 … of the axisymmetric gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coefficients ΔJnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We consider three different cases characterized by the penetration depth 0.36, R S, 0.2, R S and 0.1, R S, where R S is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravitational coefficient (J 12 + ΔJ 12) is dominated, in all the three cases, by the effect of the zonal flow with |ΔJ 12/J 12| > 100% and that the size of the non-axisymmetric coefficients ΔJ mn directly reflects the depth and scale of the flow taking place in the Saturnian interior.

  12. Studies of saharan dust intrusions over bucharest using ceilometer's measurements and satellite data

    NASA Astrophysics Data System (ADS)

    Urlea, Denisa; Boscornea, Andreea; Nicolae Vâjâiac, Sorin; Ţoancă, Florica; Barbu, Nicu; Ştefan, Sabina; Bunescu, Ionuț

    2018-04-01

    Three case studies of Saharan dust intrusions over southern Romania were performed. For these studies the database from the ceilometers located at Magurele and Strejnic was used. In addition, the meteorological conditions were analyzed using the WLK Catalogue based on the Objektive Wetterlagenklassifikation classification of the weather types [1]. This catalogue uses information from three basic tropospheric levels: 925, 700 and 500 hPa, and information on the precipitable water content over the entire atmosphere column. Geopotential fields at 925hPa and 500hPa are used for establishing the cyclonicity or anticyclonicity, while the U and V components of wind at 700hPa for establishing the dominant direction of the wind flow. For better understanding of the atmospheric parameters we performed HYSPLIT dispersion and trajectories analysis in conjunction with DREAM model output data.

  13. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  14. Cloud statistics over the Indonesian Maritime Continent during the first and second CPEA campaigns

    NASA Astrophysics Data System (ADS)

    Marzuki; Vonnisa, Mutya; Rahayu, Aulya; Hashiguchi, Hiroyuki

    2017-06-01

    Improvement of precipitation prediction requires an understanding of the organization mechanism, such as the initiation and evolution of organized convective systems. This paper is a follow-up of a previous study on cloud propagation over the Indonesian Maritime Continent (IMC). Here, the infrared blackbody brightness temperature data is analyzed. A comprehensive cloud statistics model, including span, speed, duration, all possible directions, and size was estimated by applying the modified tracking reflectivity echoes by correlation (TREC) method to time-latitude-longitude space. Comparisons were made to cloud statistics during the first and second campaigns of Coupling Processes in the Equatorial Atmosphere, hereinafter called CPEA-I and CPEA-II. Although the two campaigns were conducted in different monsoon seasons, the cloud propagation directions during each campaign were similar. The cloud systems moved in most directions, except north and east, and preferred southwestward, westward and northwestward movements. Thus, westward-moving clouds were more dominant than eastward-moving clouds, in agreement with previous studies. This feature is consistent with the prevailing easterly wind in the middle and upper troposphere despite the difference in low-level wind during each campaign. The two campaign periods were different due to the phase of the Madden-Julian Oscillation (MJO). CPEA-I took place over the active MJO phase, with larger-sized clouds than CPEA-II. Thus, the MJO had an enormous impact on cloud size, but such an impact was not significantly observed in the speed, lifetime, span and direction of propagation. In the two campaigns, clouds moved with a speed of 3-30 m s-1 and in duration from a few hours to longer than one day. Clouds with long spans and high speeds were generally observed during the strong vertical shear of horizontal winds. In contrast, clouds with short spans and low speeds were found in the more varied environment of the IMC, but were dominant over land, which may have been associated with the diurnal heating cycle. Finally, the present results showed more complex behavior than a previous study in the Bay of Bengal, indicating precipitation mechanisms over the IMC including interactions between large-scale atmospheric phenomena (e.g., monsoon and MJO) with the diurnal precipitation cycles.

  15. Fitting a circular distribution based on nonnegative trigonometric sums for wind direction in Malaysia

    NASA Astrophysics Data System (ADS)

    Masseran, Nurulkamal; Razali, Ahmad Mahir; Ibrahim, Kamarulzaman; Zaharim, Azami; Sopian, Kamaruzzaman

    2015-02-01

    Wind direction has a substantial effect on the environment and human lives. As examples, the wind direction influences the dispersion of particulate matter in the air and affects the construction of engineering structures, such as towers, bridges, and tall buildings. Therefore, a statistical analysis of the wind direction provides important information about the wind regime at a particular location. In addition, knowledge of the wind direction and wind speed can be used to derive information about the energy potential. This study investigated the characteristics of the wind regime of Mersing, Malaysia. A circular distribution based on Nonnegative Trigonometric Sums (NNTS) was fitted to a histogram of the average hourly wind direction data. The Newton-like manifold algorithm was used to estimate the parameter of each component of the NNTS model. Next, the suitability of each NNTS model was judged based on a graphical representation and Akaike's Information Criteria. The study found that the NNTS model with six or more components was able to fit the wind directional data for the Mersing station.

  16. The relative impact of photoionizing radiation and stellar winds on different environments

    NASA Astrophysics Data System (ADS)

    Haid, S.; Walch, S.; Seifried, D.; Wünsch, R.; Dinnbier, F.; Naab, T.

    2018-05-01

    Photoionizing radiation and stellar winds from massive stars deposit energy and momentum into the interstellar medium (ISM). They might disperse the local ISM, change its turbulent multi-phase structure, and even regulate star formation. Ionizing radiation dominates the massive stars' energy output, but the relative effect of winds might change with stellar mass and the properties of the ambient ISM. We present simulations of the interaction of stellar winds and ionizing radiation of 12, 23, and 60 M⊙ stars within a cold neutral (CNM, n0 = 100 cm-3), warm neutral (WNM, n0 = 1, 10 cm-3) or warm ionized (WIM, n0 = 0.1 cm-3) medium. The FLASH simulations adopt the novel tree-based radiation transfer algorithm TREERAY. With the On-the-Spot approximation and a temperature-dependent recombination coefficient, it is coupled to a chemical network with radiative heating and cooling. In the homogeneous CNM, the total momentum injection ranges from 1.6× 104 to 4× 105 M⊙ km s-1 and is always dominated by the expansion of the ionized HII region. In the WIM, stellar winds dominate (2× 102 to 5× 103 M⊙ km s-1), while the input from radiation is small (˜ 102 M⊙ km s-1). The WNM (n0 = 1 cm-3) is a transition regime. Energetically, stellar winds couple more efficiently to the ISM (˜ 0.1 percent of wind luminosity) than radiation (< 0.001 percent of ionizing luminosity). For estimating the impact of massive stars, the strongly mass-dependent ratios of wind to ionizing luminosity and the properties of the ambient medium have to be considered.

  17. Observations of whitecaps during HiWinGS, their dependence on wave field, and relation to gas transfer velocities

    NASA Astrophysics Data System (ADS)

    Brumer, S. E.; Zappa, C. J.; Fairall, C. W.; Blomquist, B.; Brooks, I. M.; Tamura, H.; Yang, M.; Huebert, B. J.

    2016-02-01

    The High Wind Gas exchange Study (HiWinGS) presents the unique opportunity to gain new insights on the poorly understood aspects of air-sea interaction under high winds. The HiWinGS cruise took place in the North Atlantic during October and November 2013. Wind speeds exceeded 15 m s-1 25% of the time, including 48 hrs with U10 > 20 m s-1. Continuous measurements of turbulent fluxes of heat, momentum, and gas were taken from the bow of the R/V Knorr. Visible imagery was acquired from the port and starboard side of the flying bridge during daylight hours at 20Hz and directional wave spectra were obtained when on station from a wave rider buoy. Additional wave field statistics were computed from a laser altimeter as well as from a Wavewatch III hindcast. Taking advantage of the range of physical forcing and wave conditions sampled during HiWinGS, we investigate how the fractional whitecap coverage (W) and gas transfer velocity (K) vary with sea state. We distinguish between windseas and swell based on a separation algorithm applied to directional wave spectra, allowing contrasting pure windseas to swell dominated periods. For mixed seas, system alignment is considered when interpreting results. The four gases sampled during HiWinGS ranged from being mostly waterside controlled to almost entirely airside controlled. While bubble-mediated transfer appears to be small for moderately soluble gases like DMS, the importance of wave breaking turbulence transport has yet to be determined for all gases regardless of their solubility. This will be addressed by correlating measured K to estimates of active whitecap fraction (WA) and turbulent kinetic energy dissipation rate (ɛ). WA and ɛ are estimated from moments of the breaking crest length distribution derived from the imagery, focusing on young seas, when it is likely that large-scale breaking waves (i.e., whitecapping) will dominate the ɛ.

  18. A MODEL FOR THERMAL PHASE VARIATIONS OF CIRCULAR AND ECCENTRIC EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, Nicolas B.; Agol, Eric, E-mail: n-cowan@northwestern.edu

    2011-01-10

    We present a semi-analytic model atmosphere for close-in exoplanets that captures the essential physics of phase curves: orbital and viewing geometry, advection, and re-radiation. We calibrate the model with the well-characterized transiting planet, HD 189733b, then compute light curves for seven of the most eccentric transiting planets: Gl 436b, HAT-P-2b, HAT-P-11b, HD 17156b, HD 80606b, WASP-17b, and XO-3b. We present phase variations for a variety of different radiative times and wind speeds. In the limit of instant re-radiation, the light-curve morphology is entirely dictated by the planet's eccentricity and argument of pericenter: the light curve maximum leads or trails themore » eclipse depending on whether the planet is receding from or approaching the star at superior conjunction, respectively. For a planet with non-zero radiative timescales, the phase peak occurs early for super-rotating winds, and late for sub-rotating winds. We find that for a circular orbit, the timing of the phase variation maximum with respect to superior conjunction indicates the direction of the dominant winds, but cannot break the degeneracy between wind speed and radiative time. For circular planets the phase minimum occurs half an orbit away from the phase maximum-despite the fact that the coolest longitudes are always near the dawn terminator-and therefore does not convey any additional information. In general, increasing the advective frequency or the radiative time has the effect of reducing the peak-to-trough amplitude of phase variations, but there are interesting exceptions to these trends. Lastly, eccentric planets with orbital periods significantly longer than their radiative time exhibit 'ringing', whereby the hot spot generated at periastron rotates in and out of view. The existence of ringing makes it possible to directly measure the wind speed (the frequency of the ringing) and the radiative time constant (the damping of the ringing).« less

  19. Urban NO 2 and NO pollution in relation to the North Atlantic Oscillation NAO

    NASA Astrophysics Data System (ADS)

    Grundström, M.; Linderholm, H. W.; Klingberg, J.; Pleijel, H.

    2011-02-01

    The North Atlantic Oscillation (NAO), a measure of the strength of the zonal wind across the North Atlantic Ocean, strongly influences weather conditions in NW Europe, e.g. temperature, precipitation and wind, especially during winter. It was hypothesised that elevated concentrations of nitrogen oxides in Gothenburg would be enhanced during negative NAO index (NAOI) conditions, representing more anticyclonic weather situations and thus leading to limited air mixing in the urban atmosphere, than situations with NAOI > 0. Hourly wintertime (December-February) concentrations (1997-2006) of NO 2, NO, air pressure, temperature and wind direction from an urban rooftop (30 m above street level) in the centre of the City of Gothenburg were analysed in relation to NAOI. Air pressure, the average concentration of nitrogen oxides (NO x = NO 2 + NO), as well as the fraction of hourly NO 2 and NO concentrations exceeding 90 μg m -3 and the fraction of daily NO concentrations exceeding 60 μg m -3, were significantly and negatively related to NAOI. Air temperature was positively correlated with NAOI. Southerly and westerly winds were more common in months with positive NAOI, while easterly and northerly winds were overrepresented in months with negative NAOI. High pollution concentrations dominantly occurred in situations with northerly and easterly wind directions. High NO 2 and NO concentrations were associated with negative NAOI, especially in the morning when the traffic rush coincided with restricted air mixing. Over the ten-year period there were trends for more negative NAOI and increased time fractions with hourly NO 2 concentrations exceeding 90 μg m -3. The conclusion of this study is that a climate shift towards higher or lower NAOI has the potential to significantly influence urban air pollution in North-West Europe, and thus the possibility to reach air quality standards, even if emissions remain constant.

  20. Gas transfer under high wind and its dependence on wave breaking and sea state

    NASA Astrophysics Data System (ADS)

    Brumer, Sophia; Zappa, Christopher; Fairall, Christopher; Blomquist, Byron; Brooks, Ian; Yang, Mingxi

    2016-04-01

    Quantifying greenhouse gas fluxes on regional and global scales relies on parameterizations of the gas transfer velocity K. To first order, K is dictated by wind speed (U) and is typically parameterized as a non-linear functions of U. There is however a large spread in K predicted by the traditional parameterizations at high wind speed. This is because a large variety of environmental forcing and processes (Wind, Currents, Rain, Waves, Breaking, Surfactants, Fetch) actually influence K and wind speed alone cannot capture the variability of air-water gas exchange. At high wind speed especially, breaking waves become a key factor to take into account when estimating gas fluxes. The High Wind Gas exchange Study (HiWinGS) presents the unique opportunity to gain new insights on this poorly understood aspects of air-sea interaction under high winds. The HiWinGS cruise took place in the North Atlantic during October and November 2013. Wind speeds exceeded 15 m s-1 25% of the time, including 48 hrs with U10 > 20 m s-1. Continuous measurements of turbulent fluxes of heat, momentum, and gas (CO2, DMS, acetone and methanol) were taken from the bow of the R/V Knorr. The wave field was sampled by a wave rider buoy and breaking events were tracked in visible imagery was acquired from the port and starboard side of the flying bridge during daylight hours at 20Hz. Taking advantage of the range of physical forcing and wave conditions sampled during HiWinGS, we test existing parameterizations and explore ways of better constraining K based on whitecap coverage, sea state and breaking statistics contrasting pure windseas to swell dominated periods. We distinguish between windseas and swell based on a separation algorithm applied to directional wave spectra for mixed seas, system alignment is considered when interpreting results. The four gases sampled during HiWinGS ranged from being mostly waterside controlled to almost entirely airside controlled. While bubble-mediated transfer appears to be small for moderately soluble gases like DMS, the importance of wave breaking turbulence transport has yet to be determined for all gases regardless of their solubility. This will be addressed by correlating measured K to estimates of active whitecap fraction (WA) and turbulent kinetic energy dissipation rate (ɛ). WA and ɛ are estimated from moments of the breaking crest length distribution derived from the imagery, focusing on young seas, when it is likely that large-scale breaking waves (i.e., whitecapping) will dominate the ɛ.

  1. Resuspension and Shelf-Deep Ocean Exchange in the Northern California Current: New Insights From Underwater Gliders

    NASA Astrophysics Data System (ADS)

    Erofeev, A.; Barth, J. A.; Shearman, R. K.; Pierce, S. D.

    2016-02-01

    Shelf-deep ocean exchange is dominated by wind-driven upwelling and downwelling in the northern California Current. The interaction of strong, along-shelf jets with coastline and bottom topographic features can also create significant cross-margin exchange. We are using data from over 60,000 kilometers of autonomous underwater glider tracks to understand the temporal and spatial distribution of shelf-deep ocean exchange off central Oregon. Year-round glider observations of temperature, salinity, depth-averaged currents, chlorophyll fluorescence, light backscatter, and colored dissolved organic matter fluorescence from a single cross-margin transect are used to examine shelf-deep ocean exchange mechanisms. During summer, cross-margin exchange is dominated by wind-driven upwelling and the relaxation or reversal of the dominant southward winds. This process has been fairly well observed and studied due to the relatively low sea states and winds during summer. There is far less data from fall and winter off Oregon, a time of strong winds and large waves. We use autonomous underwater gliders to sample during the winter, including through the fall and spring transitions. Glider observations of suspended material detected via light backscatter, show time-space variations in resuspension in the bottom boundary layer due to winds, waves and currents. Examples of shelf-deep ocean exchange are shown by layers with high light backscatter separating from the bottom near the shelf break and extending into the interior along isopycnals. We describe these features and events in relationship to wind-forcing, along-shelf flows, and other forcing mechanisms.

  2. Wind effect on diurnal thermally driven flow in vegetated nearshore of a lake

    NASA Astrophysics Data System (ADS)

    Lin, Y. T.

    2014-12-01

    In this study, a highly idealized model is developed to discuss the interplay of diurnal heating/cooling induced buoyancy and wind stress on thermally driven flow over a vegetated slope. Since the model is linear, the horizontal velocity components can be broken into buoyancy-driven and surface wind-driven parts. Due to the presence of rooted emergent vegetation, the circulation strength even under the surface wind condition is still significantly reduced, and the transient (adjustment) stage for the initial conditions is shorter than that without vegetation. The flow in shallows is dominated by a viscosity/buoyancy balance as the case without wind, while the effect of wind stress is limited to the upper layer in deep water. In the lower layer of deep regions, vegetative drag is prevailing except the near bottom regions, where viscosity dominates. Under the unidirectional wind condition, a critical dimensionless shear stress to stop the induced flow can be found and is a function of horizontal location . For the periodic wind condition, if the two forcing mechanisms work in concert, the circulation magnitude can be increased. For the case where buoyancy and wind shear stress act against each other, the circulation strength is reduced and its structure becomes more complex. However, the flow magnitudes near the bottom for and are comparable because surface wind almost has no influence.

  3. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface.

    PubMed

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.

  4. Evolving Waves and Turbulence in the Outer Corona and Inner Heliosphere: The Accelerating Expanding Box

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenerani, Anna; Velli, Marco

    Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed,more » most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.« less

  5. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface

    PubMed Central

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account. PMID:25309005

  6. Decoding a Geological Message

    NASA Image and Video Library

    2017-06-14

    A close-up image from NASA's Mars Reconnaissance Orbiter of a recent 150-meter diameter impact crater near Amazonis Mensa and Medusae Fossae is another great example of geologic complexity of Mars. The spider web-like texture of this crater is intriguing. But what does it mean? On Earth, we have many geologic mechanisms that embrace the surface of the planet in an almost constant state of metamorphosis. Although Mars is not nearly as geologically active as Earth, it is still a host to many processes that shape its surface even today (e.g., aeolian modification, periglacial processes, recent impacts, etc.). The appearance of the ejecta of this crater is likely a combination of both the characteristics of the target material it was deposited on, and processes that modified and degraded it over time. When we look to other images in this region we find a similar texture. This texture is referred to as “yardangs” by scientists who study wind erosion. Yardangs are streamlined ridge-and-trough patterns formed by the erosion of wind dominating from a specific direction; in this particular case, from the southeast to the northwest. The specific direction of the winds is supported by regional context images that show many craters in the region have wind streak "tails" that points to the northwest. Craters of this size have been observed to form recently on Mars, so the fact that this crater is modified speaks volumes, and gives us a chance to decode some geological messages from Mars. https://photojournal.jpl.nasa.gov/catalog/PIA21759

  7. The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Numerical simulations.

    PubMed

    Matano, Ricardo P; Combes, Vincent; Piola, Alberto R; Guerrero, Raul; Palma, Elbio D; Ted Strub, P; James, Corinne; Fenco, Harold; Chao, Yi; Saraceno, Martin

    2014-11-01

    A high-resolution model is used to characterize the dominant patterns of sea surface salinity (SSS) variability generated by the freshwater discharges of the Rio de la Plata (RdlP) and the Patos/Mirim Lagoon in the southwestern Atlantic region. We identify three dominant modes of SSS variability. The first two, which have been discussed in previous studies, represent the seasonal and the interannual variations of the freshwater plumes over the continental shelf. The third mode of SSS variability, which has not been discussed hitherto, represents the salinity exchanges between the shelf and the deep ocean. A diagnostic study using floats and passive tracers identifies the pathways taken by the freshwater plumes. During the austral winter (JJA) , the plumes leave the shelf region north of the BMC. During the austral summer (DJF), the plumes are entrained more directly into the BMC. A sensitivity study indicates that the high - frequency component of the wind stress forcing controls the vertical structure of the plumes while the low-frequency component of the wind stress forcing and the interannual variations of the RdlP discharge controls the horizontal structure of the plumes. Dynamical analysis reveals that the cross-shelf flow has a dominant barotropic structure and, therefore, the SSS anomalies detected by Aquarius represent net mass exchanges between the shelf and the deep ocean. The net cross-shelf volume flux is 1.21 Sv. This outflow is largely compensated by an inflow from the Patagonian shelf.

  8. The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Numerical simulations

    PubMed Central

    Matano, Ricardo P; Combes, Vincent; Piola, Alberto R; Guerrero, Raul; Palma, Elbio D; Ted Strub, P; James, Corinne; Fenco, Harold; Chao, Yi; Saraceno, Martin

    2014-01-01

    A high-resolution model is used to characterize the dominant patterns of sea surface salinity (SSS) variability generated by the freshwater discharges of the Rio de la Plata (RdlP) and the Patos/Mirim Lagoon in the southwestern Atlantic region. We identify three dominant modes of SSS variability. The first two, which have been discussed in previous studies, represent the seasonal and the interannual variations of the freshwater plumes over the continental shelf. The third mode of SSS variability, which has not been discussed hitherto, represents the salinity exchanges between the shelf and the deep ocean. A diagnostic study using floats and passive tracers identifies the pathways taken by the freshwater plumes. During the austral winter (JJA), the plumes leave the shelf region north of the BMC. During the austral summer (DJF), the plumes are entrained more directly into the BMC. A sensitivity study indicates that the high-frequency component of the wind stress forcing controls the vertical structure of the plumes while the low-frequency component of the wind stress forcing and the interannual variations of the RdlP discharge controls the horizontal structure of the plumes. Dynamical analysis reveals that the cross-shelf flow has a dominant barotropic structure and, therefore, the SSS anomalies detected by Aquarius represent net mass exchanges between the shelf and the deep ocean. The net cross-shelf volume flux is 1.21 Sv. This outflow is largely compensated by an inflow from the Patagonian shelf. PMID:26213673

  9. The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Matano, Ricardo P.; Combes, Vincent; Piola, Alberto R.; Guerrero, Raul; Palma, Elbio D.; Ted Strub, P.; James, Corinne; Fenco, Harold; Chao, Yi; Saraceno, Martin

    2014-11-01

    A high-resolution model is used to characterize the dominant patterns of sea surface salinity (SSS) variability generated by the freshwater discharges of the Rio de la Plata (RdlP) and the Patos/Mirim Lagoon in the southwestern Atlantic region. We identify three dominant modes of SSS variability. The first two, which have been discussed in previous studies, represent the seasonal and the interannual variations of the freshwater plumes over the continental shelf. The third mode of SSS variability, which has not been discussed hitherto, represents the salinity exchanges between the shelf and the deep ocean. A diagnostic study using floats and passive tracers identifies the pathways taken by the freshwater plumes. During the austral winter (JJA), the plumes leave the shelf region north of the BMC. During the austral summer (DJF), the plumes are entrained more directly into the BMC. A sensitivity study indicates that the high-frequency component of the wind stress forcing controls the vertical structure of the plumes while the low-frequency component of the wind stress forcing and the interannual variations of the RdlP discharge controls the horizontal structure of the plumes. Dynamical analysis reveals that the cross-shelf flow has a dominant barotropic structure and, therefore, the SSS anomalies detected by Aquarius represent net mass exchanges between the shelf and the deep ocean. The net cross-shelf volume flux is 1.21 Sv. This outflow is largely compensated by an inflow from the Patagonian shelf.

  10. Solar forcing, and ionospheric ion outflow from Venus, Earth and Mars - A comparison

    NASA Astrophysics Data System (ADS)

    Lundin, R. N.

    2012-12-01

    Solar forcing by e.g. EUV radiation and the solar wind leads to outflow and escape of ionospheric ions from Earth, Venus and Mars. In-situ measurements in the Earth's space environment have demonstrated that the ion escape rate correlates with the magnitude of solar forcing, i.e. high solar EUV and solar wind forcing leads to enhanced escape rates. The Terrestrial outflow is dominated by H+ and O+ suggesting that the ultimate origin of outflowing ions is water. Recent measurements from the two arid planets Mars and Venus, their atmospheres dominated by CO2, display characteristics similar to that of the Earth - an outflow dominated by hydrogen (H+) and oxygen (O+, O2+) ions. Despite major differences in atmospheric composition, the composition of the ion outflow from Earth and Venus is very similar, i.e. H+ and O+ dominates and the outflow has a stoichiometric H/O ratio of close to 2. The latter implies escape of water. The ion outflow from Mars is dominated by O+, O2+, and H+. Here the stoichiometric ratio between hydrogen and oxygen ion is ≈1, implying that if the ion outflow originates from water, about half of the hydrogen mass disappears by other means. The primary origin of the ion outflow from Earth, Venus and Mars is a complex issue. Nevertheless, a predominant hydrogen and oxygen loss implies that water can easily escape planets orbiting close to the Sun, while Carbon-based molecules (e.g. CO2) resides more easily. Observations shows that the outflow of e.g. CO+ and CO2+ from Mars and Venus is minute compared to the outflow of hydrogen and oxygen ions. Magnetic shielding is an issue affecting the net ion outflow and escape from a planet, because acceleration processes are also the characteristics of magnetized plasmas. Recent findings suggests that, despite magnetic field pile-up at Mars and Venus, the stand-off distance is insufficient to prohibit a direct interaction between the solar wind and the magnetized ionospheric plasma in the induced magnetospheres of Mars and Venus. On the other hand, a planetary magnetic field, such as the Earth's dipole field and the Martian multipole crustal field, may foster shielding as well as plasma acceleration. However, in this case the ion acceleration may be confined in closed planetary magnetic flux tubes, leading to a low escape rates.

  11. Interplanetary scintillation at large elongation angles: Response to solar wind density structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, F.T.; Cronyn, W.M.; Shawhan, S.D.

    1978-09-01

    Synoptic interplanetary scintillation (IPS) index measurements were taken at 34.3 MHz during May-December 1974 using the University of Iowa Coca Cross radiotelescope on a 'grid' of 150 selected radio sources covering solar elongation angles up to 180/sup 0/. Over 80 of these sources displayed definite IPS. The solar elongation dependence of the 34.3-MHz IPS index is consistent with the elongation angle dependence measured at higher frequencies. Large enhancements (factors of> or approx. =2) of the IPS index are found to coincide with the solar wind (proton density increases greater than 10 cm/sup -3/ as measured by Imp 7 and 8more » for nearly all observed IPS sources throughout the sky. These 'all-sky' IPS enhancements appear to be caused by incresed contributions to the scintillation power by turbulent plasma in regions close to the earth (< or approx. =0.3AU) in all directions. Correlation analysis confirms the IPS response to solar wind density and indicates that the events are due primarily to the corotating solar wind turbulent plasma structures which dominated the interplanetary medium during 1974. The expected IPS space-time signature for a simple model of an approaching corotating turbulent structure is not apparent in our observations. In some cases, the enhancement variatons can be attributed to structural differences in the solar wind density turbulence in and out of the ecliptic.« less

  12. System efficiency of a tap transformer based grid connection topology applied on a direct driven generator for wind power.

    PubMed

    Apelfröjd, Senad; Eriksson, Sandra

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.

  13. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    PubMed Central

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed. PMID:25258733

  14. Kinetic-Scale Electric and Magnetic Field Fluctuations in the Solar Wind at 1 AU: THEMIS/ARTEMIS Observations

    NASA Astrophysics Data System (ADS)

    Salem, C. S.; Hanson, E.; Bonnell, J. W.; Chaston, C. C.; Bale, S. D.; Mozer, F.

    2017-12-01

    We present here an analysis of kinetic-scale electromagnetic fluctuations in the solar wind using data from THEMIS and ARTEMIS spacecraft. We use high-time resolution electric and magnetic field measurements, as well as density fluctuations, up to 128 samples per second, as well as particle burst plasma data during carefully selected solar wind intervals. We focus our analysis on a few such intervals spanning different values of plasma beta and angles between the local magnetic field and the radial Sun-Earth direction. We discuss the careful analysis process of characterizing and removing the different instrumental effects and noise sources affecting the electric and magnetic field data at those scales, above 0.1 Hz or so, above the breakpoint marking the start of the so-called dissipation range of solar wind turbulence. We compute parameters such as the electric to magnetic field ratio, the magnetic compressibility, magnetic helicity, and other relevant quantities in order to diagnose the nature of the fluctuations at those scales between the ion and electron cyclotron frequencies, extracting information on the dominant modes composing the fluctuations. We also discuss the presence and role of coherent structures in the measured fluctuations. The nature of the fluctuations in the dissipation or dispersive scales of solar wind turbulence is still debated. This observational study is also highly relevant to the current Turbulent Dissipation Challenge.

  15. Uncovering a New Current: The Southwest MAdagascar Coastal Current

    NASA Astrophysics Data System (ADS)

    Ramanantsoa, Juliano D.; Penven, P.; Krug, M.; Gula, J.; Rouault, M.

    2018-02-01

    Cruise data sets, satellite remote sensing observations, and model data analyses are combined to highlight the existence of a coastal surface poleward flow in the southwest of Madagascar: the Southwest MAdagascar Coastal Current (SMACC). The SMACC is a relatively shallow (<300 m) and narrow (<100 km wide) warm and salty coastal surface current, which flows along the south western coast of Madagascar toward the south, opposite to the dominant winds. The warm water surface signature of the SMACC extends from 22°S (upstream) to 26.4°S (downstream). The SMACC exhibits a seasonal variability: more intense in summer and reduced in winter. The average volume transport of its core is about 1.3 Sv with a mean summer maximum of 2.1 Sv. It is forced by a strong cyclonic wind stress curl associated with the bending of the trade winds along the southern tip of Madagascar. The SMACC directly influences the coastal upwelling regions south of Madagascar. Its existence is likely to influence local fisheries and larval transport patterns, as well as the connectivity with the Agulhas Current, affecting the returning branch of the global overturning circulation.

  16. Wintertime slope winds and its turbulent characteristics in the Yeongdong region of Korea

    NASA Astrophysics Data System (ADS)

    Jeon, H. R.; Eun, S. H.; Kim, B. G.; Lee, Y. H.

    2015-12-01

    The Yeongdong region has various meteorological phenomenons by virtue of complicated geographical characteristics with high Taebaek Mountains running from the north to the south and an adjacent East Sea to the east. There are few studies on the slope winds and its turbulent characteristics over the complex terrain, which are critical information in mountain climbing, hiking, paragliding, even winter sports such as alpine skiing and ski jump etc. For the understanding of diverse mountain winds in the complex terrain in Yeongdong, hot-wire anemometers (Campbell Scientific) have been installed at a couple of sites since October 2014 and several automatic weather stations at several sites around the mountainous region in Yeongdong since November 2012.WRF model simulations have been also done with an ultra-fine horizontal resolution of 300 m for 10 years. Generally, model and observation show that the dominant wind is westerly, approximately more than 75%. It is quite consistent that wind fields from both model and observation agree with each other in the valley region and at the top of the mountain, but there is a significant disagreement in wind direction specifically in the slide slope. Probably this implies model's performance with even an ultra-fine resolution is still not enough for the slide slope domain of complex terrains. Despite that, the observation clearly showed up- and down slope winds for the weak synoptic conditions carefully selected such as strong insolation and a synoptic wind less than 5m/s in the 850 hPa. The up- and down slope flows are also demonstrated in the snow-covered condition as well as grass ground. Further, planar fit transformation algorithm against the coordinate tilt has been applied to raw wind data (10Hz) of the slope site for the analysis of turbulence properties. Turbulence also increases with synoptic wind strength. Detailed analysis of mechanical turbulence and buoyance will be discussed for different surface properties (grass or snow), and wind strength (weak and strong).

  17. The role of atmospheric stability/turbulence on wakes at the Egmond aan Zee offshore wind farm

    NASA Astrophysics Data System (ADS)

    Barthelmie, R. J.; Churchfield, M. J.; Moriarty, P. J.; Lundquist, J. K.; Oxley, G. S.; Hahn, S.; Pryor, S. C.

    2015-06-01

    The aim of the paper is to present results from the NREL SOWFA project that compares simulations from models of different fidelity to meteorological and turbine data from the Egmond aan Zee wind farm. Initial results illustrate that wake behavior and impacts are strongly impacted by turbulence intensity [1]. This includes both power losses from wakes and loading illustrated by the out of plane bending moment. Here we focus on understanding the relationship between turbulence and atmospheric stability and whether power losses due to wakes can effectively be characterized by measures of turbulence alone or whether atmospheric stability as a whole plays a fundamental role in wake behavior. The study defines atmospheric stability using the Monin-Obukhov length estimated based on the temperature difference between 116 and 70 m. The data subset selected using this method for the calculation of the Monin-Obukhov length indicate little diurnal or directional dependence of the stability classes but a dominance of stable classes in the spring/unstable classes in fall and of near-neutral classes at high wind speeds (Figure 2). The analysis is complicated by the need to define turbulence intensity. We can select the ratio of the standard deviation of wind speed to mean wind speed in each observation period using data from the meteorological mast, in which case a substantial amount of data must be excluded due to the presence of the wind farm. An alternative is to use data from the wind turbines which could provide a larger data set for analysis. These approaches are examined and compared to illustrate their robustness. Finally, power losses from wakes are categorized according to stability and/or turbulence in order to understand their relative importance in determining the behavior of wind turbine wakes.

  18. The role of atmospheric stability/turbulence on wakes at the Egmond aan Zee offshore wind farm

    DOE PAGES

    Barthelmie, R. J.; Churchfield, Matthew J.; Moriarty, Patrick J.; ...

    2015-06-18

    Here, the aim of the paper is to present results from the NREL SOWFA project that compares simulations from models of different fidelity to meteorological and turbine data from the Egmond aan Zee wind farm. Initial results illustrate that wake behavior and impacts are strongly impacted by turbulence intensity. This includes both power losses from wakes and loading illustrated by the out of plane bending moment. Here we focus on understanding the relationship between turbulence and atmospheric stability and whether power losses due to wakes can effectively be characterized by measures of turbulence alone or whether atmospheric stability as amore » whole plays a fundamental role in wake behavior. The study defines atmospheric stability using the Monin-Obukhov length estimated based on the temperature difference between 116 and 70 m. The data subset selected using this method for the calculation of the Monin-Obukhov length indicate little diurnal or directional dependence of the stability classes but a dominance of stable classes in the spring/unstable classes in fall and of near-neutral classes at high wind speeds. The analysis is complicated by the need to define turbulence intensity. We can select the ratio of the standard deviation of wind speed to mean wind speed in each observation period using data from the meteorological mast, in which case a substantial amount of data must be excluded due to the presence of the wind farm. An alternative is to use data from the wind turbines which could provide a larger data set for analysis. These approaches are examined and compared to illustrate their robustness. Finally, power losses from wakes are categorized according to stability and/or turbulence in order to understand their relative importance in determining the behavior of wind turbine wakes.« less

  19. Observations of the directional distribution of the wind energy input function over swell waves

    NASA Astrophysics Data System (ADS)

    Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.

    2016-02-01

    Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos⁡3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.

  20. Measurement campaign for wind power potential in west Greenland

    NASA Astrophysics Data System (ADS)

    Rønnow Jakobsen, Kasper

    2013-04-01

    Experiences and results from a wind resource exploring campaign 2003- in west Greenland. Like many other countries, Greenland is trying to reduce its dependency of fossil fuel by implementing renewable energy. The main challenge is that the people live on the coast in scattered settlements, without power infrastructure. Based on this a wind power potential project was established in 2002, funded by the Greenlandic government and the Technical University of Denmark. We present results and experiences of the campaign. 1 Field campaign There were only a few climate stations in or close to settlements and due to their positioning and instrumentation, they were not usable for wind resource estimation. To establish met stations in Arctic areas with complex topography, there are some challenges to face; mast positioning in complex terrain, severe weather conditions, instrumentation, data handling, installation and maintenance budget. The terrain in the ice free and populated part, mainly consists of mountains of different heights and shapes, separated by deep fjords going from the ice cap to the sea. With a generally low wind resource the focus was on the most exposed positions close to the settlements. Data from the nearest existing climate stations was studied for background estimations of predominant wind directions and extreme wind speeds, and based on that the first 10m masts were erected in 2003. 2 Instruments The first installations used standard NRG systems with low cost NRG instruments. For most of the sites this low cost setup did a good job, but there were some problems with the first design, including instrument and boom strains. In subsequent years, the systems were updated several times to be able to operate in the extreme conditions. Different types of instruments, data logger and boom systems were tested to get better data quality and reliability. Today 11 stations with heights ranging from 10-50m are installed and equipped according to the IEC standard. During the first years, the influence of instrument icing was not considered, but recently one of the sites was equipped with an ice rate sensor and a heated ultrasonic anemometer to study the ice influence. 3 Results The predominant wind direction for most sites is away from the ice cap at the center of the continent, but for some coastal sites it is north or south. The north-south wind pattern is expected from the synoptic patterns and the barrier effect of the ice cap. The sites where the predominant wind direction is away from the inland ice are dominated by katabatic wind systems from the ice cap and form valley systems. These sites also seem to have the highest wind resource and will be studied further. A good example of the influence of katabatic and thermal wind systems can be seen in the measurement data from Sarfannguit and Nanortalik 66 and 60 degrees northern latitude respectively. In future work, these katabatic flows and their impact on the wind resource will be studied using mesoscale modelling and microscale downscaling.

  1. [Measurement of Speed and Direction of Ocean Surface Winds Using Quik Scat Scatterometer

    NASA Technical Reports Server (NTRS)

    Stiles, Bryan; Pollard, Brian

    2000-01-01

    The SeaWinds on QuikSCAT scatterometer was developed by NASA JPL to measure the speed and direction of ocean surface winds. Simulations performed to estimate the performance of the instrument prior to its launch have indicated that the mid-swath accuracy is worse than that of the rest of the swath. This behavior is a general characteristic of scanning pencil beam scatterometers. For SeaWinds, the accuracy of the rest of the swath, and the size of the swath are such that the instrument meets its science requirements despite mid-swath shortcomings. However, by understanding the problem at mid-swath, we can improve the performance there as well. We discuss the underlying causes of the problem in detail and propose a new wind retrieval algorithm which improves mid-swath performance. The directional discrimination ability of the instrument varies with cross track distance wind speed, and direction. By estimating the range of likely wind directions for each measurement cell, one can optimally apply information from neighboring cells where necessary in order to reduce random wind direction errors without significantly degrading the resolution of the resultant wind field. In this manner we are able to achieve mid-swath RMS wind direction errors as low as 15 degrees for low winds and 10 degrees for moderate to high winds, while at the same time preserving high resolution structures such as cyclones and fronts.

  2. Tail Shape Design of Boat Wind Turbines

    NASA Astrophysics Data System (ADS)

    Singamsitty, Venkatesh

    Wind energy is a standout among the most generally utilized sustainable power source assets. A great deal of research and improvements have been happening in the wind energy field. Wind turbines are mechanical devices that convert kinetic energy into electrical power. Boat wind turbines are for the small-scale generation of electric power. In order to catch wind energy effectively, boat wind turbines need to face wind direction. Tails are used in boat wind turbines to alter the wind turbine direction and receive the variation of the incoming direction of wind. Tails are used to change the performance of boat wind turbines in an effective way. They are required to generate a quick and steady response as per change in wind direction. Tails can have various shapes, and their effects on boat wind turbines are different. However, the effects of tail shapes on the performance of boat wind turbines are not thoroughly studied yet. In this thesis, five tail shapes were studied. Their effects on boat wind turbines were investigated. The power extracted by the turbines from the air and the force acting on the boat wind turbine tail were analyzed. The results of this thesis provide a guideline of tail shape design for boat wind turbines.

  3. The appearance of highly relativistic, spherically symmetric stellar winds

    NASA Technical Reports Server (NTRS)

    Abramowicz, Marek A.; Novikov, Igor D.; Paczynski, Bohdan

    1991-01-01

    A nonluminous, steady state, spherically symmetric, relativistic wind, with the opacity dominated by electron scattering appears against a bright background as a dark circle with the radius rd. A luminous wind would appear as a bright spot with a radius rl = rd/2 pi gamma exp 3, where gamma is the Lorentz factor of the wind. The bright wind photosphere is convex for v equal to or less than 2c/3, and appears concave for higher outflow velocities.

  4. Aerosol optical properties at rural background area in Western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M. A.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M.

    2017-11-01

    To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Ångström exponents and single scattering albedo over the measurement period. The average scattering and absorption coefficients at wavelength 525 nm were 109 ± 71 Mm- 1 (mean ± SD, at STP conditions) and 15 ± 17 Mm- 1 (at STP conditions), respectively. As expected, the scattering coefficient was dominated by large desert dust particles with low Ångström scattering exponent, 0.49 ± 0.62. Especially from February to June the Ångström scattering exponent was clearly lower (0.23) and scattering coefficients higher (124 Mm- 1) than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10-PM2.5) mass concentrations to identify source characteristics. Three different factors with clearly different properties were found; anthropogenic, BC source and desert dust. Mass absorption efficiencies for BC source and desert dust factors were, 6.0 m2 g- 1 and 0.4 m2 g- 1, respectively, and mass scattering efficiencies for anthropogenic (sulphate) and desert dust, 2.5 m2 g- 1 and 0.8 m2 g- 1, respectively.

  5. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    USGS Publications Warehouse

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.

  6. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight.

    PubMed

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf; Griffin, Larry; Rees, Eileen C; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y; Newman, Scott H; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird's flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird's direction) throughout a bird's journey. We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.

  7. Assessment of sand encroachment in Kuwait using GIS

    NASA Astrophysics Data System (ADS)

    Al-Helal, Anwar B.; Al-Awadhi, Jasem M.

    2006-04-01

    Assessment of sand encroachment in Kuwait using Geographical Information System (GIS) technology has been formulated as a Multi-Criteria Decision Making problem. The Delphi method and Analytical Hierarchy Process were adopted as evaluating techniques, in which experts’ judgments were analyzed for objectively estimating and weighting control factors. Seven triggering factors, depicted in the form of maps, were identified and ordered according to their priority. These factors are (1) wind energy; (2) surface sediment; (3) vegetation density; (4) land use; (5) drainage density; (6) topographic change and (7) vegetation type. The factor maps were digitized, converted to raster data and overlaid to determine their possible spatial relationships. Applying a susceptibility model, a map of sand encroachment susceptibility in Kuwait was developed. The map showed that the areas of very high and high sand encroachment susceptibility are located within the main corridor of sand pathway that coincides with the northwesterly dominant wind direction.

  8. k-filtering applied to Cluster density measurements in the Solar Wind: Early findings

    NASA Astrophysics Data System (ADS)

    Jeska, Lauren; Roberts, Owen; Li, Xing

    2014-05-01

    Studies of solar wind turbulence indicate that a large proportion of the energy is Alfvénic (incompressible) at inertial scales. The properties of the turbulence found in the dissipation range are still under debate ~ while it is widely believed that kinetic Alfvén waves form the dominant component, the constituents of the remaining compressible turbulence are disputed. Using k-filtering, the power can be measured without assuming the validity of Taylor's hypothesis, and its distribution in (ω, k)-space can be determined to assist the identification of weak turbulence components. This technique is applied to Cluster electron density measurements and compared to the power in |B(t)|. As the direct electron density measurements from the WHISPER instrument have a low cadency of only 2.2s, proxy data derived from the spacecraft potential, measured every 0.2s by the EFW instrument, are used to extend this study to ion scales.

