Sample records for dominate fungal communities

  1. Yeasts dominate soil fungal communities in three lowland Neotropical rainforests.

    PubMed

    Dunthorn, Micah; Kauserud, Håvard; Bass, David; Mayor, Jordan; Mahé, Frédéric

    2017-10-01

    Forest soils typically harbour a vast diversity of fungi, but are usually dominated by filamentous (hyphae-forming) taxa. Compared to temperate and boreal forests, though, we have limited knowledge about the fungal diversity in tropical rainforest soils. Here we show, by environmental metabarcoding of soil samples collected in three Neotropical rainforests, that Yeasts dominate the fungal communities in terms of the number of sequencing reads and OTUs. These unicellular forms are commonly found in aquatic environments, and their hyperdiversity may be the result of frequent inundation combined with numerous aquatic microenvironments in these rainforests. Other fungi that are frequent in aquatic environments, such as the abundant Chytridiomycotina, were also detected. While there was low similarity in OTU composition within and between the three rainforests, the fungal communities in Central America were more similar to each other than the communities in South America, reflecting a general biogeographic pattern also seen in animals, plants and protists. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons.

    PubMed

    McGuire, Krista L; Allison, Steven D; Fierer, Noah; Treseder, Kathleen K

    2013-01-01

    Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0-20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.

  3. An assessment of ectomycorrhizal fungal communities in Tasmanian temperate high-altitude Eucalyptus delegatensis forest reveals a dominance of the Cortinariaceae.

    PubMed

    Horton, Bryony M; Glen, Morag; Davidson, Neil J; Ratkowsky, David A; Close, Dugald C; Wardlaw, Tim J; Mohammed, Caroline

    2017-01-01

    Fungal diversity of Australian eucalypt forests remains underexplored. We investigated the ectomycorrhizal (EcM) fungal community characteristics of declining temperate eucalypt forests in Tasmania. Within this context, we explored the diversity of EcM fungi of two forest types in the northern highlands in the east and west of the island. We hypothesised that EcM fungal community richness and composition would differ between forest type but that the Cortinariaceae would be the dominant family irrespective of forest type. We proposed that EcM richness would be greater in the wet sclerophyll forest than the dry sclerophyll forest type. Using both sporocarps and EcM fungi from root tips amplified by PCR and sequenced in the rDNA ITS region, 175 EcM operational taxonomic units were identified of which 97 belonged to the Cortinariaceae. The Cortinariaceae were the most diverse family, in both the above and below ground communities. Three distinct fungal assemblages occurred within the wet and dry sclerophyll forest types and two geographic regions that were studied, although this pattern did not remain when only the root tip data were analysed. EcM sporocarp richness was unusually higher than root tip richness and EcM richness did not significantly differ among forest types. The results are discussed in relation to the importance of the Cortinariaceae and the drivers of EcM fungal community composition within these forests.

  4. Pyrosequencing assessment of rhizosphere fungal communities from a soybean field.

    PubMed

    Sugiyama, Akifumi; Ueda, Yoshikatsu; Takase, Hisabumi; Yazaki, Kazufumi

    2014-10-01

    Soil fungal communities play essential roles in soil ecosystems, affecting plant growth and health. Rhizosphere bacterial communities have been shown to undergo dynamic changes during plant growth. This study utilized 454 pyrosequencing to analyze rhizosphere fungal communities during soybean growth. Members of the Ascomycota and Basiodiomycota dominated in all soils. There were no statistically significant changes at the phylum level among growth stages or between bulk and rhizosphere soils. In contrast, the relative abundance of small numbers of operational taxonomic units, 4 during growth and 28 between bulk and rhizosphere soils, differed significantly. Clustering analysis revealed that rhizosphere fungal communities were different from bulk fungal communities during growth stages of soybeans. Taken together, these results suggest that in contrast to rhizosphere bacterial communities, most constituents of rhizosphere fungal communities remained stable during soybean growth.

  5. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development.

    PubMed

    Martínez-García, Laura B; Richardson, Sarah J; Tylianakis, Jason M; Peltzer, Duane A; Dickie, Ian A

    2015-03-01

    Little is known about the response of arbuscular mycorrhizal fungal communities to ecosystem development. We use a long-term soil chronosequence that includes ecosystem progression and retrogression to quantify the importance of host plant identity as a factor driving fungal community composition during ecosystem development. We identified arbuscular mycorrhizal fungi and plant species from 50 individual roots from each of 10 sites spanning 5-120 000 yr of ecosystem age using terminal restriction fragment length polymorphism (T-RFLP), Sanger sequencing and pyrosequencing. Arbuscular mycorrhizal fungal communities were highly structured by ecosystem age. There was strong niche differentiation, with different groups of operational taxonomic units (OTUs) being characteristic of early succession, ecosystem progression and ecosystem retrogression. Fungal alpha diversity decreased with ecosystem age, whereas beta diversity was high at early stages and lower in subsequent stages. A total of 39% of the variance in fungal communities was explained by host plant and site age, 29% of which was attributed to host and the interaction between host and site (24% and 5%, respectively). The strong response of arbuscular mycorrhizal fungi to ecosystem development appears to be largely driven by plant host identity, supporting the concept that plant and fungal communities are tightly coupled rather than independently responding to habitat. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  6. Spatial Distribution of Fungal Communities in an Arable Soil

    PubMed Central

    Moll, Julia; Hoppe, Björn; König, Stephan; Wubet, Tesfaye; Buscot, François; Krüger, Dirk

    2016-01-01

    Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF) to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a) ploughed soil in 0–10 cm, b) rooted soil in 40–50 cm, c) root-free soil in 60–70 cm soil depth and d) maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit), occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment. PMID:26840453

  7. Geology and Hydrology Drive Benthic Fungal Community Structure in a Lowland River System

    NASA Astrophysics Data System (ADS)

    Mansour, I.; Heppell, C. M.; McKew, B.; Dumbrell, A.; Whitby, C. B.; Veresoglou, S.; Leung, G.; Binley, A. M.; Lansdown, K.; Trimmer, M.; Olde, L.; Rillig, M.

    2017-12-01

    Despite their essential roles in ecosystem functioning, exceptionally little is known about fungal communities and the ecological processes regulating their structure. This is particularly true for riverine ecosystems, where almost nothing about the diversity of their fungal communities is known. In this field study, benthic sediment samples and surface water samples were collected seasonally from lowland rivers (Hampshire Avon catchment, UK) underlain by three distinct parent geologies (clay, Greensand and Chalk), across a hydrological gradient of baseflow index ranging from 0.23 to 0.95. Fungal communities were assessed using high-throughput sequencing and community data were analyzed via ordination, variance partitioning and indicator species analysis. We found that distinct fungal communities inhabited the benthic sediments of the differing geologies. Clay sediments were dominated by the yeast Cryptococcus podzolicus, the hyphomycete Pseudeuotium hygrophilum, Mortierella, and unidentified fungi in the class Sordariomycetes - the latter two also common within Greensand sediments along with seasonal spikes in Rhizophydium littoreum, a parasite of green algae. An unidentified fungus from the phylum Ascomycota was numerically dominant at all chalk sites and across all seasons. Spatial variables explained only a negligible proportion of variance between communities, indicating that environmental and biotic processes drive the differences between the observed fungal communities rather than purely spatial mechanisms (e.g. stochastic processes). Season was a highly significant predictor of community structure (p=0.005) and baseflow index explained some of the variance within the fungal community data across seasons. This study demonstrates that deterministic rather than stochastic processes are important for structuring lotic fungal communities, and, for the first time, shows that underlying geology and associated differences in hydrology are drivers of fungal

  8. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China

    PubMed Central

    Tian, Lei; Ma, Lina; Luo, Shasha; Zhang, Jianfeng; Li, Xiujun

    2017-01-01

    Peatlands in the Sanjiang Plain could be more vulnerable to global warming because they are located at the southernmost boundary of northern peatlands. Unlike bacteria, fungi are often overlooked, even though they play important roles in substance circulation in the peatland ecosystems. Accordingly, it is imperative that we deepen our understanding of fungal community structure and diversity in the peatlands. In this study, high-throughput Illumina sequencing was used to study the fungal communities in three fens in the Sanjiang Plain, located at the southern edge of northern peatlands. Peat soil was collected from the three fens which developed during different periods. A total of 463,198 fungal ITS sequences were obtained, and these sequences were classified into at least six phyla, 21 classes, more than 60 orders and over 200 genera. The fungal community structures were distinct in the three sites and were dominated by Ascomycota and Basidiomycota. However, there were no significant differences between these three fens in any α-diversity index (p > 0.05). Soil age and the carbon (C) accumulation rate, as well as total carbon (TC), total nitrogen (TN), C/N ratio, and bulk density were found to be closely related to the abundance of several dominant fungal taxa. We captured a rich fungal community and confirmed that the dominant taxa were those which were frequently detected in other northern peatlands. Soil age and the C accumulation rate were found to play important roles in shaping the fungal community structure. PMID:29236715

  9. Microplastics alter composition of fungal communities in aquatic ecosystems.

    PubMed

    Kettner, Marie Therese; Rojas-Jimenez, Keilor; Oberbeckmann, Sonja; Labrenz, Matthias; Grossart, Hans-Peter

    2017-11-01

    Despite increasing concerns about microplastic (MP) pollution in aquatic ecosystems, there is insufficient knowledge on how MP affect fungal communities. In this study, we explored the diversity and community composition of fungi attached to polyethylene (PE) and polystyrene (PS) particles incubated in different aquatic systems in north-east Germany: the Baltic Sea, the River Warnow and a wastewater treatment plant. Based on next generation 18S rRNA gene sequencing, 347 different operational taxonomic units assigned to 81 fungal taxa were identified on PE and PS. The MP-associated communities were distinct from fungal communities in the surrounding water and on the natural substrate wood. They also differed significantly among sampling locations, pointing towards a substrate and location specific fungal colonization. Members of Chytridiomycota, Cryptomycota and Ascomycota dominated the fungal assemblages, suggesting that both parasitic and saprophytic fungi thrive in MP biofilms. Thus, considering the worldwide increasing accumulation of plastic particles as well as the substantial vector potential of MP, especially these fungal taxa might benefit from MP pollution in the aquatic environment with yet unknown impacts on their worldwide distribution, as well as biodiversity and food web dynamics at large. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest.

    PubMed

    Sun, Hui; Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O

    2016-05-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P< 0.001) and tree species (P< 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P< 0.04). The availability of soil nutrients (Ca [P= 0.002], Fe [P= 0.003], and P [P= 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P< 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest

    PubMed Central

    Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O.; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O.

    2016-01-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P < 0.001) and tree species (P < 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P < 0.04). The availability of soil nutrients (Ca [P = 0.002], Fe [P = 0.003], and P [P = 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P < 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. PMID:26896139

  12. Interactions between abundant fungal species influence the fungal community assemblage on limestone

    PubMed Central

    Morón-Ríos, Alejandro; Ortega-Morales, Benjamin Otto; De la Rosa-García, Susana; Partida-Martínez, Laila Pamela; Quintana, Patricia; Alayón-Gamboa, José Armando; Cappello-García, Silvia; González-Gómez, Santiago

    2017-01-01

    The assembly of fungal communities on stone materials is mainly influenced by the differential bioreceptivity of such materials and environmental conditions. However, little is known about the role of fungal interactions in the colonization and establishment of fungal species. We analyzed the effects of intra- and interspecific interactions between 11 species of fungi in oligotrophic and copiotrophic media and on limestone coupons. In a previous study, these species were the most frequently isolated in the epilithic biofilms of limestone walls exposed to a subtropical climate. In the culture media, we found a greater frequency of intra- and interspecific inhibitory effects in the oligotrophic medium than in the copiotrophic medium. On the limestone coupons, all fungi were able to establish; however, the colonization success rate varied significantly. Cladosporium cladosporioides had a less extensive colonization in isolation (control) than in dual interactions (coexistence) with other species. Phoma eupyrena exhibited the highest colonization success rate and competitive dominance among all tested species. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses revealed that Pestalotiopsis maculans and Paraconiothyrium sp. produced calcium oxalate crystals during their growth on coupon surfaces, both in isolation and in dual interactions. Our results demonstrate that interactions between abundant fungal species influence the fungal colonization on substrates, the biomineralization and the fungal community assemblage growing in limestone biofilms. PMID:29211748

  13. Changes in structure and function of fungal community in cow manure composting.

    PubMed

    Wang, Ke; Yin, Xiangbo; Mao, Hailong; Chu, Chu; Tian, Yu

    2018-05-01

    In this study, dynamic changes in fungal communities, trophic modes and effect factors in 60 days composting of cow manure were analyzed by using high throughput sequencing, FUNGuild and Biolog FF MicroPlate, respectively. Orpinomyces (relative abundance >10.85%) predominated in feedstock, and Mycothermus became the dominating genus (relative abundance >75%) during the active phase. Aerobic composting treatment had a significant effect on fungal trophic modes with pathogenic fungi fading away and wood saprotrophs increasing over composting time. Fungal communities had the higher carbon sources utilization capabilities at the thermophilic phase and mature phase than those in the other periods. Oxidation reduction potential (ORP) significantly increased from -180 to 180 mV during the treatment. Redundancy analysis showed that the succession of fungal community during composting had a significant association with ORP (p < .05). This indicated that aerobic composting treatment not only influenced fungal community structure, but also changed fungal trophic modes and metabolic characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. High-throughput sequencing-based analysis of endogenetic fungal communities inhabiting the Chinese Cordyceps reveals unexpectedly high fungal diversity

    PubMed Central

    Xia, Fei; Chen, Xin; Guo, Meng-Yuan; Bai, Xiao-Hui; Liu, Yan; Shen, Guang-Rong; Li, Yu-Ling; Lin, Juan; Zhou, Xuan-Wei

    2016-01-01

    Chinese Cordyceps, known in Chinese as “DongChong XiaCao”, is a parasitic complex of a fungus (Ophiocordyceps sinensis) and a caterpillar. The current study explored the endogenetic fungal communities inhabiting Chinese Cordyceps. Samples were collected from five different geographical regions of Qinghai and Tibet, and the nuclear ribosomal internal transcribed spacer-1 sequences from each sample were obtained using Illumina high-throughput sequencing. The results showed that Ascomycota was the dominant fungal phylum in Chinese Cordyceps and its soil microhabitat from different sampling regions. Among the Ascomycota, 65 genera were identified, and the abundant operational taxonomic units showed the strongest sequence similarity to Ophiocordyceps, Verticillium, Pseudallescheria, Candida and Ilyonectria Not surprisingly, the genus Ophiocordyceps was the largest among the fungal communities identified in the fruiting bodies and external mycelial cortices of Chinese Cordyceps. In addition, fungal communities in the soil microhabitats were clustered separately from the external mycelial cortices and fruiting bodies of Chinese Cordyceps from different sampling regions. There was no significant structural difference in the fungal communities between the fruiting bodies and external mycelial cortices of Chinese Cordyceps. This study revealed an unexpectedly high diversity of fungal communities inhabiting the Chinese Cordyceps and its microhabitats. PMID:27625176

  15. Changes in fungal communities along a boreal forest soil fertility gradient.

    PubMed

    Sterkenburg, Erica; Bahr, Adam; Brandström Durling, Mikael; Clemmensen, Karina E; Lindahl, Björn D

    2015-09-01

    Boreal forests harbour diverse fungal communities with decisive roles in decomposition and plant nutrition. Although changes in boreal plant communities along gradients in soil acidity and nitrogen (N) availability are well described, less is known about how fungal taxonomic and functional groups respond to soil fertility factors. We analysed fungal communities in humus and litter from 25 Swedish old-growth forests, ranging from N-rich Picea abies stands to acidic and N-poor Pinus sylvestris stands. 454-pyrosequencing of ITS2 amplicons was used to analyse community composition, and biomass was estimated by ergosterol analysis. Fungal community composition was significantly related to soil fertility at the levels of species, genera/orders and functional groups. Ascomycetes dominated in less fertile forests, whereas basidiomycetes increased in abundance in more fertile forests, both in litter and humus. The relative abundance of mycorrhizal fungi in the humus layer remained high even in the most fertile soils. Tolerance to acidity and nitrogen deficiency seems to be of greater importance than plant carbon (C) allocation patterns in determining responses of fungal communities to soil fertility, in old-growth boreal forests. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest.

    PubMed

    Corrales, Adriana; Arnold, A Elizabeth; Ferrer, Astrid; Turner, Benjamin L; Dalling, James W

    2016-01-01

    Neotropical montane forests are often dominated by ectomycorrhizal (EM) tree species, yet the diversity of their EM fungal communities remains poorly explored. In lower montane forests in western Panama, the EM tree species Oreomunnea mexicana (Juglandaceae) forms locally dense populations in forest otherwise characterized by trees that form arbuscular mycorrhizal (AM) associations. The objective of this study was to compare the composition of EM fungal communities associated with Oreomunnea adults, saplings, and seedlings across sites differing in soil fertility and the amount and seasonality of rainfall. Analysis of fungal nrITS DNA (nuclear ribosomal internal transcribed spacers) revealed 115 EM fungi taxa from 234 EM root tips collected from adults, saplings, and seedlings in four sites. EM fungal communities were equally species-rich and diverse across Oreomunnea developmental stages and sites, regardless of soil conditions or rainfall patterns. However, ordination analysis revealed high compositional turnover between low and high fertility/rainfall sites located ca. 6 km apart. The EM fungal community was dominated by Russula (ca. 36 taxa). Cortinarius, represented by 14 species and previously reported to extract nitrogen from organic sources under low nitrogen availability, was found only in low fertility/high rainfall sites. Phylogenetic diversity analyses of Russula revealed greater evolutionary distance among taxa found on sites with contrasting fertility and rainfall than was expected by chance, suggesting that environmental differences among sites may be important in structuring EM fungal communities. More research is needed to evaluate whether EM fungal taxa associated with Oreomunnea form mycorrhizal networks that might account for local dominance of this tree species in otherwise diverse forest communities.