  9. Mass and number size distributions of particulate matter components: comparison of an industrial site and an urban background site.

    PubMed

    Taiwo, Adewale M; Beddows, David C S; Shi, Zongbo; Harrison, Roy M

    2014-03-15

    Size-resolved composition of particulate matter (PM) sampled in the industrial town of Port Talbot (PT), UK was determined in comparison to a typical urban background site in Birmingham (EROS). A Micro-Orifice Uniform Deposit Impactor (MOUDI) sampler was deployed for two separate sampling campaigns with the addition of a Grimm optical spectrometer at the PT site. MOUDI samples were analysed for water-soluble anions (Cl(-), NO₃(-) and SO₄(2-)) and cations (Na(+), NH4(+), K(+), Mg(2+) and Ca(2+)) and trace metals (Al, V, Cr, Mn, Fe, Cu, Zn, Sb, Ba and Pb). The PM mass distribution showed a predominance of fine particle (PM₂.₅) mass at EROS whereas the PT samples were dominated by the coarse fraction (PM₂.₅₋₁₀). SO₄(2-), Cl(-), NH4(+), Na(+), NO₃(-), and Ca(2+) were the predominant ionic species at both sites while Al and Fe were the metals with highest concentrations at both sites. Mean concentrations of Cl(-), Na(+), K(+), Ca(2+), Mg(2+), Cr, Mn, Fe and Zn were higher at PT than EROS due to industrial and marine influences. The contribution of regional pollution by sulphate, ammonium and nitrate was greater at EROS relative to PT. The traffic signatures of Cu, Sb, Ba and Pb were particularly prominent at EROS. Overall, PM at EROS was dominated by secondary aerosol and traffic-related particles while PT was heavily influenced by industrial activities and marine aerosol. Profound influences of wind direction are seen in the 72-hour data, especially in relation to the PT local sources. Measurements of particle number in 14 separate size bins plotted as a function of wind direction and speed are highly indicative of contributing sources, with local traffic dominant below 0.5 μm, steelworks emissions from 0.5 to 15 μm, and marine aerosol above 15 μm. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. NASA Advanced Propeller Research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic i e l d s a r e described along with wind tunnel tests to obtain data for code verification . Results from two kinds of experiments are reviewed: ( 1 ) performance and near field noise at cruise conditions as measured in the NASA Lewis 8-by 6-Foot Wind Tunnel and ( 2 ) farfield noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9-by 15-Font Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off design conditions . Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at take off but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise a real so illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  11. Effects of Convective Asymmetries on Hurricane Intensity: A Numerical Study

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Braun, Scott A.

    2003-01-01

    The influence of the uniform large-scale flow, beta effect, and vertical shear of the environmental flow on hurricane intensity is investigated in the context of the induced convective or potential vorticity asymmetries with a hydrostatic primitive equation hurricane model. In agreement with the previous studies, imposing of one of these environmental effects can substantially weaken the simulated tropical cyclones. In response t o the environmental influence, significant asymmetries develop with a structure similar to the spiral bands in real hurricanes, which are dominated by wavenumber-one components. The tendencies of the mean radial, azimuthal winds and temperature associated with the environment-induced convective asymmetries are evaluated respectively. The resulting asymmetries can effectively reduce hurricane intensity by directly producing the negative tendency of the mean tangential wind in the vicinity of the radius of maximum wind, and by weakening the mean radial circulation. The reduction effects are closely associated with the spiral structure of the induced asymmetries. The time lag observed between the imposition of the environmental influence and the resulting rise in the minimum central pressure is the time required for developing the spiral structure. This study also confirms the axisymmetrization process associated with the induced wavenumber-one components of potential vorticity asymmetries, but it exists only within the radius of maximum wind.

  12. Wind and Water?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03284 Wind and Water?

    The deposits within this crater show evidence of erosion by both wind and water. The region outside the crater is dominated by wind erosion.

    Image information: VIS instrument. Latitude 1.4N, Longitude 204.1E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Saturn's Auroral Response to the Solar Wind: Centrifugal Instability Model

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C.; Blanc, Michel F.; Richardson, J. D.

    2008-01-01

    We describe a model initially presented by Sittler et al. [2006] which attempts to explain the global response of Saturn's magnetosphere and its corresponding auroral behavior to variations in the solar wind. The model was derived from published simultaneous Hubble Space Telescope (HST) auroral images and Cassini upstream measurements taken during the month of January 2004. These observations show a direct correlation between solar wind dynamic pressure and (1) auroral brightening toward dawn local time, (2) an increase of rotational movement of auroral features to as much as 75% of the corotation speed, (3) the movement of the auroral oval to higher latitudes and (4) an increase in the intensity of Saturn Kilometric Radiation (SKR). This model is an alternative to the reconnection model of Cowley et al. [2004a,b; 2005] which is more Earth-like while ours stresses rotation. If angular momentum is conserved in a global sense, then when compressed the magnetosphere will tend to spin up and when it expands will tend to spin down. With the plasma sheet outer boundary at L approximates 15 we argue this region to be the dominant source region for the precipitating particles. If radial transport is dominated by centrifugal driven flux tube interchange motions, then when the magnetosphere spins up, outward transport will increase, the precipitating particles will move radially outward and cause the auroral oval to move to higher latitudes as observed. The Kelvin-Helmholtz instability may contribute to the enhanced emission along the dawn meridian as observed by HST. We present this model in the context of presently published observations by Cassini.

  14. On buoyancy-driven natural ventilation of a room with a heated floor

    NASA Astrophysics Data System (ADS)

    Gladstone, Charlotte; Woods, Andrew W.

    2001-08-01

    The natural ventilation of a room, both with a heated floor and connected to a cold exterior through two openings, is investigated by combining quantitative models with analogue laboratory experiments. The heated floor generates an areal source of buoyancy while the openings allow displacement ventilation to operate. When combined, these produce a steady state in which the air in the room is well-mixed, and the heat provided by the floor equals the heat lost by displacement. We develop a quantitative model describing this process, in which the advective heat transfer through the openings is balanced with the heat flux supplied at the floor. This model is successfully tested with observations from small-scale analogue laboratory experiments. We compare our results with the steady-state flow associated with a point source of buoyancy: for a given applied heat flux, an areal source produces heated air of lower temperature but a greater volume flux of air circulates through the room. We generalize the model to account for the effects of (i) a cooled roof as well as a heated floor, and (ii) an external wind or temperature gradient. In the former case, the direction of the flow through the openings depends on the temperature of the exterior air relative to an averaged roof and floor temperature. In the latter case, the flow is either buoyancy dominated or wind dominated depending on the strength of the pressure associated with the wind. Furthermore, there is an intermediate multiple-solution regime in which either flow regime may develop.

  15. Thermal zonal winds in the Venus mesosphere from the Venus Express temperature soundings

    NASA Astrophysics Data System (ADS)

    Piccialli, Arianna; Titov, Dmitri; Tellmann, Silvia; Migliorini, Alessandra; Read, Peter; Grassi, Davide; Paetzold, Martin; Haeusler, Bernd; Piccioni, Giuseppe; Drossart, Pierre

    The Venus mesosphere (60-100 km altitude) is a transition region characterized by extremely complex dynamics: strong retrograde zonal winds dominate in the troposphere and lower meso-sphere while a solar-antisolar circulation can be observed in the upper mesosphere. The super-rotation extends from the surface up to the cloud top (˜65 km altitude) with wind speeds of only a few meters per second near the surface and reaching a maximum value of ˜100 m s-1 at cloud top, corresponding to a rotation period of ˜4 Earth days (˜60 times faster than Venus itself). The solar-antisolar circulation is driven by the day-night contrast in solar heating, and occurs above 110 km altitude with speeds of 120 m s-1 . The processes responsible for maintain-ing the zonal super-rotation in the lower atmosphere and its transition to the solar-antisolar circulation in the upper atmosphere are still poorly understood (Schubert et al.,2007). Different techniques have been used to obtain direct observations of wind at various altitudes: tracking of clouds in ultraviolet (UV) and near infrared (NIR) images give information on wind speeds at the cloud top (Moissl et al., 2009; Sanchez-Lavega et al., 2008) and within the clouds (˜47 km, ˜61 km) (Sanchez-Lavega et al., 2008) while ground-based measurements of Doppler shifts in the CO2 band at 10 µm (Sornig et al., 2008) and in several CO millimiter lines (Rengel et al., 2008) provide wind speeds above the clouds up to ˜110 km altitude. The deep atmosphere from the surface up to the cloud top has been investigated through the Doppler tracking of descent probes and balloons (Counselman et al., 1980; Kerzhanovich and Limaye, 1985). In the mesosphere, between 45-85 km of altitude, where direct observations of wind are not possible, the zonal wind field can be derived from the vertical temperature structure using a special approximation of the thermal wind equation: based on cyclostrophic balance. Previous studies (Leovy, 1973; Newman et al., 1984) showed that on a slowly rotating planet, like Venus, strong zonal winds at the cloud top can be described by a cyclostrophic balance in which the equatorward component of centrifugal force is balanced by the meridional pressure gradient. This equation gives a possibility to reconstruct the zonal wind if the temperature field is known, together with a suitable boundary condition on u. Two experiments onboard Venus Express are sounding the temperature structure of the Venus mesosphere: VIRTIS sounds the Venus Southern hemisphere in the altitude range 65-90 km with a very good spatial and temporal coverage (Grassi et al., 2008) and the Northern hemi-sphere but with more limited coverage; VeRa observes both northern and southern hemispheres between 40-90 km altitude with a vertical resolution of ˜500 m (Tellmann et al., 2008). Here we present zonal thermal winds derived applying cyclostrophic balance from VIRTIS and VeRa temperature retrievals. The main features of the retrieved winds are: (1) a midlatitude jet with a maximum speed up to 140 ± 15 m s-1 which occurs around 50° S latitude at 70 km altitude; (2) the fast decrease of the wind speed from 60° S toward the pole; (3) the decrease of the wind speed with increasing height above the jet (Piccialli et al., 2008). Cyclostrophic winds show satisfactory agreement with the cloud-tracked winds derived from the Venus Monitoring Camera (VMC/VEx) UV images, although a disagreement is observed at the equator and near the pole due to the breakdown of the cyclostrophic approximation. From zonal thermal winds the Richardson number has been evaluated. In good agreement with previous studies (Allison et al., 1994), we have found that the atmosphere is dominated by convection from ˜45 km altitude up to the cloud top. A high value of Richardson number has been determined, cor-responding to the midlatitude jet and indicating a highly stable atmosphere. Verification of the necessary condition for barotropic instability implies that barotropic instability may occur on the poleward side of the midlatitude jet where planetary waves are expected to play an important role in the maintenance of the circulation.

  16. Climatology and inter-annual variability of the polar mesospheric winds inferred from meteor radar observations over Sodankylä (67N, 26E) during solar cycle 24

    NASA Astrophysics Data System (ADS)

    Lukianova, Renata; Kozlovsky, Alexander; Lester, Mark

    2018-06-01

    The inter-annual variability, climatological mean wind and tide fields in the northern polar mesosphere/lower thermosphere region of 82-98 km height are studied using observations by the meteor radar which has operated continuously during solar cycle 24 (from December 2008 onward) at the Sodankylä Geophysical Observatory (67N, 26E). Summer mean zonal winds are characterized by westward flow, up to 25 m/s, at lower heights and eastward flow, up to 30 m/s, at upper heights. In the winter an eastward flow, up to 10 m/s, dominates at all heights. The meridional winds are characterized by a relatively weak poleward flow (few m/s) in the winter and equatorward flow in the summer, with a jet core (∼15 m/s) located slightly below 90 km. These systematically varying winds are dominated by the semidiurnal tides. The largest amplitudes, up to 30 m/s, are observed at higher altitudes in winter and a secondary maximum is seen in August-September. The diurnal tides are almost a factor of two weaker and peak in summer. The variability of individual years is dominated by the winter perturbations. During the period of observations major sudden stratospheric warmings (SSW) occurred in January 2009 and 2013. During these events the wind fields were strongly modified. The lowest altitude eastward winds maximized up to 25 m/s, that is by more twice that of the non-SSW years. The poleward flow considerably increases (up 10 m/s) and extends from the lower heights throughout the whole altitude range. The annual pattern in temperature at ∼90 km height over Sodankyla consists of warm winters (up to 200 K) and cold summers (∼120 K).

  17. The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2017-10-01

    We use cosmological simulations from the FIRE (Feedback In Realistic Environments) project to study the baryon cycle and galaxy mass assembly for central galaxies in the halo mass range Mhalo ˜ 1010-1013 M⊙. By tracing cosmic inflows, galactic outflows, gas recycling and merger histories, we quantify the contribution of physically distinct sources of material to galaxy growth. We show that in situ star formation fuelled by fresh accretion dominates the early growth of galaxies of all masses, while the re-accretion of gas previously ejected in galactic winds often dominates the gas supply for a large portion of every galaxy's evolution. Externally processed material contributes increasingly to the growth of central galaxies at lower redshifts. This includes stars formed ex situ and gas delivered by mergers, as well as smooth intergalactic transfer of gas from other galaxies, an important but previously underappreciated growth mode. By z = 0, wind transfer, I.e. the exchange of gas between galaxies via winds, can dominate gas accretion on to ˜L* galaxies over fresh accretion and standard wind recycling. Galaxies of all masses re-accrete ≳50 per cent of the gas ejected in winds and recurrent recycling is common. The total mass deposited in the intergalactic medium per unit stellar mass formed increases in lower mass galaxies. Re-accretion of wind ejecta occurs over a broad range of time-scales, with median recycling times (˜100-350 Myr) shorter than previously found. Wind recycling typically occurs at the scale radius of the halo, independent of halo mass and redshift, suggesting a characteristic recycling zone around galaxies that scales with the size of the inner halo and the galaxy's stellar component.

  18. Geochemistry of Aerosols in North -West India

    NASA Astrophysics Data System (ADS)

    Yadav, S.

    2001-12-01

    The geochemistry of, sources to, and transport of dust and their consequences on earth system processes are least understood. Here we follow Guru Gil's approach to use trace elements and isotopic data on aerosols in northwest India to understand their sources and processes. Aerosol samples were collected over a stretch of 550 kms from the Thar desert to the Delhi region which sits on the eastern fringe of the Thar. This region witnesses frequent dust storms in summer seasons due to high intensity south westerly and westerly winds. Major, trace elements including REE and Sr isotopic data are generated on three different group of aerosols such as dry deposition (DD, >100μm ), suspended particulate matter (SPM, 0.1-100μm ) and PM10 (<10μm ) collected by different sampling techniques and at different seasons. Major and trace elements in all DD samples show a high degree of homogeneity with similar LREE enriched patterns and -ve Eu anomalies regardless of space and time of sampling. These particles are geochemically similar to UCC, PAAS, and local loess with relatively low CIA values, indicating a low degree of chemical weathering suffered by their source regions dominated by upper crustal materials. Geochemistry of SPM and PM10 aerosols shows variation along the wind path. With decreasing size, crustal component decreases, anthropogenic inputs to transition metals and non-silicate input to Ca budget increase. The greater variability in finer fractions is primarily due to anthropogenic input and local meteorology where wind acts as an intensive variable. The REE patterns in SPM and PM10 are similar to DD samples with -ve Eu anomaly but their abundance decrease with size, probably due to some dilution effect by organics and mineralogical factors. It is possible that REE hosting minerals are concentrated in coarser silt and finest sand fractions (35-70μm ). This is supported by the decreasing Zr concentrations with decreasing size and distance in downwind direction where the wind velocity reduces. 87Sr/86Sr isotopic ratios of all the fractions also show a small size dependency. The coarser samples have higher values (0.719-0.720) compared to finer ones (0.715-0.717). These values are similar to the lower end of Indo-Gangetic alluvium ratios (J. Tripathy), perhaps resulting from the minor addition of Jurassic carbonate/gypsum, present in the upwind part. Thus, the source for the dominant component of aerosols is upper crustal and is likely to be older Himalayan alluvium deposited by now defunct rivers in the Rajasthan region. The removal of silty materials (a dominant part of aerosols) from the older alluvium is probably responsible for the presence of Thar desert in the upwind direction.

  19. Regional Analysis of Long-term Local and Synoptic Effects on Wind Velocity and Energy Patterns in Complex Terrain

    NASA Astrophysics Data System (ADS)

    Belu, R.; Koracin, D. R.

    2017-12-01

    Investments in renewable energy are justified in both environmental and economic terms. Climate change risks call for mitigation strategies aimed to reduce pollutant emissions, while the energy supply is facing high uncertainty by the current or future global economic and political contexts. Wind energy is playing a strategic role in the efforts of any country for sustainable development and energy supply security. Wind energy is a weather and climate-dependent resource, having a natural spatio-temporal variability at time scales ranging from fraction of seconds to seasons and years, while at spatial scales is strongly affected by the topography and vegetation. Main objective of the study is to investigate spatio-temporal characteristics of the wind velocity in the Southwest U.S., that are relevant to wind energy assessment, analysis, development, operation, and grid integration, by using long-term multiple meteorological tower observations. Wind velocity data and other meteorological parameters from five towers, located near Tonopah, Nevada, operated between 2003 to 2008, and from three towers are located in Carson Valley, Nevada, operated between 2006 and 2014 were used in this study. Multi-annual wind speed data collected did not show significant increase trends with increasing elevation; the differences are mainly governed by the topographic complexity, including local atmospheric circulations. Auto- and cross-correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multi-day periodicity with increasing lag periods. Besides pronounced diurnal periodicity at all locations, detrended fluctuation analysis also showed significant seasonal and annual periodicities, and long-memory persistence with similar characteristics. In spite of significant differences in mean wind speeds among the towers, due to location specifics, the relatively high auto- and cross-correlation coefficients among the towers indicate that the regional synoptic processes are dominant for wind variability.

  20. Spatial-temporal analysis of coherent offshore wind field structures measured by scanning Doppler-lidar

    NASA Astrophysics Data System (ADS)

    Valldecabres, L.; Friedrichs, W.; von Bremen, L.; Kühn, M.

    2016-09-01

    An analysis of the spatial and temporal power fluctuations of a simplified wind farm model is conducted on four offshore wind fields data sets, two from lidar measurements and two from LES under unstable and neutral atmospheric conditions. The integral length scales of the horizontal wind speed computed in the streamwise and the cross-stream direction revealed the elongation of the structures in the direction of the mean flow. To analyse the effect of the structures on the power output of a wind turbine, the aggregated equivalent power of two wind turbines with different turbine spacing in the streamwise and cross-stream direction is analysed at different time scales under 10 minutes. The fact of considering the summation of the power of two wind turbines smooths out the fluctuations of the power output of a single wind turbine. This effect, which is stronger with increasing spacing between turbines, can be seen in the aggregation of the power of two wind turbines in the streamwise direction. Due to the anti-correlation of the coherent structures in the cross-stream direction, this smoothing effect is stronger when the aggregated power is computed with two wind turbines aligned orthogonally to the mean flow direction.

  1. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Marsula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993–2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future.

  2. Networks of Interacting Processes: Relationships Between Drivers and Deltaic Variables to Understand Water and Sediment Transport in Wax Lake Delta, Coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Sendrowski, A.; Passalacqua, P.; Wagner, W.; Mohrig, D. C.; Meselhe, E. A.; Sadid, K. M.; Castañeda-Moya, E.; Twilley, R.

    2017-12-01

    Studying distributary channel networks in river deltaic systems provides important insight into deltaic functioning and evolution. This view of networks highlights the physical connection along channels and can also encompass the structural link between channels and deltaic islands (termed structural connectivity). An alternate view of the deltaic network is one composed of interacting processes, such as relationships between external drivers (e.g., river discharge, tides, and wind) and internal deltaic response variables (e.g., water level and sediment concentration). This network, also referred to as process connectivity, is dynamic across space and time, often comprises nonlinear relationships, and contributes to the development of complex channel networks and ecologically rich island platforms. The importance of process connectivity has been acknowledged, however, few studies have directly quantified these network interactions. In this work, we quantify process connections in Wax Lake Delta (WLD), coastal Louisiana. WLD is a naturally prograding delta that serves as an analogue for river diversion projects, thus it provides an excellent setting for understanding the influence of river discharge, tides, and wind on water and sediment in a delta. Time series of water level and sediment concentration were collected in three channels from November 2013 to February 2014, while water level and turbidity were collected on an island from April 2014 to August 2015. Additionally, a model run on WLD bathymetry generated two years of sediment concentration time series in multiple channels. River discharge, tide, and wind measurements were collected from the USGS and NOAA, respectively. We analyze this data with information theory (IT), a set of statistics that measure uncertainty in signals and communication between signals. Using IT, the timescale, strength, and direction of network links are quantified by measuring the synchronization and direct influence from one variable to another. We compare channel and island process connections, which show distinct differences. Our study captures the temporal evolution of variable transport at multiple locations. While WLD is river dominated, tides and wind show unique transport signatures related to tidal spring and neap transitions and wind events.

  3. Wave-current interaction: Effect on the wave field in a semi-enclosed basin

    NASA Astrophysics Data System (ADS)

    Benetazzo, A.; Carniel, S.; Sclavo, M.; Bergamasco, A.

    2013-10-01

    The effect on waves of the Wave-Current Interaction (WCI) process in the semi-enclosed Gulf of Venice (northern region of the Adriatic Sea) was investigated using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. COAWST relies on the ocean model ROMS (Regional Ocean Modeling System), the wave model SWAN (Simulating WAves Nearshore), and the CSTMS (Community Sediment Transport Modeling System) routines. The two-way data transfer between circulation and wave models was synchronous via MCT (Model Coupling Toolkit), with ROMS providing: current field, free surface elevation, and bathymetry to SWAN. For coupling, the 3-D current profiles were averaged using a formulation which integrated the near-surface velocity over a depth controlled by the spectral mean wavenumber. COAWST system was implemented on a parent grid (with horizontal resolution of 2.0 km) covering the whole Adriatic Sea with one-way nesting to a child grid resolving the northern area (Gulf of Venice) at a resolution of 0.5 km. The meteorological forcings provided by the operational meteorological model COSMO-I7 (a mesoscale model developed in the framework of the COSMO Consortium) were used to drive the modeling system in the period bracketing September 2010-August 2011. The adopted winds and the simulated waves were compared with observations at the CNR-ISMAR Acqua Alta oceanographic tower, located off the Venice littoral. Wave heights and sea surface winds were also compared with satellite-derived data. The analysis of WCI was performed on the child grid over the winter season (January-March 2011) with particular focus on the waves generated by prevailing and dominant winds blowing on the Adriatic Sea: Bora and Sirocco. Due to the variable wind direction with respect to the ocean current direction different effects on WCI were depicted, showing that within the northern Adriatic Sea the ocean-wave interactions are strongly dependent on the wind forcing direction. Further investigations reveal that, when applied to intense storms, the effect of coupling on waves results in variations of significant wave height up to 0.6 m, with some areas experiencing significant increase/decrease of wave spectral energy for opposite/following currents respectively.

  4. The impact of a prominent rain shadow on flooding in California's Santa Cruz Mountains: A CALJET case study and sensitivity to the ENSO cycle

    USGS Publications Warehouse

    Ralph, F.M.; Neiman, P.J.; Kingsmill, D.E.; Persson, P.O.G.; White, A.B.; Strem, E.T.; Andrews, E.D.; Antweiler, Ronald C.

    2003-01-01

    Data from the California Land-Falling Jets Experiment (CALJET) are used to explore the causes of variations in flood severity in adjacent coastal watersheds within the Santa Cruz Mountains on 2-3 February 1998. While Pescadero Creek (rural) experienced its flood of record, the adjacent San Lorenzo Creek (heavily populated), attained only its fourth-highest flow. This difference resulted from conditions present while the warm sector of the storm, with its associated low-level jet, high moisture content, and weak static stability, was overhead. Rainfall in the warm sector was dominated by orographic forcing. While the wind speed strongly modulated rain rates on windward slopes, the wind direction positioned the edge of a rain shadow cast by the Santa Lucia Mountains partially over the San Lorenzo basin, thus protecting the city of Santa Cruz from a more severe flood. Roughly 26% ?? 9% of the streamflow at flood peak on Pescadero Creek resulted from the warm-sector rainfall. Without this rainfall, the peak flow on Pescadero Creek would likely not have attained record status. These results are complemented by a climatological analysis based on ???50-yr-duration streamflow records for these and two other nearby windward watersheds situated ???20 to 40 km farther to the east, and a comparison of this climatological analysis with composites of NCEP-NCAR reanalysis fields. The westernmost watersheds were found to have their greatest floods during El Nin??o winters, while the easternmost watersheds peaked during non-El Nin??o episodes. These results are consistent with the case study, that showed that the composite 925-mb, meridionally oriented wind direction during El Nin??os favors a rain shadow over the eastern watersheds. During non-El Nin??o periods, the composite, zonally oriented wind direction indicates that the sheltering effect of the rain shadow on the eastern watersheds is reduced, while weaker winds, less water vapor, and stronger stratification reduce the peak runoff in the western watersheds relative to El Nin??o periods. These case study and climatological results illustrate the importance of conditions in the moisture-rich warm sector of landfalling Pacific winter storms. Although many other variables can influence flooding, this study shows that variations of ??10?? in wind direction can modulate the location of orographically enhanced floods. While terrain can increase predictability (e.g., rainfall typically increases with altitude), the predictability is reduced when conditions are near a threshold separating different regimes (e.g., in or out of a rain shadow ).

  5. Unified Models of Turbulence and Nonlinear Wave Evolution in the Extended Solar Corona and Solar Wind

    NASA Technical Reports Server (NTRS)

    Cranmer, Steven R.; Wagner, William (Technical Monitor)

    2003-01-01

    The PI (Cranmer) and Co-I (A. van Ballegooijen) made significant progress toward the goal of building a "unified model" of the dominant physical processes responsible for the acceleration of the solar wind. The approach outlined in the original proposal comprised two complementary pieces: (1) to further investigate individual physical processes under realistic coronal and solar wind conditions, and (2) to extract the dominant physical effects from simulations and apply them to a one-dimensional and time-independent model of plasma heating and acceleration. The accomplishments in the report period are thus divided into these two categories: 1a. Focused Study of Kinetic MHD Turbulence. We have developed a model of magnetohydrodynamic (MHD) turbulence in the extended solar corona that contains the effects of collisionless dissipation and anisotropic particle heating. A turbulent cascade is one possible way of generating small-scale fluctuations (easy to dissipate/heat) from a pre-existing population of low-frequency Alfven waves (difficult to dissipate/heat). We modeled the cascade as a combination of advection and diffusion in wavenumber space. The dominant spectral transfer occurs in the direction perpendicular to the background magnetic field. As expected from earlier models, this leads to a highly anisotropic fluctuation spectrum with a rapidly decaying tail in the parallel wavenumber direction. The wave power that decays to high enough frequencies to become ion cyclotron resonant depends on the relative strengths of advection and diffusion in the cascade. For the most realistic values of these parameters, though, there is insufficient power to heat protons and heavy ions. The dominant oblique waves undergo Landau damping, which implies strong parallel electron heating. We thus investigated the nonlinear evolution of the electron velocity distributions (VDFs) into parallel beams and discrete phase-space holes (similar to those seen in the terrestrial magnetosphere) which are an alternate means of heating protons via stochastic interactions similar to particle-particle collisions. 1b. Focused Study of the Multi-Mode Detailed Balance Formalism. The PI began to explore the feasibility of using the "weak turbulence," or detailed-balance theory of Tsytovich, Melrose, and others to encompass the relevant physics of the solar wind. This study did not go far, however, because if the "strong" MHD turbulence discussed above is a dominant player in the wind's acceleration region, this formalism is inherently not applicable to the corona. We will continue to study the various published approaches to the weak turbulence formalism, especially with an eye on ways to parameterize nonlinear wave reflection rates. 2. Building the Unified Model Code Architecture. We have begun developing the computational model of a time-steady open flux tube in the extended corona. The model will be "unified" in the sense that it will include (simultaneously for the first time) as many of the various proposed physical processes as possible, all on equal footing. To retain this generality, we have formulated the problem in two interconnected parts: a completely kinetic model for the particles, using the Monte Carlo approach, and a finite-difference approach for the self-consistent fluctuation spectra. The two codes are run sequentially and iteratively until complete consistency is achieved. The current version of the Monte Carlo code incorporates gravity, the zero-current electric field, magnetic mirroring, and collisions. The fluctuation code incorporates WKJ3 wave action conservation and the cascade/dissipation processes discussed above. The codes are being run for various test problems with known solutions. Planned additions to the codes include prescriptions for nonlinear wave steepening, kinetic velocity-space diffusion, and multi-mode coupling (including reflection and refraction).

  6. Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Gioulekas, Dimitrios; Lazopoulou, Chariklia; Balafoutis, Christos; Vokou, Despina

    2005-01-01

    We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from differe nt plant taxa prominent in the Thessaloniki area for a 4-year period (1996- 1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).

  7. The meteorology and chemistry of high nitrogen oxide concentrations in the stable boundary layer at the South Pole

    NASA Astrophysics Data System (ADS)

    Neff, William; Crawford, Jim; Buhr, Marty; Nicovich, John; Chen, Gao; Davis, Douglas

    2018-03-01

    Four summer seasons of nitrogen oxide (NO) concentrations were obtained at the South Pole (SP) during the Sulfur Chemistry in the Antarctic Troposphere (ISCAT) program (1998 and 2000) and the Antarctic Tropospheric Chemistry Investigation (ANTCI) in (2003, 2005, 2006-2007). Together, analyses of the data collected from these studies provide insight into the large- to small-scale meteorology that sets the stage for extremes in NO and the significant variability that occurs day to day, within seasons, and year to year. In addition, these observations reveal the interplay between physical and chemical processes at work in the stable boundary layer of the high Antarctic plateau. We found a systematic evolution of the large-scale wind system over the ice sheet from winter to summer that controls the surface boundary layer and its effect on NO: initially in early spring (Days 280-310) the transport of warm air and clouds over West Antarctica dominates the environment over the SP; in late spring (Days 310-340), the winds at 300 hPa exhibit a bimodal behavior alternating between northwest and southeast quadrants, which is of significance to NO; in early summer (Days 340-375), the flow aloft is dominated by winds from the Weddell Sea; and finally, during late spring, winds aloft from the southeast are strongly associated with clear skies, shallow stable boundary layers, and light surface winds from the east - it is under these conditions that the highest NO occurs. Examination of the winds at 300 hPa from 1961 to 2013 shows that this seasonal pattern has not changed significantly, although the last twenty years have seen an increasing trend in easterly surface winds at the SP. What has also changed is the persistence of the ozone hole, often into early summer. With lower total ozone column density and higher sun elevation, the highest actinic flux responsible for the photolysis of snow nitrate now occurs in late spring under the shallow boundary layer conditions optimum for high accumulation of NO. This may occur via the non-linear HOX-NOx chemistry proposed after the first ISCAT field programs and NOx recycling to the surface where quantum yields may be large under the low-snow-accumulation regime of the Antarctic plateau. During the 2003 field program a sodar made direct measurements of the stable boundary layer depth (BLD), a key factor in explaining the chemistry of the high NO concentrations. Because direct measurements were not available in the other years, we developed an estimator for BLD using direct observations obtained in 2003 and step-wise linear regression with meteorological data from a 22 m tower (that was tested against independent data obtained in 1993). These data were then used with assumptions about the column abundance of NO to estimate surface fluxes of NOx. These results agreed in magnitude with results at Concordia Station and confirmed significant daily, intraseasonal and interannual variability in NO and its flux from the snow surface. Finally, we found that synoptic to mesoscale eddies governed the boundary layer circulation and accumulation pathways for NO at the SP rather than katabatic forcing. It was the small-scale features of the circulation including the transition from cloudy to clear conditions that set the stage for short-term extremes in NO, whereas larger-scale features were associated with more moderate concentrations.

  8. Wind direction change criteria for wind turbine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cliff, W.C.

    1979-01-01

    A method is presented for estimating the root mean square (rms) value of the wind direction change, ..delta..theta(tau) = theta(tau + tau) - theta(tau), that occurs over the swept area of wind turbine rotor systems. An equation is also given for the rms value of the wind direction change that occurs at a single point in space, i.e., a direcion change that a wind vane would measure. Assuming a normal probability density function for the lateral wind velocity change and relating this to angular changes, equations are given for calculating the expected number of wind direction changes, larger than anmore » arbitrary value, that will occur in 1 hr as well as the expected number that will occur during the design life of a wind turbine. The equations presented are developed using a small angle approximation and are, therefore, considered appropriate for wind direction changes of less than 30/sup 0/. The equations presented are based upon neutral atmospheric boundary-layer conditions and do not include information regarding events such as tornados, hurricanes, etc.« less

  9. Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions. Part II: source contribution assessment using the Chemical Mass Balance (CMB) model.

    PubMed

    Badol, Caroline; Locoge, Nadine; Galloo, Jean-Claude

    2008-01-25

    In Part I of this study (Badol C, Locoge N, Leonardis T, Gallo JC. Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions, Part I: Study area description, data set acquisition and qualitative data analysis of the data set. Sci Total Environ 2007; submitted as companion manuscript.) the study area, acquisition of the one-year data set and qualitative analysis of the data set have been described. In Part II a source profile has been established for each activity present in the study area: 6 profiles (urban heating, solvent use, natural gas leakage, biogenic emissions, gasoline evaporation and vehicle exhaust) have been extracted from literature to characterise urban sources, 7 industrial profiles have been established via canister sampling around industrial plants (hydrocarbon cracking, oil refinery, hydrocarbon storage, lubricant storage, lubricant refinery, surface treatment and metallurgy). The CMB model is briefly described and its implementation is discussed through the selection of source profiles and fitting species. Main results of CMB modellings for the Dunkerque area are presented. (1) The daily evolution of source contributions for the urban wind sector shows that the vehicle exhaust source contribution varies between 40 and 55% and its relative increase at traffic rush hours is hardly perceptible. (2) The relative contribution of vehicle exhaust varies from 55% in winter down to 30% in summer. This decrease is due to the increase of the relative contribution of hydrocarbon storage source reaching up to 20% in summer. (3) The evolution of source contributions with wind directions has confirmed that in urban wind sectors the contribution of vehicle exhaust dominate with around 45-55%. For the other wind sectors that include some industrial plants, the contribution of industrial sources is around 60% and could reach 80% for the sector 280-310 degrees , which corresponds to the most dense industrial area. (4) The pollution in Dunkerque has been globally characterised taking into account the frequency of wind directions and contributions of sources in each wind direction for the whole year. It has been concluded that contribution of industrial sources is below 20% whereas vehicle exhaust contribution is superior to 40%.

  10. Aerosol accumulation intensity and composition variations under different weather conditions in urban environment

    NASA Astrophysics Data System (ADS)

    Steinberga, Iveta; Bikshe, Janis; Eindorfa, Aiva

    2014-05-01

    During the last decade aerosol (PM10, PM2.5) mass and composition measurements were done in different urban environments - parallel street canyons, industrial sites and at the background level in Riga, Latvia. Effect of meteorological parameters on the accumulation and ventilation intensity was investigated in order to understand microclimatological parameters affecting aerosol pollution level and chemical composition changes. In comparison to industrial sites (shipping activities, bulk cargo, oil and naphtha processing), urban street canyon aerosol mass concentration was significantly higher, for PM10 number of daily limit exceedances are higher by factor 3.4 - 3.9 in street canyons. Exceedances of PM2.5 annual limits were identified only in street canyons as well. Precipitation intensity, wind speed, days with mist highly correlates with aerosol concentration; in average during the year about 1 - 2 % presence of calm wind days, 20 - 30 days with mist facilitate accumulation of aerosols and mitigating growing of secondary aerosols. It has been assessed that about 25 % of daily exceedances in street canyons are connected with sea salt/street sanding factor. Strong dependency of wind speed and direction were identified in winter time - low winds (0.4 - 1.7 m/s) blowing from south, south-east (cross section of the street) contributing to PM10 concentrations over 100 - 150 ug/m3. Seasonal differences in aerosol concentrations were identified as a result of recombination of direct source impact, specific meteorological and synoptical conditions during the period from January until April when usually dominates extremely high aerosol concentrations. While aerosol mass concentration levels in monitoring sites significantly differs, concentrations of heavy metals (Pb, Ni, Cd, and As) are almost at the same level, even more - concentration of Cd for some years was higher in industrial area where main pollution is caused by oil processing and storage, heavy traffic activities and transportation by rail. The type of prevailing secondary aerosol formation was estimated by linear regression analysis which shows NOx prevalence in street canyons and urban background and SO2 associated reactions in industrial sites. Linear regression of traffic intensity in connection with aerosol pollution level shows domination of exhaust emissions during traffic jams and resuspension intensity during middle of the week.

  11. Confinement of the Crab Nebula with tangled magnetic field by its supernova remnant

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuta J.; Toma, Kenji; Tominaga, Nozomu

    2018-05-01

    A pulsar wind is a relativistic outflow dominated by Poynting energy at its base. Based on the standard ideal magnetohydrodynamic (MHD) model of pulsar wind nebulae (PWNe) with the ordered magnetic field, the observed slow expansion vPWN ≪ c requires the wind to be dominated by kinetic energy at the upstream of its termination shock, which conflicts with the pulsar wind theory (σ-problem). In this paper, we extend the standard model of PWNe by phenomenologically taking into account conversion of the ordered to turbulent magnetic field and dissipation of the turbulent magnetic field. Disordering of the magnetic structure is inferred from the recent three-dimensional relativistic ideal MHD simulations, while magnetic dissipation is a non-ideal MHD effect requiring a finite resistivity. We apply this model to the Crab Nebula and find that the conversion effect is important for the flow deceleration, while the dissipation effect is not. Even for Poynting-dominated pulsar wind, we obtain the Crab Nebula's vPWN by adopting a finite conversion time-scale of ˜0.3 yr. Magnetic dissipation primarily affects the synchrotron radiation properties. Any values of the pulsar wind magnetization σw are allowed within the present model of the PWN dynamics alone, and even a small termination shock radius of ≪0.1 pc reproduces the observed dynamical features of the Crab Nebula. In order to establish a high-σw model of PWNe, it is important to extend the present model by taking into account the broadband spectrum and its spacial profiles.

  12. The effects of wind and altitude in the 400-m sprint.

    PubMed

    Quinn, Mike D

    2004-01-01

    In this paper I use a mathematical model to simulate the effect of wind and altitude on men's and women's 4400-m race performances. Both wind speed and direction were altered to calculate the effect on the velocity profile and the final time of the sprinter. The simulation shows that for a constant wind velocity, changing the wind direction can produce a large variation in the race time and velocity profile. A wind of velocity 2 m x s(-1) is generally a disadvantage to the 400-m runner but this is not so for all wind directions. Constant winds blowing from some directions can provide favourable conditions for the one-lap runner. Differences between the running lanes can be reduced or exaggerated depending on the wind direction. For example, a wind blowing behind the runner in the back straight increases the advantage of lane 8 over lane 1. Wind conditions can change the velocity profile and in some circumstances produce a maximum velocity much later than is evident in windless conditions. Lower air density at altitude produces a time advantage of around 0.06 s for men (0.07 s for women) for each 500-m increase in elevation.

  13. PM2.5-induced changes in cardiac function of hypertensive rats depend on wind direction and specific sources in Steubenville, Ohio.

    PubMed

    Kamal, Ali S; Rohr, Annette C; Mukherjee, Bhramar; Morishita, Masako; Keeler, Gerald J; Harkema, Jack R; Wagner, James G

    2011-06-01

    Increases in particulate matter less than 2.5 µm (PM(2.5)) in ambient air is linked to acute cardiovascular morbidity and mortality. Specific components and potential emission sources of PM(2.5) responsible for adverse health effects of cardiovascular function are unclear. Spontaneously hypertensive rats were implemented with radiotelemeters to record ECG responses during inhalation exposure to concentrated ambient particles (CAPs) for 13 consecutive days in Steubenville, OH. Changes in heart rate (HR) and its variability (HRV) were compared to PM(2.5) trace elements in 30-min time frames to capture acute physiological responses with real-time fluctuations in PM(2.5) composition. Using positive matrix factorization, six major source factors were identified: (i) coal/secondary, (ii) mobile sources, (iii) metal coating/processing, (iv) iron/steel manufacturing, (v) lead and (vi) incineration. Exposure-related changes in HR and HRV were dependant on winds predominately from either the northeast (NE) or southwest (SW). During SW winds, the metal processing factor was associated with increased HR, whereas factors of incineration, lead and iron/steel with NE winds were associated with decreased HR. Decreased SDNN was dominated during NE winds by the incinerator factor, and with SW winds by the metal factor. Metals and mobile source factors also had minor impacts on decreased SDNN with NE winds. Individual elemental components loaded onto these factors generally showed significant associations, although there were some discrepancies. Acute cardiovascular changes in response to ambient PM(2.5) exposure can be attributed to specific PM constituents and sources linked with incineration, metal processing, and iron/steel production.

  14. Beach-dune dynamics: Spatio-temporal patterns of aeolian sediment transport under complex offshore airflow

    NASA Astrophysics Data System (ADS)

    Lynch, K.; Jackson, D.; Delgado-Fernandez, I.; Cooper, J. A.; Baas, A. C.; Beyers, M.

    2010-12-01

    This study examines sand transport and wind speed across a beach at Magilligan Strand, Northern Ireland, under offshore wind conditions. Traditionally the offshore component of local wind regimes has been ignored when quantifying beach-dune sediment budgets, with the sheltering effect of the foredune assumed to prohibit grain entrainment on the adjoining beach. Recent investigations of secondary airflow patterns over coastal dunes have suggested this may not be the case, that the turbulent nature of the airflow in these zones enhances sediment transport potential. Beach sediment may be delivered to the dune toe by re-circulating eddies under offshore winds in coastal areas, which may explain much of the dynamics of aeolian dunes on coasts where the dominant wind direction is offshore. The present study investigated aeolian sediment transport patterns under an offshore wind event. Empirical data were collected using load cell traps, for aeolian sediment transport, co-located with 3-D ultrasonic anemometers. The instrument positioning on the sub-aerial beach was informed by prior analysis of the airflow patterns using computational fluid dynamics. The array covered a total beach area of 90 m alongshore by 65 m cross-shore from the dune crest. Results confirm that sediment transport occurred in the ‘sheltered’ area under offshore winds. Over short time and space scales the nature of the transport is highly complex; however, preferential zones for sand entrainment may be identified. Alongshore spatial heterogeneity of sediment transport seems to show a relationship to undulations in the dune crest, while temporal and spatial variations may also be related to the position of the airflow reattachment zone. These results highlight the important feedbacks between flow characteristics and transport in a complex three dimensional surface.