  17. Diversity and dynamics of the DNA- and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus.

    PubMed

    McGee, C F; Byrne, H; Irvine, A; Wilson, J

    2017-01-01

    Commercial cultivation of the button mushroom Agaricus bisporus is performed through the inoculation of a semipasteurized composted material. Pasteurization of the compost material prior to inoculation results in a substrate with a fungal community that becomes dominated by A. bisporus. However, little is known about the composition and activity in the wider fungal community beyond the presence of A. bisporus in compost throughout the mushroom cropping process. In this study, the fungal cropping compost community was characterized by sequencing nuc rDNA ITS1-5.8S-ITS2 amplified from extractable DNA and RNA. The fungal community generated from DNA extracts identified a diverse community containing 211 unique species, although only 51 were identified from cDNA. Agaricus bisporus was found to dominate in the DNA-derived fungal community for the duration of the cropping process. However, analysis of cDNA extracts found A. bisporus to dominate only up to the first crop flush, after which activity decreased sharply and a much broader fungal community became active. This study has highlighted the diverse fungal community that is present in mushroom compost during cropping.

  18. Fungal-to-bacterial dominance of soil detrital food-webs: Consequences for biogeochemistry

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2015-04-01

    Resolving fungal and bacterial groups within the microbial decomposer community is thought to capture disparate microbial life strategies, associating bacteria with an r-selected strategy for carbon (C) and nutrient use, and fungi with a K-selected strategy. Additionally, food-web models have established a widely held belief that the bacterial decomposer pathway in soil supports high turnover rates of easily available substrates, while the slower fungal pathway supports the decomposition of more complex organic material, thus characterising the biogeochemistry of the ecosystem. Three field-experiments to generate gradients of SOC-quality were assessed. (1) the Detritus Input, Removal, and Trenching - DIRT - experiment in a temperate forest in mixed hardwood stands at Harvard Forest LTER, US. There, experimentally adjusted litter input and root input had affected the SOC quality during 23 years. (2) field-application of 14-C labelled glucose to grassland soils, sampled over the course of 13 months to generate an age-gradient of SOM (1 day - 13 months). (3) The Park Grass Experiment at Rothamsted, UK, where 150-years continuous N-fertilisation (0, 50, 100, 150 kg N ha-1 y-1) has affected the quality of SOM in grassland soils. A combination of carbon stable and radio isotope studies, fungal and bacterial growth and biomass measurements, and C and N mineralisation (15N pool dilution) assays were used to investigate how SOC-quality influenced fungal and bacterial food-web pathways and the implications this had for C and nutrient turnover. There was no support that decomposer food-webs dominated by bacteria support high turnover rates of easily available substrates, while slower fungal-dominated decomposition pathways support the decomposition of more complex organic material. Rather, an association between high quality SOC and fungi emerges from the results. This suggests that we need to revise our basic understanding for soil microbial communities and the processes

  19. Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China.

    PubMed

    Nie, Ming; Meng, Han; Li, Ke; Wan, Jia-Rong; Quan, Zhe-Xue; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2012-01-01

    To improve our understanding of the changes in bacterial and fungal diversity in natural pine and planted forests in subtropical region of China, we examined bacterial and fungal communities from a native and a nearby planted pine forest of the Mt. Lushan by constructing clone libraries of 16S and 18S rRNA genes. For bacterial communities, Proteobacteria and Acidobacteria were dominant bacterial taxa in both two types of forest soils. The Shannon-Wiener diversity index, rarefaction curve analysis, and LibShuff analysis suggest that these two forests contained similar diversity of bacterial communities. Low soil acidity (pH ≈ 4) of our study forests might be one of the most important selection factors determining growth of acidophilic Acidobacteria and Proteobacteria. However, the natural forest harbored greater level of fungal diversity than the planted forest according to the Shannon-Wiener diversity index and rarefaction curve analysis. Basidiomycota and Ascomycota were dominant fungal taxa in the soils of natural and planted forests, respectively. Our results suggest that fungal community was more sensitive than the bacterial community in characterizing the differences in plant cover impacts on the microbial flora in the natural and planted forests. The natural and planted forests may function differently due to the differences in soil fungal diversity and relative abundance.

  20. Unexpected fungal communities in the Rehai thermal springs of Tengchong influenced by abiotic factors.

    PubMed

    Liu, Kai-Hui; Ding, Xiao-Wei; Salam, Nimaichand; Zhang, Bo; Tang, Xiao-Fei; Deng, Baiwan; Li, Wen-Jun

    2018-05-01

    Fungal communities represent an indispensable part of the geothermal spring ecosystem; however, studies on fungal community within hot springs are still scant. Here, we used Illumina HiSeq 2500 sequencing to detect fungal community diversity in extremely acidic hot springs (pH < 4) and neutral and alkaline springs (pH > 6) of Tengchong-indicated by the presence of over 0.75 million valid reads. These sequences were phylogenetically assigned to 5 fungal phyla, 67 order, and 375 genera, indicating unexpected fungal diversity in the hot springs. The genera such as Penicillium, Entyloma, and Cladosporium dominated the fungal community in the acidic geothermal springs, while the groups such as Penicillium, Engyodontium, and Schizophyllum controlled the fungal assemblages in the alkaline hot springs. The alpha-diversity indices and the abundant fungal taxa were significantly correlated with physicochemical factors of the hot springs particularly pH, temperature, and concentrations of Fe 2+ , NH 4 + , NO 2 -, and S 2- , suggesting that the diversity and distribution of fungal assemblages can be influenced by the complex environmental factors of hot springs.

  1. Social status shapes the bacterial and fungal gut communities of the honey bee.

    PubMed

    Yun, Ji-Hyun; Jung, Mi-Ja; Kim, Pil Soo; Bae, Jin-Woo

    2018-01-31

    Despite the fungal abundance in honey and bee bread, little is known about the fungal gut community of the honey bee and its effect on host fitness. Using pyrosequencing of the 16S rRNA gene and ITS2 region amplicons, we analysed the bacterial and fungal gut communities of the honey bee as affected by the host social status. Both communities were significantly affected by the host social status. The bacterial gut community was similar to those characterised in previous studies. The fungal gut communities of most worker bees were highly dominated by Saccharomyces but foraging bees and queens were colonised by diverse fungal species and Zygosaccharomyces, respectively. The high fungal density and positive correlation between Saccharomyces species and Lactobacillus species, known yeast antagonists, were only observed in the nurse bee; this suggested that the conflict between Saccharomyces and Lactobacillus was compromised by the metabolism of the host and/or other gut microbes. PICRUSt analysis revealed significant differences in enriched gene clusters of the bacterial gut communities of the nurse and foraging bees, suggesting that different host social status might induce changes in the gut microbiota, and, that consequently, gut microbial community shifts to adapt to the gut environment.

  2. Fungal diversity, dominance, and community structure in the rhizosphere of clonal Picea mariana plants throughout nursery production chronosequences.

    PubMed

    Vujanovic, V; Hamelin, R C; Bernier, L; Vujanovic, G; St-Arnaud, M

    2007-11-01

    Fungal diversity in the rhizosphere of healthy and diseased clonal black spruce (Picea mariana) plants was analyzed with regard to nursery production chronosequences. The four key production stages were sampled: mother plants (MP), 8-week-old cuttings (B + 0), second-year cuttings (B + 1), and third-year cuttings (B + 2). A total of 45 fungal taxa were isolated and identified based on cultural, phenotypic, and molecular characters. Members of phylum Ascomycota dominated, followed by Basidiomycota and Zygomycota. Diagnosis characters and distance analysis of the internal transcribed spacer rDNA sequences allowed the identification of 39 ascomycetous taxa. Many belong to the order Hypocreales, families Hypocreaceae and Nectriaceae, which contain many clusters of potentially pathogenic taxa (Cylindrocladium, Fusarium, and Neonectria) and are also ecologically associated with antagonistic taxa (Chaetomium, Hypocrea, Microsphaeropsis, Penicillium, Paecilomyces, Verticillium, Trichoderma, and Sporothrix). This is also the first report of a Cylindrocladium canadense association with disease symptoms and relation with Pestalotiopsis, Fusarium, Exserochilum, Rhizoctonia, and Xenochalara fungal consortia. Both production chronosequence and plant health considerably influenced fungal taxa assemblages. Unweighted pair-group arithmetic average clustering showed that isolates from MP, B + 0, and B + 1 plant rhizospheres clustered together within healthy or diseased health classes, whereas isolates from healthy and diseased B + 2 plants clustered together. Canonical correspondence analysis revealed substantial alteration in community assemblages with regard to plant health and yielded a principal axis direction that regrouped taxa associated with diseased plant rhizosphere soil, whereas the opposite axis direction was associated with healthy plants. Two diversity indices were defined and applied to assess the fungal taxa contribution (Tc) and persistence (Pi) throughout the

  3. Analysis of bacterial and fungal communities in Marcha and Thiat, traditionally prepared amylolytic starters of India.

    PubMed

    Sha, Shankar Prasad; Jani, Kunal; Sharma, Avinash; Anupma, Anu; Pradhan, Pooja; Shouche, Yogesh; Tamang, Jyoti Prakash

    2017-09-08

    Marcha and thiat are traditionally prepared amylolytic starters use for production of various ethnic alcoholic beverages in Sikkim and Meghalaya states in India. In the present study we have tried to investigate the bacterial and fungal community composition of marcha and thiat by using high throughput sequencing. Characterization of bacterial community depicts phylum Proteobacteria is the most dominant in both marcha (91.4%) and thiat (53.8%), followed by Firmicutes, and Actinobacteria. Estimates of fungal community composition showed Ascomycota as the dominant phylum. Presence of Zygomycota in marcha distinguishes it from the thiat. The results of NGS analysis revealed dominance of yeasts in marcha whereas molds out numbers in case of thiat. This is the first report on microbial communities of traditionally prepared amylolytic starters of India using high throughput sequencing.

  4. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields

    PubMed Central

    Li, Longyun; Wu, Xiaoli; Wang, Yu

    2018-01-01

    In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis. PMID:29538438

  5. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields.

    PubMed

    Song, Xuhong; Pan, Yuan; Li, Longyun; Wu, Xiaoli; Wang, Yu

    2018-01-01

    In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis.

  6. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica

    PubMed Central

    Godinho, Valéria M; Furbino, Laura E; Santiago, Iara F; Pellizzari, Franciane M; Yokoya, Nair S; Pupo, Diclá; Alves, Tânia MA; S Junior, Policarpo A; Romanha, Alvaro J; Zani, Carlos L; Cantrell, Charles L; Rosa, Carlos A; Rosa, Luiz H

    2013-01-01

    We surveyed the distribution and diversity of fungi associated with eight macroalgae from Antarctica and their capability to produce bioactive compounds. The collections yielded 148 fungal isolates, which were identified using molecular methods as belonging to 21 genera and 50 taxa. The most frequent taxa were Geomyces species (sp.), Penicillium sp. and Metschnikowia australis. Seven fungal isolates associated with the endemic Antarctic macroalgae Monostroma hariotii (Chlorophyte) displayed high internal transcribed spacer sequences similarities with the psychrophilic pathogenic fungus Geomyces destructans. Thirty-three fungal singletons (66%) were identified, representing rare components of the fungal communities. The fungal communities displayed high diversity, richness and dominance indices; however, rarefaction curves indicated that not all of the fungal diversity present was recovered. Penicillium sp. UFMGCB 6034 and Penicillium sp. UFMGCB 6120, recovered from the endemic species Palmaria decipiens (Rhodophyte) and M. hariotii, respectively, yielded extracts with high and selective antifungal and/or trypanocidal activities, in which a preliminary spectral analysis using proton nuclear magnetic resonance spectroscopy indicated the presence of highly functionalised aromatic compounds. These results suggest that the endemic and cold-adapted macroalgae of Antarctica shelter a rich, diversity and complex fungal communities consisting of a few dominant indigenous or mesophilic cold-adapted species, and a large number of rare and/or endemic taxa, which may provide an interesting model of algal–fungal interactions under extreme conditions as well as a potential source of bioactive compounds. PMID:23702515

  7. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China.

    PubMed

    Wang, Shao-Kun; Zuo, Xiao-An; Zhao, Xue-Yong; Li, Yu-Qiang; Zhou, Xin; Lv, Peng; Luo, Yong-Qing; Yun, Jian-Ying

    2016-01-01

    Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.

  8. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil.

    PubMed

    Santalahti, Minna; Sun, Hui; Jumpponen, Ari; Pennanen, Taina; Heinonsalo, Jussi

    2016-11-01

    Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow. Boreal forest soil generally harbored diverse fungal communities across soil horizons. The communities shifted drastically and rapidly over time. In late winter, saprotrophs dominated the community and were replaced by ectomycorrhizal fungi during the growing season. Our studies are among the first to dissect the spatial and temporal dynamics in boreal forest ecosystems and highlights the ecological importance of vertically distinct communities and their rapid seasonal dynamics. As climate change is predicted to result in warmer and longer snow-free winter seasons, as well as increase the rooting depth of trees in boreal forest, the seasonal and vertical distribution of fungal communities may change. These changes are likely to affect the organic matter decomposition by the soil-inhabiting fungi and thus alter organic C pools. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Fungal community dynamics during a marine dinoflagellate (Noctiluca scintillans) bloom.

    PubMed

    Sun, Jing-Yun; Song, Yu; Ma, Zhi-Ping; Zhang, Huai-Jing; Yang, Zhong-Duo; Cai, Zhong-Hua; Zhou, Jin

    2017-10-01

    Contamination and eutrophication have caused serious ecological events (such as algal bloom) in coastal area. During this ecological process, microbial community structure is critical for algal bloom succession. The diversity and composition of bacteria and archaea communities in algal blooms have been widely investigated; however, those of fungi are poorly understood. To fill this gap, we used pyrosequencing and correlation approaches to assess fungal patterns and associations during a dinoflagellate (Noctiluca scintillans) bloom. Phylum level fungal types were predominated by Ascomycota, Chytridiomycota, Mucoromycotina, and Basidiomycota. At the genus level drastic changes were observed with Hysteropatella, Malassezia and Saitoella dominating during the initial bloom stage, while Malassezia was most abundant (>50%) during onset and peak-bloom stages. Saitoella and Lipomyces gradually became more abundant and, in the decline stage, contributed almost 70% of sequences. In the terminal stage of the bloom, Rozella increased rapidly to a maximum of 50-60%. Fungal population structure was significantly influenced by temperature and substrate (N and P) availability (P < 0.05). Inter-specific network analyses demonstrated that Rozella and Saitoella fungi strongly impacted the ecological trajectory of N. scintillans. The functional prediction show that symbiotrophic fungi was dominated in the onset stage; saprotroph type was the primary member present during the exponential growth period; whereas pathogentroph type fungi enriched in decline phase. Overall, fungal communities and functions correlated significantly with N. scintillans processes, suggesting that they may regulate dinoflagellate bloom fates. Our results will facilitate deeper understanding of the ecological importance of marine fungi and their roles in algal bloom formation and collapse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Limited Effects of Variable-Retention Harvesting on Fungal Communities Decomposing Fine Roots in Coastal Temperate Rainforests.

    PubMed

    Philpott, Timothy J; Barker, Jason S; Prescott, Cindy E; Grayston, Sue J

    2018-02-01

    Fine root litter is the principal source of carbon stored in forest soils and a dominant source of carbon for fungal decomposers. Differences in decomposer capacity between fungal species may be important determinants of fine-root decomposition rates. Variable-retention harvesting (VRH) provides refuge for ectomycorrhizal fungi, but its influence on fine-root decomposers is unknown, as are the effects of functional shifts in these fungal communities on carbon cycling. We compared fungal communities decomposing fine roots (in litter bags) under VRH, clear-cut, and uncut stands at two sites (6 and 13 years postharvest) and two decay stages (43 days and 1 year after burial) in Douglas fir forests in coastal British Columbia, Canada. Fungal species and guilds were identified from decomposed fine roots using high-throughput sequencing. Variable retention had short-term effects on β-diversity; harvest treatment modified the fungal community composition at the 6-year-postharvest site, but not at the 13-year-postharvest site. Ericoid and ectomycorrhizal guilds were not more abundant under VRH, but stand age significantly structured species composition. Guild composition varied by decay stage, with ruderal species later replaced by saprotrophs and ectomycorrhizae. Ectomycorrhizal abundance on decomposing fine roots may partially explain why fine roots typically decompose more slowly than surface litter. Our results indicate that stand age structures fine-root decomposers but that decay stage is more important in structuring the fungal community than shifts caused by harvesting. The rapid postharvest recovery of fungal communities decomposing fine roots suggests resiliency within this community, at least in these young regenerating stands in coastal British Columbia. IMPORTANCE Globally, fine roots are a dominant source of carbon in forest soils, yet the fungi that decompose this material and that drive the sequestration or respiration of this carbon remain largely

  11. Fungal community and cellulose-degrading genes in the composting process of Chinese medicinal herbal residues.

    PubMed

    Tian, Xueping; Yang, Tao; He, Jingzhong; Chu, Qian; Jia, Xiaojun; Huang, Jun

    2017-10-01

    The fungal community and the population of 16S rRNA, 18S rRNA and cellulose-degrading genes during the 30-day composting process of Chinese medicinal herbal residues were investigated using Illumina MiSeq and quantitative real-time PCR. An obvious succession of fungal communities occurred during the composting process. Unidentified fungi predominated in the raw materials. As composting progressed, Ascomycota became the most dominant phylum, with Aspergillus being the most dominant genus, and Aspergillus fumigatus making up 99.65% of that genus. Because of the inoculation of cellulolytic fungi in the mature stage, the cellulose degradation rate in inoculation groups was faster and the relative abundances of Aspergillus and the glycoside hydrolase family 7 genes were significantly higher than those in the control groups. These indicated that the fungal inoculants facilitated the degradation of cellulose, increased cellulolytic fungi and optimized the community structure. Copyright © 2017. Published by Elsevier Ltd.

  12. Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil.

    PubMed

    Zhang, Kaoping; Adams, Jonathan M; Shi, Yu; Yang, Teng; Sun, Ruibo; He, Dan; Ni, Yingying; Chu, Haiyan

    2017-09-01

    Rhizospheric fungi play major roles in both natural and agricultural ecosystems. However, little is known about the determinants of their diversity and biogeographic patterns. Here, we compared fungal communities in rhizosphere and bulk soils of wheat fields in the North China Plain. The rhizosphere had a lower fungal diversity (observed OTUs and Chao1) than bulk soil, and a distinct fungal community structure in rhizosphere compared with bulk soil. The relative importance of environmental factors and geographic distance for fungal distribution differed between rhizosphere and bulk soil. Environmental factors were the primary cause of variations in total fungal community and major fungal phyla in bulk soil. By contrast, fungal communities in soils loosely attached to roots were predictable from both environmental factors and influences of geographic distance. Communities in soils tightly attached to roots were mainly determined by geographic distance. Our results suggest that both contemporary environment processes (present-day abiotic and biotic environment characters) and historical processes (spatial isolation, dispersal limitation occurred in the past) dominate variations of fungal communities in wheat fields, but their relative importance of all these processes depends on the proximity of fungal community to the plant roots. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Diversity and Structure of Fungal Communities in Neotropical Rainforest Soils: The Effect of Host Recurrence.

    PubMed

    Schimann, Heidy; Bach, Cyrille; Lengelle, Juliette; Louisanna, Eliane; Barantal, Sandra; Murat, Claude; Buée, Marc

    2017-02-01

    The patterns of the distribution of fungal species and their potential interactions with trees remain understudied in Neotropical rainforests, which harbor more than 16,000 tree species, mostly dominated by endomycorrhizal trees. Our hypothesis was that tree species shape the non-mycorrhizal fungal assemblages in soil and litter and that the diversity of fungal communities in these two compartments is partly dependent on the coverage of trees in the Neotropical rainforest. In French Guiana, a long-term plantation and a natural forest were selected to test this hypothesis. Fungal ITS1 regions were sequenced from soil and litter samples from within the vicinity of tree species. A broad range of fungal taxa was found, with 42 orders and 14 classes. Significant spatial heterogeneity in the fungal communities was found without strong variation in the species richness and evenness among the tree plots. However, tree species shaped the fungal assemblages in the soil and litter, explaining up to 18 % of the variation among the communities in the natural forest. These results demonstrate that vegetation cover has an important effect on the structure of fungal assemblages inhabiting the soil and litter in Amazonian forests, illustrating the relative impact of deterministic processes on fungal community structures in these highly diverse ecosystems.

  14. Fungal Community Shifts in Structure and Function across a Boreal Forest Fire Chronosequence

    PubMed Central

    Santalahti, Minna; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank; Raffaello, Tommaso; Jumpponen, Ari; Asiegbu, Fred O.; Heinonsalo, Jussi

    2015-01-01

    Forest fires are a common natural disturbance in forested ecosystems and have a large impact on the microbial communities in forest soils. The response of soil fungal communities to forest fire is poorly documented. Here, we investigated fungal community structure and function across a 152-year boreal forest fire chronosequence using high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region and a functional gene array (GeoChip). Our results demonstrate that the boreal forest soil fungal community was most diverse soon after a fire disturbance and declined over time. The differences in the fungal communities were explained by changes in the abundance of basidiomycetes and ascomycetes. Ectomycorrhizal (ECM) fungi contributed to the increase in basidiomycete abundance over time, with the operational taxonomic units (OTUs) representing the genera Cortinarius and Piloderma dominating in abundance. Hierarchical cluster analysis by using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting differences in the potential to maintain essential biogeochemical soil processes. The site with the greatest biological diversity had also the most diverse genes. The genes involved in organic matter degradation in the mature forest, in which ECM fungi were the most abundant, were as common in the youngest site, in which saprotrophic fungi had a relatively higher abundance. This study provides insight into the impact of fire disturbance on soil fungal community dynamics. PMID:26341215

  15. Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs

    PubMed Central

    Abdelfattah, Ahmed; Wisniewski, Michael; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga

    2016-01-01

    An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to identify the composition of fungal communities associated with different strawberry organs (leaves, flowers, immature and mature fruits), grown on a farm using management practices that entailed the routine use of various chemical pesticides. ITS2 sequences clustered into 316 OTUs and Ascomycota was the dominant phyla (95.6%) followed by Basidiomycota (3.9%). Strawberry plants supported a high diversity of microbial organisms, but two genera, Botrytis and Cladosporium, were the most abundant, representing 70–99% of the relative abundance (RA) of all detected sequences. According to alpha and beta diversity analyses, strawberry organs displayed significantly different fungal communities with leaves having the most diverse fungal community, followed by flowers, and fruit. The interruption of chemical treatments for one month resulted in a significant modification in the structure of the fungal community of leaves and flowers while immature and mature fruit were not significantly affected. Several plant pathogens of other plant species, that would not be intuitively expected to be present on strawberry plants such as Erysiphe, were detected, while some common strawberry pathogens, such as Rhizoctonia, were less evident or absent. PMID:27490110

  16. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats

    NASA Astrophysics Data System (ADS)

    Comeau, André M.; Vincent, Warwick F.; Bernier, Louis; Lovejoy, Connie

    2016-07-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling.

  17. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi

    PubMed Central

    Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Gilbert, Gregory S; Kadowaki, Kohmei

    2013-01-01

    In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities. PMID:23762515

  18. Soil fungal communities respond to grassland plant community richness and soil edaphics

    USDA-ARS?s Scientific Manuscript database

    Fungal communities in soil have significant influences on terrestrial ecosystem dynamics, yet our understanding of the drivers of fungal diversity and community structure in soil is limited. Fungal communities associated with the rhizosphere of four native perennial grassland plant species grown in ...

  19. Fungal and bacterial community succession differs for three wood types during decay in a forest soil.

    PubMed

    Prewitt, Lynn; Kang, Youngmin; Kakumanu, Madhavi L; Williams, Mark

    2014-08-01

    Wood decomposition by soil microorganisms is vital to carbon and nutrient cycles of forested ecosystems. Different wood types decompose at different rates; however, it is not known if there are differences in microbial community succession associated with the decay of different wood types. In this study, the microbial community associated with the decay of pine (decay-susceptible wood), western red cedar (decay resistant) and ACQ-treated pine (Ammoniacal Copper Quaternary, preservative-treated pine for decay resistance) in forest soil was characterized using DNA sequencing, phospholipid fatty acid (PLFA) analysis, and microbial activity over a 26-month period. Bray-Curtis ordination using an internal transcribed spacer (ITS) sequence and PLFA data indicated that fungal communities changed during succession and that wood type altered the pattern of succession. Nondecay fungi decreased over the 26 months of succession; however, by 18 months of decay, there was a major shift in the fungal communities. By this time, Trametes elegans dominated cedar and Phlebia radiata dominated pine and ACQ-treated pine. The description of PLFA associated with ACQ-treated pine resembled cedar more than pine; however, both PLFA and ITS descriptions indicated that fungal communities associated with ACQ-treated pine were less dynamic, perhaps a result of the inhibition by the ACQ preservative, compared with pine and cedar. Overall, fungal community composition and succession were associated with wood type. Further research into the differences in community composition will help to discern their functional importance to wood decay.

  20. Evidence that chytrids dominate fungal communities in high-elevation soils

    PubMed Central

    Freeman, K. R.; Martin, A. P.; Karki, D.; Lynch, R. C.; Mitter, M. S.; Meyer, A. F.; Longcore, J. E.; Simmons, D. R.; Schmidt, S. K.

    2009-01-01

    Periglacial soils are one of the least studied ecosystems on Earth, yet they are widespread and are increasing in area due to retreat of glaciers worldwide. Soils in these environments are cold and during the brief summer are exposed to high levels of UV radiation and dramatic fluctuations in moisture and temperature. Recent research suggests that these environments harbor immense microbial diversity. Here we use sequencing of environmental DNA, culturing of isolates, and analysis of environmental variables to show that members of the Chytridiomycota (chytrids) dominate fungal biodiversity and perhaps decomposition processes in plant-free, high-elevation soils from the highest mountain ranges on Earth. The zoosporic reproduction of chytrids requires free water, yet we found that chytrids constituted over 70% of the ribosomal gene sequences of clone libraries from barren soils of the Himalayas and Rockies; by contrast, they are rare in other soil environments. Very few chytrids have been cultured, although we were successful at culturing chytrids from high-elevation sites throughout the world. In a more focused study of our sites in Colorado, we show that carbon sources that support chytrid growth (eolian deposited pollen and microbial phototrophs) are abundant and that soils are saturated with water for several months under the snow, thus creating ideal conditions for the development of a chytrid-dominated ecosystem. Our work broadens the known biodiversity of the Chytridomycota, and describes previously unsuspected links between aquatic and terrestrial ecosystems in alpine regions. PMID:19826082

  1. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs

    PubMed Central

    Mäkipää, Raisa; Rajala, Tiina; Schigel, Dmitry; Rinne, Katja T; Pennanen, Taina; Abrego, Nerea; Ovaskainen, Otso

    2017-01-01

    We investigated the interaction between fungal communities of soil and dead wood substrates. For this, we applied molecular species identification and stable isotope tracking to both soil and decaying wood in an unmanaged boreal Norway spruce-dominated stand. Altogether, we recorded 1990 operational taxonomic units, out of which more than 600 were shared by both substrates and 589 were found to exclusively inhabit wood. On average the soil was more species-rich than the decaying wood, but the species richness in dead wood increased monotonically along the decay gradient, reaching the same species richness and community composition as soil in the late stages. Decaying logs at all decay stages locally influenced the fungal communities from soil, some fungal species occurring in soil only under decaying wood. Stable isotope analyses suggest that mycorrhizal species colonising dead wood in the late decay stages actively transfer nitrogen and carbon between soil and host plants. Most importantly, Piloderma sphaerosporum and Tylospora sp. mycorrhizal species were highly abundant in decayed wood. Soil- and wood-inhabiting fungal communities interact at all decay phases of wood that has important implications in fungal community dynamics and thus nutrient transportation. PMID:28430188

  2. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs.

    PubMed

    Mäkipää, Raisa; Rajala, Tiina; Schigel, Dmitry; Rinne, Katja T; Pennanen, Taina; Abrego, Nerea; Ovaskainen, Otso

    2017-09-01

    We investigated the interaction between fungal communities of soil and dead wood substrates. For this, we applied molecular species identification and stable isotope tracking to both soil and decaying wood in an unmanaged boreal Norway spruce-dominated stand. Altogether, we recorded 1990 operational taxonomic units, out of which more than 600 were shared by both substrates and 589 were found to exclusively inhabit wood. On average the soil was more species-rich than the decaying wood, but the species richness in dead wood increased monotonically along the decay gradient, reaching the same species richness and community composition as soil in the late stages. Decaying logs at all decay stages locally influenced the fungal communities from soil, some fungal species occurring in soil only under decaying wood. Stable isotope analyses suggest that mycorrhizal species colonising dead wood in the late decay stages actively transfer nitrogen and carbon between soil and host plants. Most importantly, Piloderma sphaerosporum and Tylospora sp. mycorrhizal species were highly abundant in decayed wood. Soil- and wood-inhabiting fungal communities interact at all decay phases of wood that has important implications in fungal community dynamics and thus nutrient transportation.

  3. Only a Few Fungal Species Dominate Highly Diverse Mycofloras Associated with the Common Reed

    PubMed Central

    Neubert, Karin; Mendgen, Kurt; Brinkmann, Henner; Wirsel, Stefan G. R.

    2006-01-01

    Plants are naturally colonized by many fungal species that produce effects ranging from beneficial to pathogenic. However, how many of these fungi are linked with a single host plant has not been determined. Furthermore, the composition of plant-associated fungal communities has not been rigorously determined. We investigated these essential issues by employing the perennial wetland reed Phragmites australis as a model. DNA extracted from roots, rhizomes, stems, and leaves was used for amplification and cloning of internal transcribed spacer rRNA gene fragments originating from reed-associated fungi. A total of 1,991 clones from 15 clone libraries were differentiated by restriction fragment length polymorphism analyses into 345 operational taxonomical units (OTUs). Nonparametric estimators for total richness (Chao1 and ACE) and also a parametric log normal model predicted a total of about 750 OTUs if the libraries were infinite. Sixty-two percent of the OTUs sequenced were novel at a threshold of 3%. Several of these OTUs represented undocumented fungal species, which also included higher taxonomic levels. In spite of the high diversity of the OTUs, the mycofloras of vegetative organs were dominated by just a few typical fungi, which suggested that competition and niche differentiation influence the composition of plant-associated fungal communities. This suggestion was independently supported by the results of nested PCR assays specifically monitoring two OTUs over 3 years, which revealed significant preferences for host habitat and host organ. PMID:16461657

  4. Controls over fungal communities and consequences for nutrient cycling

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Majumder, P.; Bent, E.; Borneman, J.; Allison, S. D.; Hanson, C. A.

    2007-12-01

    Soils harbor a high diversity of microbes-- as many as 100 species of fungi within a square meter. If different species target different components of litter, a more diverse community of fungi should lead to faster decomposition rates. We examined the hypotheses that variation in substrate use among fungal groups and variation in nitrogen availability are both important controls over the diversity of fungi in an Alaskan boreal forest. Nitrogen availability was considered because microbes are often N-limited, and because humans are altering N availability via anthropogenic N deposition and global warming. We used nucleotide analogs to link fungal groups with their role in decomposition in field samples. Leaf litter collected from the forest floor was supplemented with one of four N-containing compounds. Bromodeoxyuridine (BrdU, a thymidine analog) was also added. After 48 hours incubation, DNA was extracted. Most growing fungi should have assimilated the BrdU into new DNA. Their genetic identity was determined using oligonucleotide fingerprinting of rRNA genes (OFRG). OFRG is an rRNA gene profiling method that sorts genes into taxonomic groups with a high degree of resolution, and has a large capacity for sample processing. Fungal groups that proliferated following the addition of a given compound probably metabolized that compound. We found that fungal taxa varied in their responses to different substrates, indicating that they differed in substrate use. Specifically, community composition of fungi was significantly different among substrate treatments (P < 0.001). In addition, of the 15 dominant taxa, seven displayed significant preferences for one substrate over another. For instance, taxa within the Helotiales preferred glutamate (P = 0.001); Sporidiales, tannin-protein complexes (P = 0.014); Saccharomycetales, arginine (P = 0.042); and Polyporales, arginine and lignocellulose (P = 0.040). In a complementary experiment, we used BrdU labeling to characterize

  5. Infection with a Shoot-Specific Fungal Endophyte (Epichloë) Alters Tall Fescue Soil Microbial Communities.

    PubMed

    Rojas, Xavier; Guo, Jingqi; Leff, Jonathan W; McNear, David H; Fierer, Noah; McCulley, Rebecca L

    2016-07-01

    Tall fescue (Schedonorus arundinaceus) is a widespread grass that can form a symbiotic relationship with a shoot-specific fungal endophyte (Epichloë coenophiala). While the effects of fungal endophyte infection on fescue physiology and ecology have been relatively well studied, less attention has been given to how this relationship may impact the soil microbial community. We used high-throughput DNA sequencing and phospholipid fatty acid analysis to determine the structure and biomass of microbial communities in both bulk and rhizosphere soils from tall fescue stands that were either uninfected with E. coenophiala or were infected with the common toxic strain or one of several novel strains of the endophyte. We found that rhizosphere and bulk soils harbored distinct microbial communities. Endophyte presence, regardless of strain, significantly influenced soil fungal communities, but endophyte effects were less pronounced in prokaryotic communities. E. coenophiala presence did not change total fungal biomass but caused a shift in soil and rhizosphere fungal community composition, increasing the relative abundance of taxa within the Glomeromycota phylum and decreasing the relative abundance of genera in the Ascomycota phylum, including Lecanicillium, Volutella, Lipomyces, Pochonia, and Rhizoctonia. Our data suggests that tripartite interactions exist between the shoot endophyte E. coenophiala, tall fescue, and soil fungi that may have important implications for the functioning of soils, such as carbon storage, in fescue-dominated grasslands.

  6. Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data

    PubMed Central

    Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F.; Glöckner, Frank Oliver; Reich, Marlis

    2015-01-01

    Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of

  7. Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China.

    PubMed

    He, Jinhong; Tedersoo, Leho; Hu, Ang; Han, Conghai; He, Dan; Wei, Hui; Jiao, Min; Anslan, Sten; Nie, Yanxia; Jia, Yongxia; Zhang, Gengxin; Yu, Guirui; Liu, Shirong; Shen, Weijun

    2017-07-01

    Whether and how seasonality of environmental variables impacts the spatial variability of soil fungal communities remain poorly understood. We assessed soil fungal diversity and community composition of five Chinese zonal forests along a latitudinal gradient spanning 23°N to 42°N in three seasons to address these questions. We found that soil fungal diversity increased linearly or parabolically with latitude. The seasonal variations in fungal diversity were more distinguishable in three temperate deciduous forests than in two subtropical evergreen forests. Soil fungal diversity was mainly correlated with edaphic factors such as pH and nutrient contents. Both latitude and its interactions with season also imposed significant impacts on soil fungal community composition (FCC), but the effects of latitude were stronger than those of season. Vegetational properties such as plant diversity and forest age were the dominant factors affecting FCC in the subtropical evergreen forests while edaphic properties were the dominant ones in the temperate deciduous forests. Our results indicate that latitudinal variation patterns of soil fungal diversity and FCC may differ among seasons. The stronger effect of latitude relative to that of season suggests a more important influence by the spatial than temporal heterogeneity in shaping soil fungal communities across zonal forests. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient.