  15. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets

    USGS Publications Warehouse

    Fenton, L.K.; Bandfield, J.L.; Ward, A.W.

    2003-01-01

    Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation, rather than by the passage of dust devils. Spectral deconvolution indicates that the dark dunes have infrared spectra consistent with basalt-like materials. The average thermal inertia calculated from Thermal Emission Spectrometer bolometric temperatures is 277 ?? 17 J m-2 s-0.5 K-1, leading to an effective grain size of 740 ?? 170 ??m, which is consistent with coarse sand and within the range expected for Martian sand. The coarse sand that composes the large dune field may have originated from outside the crater, saltating in from the southwest. Most of the transport pathway that delivered this sand to the dune field has since been eroded away or buried. The sand was transported to the east center of the crater floor, where beneath the present-day dunes a 50 m high mound of sand has accumulated. Dune slip faces indicate a wind regime consisting of three opposing winds. Some of these wind directions are correlated with the orientations of dust devil tracks and bright bed forms. The combination of a tall mound of sand and three opposing winds is consistent with a convergent wind regime, which produces the large reversing transverse and star dunes that dominate the dune field. The dark dunes have both active slip faces and seemingly inactive slip faces, suggesting that the dunes vary spatially in their relative activity. Nevertheless, the aeolian activity that has dominated the history of Proctor Crater still continues today. Copyright 2003 by the American Geophysical Union.

  16. Quasi-biennial oscillation and tropical waves in total ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Stanford, J. L.

    1994-01-01

    Westward and eastward propagating tropical waves in total ozone are investigated in 13 years (1979-1991) of version 6 total column ozone data from the Nimbus 7 total ozone mapping spectrometer (TOMS) satellite instrument. A clear synchronization between the stratospheric quasi-biennial osciallation (QBO) zonal winds and the fast (periods less than 15 days) propagating waves in tropical TOMS data is detailed. Largest total ozone wave amplitudes (about 3-6 Dobson units) occur when their phase propagation direction is primarily opposite the Singapore QBO lower-stratospheric winds. This effect is most apparent in meridionally symmetric components. Examination of specific episodes, including cross-spectral calculations with Singapore rawinsonde wind data (10-70 hPa), reveals signatures of tropically confined eastward propagating Kelvin waves of zonal wavenumbers 1-2 during the descending eastward QBO phase, consistent with acceleration of that QBO phase by Kelvin waves. The TOMS results are also consistent with possible forcing of the westward QBO wind phase by episodes of both meridionally symmetric and asymmetric westward waves. However, in contrast to the case of eastward (Kelvin) waves the strongest westward events appear to be filtered by, rather than forcing, the westward phase of the stratospheric QBO wind. These dominant westward episodes are interpreted as meridionally symmetric westward global normal modes and tropically confined equatorial-Rossby waves 2-6. The events exhibit phase and group speeds characteristic of wave dynamics rather than simple wind advection. These results underscore the utility of the long time series and excellent horizontal coverage of TOMS data for dynamical investigations in the relatively observation-poor tropical stratosphere.

  17. Quasi-biennial oscillation and tropical waves in total ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziemke, J.R.; Stanford, J.L.

    1994-11-01

    Westward and eastward propagating tropical waves in total ozone are investigated in 13 years (1979-1991) of version 6 total column ozone data from the Nimbus 7 total ozone mapping spectrometer (TOMS) satellite instrument. A clear synchronization between the stratospheric quasi-biennial osciallation (QBO) zonal winds and the fast (periods less than 15 days) propagating waves in tropical TOMS data is detailed. Largest total ozone wave amplitudes (about 3-6 Dobson units) occur when their phase propagation direction is primarily opposite the Singapore QBO lower-stratospheric winds. This effect is most apparent in meridionally symmetric components. Examination of specific episodes, including cross-spectral calculations withmore » Singapore rawinsonde wind data (10-70 hPa), reveals signatures of tropically confined eastward propagating Kelvin waves of zonal wavenumbers 1-2 during the descending eastward QBO phase, consistent with acceleration of that QBO phase by Kelvin waves. The TOMS results are also consistent with possible forcing of the westward QBO wind phase by episodes of both meridionally symmetric and asymmetric westward waves. However, in contrast to the case of eastward (Kelvin) waves the strongest westward events appear to be filtered by, rather than forcing, the westward phase of the stratospheric QBO wind. These dominant westward episodes are interpreted as meridionally symmetric westward global normal modes and tropically confined equatorial-Rossby waves 2-6. The events exhibit phase and group speeds characteristic of wave dynamics rather than simple wind advection. These results underscore the utility of the long time series and excellent horizontal coverage of TOMS data for dynamical investigations in the relatively observation-poor tropical stratosphere.« less

  18. Substorm Occurrence and Intensity Associated With Three Types of Solar Wind Structure

    NASA Astrophysics Data System (ADS)

    Liou, Kan; Sotirelis, Thomas; Richardson, Ian

    2018-01-01

    This paper presents the results of a study of the characteristics of substorms that occurred during three distinct types of solar wind: coronal mass ejection (CME) associated, high-speed streams (HSS), and slow solar wind (SSW). A total number of 53,468 geomagnetic substorm onsets from 1983 to 2009 is used and sorted by the three solar wind types. It is found that the probability density function (PDF) of the intersubstorm time can be fitted by the combination of a dominant power law with an exponential cutoff component and a minor lognormal component, implying that substorms are associated with two distinctly different dynamical processes corresponding, perhaps, to the "externally driven" and "internally driven" processes, respectively. We compare substorm frequency and intensity associated with the three types of solar wind. It is found that the intersubstorm time is the longest during SSW and shortest during CME intervals. The averaged intersubstorm time for the internally driven substorms is 3.13, 3.15, and 7.96 h for CME, HSS, and SSW, respectively. The substorm intensity PDFs, as represented by the peak value of |SML| (the generalization of AL), can be fitted by two lognormal distribution functions. The averaged substorm intensity for either component is largest for CME (292 and 674 nT) and smallest for SSW (265 and 434 nT). We argue that the externally driven substorms are more intense than those driven internally. We conclude that the dynamical process of substorms is controlled mainly by the direct solar wind-magnetosphere coupling, whereas the internally driven process only plays a very modest minor role.

  19. Effect of particle size of Martian dust on the degradation of photovoltaic cell performance

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1991-01-01

    Glass coverglass and SiO2 covered and uncovered silicon photovoltaic (PV) cells were subjected to conditions simulating a Mars dust storm, using the Martian Surface Wind Tunnel, to assess the effect of particle size on the performance of PV cells in the Martian environment. The dust used was an artificial mineral of the approximate elemental composition of Martian soil, which was sorted into four different size ranges. Samples were tested both initially clean and initially dusted. The samples were exposed to clear and dust laden winds, wind velocities varying from 23 to 116 m/s, and attack angles from 0 to 90 deg. It was found that transmittance through the coverglass approximates the power produced by a dusty PV cell. Occultation by the dust was found to dominate the performance degradation for wind velocities below 50 m/s, whereas abrasion dominates the degradation at wind velocities above 85 m/s. Occultation is most severe at 0 deg (parallel to the wind), is less pronounced from 22.5 to 67.5 deg, and is somewhat larger at 90 deg (perpendicular to the wind). Abrasion is negligible at 0 deg, and increases to a maximum at 90 deg. Occultation is more of a problem with small particles, whereas large particles (unless they are agglomerates) cause more abrasion.

  20. Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer

    NASA Astrophysics Data System (ADS)

    Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles

    2012-11-01

    For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).

  1. A multi-ion generalized transport model of the polar wind

    NASA Technical Reports Server (NTRS)

    Demars, H. G.; Schunk, R. W.

    1994-01-01

    The higher-order generalizations of the equations of standard hydrodynamics, known collectively as generalized transport theories, have been used since the early 1980s to describe the terrestrial polar wind. Inherent in the structure of generalized transport theories is the ability to describe not only interparticle collisions but also certain non-Maxwellian processes, such as heat flow and viscous stress, that are characteristic of any plasma flow that is not collision dominated. Because the polar wind exhibits a transition from collision-dominated to collisionless flow, generalized transport theories possess advantages for polar wind modeling not shared by either collision-dominated models (such as standard hydrodynamics) or collisionless models (such as those based on solving the collisionless Boltzmann equation). In general, previous polar wind models have used generalized transport equations to describe electrons and only one species of ion (H(+)). If other ion species were included in the models at all, it was in a simplified or semiempirical manner. The model described in this paper is the first polar wind model that uses a generalized transport theory (bi-Maxwellian-based 16-moment theory) to describe all of the species, both major and minor, in the polar wind plasma. In the model, electrons and three ion species (H(+), He(+), O(+)) are assumed to be major and several ion species are assumed to be minor (NO(+), Fe(+), O(++)). For all species, a complete 16-moment transport formulation is used, so that profiles of density, drift velocity, parallel and perpendicular temperatures, and the field-aligned parallel and perpendicular energy flows are obtained. In the results presented here, emphasis is placed on describing those constituents of the polar wind that have received little attention in past studies. In particular, characteristic solutions are presented for supersonic H(+) outflow and for both supersonic and subsonic outflows of the major ion He(+). Solutions are also presented for various minor ions, both atomic and molecular and both singly and multiply charged.

  2. Thermally Driven One-Fluid Electron-Proton Solar Wind: Eight-Moment Approximation

    NASA Astrophysics Data System (ADS)

    Olsen, Espen Lyngdal; Leer, Egil

    1996-05-01

    In an effort to improve the "classical" solar wind model, we study an eight-moment approximation hydrodynamic solar wind model, in which the full conservation equation for the heat conductive flux is solved together with the conservation equations for mass, momentum, and energy. We consider two different cases: In one model the energy flux needed to drive the solar wind is supplied as heat flux from a hot coronal base, where both the density and temperature are specified. In the other model, the corona is heated. In that model, the coronal base density and temperature are also specified, but the temperature increases outward from the coronal base due to a specified energy flux that is dissipated in the corona. The eight-moment approximation solutions are compared with the results from a "classical" solar wind model in which the collision-dominated gas expression for the heat conductive flux is used. It is shown that the "classical" expression for the heat conductive flux is generally not valid in the solar wind. In collisionless regions of the flow, the eight-moment approximation gives a larger thermalization of the heat conductive flux than the models using the collision-dominated gas approximation for the heat flux, but the heat flux is still larger than the "saturation heat flux." This leads to a breakdown of the electron distribution function, which turns negative in the collisionless region of the flow. By increasing the interaction between the electrons, the heat flux is reduced, and a reasonable shape is obtained on the distribution function. By solving the full set of equations consistent with the eight-moment distribution function for the electrons, we are thus able to draw inferences about the validity of the eight-moment description of the solar wind as well as the validity of the very commonly used collision-dominated gas approximation for the heat conductive flux in the solar wind.

  3. Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack

    Treesearch

    D. R. Bowling; W. J. Massman

    2011-01-01

    Diffusion dominates the transport of trace gases between soil and the atmosphere. Pressure gradients induced by atmospheric flow and wind interacting with topographical features cause a small but persistent bulk flow of air within soil or snow. This forcing, called pressure pumping or wind pumping, leads to a poorly quantified enhancement of gas transport beyond the...

  4. Modeling waves and circulation in Lake Pontchartrain, Louisiana

    USGS Publications Warehouse

    Signell, Richard P.; List, Jeffrey H.

    1997-01-01

    The U.S. Geological Survey is conducting a study of storm-driven sediment resuspension and transport in Lake Pontchartrain, Louisiana. Two critical processes related to sediment transport in the lake are (1) the resuspension of sediments due to wind-generated storm waves and (2) the movement of resuspended material by lake currents during storm wind events. The potential for sediment resuspension is being studied with the wave prediction model which simulates local generation of waves by wind and shallow-water effects on waves (refraction, shoaling, bottom friction, and breaking). Long-term wind measurements are then used to determine the regional "climate" of bottom orbital velocity (showing the spatial and temporal variability of wave-induced currents at the bottom). The circulation of the lake is being studied with a three-dimensional hydrodynamic model. Results of the modeling effort indicate that remote forcing due to water levels in Mississippi Sound dominate the circulation near the passes in the eastern end of the lake, while local wind forcing dominates water movement in the western end. During typical storms with winds from the north-northeast or the south-southeast, currents along the south coast near New Orleans generally transport material westward, while material in the central region moves against the wind. When periods of sustained winds are followed by a drop in coastal sea level, a large amount of suspended sediment can be flushed from the lake.

  5. Transition Reynolds number comparisons in several major transonic tunnels

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S., Jr.; Steinle, F. W., Jr.

    1974-01-01

    Boundary-layer transition and test section environmental noise data were acquired in six major transonic wind tunnels as a part of a broader correlation of the effect of free-stream disturbances on transition Reynolds number. The data were taken at comparative test conditions on a sharp, smooth 10-deg included-angle cone. It was found that aerodynamic noise sources within the test section were the dominant sources of unsteadiness and that transition Reynolds number provided a good indicator for the resulting degradation in flow quality. Amplitudes, frequency composition, directivity, and origin of these disturbances are described.

  6. Wavelet analysis for wind fields estimation.

    PubMed

    Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.

  7. Evaluation of sediment transport at a fetch-limited beach from spring to neap tide

    NASA Astrophysics Data System (ADS)

    Carrasco, Ana Rita; Ferreira, Óscar; Matias, Ana; Freire, Paula; Alveirinho Dias, João.

    2010-05-01

    Sediment transport studies are useful tools for the determination of sediment budgets, important in the definition of management policies, in particular in environments not fully understood like fetch-limited beaches. Only a few studies have been made with respect to these beaches, and research efforts need to be continued to correctly quantify the main factors governing morphological changes. The present study provides new insights on sediment transport at a fetch-limited backbarrier beach located at the Peninsula do Ancão (Ria Formosa, South of Portugal). The field site extends over ~150 m and includes a sandy beach with a low and narrow reflective morphology, and an external sand bank at the seaward edge of the sub-aerial beach profile. Fluorescent tracers were used to measure the short-term sediment transport (rates and directions) from spring to neap tides, for fair-weather conditions. The experiment was set at two beach morphologies: beach face and sand bank. Tracer was released on 20th March 2008 at both sites, and sampling was conducted at low tide, each 24h, during 7 days. In situ fluorescent tracer detection was performed with UV light. Currents were obtained with a portable single-axis electromagnetic current meter located at the beach face, and an Aquadopp Profiler located at the sand bank. Local waves were obtained by numerical modelling for the study area, based on prevailing winds (measured by a nearby meteorological station), and using available bathymetric surveys. Tracer trends, tidal currents, wind conditions and waves were integrative in order to determine to which forcing mechanism the beach morphology was more responsive. Daily wind intensities were, in average, close to 5 m/s, and maximum estimated significant wave height (Hs) did not exceed 0.045 m. Daily mean wave period ranged from 0.5 s to 0.7 s. The maximum tidal range was 2.8 m. Currents were of higher magnitude at the sand bank than at the beach face, with the maximum during ebb tide (0.50 m/s). At the beach face, maximum velocities are very similar for both ebb and flood tide, with a maximum of 0.26 m/s. Tracer displacement was greater at the beach face, indicating that this is the most active part of the profile during the experiment. At the sand bank, tracer dispersion was greater, but tracer advection was shorter. Tracer isopachs illustrate a relatively independency of both analysed morphologies, without significant exchange across the profile. At both morphologies, the residual transport is dominated by the longshore component, and mostly directed towards the ebb. Ebb directed transport agrees with ebb dominance on tidal currents at this location. Results suggest a tidal and current dominance. Tidal range assumes particular importance at beach face.

  8. Variability of Surface pollutants and aerosol concentration over Abu Dhabi, UAE - sources, transport and current levels

    NASA Astrophysics Data System (ADS)

    Phanikumar, Devulapalli V.; Basha, Ghouse; Ouarda, Taha B. M. J.

    2015-04-01

    In the view of recent economic, industrial, and rapid development, Abu Dhabi (24.4oN; 54.4oE; 27m msl) has become one of the most populated regions in the world despite of extreme heat, frequent dust storms, and with distinctive topography. The major sources of air pollution are from the dust and sand storms, greenhouse gas emissions, and to some extent from industrial pollution. In order to realize the accurate and comprehensive understanding of air quality and plausible sources over this region, we have made a detailed analysis of three years simultaneous measurements during 2011-13 of pollutants such as O3, SO2, NO2, CO, and PM10 concentrations. Diurnal variation of meteorological parameters such as temperature and wind speed/relative humidity clearly shows daytime maximum/minimum in summer followed by pre-monsoon, post-monsoon and winter. The prevailing winds over this region are mostly from northwesterly direction (Shamal wind). Diurnal wind pattern showed a clear contrast with the majority of the wind pattern during nighttime and early morning is from the westerly/northwesterly and daytime is from southwesterly/southeasterly directions. The diurnal pattern of O3 shows minimum during 08 LT and increases thereafter reaching maximum at 17 LT and decreases during nighttime. However, the diurnal pattern of SO2 and NO2 show a peak at ~ 08 LT and dip at ~ 14 LT during all the seasons with some variability in each season. On the other hand, the diurnal pattern of CO shows a peculiar picture of elevated levels during daytime peaking at ~ 10 LT (prominent in summer and post-monsoon) followed by a sharp decrease and minimum is ~14 LT. PM10 concentration has an early morning peak at ~ 02 LT and then decreases to a minimum value at ~11 LT and again increases in the afternoon hours (maximum at ~17 LT) depicting a forenoon-afternoon asymmetry. Monthly variation of PM10 shows maximum in pre-monsoon season and minimum in winter. Our observations show the diurnal pattern of pollutants are in contrast with the diurnal pattern of wind speed as evident from the previous observations. Wind rose diagram of pollutants reveal that the dominant source directions are scattered from northwesterly to southwesterly. Our results (2011-13) are compared with earlier observations from the same region (2007-08) and no alarming differences were observed in the pollutant levels. Our observations are discussed in the light of current understanding of pollutants sources over this region.

  9. An empirical model for ocean radar backscatter and its application in inversion routine to eliminate wind speed and direction effects

    NASA Technical Reports Server (NTRS)

    Dome, G. J.; Fung, A. K.; Moore, R. K.

    1977-01-01

    Several regression models were tested to explain the wind direction dependence of the 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data. The models consider the radar backscatter as a harmonic function of wind direction. The constant term accounts for the major effect of wind speed and the sinusoidal terms for the effects of direction. The fundamental accounts for the difference in upwind and downwind returns, while the second harmonic explains the upwind-crosswind difference. It is shown that a second harmonic model appears to adequately explain the angular variation. A simple inversion technique, which uses two orthogonal scattering measurements, is also described which eliminates the effect of wind speed and direction. Vertical polarization was shown to be more effective in determining both wind speed and direction than horizontal polarization.

  10. Intra-seasonal Oscillations Inferred from SABER (TIMED) and MLS (UARS) Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Huang, F. T.; Mayr, H. G.; Russell, J.; Mlynczak, M.; Reber, C. A.; Mengel, J. G.

    2006-01-01

    In the zonal mean meridional winds of the upper mesosphere, intra-seasonal oscillations with periods between 1 and 4 months have been inferred from UARS measurements and independently predicted with the Numerical Spectral Model WSM). The wind oscillations tend to be confined to low latitudes and appear to be driven, at least in part, by small-scale gravity waves propagating in the meridional direction. Winds across the equator should generate, due to dynamical heating and cooling, temperature oscillations with opposite phase in the two hemispheres. Investigating this phenomenon, we have analyzed SABER temperatures from TIMED in the altitude range between 55 and 95 km to delineate with an empirical model, the year-long variability of the migrating tides and zonal mean components. The inferred seasonal variations of the diurnal tide, characterized by amplitude maxima near equinox, are in substantial agreement with UARS observations and results from the NSM. For the zonal mean, the dominant seasonal variations in the SABER temperatures, with annual (12 months) and semiannual (6 months) periodicities, agree well with those derived from UARS measurements. The intra-seasonal variations with periods between 2 and 4 months have amplitudes close to 2 K, almost half as large as those for the dominant seasonal variations. Their amplitudes are in qualitative agreement with the corresponding values inferred from UARS during different years. The SABER and UARS temperature variations reveal pronounced hemispherical asymmetries, consistent with meridional wind oscillations across the equator. The phase of the semi-annual temperature oscillations from the NSM agrees with the observations from UARS and SABER. But the amplitudes are systematically smaller, which may indicate that planetary waves are more important than is allowed for in the model. For the shorter-period intra-seasonal variations, which can be generated by gravity wave drag, the model results are generally in better agreement with the observations.

  11. Wind-Wave Effects on Vertical Mixing in Chesapeake Bay, USA: comparing observations to second-moment closure predictions.

    NASA Astrophysics Data System (ADS)

    Fisher, A. W.; Sanford, L. P.; Scully, M. E.

    2016-12-01

    Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer transitions to a turbulent log layer. The influences of fetch-limited wind waves, density stratification, and surface buoyancy fluxes will also be discussed.

  12. Upper Thermosphere Winds and Temperatures in the Geomagnetic Polar Cap: Solar Cycle, Geomagnetic Activity, and Interplanetary Magnetic Field Dependencies

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Won, Y.-I.; Niciejewski, R. J.; Burns, A. G.

    1995-01-01

    Ground-based Fabry-Perot interferometers located at Thule, Greenland (76.5 deg. N, 69.0 deg. W, lambda = 86 deg.) and at Sondre Stromfjord, Greenland (67.0 deg. N, 50.9 deg. W, lambda = 74 deg.) have monitored the upper thermospheric (approx. 240-km altitude) neutral wind and temperature over the northern hemisphere geomagnetic polar cap since 1983 and 1985, respectively. The thermospheric observations are obtained by determining the Doppler characteristics of the (OI) 15,867-K (630.0-nm) emission of atomic oxygen. The instruments operate on a routine, automatic, (mostly) untended basis during the winter observing seasons, with data coverage limited only by cloud cover and (occasional) instrument failures. This unique database of geomagnetic polar cap measurements now extends over the complete range of solar activity. We present an analysis of the measurements made between 1985 (near solar minimum) and 1991 (near solar maximum), as part of a long-term study of geomagnetic polar cap thermospheric climatology. The measurements from a total of 902 nights of observations are compared with the predictions of two semiempirical models: the Vector Spherical Harmonic (VSH) model of Killeen et al. (1987) and the Horizontal Wind Model (HWM) of Hedin et al. (1991). The results are also analyzed using calculations of thermospheric momentum forcing terms from the Thermosphere-ionosphere General Circulation Model TGCM) of the National Center for Atmospheric Research (NCAR). The experimental results show that upper thermospheric winds in the geomagnetic polar cap have a fundamental diurnal character, with typical wind speeds of about 200 m/s at solar minimum, rising to up to about 800 m/s at solar maximum, depending on geomagnetic activity level. These winds generally blow in the antisunward direction, but are interrupted by episodes of modified wind velocity and altered direction often associated with changes in the orientation of the Interplanetary Magnetic Field (IMF). The central polar cap (greater than approx. 80 magnetic latitude) antisunward wind speed is found to be a strong function of both solar and geomagnetic activity. The polar cap temperatures show variations in both solar and geomagnetic activity, with temperatures near 800 K for low K(sub p) and F(sub 10.7) and greater than about 2000 K for high K(sub p) and F(sub 10.7). The observed temperatures are significantly greater than those predicted by the mass spectrometer/incoherent scatter model for high activity conditions. Theoretical analysis based on the NCAR TIGCM indicates that the antisunward upper thermospheric winds, driven by upstream ion drag, basically 'coast' across the polar cap. The relatively small changes in wind velocity and direction within the polar cap are induced by a combination of forcing terms of commensurate magnitude, including the nonlinear advection term, the Coriolis term, and the pressure gradient force term. The polar cap thennospheric thermal balance is dominated by horizontal advection, and adiabatic and thermal conduction terms.

  13. Wave Tank Studies of Phase Velocities of Short Wind Waves

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  14. How wind turbines affect the performance of seismic monitoring stations and networks

    NASA Astrophysics Data System (ADS)

    Neuffer, Tobias; Kremers, Simon

    2017-12-01

    In recent years, several minor seismic events were observed in the apparently aseismic region of the natural gas fields in Northern Germany. A seismic network was installed in the region consisting of borehole stations with sensor depths up to 200 m and surface stations to monitor induced seismicity. After installation of the network in 2012, an increasing number of wind turbines was established in proximity (<5 km) to several stations, thereby influencing the local noise conditions. This study demonstrates the impact of wind turbines on seismic noise level in a frequency range of 1-10 Hz at the monitoring sites with correlation to wind speed, based on the calculation of power spectral density functions and I95 values of waveforms over a time period of 4 yr. It could be shown that higher wind speeds increase the power spectral density amplitudes at distinct frequencies in the considered frequency band, depending on height as well as number and type of influencing wind turbines. The azimuthal direction of incoming Rayleigh waves at a surface station was determined to identify the noise sources. The analysis of the perturbed wave field showed that Rayleigh waves with backazimuths pointing to wind turbines in operation are dominating the wave field in a frequency band of 3-4 Hz. Additional peaks in a frequency range of 1-4 Hz could be attributed to turbine tower eigenfrequencies of various turbine manufactures with the hub height as defining parameter. Moreover, the influence of varying noise levels at a station on the ability to automatically detect seismic events was investigated. The increased noise level in correlation to higher wind speeds at the monitoring sites deteriorates the station's recording quality inhibiting the automatic detection of small seismic events. As a result, functionality and task fulfilment of the seismic monitoring network is more and more limited by the increasing number of nearby wind turbines.

  15. FUV Detection of the Primary Star of eta Carinae

    NASA Astrophysics Data System (ADS)

    Davidson, K.; Smith, N.

    2006-06-01

    Using FUSE data, Iping et al (2005, ApJ 633, L37) report a direct detection of the elusive hot companion of eta Car. We argue, however, that much of the observed emission represents the primary star, with no proof that any of it comes from a secondary star. The hypothetical companion should dominate the ionizing radiation below 912 A, but this is not true for wavelengths around 1100 A observed with FUSE. Moreover, since a companion's UV would be partially reprocessed by the primary star's wind, any detection is likely to be ambiguous.The non-spherical primary wind allows production of strong UV radiation at low latitudes (Smith et al 2003, ApJ 586, 432), an effect that spherical models don't include. The N II 1085 feature, the relatively slow wind velocities seen by FUSE, and other details are characteristic of the primary wind, not the secondary. Zanella et al. (1984, A&A 137, 79) suggested that eta Car's far UV disappears during a spectroscopic event due to a shell ejection. The FUSE observations may be regarded as confirmation of that conjecture, which made no reference to a secondary star. The 2003 spectroscopic event was probably a mass ejection or a wind-disturbance episode, not merely an eclipse as assumed by Iping et al. A hot companion star seems likely to account for the ionizing UV and the X-ray variability, but the FUSE data do not confirm its existence.

  16. Forcing mechanisms and hydrodynamics in Loch Linnhe, a dynamically wide Scottish estuary

    NASA Astrophysics Data System (ADS)

    Rabe, Berit; Hindson, Jennifer

    2017-09-01

    Hydrodynamic conditions in Loch Linnhe, a dynamifcally wide estuary on the west coast of Scotland, are primarily influenced by wind forcing, freshwater input, and tides. Winds in the region are orographically steered along the axis of the estuary due to surrounding mountains. A large rainfall catchment area results in a large freshwater inflow into Loch Linnhe which in turn produces low salinity waters at the head of the estuary. This, combined with a connection to the open sea with coastal salinities, leads to salinity gradients in the horizontal and vertical. Even though a range of observational programmes have focussed on Loch Linnhe, the literature still lacks an evaluation of its physical dynamics. Here we present a first description of the hydrodynamics in Loch Linnhe based on observations. Wind stress predominantly influences the surface layer, especially at low frequencies and with a stronger influence than tides during neap tides. The buoyancy-driven flow due to the large river runoff influences the circulation independent of wind stress. Seasonal (spring, autumn) and interannual (2011, 2012) variability of water masses occur especially in the surface layer. Tides are dominated by the semi-diurnal constituent M2 with tidal ellipses aligned in the along-estuary direction and a stronger influence during spring tides compared to wind. An evaluation of dimensionless numbers reveal laterally and vertically sheared exchange flows. Compared to other Scottish estuaries Loch Linnhe is wide enough to be influenced by the Earth's rotation and demonstrates an enhanced freshwater outflow along its north-western coast as the freshwater is diverted to the right in the direction of the flow. These observed patterns are important for the sustainable environmental management of this socio-economically valuable region, e.g. through their relevance to aquaculture pathogen transmission patterns. A thorough understanding of the dynamics of the system is essential for a successful evidence-based marine planning framework.

  17. Dust Analyzer Instrument (DANTE) for the detection and elemental analysis of dust particles originating from the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Sternovsky, Z.; O'brien, L.; Gruen, E.; Horanyi, M.; Malaspina, D.; Moebius, E.; Rocha, J. R. R.

    2016-12-01

    Nano- to sub-micron-size dust particles generated by the collisional breakup of interplanetary dust particles (IDPs) in the inner solar system can be accelerated away from the Sun and are available for detection and analysis near 1 AU. Beta-meteoroids are sub-micron sized particles for which the radiation pressure dominates over gravity and have already been detected by dedicated dust instrument. Charged nano-sized dust particles are picked up by the expanding solar wind and arrive to 1 AU with high velocity. The recent observations by the WAVE instrument on the two STEREO spacecraft indicated that these particles may exist in large numbers. The Dust Analyzer Instrument (DANTE) is specifically developed to detect and analyze these two populations of dust particles arriving from a direction close to the Sun. DANTE is a linear time-of-flight (ToF) mass spectrometer analyzing the ions generated by the dust impact on a target surface. DANTE is derived from the Cosmic Dust Analyzer instrument operating on Cassini. DANTE has a 300 cm2 target area and a mass resolution of approximately m/dm = 50. The instrument performance has been verified using the dust accelerator facility operating at the University of Colorado. A light trap system, consisting of optical baffles, is designed and optimized in terms of geometry and surface optical properties. A solar wind ion repeller system is included to prevent solar wind from entering the sensor. Both measures facilitate the detection with the instrument pointing close to the Sun's direction. The DANTE measurements will help to understand the sources, sinks and distribution of dust between the Sun and 1 AU, and, when combined with solar wind ion analyzer instrument, they will provide insight on the suspected link between dust particles and pickup ions, and how the massive particles affect the dynamics and energetics of the solar wind.

  18. MAVEN Observations of Atmospheric Loss at Mars

    NASA Astrophysics Data System (ADS)

    Curry, Shannon; Luhmann, Janet; Jakosky, Bruce M.; Brain, David; LeBlanc, Francis; Modolo, Ronan; Halekas, Jasper S.; Schneider, Nicholas M.; Deighan, Justin; McFadden, James; Espley, Jared R.; Mitchell, David L.; Connerney, J. E. P.; Dong, Yaxue; Dong, Chuanfei; Ma, Yingjuan; Cohen, Ofer; Fränz, Markus; Holmström, Mats; Ramstad, Robin; Hara, Takuya; Lillis, Robert J.

    2016-06-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been making observations of the Martian upper atmosphere and its escape to space since November 2014. The subject of atmospheric loss at terrestrial planets is a subject of intense interest not only because of the implications for past and present water reservoirs, but also for its impacts on the habitability of a planet. Atmospheric escape may have been especially effective at Mars, relative to Earth or Venus, due to its smaller size as well as the lack of a global dynamo magnetic field. Not only is the atmosphere less gravitationally bound, but also the lack of global magnetic field allows the impinging solar wind to interact directly with the Martian atmosphere. When the upper atmosphere is exposed to the solar wind, planetary neutrals can be ionized and 'picked up' by the solar wind and swept away.Both neutral and ion escape have played significant roles the long term climate change of Mars, and the MAVEN mission was designed to directly measure both escaping planetary neutrals and ions with high energy, mass, and time resolution. We will present 1.5 years of observations of atmospheric loss at Mars over a variety of solar and solar wind conditions, including extreme space weather events. We will report the average ion escape rate and the spatial distribution of escaping ions as measured by MAVEN and place them in context both with previous measurements of ion loss by other spacecraft (e.g. Phobos 2 and Mars Express) and with estimates of neutral escape rates by MAVEN. We will then report on the measured variability in ion escape rates with different drivers (e.g. solar EUV, solar wind pressure, etc.) and the implications for the total ion escape from Mars over time. Additionally, we will also discuss the implications for atmospheric escape at exoplanets, particularly weakly magnetized planetary bodies orbiting M-dwarfs, and the dominant escape mechanisms that may drive atmospheric erosion in other stellar systems.

  19. Temporal and spatial variation of maximum wind speed days during the past 20 years in major cities of Xinjiang

    NASA Astrophysics Data System (ADS)

    Baidourela, Aliya; Jing, Zhen; Zhayimu, Kahaer; Abulaiti, Adili; Ubuli, Hakezi

    2018-04-01

    Wind erosion and sandstorms occur in the neighborhood of exposed dust sources. Wind erosion and desertification increase the frequency of dust storms, deteriorate air quality, and damage the ecological environment and agricultural production. The Xinjiang region has a relatively fragile ecological environment. Therefore, the study of the characteristics of maximum wind speed and wind direction in this region is of great significance to disaster prevention and mitigation, the management of activated dunes, and the sustainable development of the region. Based on the latest data of 71 sites in Xinjiang, this study explores the temporal evolution and spatial distribution of maximum wind speed in Xinjiang from 1993 to 2013, and highlights the distribution of annual and monthly maximum wind speed and the characteristics of wind direction in Xinjiang. Between 1993 and 2013, Ulugchat County exhibited the highest number of days with the maximum wind speed (> 17 m/s), while Wutian exhibited the lowest number. In Xinjiang, 1999 showed the highest number of maximum wind speed days (257 days), while 2013 showed the lowest number (69 days). Spring and summer wind speeds were greater than those in autumn and winter. There were obvious differences in the direction of maximum wind speed in major cities and counties of Xinjiang. East of the Tianshan Mountains, maximum wind speeds are mainly directed southeast and northeast. North and south of the Tianshan Mountains, they are mainly directed northwest and northeast, while west of the Tianshan Mountains, they are mainly directed southeast and northwest.

  20. Suzaku monitoring of the Wolf-Rayet binary WR140

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko; Hamaguchi, Kenji

    2010-07-01

    We report the preliminary results of the Suzaku observations of the W-R binary WR 140 (WC7+O5I). We executed the observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. The total exposure was 210 ksec. We detected hard X-ray excess in the HXD band (>10 keV) for the first time from a W-R binary. Another notable discovery was a soft component which is not absorbed even by the dense wind. The spectra can be fitted by three different components; one is for the stationary cool component with kT ~0.1 keV, one for a dominant high temperature component with kT ~3 keV, and one for the hardest power-low component with Γ~2. The column density at periastron is 30 times higher than that at pre-periastron, which can be explained as self-absorption by the W-R wind. The emission measure of the dominant, high temperature component is not inversely proportional to the distance between the two stars.

  1. Future wave and wind projections for United States and United-States-affiliated Pacific Islands

    USGS Publications Warehouse

    Storlazzi, Curt D.; Shope, James B.; Erikson, Li H.; Hegermiller, Christine A.; Barnard, Patrick L.

    2015-01-01

    Changes in future wave climates in the tropical Pacific Ocean from global climate change are not well understood. Spatially and temporally varying waves dominate coastal morphology and ecosystem structure of the islands throughout the tropical Pacific. Waves also impact coastal infrastructure, natural and cultural resources, and coastal-related economic activities of the islands. Wave heights, periods, and directions were forecast through the year 2100 using wind parameter outputs from four atmosphere-ocean global climate models from the Coupled Model Inter-Comparison Project, Phase 5, for Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 that correspond to moderately mitigated and unmitigated greenhouse gas emissions, respectively. Wind fields from the global climate models were used to drive a global WAVEWATCH-III wave model and generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific for the years 1976–2005 (historical), 2026–2045 (mid-century projection), and 2085–2100 (end-of-century projection). Although the results show some spatial heterogeneity, overall the December-February extreme significant wave heights, defined as the mean of the top 5 percent of significant wave height time-series data modeled within a specific period, increase from present to mid-century and then decrease toward the end of the century; June-August extreme wave heights increase throughout the century within the Central region of the study area; and September-November wave heights decrease strongly throughout the 21st century, displaying the largest and most widespread decreases of any season. Peak wave periods increase east of the International Date Line during the December-February and June-August seasons under RCP4.5. Under the RCP8.5 scenario, wave periods decrease west of the International Date Line during December-February but increase in the eastern half of the study area. Otherwise, wave periods decrease throughout the study area during other seasons. Extreme wave directions in equatorial Micronesia during June-August undergo an approximate 30° clockwise rotation from primarily west to northwest. September-November RCP4.5 extreme mean wave directions rotate counterclockwise by approximately 30 to 45° in equatorial Micronesia; September-November RCP8.5 extreme mean wave directions within equatorial Micronesia rotate clockwise by approximately 20 to 30°. Extreme wind speeds decreased within both scenarios, with the largest decreases occurring in the September-November season. Extreme wind directions under RCP4.5 rotated clockwise by more than 60° in equatorial Micronesia during the September-November season and by approximately 30° during June-August. RCP8.5 extreme wind directions rotated counterclockwise during September-November within the same region by 30 to 50° and clockwise by 30 to 40° at one island. The spatial patterns and trends are similar between the two different greenhouse gas emission scenarios, with the magnitude and extent of the trends generally greater for the higher (RCP8.5) scenario.

  2. Coherent lidar design and performance verification

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod

    1993-01-01

    The verification of LAWS beam alignment in space can be achieved by a measurement of heterodyne efficiency using the surface return. The crucial element is a direct detection signal that can be identified for each surface return. This should be satisfied for LAWS but will not be satisfied for descoped LAWS. The performance of algorithms for velocity estimation can be described with two basic parameters: the number of coherently detected photo-electrons per estimate and the number of independent signal samples per estimate. The average error of spectral domain velocity estimation algorithms are bounded by a new periodogram Cramer-Rao Bound. Comparison of the periodogram CRB with the exact CRB indicates a factor of two improvement in velocity accuracy is possible using non-spectral domain estimators. This improvement has been demonstrated with a maximum-likelihood estimator. The comparison of velocity estimation algorithms for 2 and 10 micron coherent lidar was performed by assuming all the system design parameters are fixed and the signal statistics are dominated by a 1 m/s rms wind fluctuation over the range gate. The beam alignment requirements for 2 micron are much more severe than for a 10 micron lidar. The effects of the random backscattered field on estimating the alignment error is a major problem for space based lidar operation, especially if the heterodyne efficiency cannot be estimated. For LAWS, the biggest science payoff would result from a short transmitted pulse, on the order of 0.5 microseconds instead of 3 microseconds. The numerically errors for simulation of laser propagation in the atmosphere have been determined as a joint project with the University of California, San Diego. Useful scaling laws were obtained for Kolmogorov atmospheric refractive turbulence and an atmospheric refractive turbulence characterized with an inner scale. This permits verification of the simulation procedure which is essential for the evaluation of the effects of refractive turbulence on coherent Doppler lidar systems. The analysis of 2 micron Doppler lidar data from Coherent Technologies, Inc. (CTI) has demonstrated many of the advantages of doppler lidar measurements of boundary layer winds. The effects of wind shear and wind turbulence over the pulse volume are probably the dominant source of the reduced performance. The effects of wind shear and wind turbulence on the statistical description of doppler lidar data has been derived and calculated.

  3. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones.

    PubMed

    Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva

    2008-06-06

    Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a local scale. In general, this project could be used as a template for dust-transport modelling which couples spatial data focused on the construction of digital terrain models and thematic mapping with data generated by numerical simulations based on Reynolds averaged Navier-Stokes equations.

  4. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones

    PubMed Central

    Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva

    2008-01-01

    Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a local scale. In general, this project could be used as a template for dust-transport modelling which couples spatial data focused on the construction of digital terrain models and thematic mapping with data generated by numerical simulations based on Reynolds averaged Navier-Stokes equations. PMID:27879911

  5. Methods and apparatus for reducing peak wind turbine loads

    DOEpatents

    Moroz, Emilian Mieczyslaw

    2007-02-13

    A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.

  6. Wave forecasting and longshore sediment transport gradients along a transgressive barrier island: Chandeleur Islands, Louisiana

    NASA Astrophysics Data System (ADS)

    Georgiou, Ioannis Y.; Schindler, Jennifer K.

    2009-12-01

    Louisiana barrier islands, such as the chain surrounding the southeast region of the state, are experiencing rapid loss of land area, shoreline erosion, and landward migration due to transgression and in-place drowning, and the landfall of several major hurricanes in the last decade. Observations of migration rates and overall impacts to these barrier islands are poorly understood since they do not respond in a traditional way, such as barrier rollover. This paper aims to verify how wave energy and potential longshore sediment transport trends have influenced the recent evolution of the Chandeleur Islands, by direct comparison with recent observations of migration and erosion trends. The Chandeleur Islands are characterized by a bidirectional transport system, with material moving from the central arc to the flanks. The longshore sediment transport along the barrier islands was calculated after propagation and transformation of waves to breaking (generated using observed winds), and through the use of a common longshore sediment transport formula. Seasonal variations in wind climate produced changes in the transport trends and gradients that agree with migration and rotation patterns observed for this barrier island system. Results suggest that wind dominance produces seasonal oscillations that cause an imbalance in the resulting transport gradients that over time are responsible for higher rates of transport in the northward direction. These results and data from other works verify the evolutionary model previously suggested, and qualitatively confirm the recent observations in asymmetric shoreline erosion.

  7. Wavelet Analysis for Wind Fields Estimation

    PubMed Central

    Leite, Gladeston C.; Ushizima, Daniela M.; Medeiros, Fátima N. S.; de Lima, Gilson G.

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699

  8. Light-Flash Wind-Direction Indicator

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A.

    1993-01-01

    Proposed wind-direction indicator read easily by distant observers. Indicator emits bright flashes of light separated by interval of time proportional to angle between true north and direction from which wind blowing. Timing of flashes indicates direction of wind. Flashes, from high-intensity stroboscopic lights seen by viewers at distances up to 5 miles or more. Also seen more easily through rain and fog. Indicator self-contained, requiring no connections to other equipment. Power demand satisfied by battery or solar power or both. Set up quickly to provide local surface-wind data for aircraft pilots during landing or hovering, for safety officers establishing hazard zones and safety corridors during handling of toxic materials, for foresters and firefighters conducting controlled burns, and for real-time wind observations during any of variety of wind-sensitive operations.

  9. Coherent Doppler lidar signal covariance including wind shear and wind turbulence

    NASA Technical Reports Server (NTRS)

    Frehlich, R. G.

    1993-01-01

    The performance of coherent Doppler lidar is determined by the statistics of the coherent Doppler signal. The derivation and calculation of the covariance of the Doppler lidar signal is presented for random atmospheric wind fields with wind shear. The random component is described by a Kolmogorov turbulence spectrum. The signal parameters are clarified for a general coherent Doppler lidar system. There are two distinct physical regimes: one where the transmitted pulse determines the signal statistics and the other where the wind field dominates the signal statistics. The Doppler shift of the signal is identified in terms of the wind field and system parameters.