    PubMed

    Egan, Cameron P; Callaway, Ragan M; Hart, Miranda M; Pither, Jason; Klironomos, John

    2017-04-01

    Despite the importance of arbuscular mycorrhizal (AM) fungi within terrestrial ecosystems, we know little about how natural AM fungal communities are structured. To date, the majority of studies examining AM fungal community diversity have focused on single habitats with similar environmental conditions, with relatively few studies having assessed the diversity of AM fungi over large-scale environmental gradients. In this study, we characterized AM fungal communities in the soil along a high-elevation gradient in the North American Rocky Mountains. We focused on phylogenetic patterns of AM fungal communities to gain insight into how AM fungal communities are naturally assembled. We found that alpine AM fungal communities had lower phylogenetic diversity relative to lower elevation communities, as well as being more heterogeneous in composition than either treeline or subalpine communities. AM fungal communities were phylogenetically clustered at all elevations sampled, suggesting that environmental filtering, either selection by host plants or fungal niches, is the primary ecological process structuring communities along the gradient.

  9. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny

    PubMed Central

    Bell, Terrence H; El-Din Hassan, Saad; Lauron-Moreau, Aurélien; Al-Otaibi, Fahad; Hijri, Mohamed; Yergeau, Etienne; St-Arnaud, Marc

    2014-01-01

    Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray–Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg−1 hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities. PMID:23985744

  10. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

    PubMed Central

    Dias, Juliana; Marcondes, Marcos I.; Noronha, Melline F.; Resende, Rafael T.; Machado, Fernanda S.; Mantovani, Hilário C.; Dill-McFarland, Kimberly A.; Suen, Garret

    2017-01-01

    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative

  11. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau

    PubMed Central

    Dang, Peng; Yu, Xuan; Le, Hien; Liu, Jinliang; Shen, Zhen

    2017-01-01

    The effects of Chinese pine (Pinus tabuliformis) on soil variables after afforestation have been established, but microbial community changes still need to be explored. Using high-throughput sequencing technology, we analyzed bacterial and fungal community composition and diversity in soils from three stands of different-aged, designated 12-year-old (PF1), 29-year-old (PF2), and 53-year-old (PF3), on a Chinese pine plantation and from a natural secondary forest (NSF) stand that was almost 80 years old. Abandoned farmland (BL) was also analyzed. Shannon index values of both bacterial and fungal community in PF1 were greater than those in PF2, PF3 and NSF. Proteobacteria had the lowest abundance in BL, and the abundance increased with stand age. The abundance of Actinobacteria was greater in BL and PF1 soils than those in other sites. Among fungal communities, the dominant taxa were Ascomycota in BL and PF1 and Basidiomycota in PF2, PF3 and NSF, which reflected the successional patterns of fungal communities during the development of Chinese pine plantations. Therefore, the diversity and dominant taxa of soil microbial community in stands 12 and 29 years of age appear to have undergone significant changes; afterward, the soil microbial community achieved a relatively stable state. Furthermore, the abundances of the most dominant bacterial and fungal communities correlated significantly with organic C, total N, C:N, available N, and available P, indicating the dependence of these microbes on soil nutrients. Overall, our findings suggest that the large changes in the soil microbial community structure of Chinese pine plantation forests may be attributed to the phyla present (e.g., Proteobacteria, Actinobacteria, Ascomycota and Basidiomycota) which were affected by soil carbon and nutrients in the Loess Plateau. PMID:29049349

  12. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau.

    PubMed

    Dang, Peng; Yu, Xuan; Le, Hien; Liu, Jinliang; Shen, Zhen; Zhao, Zhong

    2017-01-01

    The effects of Chinese pine (Pinus tabuliformis) on soil variables after afforestation have been established, but microbial community changes still need to be explored. Using high-throughput sequencing technology, we analyzed bacterial and fungal community composition and diversity in soils from three stands of different-aged, designated 12-year-old (PF1), 29-year-old (PF2), and 53-year-old (PF3), on a Chinese pine plantation and from a natural secondary forest (NSF) stand that was almost 80 years old. Abandoned farmland (BL) was also analyzed. Shannon index values of both bacterial and fungal community in PF1 were greater than those in PF2, PF3 and NSF. Proteobacteria had the lowest abundance in BL, and the abundance increased with stand age. The abundance of Actinobacteria was greater in BL and PF1 soils than those in other sites. Among fungal communities, the dominant taxa were Ascomycota in BL and PF1 and Basidiomycota in PF2, PF3 and NSF, which reflected the successional patterns of fungal communities during the development of Chinese pine plantations. Therefore, the diversity and dominant taxa of soil microbial community in stands 12 and 29 years of age appear to have undergone significant changes; afterward, the soil microbial community achieved a relatively stable state. Furthermore, the abundances of the most dominant bacterial and fungal communities correlated significantly with organic C, total N, C:N, available N, and available P, indicating the dependence of these microbes on soil nutrients. Overall, our findings suggest that the large changes in the soil microbial community structure of Chinese pine plantation forests may be attributed to the phyla present (e.g., Proteobacteria, Actinobacteria, Ascomycota and Basidiomycota) which were affected by soil carbon and nutrients in the Loess Plateau.

  13. The biogeography of fungal communities in wetland sediments along the Changjiang River and other sites in China

    PubMed Central

    Wu, Bing; Tian, Jianqing; Bai, Chunming; Xiang, Meichun; Sun, Jingzu; Liu, Xingzhong

    2013-01-01

    Whether fungal community structure depends more on historical factors or on contemporary factors is controversial. This study used culture-dependent and -independent (polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)) methods to assess the influence of historical and contemporary factors on the distributions of fungi in the wetland sediments at 10 locations along the Changjiang River and at 10 other locations in China. The culture-dependent approach detected greater species diversity (177 operational taxonomic units (OTUs)) than PCR-DGGE analysis (145 OTUs), and the species in the genera of Penicillium (relative frequency=16.8%), Fusarium (15.4%), Aspergillus (7.6%), Trichoderma (5.8%) and Talaromyces (4.2%) were dominant. On the basis of DGGE data, fungal diversity along the Changjiang River increased from upstream to downstream; altitude explained 44.8% of this variation in diversity. And based on the data from all 20 locations, the fungal communities were geographically clustered into three groups: Southern China, Northern China and the Qinghai-Tibetan Plateau. Multivariate regression tree analysis for data from the 20 locations indicated that the fungal community was influenced primarily by location (which explained 61.8% of the variation at a large scale), followed by total potassium (9.4%) and total nitrogen (3.5%) at a local scale. These results are consistent with the concept that geographic distance is the dominant factor driving variation in fungal diversity at a regional scale (1000–4000 km), whereas environmental factors (total potassium and total nitrogen) explain variation in fungal diversity at a local scale (<1000 km). PMID:23446835

  14. Water Bacterial and Fungal Community Compositions Associated with Urban Lakes, Xi’an, China

    PubMed Central

    Zhang, Haihan; Wang, Yue; Chen, Shengnan; Zhao, Zhenfang; Feng, Ji; Zhang, Zhonghui; Lu, Kuanyu; Jia, Jingyu

    2018-01-01

    Urban lakes play a vital role in the sustainable development of urbanized areas. In this freshwater ecosystem, massive microbial communities can drive the recycling of nutrients and regulate the water quality. However, water bacterial and fungal communities in the urban lakes are not well understood. In the present work, scanning electron microscopy (SEM) was combined with community level physiological profiles (CLPPs) and Illumina Miseq sequence techniques to determine the diversity and composition of the water bacterial and fungal community in three urban lakes, namely Xingqing lake (LX), Geming lake (LG) and Lianhu lake (LL), located in Xi’an City (Shaanxi Province, China). The results showed that these three lakes were eutrophic water bodies. The highest total nitrogen (TN) was observed in LL, with a value of 12.1 mg/L, which is 2 times higher than that of LG. The permanganate index (CODMn) concentrations were 21.6 mg/L, 35.4 mg/L and 28.8 mg/L in LG, LL and LX, respectively (p < 0.01). Based on the CLPPs test, the results demonstrated that water bacterial communities in the LL and LX urban lakes had higher carbon source utilization ability. A total of 62,742 and 55,346 high quality reads were grouped into 894 and 305 operational taxonomic units (OTUs) for bacterial and fungal communities, respectively. Water bacterial and fungal community was distributed across 14 and 6 phyla. The most common phyla were Proteobacteriaand Cyanobacteria. Cryptomycota was particularly dominant in LL, while Chytridiomycota and Entomophthormycota were the most abundant fungal phyla, accounting for 95% of the population in the LL and 56% in the LG. Heat map and redundancy analysis (RDA) highlighted the dramatic differences of water bacterial communities among three urban lakes. Meanwhile, the profiles of fungal communities were significantly correlated with the water quality parameters (e.g., CODMn and total nitrogen, TN). Several microbes (Legionella sp. and Streptococcus sp

  15. Water Bacterial and Fungal Community Compositions Associated with Urban Lakes, Xi'an, China.

    PubMed

    Zhang, Haihan; Wang, Yue; Chen, Shengnan; Zhao, Zhenfang; Feng, Ji; Zhang, Zhonghui; Lu, Kuanyu; Jia, Jingyu

    2018-03-07

    Urban lakes play a vital role in the sustainable development of urbanized areas. In this freshwater ecosystem, massive microbial communities can drive the recycling of nutrients and regulate the water quality. However, water bacterial and fungal communities in the urban lakes are not well understood. In the present work, scanning electron microscopy (SEM) was combined with community level physiological profiles (CLPPs) and Illumina Miseq sequence techniques to determine the diversity and composition of the water bacterial and fungal community in three urban lakes, namely Xingqing lake (LX), Geming lake (LG) and Lianhu lake (LL), located in Xi'an City (Shaanxi Province, China). The results showed that these three lakes were eutrophic water bodies. The highest total nitrogen (TN) was observed in LL, with a value of 12.1 mg/L, which is 2 times higher than that of LG. The permanganate index (COD Mn ) concentrations were 21.6 mg/L, 35.4 mg/L and 28.8 mg/L in LG, LL and LX, respectively ( p < 0.01). Based on the CLPPs test, the results demonstrated that water bacterial communities in the LL and LX urban lakes had higher carbon source utilization ability. A total of 62,742 and 55,346 high quality reads were grouped into 894 and 305 operational taxonomic units (OTUs) for bacterial and fungal communities, respectively. Water bacterial and fungal community was distributed across 14 and 6 phyla. The most common phyla were Proteobacteriaand Cyanobacteria. Cryptomycota was particularly dominant in LL, while Chytridiomycota and Entomophthormycota were the most abundant fungal phyla, accounting for 95% of the population in the LL and 56% in the LG. Heat map and redundancy analysis (RDA) highlighted the dramatic differences of water bacterial communities among three urban lakes. Meanwhile, the profiles of fungal communities were significantly correlated with the water quality parameters (e.g., COD Mn and total nitrogen, TN). Several microbes ( Legionella sp. and Streptococcus sp

  16. Soil fungal community shift evaluation as a potential cadaver decomposition indicator.

    PubMed

    Chimutsa, Monica; Olakanye, Ayodeji O; Thompson, Tim J U; Ralebitso-Senior, T Komang

    2015-12-01

    Fungi metabolise organic matter in situ and so alter both the bio-/physico-chemical properties and microbial community structure of the ecosystem. In particular, they are responsible reportedly for specific stages of decomposition. Therefore, this study aimed to extend previous bacteria-based forensic ecogenomics research by investigating soil fungal community and cadaver decomposition interactions in microcosms with garden soil (20 kg, fresh weight) and domestic pig (Sus scrofa domesticus) carcass (5 kg, leg). Soil samples were collected at depths of 0-10 cm, 10-20 cm and 20-30 cm on days 3, 28 and 77 in the absence (control -Pg) and presence (experimental +Pg) of Sus scrofa domesticus and used for total DNA extraction and nested polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) profiling of the 18S rRNA gene. The Shannon-Wiener (H') community diversity indices were 1.25±0.21 and 1.49±0.30 for the control and experimental microcosms, respectively, while comparable Simpson species dominance (S) values were 0.65±0.109 and 0.75±0.015. Generally, and in contrast to parallel studies of the bacterial 16S rRNA and 16S rDNA profiles, statistical analysis (t-test) of the 18S dynamics showed no mathematically significant shifts in fungal community diversity (H'; p=0.142) and dominance (S; p=0.392) during carcass decomposition, necessitating further investigations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Responses of the soil fungal communities to the co-invasion of two invasive species with different cover classes.

    PubMed

    Wang, C; Zhou, J; Liu, J; Jiang, K; Xiao, H; Du, D

    2018-01-01

    Soil fungal communities play an important role in the successful invasion of non-native species. It is common for two or more invasive plant species to co-occur in invaded ecosystems. This study aimed to determine the effects of co-invasion of two invasive species (Erigeron annuus and Solidago canadensis) with different cover classes on soil fungal communities using high-throughput sequencing. Invasion of E. annuus and/or S. canadensis had positive effects on the sequence number, operational taxonomic unit (OTU) richness, Shannon diversity, abundance-based cover estimator (ACE index) and Chao1 index of soil fungal communities, but negative effects on the Simpson index. Thus, invasion of E. annuus and/or S. canadensis could increase diversity and richness of soil fungal communities but decrease dominance of some members of these communities, in part to facilitate plant further invasion, because high soil microbial diversity could increase soil functions and plant nutrient acquisition. Some soil fungal species grow well, whereas others tend to extinction after non-native plant invasion with increasing invasion degree and presumably time. The sequence number, OTU richness, Shannon diversity, ACE index and Chao1 index of soil fungal communities were higher under co-invasion of E. annuus and S. canadensis than under independent invasion of either individual species. The co-invasion of the two invasive species had a positive synergistic effect on diversity and abundance of soil fungal communities, partly to build a soil microenvironment to enhance competitiveness of the invaders. The changed diversity and community under co-invasion could modify resource availability and niche differentiation within the soil fungal communities, mediated by differences in leaf litter quality and quantity, which can support different fungal/microbial species in the soil. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  18. Fungal communities in soils along a vegetative ecotone.

    PubMed

    Karst, Justine; Piculell, Bridget; Brigham, Christy; Booth, Michael; Hoeksema, Jason D

    2013-01-01

    We investigated the community composition and diversity of soil fungi along a sharp vegetative ecotone between coastal sage scrub (CSS) and nonnative annual grassland habitat at two sites in coastal California. USA- We pooled soil samples across 29 m transects on either side of the ecotone at each of the two sites, and. using clone libraries of fungal ribosomal DNA, we identified 280 operational taxonomic units (OTUs) from a total 40 g soil. We combined information from partial LSU and ITS sequences and found that the majority of OTUs belonged to the phylum Ascomycota, followed by Basidiomycota. Within the Ascomycota. a quarter of OTUs were Sordariomycetes. 17% were Leotiomycet.es, 16% were Dothideomycetes and the remaining OTUs were distributed among the classes Eurotiomycetes, Pezizomycetes, Lecanoromycetes, Orbiliomycetes and Arthoniomycetes. Within the Basidiomycota. all OTUs but one belonged to the subphylum Agaricomycotina. We also sampled plant communities at the same sites to offer a point of comparison for patterns in richness of fungal communities. Fungal communities had higher alpha and beta diversity than plant communities; fungal communities were approximately 20 times as rich as plant communities and the majority of OTUs were found in single soil samples. Soils harbored a unique mycoflora that did not reveal vegetative boundaries or site differences. High alpha and beta diversity and possible sampling artifacts necessitate extensive sampling to reveal differentiation in these fungal communities.

  19. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir.

    PubMed

    Zhang, Haihan; Jia, Jingyu; Chen, Shengnan; Huang, Tinglin; Wang, Yue; Zhao, Zhenfang; Feng, Ji; Hao, Huiyan; Li, Sulin; Ma, Xinxin

    2018-02-18

    The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS) gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP) from the outbreak to the decline period (p < 0.05) while Fe concentration increased sharply during the decline period (p < 0.05). The highest algal biomass and cell concentrations observed during the bloom were 51.7 mg/L and 1.9×108 cell/L, respectively. The cell concentration was positively correlated with CODMn (r = 0.89, p = 0.02). Illumina Miseq sequencing showed that algal bloom altered the water bacterial and fungal community structure. During the bloom, the dominant bacterial genus were Acinetobacter sp., Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA) also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of algal bloom in

  20. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir

    PubMed Central

    Zhang, Haihan; Jia, Jingyu; Chen, Shengnan; Huang, Tinglin; Wang, Yue; Zhao, Zhenfang; Feng, Ji; Hao, Huiyan; Li, Sulin; Ma, Xinxin

    2018-01-01

    The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS) gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP) from the outbreak to the decline period (p < 0.05) while Fe concentration increased sharply during the decline period (p < 0.05). The highest algal biomass and cell concentrations observed during the bloom were 51.7 mg/L and 1.9×108 cell/L, respectively. The cell concentration was positively correlated with CODMn (r = 0.89, p = 0.02). Illumina Miseq sequencing showed that algal bloom altered the water bacterial and fungal community structure. During the bloom, the dominant bacterial genus were Acinetobacter sp., Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA) also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of algal bloom in

  1. Plant genetics and interspecific competitive interactions determine ectomycorrhizal fungal community responses to climate change.

    PubMed

    Gehring, Catherine; Flores-Rentería, Dulce; Sthultz, Christopher M; Leonard, Tierra M; Flores-Rentería, Lluvia; Whipple, Amy V; Whitham, Thomas G

    2014-03-01

    Although the importance of plant-associated microbes is increasingly recognized, little is known about the biotic and abiotic factors that determine the composition of that microbiome. We examined the influence of plant genetic variation, and two stressors, one biotic and one abiotic, on the ectomycorrhizal (EM) fungal community of a dominant tree species, Pinus edulis. During three periods across 16 years that varied in drought severity, we sampled the EM fungal communities of a wild stand of P. edulis in which genetically based resistance and susceptibility to insect herbivory was linked with drought tolerance and the abundance of competing shrubs. We found that the EM fungal communities of insect-susceptible trees remained relatively constant as climate dried, while those of insect-resistant trees shifted significantly, providing evidence of a genotype by environment interaction. Shrub removal altered the EM fungal communities of insect-resistant trees, but not insect-susceptible trees, also a genotype by environment interaction. The change in the EM fungal community of insect-resistant trees following shrub removal was associated with greater shoot growth, evidence of competitive release. However, shrub removal had a 7-fold greater positive effect on the shoot growth of insect-susceptible trees than insect-resistant trees when shrub density was taken into account. Insect-susceptible trees had higher growth than insect-resistant trees, consistent with the hypothesis that the EM fungi associated with susceptible trees were superior mutualists. These complex, genetic-based interactions among species (tree-shrub-herbivore-fungus) argue that the ultimate impacts of climate change are both ecological and evolutionary. © 2013 John Wiley & Sons Ltd.

  2. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    PubMed

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest. © 2015 John Wiley & Sons Ltd.

  3. Effects of open drainage ditch design on bacterial and fungal communities of cold waterlogged paddy soils

    PubMed Central

    Qiu, Shanlian; Wang, MK; Wang, Fei; Chen, Jichen; Li, Xiaoyan; Li, Qinghua; Lin, Cheng; Lin, Xinjian

    2013-01-01

    A field experiment established in 1980 was conducted to evaluate the effects of open drainage ditch applied for water removal on bacterial and fungal communities of cold waterlogged paddy soils in 2011. In this experiment, traditional plate counting and temperature gradient gel electrophoresis were employed to characterize the abundance and diversity of soil bacterial and fungal communities. Four different distances from the open drainage ditch, 5, 15, 25 and 75 m with different degrees of drainage were designed for this study. Maximum populations of culturable aerobic bacteria and fungi were at 15-m distance while minimum populations were at 75-m distance. Significant differences (p < 0.05) in fungal populations were observed at all distances from open drainage ditch. The highest diversity of the bacterial community was found at a distance of 25 m, while that of the fungal community was observed at a distance of 5 m. Sequencing of excised TGGE bands indicated that the dominant bacteria at 75-m distance belonged to anaerobic or microaerobic bacteria. Relationships between microbial characteristics and soil physicochemical properties indicated that soil pH and available nitrogen contents were key factors controlling the abundance of culturable aerobic bacteria and fungi, while soil water capacity also affected the diversity of fungal community. These findings can provide the references for better design and advanced management of the drainage ditches in cold waterlogged paddy soils. PMID:24516468

  4. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland.

    PubMed

    Sohlberg, Elina; Bomberg, Malin; Miettinen, Hanna; Nyyssönen, Mari; Salavirta, Heikki; Vikman, Minna; Itävaara, Merja

    2015-01-01

    The diversity and functional role of fungi, one of the ecologically most important groups of eukaryotic microorganisms, remains largely unknown in deep biosphere environments. In this study we investigated fungal communities in packer-isolated bedrock fractures in Olkiluoto, Finland at depths ranging from 296 to 798 m below surface level. DNA- and cDNA-based high-throughput amplicon sequencing analysis of the fungal internal transcribed spacer (ITS) gene markers was used to examine the total fungal diversity and to identify the active members in deep fracture zones at different depths. Results showed that fungi were present in fracture zones at all depths and fungal diversity was higher than expected. Most of the observed fungal sequences belonged to the phylum Ascomycota. Phyla Basidiomycota and Chytridiomycota were only represented as a minor part of the fungal community. Dominating fungal classes in the deep bedrock aquifers were Sordariomycetes, Eurotiomycetes, and Dothideomycetes from the Ascomycota phylum and classes Microbotryomycetes and Tremellomycetes from the Basidiomycota phylum, which are the most frequently detected fungal taxa reported also from deep sea environments. In addition some fungal sequences represented potentially novel fungal species. Active fungi were detected in most of the fracture zones, which proves that fungi are able to maintain cellular activity in these oligotrophic conditions. Possible roles of fungi and their origin in deep bedrock groundwater can only be speculated in the light of current knowledge but some species may be specifically adapted to deep subsurface environment and may play important roles in the utilization and recycling of nutrients and thus sustaining the deep subsurface microbial community.

  5. Human Skin Fungal Diversity

    PubMed Central

    Findley, Keisha; Oh, Julia; Yang, Joy; Conlan, Sean; Deming, Clayton; Meyer, Jennifer A.; Schoenfeld, Deborah; Nomicos, Effie; Park, Morgan; Kong, Heidi H.; Segre, Julia A.

    2013-01-01

    Traditional culture-based methods have incompletely defined the etiology of common recalcitrant human fungal skin diseases including athlete’s foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms, while providing a home for diverse commensal microbiota1. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders2,3,4. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also play major roles in microbial community stability, human health and disease5. Genomic methodologies to identify fungal species and communities have been limited compared with tools available for bacteria6. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes7. Here, we sequenced and analyzed fungal communities of 14 skin sites in 10 healthy adults. Eleven core body and arm sites were dominated by Malassezia fungi, with species-level classifications revealing greater topographical resolution between sites. By contrast, three foot sites, plantar heel, toenail, and toeweb, exhibited tremendous fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that skin physiologic attributes and topography differentially shape these two microbial communities. These results provide a framework for future investigation of interactions between pathogenic and commensal fungal and bacterial communities in maintaining human health and contributing to disease pathogenesis. PMID:23698366

  6. Initial fungal colonizer affects mass loss and fungal community development in Picea abies logs 6 yr after inoculation

    Treesearch

    Daniel L. Lindner; Rimvydas Vasaitis; Ariana Kubartova; Johan Allmer; Hanna Johannesson; Mark T. Banik; Jan. Stenlid

    2011-01-01

    Picea abies logs were inoculated with Resinicium bicolor, Fomitopsis pinicola or left un-inoculated and placed in an old-growth boreal forest. Mass loss and fungal community data were collected after 6 yr to test whether simplification of the fungal community via inoculation affects mass loss and fungal community development. Three...

  7. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times

    PubMed Central

    Neher, Deborah A.; Weicht, Thomas R.; Bates, Scott T.; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  8. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    PubMed

    Neher, Deborah A; Weicht, Thomas R; Bates, Scott T; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  9. Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica.

    PubMed

    Santiago, Iara F; Soares, Marco Aurélio; Rosa, Carlos A; Rosa, Luiz H

    2015-11-01

    We surveyed the diversity, distribution and ecology of non-lichenised fungal communities associated with the Antarctic lichens Usnea antarctica and Usnea aurantiaco-atra across Antarctica. The phylogenetic study of the 438 fungi isolates identified 74 taxa from 21 genera of Ascomycota, Basidiomycota and Zygomycota. The most abundant taxa were Pseudogymnoascus sp., Thelebolus sp., Antarctomyces psychrotrophicus and Cryptococcus victoriae, which are considered endemic and/or highly adapted to Antarctica. Thirty-five fungi may represent new and/or endemic species. The fungal communities displayed high diversity, richness and dominance indices; however, the similarity among the communities was variable. After discovering rich and diverse fungal communities composed of symbionts, decomposers, parasites and endemic and cold-adapted cosmopolitan taxa, we introduced the term "lichensphere". We hypothesised that the lichensphere may represent a protected natural microhabitat with favourable conditions able to help non-lichenised fungi and other Antarctic life forms survive and disperse in the extreme environments of Antarctica.

  10. Fungal Community Structure in Disease Suppressive Soils Assessed by 28S LSU Gene Sequencing

    PubMed Central

    Penton, C. Ryan; Gupta, V. V. S. R.; Tiedje, James M.; Neate, Stephen M.; Ophel-Keller, Kathy; Gillings, Michael; Harvey, Paul; Pham, Amanda; Roget, David K.

    2014-01-01

    Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils ‘suppressive’ or ‘non-suppressive’ for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ∼994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria, Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression. PMID:24699870

  11. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  12. The Ectomycorrhizal Fungal Community in a Neotropical Forest Dominated by the Endemic Dipterocarp Pakaraimaea dipterocarpacea

    PubMed Central

    Smith, Matthew E.; Henkel, Terry W.; Uehling, Jessie K.; Fremier, Alexander K.; Clarke, H. David; Vilgalys, Rytas

    2013-01-01

    Ectomycorrhizal (ECM) plants and fungi can be diverse and abundant in certain tropical ecosystems. For example, the primarily paleotropical ECM plant family Dipterocarpaceae is one of the most speciose and ecologically important tree families in Southeast Asia. Pakaraimaea dipterocarpacea is one of two species of dipterocarp known from the Neotropics, and is also the only known member of the monotypic Dipterocarpaceae subfamily Pakaraimoideae. This Guiana Shield endemic is only known from the sandstone highlands of Guyana and Venezuela. Despite its unique phylogenetic position and unusual geographical distribution, the ECM fungal associations of P. dipterocarpacea are understudied throughout the tree’s range. In December 2010 we sampled ECM fungi on roots of P. dipterocarpacea and the co-occurring ECM tree Dicymbe jenmanii (Fabaceae subfamily Caesalpinioideae) in the Upper Mazaruni River Basin of Guyana. Based on ITS rDNA sequencing we documented 52 ECM species from 11 independent fungal lineages. Due to the phylogenetic distance between the two host tree species, we hypothesized that P. dipterocarpacea would harbor unique ECM fungi not found on the roots of D. jenmanii. Although statistical tests suggested that several ECM fungal species did exhibit host preferences for either P. dipterocarpacea or D. jenmanii, most of the ECM fungi were multi-host generalists. We also detected several ECM fungi that have never been found in long-term studies of nearby rainforests dominated by other Dicymbe species. One particular mushroom-forming fungus appears to be unique and may represent a new ECM lineage of Agaricales that is endemic to the Neotropics. PMID:23383090

  13. Composition of fungal soil communities varies with plant abundance and geographic origin

    PubMed Central

    Reininger, Vanessa; Martinez-Garcia, Laura B.; Sanderson, Laura; Antunes, Pedro M.

    2015-01-01

    Interactions of belowground fungal communities with exotic and native plant species may be important drivers of plant community structure in invaded grasslands. However, field surveys linking plant community structure with belowground fungal communities are missing. We investigated whether a selected number of abundant and relatively rare plants, either native or exotic, from an old-field site associate with different fungal communities. We also assessed whether these plants showed different symbiotic relationships with soil biota through their roots. We characterized the plant community and collected roots to investigate fungal communities using 454 pyrosequencing and assessed arbuscular mycorrhizal colonization and enemy-induced lesions. Differences in fungal communities were considered based on the assessment of α- and β diversity depending on plant ‘abundance’ and ‘origin’. Plant abundance and origin determined the fungal community. Fungal richness was higher for native abundant as opposed to relatively rare native plant species. However, this was not observed for exotics of contrasting abundance. Regardless of their origin, β diversity was higher for rare than for abundant species. Abundant exotics in the community, which happen to be grasses, were the least mycorrhizal whereas rare natives were most susceptible to enemy attack. Our results suggest that compared with exotics, the relative abundance of remnant native plant species in our old-field site is still linked to the structure of belowground fungal communities. In contrast, exotic species may act as a disturbing agent contributing towards the homogenization of soil fungal communities, potentially changing feedback interactions. PMID:26371291

  14. Responses of fungal community composition to long-term chemical and organic fertilization strategies in Chinese Mollisols.

    PubMed

    Ma, Mingchao; Jiang, Xin; Wang, Qingfeng; Ongena, Marc; Wei, Dan; Ding, Jianli; Guan, Dawei; Cao, Fengming; Zhao, Baisuo; Li, Jun

    2018-03-23

    How fungi respond to long-term fertilization in Chinese Mollisols as sensitive indicators of soil fertility has received limited attention. To broaden our knowledge, we used high-throughput pyrosequencing and quantitative PCR to explore the response of soil fungal community to long-term chemical and organic fertilization strategies. Soils were collected in a 35-year field experiment with four treatments: no fertilizer, chemical phosphorus, and potassium fertilizer (PK), chemical phosphorus, potassium, and nitrogen fertilizer (NPK), and chemical phosphorus and potassium fertilizer plus manure (MPK). All fertilization differently changed soil properties and fungal community. The MPK application benefited soil acidification alleviation and organic matter accumulation, as well as soybean yield. Moreover, the community richness indices (Chao1 and ACE) were higher under the MPK regimes, indicating the resilience of microbial diversity and stability. With regards to fungal community composition, the phylum Ascomycota was dominant in all samples, followed by Zygomycota, Basidiomycota, Chytridiomycota, and Glomeromycota. At each taxonomic level, the community composition dramatically differed under different fertilization strategies, leading to different soil quality. The NPK application caused a loss of Leotiomycetes but an increase in Eurotiomycetes, which might reduce the plant-fungal symbioses and increase nitrogen losses and greenhouse gas emissions. According to the linear discriminant analysis (LDA) coupled with effect size (LDA score > 3.0), the NPK application significantly increased the abundances of fungal taxa with known pathogenic traits, such as order Chaetothyriales, family Chaetothyriaceae and Pleosporaceae, and genera Corynespora, Bipolaris, and Cyphellophora. In contrast, these fungi were detected at low levels under the MPK regime. Soil organic matter and pH were the two most important contributors to fungal community composition. © 2018 The Authors

  15. Effects of land use on arbuscular mycorrhizal fungal communities in Estonia.

    PubMed

    Sepp, Siim-Kaarel; Jairus, Teele; Vasar, Martti; Zobel, Martin; Öpik, Maarja

    2018-04-01

    Arbuscular mycorrhizal (AM) fungal communities vary across habitat types, as well as across different land use types. Most relevant research, however, has focused on agricultural or other severely human-impacted ecosystems. Here, we compared AM fungal communities across six habitat types: calcareous grassland, overgrown ungrazed calcareous grassland, wooded meadow, farmyard lawn, boreonemoral forest, and boreonemoral forest clear-cut, exhibiting contrasting modes of land use. AM fungi in the roots of a single host plant species, Prunella vulgaris, and in its rhizosphere soil were identified using 454-sequencing from a total of 103 samples from 12 sites in Estonia. Mean AM fungal taxon richness per sample did not differ among habitats. AM fungal community composition, however, was significantly different among habitat types. Both abandonment and land use intensification (clearcutting; trampling combined with frequent mowing) changed AM fungal community composition. The AM fungal communities in different habitat types were most similar in the roots of the single host plant species and most distinct in soil samples, suggesting a non-random pattern in host-fungal taxon interactions. The results show that AM fungal taxon composition is driven by habitat type and land use intensity, while the plant host may act as an additional filter between the available and realized AM fungal species pool.

  16. Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities.

    PubMed

    López-García, Álvaro; Varela-Cervero, Sara; Vasar, Martti; Öpik, Maarja; Barea, José M; Azcón-Aguilar, Concepción

    2017-12-01

    Functional diversity in ecosystems has traditionally been studied using aboveground plant traits. Despite the known effect of plant traits on the microbial community composition, their effects on the microbial functional diversity are only starting to be assessed. In this study, the phylogenetic structure of arbuscular mycorrhizal (AM) fungal communities associated with plant species differing in life cycle and growth form, that is, plant life forms, was determined to unravel the effect of plant traits on the functional diversity of this fungal group. The results of the 454 pyrosequencing showed that the AM fungal community composition differed across plant life forms and this effect was dependent on the soil collection date. Plants with ruderal characteristics tended to associate with phylogenetically clustered AM fungal communities. By contrast, plants with resource-conservative traits associated with phylogenetically overdispersed AM fungal communities. Additionally, the soil collected in different seasons yielded AM fungal communities with different phylogenetic dispersion. In summary, we found that the phylogenetic structure, and hence the functional diversity, of AM fungal communities is dependent on plant traits. This finding adds value to the use of plant traits for the evaluation of belowground ecosystem diversity, functions and processes. © 2017 John Wiley & Sons Ltd.

  17. Watershed-Scale Fungal Community Characterization along a pH Gradient in a Subsurface Environment Cocontaminated with Uranium and Nitrate

    PubMed Central

    Jasrotia, Puja; Green, Stefan J.; Canion, Andy; Overholt, Will A.; Prakash, Om; Wafula, Denis; Hubbard, Daniela; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions. PMID:24389927

  18. Strong coupling of plant and fungal community structure across western Amazonian rainforests

    PubMed Central

    Peay, Kabir G; Baraloto, Christopher; Fine, Paul VA

    2013-01-01

    The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant–fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity. PMID:23598789

  19. Vertical zonation of soil fungal community structure in a Korean pine forest on Changbai Mountain, China.

    PubMed

    Ping, Yuan; Han, Dongxue; Wang, Ning; Hu, Yanbo; Mu, Liqiang; Feng, Fujuan

    2017-01-01

    Changbai Mountain, with intact montane vertical vegetation belts, is located at a sensitive area of global climate change and a central distribution area of Korean pine forest. Broad-leaved Korean pine mixed forest (Pinus koraiensis as an edificator) is the most representative zonal climax vegetation in the humid region of northeastern China; their vertical zonation is the most intact and representative on Changbai Mountain. In this study, we analyzed the composition and diversity of soil fungal communities in the Korean pine forest on Changbai Mountain at elevations ranging from 699 to 1177 m using Illumina High-throughput sequencing. We obtained a total 186,663 optimized sequences, with an average length of 268.81 bp. We found soil fungal diversity index was decreased with increasing elevation from 699 to 937 m and began to rise after reaching 1044 m; the richness and evenness indices were decreased with an increase in elevation. Soil fungal compositions at the phylum, class and genus levels varied significantly at different elevations, but with the same dominant fungi. Beta-diversity analysis indicated that the similarity of fungal communities decreased with an increased vertical distance between the sample plots, showing a distance-decay relationship. Variation partition analysis showed that geographic distance (mainly elevation gradient) only explained 20.53 % of the total variation of fungal community structure, while soil physicochemical factors explained 69.78 %.

  20. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests.