  10. Sediment grain-size characteristics and relevant correlations to the aeolian environment in China's eastern desert region.

    PubMed

    Zhang, Chunlai; Shen, Yaping; Li, Qing; Jia, Wenru; Li, Jiao; Wang, Xuesong

    2018-06-15

    To identify characteristics of aeolian activity and the aeolian environment in China's eastern desert region, this study collected surface sediment samples from the main desert and sandy lands in this region: the Hobq Desert and the Mu Us, Otindag, Horqin, and Hulunbuir sandy lands. We analyzed the grain-size characteristics and their relationships to three key environmental indicators: drift potential, the dune mobility index, and vegetation cover. The main sediment components are fine to medium sands, with poor (Hulunbuir) to moderate (all other areas) sorting, of unimodal to bimodal distribution. This suggests that improved sorting is accomplished by the loss of both relatively coarser and finer grains. Since 2000, China's eastern desert region has generally experienced low wind energy environmental conditions, resulting in decreased dune activity. In the Hobq Desert, however, the dry climate and sparse vegetation, in conjunction with the most widely distributed mobile dune area in the eastern desert region, have led to frequent and intense aeolian activity, including wind erosion, sand transport, and deposition, resulting in conditions for good sediment sorting. In the Mu Us, Otindag, and Horqin sandy lands, mosaic distribution has resulted from wind erosion-dominated and deposition-dominated aeolian environments. In the Hulunbuir Sandy Land, high precipitation, low temperatures, and steppe vegetation have resulted in well-developed soils; however, strong winds and flat terrain have created an aeolian environment dominated by wind erosion. Copyright © 2018. Published by Elsevier B.V.

  11. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry

    USGS Publications Warehouse

    Mursula, K.; Tanskanen, E.; Love, J.J.

    2011-01-01

    We study the seasonal variation of substorms, geomagnetic activity and their solar wind drivers in 1993-2008. The number of substorms and substorm mean duration depict an annual variation with maxima in Winter and Summer, respectively, reflecting the annual change of the local ionosphere. In contradiction, substorm mean amplitude, substorm total efficiency and global geomagnetic activity show a dominant annual variation, with equinoctial maxima alternating between Spring in solar cycle 22 and Fall in cycle 23. The largest annual variations were found in 1994 and 2003, in the declining phase of the two cycles when high-speed streams dominate the solar wind. A similar, large annual variation is found in the solar wind driver of substorms and geomagnetic activity, which implies that the annual variation of substorm strength, substorm efficiency and geomagnetic activity is not due to ionospheric conditions but to a hemispherically asymmetric distribution of solar wind which varies from one cycle to another. Our results imply that the overall semiannual variation in global geomagnetic activity has been seriously overestimated, and is largely an artifact of the dominant annual variation with maxima alternating between Spring and Fall. The results also suggest an intimate connection between the asymmetry of solar magnetic fields and some of the largest geomagnetic disturbances, offering interesting new pathways for forecasting disturbances with a longer lead time to the future. Copyright ?? 2011 by the American Geophysical Union.

  12. Optimizing wind farm layout via LES-calibrated geometric models inclusive of wind direction and atmospheric stability effects

    NASA Astrophysics Data System (ADS)

    Archer, Cristina; Ghaisas, Niranjan

    2015-04-01

    The energy generation at a wind farm is controlled primarily by the average wind speed at hub height. However, two other factors impact wind farm performance: 1) the layout of the wind turbines, in terms of spacing between turbines along and across the prevailing wind direction; staggering or aligning consecutive rows; angles between rows, columns, and prevailing wind direction); and 2) atmospheric stability, which is a measure of whether vertical motion is enhanced (unstable), suppressed (stable), or neither (neutral). Studying both factors and their complex interplay with Large-Eddy Simulation (LES) is a valid approach because it produces high-resolution, 3D, turbulent fields, such as wind velocity, temperature, and momentum and heat fluxes, and it properly accounts for the interactions between wind turbine blades and the surrounding atmospheric and near-surface properties. However, LES are computationally expensive and simulating all the possible combinations of wind directions, atmospheric stabilities, and turbine layouts to identify the optimal wind farm configuration is practically unfeasible today. A new, geometry-based method is proposed that is computationally inexpensive and that combines simple geometric quantities with a minimal number of LES simulations to identify the optimal wind turbine layout, taking into account not only the actual frequency distribution of wind directions (i.e., wind rose) at the site of interest, but also atmospheric stability. The geometry-based method is calibrated with LES of the Lillgrund wind farm conducted with the Software for Offshore/onshore Wind Farm Applications (SOWFA), based on the open-access OpenFOAM libraries. The geometric quantities that offer the best correlations (>0.93) with the LES results are the blockage ratio, defined as the fraction of the swept area of a wind turbine that is blocked by an upstream turbine, and the blockage distance, the weighted distance from a given turbine to all upstream turbines that can potentially block it. Based on blockage ratio and distance, an optimization procedure is proposed that explores many different layout variables and identifies, given actual wind direction and stability distributions, the optimal wind farm layout, i.e., the one with the highest wind energy production. The optimization procedure is applied to both the calibration wind farm (Lillgrund) and a test wind farm (Horns Rev) and a number of layouts more efficient than the existing ones are identified. The optimization procedure based on geometric models proposed here can be applied very quickly (within a few hours) to any proposed wind farm, once enough information on wind direction frequency and, if available, atmospheric stability frequency has been gathered and once the number of turbines and/or the areal extent of the wind farm have been identified.

  13. Electric fields in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.

    1975-01-01

    F-region drift velocities, measured by incoherent-scatter radar were analyzed in terms of diurnal, seasonal, magnetic activity, and solar cycle effects. A comprehensive electric field model was developed that includes the effects of the E and F-region dynamos, magnetospheric sources, and ionospheric conductivities, for both the local and conjugate regions. The E-region dynamo dominates during the day but at night the F-region and convection are more important. This model provides much better agreement with observations of the F-region drifts than previous models. Results indicate that larger magnitudes occur at night, and that daily variation is dominated by the diurnal mode. Seasonal variations in conductivities and thermospheric winds indicate a reversal in direction in the early morning during winter from south to northward. On magnetic perturbed days and the drifts deviate rather strongly from the quiet days average, especially around 13 L.T. for the northward and 18 L.T. for the westward component.

  14. Summertime conditions of a muddy estuarine environment: the EsCoSed project contribution.

    PubMed

    Brocchini, Maurizio; Calantoni, Joseph; Reed, Allen H; Postacchini, Matteo; Lorenzoni, Carlo; Russo, Aniello; Mancinelli, Alessandro; Corvaro, Sara; Moriconi, Giacomo; Soldini, Luciano

    2015-01-01

    As part of the Estuarine Cohesive Sediments (EsCoSed) project, a field experiment was performed in a highly engineered environment, acting as a natural laboratory, to study the physico-chemical properties of estuarine sediments and the associated hydro-morphodynamics during different seasons. The present contribution focuses on the results obtained from the summertime monitoring of the most downstream part of the Misa River (Senigallia, Italy). The measured hydrodynamics suggested a strong interaction between river current, wave forcing and tidal motion; flow velocities, affected by wind waves traveling upstream, changed significantly along the water column in both direction and magnitude. Surficial salinities in the estuary were low in the upper reaches of the estuary and exceeded 10 psu before the river mouth. Montmorillonite dominated the clay mineral assemblage, suggesting that large, low density flocs with high settling velocities (>1 mm s(-1)) may dominate the suspended aggregate materials.

  15. Simulation and optimal control of wind-farm boundary layers

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Goit, Jay

    2014-05-01

    In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a nonlinear conjugate gradient method, and the gradients are calculated by solving the adjoint LES equations. We find that the extracted farm power increases by approximately 20% when using optimal model-predictive control. However, the increased power output is also responsible for an increase in turbulent dissipation, and a deceleration of the boundary layer. Further investigating the energy balances in the boundary layer, it is observed that this deceleration is mainly occurring in the outer layer as a result of higher turbulent energy fluxes towards the turbines. In a second optimization case, we penalize boundary-layer deceleration, and find an increase of energy extraction of approximately 10%. In this case, increased energy extraction is balanced by a reduction in of turbulent dissipation in the boundary layer. J.M. acknowledges support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.

  16. Abrupt acceleration of a 'cold' ultrarelativistic wind from the Crab pulsar.

    PubMed

    Aharonian, F A; Bogovalov, S V; Khangulyan, D

    2012-02-15

    Pulsars are thought to eject electron-positron winds that energize the surrounding environment, with the formation of a pulsar wind nebula. The pulsar wind originates close to the light cylinder, the surface at which the pulsar co-rotation velocity equals the speed of light, and carries away much of the rotational energy lost by the pulsar. Initially the wind is dominated by electromagnetic energy (Poynting flux) but later this is converted to the kinetic energy of bulk motion. It is unclear exactly where this takes place and to what speed the wind is accelerated. Although some preferred models imply a gradual acceleration over the entire distance from the magnetosphere to the point at which the wind terminates, a rapid acceleration close to the light cylinder cannot be excluded. Here we report that the recent observations of pulsed, very high-energy γ-ray emission from the Crab pulsar are explained by the presence of a cold (in the sense of the low energy of the electrons in the frame of the moving plasma) ultrarelativistic wind dominated by kinetic energy. The conversion of the Poynting flux to kinetic energy should take place abruptly in the narrow cylindrical zone of radius between 20 and 50 light-cylinder radii centred on the axis of rotation of the pulsar, and should accelerate the wind to a Lorentz factor of (0.5-1.0) × 10(6). Although the ultrarelativistic nature of the wind does support the general model of pulsars, the requirement of the very high acceleration of the wind in a narrow zone not far from the light cylinder challenges current models.

  17. An Analysis of Wintertime Winds in Washington, D.C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Allwine, K Jerry

    This report consists of a description of the wintertime climatology of wind speed and wind direction around the National Mall in Washington, D.C. Meteorological data for this study were collected at Ronald Reagan Washington National Airport (Reagan National), Dulles International Airport (Dulles), and a set of surface meteorological stations that are located on a number of building tops around the National Mall. A five-year wintertime climatology of wind speed and wind direction measured at Reagan National and Dulles are presented. A more detailed analysis was completed for the period December 2003 through February 2004 using data gathered from stations locatedmore » around the National Mall, Reagan National, and Dulles. Key findings of our study include the following: * There are systematic differences between the wind speed and wind direction observed at Reagan National and the wind speed and wind direction measured by building top weather stations located in the National Mall. Although Dulles is located much further from the National Mall than Reagan National, there is better agreement between the wind speed and wind direction measured at Dulles and the weather stations in the National Mall. * When the winds are light (less than 3 ms-1 or 7 mph), there are significant differences in the wind directions reported at the various weather stations within the Mall. * Although the mean characteristics of the wind are similar at the various locations, significant, short-term differences are found when the time series are compared. These differences have important implications for the dispersion of airborne contaminants. In support of wintertime special events in the area of the National Mall, we recommend placing four additional meteorological instruments: three additional surface stations, one on the east bank of the Potomac River, one south of the Reflecting Pool (to better define the flow within the Mall), and a surface station near the Herbert C. Hoover Building; and wind-profiling instrument located along the southern edge of the National Mall to give measurements of the wind speed and direction as a function of height.« less

  18. The influence of mountain meteorology on precipitation chemistry at low and high elevations of the Colorado Front Range, USA

    USGS Publications Warehouse

    Denning, A. Scott

    1993-01-01

    We explored the seasonal characteristics in wet deposition chemistry for two sites located at different elevations along the east slope of the Colorado Front Range in Rocky Mountain National Park. Seasonally separated precipitation was stratified into highly concentrated (high salt), dilute (low salt), or acid-dominated precipitation groups. These groups and unstratified precipitation data were related to mean easterly or westerly zonal winds to determine direction of local transport. Strong acid anion associations were also determined for the stratified and unstratified precipitation data sets. We found that strong acid anions, acidity, ammonium, and high salt concentrations originate to the east of Rocky Mountain National Park, and are transported via up-valley funneling winds or convective instability from differential heating of the mountains and the plains to the east. These influence the composition of precipitation at Beaver Meadows, the low elevation site, throughout the year, while their effect on precipitation at Loch Vale, the high elevation site, is felt most strongly during the summer. During the winter, Loch Vale precipitation is very dilute, and occurs in conjunction with westerly winds resulting from the southerly location of the jet stream.

  19. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies.

    PubMed

    Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M

    2014-04-18

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.

  20. An open-terrain line source model coupled with street-canyon effects to forecast carbon monoxide at traffic roundabout.

    PubMed

    Pandian, Suresh; Gokhale, Sharad; Ghoshal, Aloke Kumar

    2011-02-15

    A double-lane four-arm roundabout, where traffic movement is continuous in opposite directions and at different speeds, produces a zone responsible for recirculation of emissions within a road section creating canyon-type effect. In this zone, an effect of thermally induced turbulence together with vehicle wake dominates over wind driven turbulence causing pollutant emission to flow within, resulting into more or less equal amount of pollutants upwind and downwind particularly during low winds. Beyond this region, however, the effect of winds becomes stronger, causing downwind movement of pollutants. Pollutant dispersion caused by such phenomenon cannot be described accurately by open-terrain line source model alone. This is demonstrated by estimating one-minute average carbon monoxide concentration by coupling an open-terrain line source model with a street canyon model which captures the combine effect to describe the dispersion at non-signalized roundabout. The results of the modeling matched well with the measurements compared with the line source model alone and the prediction error reduced by about 50%. The study further demonstrated this with traffic emissions calculated by field and semi-empirical methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Low-Level Jets: The Data Assimilation Office and Reanalysis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Data assimilation brings together atmospheric observations and atmospheric models-what we can measure of the atmosphere with how we expect it to behave. NASA's Data Assimilation Office (DAO) sponsors research projects in data reanalysis, which take several years of observational data and analyze them with a fixed assimilation system, to create an improved data set for use in atmospheric studies. Using NCCS computers, one group of NASA researchers employs reanalysis to examine the role of summertime low-level jet (LLJ) winds in regional seasonal climate. Prevailing winds that blow strongly in a fixed direction within a vertically and horizontally confined region of the atmosphere are known as jets. Jets can dominate circulation and have an enormous impact on the weather in a region. Some jets are as famous as they are influential. The jet stream over North America, for instance, is the wind that blows eastward across the continent, bringing weather from the west coast and increasing the speed of airplanes flying to the east coast. The jet stream, while varying in intensity and location, is present in all seasons at the very high altitude of 200-300 millibars - more than 6 miles above Earth's surface.

  2. Determination of the effect of wind velocity and direction changes on turbidity removal in rectangular sedimentation tanks.

    PubMed

    Khezri, Seyed Mostafa; Biati, Aida; Erfani, Zeynab

    2012-01-01

    In the present study, a pilot-scale sedimentation tank was used to determine the effect of wind velocity and direction on the removal efficiency of particles. For this purpose, a 1:20 scale pilot simulated according to Frude law. First, the actual efficiency of total suspended solids (TSS) removal was calculated in no wind condition. Then, the wind was blown in the same and the opposite directions of water flow. At each direction TSS removal was calculated at three different velocities from 2.5 to 7 m/s. Results showed that when the wind was in the opposite direction of water flow, TSS removal efficiency initially increased with the increase of wind velocity from 0 to 2.5 m/s, then it decreased with the increase of velocity to 5 m/s. This mainly might happen because the opposite direction of wind can increase particles' retention time in the sedimentation tank. However, higher wind velocities (i.e. 3.5 and 5.5 m/s) could not increase TSS removal efficiency. Thus, if sedimentation tanks are appropriately exposed to the wind, TSS removal efficiency increases by approximately 6%. Therefore, energy consumption will be reduced by a proper site selection for sedimentation tank unit in water and waste water treatment plants.

  3. Design and laboratory testing of a new flow-through directional passive air sampler for ambient particulate matter.

    PubMed

    Lin, Chun; Solera Garcia, Maria Angeles; Timmis, Roger; Jones, Kevin C

    2011-03-01

    A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s⁻¹, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.

  4. The influence of winding direction of two-layer HTS DC cable on the critical current

    NASA Astrophysics Data System (ADS)

    Vyatkin, V. S.; Kashiwagi, K.; Ivanov, Y. V.; Otabe, E. S.; Yamaguchi, S.

    2017-09-01

    The design of twist pitch and direction of winding in multilayer HTS coaxial cable is important. For HTS AC transmitting cables, the main condition of twist pitch is the balance of inductances of each layer for providing the current balance between layers. In this work, the finite element method analysis for the coaxial cables with both same and opposite directions winding is used to calculate magnetic field distribution, and critical current of the cable is estimated. It was found that the critical current of the cable with same direction winding is about 10 percent higher than that in the case of the cable with the opposite direction winding.

  5. Effect of Wind Angle Direction on Carbon Monoxide (CO) Concentration Dispersion on Traffic Flow in Padang City

    NASA Astrophysics Data System (ADS)

    Bachtiar, V. S.; Purnawan, P.; Afrianita, R.; Dahlia, N.

    2018-01-01

    This study aims to analyze the relationship between CO concentration and wind direction. Wind direction in this context is the wind angle to the road on the traffic flow in Padang City. Sampling of CO concentration was conducted for 9 days at 3 monitoring points (each 3-day point) representing the wind angle to the road (a) i.e. at Jend. A. Yani road (0 degrees), Andalas road (30 degrees) and Prof. Dr. Hamka road (60 degrees), using impinger and analyzed by spectrophotometer. The results of the research in the three monitoring sites showed that the concentration of CO ranged between 137.217 and 600.525 μg/Nm3. The highest and lowest concentrations respectively on Prof. Dr. Hamka road and Jend. A. Yani road. The sampling showed that CO concentrations will be decreased if wind direction is changed from perpendicular wind direction (a 90°) to a 60°, 30°, and 0° respectively by 64.62%, 37.77% and 27.09%. It can be concluded that the wind angle direction to the road affects the CO concentrations in the roadside.

  6. Post-processing method for wind speed ensemble forecast using wind speed and direction

    NASA Astrophysics Data System (ADS)

    Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin

    2017-04-01

    Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.

  7. Earth Observations taken by the Expedition 17 Crew

    NASA Image and Video Library

    2008-08-19

    ISS017-E-013789 (19 Aug. 2008) --- Desert erosion in Libya is featured in this image photographed by an Expedition 17 crewmember on the International Space Station. This detailed view (covering 13 kilometers) shows the classic patterns of an erosional desert landscape located 300 kilometers south of Libya's Mediterranean coast. Widespread indented patterns are low escarpments and stream terraces generated by stream erosion -- on those few occasions in any decade when enough rain falls for streams to flow. The only areas with active sediment deposition are the stream beds which appear in this image as sinuous zones with a distinct component of black minerals, resulting in a darker coloration than adjacent low escarpments. Sediment is transported into the area from a volcanic landscape immediately upstream to the west. Other stream-generated features are several relict stream banks, one of which even shows both of the original parallel banks. According to scientists, the ancient stream banks are preserved from erosion by various hardening cements (mainly calcium carbonate and gypsum) introduced by the streams when they were active, probably during wetter climates in the past two million years. Relict stream courses show prior positions of streams, and also provide Earth analogs for similar features on Mars. The lack of vegetation is the first indication of the great aridity of the region, but sand dunes also appear as sinuous lines oriented perpendicular to the dominant northeasterly wind direction (transverse dunes). Assuming the dominant wind direction remains the same, these transverse dunes are expected to move further to the southwest over time. Some of the dunes cross the river courses, showing how seldom the river flows.

  8. The effects of tropical cyclone characteristics on the surface wave fields in Australia's North West region

    NASA Astrophysics Data System (ADS)

    Drost, Edwin J. F.; Lowe, Ryan J.; Ivey, Greg N.; Jones, Nicole L.; Péquignet, Christine A.

    2017-05-01

    The numerical wave model SWAN (Simulating WAves Nearshore) and historical wave buoy observations were used to investigate the response of surface wave fields to tropical cyclone (TC) wind forcing on the Australian North West Shelf (NWS). Analysis of historical wave data during TC events at a key location on the NWS showed that an average of 1.7 large TCs impacted the region each year, albeit with high variability in TC track, intensity and size, and also in the surface wave field response. An accurately modeled TC wind field resulted in a good prediction of the observed extreme wave conditions by SWAN. Results showed that the presence of strong background winds during a TC and a long TC lifetime (with large variations in translation speed) can provide additional energy input. This potentially enhances the generated swell waves and increases the spatial extent of the TC generated surface wave fields. For the TC translation speeds in this study, a positive relationship between TC translation speed and the resulting maximum significant wave height and wave field asymmetry was observed. Bottom friction across the wide NWS limited the amount of wave energy reaching the coastal region; consistently reducing wave energy in depths below 50 m, and in the case of the most extreme conditions, in depths up to 100 m that comprise much of the shelf. Nevertheless, whitecapping was still the dominant dissipation mechanism on the broader shelf region. Shelf-scale refraction had little effect on the amount of wave energy reaching the nearshore zone; however, refraction locally enhanced or reduced wave energy depending on the orientation of the isobaths with respect to the dominant wave direction during the TC.

  9. An Update to the Warm-Season Convective Wind Climatology of KSC/CCAFS

    NASA Technical Reports Server (NTRS)

    Lupo, Kevin

    2012-01-01

    Total of 1100 convective events in the 17-year warm-season climatology at KSC/CCAFS. July and August typically are the peak of convective events, May being the minimum. Warning and non-warning level convective winds are more likely to occur in the late afternoon (1900-2000Z). Southwesterly flow regimes and wind directions produce the strongest winds. Storms moving from southwesterly direction tend to produce more warning level winds than those moving from the northerly and easterly directions.

  10. Scientific Impacts of Wind Direction Errors

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Kim, Seung-Bum; Lee, Tong; Song, Y. Tony; Tang, Wen-Qing; Atlas, Robert

    2004-01-01

    An assessment on the scientific impact of random errors in wind direction (less than 45 deg) retrieved from space-based observations under weak wind (less than 7 m/s ) conditions was made. averages, and these weak winds cover most of the tropical, sub-tropical, and coastal oceans. Introduction of these errors in the semi-daily winds causes, on average, 5% changes of the yearly mean Ekman and Sverdrup volume transports computed directly from the winds, respectively. These poleward movements of water are the main mechanisms to redistribute heat from the warmer tropical region to the colder high- latitude regions, and they are the major manifestations of the ocean's function in modifying Earth's climate. Simulation by an ocean general circulation model shows that the wind errors introduce a 5% error in the meridional heat transport at tropical latitudes. The simulation also shows that the erroneous winds cause a pile-up of warm surface water in the eastern tropical Pacific, similar to the conditions during El Nino episode. Similar wind directional errors cause significant change in sea-surface temperature and sea-level patterns in coastal oceans in a coastal model simulation. Previous studies have shown that assimilation of scatterometer winds improves 3-5 day weather forecasts in the Southern Hemisphere. When directional information below 7 m/s was withheld, approximately 40% of the improvement was lost

  11. The Impact of High-Resolution Sea Surface Temperatures on the Simulated Nocturnal Florida Marine Boundary Layer

    NASA Technical Reports Server (NTRS)

    LaCasse, Katherine M.; Splitt, Michael E.; Lazarus, Steven M.; Lapenta, William M.

    2008-01-01

    High- and low-resolution sea surface temperature (SST) analysis products are used to initialize the Weather Research and Forecasting (WRF) Model for May 2004 for short-term forecasts over Florida and surrounding waters. Initial and boundary conditions for the simulations were provided by a combination of observations, large-scale model output, and analysis products. The impact of using a 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) SST composite on subsequent evolution of the marine atmospheric boundary layer (MABL) is assessed through simulation comparisons and limited validation. Model results are presented for individual simulations, as well as for aggregates of easterly- and westerly-dominated low-level flows. The simulation comparisons show that the use of MODIS SST composites results in enhanced convergence zones. earlier and more intense horizontal convective rolls. and an increase in precipitation as well as a change in precipitation location. Validation of 10-m winds with buoys shows a slight improvement in wind speed. The most significant results of this study are that 1) vertical wind stress divergence and pressure gradient accelerations across the Florida Current region vary in importance as a function of flow direction and stability and 2) the warmer Florida Current in the MODIS product transports heat vertically and downwind of this heat source, modifying the thermal structure and the MABL wind field primarily through pressure gradient adjustments.

  12. Cold Ion Outflow Modulated by the Solar Wind Energy Input and Tilt of the Geomagnetic Dipole

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wei, Y.; André, M.; Eriksson, A.; Haaland, S.; Kronberg, E. A.; Nilsson, H.; Maes, L.; Rong, Z. J.; Wan, W. X.

    2017-10-01

    The solar wind energy input into the Earth's magnetosphere-ionosphere system drives ionospheric outflow, which plays an important role in both the magnetospheric dynamics and evolution of the atmosphere. However, little is known about the cold ion outflow with energies lower than a few tens of eV, as the direct measurement of cold ions is difficult because a spacecraft gains a positive electric charge due to the photoemission effect, which prevents cold ions from reaching the onboard detectors. A recent breakthrough in the measurement technique using Cluster spacecraft revealed that cold ions dominate the ion population in the magnetosphere. This new technique yields a comprehensive data set containing measurements of the velocities and densities of cold ions for the years 2001-2010. In this paper, this data set is used to analyze the cold ion outflow from the ionosphere. We found that about 0.1% of the solar wind energy input is transformed to the kinetic energy of cold ion outflow at the topside ionosphere. We also found that the geomagnetic dipole tilt can significantly affect the density of cold ion outflow, modulating the outflow rate of cold ion kinetic energy. These results give us clues to study the evolution of ionospheric outflow with changing global magnetic field and solar wind condition in the history.

  13. Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind

    NASA Technical Reports Server (NTRS)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-01-01

    Above the top of the solar corona, the young, slow solar wind transitions from low-beta, magnetically structured flow dominated by radial structures to high-beta, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10deg from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4deg to 24deg from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term "flocculae." We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  14. FADING CORONAL STRUCTURE AND THE ONSET OF TURBULENCE IN THE YOUNG SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.

    Above the top of the solar corona, the young, slow solar wind transitions from low- β , magnetically structured flow dominated by radial structures to high- β , less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory ( STEREO /HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transitionmore » in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.« less

  15. Directional Wave Spectra Observed During Intense Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Collins, C. O.; Potter, H.; Lund, B.; Tamura, H.; Graber, H. C.

    2018-02-01

    Two deep-sea moorings were deployed 780 km off the coast of southern Taiwan for 4-5 months during the 2010 typhoon season. Directional wave spectra, wind speed and direction, and momentum fluxes were recorded on two Extreme Air-Sea Interaction buoys during the close passage of Severe Tropical Storm Dianmu and three tropical cyclones (TCs): Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. Conditions sampled include significant wave heights up to 11 m and wind speeds up to 26 m s-1. Details varied for large-scale spectral structure in frequency and direction but were mostly bimodal. The modes were generally composed of a swell system emanating from the most intense storm region and local wind-seas. The peak systems were consistently young, meaning actively forced by winds, when the storms were close. During the peaks of the most intense passages—Chaba at the northern mooring and Megi at the southern—the bimodal seas coalesced. During Chaba, the swell and wind-sea coupling directed the high frequency waves and the wind stress away from the wind direction. A spectral wave model was able reproduce many of the macrofeatures of the directional spectra.

  16. Multi objective decision making in hybrid energy system design

    NASA Astrophysics Data System (ADS)

    Merino, Gabriel Guillermo

    The design of grid-connected photovoltaic wind generator system supplying a farmstead in Nebraska has been undertaken in this dissertation. The design process took into account competing criteria that motivate the use of different sources of energy for electric generation. The criteria considered were 'Financial', 'Environmental', and 'User/System compatibility'. A distance based multi-objective decision making methodology was developed to rank design alternatives. The method is based upon a precedence order imposed upon the design objectives and a distance metric describing the performance of each alternative. This methodology advances previous work by combining ambiguous information about the alternatives with a decision-maker imposed precedence order in the objectives. Design alternatives, defined by the photovoltaic array and wind generator installed capacities, were analyzed using the multi-objective decision making approach. The performance of the design alternatives was determined by simulating the system using hourly data for an electric load for a farmstead and hourly averages of solar irradiation, temperature and wind speed from eight wind-solar energy monitoring sites in Nebraska. The spatial variability of the solar energy resource within the region was assessed by determining semivariogram models to krige hourly and daily solar radiation data. No significant difference was found in the predicted performance of the system when using kriged solar radiation data, with the models generated vs. using actual data. The spatial variability of the combined wind and solar energy resources was included in the design analysis by using fuzzy numbers and arithmetic. The best alternative was dependent upon the precedence order assumed for the main criteria. Alternatives with no PV array or wind generator dominated when the 'Financial' criteria preceded the others. In contrast, alternatives with a nil component of PV array but a high wind generator component, dominated when the 'Environment' objective or the 'User/System compatibility' objectives were more important than the 'Financial' objectives and they also dominated when the three criteria were considered equally important.

  17. New NASA Images of Irma's Towering Clouds

    NASA Image and Video Library

    2017-09-08

    On Sept. 7, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite passed over Hurricane Irma at approximately 11:20 a.m. local time. The MISR instrument comprises nine cameras that view the Earth at different angles, and since it takes roughly seven minutes for all nine cameras to capture the same location, the motion of the clouds between images allows scientists to calculate the wind speed at the cloud tops. The animated GIF shows Irma's motion over the seven minutes of the MISR imagery. North is toward the top of the image. This composite image shows Hurricane Irma as viewed by the central, downward-looking camera (left), as well as the wind speeds (right) superimposed on the image. The length of the arrows is proportional to the wind speed, while their color shows the altitude at which the winds were calculated. At the time the image was acquired, Irma's eye was located approximately 60 miles (100 kilometers) north of the Dominican Republic and 140 miles (230 kilometers) north of its capital, Santo Domingo. Irma was a powerful Category 5 hurricane, with wind speeds at the ocean surface up to 185 miles (300 kilometers) per hour, according to the National Oceanic and Atmospheric Administration. The MISR data show that at cloud top, winds near the eye wall (the most destructive part of the storm) were approximately 90 miles per hour (145 kilometers per hour), and the maximum cloud-top wind speed throughout the storm calculated by MISR was 135 miles per hour (220 kilometers per hour). While the hurricane's dominant rotation direction is counter-clockwise, winds near the eye wall are consistently pointing outward from it. This is an indication of outflow, the process by which a hurricane draws in warm, moist air at the surface and ejects cool, dry air at its cloud tops. These data were captured during Terra orbit 94267. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21946

  18. Diel variation of ichthyoplankton recruitment in a wind-dominated temperate coastal lagoon (Argentina)

    NASA Astrophysics Data System (ADS)

    Bruno, Daniel O.; Delpiani, Sergio M.; Acha, Eduardo M.

    2018-05-01

    This study aimed to assess the diel changes of ichthyoplankton occurrence, during a known recruitment period, to a wind-dominated coastal lagoon (Argentina). We collected plankton samples at three sites of the lagoon's inlet area every 3 h during four 24 h cycles in mid austral summer. For each early-life history stage (eggs, yolk sac, preflexion larvae, postflexion larvae and early juveniles), the relationship between the abundance and possible combinations of the time of sampling, the wind effect, the wave period and the tidal state was evaluated by fitting generalized linear mix-effects models (GLMM). The wind effects depending on the time of sampling mainly affected fish abundance in all developmental stages. Overall, the highest abundances were collected at nocturnal hours when low-speed offshore winds blew. In addition, higher abundances of eggs, yolk sac and preflexion larvae were related to the incoming flood tide; whereas higher abundances of postflexion larvae and early juveniles were related to longer wave periods. We argued that the daily variation in the abundance of early-life history stages of fishes is related to the sea-land breeze cycle. Therefore, a conceptual framework of the recruitment process of eggs, larvae and early juveniles of fishes into this estuarine system considering the daily effect of winds is proposed.

  19. Asymmetry of wind waves studied in a laboratory tank

    NASA Astrophysics Data System (ADS)

    Ileykin, L. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    1995-03-01

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  20. Asymmetry of wind waves studied in a laboratory tank

    NASA Astrophysics Data System (ADS)

    Leykin, I. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  1. Effects of wind direction on coarse and fine particulate matter concentrations in southeast Kansas.

    PubMed

    Guerra, Sergio A; Lane, Dennis D; Marotz, Glen A; Carter, Ray E; Hohl, Carrie M; Baldauf, Richard W

    2006-11-01

    Field data for coarse particulate matter ([PM] PM10) and fine particulate matter (PM2.5) were collected at selected sites in Southeast Kansas from March 1999 to October 2000, using portable MiniVol particulate samplers. The purpose was to assess the influence on air quality of four industrial facilities that burn hazardous waste in the area located in the communities of Chanute, Independence, Fredonia, and Coffeyville. Both spatial and temporal variation were observed in the data. Variation because of sampling site was found to be statistically significant for PM10 but not for PM2.5. PM10 concentrations were typically slightly higher at sites located within the four study communities than at background sites. Sampling sites were located north and south of the four targeted sources to provide upwind and downwind monitoring pairs. No statistically significant differences were found between upwind and downwind samples for either PM10 or PM2.5, indicating that the targeted sources did not contribute significantly to PM concentrations. Wind direction can frequently contribute to temporal variation in air pollutant concentrations and was investigated in this study. Sampling days were divided into four classifications: predominantly south winds, predominantly north winds, calm/variable winds, and winds from other directions. The effect of wind direction was found to be statistically significant for both PM10 and PM2.5. For both size ranges, PM concentrations were typically highest on days with predominantly south winds; days with calm/variable winds generally produced higher concentrations than did those with predominantly north winds or those with winds from "other" directions. The significant effect of wind direction suggests that regional sources may exert a large influence on PM concentrations in the area.

  2. Surface drifter derived circulation in the northern and middle Adriatic Sea: Response to wind regime and season

    USGS Publications Warehouse

    Ursella, L.; Poulain, P.-M.; Signell, R.P.

    2007-01-01

    More than 120 satellite-tracked drifters were deployed in the northern and middle Adriatic (NMA) Sea between September 2002 and November 2003, with the purpose of studying the surface circulation at mesoscale to seasonal scale in relation to wind forcing, river runoff, and bottom topography. Pseudo-Eulerian and Lagrangian statistics were calculated from the low-pass-filtered drifter velocity data between September 2002 and December 2003. The structure of the mean circulation is determined with unprecedented high horizontal resolution by the new data. In particular, mean currents, velocity variance, and kinetic energy levels are shown to be maximal in the Western Adriatic Current (WAC). Separating data into seasons, we found that the mean kinetic energy is maximal in fall, with high values also in winter, while it is significantly weaker in summer. High-resolution Local Area Model Italy winds were used to relate the drifter velocities to the wind fields. The surface currents appear to be significantly influenced by the winds. The mean flow during the northeasterly bora regime shows an intensification of the across-basin recirculating currents. In addition, the WAC is strongly intensified both in intensity and in its offshore lateral extension. In the southeasterly sirocco regime, northward flow without recirculation dominates in the eastern half of the basin, while during northwesterly maestro the WAC is enhanced. Separating the data into low and high Po River discharge rates for low-wind conditions shows that the WAC and the velocity fluctuations in front of the Po delta are stronger for high Po River runoff. Lagrangian covariance, diffusivity, and integral time and space scales are larger in the along-basin direction and are maximal in the southern portion of the WAC. Copyright 2006 by the American Geophysical Union.

  3. Mountain Breathing Revisited-the Hyperventilation of a Volcano Cinder Cone.

    NASA Astrophysics Data System (ADS)

    Woodcock, Alfred H.

    1987-02-01

    During 23 hours of fresh to strong winds in December 1975, air flowed rapidly and continuously out of a drill hole in the top of the summit cone of Mauna Kea volcano, Hawaii. Measurements made during this outflow indicate that the air entered the mountain dry and cold, but flowed out relatively wet and warm, resulting in an average latent- and sensible-heat loss from the cone interior of about 116 W·m2. A sensitive vane anemometer, and thermistor and mercury-in-glass thermometers, were used to make these observations.Published observations made during moderate winds in this and a second drill hole had revealed relatively low air and heat flow rates, alternating daily into as well as out of the cone, with outflow generally during the day and inflow largely at night. The diurnal differences in the flow direction suggested that the well-known, semidiurnal atmospheric-pressure changes were the main cause of the air "breathing" within the cone. The latent-heat outflow in moderate winds was about 4 W·m2.The continuous outflow observations presented here indicate that wind speed has a marked if not dominant effect on the airflow and heat flow from the Mauna Kea summit cones, and that the resulting cooling during one day of strong winds can equal that of ten or more days of lower winds. This intense local cooling may explain the long survival of permafrost on Mauna Kea, and underscores the potential of air-land interaction in altering the internal air pressure and heat and water distribution in the cinder cones of Mauna Kea and perhaps in other volcanoes as well.

  4. Temporal and spatial variability in the flow and dispersal of suspended-sediment on a fringing reef flat, Molokai, Hawaii

    USGS Publications Warehouse

    Presto, M.K.; Ogston, A.S.; Storlazzi, C.D.; Field, M.E.

    2006-01-01

    A multi-year study was conducted on a shallow fringing reef flat on Molokai, Hawaii to determine the temporal and spatial dispersal patterns of terrigenous suspended sediment. During this study, trade-wind conditions existed for the majority of the year on the reef flat. The trade-wind conditions produced strong currents and resuspended moderate amounts of sediment on the reef flat on a daily basis during the year of study, resulting in an overwhelming contribution to the total sediment flux. The magnitude and direction of the trade winds relative to the orientation of the coastline, the shallow-relief and broad morphology, and tidal elevation, provided the primary control of the physical processes that resuspended and transported sediment on the reef flat over the period of record. Spatial data indicate that much of the terrigenous sediment resuspended on the reef flat is transported predominantly alongshore and is confined to the inner- to mid-reef flat. Evidence for the limited across-shore mixing and transport is provided by the dominantly alongshore wind-driven currents during trade-wind conditions and the well-defined across-shore gradient in percentage calcium carbonate of the suspended sediment. Regions of slightly offshore suspended-sediment transport along the reef flat can be attributed to the circulation pattern set up by the interaction between the trade winds, coastal morphology, and anthropogenic coastal structures (i.e., fish ponds and wharf). The regions in which sediment were seen to move offshore provide the strongest link between the sediment dynamics on reef flat and fore reef, and qualitatively appears to be correlated with low coral coverage on the fore reef. ?? 2005 Elsevier Ltd. All rights reserved.

  5. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    PubMed

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  6. Colliding Stellar Winds Structure and X-ray Emission

    NASA Astrophysics Data System (ADS)

    Pittard, J. M.; Dawson, B.

    2018-04-01

    We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio, η. We find also that the shocks in the primary (dominant) and secondary winds flare by ≈20° compared to the CD, and that the entire secondary wind is shocked when η ≲ 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity Lx∝η, and that the spectrum softens slightly as η decreases.

  7. Validating precision estimates in horizontal wind measurements from a Doppler lidar

    DOE PAGES

    Newsom, Rob K.; Brewer, W. Alan; Wilczak, James M.; ...

    2017-03-30

    Results from a recent field campaign are used to assess the accuracy of wind speed and direction precision estimates produced by a Doppler lidar wind retrieval algorithm. The algorithm, which is based on the traditional velocity-azimuth-display (VAD) technique, estimates the wind speed and direction measurement precision using standard error propagation techniques, assuming the input data (i.e., radial velocities) to be contaminated by random, zero-mean, errors. For this study, the lidar was configured to execute an 8-beam plan-position-indicator (PPI) scan once every 12 min during the 6-week deployment period. Several wind retrieval trials were conducted using different schemes for estimating themore » precision in the radial velocity measurements. Here, the resulting wind speed and direction precision estimates were compared to differences in wind speed and direction between the VAD algorithm and sonic anemometer measurements taken on a nearby 300 m tower.« less

  8. Experimental characterization of vertical-axis wind turbine noise.

    PubMed

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization.

  9. Kinetic and Potential Sputtering of Lunar Regolith: The Contribution of the Heavy Highly Charged (Minority) Solar Wind Ions

    NASA Technical Reports Server (NTRS)

    Meyer, F. W.; Barghouty, A. F.

    2012-01-01

    Solar wind sputtering of the lunar surface helps determine the composition of the lunar exosphere and contributes to surface weathering. To date, only the effects of the two dominant solar wind constituents, H+ and He+, have been considered. The heavier, less abundant solar wind constituents have much larger sputtering yields because they have greater mass (kinetic sputtering) and they are highly charged (potential sputtering) Their contribution to total sputtering can therefore be orders of magnitude larger than their relative abundances would suggest

  10. CREATION OF MUSIC WITH FIBER REINFORCED CONCRETE

    NASA Astrophysics Data System (ADS)

    Kato, Hayato; Takeuchi, Masaki; Ogura, Naoyuki; Kitahara, Yukiko; Okamoto, Takahisa

    This research focuses on the Fiber Reinforcement Concrete(FRC) and its performance on musical tones. Thepossibility of future musical instruments made of this concrete is discussed. Recently, the technical properties of FRC had been improved and the different production styles, such as unit weight of binding material and volume of fiber in the structure, hardly affects the results of the acoustics. However, the board thickness in the FRC instruments is directly related with the variety of musical tone. The FRC musical effects were compared with those produced with wood on wind instruments. The sounds were compared with those produced with woodwind instruments. The sound pressure level was affected by the material and it becomes remarkably notorious in the high frequency levels. These differences had great influence on the spectrum analysis of the tone in the wind instruments and the sensory test. The results from the sensory test show dominant performances of brightness, beauty and power in the FRC instruments compared with those made of wood.

  11. Flight directions of passerine migrants in daylight and darkness: A radar and direct visual study

    NASA Technical Reports Server (NTRS)

    Gauthreaux, S. A., Jr.

    1972-01-01

    The application of radar and visual techniques to determine the migratory habits of passerine birds during daylight and darkness is discussed. The effects of wind on the direction of migration are examined. Scatter diagrams of daytime and nocturnal migration track directions correlated with wind direction are presented. It is concluded that migratory birds will fly at altitudes where wind direction and migratory direction are nearly the same. The effects of cloud cover and solar obscuration are considered negligible.

  12. Analysis of the Viking Lander 1 surface wind vector for sols 45 to 375

    NASA Technical Reports Server (NTRS)

    Leovy, C. B.

    1984-01-01

    The Viking Lander 1 wind sensor data during the period between sols 45 and 375 were corrected. During this period, the heating element of the quadrant sensor which provided the primary signal used for determining wind direction had failed, but both hot film wind sensors were functioning normally. The wind speed and direction corrections are explained.

  13. The variable X-ray spectrum of the Wolf-Rayet binary WR140 with Suzaku

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko; Hamaguchi, Kenji; Corcoran, Michael; Pollock, Andy; Moffat, Anthony; Williams, Peredur; Dougherty, Sean; Pittard, Julian

    2011-01-01

    We report the preliminary results of the Suzaku observations of the W-R binary WR 140 (WC7+O5I). We executed the observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. The total exposure was 210 ks. We detected hard X-ray excess in the HXD band (> 10 keV) for the first time from a W-R binary. Another notable discovery was a soft component which is less absorbed even by the dense wind. The spectra can be fitted by three different components; one is for the cool component with kT=0.1--0.6 keV, one for a dominant high-temperature component with kT ˜3 keV, and one for the hardest power-law component with the photon index of ˜2. As periastron approached, the column density of the high-temperature component increased, which can be explained as self-absorption by the W-R wind. The emission measure of the dominant, high-temperature component is not inversely proportional to the distance between the two stars.

  14. Prescribed burning weather in Minnesota.

    Treesearch

    Rodney W. Sando

    1969-01-01

    Describes the weather patterns in northern Minnesota as related to prescribed burning. The prevailing wind direction, average wind speed, most persistent wind direction, and average Buildup Index are considered in making recommendations.

  15. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation (Invited)

    NASA Astrophysics Data System (ADS)

    Xie, S.; Archer, C. L.

    2013-12-01

    In this study, a new large-eddy simulation code, the Wind Turbine and Turbulence Simulator (WiTTS), is developed to study the wake generated from a single wind turbine in the neutral ABL. The WiTTS formulation is based on a scale-dependent Lagrangian dynamical model of the sub-grid shear stress and uses actuator lines to simulate the effects of the rotating blades. WiTTS is first tested against wind tunnel experiments and then used to study the commonly-used assumptions of self-similarity and axis-symmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. The mean velocity deficit shows good self-similarity properties following a normal distribution in the horizontal plane at the hub-height level. Self-similarity is a less valid approximation in the vertical near the ground, due to strong wind shear and ground effects. The mean velocity deficit is strongly dependent on the thrust coefficient or induction factor. A new relationship is proposed to model the mean velocity deficit along the centerline at the hub-height level to fit the LES results piecewise throughout the wake. A logarithmic function is used in the near and intermediate wake regions whereas a power function is used in the far-wake. These two functions provide a better fit to both simulated and observed wind velocity deficits than other functions previously used in wake models such as WAsP. The wind shear and impact with the ground cause an anisotropy in the expansion of the wake such that the wake grows faster horizontally than vertically. The wake deforms upon impact with the ground and spreads laterally. WiTTS is also used to study the turbulence characteristics in the wake. Aligning with the mean wind direction, the streamwise component of turbulence intensity is the dominant among the three components and thus it is further studied. The highest turbulence intensity occurs near the top-tip level. The added turbulence intensity increases fast in the near-wake and reaches its maximum at about x/D ~ 5, then it gradually decreases further downstream. In the far-wake, the added turbulence intensity is primarily dependent on the induction factor and the ambient turbulence: it increases with the induction factor and ambient turbulence and it decays exponentially downstream. An analysis of the added TKE budget shows that production by shear and advection by the mean flow dominate throughout the wake, whereas dissipation and turbulent transport are less important. In the near-wake, TKE is entrained from the upper regions of the annular shear layer into the center of the wake. The nacelle causes a significant increase of production, advection, and dissipation in the near-wake. Wind shear and momentum fluxes are reduced in the lower part of the wake, thus TKE production is reduced at the bottom-tip level. In summary, we find that the WiTTS model, although applied to a simplified case of neutral stability with a single wind turbine, was able to offer new insights into wake properties, including non-symmetric wake growth and reduced vertical mixing near the ground.

  16. Direct Determination of the Space Weathering Rates in Lunar Soils and Itokawa Regolith from Sample Analyses

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.; Christoffersen, R.; Zhang, S.

    2016-01-01

    Space weathering effects on airless bodies result largely from micrometeorite impacts and solar wind interactions. Decades of research have provided insights into space weathering processes and their effects, but a major unanswered question still remains: what is the rate at which these space weathering effects are acquired in lunar and asteroidal regolith materials? To determine the space weathering rate for the formation of rims on lunar anorthite grains, we combine the rim width and type with the exposure ages of the grains, as determined by the accumulation of solar flare particle tracks. From these analyses, we recently showed that space weathering effects in mature lunar soils (both vapor-deposited rims and solar wind amorphized rims) accumulate and attain steady state in 10(sup 6)-10(sup 7) y. Regolith grains from Itokawa also show evidence for space weathering effects, but in these samples, solar wind interactions appear to dominate over impactrelated effects such as vapor-deposition. While in our lunar work, we focused on anorthite, given its high abundance on the lunar surface, for the Itokawa grains, we focused on olivine. We previously studied 3 olivine grains from Itokawa and determined their solar flare track densities and described their solar wind damaged rims]. We also analyzed olivine grains from lunar soils, measured their track densities and rim widths, and used this data along with the Itokawa results to constrain the space weathering rate on Itokawa. We observe that olivine and anorthite have different responses to solar wind irradiation.

  17. Towards a High Temporal Frequency Grass Canopy Thermal IR Model for Background Signatures

    NASA Technical Reports Server (NTRS)

    Ballard, Jerrell R., Jr.; Smith, James A.; Koenig, George G.

    2004-01-01

    In this paper, we present our first results towards understanding high temporal frequency thermal infrared response from a dense plant canopy and compare the application of our model, driven both by slowly varying, time-averaged meteorological conditions and by high frequency measurements of local and within canopy profiles of relative humidity and wind speed, to high frequency thermal infrared observations. Previously, we have employed three-dimensional ray tracing to compute the intercepted and scattered radiation fluxes and for final scene rendering. For the turbulent fluxes, we employed simple resistance models for latent and sensible heat with one-dimensional profiles of relative humidity and wind speed. Our modeling approach has proven successful in capturing the directional and diurnal variation in background thermal infrared signatures. We hypothesize that at these scales, where the model is typically driven by time-averaged, local meteorological conditions, the primary source of thermal variance arises from the spatial distribution of sunlit and shaded foliage elements within the canopy and the associated radiative interactions. In recent experiments, we have begun to focus on the high temporal frequency response of plant canopies in the thermal infrared at 1 second to 5 minute intervals. At these scales, we hypothesize turbulent mixing plays a more dominant role. Our results indicate that in the high frequency domain, the vertical profile of temperature change is tightly coupled to the within canopy wind speed In the results reported here, the canopy cools from the top down with increased wind velocities and heats from the bottom up at low wind velocities. .

  18. New NASA Images of Irma's Towering Clouds (Anaglyph)

    NASA Image and Video Library

    2017-09-08

    On Sept. 7, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite passed over Hurricane Irma at approximately 11:20 am local time. The MISR instrument comprises nine cameras that view the Earth at different angles, and since it takes roughly seven minutes for all nine cameras to capture the same location, the motion of the clouds between images allows scientists to calculate the wind speed at the cloud tops. This stereo anaglyph combines two of the MISR angles to show a three-dimensional view of Irma. You will need red-blue glasses to view the anaglyph; place the red lens over your left eye. At this time, Irma's eye was located approximately 60 miles (100 kilometers) north of the Dominican Republic and 140 miles (230 kilometers) north of its capital, Santo Domingo. Irma was a powerful Category 5 hurricane, with wind speeds at the ocean surface up to 185 miles (300 kilometers) per hour. The MISR data show that at cloud top, winds near the eye wall (the most destructive part of the storm) were approximately 90 miles per hour (145 kilometers per hour), and the maximum cloud-top wind speed throughout the storm calculated by MISR was 135 miles per hour (220 kilometers per hour). While the hurricane's dominant rotation direction is counter-clockwise, winds near the eye wall are consistently pointing outward from it. This is an indication of outflow, the process by which a hurricane draws in warm, moist air at the surface and ejects cool, dry air at its cloud tops. https://photojournal.jpl.nasa.gov/catalog/PIA21945

  19. Interstellar Pickup Ion Observations to 38 au

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Zirnstein, E. J.; Bzowski, M.; Elliott, H. A.; Randol, B.; Schwadron, N. A.; Sokół, J. M.; Szalay, J. R.; Olkin, C.; Spencer, J.; Stern, A.; Weaver, H.

    2017-11-01

    We provide the first direct observations of interstellar H+ and He+ pickup ions in the solar wind from 22 to 38 au. We use the Vasyliunas and Siscoe model functional form to quantify the pickup ion distributions, and while the fit parameters generally lie outside their physically expected ranges, this form allows fits that quantify variations in the pickup H+ properties with distance. By ˜20 au, the pickup ions already provide the dominant internal pressure in the solar wind. We determine the radial trends and extrapolate them to the termination shock at ˜90 au, where the pickup H+ to core solar wind density reaches ˜0.14. The pickup H+ temperature and thermal pressure increase from 22 to 38 au, indicating additional heating of the pickup ions. This produces very large extrapolated ratios of pickup H+ to solar wind temperature and pressure, and an extrapolated ratio of the pickup ion pressure to the solar wind dynamic pressure at the termination shock of ˜0.16. Such a large ratio has profound implications for moderating the termination shock and the overall outer heliospheric interaction. We also identify suprathermal tails in the H+ spectra and complex features in the He+ spectra, likely indicating variations in the pickup ion history and processing. Finally, we discover enhancements in both H+ and He+ populations just below their cutoff energies, which may be associated with enhanced local pickup. This study serves to document the release and serves as a citable reference of these pickup ion data for broad community use and analysis.

  20. UPWELLING EFFECTS ON THE DISTRIBUTION OF NITRATE IN YAQUINA BAY, A COASTAL OREGON ESTUARY

    EPA Science Inventory

    Coastal Oregon in the summer is dominated by northwesterly winds. Upwelling of nutrient-rich water into the nearshore is controlled by the velocity and duration of these summer winds. Yaquina Bay estuary is a mesotidal drowned river valley that is typically vertically well-mixed ...

  1. SIMULATION OF WIND FIELDS OVER POINT ARGUELLO, CALIFORNIA, BY WIND-TUNNEL FLOW OVER A TOPOGRAPHIC MODEL.

    DTIC Science & Technology

    decay rates for diffusing tracers. The data revealed that a laminar laboratory flow may be used to simulate a turbulent field flow under conditions of...stable thermal stratification and complex terrain. In such flow conditions, diffusion is dominated by convective dispersion. (Author)

  2. WIND CHARACTERISTICS OF MESQUITE STREETS IN THE NORTHERN CHIHUAHUAN DESERT, NEW MEXICO, USA

    EPA Science Inventory

    The most active areas for sand movement in the mesquite-dominated ecosystems in the northern part of the Chihuahuan Desert are elongated bare soil patches referred to as "streets." Wind properties were measured at two flat mesquite sites having highly similar sandy textures but...

  3. Wet and Occult Ion Deposition To An Elevated Forest Ecosystem In Switzerland

    NASA Astrophysics Data System (ADS)

    Buetzberger, P.; Burkard, R.; Eugster, W.

    Due to much higher ion concentrations in fogwater compared to rainwater, critical deposition levels of nutrients such as sulfate, nitrate or ammonium can be achieved in areas with high fog frequency. From summer 2001 until spring 2002 a measuring campaign of the FINIMSAS project (Fog Interception and Nutrient Inputs to Montane- Subalpine Areas in Switzerland) is being conducted at Laegeren (690m asl) on the Swiss Plateau. Fog frequency was high during our campaign. Similar measurements were carried out in 1986/87 at the exact same location, providing a reference data set for comparison. Because the deposition flux was measured differently during 1986/87, direct compar- isons are only possible for ion concentrations. Preliminary results show a significant decrease of sulfate and ammonium median concentrations of more than 50 % over this 15 year period, whereas nitrate decrease is relatively small. This corresponds well with the large-scale evolution of the air pollutant emissions of SO2 (major decrease) and NOx (relatively small decrease). The strong reduction of ammonium is probably due to the reduced use of fertilizer in the area. Chloride shows the largest decrease which can be attributed to the improvement of filtering technique of waste incinerations. In order to achieve maximum comparability, similar event types (e.g. advection fog vs. radiation fog) with similar meteorological conditions were interpreted individually. Analysis of fog nutrient input with respect to wind direction, wind speed, and origin of air mass will help to understand the influence of local and large-scale emissions on fog water concentrations in Switzerland. Computations based on half-hourly mean wind direction revealed significantly lower fog water input but higher median concentra- tions of all measured components if the dominating wind sector was East. Event-based wind field analyses were also carried out and compared to computed trajectories. In order to assess the influence of fog and rain water nutrient deposition on vegetation and soil, we measured throughfall precipitation close to the forest floor. Whereas fog water showed pH values as low as 3, throughfall water was between pH 6 and 7, indicating an important buffering capacity of this ecosystem mainly due to potassium leaching and probably calcium compounds. High ionic concentrations and low pH values seem to act mostly on the leaves.

  4. Bats in a Mediterranean Mountainous Landscape: Does Wind Farm Repowering Induce Changes at Assemblage and Species Level?

    PubMed

    Ferri, Vincenzo; Battisti, Corrado; Soccini, Christiana

    2016-06-01

    We reported data on flying bat assemblages in a Mediterranean mountain landscape of central Italy on a 5-year time span (2005-2010) where a wind farm repowering has been carried out (from 2009, 17 three-blade turbines substituted an a priori set of one-blade turbines). In 4 yearly based surveys, we calculated a set of univariate metrics at species and assemblage level and also performing a diversity/dominance analysis (k-dominance plots) to evaluate temporal changes. Nine species of bats were present (eight classified at species level, one at genus level). Number of detected taxa, Margalef richness, and Shannon-Wiener diversity apparently decreased between 2005-2007 (one-blade turbine period) and 2009-2010 (three-blade turbines period). We showed a weak temporal turnover only between 2007 and 2009. In k-dominance plots, the occurrence curves of the years before the new wind farming activity (2005 and 2007) were lower when compared to the curves related to the 2009 and 2010 years, suggesting an apparent stress at assemblage level in the second period (2009 and 2010). Myotis emarginatus and Pipistrellus pipistrellus significantly changed their relative frequency during the three-blade wind farming activity, supporting the hypothesis that some bats may be sensitive to repowering. Further research is necessary to confirm a possible sensitivity also for locally rare bats (Miniopterus schreibersii and Plecotus sp.).

  5. Typical meteorological conditions associated with extreme nitrogen dioxide (NO2) pollution events over Scandinavia

    NASA Astrophysics Data System (ADS)

    Thomas, Manu Anna; Devasthale, Abhay

    2017-10-01

    Characterizing typical meteorological conditions associated with extreme pollution events helps to better understand the role of local meteorology in governing the transport and distribution of pollutants in the atmosphere. The knowledge of their co-variability could further help to evaluate and constrain chemistry transport models. Hence, in this study, we investigate the statistical linkages between extreme nitrogen dioxide (NO2) pollution events and meteorology over Scandinavia using observational and reanalysis data. It is observed that the south-westerly winds dominated during extreme events, accounting for 50-65 % of the total events depending on the season, while the second largest annual occurrence was from south-easterly winds, accounting for 17 % of total events. The specific humidity anomalies showed an influx of warmer and moisture-laden air masses over Scandinavia in the free troposphere. Two distinct modes in the persistency of circulation patterns are observed. The first mode lasts for 1-2 days, dominated by south-easterly winds that prevailed during 78 % of total extreme events in that mode, while the second mode lasted for 3-5 days, dominated by south-westerly winds that prevailed during 86 % of the events. The combined analysis of circulation patterns, their persistency, and associated changes in humidity and clouds suggests that NO2 extreme events over Scandinavia occur mainly due to long-range transport from the southern latitudes.

  6. Influence of omni-directional guide vane on the performance of cross-flow rotor for urban wind energy

    NASA Astrophysics Data System (ADS)

    Wicaksono, Yoga Arob; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    Vertical axis wind turbine like cross-flow rotor have some advantage there are, high self-starting torque, low noise, and high stability; so, it can be installed in the urban area to produce electricity. But, the urban area has poor wind condition, so the cross-flow rotor needs a guide vane to increase its performance. The aim of this study is to determine experimentally the effect of Omni-Directional Guide Vane (ODGV) on the performance of a cross-flow wind turbine. Wind tunnel experiment has been carried out for various configurations. The ODGV was placed around the cross-flow rotor in order to increase ambient wind environment of the wind turbine. The maximum power coefficient is obtained as Cpmax = 0.125 at 60° wind direction. It was 21.46% higher compared to cross-flow wind turbine without ODGV. This result showed that the ODGV able to increase the performance of the cross-flow wind turbine.

  7. Low-level wind response to mesoscale pressure systems

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Physick, W. L.

    1983-09-01

    Observations are presented which show a strong correlation between low-level wind behaviour (e.g., rotation near the surface) and the passage of mesoscale pressure systems. The latter are associated with frontal transition zones, are dominated by a pressure-jump line and a mesoscale high pressure area, and produce locally large horizontal pressure gradients. The wind observations are simulated by specifying a time sequence of perturbation pressure gradient and subsequently solving the vertically-integrated momentum equations with appropriate initial conditions. Very good agreement is found between observed and calculated winds; in particular, (i) a 360 ° rotation in wind on passage of the mesoscale high; (ii) wind-shift lines produced dynamically by the pressure-jump line; (iii) rapid linear increase in wind speed on passage of the pressure jump.

  8. High Resolution Wind Direction and Speed Information for Support of Fire Operations

    Treesearch

    B.W. Butler; J.M. Forthofer; M.A. Finney; L.S. Bradshaw; R. Stratton

    2006-01-01

    Computational Fluid Dynamics (CFD) technology has been used to model wind speed and direction in mountainous terrain at a relatively high resolution compared to other readily available technologies. The process termed “gridded wind” is not a forecast, but rather represents a method for calculating the influence of terrain on general wind flows. Gridded wind simulations...

  9. Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.

    1999-01-01

    Among the major discoveries made by the Mariner 10 mission to the inner planets was the existence of an intrinsic magnetic field at Mercury with a dipole moment of approx. 300 nT R(sup 3, sub M). This magnetic field is sufficient to stand off the solar wind at an altitude of about 1 R(sub M) (i.e. approx. 2439 km). Hence, Mercury possesses a 'magnetosphere' from which the so]ar wind plasma is largely excluded and within which the motion of charged particles is controlled by the planetary magnetic field. Despite its small size relative to the magnetospheres of the other planets, a Mercury orbiter mission is a high priority for the space physics community. The primary reason for this great interest is that Mercury unlike all the other planets visited thus far, lacks a significant atmosphere; only a vestigial exosphere is present. This results in a unique situation where the magnetosphere interacts directly with the outer layer of the planetary crust (i.e. the regolith). At all of the other planets the topmost regions of their atmospheres become ionized by solar radiation to form ionospheres. These planetary ionospheres then couple to electrodynamically to their magnetospheres or, in the case of the weakly magnetized Venus and Mars, directly to the solar wind. This magnetosphere-ionosphere coupling is mediated largely through field-aligned currents (FACs) flowing along the magnetic field lines linking the magnetosphere and the high-latitude ionosphere. Mercury is unique in that it is expected that FACS will be very short lived due to the low electrical conductivity of the regolith. Furthermore, at the earth it has been shown that the outflow of neutral atmospheric species to great altitudes is an important source of magnetospheric plasma (following ionization) whose composition may influence subsequent magnetotail dynamics. However, the dominant source of plasma for most of the terrestrial magnetosphere is the 'leakage'of solar wind across the magnetopause and more direct entry through the northern and southern cusps. Although Mariner 10 did not return plasma composition measurements, the Hermean magnetosphere should be ideal for measuring the manner and rate of solar wind plasma entry due to the lack of strong internal atmospheric sources. Finally, the solar wind conditions experienced by Mercury as it orbits the Sun at 0.31 to 0.47 AU are quite different from those typically encountered by the Earth. This may allow for new understanding of the external factors affecting the transfer of mass, momentum and energy from the solar wind to planetary magnetospheres. This article provides a brief overview of what is now known about Mercury's magnetosphere and why it is a priority target for future planetary missions.

  10. Application of nonparametric regression methods to study the relationship between NO2 concentrations and local wind direction and speed at background sites.

    PubMed

    Donnelly, Aoife; Misstear, Bruce; Broderick, Brian

    2011-02-15

    Background concentrations of nitrogen dioxide (NO(2)) are not constant but vary temporally and spatially. The current paper presents a powerful tool for the quantification of the effects of wind direction and wind speed on background NO(2) concentrations, particularly in cases where monitoring data are limited. In contrast to previous studies which applied similar methods to sites directly affected by local pollution sources, the current study focuses on background sites with the aim of improving methods for predicting background concentrations adopted in air quality modelling studies. The relationship between measured NO(2) concentration in air at three such sites in Ireland and locally measured wind direction has been quantified using nonparametric regression methods. The major aim was to analyse a method for quantifying the effects of local wind direction on background levels of NO(2) in Ireland. The method was expanded to include wind speed as an added predictor variable. A Gaussian kernel function is used in the analysis and circular statistics employed for the wind direction variable. Wind direction and wind speed were both found to have a statistically significant effect on background levels of NO(2) at all three sites. Frequently environmental impact assessments are based on short term baseline monitoring producing a limited dataset. The presented non-parametric regression methods, in contrast to the frequently used methods such as binning of the data, allow concentrations for missing data pairs to be estimated and distinction between spurious and true peaks in concentrations to be made. The methods were found to provide a realistic estimation of long term concentration variation with wind direction and speed, even for cases where the data set is limited. Accurate identification of the actual variation at each location and causative factors could be made, thus supporting the improved definition of background concentrations for use in air quality modelling studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldstein, Jeffrey J.

    1990-01-01

    The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.

  12. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.

    PubMed

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-08-09

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.

  13. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction

    PubMed Central

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-01-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932

  14. Sediment resuspension and transport patterns on a fringing reef flat, Molokai, Hawaii

    USGS Publications Warehouse

    Ogston, A.S.; Storlazzi, C.D.; Field, M.E.; Presto, M.K.

    2004-01-01

    Corals are known to flourish in various turbid environments around the world. The quantitative distinction between clear and turbid water in coral habitats is not well defined nor are the amount of sediment in suspension and rates of sedimentation used to evaluate the condition of reef environments well established. This study of sediment resuspension, transport, and resulting deposition on a fringing reef flat off Molokai, Hawaii, uses a year of time-series data from a small, instrumented tripod. It shows the importance of trade winds and ocean wave heights in controlling the movement of sediment. Sediment is typically resuspended daily and the dominant controls on the magnitude of events (10-25 mg/l) are the trade-wind-generated waves and currents and tidal elevation on the reef flat. The net flux of sediment on this reef is primarily along the reef flat in the direction of the prevailing trade winds (to the west), with a secondary direction of slightly offshore, towards a zone of low coral abundance. These results have application to reef studies and reef management in other areas in several ways. First, the observed resuspension and turbidity results from fine-grained terrigenous sediment that appears to be trapped and recycled on the reef flat. Thus corals are subjected to light attenuation by the same particles repeatedly, however small the amount. Secondly, the measurements show high temporal variability (from daily to seasonal scales) of sediment resuspension, indicating that single measurements are inadequate to accurately describe conditions on a reef flat. ?? Springer-Verlag 2004.

  15. About the role of the source terms on the spatial structure of the wave field in hurricanes

    NASA Astrophysics Data System (ADS)

    Osuna, P.; Esquivel-Trava, B.; Ocampo-Torres, F. J.

    2012-04-01

    A numerical experiment has been carried out in order to study the structure of the wave field during hurricane conditions. High resolution wind data for a hurricane were obtained by the use of a Holland type asymmetric model. The third generation wind-wave model SWAN has been used in this study. A reference framework for the structure of the wave field in hurricanes is obtained using the NDBC directional buoy database in the Caribbean Sea and the Gulf of Mexico. This observational reference is used to assess the ability of the model to reproduce the complexity of the wave field observed in hurricanes. It is found that the numerical results are in good agreement with the observed wave field in the hurricane: higher waves are in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal. More complex spectral shapes are observed in the rear quadrants of the hurricane, where a tendency of the spectra to become multi-modal is observed. As pointed out by other authors, the wave field in the hurricane is dominated by swell propagating at significant angles to the local wind directions, except on a small region between the first and fourth quadrants. A deeper insight on the role of the physics that controls the evolution of the wave field is assessed by the analysis of the effect of the source terms computed by the wave model in the four quadrants of the hurricane. This is a contribution to the project CB-168173, funded by CONACYT.

  16. Good Days, Bad Days: Wind as a Driver of Foraging Success in a Flightless Seabird, the Southern Rockhopper Penguin

    PubMed Central

    Dehnhard, Nina; Ludynia, Katrin; Poisbleau, Maud; Demongin, Laurent; Quillfeldt, Petra

    2013-01-01

    Due to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important ecological consequences. Southern rockhopper penguins (Eudyptes chrysocome) have undergone a dramatic population decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated between males and females, indicating synchronous changes among days. There was a significant interaction of wind direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from westerly directions might enhance upwelling and consequently the prey availability in the penguins' foraging areas. Our data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely neglected aspect in seabird foraging studies, which might become more important with increasing changes in climatic variability. PMID:24236139

  17. Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing

    NASA Astrophysics Data System (ADS)

    Zheng, Caiwang; Zhao, Chuanfeng; Zhu, Yannian; Wang, Yang; Shi, Xiaoqin; Wu, Xiaolin; Chen, Tianmeng; Wu, Fang; Qiu, Yanmei

    2017-11-01

    The relationship between aerosol optical depth (AOD) and PM2.5 is often investigated in order to obtain surface PM2.5 from satellite observation of AOD with a broad area coverage. However, various factors could affect the AOD-PM2.5 regressions. Using both ground and satellite observations in Beijing from 2011 to 2015, this study analyzes the influential factors including the aerosol type, relative humidity (RH), planetary boundary layer height (PBLH), wind speed and direction, and the vertical structure of aerosol distribution. The ratio of PM2.5 to AOD, which is defined as η, and the square of their correlation coefficient (R2) have been examined. It shows that η varies from 54.32 to 183.14, 87.32 to 104.79, 95.13 to 163.52, and 1.23 to 235.08 µg m-3 with aerosol type in spring, summer, fall, and winter, respectively. η is smaller for scattering-dominant aerosols than for absorbing-dominant aerosols, and smaller for coarse-mode aerosols than for fine-mode aerosols. Both RH and PBLH affect the η value significantly. The higher the RH, the smaller the η, and the higher the PBLH, the smaller the η. For AOD and PM2.5 data with the correction of RH and PBLH compared to those without, R2 of monthly averaged PM2.5 and AOD at 14:00 LT increases from 0.63 to 0.76, and R2 of multi-year averaged PM2.5 and AOD by time of day increases from 0.01 to 0.93, 0.24 to 0.84, 0.85 to 0.91, and 0.84 to 0.93 in four seasons respectively. Wind direction is a key factor for the transport and spatial-temporal distribution of aerosols originated from different sources with distinctive physicochemical characteristics. Similar to the variation in AOD and PM2.5, η also decreases with the increasing surface wind speed, indicating that the contribution of surface PM2.5 concentrations to AOD decreases with surface wind speed. The vertical structure of aerosol exhibits a remarkable change with seasons, with most particles concentrated within about 500 m in summer and within 150 m in winter. Compared to the AOD of the whole atmosphere, AOD below 500 m has a better correlation with PM2.5, for which R2 is 0.77. This study suggests that all the above influential factors should be considered when we investigate the AOD-PM2.5 relationships.

  18. Analysis of Influential Factors for the Relationship between PM2.5 and AOD in Beijing

    NASA Astrophysics Data System (ADS)

    Zheng, Caiwang; Zhao, Chuanfeng

    2017-04-01

    Relationship between aerosol optical depth (AOD) and PM2.5 is often investigated in order to obtain surface PM2.5 from satellite observation of AOD with a broad area coverage. However, various factors could affect the AOD-PM2.5 regressions. Using both ground and satellite observations in Beijing from 2011 to 2015, this study analyzes the influential factors including aerosol type, relative humidity (RH), atmospheric boundary layer height (PBLH), wind speed and direction, and the vertical structure of aerosol distribution. The ratio of PM2.5 to AOD, which is defined as η, and the square of their correlation coefficient (R2) have been examined. It shows that η varies from 54.32 to 183.14, 87.32 to 104.79, 95.13 to 163.52 and 1.23 to 235.08 μg/m3 with aerosol type in four seasons respectively. η is smaller for scattering-dominant aerosols than for absorbing-dominant aerosols, and smaller for coarse mode aerosols than for fine mode aerosols. Both RH and PBLH affect the η value significantly. The higher the RH, the larger the η, and the higher the PBLH, the smaller the η. For AOD and PM2.5 data with the correction of RH and PBLH compared to those without, R2 of monthly averaged PM2.5and AOD at 14:00 LT increases from 0.63 to 0.76, and R2 of multi-year averaged PM2.5and AOD by time of day increases from 0.1 to 0.93, 0.24 to 0.84, 0.85 to 0.91 and 0.84 to 0.93 in four seasons respectively. Wind direction is a key factor to the transport and spatial-temporal distribution of aerosols originated from different sources with distinctive physicochemical characteristics. Similar to the variation of AOD and PM2.5, η also decreases with the increasing surface wind speed, indicating that the contribution of surface PM2.5 concentrations to AOD decreases with surface wind speed. The vertical structure of aerosol exhibits a remarkable change with seasons, with most particles concentrated within about 500 m in summer and within 150 m in winter. Compared to the AOD of the whole atmosphere, AOD below 500 m has a better correlation with PM2.5, for which R2 is 0.77. This study suggests that all the above influential factors should be considered when we investigate the PM2.5-AOD relationships.

  19. Multiple nuclide cosmogenic dating of very old desert pavements on the Puna Plateau, Northwest Argentina

    NASA Astrophysics Data System (ADS)

    Dortch, J.; Schoenbohm, L. M.

    2011-12-01

    Wind erosion of bedrock has been suggested to be responsible for the removal of more than 800 m of strata in the Qaidam Basin while wind deposition creates large-scale landforms such as the loess plateau. Wind eroded landforms, such as desert pavements in the Namibian Desert, Africa, form relic landscapes that are stable for more than 5 Ma. Desert pavements are of particular importance because of their widespread occurrence on terraces and fans, in mountains and coastal areas, and in hot and cold deserts including: Southwestern Africa, Antartic Dry valleys, Southwest USA, Denmark, Ireland, Israel, Sweden, and Central Tibet. Moreover, greater than 95 % of ventifacts on desert pavements are suspected to be late Quaternary to Holocene in age and are located on surfaces suitable for cosmogenic radionuclide dating. In spite of this, glacial, fluvial, and mass wasting systems have received far more attention than wind as an important geomorphic agent of erosion, deposition, and rock mass redistribution. Our goal is to: 1) quantify bedrock wind erosion rates; 2) quantify the ages of old, stable desert pavements; 3) and to identify which lithology-isotope pair provides the most accurate exposure ages for desert pavements in arid landscapes. The Puna Plateau, Argentina, is an ideal area to undertake this study because numerous wind eroded/deposited landforms are present, rates of fluvial erosion are low, and glaciation is limited. Mapping using remote sensed images shows that a significant portion of the Puna Plateau surface is covered by wind eroded or wind deposited landforms. These landforms align with the dominant wind direction (southeast) determined from ~450 ventifact measurements from 9 locations on the plateau. Twelve amalgamated samples sets that span six lithologies (granite, gneiss, quartzite, rhyolite, diabase, and basalt) using four cosmogenic isotopes (10Be, 26Al, 36Cl, 3He) on ventifacted clasts were collected from two surfaces to identify the most appropriate lithologies and cosmogenic isotopes for obtaining an accurate chronology of desert pavements. Moreover, 3He dating of six in situ samples from basalt flows with independent 39Ar/40Ar ages will begin to address long-term time-averaged wind erosion rates of bedrock while enabling wind-erosion rate corrections for pavement ventifacts. Our results and methodology can be applied worldwide and will aid future research in the many environments where ventifacts and/or high wind erosion rates are found.

  20. LOCATING NEARBY SOURCES OF AIR POLLUTION BY NONPARAMETRIC REGRESSION OF ATMOSPHERIC CONCENTRATIONS ON WIND DIRECTION. (R826238)

    EPA Science Inventory

    The relationship of the concentration of air pollutants to wind direction has been determined by nonparametric regression using a Gaussian kernel. The results are smooth curves with error bars that allow for the accurate determination of the wind direction where the concentrat...

  1. Using Rare Earth Elements (REE) to determine wind-driven soil dispersal from a point source

    USDA-ARS?s Scientific Manuscript database

    Although erosion of soil by water is a predictably directional process, the erosion of soil by wind is determined by wind direction on an event-wise basis. The wind-driven dispersal patterns of chemical constituents including natural soil components and anthropogenic contaminants are not well under...

  2. On wind-wave-current interactions during the Shoaling Waves Experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Fei W.; Drennan, William M.; Haus, Brian K.; Graber, Hans C.

    2009-01-01

    This paper presents a case study of wind-wave-current interaction during the Shoaling Waves Experiment (SHOWEX). Surface current fields off Duck, North Carolina, were measured by a high-frequency Ocean Surface Current Radar (OSCR). Wind, wind stress, and directional wave data were obtained from several Air Sea Interaction Spar (ASIS) buoys moored in the OSCR scanning domain. At several times during the experiment, significant coastal currents entered the experimental area. High horizontal shears at the current edge resulted in the waves at the peak of wind-sea spectra (but not those in the higher-frequency equilibrium range) being shifted away from the mean wind direction. This led to a significant turning of the wind stress vector away from the mean wind direction. The interactions presented here have important applications in radar remote sensing and are discussed in the context of recent radar imaging models of the ocean surface.

  3. Radiotelemetric analysis of the effects of prevailing wind direction on Mormon cricket migratory band movement.

    PubMed

    Sword, G A; Lorch, P D; Gwynne, D T

    2008-08-01

    During outbreaks, flightless Mormon crickets [Anabrus simplex Haldeman (Orthoptera: Tettigoniidae)] form large mobile groups known as migratory bands. These bands can contain millions of individuals that march en masse across the landscape. The role of environmental cues in influencing the movement direction of migratory bands is poorly understood and has been the subject of little empirical study. We examined the effect of wind direction on Mormon cricket migratory band movement direction by monitoring the local weather conditions and daily movement patterns of individual insects traveling in bands over the same time course at three close, but spatially distinct sites. Although weather conditions were relatively homogeneous across sites, wind directions tended to be more variable across sites during the morning hours, the period during which directional movement begins. Migratory bands at different sites traveled in distinctly different directions. However, we failed to find any evidence to suggest that the observed variation in migratory band movement direction was correlated with local wind direction at any time during the day. These results support the notion that the cues mediating migratory band directionality are likely to be group specific and that a role for landscape-scale environmental cues such as wind direction is unlikely.

  4. Schneefernerhaus as a mountain research station for clouds and turbulence

    NASA Astrophysics Data System (ADS)

    Risius, S.; Xu, H.; Di Lorenzo, F.; Xi, H.; Siebert, H.; Shaw, R. A.; Bodenschatz, E.

    2015-08-01

    Cloud measurements are usually carried out with airborne campaigns, which are expensive and are limited by temporal duration and weather conditions. Ground-based measurements at high-altitude research stations therefore play a complementary role in cloud study. Using the meteorological data (wind speed, direction, temperature, humidity, visibility, etc.) collected by the German Weather Service (DWD) from 2000 to 2012 and turbulence measurements recorded by multiple ultrasonic sensors (sampled at 10 Hz) in 2010, we show that the Umweltforschungsstation Schneefernerhaus (UFS) located just below the peak of Zugspitze in the German Alps, at a height of 2650 m, is a well-suited station for cloud-turbulence research. The wind at UFS is dominantly in the east-west direction and nearly horizontal. During the summertime (July and August) the UFS is immersed in warm clouds about 25 % of the time. The clouds are either from convection originating in the valley in the east, or associated with synoptic-scale weather systems typically advected from the west. Air turbulence, as measured from the second- and third-order velocity structure functions that exhibit well-developed inertial ranges, possesses Taylor microscale Reynolds numbers up to 104, with the most probable value at ~ 3000. In spite of the complex topography, the turbulence appears to be nearly as isotropic as many laboratory flows when evaluated on the "Lumley triangle".

  5. Wind energy resource modelling in Portugal and its future large-scale alteration due to anthropogenic induced climate changes =

    NASA Astrophysics Data System (ADS)

    Carvalho, David Joao da Silva

    The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.

  6. Wind direction variability in Afternoon and Sunset Turbulence

    NASA Astrophysics Data System (ADS)

    Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Mahrt, Larry

    2014-05-01

    Understanding wind direction (WD) variability better is important for several reasons. Air pollution models need information about how variable wind direction is in different conditions (Davies and Thomson 1999). Accurate predictions of dispersion are important for human health and safety and allow for adaptation planning (Nagle et al. 2011). Other applications include horizontal diffusion, efficiency and fatigue of wind machines and air-sea interaction (Mahrt 2011). Most studies of wind direction variability have focused on nocturnal conditions because of greater variability in light winds. Modelling WD variability in transition periods when both mean wind speed and variance of the wind components are in a state of change can, however, also be very challenging and has not been the focus of earlier studies. The evening transitioning to the nocturnal boundary layer can play an important role in the diffusion process of pollutants and scalars emitted at surface and transported within the atmosphere. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign that took place in southern France in June and July 2011 focused on the decaying turbulence of the late afternoon boundary layer and related issues (Lothon et al. 2012). We analyse field measurements from BLLAST to investigate WD variability in the evening transition period. Standard deviations of horizontal wind direction fluctuations in the lowest 60 m of the boundary layer have been examined for dependence on mean wind speed, higher order moments and averaging time. Measurement results are interpreted using measured and idealized probability density functions of horizontal wind vectors. These are also used to develop analytical functions describing how WD variability depends on wind speed, variance and other controlling factors in the atmospheric boundary layer. References: Davies B.M., Thomson D.J., 1999. Comparison of some parameterizations of wind direction variability with observations, Atmospheric Enviroment 33, 4909-4917. Lothon M. et al., 2012. The Boundary-Layer Late Afternoon and Sunset Turbulence field experiment, Proc. of the 20th Symposium on Boundary-Layers and Turbulence, 7-13 July, Boston, MA, USA. Mahrt L., 2011. Surface Wind Direction Variability, Journal of Applied Meteorology and Climatology 50. 144-152. Nagle J.C., 2011. Adapting to Pollution, Research Roundtable on Climate Change, Adaptation, and Enviromental Law, Northwestern Law Searle Center, Legal and Regulatory Studies 7-18 April, IL, USA.

  7. Impacts of storms on coastal circulation in Long Bay, South Carolina

    NASA Astrophysics Data System (ADS)

    Kim, H.; Warner, J. C.; Voulgaris, G.; Work, P.

    2006-12-01

    We investigate the effects of coastal storms on the regional circulation in Long Bay, South Carolina, using a coupled ROMS (Regional Ocean Modeling System)- SWAN (Simulating WAves Nearshore) model. Meteorological observations during the South Carolina Coastal Erosion Study (October 2003 April 2004) reveal three dominant types of storms in the region warm fronts, cold fronts, and tropical storms. Each storm has a characteristic progression of wind patterns: (1) Warm fronts start with southwestward winds and change to northeastward after the front passes; (2) Cold fronts begin with northeastward winds and shift to southeastward when the front moves out; and (3) Tropical storms change wind directions from the southwest to the southeast during the storm. It is observed the coastal circulation distinctly responds to such atmospheric disturbances in either a upwelling-favorable condition to the northeastward winds or a downwelling-favorable condition to the southwestward winds. The study domain encompasses 300-km of gently arcing shoreline between Cape Romain to Cape Fear, and approximately 100-km offshore to the shelf edge. The model domain is resolved by a 300×130 mesh at 1-km intervals in the horizontal and twenty terrain-following layers in the vertical. The ROMS model is driven by tides and wind stress, and it includes wave-current interactions via dynamic coupling to the surface wave model SWAN. Salinity and temperature along the open boundaries are included by nudging to climatological values. A time period of six months is simulated from October 2003 to April 2004, concurrent with the observation study. Model results are compared to an extensive set of measurements collected at eight sites in the inner part of Long Bay, and are used to identify varying circulation response to each storm type. In addition, we investigate the significance of the Capes on the development of the alongshore pressure gradients, and examine the importance of wave-current interactions in the study region.

  8. Propagation of the Sea of Azov plume in the Black Sea and its relation with atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Zavialov, Ivan; Osadchiev, Alexander

    2017-04-01

    This work is devoted to research of the influence of wind forcing on propagation of the Sea of Azov water plume in the Black Sea. The Sea of Azov water is characterized by relatively low salinity and high concentrations of suspended matter, terrigenic nutrients, and anthropogenic pollutants. Thus, the Sea of Azov inflow has significant impacts on physical, chemical, and biological processes in the Black Sea. The increased concentration of the suspended matter in the Sea of Azov plume allows to determine accurately its borders based on remote sensing data. For this purpose, data of the satellite color scanner MERIS/EnviSat with 300-meter spatial resolution were used. Atmospheric forcing on the Sea of Azov plume was investigated with the data of 6-hour reanalysis of winds (MERRA and NCAR/NCEP) with spatial resolution at 1/2 degrees in latitude and 2/3 degrees in longitude. Based on satellite images and wind reanalysis data for 2002-2012 period, it was established that the Azov Sea water inflow is favored by strong N and NE winds, which prevail in the region. It is evident in the processed satellite data that the Sea of Azov plume mainly extends along the east coast of the Crimean peninsula. In some cases under sufficiently strong winds, the Azov waters spread to the southern coast of the Crimea, and sometimes even to its south-west extremity. Factors influencing the propagation of the Azov Sea plume include intensity of water exchange between the Azov and the Black seas, the Rim Current, mesoscale eddies and other dynamic processes. However, the study demonstrated that the influence of wind forcing is dominant. Empirical regressions are derived expressing the dependence of the Azov plume area and its orientation on the magnitude and directions of the wind stress. Satellite-derived statistics of the Azov plume in the Black Sea characteristics are obtained.

  9. Subtidal hydrodynamics in a tropical lagoon: A dimensionless numbers approach

    NASA Astrophysics Data System (ADS)

    Tenorio-Fernandez, L.; Valle-Levinson, A.; Gomez-Valdes, J.