    PubMed

    Clemmensen, Karina E; Finlay, Roger D; Dahlberg, Anders; Stenlid, Jan; Wardle, David A; Lindahl, Björn D

    2015-03-01

    Boreal forest soils store a major proportion of the global terrestrial carbon (C) and below-ground inputs contribute as much as above-ground plant litter to the total C stored in the soil. A better understanding of the dynamics and drivers of root-associated fungal communities is essential to predict long-term soil C storage and climate feedbacks in northern ecosystems. We used 454-pyrosequencing to identify fungal communities across fine-scaled soil profiles in a 5000 yr fire-driven boreal forest chronosequence, with the aim of pinpointing shifts in fungal community composition that may underlie variation in below-ground C sequestration. In early successional-stage forests, higher abundance of cord-forming ectomycorrhizal fungi (such as Cortinarius and Suillus species) was linked to rapid turnover of mycelial biomass and necromass, efficient nitrogen (N) mobilization and low C sequestration. In late successional-stage forests, cord formers declined, while ericoid mycorrhizal ascomycetes continued to dominate, potentially facilitating long-term humus build-up through production of melanized hyphae that resist decomposition. Our results suggest that cord-forming ectomycorrhizal fungi and ericoid mycorrhizal fungi play opposing roles in below-ground C storage. We postulate that, by affecting turnover and decomposition of fungal tissues, mycorrhizal fungal identity and growth form are critical determinants of C and N sequestration in boreal forests. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  1. Reintroduction of locally extinct vertebrates impacts arid soil fungal communities.

    PubMed

    Clarke, Laurence J; Weyrich, Laura S; Cooper, Alan

    2015-06-01

    Introduced species have contributed to extinction of native vertebrates in many parts of the world. Changes to vertebrate assemblages are also likely to alter microbial communities through coextinction of some taxa and the introduction of others. Many attempts to restore degraded habitats involve removal of exotic vertebrates (livestock and feral animals) and reintroduction of locally extinct species, but the impact of such reintroductions on microbial communities is largely unknown. We used high-throughput DNA sequencing of the fungal internal transcribed spacer I (ITS1) region to examine whether replacing exotic vertebrates with reintroduced native vertebrates led to changes in soil fungal communities at a reserve in arid central Australia. Soil fungal diversity was significantly different between dune and swale (interdune) habitats. Fungal communities also differed significantly between sites with exotic or reintroduced native vertebrates after controlling for the effect of habitat. Several fungal operational taxonomic units (OTUs) found exclusively inside the reserve were present in scats from reintroduced native vertebrates, providing a direct link between the vertebrate assemblage and soil microbial communities. Our results show that changes to vertebrate assemblages through local extinctions and the invasion of exotic species can alter soil fungal communities. If local extinction of one or several species results in the coextinction of microbial taxa, the full complement of ecological interactions may never be restored. © 2015 John Wiley & Sons Ltd.

  2. Impact of storage conditions on fungal community composition of green coffee beans Coffea arabica L. stored in jute sacks during 1 year.

    PubMed

    Broissin-Vargas, L M; Snell-Castro, R; Godon, J J; González-Ríos, O; Suárez-Quiroz, M L

    2018-02-01

    The purpose of this study was to evaluate the effect of warehouse storage conditions on the composition of the fungal community of green coffee beans (GCB) that were stored in jute sacks for 1 year. Molecular characterization of the fungal community composition and population dynamics obtained by Q-PCR, CE-SSCP (Simpson's diversity index D) and Illumina MiSeq sequencing indicated that Saccharomycetales dominated during the first 6 months of storage period with species as Meyerozyma guilliermondii and Pichia kluyveri. However, after 6 months of storage, the filamentous genus Wallemia became dominant. Principal components analysis correlated this fungal dynamic with storage conditions and other variables as chromaticity (colour), water activity, moisture content, reducing sugars concentration, fungal infection and ochratoxin A production. This study demonstrated that GCB stored in jute sacks after 6 months of storage lead to fungal population dynamics, decreased chromaticity in GCB by bleaching and, then, affected overall quality. Storage plays an important role in the quality evolution during the handling of the GCB. In this context, the composition of the microbial community could be considered a marker to assess the trade value of the coffee beans. © 2017 The Society for Applied Microbiology.

  3. Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency.

    PubMed

    Cho, Hyunjun; Kim, Mincheol; Tripathi, Binu; Adams, Jonathan

    2017-07-01

    Although disturbance is thought to be important in many ecological processes, responses of fungal communities to soil disturbance have been little studied experimentally. We subjected a soil microcosm to physical disturbance, at a range of frequencies designed to simulate ecological disturbance events. We analyzed the fungal community structure using Illumina HiSeq sequencing of the ITS1 region. Fungal diversity was found to decline with the increasing disturbance frequencies, with no sign of the "humpback" pattern found in many studies of larger sedentary organisms. There is thus no evidence of an effect of release from competition resulting from moderate disturbance-which suggests that competition and niche overlap may not be important in limiting soil fungal diversity. Changing disturbance frequency also led to consistent differences in community composition. There were clear differences in OTU-level composition, with different disturbance treatments each having distinct fungal communities. The functional profile of fungal groups (guilds) was changed by the level of disturbance frequency. These predictable differences in community composition suggest that soil fungi can possess different niches in relation to disturbance frequency, or time since last disturbance. Fungi appear to be most abundant relative to bacteria at intermediate disturbance frequencies, on the time scale we studied here.

  4. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants.

    PubMed

    Gehring, Catherine A; Mueller, Rebecca C; Haskins, Kristin E; Rubow, Tine K; Whitham, Thomas G

    2014-01-01

    Plants and mycorrhizal fungi influence each other's abundance, diversity, and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of plant parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis), and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors, and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future.

  5. Ectomycorrhizal fungal communities of Coccoloba uvifera (L.) L. mature trees and seedlings in the neotropical coastal forests of Guadeloupe (Lesser Antilles).

    PubMed

    Séne, Seynabou; Avril, Raymond; Chaintreuil, Clémence; Geoffroy, Alexandre; Ndiaye, Cheikh; Diédhiou, Abdala Gamby; Sadio, Oumar; Courtecuisse, Régis; Sylla, Samba Ndao; Selosse, Marc-André; Bâ, Amadou

    2015-10-01

    We studied belowground and aboveground diversity and distribution of ectomycorrhizal (EM) fungal species colonizing Coccoloba uvifera (L.) L. (seagrape) mature trees and seedlings naturally regenerating in four littoral forests of the Guadeloupe island (Lesser Antilles). We collected 546 sporocarps, 49 sclerotia, and morphotyped 26,722 root tips from mature trees and seedlings. Seven EM fungal species only were recovered among sporocarps (Cantharellus cinnabarinus, Amanita arenicola, Russula cremeolilacina, Inocybe littoralis, Inocybe xerophytica, Melanogaster sp., and Scleroderma bermudense) and one EM fungal species from sclerotia (Cenococcum geophilum). After internal transcribed spacer (ITS) sequencing, the EM root tips fell into 15 EM fungal taxa including 14 basidiomycetes and 1 ascomycete identified. Sporocarp survey only weakly reflected belowground assessment of the EM fungal community, although 5 fruiting species were found on roots. Seagrape seedlings and mature trees had very similar communities of EM fungi, dominated by S. bermudense, R. cremeolilacina, and two Thelephoraceae: shared species represented 93 % of the taxonomic EM fungal diversity and 74 % of the sampled EM root tips. Furthermore, some significant differences were observed between the frequencies of EM fungal taxa on mature trees and seedlings. The EM fungal community composition also varied between the four investigated sites. We discuss the reasons for such a species-poor community and the possible role of common mycorrhizal networks linking seagrape seedlings and mature trees in regeneration of coastal forests.

  6. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    PubMed

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  7. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days.

    PubMed

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing.

  8. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days

    PubMed Central

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing. PMID:27148180

  9. Forestry impacts on the hidden fungal biodiversity associated with bryophytes.

    PubMed

    Davey, Marie L; Kauserud, Håvard; Ohlson, Mikael

    2014-10-01

    Recent studies have revealed an unexpectedly high, cryptic diversity of fungi associated with boreal forest bryophytes. Forestry practices heavily influence the boreal forest and fundamentally transform the landscape. However, little is known about how bryophyte-associated fungal communities are affected by these large-scale habitat transformations. This study assesses to what degree bryophyte-associated fungal communities are structured across the forest successional stages created by current forestry practices. Shoots of Hylocomium splendens were collected in Picea abies dominated forests of different ages, and their associated fungal communities were surveyed by pyrosequencing of ITS2 amplicons. Although community richness, diversity and evenness were relatively stable across the forest types and all were consistently dominated by ascomycete taxa, there was a marked shift in fungal community composition between young and old forests. Numerous fungal operational taxonomic units (OTUs) showed distinct affinities for different forest ages. Spatial structure was also detected among the sites, suggesting that environmental gradients resulting from the topography of the study area and dispersal limitations may also significantly affect bryophyte-associated fungal community structure. This study confirms that Hylocomium splendens hosts an immense diversity of fungi and demonstrates that this community is structured in part by forest age, and as such is highly influenced by modern forestry practices. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. [Fungal community structure in phase II composting of Volvariella volvacea].

    PubMed

    Chen, Changqing; Li, Tong; Jiang, Yun; Li, Yu

    2014-12-04

    To understand the fungal community succession during the phase II of Volvariella volvacea compost and clarify the predominant fungi in different fermentation stages, to monitor the dynamic compost at the molecular level accurately and quickly, and reveal the mechanism. The 18S rDNA-denaturing gradient gel electrophoresis (DGGE) and sequencing methods were used to analyze the fungal community structure during the course of compost. The DGGE profile shows that there were differences in the diversity of fungal community with the fermentation progress. The diversity was higher in the stages of high temperature. And the dynamic changes of predominant community and relative intensity was observed. Among the 20 predominant clone strains, 9 were unknown eukaryote and fungi, the others were Eurotiales, Aspergillus sp., Melanocarpus albomyces, Colletotrichum sp., Rhizomucor sp., Verticillium sp., Penicillium commune, Microascus trigonosporus and Trichosporon lactis. The 14 clone strains were detected in the stages of high and durative temperature. The fungal community structure and predominant community have taken dynamic succession during the phase II of Volvariella volvacea compost.

  11. Diverse human skin fungal communities in children converge in adulthood

    PubMed Central

    Jo, Jay-Hyun; Deming, Clayton; Kennedy, Elizabeth A.; Conlan, Sean; Polley, Eric C.; Ng, Weng-lan; Segre, Julia A.; Kong, Heidi H.

    2017-01-01

    Understanding the skin mycobiome (fungal communities) is important because both commensal and pathogenic fungi can drive cutaneous disease depending on host status and body sites, including the scalp, feet, and groin. Interestingly, age may also affect skin fungal infections as certain dermatophytoses (i.e. tinea capitis) are more frequent in children than adults. We previously described the skin mycobiomes in healthy adults, showing lipophilic fungi Malassezia predominate in most skin sites. Since children have less sebaceous skin before puberty, we compared the fungal communities of primary clinical samples from healthy children and adults, based on sequencing of a fungal phylogenetic marker. While Malassezia predominated on trunk, head and arm skin of adults (age 20s–30s), children (age <14) had more diverse fungal communities, for example, Eurotiomycetes which includes common dermatophytes. Species-level classification showed M. globosa predominated in children. Collectively, our findings indicate that prepubertal skin is colonized by diverse fungi, whereas adult skin is predominantly obligatory lipophilic Malassezia, suggesting that fungal communities on skin profoundly shift during puberty. Mycobiome shifts during puberty are likely due to alterations in sebaceous gland activation and sebum composition. This study provides a foundational framework for studies investigating interactions between fungi, skin, and pediatric dermatophytosis. PMID:27476723

  12. Diverse Human Skin Fungal Communities in Children Converge in Adulthood.

    PubMed

    Jo, Jay-Hyun; Deming, Clay; Kennedy, Elizabeth A; Conlan, Sean; Polley, Eric C; Ng, Weng-Ian; Segre, Julia A; Kong, Heidi H

    2016-12-01

    Understanding the skin mycobiome (fungal communities) is important because both commensal and pathogenic fungi can drive cutaneous disease depending on host status and body sites, including the scalp, feet, and groin. Interestingly, age may also affect skin fungal infections as certain dermatophytoses (i.e., tinea capitis) are more frequent in children than adults. We previously described the skin mycobiomes in healthy adults, showing lipophilic fungi Malassezia predominate in most skin sites. Because children have less sebaceous skin before puberty, we compared the fungal communities of primary clinical samples from healthy children and adults, based on sequencing of a fungal phylogenetic marker. Although Malassezia predominated on the trunk, head, and arm skin of adults (age 18-39), children (age < 14) had more diverse fungal communities, for example, Eurotiomycetes, which includes common dermatophytes. Species-level classification showed that Malassezia globosa predominated in children. Collectively, our findings indicate that prepubertal skin is colonized by diverse fungi, whereas adult skin is predominantly obligatory lipophilic Malassezia, suggesting that fungal communities on skin profoundly shift during puberty. Mycobiome shifts during puberty are likely due to alterations in sebaceous gland activation and sebum composition. This study provides a foundational framework for studies investigating interactions between fungi, skin, and pediatric dermatophytosis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents.

    PubMed

    Ochoa-Hueso, Raúl; Collins, Scott L; Delgado-Baquerizo, Manuel; Hamonts, Kelly; Pockman, William T; Sinsabaugh, Robert L; Smith, Melinda D; Knapp, Alan K; Power, Sally A

    2018-03-05

    The effects of short-term drought on soil microbial communities remain largely unexplored, particularly at large scales and under field conditions. We used seven experimental sites from two continents (North America and Australia) to evaluate the impacts of imposed extreme drought on the abundance, community composition, richness, and function of soil bacterial and fungal communities. The sites encompassed different grassland ecosystems spanning a wide range of climatic and soil properties. Drought significantly altered the community composition of soil bacteria and, to a lesser extent, fungi in grasslands from two continents. The magnitude of the fungal community change was directly proportional to the precipitation gradient. This greater fungal sensitivity to drought at more mesic sites contrasts with the generally observed pattern of greater drought sensitivity of plant communities in more arid grasslands, suggesting that plant and microbial communities may respond differently along precipitation gradients. Actinobateria, and Chloroflexi, bacterial phyla typically dominant in dry environments, increased their relative abundance in response to drought, whereas Glomeromycetes, a fungal class regarded as widely symbiotic, decreased in relative abundance. The response of Chlamydiae and Tenericutes, two phyla of mostly pathogenic species, decreased and increased along the precipitation gradient, respectively. Soil enzyme activity consistently increased under drought, a response that was attributed to drought-induced changes in microbial community structure rather than to changes in abundance and diversity. Our results provide evidence that drought has a widespread effect on the assembly of microbial communities, one of the major drivers of soil function in terrestrial ecosystems. Such responses may have important implications for the provision of key ecosystem services, including nutrient cycling, and may result in the weakening of plant-microbial interactions and a

  14. Foliar fungal communities strongly differ between habitat patches in a landscape mosaic

    PubMed Central

    Robin, Cécile; Capdevielle, Xavier; Delière, Laurent; Vacher, Corinne

    2016-01-01

    Background Dispersal events between habitat patches in a landscape mosaic can structure ecological communities and influence the functioning of agrosystems. Here we investigated whether short-distance dispersal events between vineyard and forest patches shape foliar fungal communities. We hypothesized that these communities homogenize between habitats over the course of the growing season, particularly along habitat edges, because of aerial dispersal of spores. Methods We monitored the richness and composition of foliar and airborne fungal communities over the season, along transects perpendicular to edges between vineyard and forest patches, using Illumina sequencing of the Internal Transcribed Spacer 2 (ITS2) region. Results In contrast to our expectation, foliar fungal communities in vineyards and forest patches increasingly differentiate over the growing season, even along habitat edges. Moreover, the richness of foliar fungal communities in grapevine drastically decreased over the growing season, in contrast to that of forest trees. The composition of airborne communities did not differ between habitats. The composition of oak foliar fungal communities change between forest edge and centre. Discussion These results suggest that dispersal events between habitat patches are not major drivers of foliar fungal communities at the landscape scale. Selective pressures exerted in each habitat by the host plant, the microclimate and the agricultural practices play a greater role, and might account for the differentiation of foliar fugal communities between habitats. PMID:27833817

  15. Establishment of ectomycorrhizal fungal community on isolated Nothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests: does fruit-body type matter?

    PubMed

    Tedersoo, Leho; Gates, Genevieve; Dunk, Chris W; Lebel, Teresa; May, Tom W; Kõljalg, Urmas; Jairus, Teele

    2009-08-01

    Decaying wood provides an important habitat for animals and forms a seed bed for many shade-intolerant, small-seeded plants, particularly Nothofagus. Using morphotyping and rDNA sequence analysis, we compared the ectomycorrhizal fungal community of isolated N. cunninghamii seedlings regenerating in decayed wood against that of mature tree roots in the forest floor soil. The /cortinarius, /russula-lactarius, and /laccaria were the most species-rich and abundant lineages in forest floor soil in Australian sites at Yarra, Victoria and Warra, Tasmania. On root tips of seedlings in dead wood, a subset of the forest floor taxa were prevalent among them species of /laccaria, /tomentella-thelephora, and /descolea, but other forest floor dominants were rare. Statistical analyses suggested that the fungal community differs between forest floor soil and dead wood at the level of both species and phylogenetic lineage. The fungal species colonizing isolated seedlings on decayed wood in austral forests were taxonomically dissimilar to the species dominating in similar habitats in Europe. We conclude that formation of a resupinate fruit body type on the underside of decayed wood is not necessarily related to preferential root colonization in decayed wood. Rather, biogeographic factors as well as differential dispersal and competitive abilities of fungal taxa are likely to play a key role in structuring the ectomycorrhizal fungal community on isolated seedlings in decaying wood.

  16. Vertical stratification of the foliar fungal community in the world's tallest trees.

    PubMed

    Harrison, Joshua G; Forister, Matthew L; Parchman, Thomas L; Koch, George W

    2016-12-01

    The aboveground tissues of plants host numerous, ecologically important fungi, yet patterns in the spatial distribution of these fungi remain little known. Forest canopies in particular are vast reservoirs of fungal diversity, but intracrown variation in fungal communities has rarely been explored. Knowledge of how fungi are distributed throughout tree crowns will contribute to our understanding of interactions between fungi and their host trees and is a first step toward investigating drivers of community assembly for plant-associated fungi. Here we describe spatial patterns in fungal diversity within crowns of the world's tallest trees, coast redwoods (Sequoia sempervirens). We took a culture-independent approach, using the Illumina MiSeq platform, to characterize the fungal assemblage at multiple heights within the crown across the geographical range of the coast redwood. Within each tree surveyed, we uncovered evidence for vertical stratification in the fungal community; different portions of the tree crown harbored different assemblages of fungi. We also report between-tree variation in the fungal community within redwoods. Our results suggest the potential for vertical stratification of fungal communities in the crowns of other tall tree species and should prompt future study of the factors giving rise to this stratification. © 2016 Botanical Society of America.