    2018-01-01

    Observations in a tropical lagoon of the Yucatan peninsula motivated a non-dimensional number analysis to examine the relative influence of tidal stress, density gradients and wind stress on subtidal hydrodynamics. A two-month observation period in Chelem Lagoon covered the transition from the dry to the wet season. Chelem Lagoon is influenced by groundwater inputs and exhibits a main sub-basin (central sub-basin), a west sub-basin and an east sub-basin. Subtidal hydrodynamics were associated with horizontal density gradients that were modified seasonally by evaporation, precipitation, and groundwater discharge. A tidal Froude number (Fr0), a Wedderburn number (W), and a Stress ratio (S0) were used to diagnose the relative importance of dominant subtidal driving forces. The Froude number (Fr0) compares tidal forcing and baroclinic forcing through the ratio of tidal stress to longitudinal baroclinic pressure gradient. The Wedderburn number (W) relates wind stress to baroclinicity. The stress ratio (S0) sizes tidal stress and wind stress. S0 is a new diagnostic tool for systems influenced by tides and winds, and represents the main contribution of this research. Results show that spring-tide subtidal flows in the tropical lagoon had log(Fr0) ≫ 0 and log(S0) > 0 , i.e., driven mainly by tidal stresses (advective accelerations). Neap tides showed log(Fr0) ≪ 0 and log(S0) < 0) , i.e., flows driven by baroclinicity, especially at the lagoon heads of the east and west sub-basins. However, when the wind stress intensified over the lagoon, the relative importance of baroclinicity decreased and the wind stress controlled the dynamics (log(W) ≫ 0). Each sub-basin exhibited a different subtidal response, according to the dimensionless numbers. The response depended on the fortnightly tidal cycle, the location and magnitude of groundwater input, and the direction and magnitude of the wind stress.

  10. Coherent Doppler Lidar for Boundary Layer Studies and Wind Energy

    NASA Astrophysics Data System (ADS)

    Choukulkar, Aditya

    This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS RTM) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.

  11. Patchiness in wind erosion-deposition patterns in response to a recent state change reversal in the Chihuahuan Desert

    USDA-ARS?s Scientific Manuscript database

    Shifts from shrub-dominated states to grasslands are believed to be irreversible as a result of positive feedbacks between woody plants and soil properties. In the Chihuahuan Desert, mesquite (Prosopis glandulosa) expansion into black grama (Bouteloua eriopoda) grasslands is maintained by wind redis...

  12. Soil property effects on wind erosion of organic soils

    USDA-ARS?s Scientific Manuscript database

    Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (>20%) in half or more of the upper 80 cm. Forty four states have a total of 21 million ha of histosols in the United States. These soils, when intensively cropped, are subject to wind erosion r...

  13. Soil Property Effects on Wind Erosion of Organic Soils

    USDA-ARS?s Scientific Manuscript database

    Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (>20%) in half or more of the upper 80 cm. Forty four states have a total of 21 million ha of histosols in the United States. These soils, when intensively cropped, are subject to wind erosion r...

  14. Representativeness of wind measurements in moderately complex terrain

    NASA Astrophysics Data System (ADS)

    van den Bossche, Michael; De Wekker, Stephan F. J.

    2018-02-01

    We investigated the representativeness of 10-m wind measurements in a 4 km × 2 km area of modest relief by comparing observations at a central site with those at four satellite sites located in the same area. Using a combination of established and new methods to quantify and visualize representativeness, we found significant differences in wind speed and direction between the four satellite sites and the central site. The representativeness of the central site wind measurements depended strongly on surface wind speed and direction, and atmospheric stability. Through closer inspection of the observations at one of the satellite sites, we concluded that terrain-forced flows combined with thermally driven downslope winds caused large biases in wind direction and speed. We used these biases to generate a basic model, showing that terrain-related differences in wind observations can to a large extent be predicted. Such a model is a cost-effective way to enhance an area's wind field determination and to improve the outcome of pollutant dispersion and weather forecasting models.

  15. Age and effects of the Odessa meteorite impact, western Texas, USA

    NASA Astrophysics Data System (ADS)

    Holliday, Vance T.; Kring, David A.; Mayer, James H.; Goble, Ronald J.

    2005-12-01

    The Odessa meteorite craters (Texas, United States) include a main crater (˜160 m diameter, ˜30 m deep) plus four smaller meteorite craters. The main crater was sampled by coring (to 22 m depth) to better understand its origin and history. Dating by optically stimulated luminescence indicates that it was produced immediately prior to ca. 63.5 ± 4.5 ka. Sediment filling the crater includes impact breccias produced at the time of impact; wind-dominated silts with minor amounts of pond sediments deposited ca. 63.5 ka, probably just after the impact, and ca. 53 ± 2 ka; wind-dominated silt ca. 38 ± 1.7 ka; and playa muds with a wind-blown silt component younger than 36 ka. The environment was arid or semiarid at the time of impact based on characteristics of soils on the surrounding landscape. The impact caused severe damage within 2 km and produced >1000 km/hr winds and thermal pulse. Animals within a 1 1.5-km-diameter area were probably killed. This is only the second well-dated Pleistocene hypervelocity impact crater in North America.

  16. Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Ruck, Bodo

    2012-07-01

    This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/ H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.

  17. Test-section noise of the Ames 7 by 10-foot wind tunnel no. 1

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.

    1976-01-01

    An investigation was made of the test-section noise levels at various wind speeds in the Ames 7- by 10-Foot Wind Tunnel No. 1. No model was in the test section. Results showed that aerodynamic noise from various struts used to monitor flow conditions in the test section dominated the wind-tunnel background noise over much of the frequency spectrum. A tapered microphone stand with a thin trailing edge generated less noise than did a constant-chord strut with a blunt trailing edge. Noise from small holes in the test-section walls was insignificant.

  18. An X-ray Study of a Massive Star and its Wind

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshitomo; Sugawara, Yasuharu; Tsuboi, Yohko; Hamaguchi, Kenji

    2010-10-01

    WR 140 is one of the best known examples of a Wolf-Rayet stars. We executed the Suzaku X-ray observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. The column density at periastron is about 30 times higher than that at pre-periastron, which can be explained as self-absorption by the Wolf-Rayet wind. The spectra are dominated by a line and continuum emission from a optically thin-thermal plasma. The strong Ne-K lines are evidence that the thermal plasma is shock-heated W-R wind materials by the interaction with the wind from the companion O star. We present the parameters of the wind, such as a mass-loss rate, which were calculated with the absorption and line emission in the spectra.

  19. Feasibility study of wind-generated electricity for rural applications in southwestern Ohio

    NASA Astrophysics Data System (ADS)

    Kohring, G. W.

    The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.

  20. Engineering handbook on the atmospheric environmental guidelines for use in wind turbine generator development

    NASA Technical Reports Server (NTRS)

    Frost, W.; Long, B. H.; Turner, R. E.

    1978-01-01

    The guidelines are given in the form of design criteria relative to wind speed, wind shear, turbulence, wind direction, ice and snow loading, and other climatological parameters which include rain, hail, thermal effects, abrasive and corrosive effects, and humidity. This report is a presentation of design criteria in an engineering format which can be directly input to wind turbine generator design computations. Guidelines are also provided for developing specialized wind turbine generators or for designing wind turbine generators which are to be used in a special region of the United States.

  1. Optimal shutdown management

    NASA Astrophysics Data System (ADS)

    Bottasso, C. L.; Croce, A.; Riboldi, C. E. D.

    2014-06-01

    The paper presents a novel approach for the synthesis of the open-loop pitch profile during emergency shutdowns. The problem is of interest in the design of wind turbines, as such maneuvers often generate design driving loads on some of the machine components. The pitch profile synthesis is formulated as a constrained optimal control problem, solved numerically using a direct single shooting approach. A cost function expressing a compromise between load reduction and rotor overspeed is minimized with respect to the unknown blade pitch profile. Constraints may include a load reduction not-to-exceed the next dominating loads, a not-to-be-exceeded maximum rotor speed, and a maximum achievable blade pitch rate. Cost function and constraints are computed over a possibly large number of operating conditions, defined so as to cover as well as possible the operating situations encountered in the lifetime of the machine. All such conditions are simulated by using a high-fidelity aeroservoelastic model of the wind turbine, ensuring the accuracy of the evaluation of all relevant parameters. The paper demonstrates the capabilities of the novel proposed formulation, by optimizing the pitch profile of a multi-MW wind turbine. Results show that the procedure can reliably identify optimal pitch profiles that reduce design-driving loads, in a fully automated way.

  2. Acoustic Quality of the 40- by 80- Foot Wind Tunnel Test Section After Installation of a Deep Acoustic Lining

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Jaeger, Stephen M.; Hayes, Julie A.; Allen, Christopher S.

    2002-01-01

    A recessed, 42-inch deep acoustic lining has been designed and installed in the 40- by 80- Foot Wind Tunnel (40x80) test section to greatly improve the acoustic quality of the facility. This report describes the test section acoustic performance as determined by a detailed static calibration-all data were acquired without wind. Global measurements of sound decay from steady noise sources showed that the facility is suitable for acoustic studies of jet noise or similar randomly generated sound. The wall sound absorption, size of the facility, and averaging effects of wide band random noise all tend to minimize interference effects from wall reflections. The decay of white noise with distance was close to free field above 250 Hz. However, tonal sound data from propellers and fans, for example, will have an error band to be described that is caused by the sensitivity of tones to even weak interference. That error band could be minimized by use of directional instruments such as phased microphone arrays. Above 10 kHz, air absorption began to dominate the sound field in the large test section, reflections became weaker, and the test section tended toward an anechoic environment as frequency increased.

  3. EXPANSION OF HYDROGEN-POOR KNOTS IN THE BORN-AGAIN PLANETARY NEBULAE A30 AND A78

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, X.; Guerrero, M. A.; Marquez-Lugo, R. A.

    2014-12-20

    We analyze the expansion of hydrogen-poor knots and filaments in the born-again planetary nebulae A30 and A78 based on Hubble Space Telescope (HST) images obtained almost 20 yr apart. The proper motion of these features generally increases with distance to the central star, but the fractional expansion decreases, i.e., the expansion is not homologous. As a result, there is not a unique expansion age, which is estimated to be 610-950 yr for A30 and 600-1140 yr for A78. The knots and filaments have experienced complex dynamical processes: the current fast stellar wind is mass loaded by the material ablated from the inner knots;more » the ablated material is then swept up until it shocks the inner edges of the outer, hydrogen-rich nebula. The angular expansion of the outer filaments shows a clear dependence on position angle, indicating that the interaction of the stellar wind with the innermost knots channels the wind along preferred directions. The apparent angular expansion of the innermost knots seems to be dominated by the rocket effect of evaporating gas and by the propagation of the ionization front inside them. Radiation-hydrodynamical simulations show that a single ejection of material followed by a rapid onset of the stellar wind and ionizing flux can reproduce the variety of clumps and filaments at different distances from the central star found in A30 and A78.« less

  4. Numerical Simulation of Atmospheric Response to Pacific Tropical Instability Waves(.

    NASA Astrophysics Data System (ADS)

    Small, R. Justin; Xie, Shang-Ping; Wang, Yuqing

    2003-11-01

    Tropical instability waves (TIWs) are 1000-km-long waves that appear along the sea surface temperature (SST) front of the equatorial cold tongue in the eastern Pacific. The study investigates the atmospheric planetary boundary layer (PBL) response to TIW-induced SST variations using a high-resolution regional climate model. An investigation is made of the importance of pressure gradients induced by changes in air temperature and moisture, and vertical mixing, which is parameterized in the model by a 1.5-level turbulence closure scheme. Significant turbulent flux anomalies of sensible and latent heat are caused by changes in the air sea temperature and moisture differences induced by the TIWs. Horizontal advection leads to the occurrence of the air temperature and moisture extrema downwind of the SST extrema. High and low hydrostatic surface pressures are then located downwind of the cold and warm SST patches, respectively. The maximum and minimum wind speeds occur in phase with SST, and a thermally direct circulation is created. The momentum budget indicates that pressure gradient, vertical mixing, and horizontal advection dominate. In the PBL the vertical mixing acts as a frictional drag on the pressure-gradient-driven winds. Over warm SST the mixed layer deepens relative to over cold SST. The model simulations of the phase and amplitude of wind velocity, wind convergence, and column-integrated water vapor perturbations due to TIWs are similar to those observed from satellite and in situ data.

  5. Winds and tides of Ligeia Mare, with application to the drift of the proposed time TiME (Titan Mare Explorer) capsule

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Tokano, Tetsuya; Newman, Claire E.

    2012-01-01

    We use two independent General Circulation Models (GCMs) to estimate surface winds at Titan’s Ligeia Mare (78° N, 250° W), motivated by a proposed mission to land a floating capsule in this ∼500 km hydrocarbon sea. The models agree on the overall magnitude (∼0.5-1 m/s) and seasonal variation (strongest in summer) of windspeeds, but details of seasonal and diurnal variation of windspeed and direction differ somewhat, with the role of surface exchanges being more significant than that of gravitational tides in the atmosphere. We also investigate the tidal dynamics in the sea using a numerical ocean dynamics model: assuming a rigid lithosphere, the tidal amplitude is up to ∼0.8 m. Tidal currents are overall proportional to the reciprocal of depth-with an assumed central depth of 300 m, the characteristic tidal currents are ∼1 cm/s, with notable motions being a slosh between Ligeia’s eastern and western lobes, and a clockwise flow pattern. We find that a capsule will drift at approximately one tenth of the windspeed, unless measures are adopted to augment the drag areas above or below the waterline. Thus motion of a floating capsule is dominated by the wind, and is likely to be several km per Earth day, a rate that will be readily measured from Earth by radio navigation methods. In some instances, the wind vector rotates diurnally such that the drift trajectory is epicyclic.

  6. Pattern recognition methods and air pollution source identification. [based on wind direction

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.

    1978-01-01

    Directional air samplers, used for resolving suspended particulate matter on the basis of time and wind direction were used to assess the feasibility of characterizing and identifying emission source types in urban multisource environments. Filters were evaluated for 16 elements and X-ray fluorescence methods yielded elemental concentrations for direction, day, and the interaction of direction and day. Large numbers of samples are necessary to compensate for large day-to-day variations caused by wind perturbations and/or source changes.

  7. A note on the effect of wind waves on vertical mixing in Franks Tract, Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Thompson, Janet K.; Jones, Nicole L.; Stephen G. Monismith,

    2008-01-01

    A one-dimensional numerical model that simulates the effects of whitecapping waves was used to investigate the importance of whitecapping waves to vertical mixing at a 3-meter-deep site in Franks Tract in the Sacramento-San Joaquin Delta over an 11-day period. Locally-generated waves of mean period approximately 2 s were generated under strong wind conditions; significant wave heights ranged from 0 to 0.3 m. A surface turbulent kinetic energy flux was used to model whitecapping waves during periods when wind speeds > 5 m s-1 (62% of observations). The surface was modeled as a wind stress log-layer for the remaining 38% of the observations. The model results demonstrated that under moderate wind conditions (5–8 m s-1 at 10 m above water level), and hence moderate wave heights, whitecapping waves provided the dominant source of turbulent kinetic energy to only the top 10% of the water column. Under stronger wind (> 8 m s-1), and hence larger wave conditions, whitecapping waves provided the dominant source of turbulent kinetic energy over a larger portion of the water column; however, this region extended to the bottom half of the water column for only 7% of the observation period. The model results indicated that phytoplankton concentrations close to the bed were unlikely to be affected by the whitecapping of waves, and that the formation of concentration boundary layers due to benthic grazing was unlikely to be disrupted by whitecapping waves. Furthermore, vertical mixing of suspended sediment was unlikely to be affected by whitecapping waves under the conditions experienced during the 11-day experiment. Instead, the bed stress provided by tidal currents was the dominant source of turbulent kinetic energy over the bottom half of the water column for the majority of the 11-day period.

  8. PM source identification at Sunland Park, New Mexico, using a simple heuristic meteorological and chemical analysis.

    PubMed

    Li, Wen-Whai; Cardenas, Nidia; Walton, John; Trujillo, David; Morales, Hugo; Arimoto, Richard

    2005-03-01

    The causes for evening low-wind PM10 and PM2.5 peaks at Sunland Park, NM, were investigated by using wind sector analysis and by assessing relationships between PM loadings and meteorological parameters through canonical ordination analysis. Both PM10 and PM2.5 concentrations during the evening hours accounted for approximately 50% of their respective 24-hr averages, and the PM10 was mainly composed of coarse material (PM10-2.5 amounted to 77% of PM10). A wind sector analysis based on data from three surface meteorological monitoring stations in the region narrowed the potential source region for PM10 and PM2.5 to an area within a few kilometers south of Sunland Park. Canonical ordination analysis confirmed that the peak frequently occurred under stable conditions with weak southerly winds. Chemical analyses of PM showed that elemental and organic carbon (EC and OC, respectively) dominate PM2.5 and inorganic elements dominate PM10-2.5. The combined data for EC/OC, geologic elements, and various trace elements indicate that under low wind and stable conditions, traffic-related PM emissions (motor vehicle exhausts and re-suspended road dust) from the south of the site are the most likely sources for the evening PM10 and PM2.5 peaks.

  9. Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: An experimental campaign

    NASA Astrophysics Data System (ADS)

    Avolio, E.; Federico, S.; Miglietta, M. M.; Lo Feudo, T.; Calidonna, C. R.; Sempreviva, A. M.

    2017-08-01

    The sensitivity of boundary layer variables to five (two non-local and three local) planetary boundary-layer (PBL) parameterization schemes, available in the Weather Research and Forecasting (WRF) mesoscale meteorological model, is evaluated in an experimental site in Calabria region (southern Italy), in an area characterized by a complex orography near the sea. Results of 1 km × 1 km grid spacing simulations are compared with the data collected during a measurement campaign in summer 2009, considering hourly model outputs. Measurements from several instruments are taken into account for the performance evaluation: near surface variables (2 m temperature and relative humidity, downward shortwave radiation, 10 m wind speed and direction) from a surface station and a meteorological mast; vertical wind profiles from Lidar and Sodar; also, the aerosol backscattering from a ceilometer to estimate the PBL height. Results covering the whole measurement campaign show a cold and moist bias near the surface, mostly during daytime, for all schemes, as well as an overestimation of the downward shortwave radiation and wind speed. Wind speed and direction are also verified at vertical levels above the surface, where the model uncertainties are, usually, smaller than at the surface. A general anticlockwise rotation of the simulated flow with height is found at all levels. The mixing height is overestimated by all schemes and a possible role of the simulated sensible heat fluxes for this mismatching is investigated. On a single-case basis, significantly better results are obtained when the atmospheric conditions near the measurement site are dominated by synoptic forcing rather than by local circulations. From this study, it follows that the two first order non-local schemes, ACM2 and YSU, are the schemes with the best performance in representing parameters near the surface and in the boundary layer during the analyzed campaign.

  10. A comparison of remote vs. local influence of El Niño on the coastal circulation of the northeast Pacific

    NASA Astrophysics Data System (ADS)

    Hermann, Albert J.; Curchitser, Enrique N.; Haidvogel, Dale B.; Dobbins, Elizabeth L.

    2009-12-01

    A set of spatially nested circulation models is used to explore interannual change in the northeast Pacific (NEP) during 1997-2002, and remote vs. local influence of the 1997-1998 El Niño on this region. Our nested set is based on the primitive equations of motion, and includes a basin-scale model of the north Pacific at ˜40-km resolution (NPac), and a regional model of the Northeast Pacific at ˜10-km resolution. The NEP model spans an area from Baja California through the Bering Sea, from the coast to ˜2000-km offshore. In this context, "remote influence" refers to effects driven by changes in ocean velocity and temperature outside of the NEP domain; "local influence" refers to direct forcing by winds and runoff within the NEP domain. A base run of this model using hindcast winds and runoff for 1996-2002 replicates the dominant spatial modes of sea-surface height anomalies from satellite data, and coastal sea level from tide gauges. We have performed a series of sensitivity runs with the NEP model for 1997-1998, which analyze the response of coastal sea level to: (1) hindcast winds and coastal runoff, as compared to their monthly climatologies and (2) hindcast boundary conditions (from the NPac model), as compared to their monthly climatologies. Results indicate penetration of sea-surface height (SSH) from the basin-scale model into the NEP domain (e.g., remote influence), with propagation as coastal trapped waves from Baja up through Alaska. Most of the coastal sea-level anomaly off Alaska in El Niño years appears due to direct forcing by local winds and runoff (local influence), and such anomalies are much stronger than those produced off California. We quantify these effects as a function of distance along the coastline, and consider how they might impact the coastal ecosystems of the NEP.

  11. LIDAR wind speed measurements at a Taiwan onshore wind park

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng

    2016-04-01

    Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.

  12. Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.

    2013-12-01

    The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of the farm constant, we design several new Lillgrund farm layouts with and without staggering, with increased spacing in each direction individually and in both directions together, and with various wind directions and atmospheric stabilities. We found that the average wind power generated per turbine is increased by ~32% (from 696 kW to 922 kW) if both staggering and doubling of the across-spacing are implemented simultaneously in a neutral stability case. Wake losses are quantified in terms of average power in the first (upwind) row of wind turbines in the control case, representative of the power that could be generated if there were no wakes, over the average power of all the wind turbines in the farm. Wake losses at Lillgrund are relatively high due to the tight packing, of the order of 35%, but smart combinations of staggering and doubling of turbine spacing can reduce them to 15%-26%. In summary, we provide estimates of the losses/gains associated with individual and combined changes in two design variables, spacing and staggering, under various atmospheric stabilities, wind directions, and wind speeds. These estimates will be useful to the wind industry to optimize a wind project because the effects of alternative layouts can be quantified quickly with respect to total power, capacity factor, and number of wind turbines, all of which can ultimately be converted to actual costs or savings.

  13. Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.

    2011-12-01

    The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of the farm constant, we design several new Lillgrund farm layouts with and without staggering, with increased spacing in each direction individually and in both directions together, and with various wind directions and atmospheric stabilities. We found that the average wind power generated per turbine is increased by ~32% (from 696 kW to 922 kW) if both staggering and doubling of the across-spacing are implemented simultaneously in a neutral stability case. Wake losses are quantified in terms of average power in the first (upwind) row of wind turbines in the control case, representative of the power that could be generated if there were no wakes, over the average power of all the wind turbines in the farm. Wake losses at Lillgrund are relatively high due to the tight packing, of the order of 35%, but smart combinations of staggering and doubling of turbine spacing can reduce them to 15%-26%. In summary, we provide estimates of the losses/gains associated with individual and combined changes in two design variables, spacing and staggering, under various atmospheric stabilities, wind directions, and wind speeds. These estimates will be useful to the wind industry to optimize a wind project because the effects of alternative layouts can be quantified quickly with respect to total power, capacity factor, and number of wind turbines, all of which can ultimately be converted to actual costs or savings.

  14. Osan AB, Korea. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1982-06-14

    USAFETAC SURFACE WINDS2 AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 1471220 OSAN AS KO 73-S1 FED...BRANCHusAF’TAC SURFACE WINDS AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 47122’ OSAN AS KO 73-81 NOV _RLL

  15. Evaluation of wind induced currents modeling along the Southern Caspian Sea

    NASA Astrophysics Data System (ADS)

    Bohluly, Asghar; Esfahani, Fariba Sadat; Montazeri Namin, Masoud; Chegini, Fatemeh

    2018-02-01

    To improve our understanding of the Caspian Sea hydrodynamics, its circulation is simulated with special focus on wind-driven currents of its southern basin. The hydrodynamic models are forced with a newly developed fine resolution wind field to increase the accuracy of current modeling. A 2D shallow water equation model and a 3D baroclinic model are applied separately to examine the performance of each model for specific applications in the Caspian Sea. The model results are validated against recent field measurements including AWAC and temperature observations in the southern continental shelf region. Results show that the 2D model is able to well predict the depth-averaged current speed in storm conditions in narrow area of southern coasts. This finding suggests physical oceanographers apply 2D modeling as a more affordable method for extreme current speed analysis at the continental shelf region. On the other hand the 3D model demonstrates a better performance in reproducing monthly mean circulation and hence is preferable for surface circulation of Caspian Sea. Monthly sea surface circulation fields of the southern basin reveal a dipole cyclonic-anticyclonic pattern, a dominant eastward current along the southern coasts which intensifies from May to November and a dominant southward current along the eastern coasts in all months except February when the flow is northward. Monthly mean wind fields exhibit two main patterns including a north-south pattern occurring at warm months and collision of two wind fronts especially in the cold months. This collision occurs on a narrow region at the southern continental shelf regions. Due to wind field complexities, it leads to a major source of uncertainty in predicting the wind-driven currents. However, this source of uncertainty is significantly alleviated by applying a fine resolution wind field.

  16. Keeping Haines Real - Or Really Changing Haines?

    Treesearch

    Brian E. Potter; Dan Borsum; Don Haines

    2002-01-01

    Most incident command teams can handle low- to moderate-intensity fires with few unanticipated problems. However, high-intensity situations, especially the plume-dominated fires that often develop when winds are low and erratic behavior is unexpected, can create dangerous situations even for well-trained, experienced fire crews (Rothermel 1991). Plume-dominated fires...

  17. Influence of local and regional Mediterranean meteorology on SO₂ ground-level concentrations in SE Spain.

    PubMed

    Santacatalina, Milagros; Carratalá, Adoración; Mantilla, Enrique

    2011-06-01

    This work presents the results of a 4-year study on sulfur dioxide (SO(2)) ground-level concentrations in an area of southeastern Spain, the L'Alacantí region, where the cement industry is important and coke use extends to other industries as well. The main source of SO(2) emissions in the area was found to be a the Lepold cement plant (one of the two cement plants in the area). The high levels of SO(2) probably extend back to 1920 when this plant began operations. Both local and Mediterranean-scale meteorological processes influence the SO(2) ground-level concentration and together explain the dispersion dynamics of this pollutant. The location and topography of the study zone result in NW Atlantic advections and E-SE sea breezes being the dominant atmospheric circulation patterns in the area. Under stable meteorological conditions, minor local circulations are also relevant to the SO(2) concentration levels. The high frequency of local circulations determines a concentration pattern that changes during the day, with impacts occurring preferentially in a W-NW direction from the source at midday (sea breeze and strong thermal mixture), and in a SE direction at night. This causes the SO(2) concentrations to present well-defined diurnal cycles with well-differentiated shapes depending on the location of the sampling station relative to the source. The dependence of SO(2) 10 min levels on the wind origin and speed throughout the day has been evaluated by studying statistical parameters including P95, P50 and arithmetic mean. Exceedances occur under specific dispersion conditions at distances less than 1 km from the source. However, the source is traceable at larger distances and the levels are higher than typical urban ones. P95 was used as an estimator of the occurrence of larger levels or impacts. Leeward of NW winds and the source, at night and in early morning, P95 levels are comprised between 30 and 55 µg m(-3). In contrast, with SE winds and at midday, P95 levels stay at 17 µg m(-3). The same P95 was obtained for winds lower than 5 m s(-1), which represent 89% of the winds in the area. However, stronger winds can have P95 levels above 125 µg m(-3).

  18. Field Calibration of Wind Direction Sensor to the True North and Its Application to the Daegwanryung Wind Turbine Test Sites

    PubMed Central

    Lee, Jeong Wan

    2008-01-01

    This paper proposes a field calibration technique for aligning a wind direction sensor to the true north. The proposed technique uses the synchronized measurements of captured images by a camera, and the output voltage of a wind direction sensor. The true wind direction was evaluated through image processing techniques using the captured picture of the sensor with the least square sense. Then, the evaluated true value was compared with the measured output voltage of the sensor. This technique solves the discordance problem of the wind direction sensor in the process of installing meteorological mast. For this proposed technique, some uncertainty analyses are presented and the calibration accuracy is discussed. Finally, the proposed technique was applied to the real meteorological mast at the Daegwanryung test site, and the statistical analysis of the experimental testing estimated the values of stable misalignment and uncertainty level. In a strict sense, it is confirmed that the error range of the misalignment from the exact north could be expected to decrease within the credibility level. PMID:27873957

  19. Development and testing of a portable wind sensitive directional air sampler

    NASA Technical Reports Server (NTRS)

    Deyo, J.; Toma, J.; King, R. B.

    1975-01-01

    A portable wind sensitive directional air sampler was developed as part of an air pollution source identification system. The system is designed to identify sources of air pollution based on the directional collection of field air samples and their analysis for TSP and trace element characteristics. Sources can be identified by analyzing the data on the basis of pattern recognition concepts. The unit, designated Air Scout, receives wind direction signals from an associated wind vane. Air samples are collected on filter slides using a standard high volume air sampler drawing air through a porting arrangement which tracks the wind direction and permits collection of discrete samples. A preset timer controls the length of time each filter is in the sampling position. At the conclusion of the sampling period a new filter is automatically moved into sampling position displacing the previous filter to a storage compartment. Thus the Air Scout may be set up at a field location, loaded with up to 12 filter slides, and left to acquire air samples automatically, according to the wind, at any timer interval desired from 1 to 30 hours.

  20. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    NASA Astrophysics Data System (ADS)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; Damiani, Rick; Musial, Walt

    2017-06-01

    Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s-1 mean wind and 70 m s-1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts in wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50°) suggest that veer should be considered.

  1. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    DOE PAGES

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; ...

    2017-05-30

    Here, offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s –1 mean wind and 70 m s –1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts inmore » wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15–50°) suggest that veer should be considered.« less

  2. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.

    Here, offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s –1 mean wind and 70 m s –1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts inmore » wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15–50°) suggest that veer should be considered.« less

  3. The effect of wind direction and building surroundings on a marina bay in the Black Sea

    NASA Astrophysics Data System (ADS)

    Katona, Cosmin; Safta, Carmen Anca

    2017-01-01

    The wind effect has usually a major importance in the marina bay. These environmental sites are an interplay between tourist and commercial activities, requiring a high-detailed and definition studies of the dynamic fluid in the harbor. Computational Fluid Dynamics (CFD) has been used elaborately in urban surroundings research. However, most CFD studies were performed for harbors for only a confined number of wind directions and/or without considering the building surroundings effects. This paper presents the results of different simulations based on various wind flows and the CFD simulation of coupled urban wind flow and general wind directions upon a semi-closed area. Thus the importance of wind effects on the evaluation of the marina bay will be pointed out to achieve a safe and secure mooring at the berth and eventually a good potential of renewable energy for an impending green harbor.

  4. Empirical wind retrieval model based on SAR spectrum measurements

    NASA Astrophysics Data System (ADS)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction ambiguity from polarimetric SAR. A criterion based on the complex correlation coefficient between the VV and VH signals sign is applied to select the wind direction. An additional quality control on the wind speed value retrieved with the spectral method is applied. Here, we use the direction obtained with the spectral method and the backscattered signal for CMOD wind speed estimate. The algorithm described above may be refined by the use of numerous SAR data and wind measurements. In the present preliminary work the first results of SAR images combined with in situ data processing are presented. Our results are compared to the results obtained using previously developed models CMOD, C-2PO for VH polarization and statistical wind retrieval approaches [1]. Acknowledgments. This work is supported by the Russian Foundation of Basic Research (grants 13-05-00852-a). [1] M. Portabella, A. Stoffelen, J. A. Johannessen, Toward an optimal inversion method for synthetic aperture radar wind retrieval, Journal of geophysical research, V. 107, N C8, 2002

  5. Enhancement of Directional Ambiguity Removal Skill in Scatterometer Data Processing Using Planetary Boundary Layer Models

    NASA Technical Reports Server (NTRS)

    Kim, Young-Joon; Pak, Kyung S.; Dunbar, R. Scott; Hsiao, S. Vincent; Callahan, Philip S.

    2000-01-01

    Planetary boundary layer (PBL) models are utilized to enhance directional ambiguity removal skill in scatterometer data processing. The ambiguity in wind direction retrieved from scatterometer measurements is removed with the aid of physical directional information obtained from PBL models. This technique is based on the observation that sea level pressure is scalar and its field is more coherent than the corresponding wind. An initial wind field obtained from the scatterometer measurements is used to derive a pressure field with a PBL model. After filtering small-scale noise in the derived pressure field, a wind field is generated with an inverted PBL model. This derived wind information is then used to remove wind vector ambiguities in the scatterometer data. It is found that the ambiguity removal skill can be improved when the new technique is used properly in conjunction with the median filter being used for scatterometer wind dealiasing at JPL. The new technique is applied to regions of cyclone systems which are important for accurate weather prediction but where the errors of ambiguity removal are often large.

  6. Non-steady wind turbine response to daytime atmospheric turbulence.

    PubMed

    Nandi, Tarak N; Herrig, Andreas; Brasseur, James G

    2017-04-13

    Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25-50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (<1 s) response to internal eddy structure. Large-amplitude short-time ramp-like and oscillatory load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  7. Non-steady wind turbine response to daytime atmospheric turbulence

    PubMed Central

    Nandi, Tarak N.; Herrig, Andreas

    2017-01-01

    Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25–50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (<1 s) response to internal eddy structure. Large-amplitude short-time ramp-like and oscillatory load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265026

  8. A Full Body Steerable Wind Display for a Locomotion Interface.

    PubMed

    Kulkarni, Sandip D; Fisher, Charles J; Lefler, Price; Desai, Aditya; Chakravarthy, Shanthanu; Pardyjak, Eric R; Minor, Mark A; Hollerbach, John M

    2015-10-01

    This paper presents the Treadport Active Wind Tunnel (TPAWT)-a full-body immersive virtual environment for the Treadport locomotion interface designed for generating wind on a user from any frontal direction at speeds up to 20 kph. The goal is to simulate the experience of realistic wind while walking in an outdoor virtual environment. A recirculating-type wind tunnel was created around the pre-existing Treadport installation by adding a large fan, ducting, and enclosure walls. Two sheets of air in a non-intrusive design flow along the side screens of the back-projection CAVE-like visual display, where they impinge and mix at the front screen to redirect towards the user in a full-body cross-section. By varying the flow conditions of the air sheets, the direction and speed of wind at the user are controlled. Design challenges to fit the wind tunnel in the pre-existing facility, and to manage turbulence to achieve stable and steerable flow, were overcome. The controller performance for wind speed and direction is demonstrated experimentally.

  9. Collimated Outflow Formation via Binary Stars: Three-Dimensional Simulations of Asymptotic Giant Branch Wind and Disk Wind Interactions

    NASA Astrophysics Data System (ADS)

    García-Arredondo, F.; Frank, Adam

    2004-01-01

    We present three-dimensional hydrodynamic simulations of the interaction of a slow wind from an asymptotic giant branch (AGB) star and a jet blown by an orbiting companion. The jet or ``collimated fast wind'' is assumed to originate from an accretion disk that forms via Bondi accretion of the AGB wind or Roche lobe overflow. We present two distinct regimes in the wind-jet interaction determined by the ratio of the AGB wind to jet momentum flux. Our results show that when the wind momentum flux overwhelms the flux in the jet, a more disordered outflow results with the jet assuming a corkscrew pattern and multiple shock structures driven into the AGB wind. In the opposite regime, the jet dominates and will drive a highly collimated, narrow-waisted outflow. We compare our results with scenarios described by Soker & Rappaport and extrapolate to the structures observed in planetary nebulae (PNs) and symbiotic stars.

  10. Are estimates of wind characteristics based on measurements with Pitot tubes and GNSS receivers mounted on consumer-grade unmanned aerial vehicles applicable in meteorological studies?

    PubMed

    Niedzielski, Tomasz; Skjøth, Carsten; Werner, Małgorzata; Spallek, Waldemar; Witek, Matylda; Sawiński, Tymoteusz; Drzeniecka-Osiadacz, Anetta; Korzystka-Muskała, Magdalena; Muskała, Piotr; Modzel, Piotr; Guzikowski, Jakub; Kryza, Maciej

    2017-09-01

    The objective of this paper is to empirically show that estimates of wind speed and wind direction based on measurements carried out using the Pitot tubes and GNSS receivers, mounted on consumer-grade unmanned aerial vehicles (UAVs), may accurately approximate true wind parameters. The motivation for the study is that a growing number of commercial and scientific UAV operations may soon become a new source of data on wind speed and wind direction, with unprecedented spatial and temporal resolution. The feasibility study was carried out within an isolated mountain meadow of Polana Izerska located in the Izera Mountains (SW Poland) during an experiment which aimed to compare wind characteristics measured by several instruments: three UAVs (swinglet CAM, eBee, Maja) equipped with the Pitot tubes and GNSS receivers, wind speed and direction meters mounted at 2.5 and 10 m (mast), conventional weather station and vertical sodar. The three UAVs performed seven missions along spiral-like trajectories, most reaching 130 m above take-off location. The estimates of wind speed and wind direction were found to agree between UAVs. The time series of wind speed measured at 10 m were extrapolated to flight altitudes recorded at a given time so that a comparison was made feasible. It was found that the wind speed estimates provided by the UAVs on a basis of the Pitot tube/GNSS data are in agreement with measurements carried out using dedicated meteorological instruments. The discrepancies were recorded in the first and last phases of UAV flights.

  11. Earth Observations taken by the Expedition 27 Crew

    NASA Image and Video Library

    2011-05-16

    ISS027-E-034290 (16 May 2011) --- Ar Rub al Khali Sand Sea, Arabian Peninsula is featured in this image photographed by an Expedition 27 crew member on the International Space Station. The Ar Rub al Khali, also known as the “Empty Quarter”, is a large region of sand dunes and interdune flats known as a sand sea (or erg). This photograph highlights a part of the Ar Rub al Khali located close to its southeastern margin in the Sultanate of Oman. Reddish-brown, large linear sand dunes alternate with blue-gray interdune salt flats known as sabkhas at left. The major trend of the linear dunes is transverse to northwesterly trade winds that originate in Iraq (known as the Shamal winds). Formation of secondary barchan (crescent-shaped) and star dunes (dune crests in several directions originating from a single point, looking somewhat like a starfish from above) on the linear dunes is supported by southwesterly winds that occur during the monsoon season (Kharif winds). The long linear dunes begin to break up into isolated large star dunes to the northeast and east (right). This is likely a result of both wind pattern interactions and changes in the sand supply to the dunes. The Empty Quarter covers much of the south-central portion of the Arabian Peninsula, and with an area of approximately 660,000 square kilometers it is the largest continuous sand desert on Earth. The Empty Quarter is so called as the dominantly hyperarid climate and difficulty of travel through the dunes has not encouraged permanent settlement within the region. There is geological and archeological evidence to support cooler and wetter past climates in the region together with human settlement. This evidence includes exposed lakebed sediments, scattered stone tools, and the fossils of hippopotamus, water buffalo, and long-horned cattle.

  12. Aeolian Shear Stress Ratio Measurements within Mesquite-Dominated Landscapes of the Chihuahuan Desert, New Mexico, USA

    NASA Technical Reports Server (NTRS)

    King, James; Nickling, W. G.; Gilliles, J. A.

    2006-01-01

    A field study was conducted to ascertain the amount of protection that mesquite-dominated communities provide to the surface from wind erosion. The dynamics of the locally accelerated evolution of a mesquite/coppice dune landscape and the undetermined spatial dependence of potential erosion by wind from a shear stress partition model were investigated. Sediment transport and dust emission processes are governed by the amount of protection that can be provided by roughness elements. Although shear stress partition models exist that can describe this, their accuracy has only been tested against a limited dataset because instrumentation has previously been unable to provide the necessary measurements. This study combines the use of meteorological towers and surface shear stress measurements with Irwin sensors to measure the partition of shear stress in situ. The surface shear stress within preferentially aligned vegetation (within coppice dune development) exhibited highly skewed distributions, while a more homogenous surface stress was recorded at a site with less developed coppice dunes. Above the vegetation, the logarithmic velocity profile deduced roughness length (based on 10-min averages) exhibited a distinct correlation with compass direction for the site with vegetation preferentially aligned, while the site with more homogenously distributed vegetation showed very little variation in the roughness length. This distribution in roughness length within an area, defines a distribution of a resolved shear stress partitioning model based on these measurements, ultimately providing potential closure to a previously uncorrelated model parameter.

  13. Physical response of a back-barrier estuary to a post-tropical cyclone

    USGS Publications Warehouse

    Beudin, Alexis; Ganju, Neil Kamal; Defne, Zafer; Aretxabaleta, Alfredo

    2017-01-01

    This paper presents a modeling investigation of the hydrodynamic and sediment transport response of Chincoteague Bay (VA/MD, USA) to Hurricane Sandy using the Coupled Ocean-Atmosphere-Wave-Sediment-Transport (COAWST) modeling system. Several simulation scenarios with different combinations of remote and local forces were conducted to identify the dominant physical processes. While 80% of the water level increase in the bay was due to coastal sea level at the peak of the storm, a rich spatial and temporal variability in water surface slope was induced by local winds and waves. Local wind increased vertical mixing, horizontal exchanges, and flushing through the inlets. Remote waves (swell) enhanced southward flow through wave setup gradients between the inlets, and increased locally generated wave heights. Locally generated waves had a negligible effect on water level but reduced the residual flow up to 70% due to enhanced apparent roughness and breaking-induced forces. Locally generated waves dominated bed shear stress and sediment resuspension in the bay. Sediment transport patterns mirrored the interior coastline shape and generated deposition on inundated areas. The bay served as a source of fine sediment to the inner shelf, and the ocean-facing barrier island accumulated sand from landward-directed overwash. Despite the intensity of the storm forcing, the bathymetric changes in the bay were on the order of centimeters. This work demonstrates the spectrum of responses to storm forcing, and highlights the importance of local and remote processes on back-barrier estuarine function.

  14. Time-varying environmental control of phytoplankton in a changing estuarine system.

    PubMed

    López Abbate, M Celeste; Molinero, Juan Carlos; Guinder, Valeria A; Perillo, Gerardo M E; Freije, R Hugo; Sommer, Ulrich; Spetter, Carla V; Marcovecchio, Jorge E

    2017-12-31

    Estuaries are among the most valuable aquatic systems by their services to human welfare. However, increasing human activities at the watershed along with the pressure of climate change are fostering the co-occurrence of multiple environmental drivers, and warn of potential negative impacts on estuaries resources. At present, no clear understanding of how coastal ecosystems will respond to the non-stationary effect of multiple drivers. Here we analysed the temporal interaction among multiple environmental drivers and their changing priority on shaping phytoplankton response in the Bahía Blanca Estuary, SW Atlantic Ocean. The interaction among environmental drivers and the number of significant direct and indirect effects on chlorophyll concentration increased over time in concurrence with enhanced anthropogenic stress, changing winter climate and wind patterns. Over the period 1978-1993, proximal variables such as nutrients, water temperature and salinity, showed a dominant effect on chlorophyll, whereas in more recent years (1993-2009) climate signals (SAM and ENSO) boosted indirect effects through its influence on precipitation, wind, water temperature and turbidity. Turbidity emerged as the dominant driver of chlorophyll while in recent years acted synergistically with the concentration of dissolved nitrogen. As a result, chlorophyll concentration showed a significant negative trend and a loss of seasonal peaks reflecting a pronounced reorganisation of the phytoplankton community. We stress the need to account for the changing priority of drivers to understand, and eventually forecast, biological responses under projected scenarios of global anthropogenic change. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Aeolian shear stress ratio measurements within mesquite-dominated landscapes of the Chihuahuan Desert, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    King, James; Nickling, W. G.; Gillies, J. A.

    2006-12-01

    A field study was conducted to ascertain the amount of protection that mesquite-dominated communities provide to the surface from wind erosion. The dynamics of the locally accelerated evolution of a mesquite/coppice dune landscape and the undetermined spatial dependence of potential erosion by wind from a shear stress partition model were investigated. Sediment transport and dust emission processes are governed by the amount of protection that can be provided by roughness elements. Although shear stress partition models exist that can describe this, their accuracy has only been tested against a limited dataset because instrumentation has previously been unable to provide the necessary measurements. This study combines the use of meteorological towers and surface shear stress measurements with Irwin sensors to measure the partition of shear stress in situ. The surface shear stress within preferentially aligned vegetation (within coppice dune development) exhibited highly skewed distributions, while a more homogenous surface stress was recorded at a site with less developed coppice dunes. Above the vegetation, the logarithmic velocity profile deduced roughness length (based on 10-min averages) exhibited a distinct correlation with compass direction for the site with vegetation preferentially aligned, while the site with more homogenously distributed vegetation showed very little variation in the roughness length. This distribution in roughness length within an area, defines a distribution of a resolved shear stress partitioning model based on these measurements, ultimately providing potential closure to a previously uncorrelated model parameter.

  16. A wind-tunnel investigation of parameters affecting helicopter directional control at low speeds in ground effect

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.

    1974-01-01

    An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.

  17. Impact of wind direction on near-road pollutant concentrations

    NASA Astrophysics Data System (ADS)

    Venkatram, Akula; Snyder, Michelle; Isakov, Vlad; Kimbrough, Sue

    2013-12-01

    Exposure to roadway emissions is an emerging area of research because of recent epidemiological studies reporting association between living within a few hundred meters of high-traffic roadways and adverse health effects. The air quality impact of roadway emissions has been studied in a number of field experiments, most of which have not fully considered the impact of wind direction on near-road concentrations. This paper examines the role of wind direction by using a dispersion model to analyze data from three field studies that include measurements under varying wind directions: 1) a tracer study conducted adjacent to highway 99 in Sacramento, CA in 1981-82, 2) a field study next to a highway in Raleigh, North Carolina in 2006, and 3) a field study conducted next to a depressed highway in Las Vegas, Nevada in 2010. We find that wind direction is an important variable in characterizing exposure to roadway emissions. Under stable conditions, the near-surface concentrations at receptors up to 100 m from the road increase with wind angle before dropping off at angles close to parallel to the road. It is only for pollutants with short life times does the maximum concentration occur when the wind direction is normal to the road. We also show that current dispersion models are reliable tools for interpreting observations and for formulating plans for field studies.

  18. Program to determine space vehicle response to wind turbulence

    NASA Technical Reports Server (NTRS)

    Wilkening, H. D.

    1972-01-01

    Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.

  19. The electromagnetic field for an open magnetosphere

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1984-01-01

    The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions.

  20. Evaluation of wind-induced internal pressure in low-rise buildings: A multi scale experimental and numerical approach

    NASA Astrophysics Data System (ADS)

    Tecle, Amanuel Sebhatu

    Hurricane is one of the most destructive and costly natural hazard to the built environment and its impact on low-rise buildings, particularity, is beyond acceptable. The major objective of this research was to perform a parametric evaluation of internal pressure (IP) for wind-resistant design of low-rise buildings and wind-driven natural ventilation applications. For this purpose, a multi-scale experimental, i.e. full-scale at Wall of Wind (WoW) and small-scale at Boundary Layer Wind Tunnel (BLWT), and a Computational Fluid Dynamics (CFD) approach was adopted. This provided new capability to assess wind pressures realistically on internal volumes ranging from small spaces formed between roof tiles and its deck to attic to room partitions. Effects of sudden breaching, existing dominant openings on building envelopes as well as compartmentalization of building interior on the IP were systematically investigated. Results of this research indicated: (i) for sudden breaching of dominant openings, the transient overshooting response was lower than the subsequent steady state peak IP and internal volume correction for low-wind-speed testing facilities was necessary. For example a building without volume correction experienced a response four times faster and exhibited 30--40% lower mean and peak IP; (ii) for existing openings, vent openings uniformly distributed along the roof alleviated, whereas one sided openings aggravated the IP; (iii) larger dominant openings exhibited a higher IP on the building envelope, and an off-center opening on the wall exhibited (30--40%) higher IP than center located openings; (iv) compartmentalization amplified the intensity of IP and; (v) significant underneath pressure was measured for field tiles, warranting its consideration during net pressure evaluations. The study aimed at wind driven natural ventilation indicated: (i) the IP due to cross ventilation was 1.5 to 2.5 times higher for Ainlet/Aoutlet>1 compared to cases where Ainlet/Aoutlet<1, this in effect reduced the mixing of air inside the building and hence the ventilation effectiveness; (ii) the presence of multi-room partitioning increased the pressure differential and consequently the air exchange rate. Overall good agreement was found between the observed large-scale, small-scale and CFD based IP responses. Comparisons with ASCE 7-10 consistently demonstrated that the code underestimated peak positive and suction IP.

  1. Aeolian Sand Transport with Collisional Suspension

    NASA Technical Reports Server (NTRS)

    Jenkins, James T.; Pasini, Jose Miguel; Valance, Alexandre

    2004-01-01

    Aeolian transport is an important mechanism for the transport of sand on Earth and on Mars. Dust and sand storms are common occurrences on Mars and windblown sand is responsible for many of the observed surface features, such as dune fields. A better understanding of Aeolian transport could also lead to improvements in pneumatic conveying of materials to be mined for life support on the surface of the Moon and Mars. The usual view of aeolian sand transport is that for mild winds, saltation is the dominant mechanism, with particles in the bed being dislodged by the impact of other saltating particles, but without in-flight collisions. As the wind becomes stronger, turbulent suspension keeps the particles in the air, allowing much longer trajectories, with the corresponding increase in transport rate. We show here that an important regime exists between these two extremes: for strong winds, but before turbulent suspension becomes dominant, there is a regime in which in-flight collisions dominate over turbulence as a suspension mechanism, yielding transport rates much higher than those for saltation. The theory presented is based on granular kinetic theory, and includes both turbulent suspension and particle-particle collisions. The wind strengths for which the calculated transport rates are relevant are beyond the published strengths of current wind tunnel experiments, so these theoretical results are an invitation to do experiments in the strong-wind regime. In order to make a connection between the regime of saltation and the regime of collisional suspension, it is necessary to better understand the interaction between the bed and the particles that collide with it. This interaction depends on the agitation of the particles of the bed. In mild winds, collisions with the bed are relatively infrequent and the local disturbance associated with a collision can relax before the next nearby collision. However, as the wind speed increases, collision become more frequent and the agitation need not decay completely. In the regime of collisional suspension, the particles near the surface of the bed are assumed to be in a state of constant agitation. We indicate the conditions at the bed corresponding to the limits of saltation and collisional suspension and outline experiments, simulations, and modeling that have been undertaken to bridge these limits.

  2. Observing Equatorial Thermospheric Winds and Temperatures with a New Mapping Technique

    NASA Astrophysics Data System (ADS)

    Faivre, M. W.; Meriwether, J. W.; Sherwood, P.; Veliz, O.

    2005-12-01

    Application of the Fabry-Perot interferometer (FPI) at Arequipa, Peru (16.4S, 71.4 W) to measure the Doppler shifts and Doppler broadenings in the equatorial O(1D) 630-nm nightglow has resulted in numerous detections of a large-scale thermospheric phenomenon called the Midnight Temperature Maximum (MTM). A recent detector upgrade with a CCD camera has improved the accuracy of these measurements by a factor of 5. Temperature increases of 50 to 150K have been measured during nights in April and July, 2005, with error bars less than 10K after averaging in all directions. Moreover, the meridional wind measurements show evidence for a flow reversal from equatorward to poleward near local midnight for such events. A new observing strategy based upon the pioneering work of Burnside et al.[1981] maps the equatorial wind and temperature fields by observing in eight equally-spaced azimuth directions, each with a zenith angle of 60 degrees. Analysis of the data obtained with this technique gives the mean wind velocities in the meridional and zonal directions as well as the horizontal gradients of the wind field for these directions. Significant horizontal wind gradients are found for the meridional direction but not for the zonal direction. The zonal wind blows eastward throughout the night with a maximum speed of ~150 m/s near the middle of the night and then decreases towards zero just before dawn. In general, the fastest poleward meridional wind is observed near mid-evening. By the end of the night, the meridional flow tends to be more equatorward at speeds of about 50 m/s. Using the assumption that local time and longitude are equivalent over a period of 30 minutes, a map of the horizontal wind field vector field is constructed over a range of 12 degrees latitude centered at 16.5 S. Comparison between MTM nights and quiet nights (no MTM) revealed significant differences in the horizontal wind fields. Using the method of Fourier decomposition of the line-of-sight winds, the vertical wind can be retrieved from the horizontal flow divergence with a much-improved sensitivity than that represented by direct zenith measurements. The value of the vertical wind speed ranges from -5 to 5 m/s. Some nights seem to present gravity wave activity with periodic fluctuations of 1-2 hours visible in the vertical winds as well as in the temperature series.

  3. Atmospheric stability effects on wind farm performance using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Ghaisas, N.; Xie, S.

    2014-12-01

    Atmospheric stability has been recently found to have significant impacts on wind farm performance, especially since offshore and onshore wind farms are known to operate often under non-neutral conditions. Recent field observations have revealed that changes in stability are accompanied by changes in wind speed, direction, and turbulent kinetic energy (TKE). In order to isolate the effects of stability, large-eddy simulations (LES) are performed under neutral, stable, and unstable conditions, keeping the wind speed and direction unchanged at a fixed height. The Lillgrund wind farm, comprising of 48 turbines, is studied in this research with the Simulator for Offshore/Onshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. Unlike most previous numerical simulations, this study does not impose periodic boundary conditions and therefore is ideal for evaluating the effects of stability in large, but finite, wind farms. Changes in power generation, velocity deficit, rate of wake recovery, TKE, and surface temperature are quantified as a function of atmospheric stability. The sensitivity of these results to wind direction is also discussed.

  4. Meteor radar wind over Chung-Li (24.9°N, 121°E), Taiwan, for the period 10-25 November 2012 which includes Leonid meteor shower: Comparison with empirical model and satellite measurements

    NASA Astrophysics Data System (ADS)

    Su, C. L.; Chen, H. C.; Chu, Y. H.; Chung, M. Z.; Kuong, R. M.; Lin, T. H.; Tzeng, K. J.; Wang, C. Y.; Wu, K. H.; Yang, K. F.

    2014-08-01

    The neutral winds in the mesosphere and lower thermosphere (MLT) region are measured by a newly installed meteor trail detection system (or meteor radar) at Chung-Li, Taiwan, for the period 10-25 November 2012, which includes the Leonid meteor shower period. In this study, we use the 3 m field-aligned plasma irregularities in the sporadic E (Es) region in combination with the International Geomagnetic Reference Field model to calibrate the system phase biases such that the true positions of the meteor trails can be correctly determined with interferometry technique. The horizontal wind velocities estimated from the radial velocities of the meteor trails and their locations by using a least squares method show that the diurnal tide dominates the variation of the MLT neutral wind with time over Chung-Li, which is in good agreement with the horizontal wind model (HWM07) prediction. However, harmonic analysis reveals that the amplitudes of the mean wind, diurnal, and semidiurnal tides of the radar-measured winds in height range 82-100 km are systematically larger than those of the model-predicted winds by up to a factor of 3. A comparison shows that the overall pattern of the height-local time distribution of the composite radar-measured meteor wind is, in general, consistent with that of the TIMED Doppler Interferometer-observed wind, which is dominated by a diurnal oscillation with downward phase progression at a rate of about 1.3 km/h. The occurrences of the Es layers retrieved from fluctuations of the amplitude and excess phase of the GPS signal received by the FORMOSAT-3/COSMIC satellites during the GPS radio occultation (RO) process are compared with the shear zones of the radar-measured meteor wind and HWM07 wind. The result shows that almost all of the RO-retrieved Es layers occur within the wind shear zones that favor the Es layer formation based on the wind shear theory, suggesting that the primary physical process responsible for the Es layer events retrieved from the scintillations of the GPS RO signal is very likely the plasma convergence effect of the neutral wind shear.

  5. The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011

    NASA Astrophysics Data System (ADS)

    Ogi, M.; Wallace, J. M.

    2012-12-01

    Masayo Ogi 1 and John M. Wallace 2 masayo.ogi@jamstec.go.jp wallace@atmos.washington.edu 1Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan 2 Department of Atmospheric Sciences, University of Washington, Seattle, Washington The seasonal evolutions of Arctic sea ice extent (SIE) during the summers of 2010 and 2011 are contrasted with that in 2007. The June SIE in 2010 was lower than that in 2007 and was the lowest for that calendar month in the 32-year (1979-2010) record. The September SIE in 2010 would have set a new record low had it not been for the fact that the ice retreated more slowly during the summer months in that year than it did in 2007. Hence from early July onward, the SIE in 2010 remained at levels above those observed in 2007. The SIE minimum in September 2010 proved to be the third lowest on record, eclipsed by values in both 2007 and 2008. In spring and summer of 2011, the Arctic SIE was as low as it was in 2007, but the SIE in September 2011 did not reach record low levels. The SIE minimum in 2011 proved to be the second lowest on record for the period of 1979-2011. Summertime atmospheric conditions play an important role in controlling the variations in Arctic SIE. In a previous study based on statistical analysis of data collected prior to 2007, we showed that anticyclonic summertime circulation anomalies over the Arctic Ocean during the summer months favor low September SIE. We also found that the record-low ice summer year 2007 was characterized by a strong anticyclonic circulation anomaly, accompanied by an Ekman drift of ice out of the marginal seas toward the central Arctic and eventually toward the Fram Strait, as evidenced by the tracks of drifting buoys. Here we assess the extent to which year-to-year differences in summer winds over the Arctic might have contributed to the differing rates of retreat of ice during the summers of 2007, 2010, and 2011. Our results show that the May-June (MJ) pattern in 2010 is characterized by strong anticyclonic wind anomalies over the Arctic Ocean. The corresponding pattern for July-August-September (JAS) is dominated by a cyclonic gyre centered over the Kara Sea. The corresponding patterns for 2007 are weak in MJ and strongly anticyclonic in JAS. The JJA pattern in 2011 is characterized by anticyclonic wind anomalies over the Arctic directed toward the Fram Strait, whereas the September pattern exhibits wind anomalies directed away from the Fram Strait across the central Arctic Ocean toward the Chukchi Sea. The corresponding patterns for 2007 are strongly anticyclonic and directed toward the Fram Strait in both JJA and September. In the absence of the late season push by the winds, the ice did not retreat quite as far in 2011 as it did in 2007. We have shown evidence that low level winds over the Arctic play an important role in mediating the rate of retreat of sea ice during summer. Anomalous anticyclonic flow over the interior of the Arctic directed toward the Fram Strait favors rapid retreat and vice versa. We have argued that the relative rankings of the September SIE for the years 2007, 2010 and 2011 are largely attributable to the differing rates of decrease of SIE during these summers, which are a consequence of year-to-year differences in the seasonal evolution of summertime winds over the Arctic.

  6. Radionuclide counting technique for measuring wind velocity and direction

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1984-01-01

    An anemometer utilizing a radionuclide counting technique for measuring both the velocity and the direction of wind is described. A pendulum consisting of a wire and a ball with a source of radiation on the lower surface of the ball is positioned by the wind. Detectors and are located in a plane perpendicular to pendulum (no wind). The detectors are located on the circumferene of a circle and are equidistant from each other as well as the undisturbed (no wind) source ball position.

  7. Stellar feedback in galaxies and the origin of galaxy-scale winds

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2012-04-01

    Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological simulations and semi-analytic models. These differ from typically adopted formulae with an explicit dependence on the gas surface density that can be very important in both low-density dwarf galaxies and high-density gas-rich galaxies.

  8. SeaWinds Global Coverage with Detail of Hurricane Floyd

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The distribution of ocean surface winds over the Atlantic Ocean, based on September 1999 data from NASA's SeaWinds instrument on the QuikScat satellite, shows wind direction (white streamlines) at a resolution of 25 kilometers (15.5 miles), superimposed on the color image indicating wind speed.

    Over the ocean, the strong (seen in violet) trade winds blow steadily from the cooler subtropical oceans to warm waters just north of the equator. The air rises over these warm waters and sinks in the subtropics at the horse latitudes. Low wind speeds are indicated in blue. In the mid-latitudes, the high vorticity caused by the rotation of the Earth generates the spirals of weather systems. The North Atlantic is dominated by a high-pressure system, whose anti-cyclonic (clockwise) flow creates strong winds blowing parallel to the coast of Spain and Morocco. This creates strong ocean upwelling and cold temperature. Hurricane Floyd, with its high winds (yellow), is clearly visible west of the Bahamas. Tropical depression Gert is seen as it was forming in the tropical mid-Atlantic (as an anti-clockwise spiral); it later developed into a full-blown hurricane.

    Because the atmosphere is largely transparent to microwaves, SeaWinds is able to cover 93 percent of the global oceans, under both clear and cloudy conditions, in a single day, with the capability of a synoptic view of the ocean. The high resolution of the data also gives detailed description of small and intense weather systems, like Hurricane Floyd. The image in the insert is based on data specially produced at 12.5 kilometers (7.7 miles). In the insert, white arrows of wind vector are imposed on the color image of wind speed. The insert represents a 3-degree area occupied by Hurricane Floyd. After these data were acquired, Hurricane Floyd turned north. Its strength and proximity to the Atlantic coast of the U.S. caused the largest evacuation of citizens in U.S. history. Its landfall on September 16, 1999 resulted in severe flooding and devastation in the Carolinas. The high-resolution SeaWinds data provided an opportunity to monitor and study this hurricane.

    NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system. JPL is a division of the California Institute of Technology, Pasadena, CA.

  9. Wind Erosion

    NASA Image and Video Library

    2015-07-02

    Long term winds have etched the surface in Memnonia Sulci. Partial cemented surface materials are easily eroded by the wind, forming linear ridges called yardangs. The multiple direction of yardangs in this VIS image indicate that there were at least two different wind directions in this area. Orbit Number: 59217 Latitude: -8.33112 Longitude: 186.506 Instrument: VIS Captured: 2015-04-20 15:12 http://photojournal.jpl.nasa.gov/catalog/PIA19502

  10. Turbulent Structure of a Simplified Urban Fluid Flow Studied Through Stereoscopic Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Monnier, Bruno; Goudarzi, Sepehr A.; Vinuesa, Ricardo; Wark, Candace

    2018-02-01

    Stereoscopic particle image velocimetry was used to provide a three-dimensional characterization of the flow around a simplified urban model defined by a 5 by 7 array of blocks, forming four parallel streets, perpendicular to the incoming wind direction corresponding to a zero angle of incidence. Channeling of the flow through the array under consideration was observed, and its effect increased as the incoming wind direction, or angle of incidence ( AOI), was changed from 0° to 15°, 30°, and 45°. The flow between blocks can be divided into two regions: a region of low turbulence kinetic energy (TKE) levels close to the leeward side of the upstream block, and a high TKE area close to the downstream block. The centre of the arch vortex is located in the low TKE area, and two regions of large streamwise velocity fluctuation bound the vortex in the spanwise direction. Moreover, a region of large spanwise velocity fluctuation on the downstream block is found between the vortex legs. Our results indicate that the reorientation of the arch vortex at increasing AOI is produced by the displacement of the different TKE regions and their interaction with the shear layers on the sides and top of the upstream and downstream blocks, respectively. There is also a close connection between the turbulent structure between the blocks and the wind gusts. The correlations among gust components were also studied, and it was found that in the near-wall region of the street the correlations between the streamwise and spanwise gusts R_{uv} were dominant for all four AOI cases. At higher wall-normal positions in the array, the R_{uw} correlation decreased with increasing AOI, whereas the R_{uv} coefficient increased as AOI increased, and at {it{AOI}}=45° all three correlations exhibited relatively high values of around 0.4.

  11. Hurricane modification and adaptation in Miami-Dade County, Florida.

    PubMed

    Klima, Kelly; Lin, Ning; Emanuel, Kerry; Morgan, M Granger; Grossmann, Iris

    2012-01-17

    We investigate tropical cyclone wind and storm surge damage reduction for five areas along the Miami-Dade County coastline either by hardening buildings or by the hypothetical application of wind-wave pumps to modify storms. We calculate surge height and wind speed as functions of return period and sea surface temperature reduction by wind-wave pumps. We then estimate costs and economic losses with the FEMA HAZUS-MH MR3 damage model and census data on property at risk. All areas experience more surge damages for short return periods, and more wind damages for long periods. The return period at which the dominating hazard component switches depends on location. We also calculate the seasonal expected fraction of control damage for different scenarios to reduce damages. Surge damages are best reduced through a surge barrier. Wind damages are best reduced by a portfolio of techniques that, assuming they work and are correctly deployed, include wind-wave pumps.

  12. Emissions impacts of wind and energy storage in a market environment.

    PubMed

    Sioshansi, Ramteen

    2011-12-15

    This study examines the emissions impacts of adding wind and energy storage to a market-based electric power system. Using Texas as a case study, we demonstrate that market power can greatly effect the emissions benefits of wind, due to most of the coal-fired generation being owned by the two dominant firms. Wind tends to have less emissions benefits when generators exercise market power, since coal-fired generation is withheld from the market and wind displaces natural gas-fired generators. We also show that storage can have greater negative emissions impacts in the presence of wind than if only storage is added to the system. This is due to wind increasing on- and off-peak electricity price differences, which increases the amount that storage and coal-fired generation are used. We demonstrate that this effect is exacerbated by market power.

  13. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  14. Research and analysis on response characteristics of bracket-line coupling system under wind load

    NASA Astrophysics Data System (ADS)

    Jiayu, Zhao; Qing, Sun

    2018-01-01

    In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.

  15. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  16. Imaging the Top of the Solar Corona and the Young Solar Wind

    NASA Astrophysics Data System (ADS)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-12-01

    We present the first direct visual evidence of the quasi-stationary breakup of solar coronal structure and the rise of turbulence in the young solar wind, directly in the future flight path of Solar Probe. Although the corona and, more recently, the solar wind have both been observed directly with Thomson scattered light, the transition from the corona to the solar wind has remained a mystery. The corona itself is highly structured by the magnetic field and the outflowing solar wind, giving rise to radial "striae" - which comprise the familiar streamers, pseudostreamers, and rays. These striae are not visible in wide-field heliospheric images, nor are they clearly delineated with in-situ measurements of the solar wind. Using careful photometric analysis of the images from STEREO/HI-1, we have, for the first time, directly observed the breakup of radial coronal structure and the rise of nearly-isotropic turbulent structure in the outflowing slow solar wind plasma between 10° (40 Rs) and 20° (80 Rs) from the Sun. These observations are important not only for their direct science value, but for predicting and understanding the conditions expected near SPP as it flies through - and beyond - this final frontier of the heliosphere, the outer limits of the solar corona.

  17. Difference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms.

    PubMed

    Kok, Jasper F

    2010-02-19

    Much of the surface of Mars is covered by dunes, ripples, and other features formed by the blowing of sand by wind, known as saltation. In addition, saltation loads the atmosphere with dust aerosols, which dominate the Martian climate. We show here that saltation can be maintained on Mars by wind speeds an order of magnitude less than required to initiate it. We further show that this hysteresis effect causes saltation to occur for much lower wind speeds than previously thought. These findings have important implications for the formation of dust storms, sand dunes, and ripples on Mars.

  18. Diffusion in coastal and harbour zones, effects of Waves,Wind and Currents

    NASA Astrophysics Data System (ADS)

    Diez, M.; Redondo, J. M.

    2009-04-01

    As there are multiple processes at different scales that produce turbulent mixing in the ocean, thus giving a large variation of horizontal eddy diffusivities, we use a direct method to evaluate the influence of different ambient parameters such as wave height and wind on coastal dispersion. Measurements of the diffusivity are made by digital processing of images taken from from video recordings of the sea surface near the coast. The use of image analysis allows to estimate both spatial and temporal characteristics of wave fields, surface circulation and mixing in the surf zone, near Wave breakers and inside Harbours. The study of near-shore dispersion [1], with the added complexity of the interaction between wave fields, longshore currents, turbulence and beach morphology, needs detailed measurements of simple mixing processes to compare the respective influences of forcings at different scales. The measurements include simultaneous time series of waves, currents, wind velocities from the studied area. Cuantitative information from the video images is accomplished using the DigImage video processing system [3], and a frame grabber. The video may be controlled by the computer, allowing, remote control of the processing. Spectral analysis on the images has also used n order to estimate dominant wave periods as well as the dispersion relations of dominant instabilities. The measurements presented here consist mostly on the comarison of difussion coeficients measured by evaluating the spread of blobs of dye (milk) as well as by measuring the separation between different buoys released at the same time. We have used a techniques, developed by Bahia(1997), Diez(1998) and Bezerra(2000)[1-3] to study turbulent diffusion by means of digital processing of images taken from remote sensing and video recordings of the sea surface. The use of image analysis allows to measure variations of several decades in horizontal diffusivity values, the comparison of the diffusivities between different sites is not direct and a good understanding of the dominant mixing processes is needed. There is an increase of diffusivity with wave height but only for large Wave Reynolds numbers. Other important factors are wind speed and tidal currents. The horizontal diffusivity shows a marked anisotropy as a function of wave height and distance from the coast. The measurements were performed under a variety of weather conditions conditional sampling has been used to identify the different influences of the environmental agents on the actual effective horizontal diffusion[4]. [1] Bahia E. (1998) "Un estudio numerico experimental de la dispersion de contaminantes en aguas costeras, PhD Tesis UPC, Barcelona. [2] Bezerra M.O., (2000) "Diffusion de contaminantes en la costa. , PhD Tesis Uni. De Barcelona, Barcelona. [3] Diez M. (1998) "Estudio de la Hidrodinamica de la zona de rompientes mediante el analisis digital de imagenes. Master Thesis, UPC, Barcelona. [4] Artale V., Boffetta G., Celani A., Cencini M. and Vulpiani A., 1997, "Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient", Physics of Fluids, vol 9, pp 3162-1997

  19. Barchan asymmetry as a proxy for wind conditions on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Dwyer, Diarmuid; Bourke, Mary

    2014-05-01

    The absence of weather stations in many remote arid regions on Earth and Mars introduces a difficulty in testing atmospheric circulation models. While several proxies have been recommended for the reconstruction of wind regimes, they remain to be tested in a wide range of terrains. We examine the relationship between instrumented wind data and barchan asymmetric shape in order to ascertain if this dune attribute can be used to reliably infer aspects of a wind regime. The two study areas are located in La Joya, Peru and the Namib Desert, Namibia. Dune observations were made using high resolution satellite images available on Google Earth. The wind data was sourced from Wunderground and the National Peruvian Meteorological Service. Asymmetric barchans are reported to form in bimodal wind regimes (Tsoar, 1984). The barchan dune is oriented parallel to the strong wind regime and is modified by oblique gentler winds. Our analysis of wind data and dune form supports the Tsoar model for barchan asymmetry. Numerical simulations have shown that the duration of winds in bi-directional regimes also influences asymmetry (Parteli, 2014). Our analysis finds good agreement between the model simulations of Parteli et al (2014) and the instrument data for Namibia and Peru. We use our findings on Earth to infer formative wind direction and duration at five sites on Mars. These are the first maps of wind direction and relative duration for Mars. Our findings do not concur with previous estimates of wind direction derived either from the NASA Ames General Circulation Model or dune slipface orientation. We propose that the Parteli et al (2014) approach can be usefully applied to remote areas on Earth and Mars to extract data on relative wind duration and direction. Parteli, E.J.R., Duran, O., Bourke, M.C., Tsoar, H., Poschel, T., Herrmann, H.J., (in press). Origins of barchan dune asymmetry: Insights from numerical simulations. Aeolian Research. Tsoar, H., (1984). The formation of seif dunes from barchans - a discussion. Zeitschrift fur Geomorphologie, 28, 99-103.

  20. A kinetic study of solar wind electrons in the transition region from collision dominated to collisionless flow

    NASA Technical Reports Server (NTRS)

    Lie-Svendsen, O.; Leer, E.

    1995-01-01

    We have studied the evolution of the velocity distribution function of a test population of electrons in the solar corona and inner solar wind region, using a recently developed kinetic model. The model solves the time dependent, linear transport equation, with a Fokker-Planck collision operator to describe Coulomb collisions between the 'test population' and a thermal background of charged particles, using a finite differencing scheme. The model provides information on how non-Maxwellian features develop in the distribution function in the transition region from collision dominated to collisionless flow. By taking moments of the distribution the evolution of higher order moments, such as the heat flow, can be studied.

  1. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    NASA Astrophysics Data System (ADS)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  2. Plasma Sail Concept Fundamentals

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Delamere, P.; Kabin, K.; Linde, T. J.

    2004-01-01

    The mini-magnetospheric plasma propulsion (M2P2) device, originally proposed by Winglee et al., predicts that a 15-km standoff distance (or 20-km cross-sectional dimension) of the magnetic bubble will provide for sufficient momentum transfer from the solar wind to accelerate a spacecraft to unprecedented speeds of 50 C80 km/s after an acceleration period of 3 mo. Such velocities will enable travel out of the solar system in period of 7 yr almost an order of magnitude improvement over present chemical-based propulsion systems. However, for the parameters of the simulation of Winglee et al., a fluid model for the interaction of M2P2 with the solar wind is not valid. It is assumed in the magnetohydrodynamic (MHD) fluid model, normally applied to planetary magnetospheres, that the characteristic scale size is much greater than the Larmor radius and ion skin depth of the solar wind. In the case of M2P2, the size of the magnetic bubble is actually less than or comparable to the scale of these characteristic parameters. Therefore, a kinetic approach, which addresses the small-scale physical mechanisms, must be used. A two-component approach to determining a preliminary estimate of the momentum transfer to the plasma sail has been adopted. The first component is a self-consistent MHD simulation of the small-scale expansion phase of the magnetic bubble. The fluid treatment is valid to roughly 5 km from the source and the steady-state MHD solution at the 5 km boundary was then used as initial conditions for the hybrid simulation. The hybrid simulations showed that the forces delivered to the innermost regions of the plasma sail are considerably ( 10 times) smaller than the MHD counterpart, are dominated by the magnetic field pressure gradient, and are directed primarily in the transverse direction.

  3. Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Zhang, S. L.; van der Laan, G.; Hesjedal, T.

    2017-02-01

    The mathematical concept of topology has brought about significant advantages that allow for a fundamental understanding of the underlying physics of a system. In magnetism, the topology of spin order manifests itself in the topological winding number which plays a pivotal role for the determination of the emergent properties of a system. However, the direct experimental determination of the topological winding number of a magnetically ordered system remains elusive. Here, we present a direct relationship between the topological winding number of the spin texture and the polarized resonant X-ray scattering process. This relationship provides a one-to-one correspondence between the measured scattering signal and the winding number. We demonstrate that the exact topological quantities of the skyrmion material Cu2OSeO3 can be directly experimentally determined this way. This technique has the potential to be applicable to a wide range of materials, allowing for a direct determination of their topological properties.

  4. Multifractal analysis of the time series of daily means of wind speed in complex regions

    NASA Astrophysics Data System (ADS)

    Laib, Mohamed; Golay, Jean; Telesca, Luciano; Kanevski, Mikhail

    2018-04-01

    In this paper, we applied the multifractal detrended fluctuation analysis to the daily means of wind speed measured by 119 weather stations distributed over the territory of Switzerland. The analysis was focused on the inner time fluctuations of wind speed, which could be more linked with the local conditions of the highly varying topography of Switzerland. Our findings point out to a persistent behaviour of all the measured wind speed series (indicated by a Hurst exponent significantly larger than 0.5), and to a high multifractality degree indicating a relative dominance of the large fluctuations in the dynamics of wind speed, especially in the Swiss plateau, which is comprised between the Jura and Alp mountain ranges. The study represents a contribution to the understanding of the dynamical mechanisms of wind speed variability in mountainous regions.

  5. Wind streaks in Tharsis and Elysium - Implications for sediment transport by slope winds

    NASA Astrophysics Data System (ADS)

    Lee, S. W.; Thomas, P. C.; Veverka, J.

    1982-11-01

    Detailed maps of wind streaks in Tharsis and Elysium have been compiled from Viking Orbiter observations spanning one complete Martian year. The streak pattern is controlled by slope winds on the central volcanoes and on the flanks of the Tharsis bulge, while the global circulation dominates in Elysium. Dust erosion by downslope winds occurs over much of Tharsis and in the vicinity of Elysium Mons; this process is effective even at the low atmospheric pressures found near the summits of the large volcanoes. Erosional streaks are largely absent in Elysium Planitia; net deposition of dust might have occurred during the period of the observations. Surface properties such as slope, thermal inertia, and roughness may influence the efficiency of slope wind production sufficiently to account for the pronounced differences in streak types and patterns present in these two regions.

  6. An empirical polytrope law for solar wind thermal electrons between 0.45 and 4.76 AU: Voyager 2 and Mariner 10

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Scudder, J. D.

    1979-01-01

    Empirical evidence is presented that solar wind thermal electrons obey a polytrope law with polytrope index gamma = 1.175 plus or minus 0.03. The Voyager 2 and Mariner 10 data used as evidence are compared and discussed. The theoretical predictions that solar wind thermal electrons in the asymptotic solar wind should obey a polytrope law with polytrope index gamma = 1.16 plus or minus. The widespread impressions in the literature that solar wind electrons behave more like an isothermal than adiabatic gas, and the arguments that Coulomb collisions are the dominant stochastic process shaping observed electron distribution functions in the solar wind are reexamined, reviewed and evaluated. The assignment of the interplanetary potential as equal to approximately seven times the temperature of the thermal electrons is discussed.

  7. European shags optimize their flight behavior according to wind conditions.

    PubMed

    Kogure, Yukihisa; Sato, Katsufumi; Watanuki, Yutaka; Wanless, Sarah; Daunt, Francis

    2016-02-01

    Aerodynamics results in two characteristic speeds of flying birds: the minimum power speed and the maximum range speed. The minimum power speed requires the lowest rate of energy expenditure per unit time to stay airborne and the maximum range speed maximizes air distance traveled per unit of energy consumed. Therefore, if birds aim to minimize the cost of transport under a range of wind conditions, they are predicted to fly at the maximum range speed. Furthermore, take-off is predicted to be strongly affected by wind speed and direction. To investigate the effect of wind conditions on take-off and cruising flight behavior, we equipped 14 European shags Phalacrocorax aristotelis with a back-mounted GPS logger to measure position and hence ground speed, and a neck-mounted accelerometer to record wing beat frequency and strength. Local wind conditions were recorded during the deployment period. Shags always took off into the wind regardless of their intended destination and take-off duration was correlated negatively with wind speed. We combined ground speed and direction during the cruising phase with wind speed and direction to estimate air speed and direction. Whilst ground speed was highly variable, air speed was comparatively stable, although it increased significantly during strong head winds, because of stronger wing beats. The increased air speeds in head winds suggest that birds fly at the maximum range speed, not at the minimum power speed. Our study demonstrates that European shags actively adjust their flight behavior to utilize wind power to minimize the costs of take-off and cruising flight. © 2016. Published by The Company of Biologists Ltd.

  8. Vector wind and vector wind shear models 0 to 27 km altitude for Cape Kennedy, Florida, and Vandenberg AFB, California

    NASA Technical Reports Server (NTRS)

    Smith, O. E.

    1976-01-01

    The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.

  9. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    PubMed

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-24

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  10. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    NASA Astrophysics Data System (ADS)

    Berri, Guillermo J.; Bertossa, Germán

    2018-01-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  11. Solar wind dynamic pressure and electric field as the main factors controlling Saturn's aurorae.

    PubMed

    Crary, F J; Clarke, J T; Dougherty, M K; Hanlon, P G; Hansen, K C; Steinberg, J T; Barraclough, B L; Coates, A J; Gérard, J-C; Grodent, D; Kurth, W S; Mitchell, D G; Rymer, A M; Young, D T

    2005-02-17

    The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms, but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system, whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.

  12. Factors associated with NO2 and NOX concentration gradients near a highway

    NASA Astrophysics Data System (ADS)

    Richmond-Bryant, J.; Snyder, M. G.; Owen, R. C.; Kimbrough, S.

    2018-02-01

    The objective of this research is to learn how the near-road gradient, in which NO2 and NOX (NO + NO2) concentrations are elevated, varies with changes in meteorological and traffic variables. Measurements of NO2 and NOX were obtained east of I-15 in Las Vegas and fit to functions whose slopes (dCNO2/dx and dCNOX/dx, respectively) characterize the size of the near-road zone where NO2 and NOX concentrations from mobile sources on the highway are elevated. These metrics were used to learn about the near-road gradient by modeling dCNO2/dx and dCNOX/dx as functions of meteorological variables (e.g., wind direction, wind speed), traffic (vehicle count), NOX concentration upwind of the road, and O3 concentration at two fixed-site ambient monitors. Generalized additive models (GAM) were used to model dCNO2/dx and dCNOX/dx versus the independent variables because they allowed for nonlinearity of the variables being compared. When data from all wind directions were included in the analysis, variability in O3 concentration comprised the largest proportion of variability in dCNO2/dx, followed by variability in wind direction. In a second analysis constrained to winds from the west, variability in O3 concentration remained the largest contributor to variability in dCNO2/dx, but the relative contribution of variability in wind speed to variability in dCNO2/dx increased relative to its contribution for the all-wind analysis. When data from all wind directions were analyzed, variability in wind direction was by far the largest contributor to variability in dCNOX/dx, with smaller contributions from hour of day and upwind NOX concentration. When only winds from the west were analyzed, variability in upwind NOX concentration, wind speed, hour of day, and traffic count all were associated with variability in dCNOX/dx. Increases in O3 concentration were associated with increased magnitude near-road dCNO2/dx, possibly shrinking the zone of elevated concentrations occurring near roads. Wind direction parallel to the highway was also related to an increased magnitude of both dCNO2/dx and dCNOX/dx, again likely shrinking the zone of elevated concentrations occurring near roads. Wind direction perpendicular to the road decreased the magnitude of dCNO2/dx and dCNOX/dx and likely contributed to growth of the zone of elevated concentrations occurring near roads. Thus, variability in near-road concentrations is influenced by local meteorology and ambient O3 concentration.

  13. Predicting behavior and size of crown fires in the northern Rocky Mountains

    Treesearch

    Richard C. Rothermel

    1991-01-01

    Describes methods for approximating behavior and size of a wind-driven crown fire in mountainous terrain. Covers estimation of average rate of spread, energy release from tree crowns and surface fuel, fireline intensity, flame length, and unit area power of the fire and ambient wind. Plume-dominated fires, which may produce unexpectedly fast spread rates even with low...

  14. Cumulative and Synergistic Effects of Physical, biological, and Acoustic Signals on Marine Mammal Habitat Use

    DTIC Science & Technology

    2013-04-01

    a simultaneous time series of marine mammal vocalizations and changing soundscapes (sound levels and spectral shapes) related to surface conditions...mooring (Figures 4, 6, and 7). 1 Figure 4. Seasoanl soundscapes generated... soundscapes in fall (a) and summer (d) show a linear pattern indicating an environment dominated by wind. Sound levels increase linearly as wind

  15. 40 CFR 69.41 - New exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating specifications. At a minimum, the wind direction data will be monitored, collected and reported as 1-hour averages, starting on the hour. If the average wind direction for a given hour is from within the designated sector, the wind will be deemed to have flowed from within the sector for that hour...

  16. 40 CFR 69.41 - New exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operating specifications. At a minimum, the wind direction data will be monitored, collected and reported as 1-hour averages, starting on the hour. If the average wind direction for a given hour is from within the designated sector, the wind will be deemed to have flowed from within the sector for that hour...

  17. Sources and levels of background noise in the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    1988-01-01

    Background noise levels are measured in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel following installation of a sound-absorbent lining on the test-section walls. Results show that the fan-drive noise dominated the empty test-section background noise at airspeeds below 120 knots. Above 120 knots, the test-section broadband background noise was dominated by wind-induced dipole noise (except at lower harmonics of fan blade-passage tones) most likely generated at the microphone or microphone support strut. Third-octave band and narrow-band spectra are presented for several fan operating conditions and test-section airspeeds. The background noise levels can be reduced by making improvements to the microphone wind screen or support strut. Empirical equations are presented relating variations of fan noise with fan speed or blade-pitch angle. An empirical expression for typical fan noise spectra is also presented. Fan motor electric power consumption is related to the noise generation. Preliminary measurements of sound absorption by the test-section lining indicate that the 152 mm thick lining will adequately absorb test-section model noise at frequencies above 300 Hz.

  18. Microphone directionality, pre-emphasis filter, and wind noise in cochlear implants.

    PubMed

    Chung, King; McKibben, Nicholas

    2011-10-01

    Wind noise can be a nuisance or a debilitating masker for cochlear implant users in outdoor environments. Previous studies indicated that wind noise at the microphone/hearing aid output had high levels of low-frequency energy and the amount of noise generated is related to the microphone directionality. Currently, cochlear implants only offer either directional microphones or omnidirectional microphones for users at-large. As all cochlear implants utilize pre-emphasis filters to reduce low-frequency energy before the signal is encoded, effective wind noise reduction algorithms for hearing aids might not be applicable for cochlear implants. The purposes of this study were to investigate the effect of microphone directionality on speech recognition and perceived sound quality of cochlear implant users in wind noise and to derive effective wind noise reduction strategies for cochlear implants. A repeated-measure design was used to examine the effects of spectral and temporal masking created by wind noise recorded through directional and omnidirectional microphones and the effects of pre-emphasis filters on cochlear implant performance. A digital hearing aid was programmed to have linear amplification and relatively flat in-situ frequency responses for the directional and omnidirectional modes. The hearing aid output was then recorded from 0 to 360° at flow velocities of 4.5 and 13.5 m/sec in a quiet wind tunnel. Sixteen postlingually deafened adult cochlear implant listeners who reported to be able to communicate on the phone with friends and family without text messages participated in the study. Cochlear implant users listened to speech in wind noise recorded at locations that the directional and omnidirectional microphones yielded the lowest noise levels. Cochlear implant listeners repeated the sentences and rated the sound quality of the testing materials. Spectral and temporal characteristics of flow noise, as well as speech and/or noise characteristics before and after the pre-emphasis filter, were analyzed. Correlation coefficients between speech recognition scores and crest factors of wind noise before and after pre-emphasis filtering were also calculated. Listeners obtained higher scores using the omnidirectional than the directional microphone mode at 13.5 m/sec, but they obtained similar speech recognition scores for the two microphone modes at 4.5 m/sec. Higher correlation coefficients were obtained between speech recognition scores and crest factors of wind noise after pre-emphasis filtering rather than before filtering. Cochlear implant users would benefit from both directional and omnidirectional microphones to reduce far-field background noise and near-field wind noise. Automatic microphone switching algorithms can be more effective if the incoming signal were analyzed after pre-emphasis filters for microphone switching decisions. American Academy of Audiology.

  19. SeaWinds Global Coverage with Detail of Hurricane Floyd

    NASA Image and Video Library

    2000-05-07

    The distribution of ocean surface winds over the Atlantic Ocean, based on September 1999 data from NASA SeaWinds instrument on the QuikScat satellite, shows wind direction, superimposed on the color image indicating wind speed.

  20. Wind turbine having a direct-drive drivetrain

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2011-02-22

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  1. The dune effect on sand-transporting winds on Mars.