  17. Pine Forest Harvest Leads to Decade-Scale Alterations in Soil Fungal Communities

    NASA Astrophysics Data System (ADS)

    Boutton, T. W.; Mushinski, R. M.; Gentry, T. J.

    2016-12-01

    Forestlands provide a multitude of ecosystem services, and sustainable management is crucial to maintaining the benefits of these ecosystems. Intensive organic matter removal (OMR) of logging residues and forest litter during forest harvest may result in long-term alterations to soil properties and processes. Because fungal activity regulates essential biogeochemical processes in forestlands, changes in soil fungal community structure following OMR may translate into altered soil function. Using a replicated field experiment in southern pine forest in eastern Texas, USA, we sampled soil to a depth of 1 m to assess the impact of intensive OMR on soil fungal communities. Soils were collected from replicated (n = 3 ) loblolly pine (Pinus taeda L.) stands subjected to 3 different harvest intensities (i.e., unharvested old growth stands, bole-only harvest stands, and whole-tree harvest + forest floor removal stands) in 1997. Nearly two decades after trees were harvested and replanted, next generation sequencing of the fungal internal transcribed spacer showed the diversity and community structure of the entire fungal community was altered relative to the unharvested stands. The relative abundance of Ascomycetes increased as OMR intensity increased and was positively correlated to concurrent changes in soil pH. The community composition of fungal functional groups (e.g., ecto- and arbuscular mycorrhizal, saprophytic fungi) was also altered by OMR. The most abundant taxa, Russula exhibited significant reductions in response to increasing intensity of OMR. Results of this study illustrate a linkage between anthropogenically-induced aboveground perturbation, edaphic factors, and belowground soil fungal communities of southern pine forests. Also, these results indicate that tree harvesting effects on soil fungal communities can persist for decades post-harvest, with potential implications for soil functional characteristics.

  18. Arbuscular mycorrhizal fungal communities in the rhizosphere of a continuous cropping soybean system at the seedling stage.

    PubMed

    Cui, Jiaqi; Bai, Li; Liu, Xiaorui; Jie, Weiguang; Cai, Baiyan

    Arbuscular mycorrhizae (AM) fungi play a crucial role in the growth of soybean; however, the planting system employed is thought to have an effect on AM fungal communities in the rhizosphere. This study was performed to explore the influence of continuous soybean cropping on the diversity of Arbuscular mycorrhizal (AM) fungi, and to identify the dominant AM fungus during the seedling stage. Three soybean cultivars were planted under two and three years continuous cropping, respectively. The diversity of AM fungi in the rhizosphere soil at the seedling stage was subsequently analyzed using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). The results showed that an increase in cropping years improved the colonization rate of AM in all three soybean cultivars. Moreover, the dominant species were found to be Funneliformis mosseae and Glomus species. The results of cluster analysis further confirmed that the number of years of continuous cropping significantly affected the composition of rhizospheric AM fungal communities in different soybean cultivars. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. Unravelling Soil Fungal Communities from Different Mediterranean Land-Use Backgrounds

    PubMed Central

    Nilsson, R. Henrik; Girlanda, Mariangela; Vizzini, Alfredo; Bonfante, Paola; Bianciotto, Valeria

    2012-01-01

    Background Fungi strongly influence ecosystem structure and functioning, playing a key role in many ecological services as decomposers, plant mutualists and pathogens. The Mediterranean area is a biodiversity hotspot that is increasingly threatened by intense land use. Therefore, to achieve a balance between conservation and human development, a better understanding of the impact of land use on the underlying fungal communities is needed. Methodology/Principal Findings We used parallel pyrosequencing of the nuclear ribosomal ITS regions to characterize the fungal communities in five soils subjected to different anthropogenic impact in a typical Mediterranean landscape: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards. Marked differences in the distribution of taxon assemblages among the different sites and communities were found. Data analyses consistently indicated a sharp distinction of the fungal community of the cork oak forest soil from those described in the other soils. Each soil showed features of the fungal assemblages retrieved which can be easily related to the above-ground settings: ectomycorrhizal phylotypes were numerous in natural sites covered by trees, but were nearly completely missing from the anthropogenic and grass-covered sites; similarly, coprophilous fungi were common in grazed sites. Conclusions/Significance Data suggest that investigation on the below-ground fungal community may provide useful elements on the above-ground features such as vegetation coverage and agronomic procedures, allowing to assess the cost of anthropogenic land use to hidden diversity in soil. Datasets provided in this study may contribute to future searches for fungal bio-indicators as biodiversity markers of a specific site or a land-use degree. PMID:22536336

  20. Watershed scale fungal community characterization along a pH gradient in a subsurface environment co-contaminated with uranium and nitrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasrotia, Puja; Green, Stefan; Canion, Andy

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungalmore » communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.« less

  1. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda)

    PubMed Central

    Oono, Ryoko; Lefèvre, Emilie; Simha, Anita; Lutzoni, François

    2015-01-01

    Fungal endophytes represent one of the most ubiquitous plant symbionts on Earth and are phylogenetically diverse. The structure and diversity of endophyte communities have been shown to depend on host taxa and climate, but there have been relatively few studies exploring endophyte communities throughout host maturity. We compared foliar fungal endophyte communities between seedlings and adult trees of loblolly pines (Pinus taeda) at the same seasons and locations by culturing and culture-independent methods. We sequenced the internal transcribed spacer region and adjacent partial large subunit nuclear ribosomal RNA gene (ITS–LSU amplicon) to delimit operational taxonomic units and phylogenetically characterize the communities. Despite the lower infection frequency in seedlings compared to adult trees, seedling needles were receptive to a more diverse community of fungal endophytes. Culture-free method confirmed the presence of commonly cultured OTUs from adult needles but revealed several new OTUs from seedling needles that were not found with culturing methods. The two most commonly cultured OTUs in adults were rarely cultured from seedlings, suggesting that host age is correlated with a selective enrichment for specific endophytes. This shift in endophyte species dominance may be indicative of a functional change between these fungi and their loblolly pine hosts. PMID:26399186

  2. Experimental soil warming shifts the fungal community composition at the alpine treeline.

    PubMed

    Solly, Emily F; Lindahl, Björn D; Dawes, Melissa A; Peter, Martina; Souza, Rômulo C; Rixen, Christian; Hagedorn, Frank

    2017-07-01

    Increased CO 2 emissions and global warming may alter the composition of fungal communities through the removal of temperature limitation in the plant-soil system, faster nitrogen (N) cycling and changes in the carbon (C) allocation of host plants to the rhizosphere. At a Swiss treeline featuring Larix decidua and Pinus uncinata, the effects of multiple years of CO 2 enrichment and experimental soil warming on the fungal community composition in the organic horizons were analysed using 454-pyrosequencing of ITS2 amplicons. Sporocarp production and colonization of ectomycorrhizal root tips were investigated in parallel. Fungal community composition was significantly altered by soil warming, whereas CO 2 enrichment had little effect. Tree species influenced fungal community composition and the magnitude of the warming responses. The abundance of ectomycorrhizal fungal taxa was positively correlated with N availability, and ectomycorrhizal taxa specialized for conditions of high N availability proliferated with warming, corresponding to considerable increases in inorganic N in warmed soils. Traits related to N utilization are important in determining the responses of ectomycorrhizal fungi to warming in N-poor cold ecosystems. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem N cycling and C storage at the alpine treeline. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities.

    PubMed

    Asemaninejad, Asma; Thorn, R Greg; Lindo, Zoë

    2017-04-01

    Peatlands play an important role in global climate change through sequestration of atmospheric CO 2 . Climate-driven changes in the structure of fungal communities in boreal peatlands that favor saprotrophic fungi can substantially impact carbon dynamics and nutrient cycling in these crucial ecosystems. In a mesocosm study using a full factorial design, 100 intact peat monoliths, complete with living Sphagnum and above-ground vascular vegetation, were subjected to three climate change variables (increased temperature, reduced water table, and elevated CO 2 concentrations). Peat litterbags were placed in mesocosms, and fungal communities in litterbags were monitored over 12 months to assess the impacts of climate change variables on peat-inhabiting fungi. Changes in fungal richness, diversity, and community composition were assessed using Illumina MiSeq sequencing of ribosomal DNA (rDNA). While general fungal richness reduced under warming conditions, Ascomycota exhibited higher diversity under increased temperature treatments over the course of the experiment. Both increased temperature and lowered water table position drove shifts in fungal community composition with a strong positive effect on endophytic and mycorrhizal fungi (including one operational taxonomic unit (OTU) tentatively identified as Barrenia panicia) and different groups of saprotrophs identified as Mortierella, Galerina, and Mycena. These shifts were observed during a predicted degradative succession in the decomposer community as different carbon substrates became available. Since fungi play a central role in peatland communities, increased abundances of saprotrophic fungi under warming conditions, at the expense of reduced fungal richness overall, may increase decomposition rates under future climate scenarios and could potentially aggravate the impacts of climate change.

  4. Untangling the fungal niche: the trait-based approach.

    PubMed

    Crowther, Thomas W; Maynard, Daniel S; Crowther, Terence R; Peccia, Jordan; Smith, Jeffrey R; Bradford, Mark A

    2014-01-01

    Fungi are prominent components of most terrestrial ecosystems, both in terms of biomass and ecosystem functioning, but the hyper-diverse nature of most communities has obscured the search for unifying principles governing community organization. In particular, unlike plants and animals, observational studies provide little evidence for the existence of niche processes in structuring fungal communities at broad spatial scales. This limits our capacity to predict how communities, and their functioning, vary across landscapes. We outline how a shift in focus, from taxonomy toward functional traits, might prove to be valuable in the search for general patterns in fungal ecology. We build on theoretical advances in plant and animal ecology to provide an empirical framework for a trait-based approach in fungal community ecology. Drawing upon specific characteristics of the fungal system, we highlight the significance of drought stress and combat in structuring free-living fungal communities. We propose a conceptual model to formalize how trade-offs between stress-tolerance and combative dominance are likely to organize communities across environmental gradients. Given that the survival of a fungus in a given environment is contingent on its ability to tolerate antagonistic competitors, measuring variation in combat trait expression along environmental gradients provides a means of elucidating realized, from fundamental niche spaces. We conclude that, using a trait-based understanding of how niche processes structure fungal communities across time and space, we can ultimately link communities with ecosystem functioning. Our trait-based framework highlights fundamental uncertainties that require testing in the fungal system, given their potential to uncover general mechanisms in fungal ecology.

  5. Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Womack, A. M.; Artaxo, P. E.; Ishida, F. Y.; Mueller, R. C.; Saleska, S. R.; Wiedemann, K. T.; Bohannan, B. J. M.; Green, J. L.

    2015-11-01

    Fungi are ubiquitous in the atmosphere and may play an important role in atmospheric processes. We investigated the composition and diversity of fungal communities over the Amazon rainforest canopy and compared these communities to fungal communities found in terrestrial environments. We characterized the total fungal community and the metabolically active portion of the community using high-throughput DNA and RNA sequencing and compared these data to predictions generated by a mass-balance model. We found that the total community was primarily comprised of fungi from the phylum Basidiomycota. In contrast, the active community was primarily composed of members of the phylum Ascomycota and included a high relative abundance of lichen fungi, which were not detected in the total community. The relative abundance of Basidiomycota and Ascomycota in the total and active communities was consistent with our model predictions, suggesting that this result was driven by the relative size and number of spores produced by these groups. When compared to other environments, fungal communities in the atmosphere were most similar to communities found in tropical soils and leaf surfaces. Our results demonstrate that there are significant differences in the composition of the total and active fungal communities in the atmosphere, and that lichen fungi, which have been shown to be efficient ice nucleators, may be abundant members of active atmospheric fungal communities over the forest canopy.

  6. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities

    NASA Astrophysics Data System (ADS)

    Zhou, Xingang; Zhang, Jianhui; Gao, Danmei; Gao, Huan; Guo, Meiyu; Li, Li; Zhao, Mengliang; Wu, Fengzhi

    2017-01-01

    Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1α genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents.

  7. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities

    PubMed Central

    Zhou, Xingang; Zhang, Jianhui; Gao, Danmei; Gao, Huan; Guo, Meiyu; Li, Li; Zhao, Mengliang; Wu, Fengzhi

    2017-01-01

    Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1α genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents. PMID:28134269

  8. Genotype-Specific Variation in the Structure of Root Fungal Communities Is Related to Chickpea Plant Productivity

    PubMed Central

    Hamel, Chantal; Gan, Yantai; Tar'an, Bunyamin; Knight, Joan Diane

    2015-01-01

    Increasing evidence supports the existence of variations in the association of plant roots with symbiotic fungi that can improve plant growth and inhibit pathogens. However, it is unclear whether intraspecific variations in the symbiosis exist among plant cultivars and if they can be used to improve crop productivity. In this study, we determined genotype-specific variations in the association of chickpea roots with soil fungal communities and evaluated the effect of root mycota on crop productivity. A 2-year field experiment was conducted in southwestern Saskatchewan, the central zone of the chickpea growing region of the Canadian prairie. The effects of 13 cultivars of chickpea, comprising a wide range of phenotypes and genotypes, were tested on the structure of root-associated fungal communities based on internal transcribed spacer (ITS) and 18S rRNA gene markers using 454 amplicon pyrosequencing. Chickpea cultivar significantly influenced the structure of the root fungal community. The magnitude of the effect varied with the genotypes evaluated, and effects were consistent across years. For example, the roots of CDC Corrine, CDC Cory, and CDC Anna hosted the highest fungal diversity and CDC Alma and CDC Xena the lowest. Fusarium sp. was dominant in chickpea roots but was less abundant in CDC Corrine than the other cultivars. A bioassay showed that certain of these fungal taxa, including Fusarium species, can reduce the productivity of chickpea, whereas Trichoderma harzianum can increase chickpea productivity. The large variation in the profile of chickpea root mycota, which included growth-promoting and -inhibiting species, supports the possibility of improving the productivity of chickpea by improving its root mycota in chickpea genetic improvement programs using traditional breeding techniques. PMID:25616789

  9. Ecological Succession Pattern of Fungal Community in Soil along a Retreating Glacier

    PubMed Central

    Tian, Jianqing; Qiao, Yuchen; Wu, Bing; Chen, Huai; Li, Wei; Jiang, Na; Zhang, Xiaoling; Liu, Xingzhong

    2017-01-01

    Accelerated by global climate changing, retreating glaciers leave behind soil chronosequences of primary succession. Current knowledge of primary succession is mainly from studies of vegetation dynamics, whereas information about belowground microbes remains unclear. Here, we combined shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. We investigated fungal succession and community assembly via high-throughput sequencing along a well-established glacier forefront chronosequence that spans 2–188 years of deglaciation. Shannon diversity and evenness peaked at a distance of 370 m and declined afterwards. The response of fungal diversity to distance varied in different phyla. Basidiomycota Shannon diversity significantly decreased with distance, while the pattern of Rozellomycota Shannon diversity was unimodal. Abundance of most frequencies OTU2 (Cryptococcus terricola) increased with successional distance, whereas that of OTU65 (Tolypocladium tundrense) decreased. Based on null deviation analyses, composition of the fungal community was initially governed by deterministic processes strongly but later less deterministic processes. Our results revealed that distance, altitude, soil microbial biomass carbon, soil microbial biomass nitrogen and NH4+–N significantly correlated with fungal community composition along the chronosequence. These results suggest that the drivers of fungal community are dynamics in a glacier chronosequence, that may relate to fungal ecophysiological traits and adaptation in an evolving ecosystem. The information will provide understanding the mechanistic underpinnings of microbial community assembly during ecosystem succession under different scales and scenario. PMID:28649234

  10. Ecological Succession Pattern of Fungal Community in Soil along a Retreating Glacier.

    PubMed

    Tian, Jianqing; Qiao, Yuchen; Wu, Bing; Chen, Huai; Li, Wei; Jiang, Na; Zhang, Xiaoling; Liu, Xingzhong

    2017-01-01

    Accelerated by global climate changing, retreating glaciers leave behind soil chronosequences of primary succession. Current knowledge of primary succession is mainly from studies of vegetation dynamics, whereas information about belowground microbes remains unclear. Here, we combined shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. We investigated fungal succession and community assembly via high-throughput sequencing along a well-established glacier forefront chronosequence that spans 2-188 years of deglaciation. Shannon diversity and evenness peaked at a distance of 370 m and declined afterwards. The response of fungal diversity to distance varied in different phyla. Basidiomycota Shannon diversity significantly decreased with distance, while the pattern of Rozellomycota Shannon diversity was unimodal. Abundance of most frequencies OTU2 ( Cryptococcus terricola ) increased with successional distance, whereas that of OTU65 ( Tolypocladium tundrense ) decreased. Based on null deviation analyses, composition of the fungal community was initially governed by deterministic processes strongly but later less deterministic processes. Our results revealed that distance, altitude, soil microbial biomass carbon, soil microbial biomass nitrogen and [Formula: see text]-N significantly correlated with fungal community composition along the chronosequence. These results suggest that the drivers of fungal community are dynamics in a glacier chronosequence, that may relate to fungal ecophysiological traits and adaptation in an evolving ecosystem. The information will provide understanding the mechanistic underpinnings of microbial community assembly during ecosystem succession under different scales and scenario.