    PubMed

    Jackson, Derek W T; Bourke, Mary C; Smyth, Thomas A G

    2015-11-05

    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface-atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern 'wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today.

  2. The dune effect on sand-transporting winds on Mars

    PubMed Central

    Jackson, Derek W. T.; Bourke, Mary C; Smyth, Thomas A. G.

    2015-01-01

    Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface–atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern ‘wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today. PMID:26537669

  3. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    NASA Technical Reports Server (NTRS)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  4. Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Kaoru

    1993-02-14

    This paper describes small-scale wind disturbances associated with Typhoon Kelly (October 1987) that were observed by the MU radar, one of the MST (mesosphere, stratosphere, and troposphere) radars, for about 60 hours with fine time and height resolution. To elucidate the background of small-scale disturbances, synoptic-scale variation in atmospheric stability related to the typhoon structure during the observation is examined. When the typhoon passed near the MU radar site, the structure was no longer axisymmetric. There is deep convection only in north-northeast side of the typhoon while convection behind it is suppressed by a synoptic-scale cold air mass moving eastwardmore » to the west of the typhoon. A change in atmospheric stability over the radar site as indicated by echo power profiles is likely due to the passage of the sharp transition zone of convection. Strong small-scale wind disturbances were observed around the typhoon passage. The statistical characteristics are different before (BT) and after (AT) the typhoon passage, especially in frequency spectra of vertical wind fluctuations. The spectra for BT are unique compared with earlier studies of vertical winds observed by VHF radars. Another difference is dominance of a horizontal wind component with a vertical wavelength of about 3 km, observed only in AT. Further analyses are made of characteristics and vertical momentum fluxes for dominant disturbances. Some disturbances are generated to remove the momentum of cyclonic wind rotation of the typhoon. Deep convection, topographic effects in strong winds, and strong vertical shear of horizontal winds around an inversion layer are possible sources of the disturbances. Two monochromatic disturbances lasting for more than 10 h in the lower stratosphere observed in BT and AT are identified as inertio-gravity waves, by obtaining wave parameters consistent with all observed quantities. Both of the inertio-gravity waves propagate energy away from the typhoon.« less

  5. Martian Morse Code

    NASA Image and Video Library

    2016-06-29

    These dark dunes are influenced by local topography. The shape and orientation of dunes can usually tell us about wind direction, but in this image, the dune-forms are very complex, so it's difficult to know the wind direction. However, a circular depression (probably an old and infilled impact crater) has limited the amount of sand available for dune formation and influenced local winds. As a result, the dunes here form distinct dots and dashes. The "dashes" are linear dunes formed by bi-directional winds, which are not traveling parallel to the dune. Instead, the combined effect of winds from two directions at right angles to the dunes, funnels material into a linear shape. The smaller "dots" (called "barchanoid dunes") occur where there is some interruption to the process forming those linear dunes. This process is not well understood at present and is one motivation for HiRISE to image this area. http://photojournal.jpl.nasa.gov/catalog/PIA20735

  6. A characterization of autumn nocturnal migration detected by weather surveillance radars in the northeastern USA.

    PubMed

    Farnsworth, Andrew; Van DOREN, Benjamin M; Hochachka, Wesley M; Sheldon, Daniel; Winner, Kevin; Irvine, Jed; Geevarghese, Jeffrey; Kelling, Steve

    2016-04-01

    Billions of birds migrate at night over North America each year. However, few studies have described the phenology of these movements, such as magnitudes, directions, and speeds, for more than one migration season and at regional scales. In this study, we characterize density, direction, and speed of nocturnally migrating birds using data from 13 weather surveillance radars in the autumns of 2010 and 2011 in the northeastern USA. After screening radar data to remove precipitation, we applied a recently developed algorithm for characterizing velocity profiles with previously developed methods to document bird migration. Many hourly radar scans contained windborne "contamination," and these scans also exhibited generally low overall reflectivities. Hourly scans dominated by birds showed nightly and seasonal patterns that differed markedly from those of low reflectivity scans. Bird migration occurred during many nights, but a smaller number of nights with large movements of birds defined regional nocturnal migration. Densities varied by date, time, and location but peaked in the second and third deciles of night during the autumn period when the most birds were migrating. Migration track (the direction to which birds moved) shifted within nights from south-southwesterly to southwesterly during the seasonal migration peaks; this shift was not consistent with a similar shift in wind direction. Migration speeds varied within nights, although not closely with wind speed. Airspeeds increased during the night; groundspeeds were highest between the second and third deciles of night, when the greatest density of birds was migrating. Airspeeds and groundspeeds increased during the fall season, although groundspeeds fluctuated considerably with prevailing winds. Significant positive correlations characterized relationships among bird densities at southern coastal radar stations and northern inland radar stations. The quantitative descriptions of broadscale nocturnal migration patterns presented here will be essential for biological and conservation applications. These descriptions help to define migration phenology in time and space, fill knowledge gaps in avian annual cycles, and are useful for monitoring long-term population trends of migrants. Furthermore, these descriptions will aid in assessing potential risks to migrants, particularly from structures with which birds collide and artificial lighting that disorients migrants.

  7. MAVEN Pickup Ion Constraints on Mars Neutral Escape

    NASA Astrophysics Data System (ADS)

    Rahmati, A.; Larson, D. E.; Cravens, T.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; McFadden, J. P.; Mitchell, D. L.; Thiemann, E.; Connerney, J. E. P.; DiBraccio, G. A.; Espley, J. R.; Eparvier, F. G.

    2017-12-01

    Mars is currently losing its atmosphere mainly due to the escape of neutral hydrogen and oxygen. Directly measuring the rate of escaping neutrals is difficult, because the neutral density in the Mars exosphere is dominated, up to several Martian radii, by atoms that are gravitationally bound to the planet. Neutral atoms in the Martian exosphere, however, can get ionized, picked up, and accelerated by the solar wind motional electric field and energized to energies high enough for particle detectors to measure them. The MAVEN SEP instrument detects O+ pickup ions that are created at altitudes where the escaping part of the exosphere is dominant. Fluxes of these ions reflect neutral densities in the distant exosphere of Mars, allowing us to constrain neutral oxygen escape rates. The MAVEN SWIA and STATIC instruments measure pickup H+ and O+ created closer to Mars; comparisons of these data with models can be used to constrain exospheric hot O and thermal H densities and escape rates. In this work, pickup ion measurements from SEP, SWIA, and STATIC, taken during the first 3 Earth years of the MAVEN mission, are compared to the outputs of a pickup ion model to constrain the variability of neutral escape at Mars. The model is based on data from six MAVEN instruments, namely, MAG providing magnetic field used in calculating pickup ion trajectories, SWIA providing solar wind velocity as well as 3D pickup H+ and O+ spectra, SWEA providing solar wind electron spectrum used in electron impact ionization rate calculations, SEP providing pickup O+ spectra, STATIC providing mass resolved 3D pickup H+ and O+ spectra, and EUVM providing solar EUV spectra used in photoionization rate calculations. A variability of less than a factor of two is observed in hot oxygen escape rates, whereas thermal escape of hydrogen varies by an order of magnitude with Mars season. This hydrogen escape variability challenges our understanding of the H cycle at Mars, but is consistent with other recent measurements.

  8. Calibration of a Direct Detection Doppler Wind Lidar System using a Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Rees, David

    2012-07-01

    As a critical stage of a Project to develop an airborne Direct-Detection Doppler Wind Lidar System, it was possible to exploit a Wind Tunnel of the VZLU, Prague, Czech Republic for a comprehensive series of tests against calibrated Air Speed generated by the Wind Tunnel. The initial results from these test sequences will be presented. The rms wind speed errors were of order 0.25 m/sec - very satisfactory for this class of Doppler Wind Lidar measurements. The next stage of this Project will exploit a more highly-developed laser and detection system for measurements of wind shear, wake vortex and other potentially hazardous meteorological phenomena at Airports. Following the end of this Project, key parts of the instrumentation will be used for routine ground-based Doppler Wind Lidar measurements of the troposphere and stratosphere.

  9. Environmental forcing metrics to quantify short-term foredune morphodynamics

    NASA Astrophysics Data System (ADS)

    Spore, N.; Conery, I.; Brodie, K. L.; Palmsten, M.

    2016-12-01

    Coastal foredunes evolve continuously due to competing aeolian and hydrodynamic processes. Onshore to shore-parallel winds transport sand to the dune while storm-driven surge and wave runup remove sand from the dune. Dune-growth requires periods of time when the wind exceeds a threshold velocity to initiate transport and the relative geometry of the dry beach to the wind direction to create large fetches. This study aims to derive an aeolian transport potential (ATP) metric from the precipitation, available fetch (a function of wind angle and dry-beach width), and a threshold wind speed to initiate transport. ATP is then combined with a hydrodynamic transport potential (HTP) metric, defined as the number of hours of wave impact to the foredune or upper beach, to assess the time-dependent magnitude of the forcing factors affecting morphological evolution of the foredune between monthly terrestrial lidar surveys.This study focuses on two distinctly different dune fields and their frontal or incipient dune ridges in Duck, NC at the USACE Field Research Facility (FRF): (1) an undisturbed, tall and narrow recently impacted dune with a near vertical face; and (2) an undisturbed, shorter and wider dune with gentler and more hummocky slopes. The two sites are separated by < 1km alongshore and experience similar environmental forcings due to their close proximity. We used hourly precipitation, wind, wave, and imagery-derived runup data from the FRF and surrounding weather stations as inputs to ATP and HTP for each site. We scanned each site at monthly intervals for 18 months with high-resolution terrestrial lidar and generated 10 cm digital elevation models (DEM) for each scan. Incremental and cumulative changes in elevation, volume, and dune toe position were extracted from the DEMs and compared to the ATP and HTP values between the surveys to evaluate the dominant factors affecting sediment flux to the system.

  10. K2 photometry and HERMES spectroscopy of the blue supergiant ρ Leo: rotational wind modulation and low-frequency waves

    NASA Astrophysics Data System (ADS)

    Aerts, C.; Bowman, D. M.; Símon-Díaz, S.; Buysschaert, B.; Johnston, C.; Moravveji, E.; Beck, P. G.; De Cat, P.; Triana, S.; Aigrain, S.; Castro, N.; Huber, D.; White, T.

    2018-05-01

    We present an 80-d long uninterrupted high-cadence K2 light curve of the B1Iab supergiant ρ Leo (HD 91316), deduced with the method of halo photometry. This light curve reveals a dominant frequency of frot = 0.0373 d-1 and its harmonics. This dominant frequency corresponds with a rotation period of 26.8 d and is subject to amplitude and phase modulation. The K2 photometry additionally reveals multiperiodic low-frequency variability (<1.5 d-1) and is in full agreement with low-cadence high-resolution spectroscopy assembled during 1800 d. The spectroscopy reveals rotational modulation by a dynamic aspherical wind with an amplitude of about 20 km s-1 in the H α line, as well as photospheric velocity variations of a few km s-1 at frequencies in the range 0.2-0.6 d-1 in the Si III 4567 Å line. Given the large macroturbulence needed to explain the spectral line broadening of the star, we interpret the detected photospheric velocity as due to travelling superinertial low-degree large-scale gravity waves with dominant tangential amplitudes and discuss why ρ Leo is an excellent target to study how the observed photospheric variability propagates into the wind.

  11. Discovery of Suprathermal Fe+ in and near Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Christon, S. P.; Hamilton, D. C.; Plane, J. M. C.; Mitchell, D. G.; Grebowsky, J. M.; Spjeldvik, W. N.; Nylund, S. R.

    2017-12-01

    Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been observed in and near Earth's equatorial magnetosphere using long-term ( 21 years) Geotail/STICS ion composition data. Fe+ is rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions. Earth's suprathermal Fe+ appears to be positively associated with both geomagnetic and solar activity. Three candidate lower-energy sources are examined for relevance: ionospheric outflow of Fe+ escaped from ion layers altitude, charge exchange of nominal solar wind Fe+≥7, and/or solar wind transported inner source pickup Fe+ (likely formed by solar wind Fe+≥7 interaction with near sun interplanetary dust particles, IDPs). Semi-permanent ionospheric Fe+ layers form near 100 km altitude from the tons of IDPs entering Earth's atmosphere daily. Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data at low-to-moderate geomagnetic activity levels, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source then. Earth flyby and cruise data from Cassini/CHEMS, a nearly identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Therefore, lacking any other candidate sources, it appears that ionospheric Fe+ constitutes at least an important portion of Earth's suprathermal Fe+, comparable to observations at Saturn where ionospheric origin suprathermal Fe+ has also been observed.

  12. Analysis of environmental dispersion in a wetland flow under the effect of wind: Extended solution

    NASA Astrophysics Data System (ADS)

    Wang, Huilin; Huai, Wenxin

    2018-02-01

    The accurate analysis of the contaminant transport process in wetland flows is essential for environmental assessment. However, dispersivity assessment becomes complicated when the wind strength and direction are taken into consideration. Prior studies illustrating the wind effect on environmental dispersion in wetland flows simply focused on the mean longitudinal concentration distribution. Moreover, the results obtained by these analyses are not accurate when done on a smaller scale, namely, the initial stage of the contaminant transport process. By combining the concentration moments method (the Aris' method) and Gill's expansion theory, the previous researches on environmental dispersion in wetland flows with effect of wind have been extended. By adopting up to 4th-order moments, the wind effect-as illustrated by dimensionless parameters Er (wind force) and ω (wind direction)-on kurtosis and skewness is discussed, the up to 4th-order vertical concentration distribution is obtained, and the two-dimensional concentration distribution is illustrated. This work demonstrates that wind intensity and direction can significantly affect the contaminant dispersion. Moreover, the study presents a more accurate analytical solution of environmental dispersion in wetland flows under various wind conditions.

  13. Supporting data for hydrologic studies in San Francisco Bay, California : meteorological measurements at the Port of Redwood City during 1998-2001

    USGS Publications Warehouse

    Schemel, Laurence E.

    2002-01-01

    Meteorological data were collected during 1998-2001 at the Port of Redwood City, California, to support hydrologic studies in South San Francisco Bay. The measured meteorological variables were air temperature, atmospheric pressure, quantum flux (insolation), and four parameters of wind speed and direction: scalar mean horizontal wind speed, (vector) resultant horizontal wind speed, resultant wind direction, and standard deviation of the wind direction. Hourly mean values based on measurements at five-minute intervals were logged at the site. Daily mean values were computed for temperature, infolation, pressure, and scalar wind speed. Daily mean values for 1998-2001 are described in this report, and a short record of hourly mean values is compared to data from another near-by station. Data (hourly and daily mean) from the entire period of record (starting in April 1992) and reports describing data prior to 1998 are provided.

  14. A Numerical Model Study of Nocturnal Drainage Flows with Strong Wind and Temperature Gradients.

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Bunker, S.

    1989-07-01

    A second-moment turbulence-closure model described in Yamada and Bunker is used to simulate nocturnal drainage flows observed during the 1984 ASCOT field expedition in Brush Creek, Colorado. In order to simulate the observed strong wind directional shear and temperature gradients, two modifications are added to the model. The strong wind directional shear was maintained by introducing a `nudging' term in the equation of motion to guide the modeled winds in the layers above the ridge top toward the observed wind direction. The second modification was accomplished by reformulating the conservation equation for the potential temperature in such a way that only the deviation from the horizontally averaged value was prognostically computed.The vegetation distribution used in this study is undoubtedly crude. Nevertheless, the present simulation suggests that tall tree canopy can play an important role in producing inhomogeneous wind distribution, particularly in the levels below the canopy top.

  15. Structure and variability of the Western Maine Coastal Current

    USGS Publications Warehouse

    Churchill, J.H.; Pettigrew, N.R.; Signell, R.P.

    2005-01-01

    Analyses of CTD and moored current meter data from 1998 and 2000 reveal a number of mechanisms influencing the flow along the western coast of Maine. On occasions, the Eastern Maine Coastal Current extends into the western Gulf of Maine where it takes the form of a deep (order 100 m deep) and broad (order 20 km wide) southwestward flow with geostrophic velocities exceeding 20 cm s -1. This is not a coastally trapped flow, however. In fields of geostrophic velocity, computed from shipboard-CTD data, the core of this current is roughly centered at the 100 m isobath and its onshore edge is no closer than 10 km from the coast. Geostrophic velocity fields also reveal a relatively shallow (order 10 m deep) baroclinic flow adjacent to the coast. This flow is also directed to the southwest and appears to be principally comprised of local river discharge. Analyses of moored current meter data reveal wind-driven modulations of the coastal flow that are consistent with expectations from simple theoretical models. However, a large fraction of the near-shore current variance does not appear to be directly related to wind forcing. Sea-surface temperature imagery, combined with analysis of the moored current meter data, suggests that eddies and meanders within the coastal flow may at times dominate the near-shore current variance. ?? 2005 Elsevier Ltd. All rights reserved.

  16. Schneefernerhaus as a mountain research station for clouds and turbulence - Part 1: Flow conditions and large-scale turbulence

    NASA Astrophysics Data System (ADS)

    Risius, S.; Xu, H.; Di Lorenzo, F.; Xi, H.; Siebert, H.; Shaw, R. A.; Bodenschatz, E.

    2015-01-01

    Cloud measurements are usually carried out with airborne campaigns, which are expensive and are limited by temporal duration and weather conditions. Ground based measurements at high-altitude research stations therefore play a complementary role in cloud study. Using the meteorological data (wind speed, direction, temperature, humidity, visibility, etc.) collected by the German Weather Service (DWD) from 2000 to 2012 and turbulence measurements recorded by multiple ultrasonic sensors (sampled at 10 Hz) in 2010, we show that the Umweltforschungsstation Schneefernerhaus (UFS) located just below the peak of Zugspitze in the German Alps, at a height of 2650 m, is a well-suited station for cloud-turbulence research. The wind at UFS is dominantly in the east-west direction and nearly horizontal. During the summer time (July and August) the UFS is immersed in warm clouds about 25% of the time. The clouds are either from convection originating in the valley in the east, or associated with synoptic-scale weather systems typically advected from the west. Air turbulence, as measured from the second and third order velocity structure functions that exhibit well-developed inertial ranges, possesses Taylor microscale Reynolds numbers up to 104, with the most probable value at ~ 3000. In spite of the complex topography, the turbulence appears to be nearly as isotropic as many laboratory flows when evaluated on the so called "Lumley-triangle".

  17. The production and sputtering of S2 by keV ion bombardment

    NASA Technical Reports Server (NTRS)

    Boring, J. W.; Chrisey, D. B.; Oshaughnessy, D. J.; Phipps, J. A.; Zhao, N.

    1986-01-01

    The ion bombardment of S-containing molecules in comets is simulated experimentally. Mass-analyzed 30-keV beams of Ar(+) and He(+) are directed at solid S, H2S, and CS2 targets at temperatures 15 K, and the neutral molecular species produced are ionized and analyzed using a quadrupole mass spectrometer. The dominant species detected are S1 and S2 for the S target, H2S and S2 for the H2S target, and S, CS, S2, and CS2 for the CS2 target. In the latter case, it is found that after about 10 to the 14th He(+) ions/sq cm have struck the target, further sputtering is prevented by formation of a dark brown deposit which is stable at room temperature; the residue forms more slowly when Ar(+) ions are used. These results, indicating relatively efficient S2 production by ion bombardment, are applied to theoretical models of S2 production and/or ejection by solar-wind, solar-flare, or cosmic-ray ions striking comets. It is found that direct solar-wind production of S2 by sputtering is unlikely at realistic bombardment rates, but that H2S-S2 conversion by energetic ions could be significant, with less stringent ice-temperature and irradiation-flux constraints than in the case of S2 production by photons.

  18. Nowcast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan

    USGS Publications Warehouse

    Nevers, Meredith B.; Whitman, Richard L.

    2005-01-01

    Predictive modeling for Escherichia coli concentrations at effluent-dominated beaches may be a favorable alternative to current, routinely criticized monitoring standards. The ability to model numerous beaches simultaneously and provide real-time data decreases cost and effort associated with beach monitoring. In 2004, five Lake Michigan beaches and the nearby Little Calumet River outfall were monitored for E. coli 7 days a week; on nine occasions, samples were analyzed for coliphage to indicate a sewage source. Ambient lake, river, and weather conditions were measured or obtained from independent monitoring sources. Positive tests for coliphage analysis indicated sewage was present in the river and on bathing beaches following heavy rainfall. Models were developed separately for days with prevailing onshore and offshore winds due to the strong influence of wind direction in determining the river's impact on the beaches. Using regression modeling, it was determined that during onshore winds, E. coli   could be adequately predicted using wave height, lake chlorophyll and turbidity, and river turbidity (R2=0.635, N=94); model performance decreased for offshore winds using wave height, wave period, and precipitation (R2=0.320, N=124). Variation was better explained at individual beaches. Overall, the models only failed to predict E. coli levels above the EPA closure limit (235 CFU/100 ml) on five of eleven occasions, indicating that the model is a more reliable alternative to the monitoring approach employed at most recreational beaches.

  19. Three decades of Martian surface changes

    USGS Publications Warehouse

    Geissler, P.E.

    2005-01-01

    The surface of Mars has changed dramatically during the three decades spanned by spacecraft exploration. Comparisons of Mars Global Surveyor images with Viking and Mariner 9 pictures suggest that more than one third of Mars' surface area has brightened or darkened by at least 10%. Such albedo changes could produce significant effects on solar heating and the global circulation of winds across the planet. All of the major changes took place in areas of moderate to high thermal inertia and rock abundance, consistent with burial of rocky surfaces by thin dust layers deposited during dust storms and subsequent exposure of the rocky surfaces by aeolian erosion. Several distinct mechanisms contribute to aeolian erosion on Mars. Prevailing winds dominate erosion at low latitudes, producing diffuse albedo boundaries and elongated wind streaks generally oriented in the direction of southern summer winds. Dust devils darken the mid to high latitudes from 45 to 70 degrees during the summer seasons, forming irregular albedo patterns consisting of dark linear tracks. Dust storms produce regional albedo variations with distinct but irregular margins. Dark sand duties in southern high latitudes appear to be associated with regional darkening that displays diffuse albedo boundaries. No surface changes were observed to repeat regularly on an annual basis, but many of the changes took place in areas that alternate episodically between high- and low-albedo states as thin mantles of dust are deposited and later stripped off. Hence the face of Mars remains recognizable after a century of telescopic observations, in spite of the enormous extent of alteration that has taken place during the era of spacecraft exploration.

  20. Wake meandering statistics of a model wind turbine: Insights gained by large eddy simulations

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2016-08-01

    Wind tunnel measurements in the wake of an axial flow miniature wind turbine provide evidence of large-scale motions characteristic of wake meandering [Howard et al., Phys. Fluids 27, 075103 (2015), 10.1063/1.4923334]. A numerical investigation of the wake, using immersed boundary large eddy simulations able to account for all geometrical details of the model wind turbine, is presented here to elucidate the three-dimensional structure of the wake and the mechanisms controlling near and far wake instabilities. Similar to the findings of Kang et al. [Kang et al., J. Fluid Mech. 744, 376 (2014), 10.1017/jfm.2014.82], an energetic coherent helical hub vortex is found to form behind the turbine nacelle, which expands radially outward downstream of the turbine and ultimately interacts with the turbine tip shear layer. Starting from the wake meandering filtering used by Howard et al., a three-dimensional spatiotemporal filtering process is developed to reconstruct a three-dimensional meandering profile in the wake of the turbine. The counterwinding hub vortex undergoes a spiral vortex breakdown and the rotational component of the hub vortex persists downstream, contributing to the rotational direction of the wake meandering. Statistical characteristics of the wake meandering profile, along with triple decomposition of the flow field separating the coherent and incoherent turbulent fluctuations, are used to delineate the near and far wake flow structures and their interactions. In the near wake, the nacelle leads to mostly incoherent turbulence, while in the far wake, turbulent coherent structures, especially the azimuthal velocity component, dominate the flow field.

  1. Measurements of Ion-Neutral Coupling in the Auroral F Region in Response to Increases in Particle Precipitation

    NASA Astrophysics Data System (ADS)

    Kiene, A.; Bristow, W. A.; Conde, M. G.; Hampton, D. L.

    2018-05-01

    Neutral winds are a key factor in the dynamics of the ionosphere-thermosphere system. Previous observations have shown that neutral and ion flows are strongly coupled during periods of auroral activity when ion drag forcing can become the dominant force driving neutral wind flow. This is primarily due to increases in ion density due to enhanced particle precipitation as well as associated increases the strength of the electric fields that drive ion motions. Due to this strong coupling, numerical simulations of neutral dynamics have difficulty reproducing neutral wind observations when they are driven by modeled precipitation and modeled convection. It is therefore desirable whenever possible to have concurrent coincident measurements of auroral precipitation and ion convection. Recent advancements in high-resolution fitting of Super Dual Auroral Radar Network ion convection data have enabled the generation of steady maps of ion drifts over Alaska, coinciding with several optics sites. The Super Dual Auroral Radar Network measurements are compared with scanning Doppler imager neutral wind measurements at similar altitude, providing direct comparisons of ion and neutral velocities over a wide field and for long periods throughout the night. Also present are a digital all-sky imager and a meridian spectrograph, both of which provide measurements of auroral intensity on several wavelengths. In this study, we combine these data sets to present three case studies that show significant correlation between increases in F region precipitation and enhancements in ion-neutral coupling in the evening sector. We investigate the time scales over which the coupling takes place and compare our findings to previous measurements.

  2. A study of ambient fine particles at Tianjin International Airport, China.

    PubMed

    Ren, Jianlin; Liu, Junjie; Li, Fei; Cao, Xiaodong; Ren, Shengxiong; Xu, Bin; Zhu, Yifang

    2016-06-15

    The total count number concentration of particles from 10 to 1000nm, particle size distribution, and PM2.5 (aerodynamic diameter≤2.5μm) mass concentration were measured on a parking apron next to the runway at Tianjin International Airport in China. The data were collected 250, 270, 300, 350, and 400m from the runway. Wind direction and wind speed played important roles in determining the characteristics of the atmospheric particles. An inverted U-shaped relationship was observed between the measured particle number concentration and wind speed, with an average peak concentration of 2.2×10(5)particles/cm(3) at wind speeds of approximately 4-5m/s. The atmospheric particle number concentration was affected mainly by aircraft takeoffs and landings, and the PM2.5 mass concentration was affected mainly by the relative humidity (RH) of the atmosphere. Ultrafine particles (UFPs, diameter<100nm), with the highest number concentration at a particle size of approximately 16nm, dominated the measured particle size distributions. The calculated particle emission index values for aircraft takeoff and landing were nearly the same, with mean values of 7.5×10(15)particles/(kg fuel) and 7.6×10(15)particles/(kg fuel), respectively. The particle emission rate for one aircraft during takeoff is two orders of magnitude higher than for all gasoline-powered passenger vehicles in Tianjin combined. The particle number concentrations remained much higher than the background concentrations even beyond 400m from the runway. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Flux measurements of energy and trace gases in urban Houston, Texas

    NASA Astrophysics Data System (ADS)

    Boedeker, I.; Schade, G. W.; Adams, S.; Park, C.

    2008-12-01

    We describe the setup and some first year results of a new flux measurements tower in an urban area. An existing radio communications tower 4 km north of downtown Houston was equipped with micrometeorological instrumentation and trace gas sampling lines in spring 2007. Wind speed, temperature and relative humidity are recorded at five levels between 12 and 60 m above ground; 3-D wind speed measurements, solar and net radiances, and trace gas sampling are established from the 60 m level. A closed path IRGA is used for CO2 and water vapor fluxes, and independent instrumentation for criteria pollutant and VOC fluxes. Two CSI data loggers and software control the measurements, and EdiRe software is used to analyze turbulence data and compute fluxes. A project description is provided at http://atmo.tamu.edu/yellowcabtower. Surface properties as calculated from the gradient measurements show the site to be surprisingly uniform, with displacement heights between 5 and 9 m and roughness lengths between 0.4 and 0.7 m, despite urban heterogeneity. The latter is investigated through visible/near IR orthoimagery and LIDAR data, which are incorporated into a local GIS. Net radiation was also only marginally affected by surface heterogeneity. At this urban location it is balanced by roughly equal amounts of sensible heat, latent heat, and storage fluxes. Latent heat flux, however, is smaller outside the growing season, with an equivalent increase in winter storage fluxes, as expected. Significant differences are also observed with direction during summer, showing decreased Bowen ratios and lower CO2 emissions from sectors with a larger urban tree canopy cover in the footprint. The largely mature, dominantly oak urban canopy cover alleviates approximately 100 W m- 2 during typical summer days. On the other hand, anthropogenic CO2 emissions dominate over photosynthetic uptake all year round. Measured carbon fluxes peak during morning rush-hour traffic, especially when increasing stretches of the main commuter road fall into the footprint. Outside the rush hour, daytime carbon fluxes typically ranged from 0.4 to 1.6 g C m-2 h-1. A seasonal comparison shows that up to 75% of midday anthropogenic carbon flux is removed via photosynthesis in the dominant wind sector, S, which bears typical tree canopy covers of 25-50% on pervious surfaces.

  4. An Electronic Weather Vane for Field Science

    ERIC Educational Resources Information Center

    Burman, J.; Talbert, R.; Carlton, K.

    2014-01-01

    This paper details the construction of a weather vane for the measurement of wind direction in field situations. The purpose of its construction was to analyse how wind direction affected the attractiveness of an insect pheromone in a dynamic outdoor environment, where wind could be a significant contributor to odour movement. The apparatus…

  5. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less

  6. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less

  7. Influence of wind on daily airborne pollen counts in Catalonia (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    tareq Majeed, Husam; Periago, Cristina; Alarcón, Marta; De Linares, Concepción; Belmonte, Jordina

    2016-04-01

    The aim of this study is to analize the influence of wind (speed and direction) on the daily airborne pollen counts recorded in Catalonia (NE Iberian Peninsula) of 21 pollen taxa recorded at 6 aerobiological stations: Barcelona, Bellaterra, Girona, Lleida Manresa, and Tarragona for the period 2004-2014. The taxa studied are Alnus, Betula, Castanea, Cupressaceae, Fagus, Fraxinus, Olea, Pinus, Platanus, total Quercus, Quercus deciduous type, Quercus evergreen type, Ulmus, Corylus, Pistacia, Artemisia, Chenopodiaceae/Amaranthaceae, Plantago, Poaceae, Polygonaceae, and Urticaceae. The mean daily wind direction was divided into 8 sectors: N, NE, E, SE, S, SW, W and NW. For each sector, the correlation between the daily pollen concentrations and wind speed using Spearman's rank correlation coefficient was computed and compared with the wind rose charts. The results showed that Tarragona was the station with more significant correlations followed by Bellaterra, Lleida and Manresa. On the other hand, Artemisia was the most correlated taxon with mainly negative values, and Fagus was the least. The W wind direction showed the largest number of significant correlations, mostly positive, while the N direction was the least and negatively correlated.

  8. Wind reconstruction algorithm for Viking Lander 1

    NASA Astrophysics Data System (ADS)

    Kynkäänniemi, Tuomas; Kemppinen, Osku; Harri, Ari-Matti; Schmidt, Walter

    2017-06-01

    The wind measurement sensors of Viking Lander 1 (VL1) were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  9. Wind and fairness in ski jumping: A computer modelling analysis.

    PubMed

    Jung, Alexander; Müller, Wolfram; Staat, Manfred

    2018-06-25

    Wind is closely associated with the discussion of fairness in ski jumping. To counter-act its influence on the jump length, the International Ski Federation (FIS) has introduced a wind compensation approach. We applied three differently accurate computer models of the flight phase with wind (M1, M2, and M3) to study the jump length effects of various wind scenarios. The previously used model M1 is accurate for wind blowing in direction of the flight path, but inaccuracies are to be expected for wind directions deviating from the tangent to the flight path. M2 considers the change of airflow direction, but it does not consider the associated change in the angle of attack of the skis which additionally modifies drag and lift area time functions. M3 predicts the length effect for all wind directions within the plane of the flight trajectory without any mathematical simplification. Prediction errors of M3 are determined only by the quality of the input data: wind velocity, drag and lift area functions, take-off velocity, and weight. For comparing the three models, drag and lift area functions of an optimized reference jump were used. Results obtained with M2, which is much easier to handle than M3, did not deviate noticeably when compared to predictions of the reference model M3. Therefore, we suggest to use M2 in future applications. A comparison of M2 predictions with the FIS wind compensation system showed substantial discrepancies, for instance: in the first flight phase, tailwind can increase jump length, and headwind can decrease it; this is opposite of what had been anticipated before and is not considered in the current wind compensation system in ski jumping. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The Impact of Natural Hazards such as Turbulent Wind Gusts on the Wind Energy Conversion Process

    NASA Astrophysics Data System (ADS)

    Wächter, M.; Hölling, M.; Milan, P.; Morales, A.; Peinke, J.

    2012-12-01

    Wind turbines operate in the atmospheric boundary layer, where they are exposed to wind gusts and other types of natural hazards. As the response time of wind turbines is typically in the range of seconds, they are affected by the small scale intermittent properties of the turbulent wind. We show evidence that basic features which are known for small-scale homogeneous isotropic turbulence, and in particular the well-known intermittency problem, have an important impact on the wind energy conversion process. Intermittent statistics include high probabilities of extreme events which can be related to wind gusts and other types of natural hazards. As a summarizing result we find that atmospheric turbulence imposes its intermittent features on the complete wind energy conversion process. Intermittent turbulence features are not only present in atmospheric wind, but are also dominant in the loads on the turbine, i.e. rotor torque and thrust, and in the electrical power output signal. We conclude that profound knowledge of turbulent statistics and the application of suitable numerical as well as experimental methods are necessary to grasp these unique features and quantify their effects on all stages of wind energy conversion.

  11. Direct mechanical torque sensor for model wind turbines

    NASA Astrophysics Data System (ADS)

    Kang, Hyung Suk; Meneveau, Charles

    2010-10-01

    A torque sensor is developed to measure the mechanical power extracted by model wind turbines. The torque is measured by mounting the model generator (a small dc motor) through ball bearings to the hub and by preventing its rotation by the deflection of a strain-gauge-instrumented plate. By multiplying the measured torque and rotor angular velocity, a direct measurement of the fluid mechanical power extracted from the flow is obtained. Such a measurement is more advantageous compared to measuring the electrical power generated by the model generator (dc motor), since the electrical power is largely affected by internal frictional, electric and magnetic losses. Calibration experiments are performed, and during testing, the torque sensor is mounted on a model wind turbine in a 3 rows × 3 columns array of wind turbines in a wind tunnel experiment. The resulting electrical and mechanical powers are quantified and compared over a range of applied loads, for three different incoming wind velocities. Also, the power coefficients are obtained as a function of the tip speed ratio. Significant differences between the electrical and mechanical powers are observed, which highlights the importance of using the direct mechanical power measurement for fluid dynamically meaningful results. A direct calibration with the measured current is also explored. The new torque sensor is expected to contribute to more accurate model wind tunnel tests which should provide added flexibility in model studies of the power that can be harvested from wind turbines and wind-turbine farms.

  12. Windstorm Impact Reduction Implementation Plan

    DTIC Science & Technology

    2007-01-01

    wind events, including hurricanes, tornadoes and straight line winds from thunderstorms. This information is repeated in brief during severe weather...event documentation and damage analyses. Better understanding of atmospheric dynamics of straight - line winds Wind observing systems and...Developed techniques for improved extreme wind speed maps Investigation of straight - line winds Wind speed and direction analysis for input to

  13. Model structure of a cosmic-ray mediated stellar or solar wind

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Axford, W. I.

    1988-01-01

    An idealized hydrodynamic model is presented for the mediation of a free-streaming stellar wind by galactic cosmic rays or energetic particles accelerated at the stellar wind termination shock. The spherically-symmetric stellar wind is taken to be cold; the only body force is the cosmic ray pressure gradient. The cosmic rays are treated as a massless fluid with an effective mean diffusion coefficient k proportional to radial distance r. The structure of the governing equations is investigated both analytically and numerically. Solutions for a range of values of k are presented which describe the deceleration of the stellar wind and a transition to nearly incompressible flow and constant cosmic ray pressure at large r. In the limit of small k the transition steepens to a strong stellar wind termination shock. For large k the stellar wind is decelerated gradually with no shock transition. It is argued that the solutions provide a simple model for the mediation of the solar wind by interstellar ions as both pickup ions and the cosmic ray anomalous component which together dominate the pressure of the solar wind at large r.

  14. Study on typhoon characteristic based on bridge health monitoring system.

    PubMed

    Wang, Xu; Chen, Bin; Sun, Dezhang; Wu, Yinqiang

    2014-01-01

    Through the wind velocity and direction monitoring system installed on Jiubao Bridge of Qiantang River, Hangzhou city, Zhejiang province, China, a full range of wind velocity and direction data was collected during typhoon HAIKUI in 2012. Based on these data, it was found that, at higher observed elevation, turbulence intensity is lower, and the variation tendency of longitudinal and lateral turbulence intensities with mean wind speeds is basically the same. Gust factor goes higher with increasing mean wind speed, and the change rate obviously decreases as wind speed goes down and an inconspicuous increase occurs when wind speed is high. The change of peak factor is inconspicuous with increasing time and mean wind speed. The probability density function (PDF) of fluctuating wind speed follows Gaussian distribution. Turbulence integral scale increases with mean wind speed, and its PDF does not follow Gaussian distribution. The power spectrum of observation fluctuating velocity is in accordance with Von Karman spectrum.

  15. Influence of Barrier Wind Forcing on Heat Delivery Toward the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Fraser, Neil J.; Inall, Mark E.

    2018-04-01

    A high-resolution numerical hydrodynamic model of Kangerdlugssuaq Fjord and the adjacent southeast Greenland shelf region was constructed in order to investigate the dynamics of fjord-shelf exchange. Recent studies have suggested that rapid exchange flows, driven by along-shelf barrier wind events, are the dominant agent of exchange between fjord and shelf. These events are prone to occur during the winter, when freshwater forcing is minimal and observations of the fjord interior are scarce. Subglacial freshwater discharge was held at zero, so that any buoyancy-driven overturning circulation was driven by melting alone. The model described a geostrophically balanced background flow transporting water masses between the fjord mouth and the glacier terminus, indicating that rotational effects are of order-one importance. Barrier wind events were found to trigger coastally trapped internal wave activity within fjord, temporarily enhancing exchange and vertical mixing, and causing warm water to oscillate in the along-fjord direction. These internal waves were also found to enhance the background flow via Stokes' drift. Heat delivery through the fjord mouth was smaller than that recorded in summer observations, however the system is more effective at delivering this heat to the head of the fjord. There exists the potential for wintertime melting at the ice-ocean interface to be significant to the same order as summertime melting.

  16. MEASURING COLLISIONLESS DAMPING IN HELIOSPHERIC PLASMAS USING FIELD–PARTICLE CORRELATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, K. G.; Howes, G. G.

    2016-08-01

    An innovative field–particle correlation technique is proposed that uses single-point measurements of the electromagnetic fields and particle velocity distribution functions to investigate the net transfer of energy from fields to particles associated with the collisionless damping of turbulent fluctuations in weakly collisional plasmas, such as the solar wind. In addition to providing a direct estimate of the local rate of energy transfer between fields and particles, it provides vital new information about the distribution of that energy transfer in velocity space. This velocity-space signature can potentially be used to identify the dominant collisionless mechanism responsible for the damping of turbulentmore » fluctuations in the solar wind. The application of this novel field–particle correlation technique is illustrated using the simplified case of the Landau damping of Langmuir waves in an electrostatic 1D-1V Vlasov–Poisson plasma, showing that the procedure both estimates the local rate of energy transfer from the electrostatic field to the electrons and indicates the resonant nature of this interaction. Modifications of the technique to enable single-point spacecraft measurements of fields and particles to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, yielding a method with the potential to transform our ability to maximize the scientific return from current and upcoming spacecraft missions, such as the Magnetospheric Multiscale ( MMS ) and Solar Probe Plus missions.« less

  17. Parameterization of synoptic weather systems in the South Atlantic Bight for modeling applications

    NASA Astrophysics Data System (ADS)

    Wu, Xiaodong; Voulgaris, George; Kumar, Nirnimesh

    2017-10-01

    An event based, long-term, climatological analysis is presented that allows the creation of coastal ocean atmospheric forcing on the coastal ocean that preserves both frequency of occurrence and event time history. An algorithm is developed that identifies individual storm event (cold fronts, warm fronts, and tropical storms) from meteorological records. The algorithm has been applied to a location along the South Atlantic Bight, off South Carolina, an area prone to cyclogenesis occurrence and passages of atmospheric fronts. Comparison against daily weather maps confirms that the algorithm is efficient in identifying cold fronts and warm fronts, while the identification of tropical storms is less successful. The average state of the storm events and their variability are represented by the temporal evolution of atmospheric pressure, air temperature, wind velocity, and wave directional spectral energy. The use of uncorrected algorithm-detected events provides climatologies that show a little deviation from those derived using corrected events. The effectiveness of this analysis method is further verified by numerically simulating the wave conditions driven by the characteristic wind forcing and comparing the results with the wave climatology that corresponds to each storm type. A high level of consistency found in the comparison indicates that this analysis method can be used for accurately characterizing event-based oceanic processes and long-term storm-induced morphodynamic processes on wind-dominated coasts.

  18. Frosty Wind Streaks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-532, 2 November 2003

    As seasonal polar frosts sublime away each spring, winds may re-distribute some of the frost or move sediment exposed from beneath the frost. This action creates ephemeral wind streaks that can be used by scientists seeking to study the local circulation of the martian [missing text] surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of wind streaks created in subliming carbon dioxide frost. These dark streaks appear to conform to the shape of the slopes on which they occur, suggesting that slope winds play a dominant role in creating and orienting these streaks. This picture is located near 73.8oS, 305.7oW. The image is illuminated by sunlight from the upper left and covers an area 3 km (1.9 mi) wide. Winds responsible for the streaks generally blew from the bottom/right (south/southeast) toward the top/upper left (north/northwest).

  19. The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Rostoker, G.; Akasofu, S. I.; Baumjohann, W.; Kamide, Y.; Mcpherron, R. L.

    1987-01-01

    The contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in an unpredictable manner are considered. Two physical processes for the dispensation of the energy input from the solar wind are identified: (1) a driven process in which energy supplied from the solar wind is directly dissipated in the ionosphere; and (2) a loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere. The pattern of substorm development in response to changes in the interplanetary medium has been elucidated for a canonical isolated substorm.

  20. Coastal Storm Hazards from Virginia to Maine

    DTIC Science & Technology

    2015-11-01

    study, storm surge, tide, waves, wind, atmospheric pressure, and currents were the dominant storm responses computed. The effect of sea level change on...coastal storm hazards and vulnerability nationally (USACE 2015). NACCS goals also included evaluating the effect of future sea level change (SLC) on...the computed high-fidelity responses included storm surge, astronomical tide, waves, wave effects on water levels, storm duration, wind, currents

Top