  11. Bacterial and fungal communities and contribution of physicochemical factors during cattle farm waste composting.

    PubMed

    Huhe; Jiang, Chao; Wu, Yanpei; Cheng, Yunxiang

    2017-12-01

    During composting, the composition of microbial communities is subject to constant change owing to interactions with fluctuating physicochemical parameters. This study explored the changes in bacterial and fungal communities during cattle farm waste composting and aimed to identify and prioritize the contributing physicochemical factors. Microbial community compositions were determined by high-throughput sequencing. While the predominant phyla in the bacterial and fungal communities were largely consistent during the composting, differences in relative abundances were observed. Bacterial and fungal community diversity and relative abundance varied significantly, and inversely, over time. Relationships between physicochemical factors and microbial community compositions were evaluated by redundancy analysis. The variation in bacterial community composition was significantly related to water-soluble organic carbon (WSOC), and pile temperature and moisture (p < .05), while the largest portions of variation in fungal community composition were explained by pile temperature, WSOC, and C/N (p < .05). These findings indicated that those parameters are the most likely ones to influence, or be influenced by the bacterial and fungal communities. Variation partitioning analyses indicated that WSOC and pile temperature had predominant effects on bacterial and fungal community composition, respectively. Our findings will be useful for improving the quality of cattle farm waste composts. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. Investigation of the indigenous fungal community populating barley grains: Secretomes and xylanolytic potential.

    PubMed

    Sultan, Abida; Frisvad, Jens C; Andersen, Birgit; Svensson, Birte; Finnie, Christine

    2017-10-03

    The indigenous fungal species populating cereal grains produce numerous plant cell wall-degrading enzymes including xylanases, which could play important role in plant-pathogen interactions and in adaptation of the fungi to varying carbon sources. To gain more insight into the grain surface-associated enzyme activity, members of the populating fungal community were isolated, and their secretomes and xylanolytic activities assessed. Twenty-seven different fungal species were isolated from grains of six barley cultivars over different harvest years and growing sites. The isolated fungi were grown on medium containing barley flour or wheat arabinoxylan as sole carbon source. Their secretomes and xylanase activities were analyzed using SDS-PAGE and enzyme assays and were found to vary according to species and carbon source. Secretomes were dominated by cell wall degrading enzymes with xylanases and xylanolytic enzymes being the most abundant. A 2-DE-based secretome analysis of Aspergillus niger and the less-studied pathogenic fungus Fusarium poae grown on barley flour and wheat arabinoxylan resulted in identification of 82 A. niger and 31 F. poae proteins many of which were hydrolytic enzymes, including xylanases. The microorganisms that inhabit the surface of cereal grains are specialized in production of enzymes such as xylanases, which depolymerize plant cell walls. Integration of gel-based proteomics approach with activity assays is a powerful tool for analysis and characterization of fungal secretomes and xylanolytic activities which can lead to identification of new enzymes with interesting properties, as well as provide insight into plant-fungal interactions, fungal pathogenicity and adaptation. Understanding the fungal response to host niche is of importance to uncover novel targets for potential symbionts, anti-fungal agents and biotechnical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA).

    PubMed

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2011-08-01

    During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. A multifactor analysis of fungal and bacterial community structure of the root microbiome of mature Populus deltoides trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakya, Migun; Gottel, Neil R; Castro Gonzalez, Hector F

    2013-01-01

    Bacterial and fungal communities associated with plant roots are central to the host- health, survival and growth. However, a robust understanding of root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watershedsmore » to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to it s associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall genotypic distances did not have a significant effect on corresponding communities that

  15. A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees

    PubMed Central

    Shakya, Migun; Gottel, Neil; Castro, Hector; Yang, Zamin K.; Gunter, Lee; Labbé, Jessy; Muchero, Wellington; Bonito, Gregory; Vilgalys, Rytas; Tuskan, Gerald; Podar, Mircea; Schadt, Christopher W.

    2013-01-01

    Bacterial and fungal communities associated with plant roots are central to the host health, survival and growth. However, a robust understanding of the root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watersheds to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to its associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall host genotypic distances did not have a significant effect on corresponding communities that

  16. Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests.

    PubMed

    Karpati, Amy S; Handel, Steven N; Dighton, John; Horton, Thomas R

    2011-08-01

    The presence and quality of the belowground mycorrhizal fungal community could greatly influence plant community structure and host species response. This study tests whether mycorrhizal fungal communities in areas highly impacted by anthropogenic disturbance and urbanization are less species rich or exhibit lower host root colonization rates when compared to those of less disturbed systems. Using a soil bioassay, we sampled the ectomycorrhizal fungal (EMF) communities associating with Quercus rubra (northern red oak) seedlings in soil collected from seven sites: two mature forest reference sites and five urban sites of varying levels of disturbance. Morphological and polymerase chain reaction-restriction fragment length polymorphism analyses of fungi colonizing root tips revealed that colonization rates and fungal species richness were significantly lower on root systems of seedlings grown in disturbed site soils. Analysis of similarity showed that EMF community composition was not significantly different among several urban site soils but did differ significantly between mature forest sites and all but one urban site. We identified a suite of fungal species that occurred across several urban sites. Lack of a diverse community of belowground mutualists could be a constraint on urban plant community development, especially of late-successional woodlands. Analysis of urban EMF communities can add to our understanding of urban plant community structure and should be addressed during ecological assessment before pragmatic decisions to restore habitats are framed.

  17. Spatial and Temporal Variation of Archaeal, Bacterial and Fungal Communities in Agricultural Soils

    PubMed Central

    Pereira e Silva, Michele C.; Dias, Armando Cavalcante Franco; van Elsas, Jan Dirk; Salles, Joana Falcão

    2012-01-01

    Background Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. Methodology/Principal Findings In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal β-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal β-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers. Conclusions Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities. PMID:23284712

  18. Experimental soil warming at the treeline shifts fungal communities species

    NASA Astrophysics Data System (ADS)

    Solly, Emily; Lindahl, Björn; Dawes, Melissa; Peter, Martina; Rixen, Christian; Hagedorn, Frank

    2016-04-01

    In terrestrial ecosystems, fungi play a major role in decomposition processes, plant nutrient uptake and nutrient cycling. In high elevation ecosystems in Alpine and Arctic regions, the fungal community may be particularly sensitive to climate warming due to the removal of temperature limitation in the plant and soil system, faster nutrient cycling and changes in plant carbon allocation to maintain roots systems and sustain the rhizosphere. In our study, we estimated the effects of 9 years CO2 enrichment and three years of experimental soil warming on the community structure of fungal microorganisms in an alpine treeline ecosystem. In the Swiss Alps, we worked on a total of 40 plots, with c. 40-year-old Larix decidua and Pinus mugo ssp. uncinata trees (20 plots for each tree species). Half of the plots with each tree species were randomly assigned to an elevated CO2 treatment (ambient concentration +200 ppm), whereas the remaining plots received no supplementary CO2. Five individual plots for each combination of CO2 concentration and tree species were heated by an average of 4°C during the growing season with heating cables at the soil surface. At the treeline, the fungal diversity analyzed by high-throughput 454-sequencing of genetic markers, was generally low as compared to low altitude systems and mycorrhizal species made a particularly small contribution to the total fungal DNA. Soil warming led to a shift in the structure and composition of the fungal microbial community, with an increase of litter degraders and ectomycorrhizal fungi. We further observed changes in the productivity of specific fungal fruiting bodies (i.e. more Lactarius rufus sporocarps and less Hygrophorus lucorum sporocarps) during the course of the experiment, that were consistent with the 454-sequencing data. The warming effect was more pronounced in the Larix plots. These shifts were accompanied by an increased soil CO2 efflux (+40%), evidence of increased N availability and a

  19. Anthropogenic disturbance equalizes diversity levels in arbuscular mycorrhizal fungal communities.

    PubMed

    García de León, David; Davison, John; Moora, Mari; Öpik, Maarja; Feng, Huyuan; Hiiesalu, Inga; Jairus, Teele; Koorem, Kadri; Liu, Yongjun; Phosri, Cherdchai; Sepp, Siim-Kaarel; Vasar, Martti; Zobel, Martin

    2018-03-24

    The arbuscular mycorrhizal (AM) symbiosis is a key plant-microbe interaction in sustainable functioning ecosystems. Increasing anthropogenic disturbance poses a threat to AM fungal communities worldwide, but there is little empirical evidence about its potential negative consequences. In this global study, we sequenced AM fungal DNA in soil samples collected from pairs of natural (undisturbed) and anthropogenic (disturbed) plots in two ecosystem types (10 naturally wooded and six naturally unwooded ecosystems). We found that ecosystem type had stronger directional effects than anthropogenic disturbance on AM fungal alpha and beta diversity. However, disturbance increased alpha and beta diversity at sites where natural diversity was low and decreased diversity at sites where natural diversity was high. Cultured AM fungal taxa were more prevalent in anthropogenic than natural plots, probably due to their efficient colonization strategies and ability to recover from disturbance. We conclude that anthropogenic disturbance does not have a consistent directional effect on AM fungal diversity; rather, disturbance equalizes levels of diversity at large scales and causes changes in community functional structure. © 2018 John Wiley & Sons Ltd.

  20. Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities.

    PubMed

    Moora, Mari; Davison, John; Öpik, Maarja; Metsis, Madis; Saks, Ülle; Jairus, Teele; Vasar, Martti; Zobel, Martin

    2014-12-01

    Arbuscular mycorrhizal (AM) fungi play an important role in ecosystems, but little is known about how soil AM fungal community composition varies in relation to habitat type and land-use intensity. We molecularly characterized AM fungal communities in soil samples (n = 88) from structurally open (permanent grassland, intensive and sustainable agriculture) and forested habitats (primeval forest and spruce plantation). The habitats harboured significantly different AM fungal communities, and there was a broad difference in fungal community composition between forested and open habitats, the latter being characterized by higher average AM fungal richness. Within both open and forest habitats, intensive land use significantly influenced community composition. There was a broad difference in the phylogenetic structure of AM fungal communities between mechanically disturbed and nondisturbed habitats. Taxa from Glomeraceae served as indicator species for the nondisturbed habitats, while taxa from Archaeosporaceae, Claroideoglomeraceae and Diversisporaceae were indicators for the disturbed habitats. The distribution of these indicator taxa among habitat types in the MaarjAM global database of AM fungal diversity was in accordance with their local indicator status. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Sharing of Diverse Mycorrhizal and Root-Endophytic Fungi among Plant Species in an Oak-Dominated Cool–Temperate Forest

    PubMed Central

    Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S.

    2013-01-01

    Most terrestrial plants interact with diverse clades of mycorrhizal and root-endophytic fungi in their roots. Through belowground plant–fungal interactions, dominant plants can benefit by interacting with host-specific mutualistic fungi and proliferate in a community based on positive plant–mutualistic fungal feedback. On the other hand, subordinate plant species may persist in the community by sharing other sets (functional groups) of fungal symbionts with each other. Therefore, revealing how diverse clades of root-associated fungi are differentially hosted by dominant and subordinate plant species is essential for understanding plant community structure and dynamics. Based on 454-pyrosequencing, we determined the community composition of root-associated fungi on 36 co-occurring plant species in an oak-dominated forest in northern Japan and statistically evaluated the host preference phenotypes of diverse mycorrhizal and root-endophytic fungi. An analysis of 278 fungal taxa indicated that an ectomycorrhizal basidiomycete fungus in the genus Lactarius and a possibly endophytic ascomycete fungus in the order Helotiales significantly favored the dominant oak (Quercus) species. In contrast, arbuscular mycorrhizal fungi were generally shared among subordinate plant species. Although fungi with host preferences contributed to the compartmentalization of belowground plant–fungal associations, diverse clades of ectomycorrhizal fungi and possible root endophytes were associated not only with the dominant Quercus but also with the remaining plant species. Our findings suggest that dominant-ectomycorrhizal and subordinate plant species can host different subsets of root-associated fungi, and diverse clades of generalist fungi can counterbalance the compartmentalization of plant–fungal associations. Such insights into the overall structure of belowground plant–fungal associations will help us understand the mechanisms that facilitate the coexistence of plant species

  2. A fungal metallo-beta-lactamase necessary for biotransformation of maize phytoprotectant compounds

    USDA-ARS?s Scientific Manuscript database

    Xenobiotic compounds such as phytochemicals, microbial metabolites, and agrochemicals can impact the diversity and frequency of fungal species occurring in agricultural environments. Resistance to xenobiotics may allow plant pathogenic fungi to dominate the overall fungal community, with potential ...

  3. Digging the New York City Skyline: Soil Fungal Communities in Green Roofs and City Parks

    PubMed Central

    McGuire, Krista L.; Payne, Sara G.; Palmer, Matthew I.; Gillikin, Caitlyn M.; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M.; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A.; Massmann, Audrey L.; Orazi, Giulia; Essene, Adam; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs. PMID:23469260

  4. Digging the New York City Skyline: soil fungal communities in green roofs and city parks.

    PubMed

    McGuire, Krista L; Payne, Sara G; Palmer, Matthew I; Gillikin, Caitlyn M; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A; Massmann, Audrey L; Orazi, Giulia; Essene, Adam; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.

  5. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-10-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic.

  6. Soil fungal communities in a Castanea sativa (chestnut) forest producing large quantities of Boletus edulis sensu lato (porcini): where is the mycelium of porcini?

    PubMed

    Peintner, Ursula; Iotti, Mirco; Klotz, Petra; Bonuso, Enrico; Zambonelli, Alessandra

    2007-04-01

    A study was conducted in a Castanea sativa forest that produces large quantities of the edible mushroom porcini (Boletus edulis sensu lato). The primary aim was to study porcini mycelia in the soil, and to determine if there were any possible ecological and functional interactions with other dominant soil fungi. Three different approaches were used: collection and morphological identification of fruiting bodies, morphological and molecular identification of ectomycorrhizae by rDNA-ITS sequence analyses and molecular identification of the soil mycelia by ITS clone libraries. Soil samples were taken directly under basidiomes of Boletus edulis, Boletus aestivalis, Boletus aereus and Boletus pinophilus. Thirty-nine ectomycorrhizal fungi were identified on root tips whereas 40 fungal species were found in the soil using the cloning technique. The overlap between above- and below-ground fungal communities was very low. Boletus mycelia, compared with other soil fungi, were rare and with scattered distribution, whereas their fruiting bodies dominated the above-ground fungal community. Only B. aestivalis ectomycorrhizae were relatively abundant and detected as mycelia in the soil. No specific fungus-fungus association was found. Factors triggering formation of mycorrhizae and fructification of porcini appear to be too complex to be simply explained on the basis of the amount of fungal mycelia in the soil.

  7. Changes in ectomycorrhizal fungal community composition and declining diversity along a 2-million-year soil chronosequence.

    PubMed

    Albornoz, Felipe E; Teste, François P; Lambers, Hans; Bunce, Michael; Murray, Dáithí C; White, Nicole E; Laliberté, Etienne

    2016-10-01

    Ectomycorrhizal (ECM) fungal communities covary with host plant communities along soil fertility gradients, yet it is unclear whether this reflects changes in host composition, fungal edaphic specialization or priority effects during fungal community establishment. We grew two co-occurring ECM plant species (to control for host identity) in soils collected along a 2-million-year chronosequence representing a strong soil fertility gradient and used soil manipulations to disentangle the effects of edaphic properties from those due to fungal inoculum. Ectomycorrhizal fungal community composition changed and richness declined with increasing soil age; these changes were linked to pedogenesis-driven shifts in edaphic properties, particularly pH and resin-exchangeable and organic phosphorus. However, when differences in inoculum potential or soil abiotic properties among soil ages were removed while host identity was held constant, differences in ECM fungal communities and richness among chronosequence stages disappeared. Our results show that ECM fungal communities strongly vary during long-term ecosystem development, even within the same hosts. However, these changes could not be attributed to short-term fungal edaphic specialization or differences in fungal inoculum (i.e. density and composition) alone. Rather, they must reflect longer-term ecosystem-level feedback between soil, vegetation and ECM fungi during pedogenesis. © 2016 John Wiley & Sons Ltd.

  8. Variations in bacterial and fungal communities through soil depth profiles in a Betula albosinensis forest.

    PubMed

    Du, Can; Geng, Zengchao; Wang, Qiang; Zhang, Tongtong; He, Wenxiang; Hou, Lin; Wang, Yueling

    2017-09-01

    Microbial communities in subsurface soil are specialized for their environment, which is distinct from that of the surface communities. However, little is known about the microbial communities (bacteria and fungi) that exist in the deeper soil horizons. Vertical changes in microbial alpha-diversity (Chao1 and Shannon indices) and community composition were investigated at four soil depths (0-10, 10-20, 20-40, and 40-60 cm) in a natural secondary forest of Betula albosinensis by high-throughput sequencing of the 16S and internal transcribed spacer rDNA regions. The numbers of operational taxonomic units (OTUs), and the Chao1 and Shannon indices decreased in the deeper soil layers. Each soil layer contained both mutual and specific OTUs. In the 40-60 cm soil layer, 175 and 235 specific bacterial and fungal OTUs were identified, respectively. Acidobacteria was the most dominant bacterial group in all four soil layers, but reached its maximum at 40-60 cm (62.88%). In particular, the 40-60 cm soil layer typically showed the highest abundance of the fungal genus Inocybe (47.46%). The Chao1 and Shannon indices were significantly correlated with the soil organic carbon content. Redundancy analysis indicated that the bacterial communities were closely correlated with soil organic carbon content (P = 0.001). Collectively, these results indicate that soil nutrients alter the microbial diversity and relative abundance and affect the microbial composition.

  9. Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Soil microbial communities in dryland ecosystems play important roles as root associates of the widely spaced plants and as the dominant members of biological soil crusts (biocrusts) colonizing the plant interspaces. We employed rRNA gene sequencing (bacterial 16S/fungal large subunit) and shotgun metagenomic sequencing to compare the microbial communities inhabiting the root zones of the dominant shrub, Larrea tridentata (creosote bush), and the interspace biocrusts in a Mojave desert shrubland within the Nevada Free Air CO2 Enrichment (FACE) experiment. Most of the numerically abundant bacteria and fungi were present in both the biocrusts and root zones, although the proportional abundance of those members differed significantly between habitats. Biocrust bacteria were predominantly Cyanobacteria while root zones harbored significantly more Actinobacteria and Proteobacteria. Pezizomycetes fungi dominated the biocrusts while Dothideomycetes were highest in root zones. Functional gene abundances in metagenome sequence datasets reflected the taxonomic differences noted in the 16S rRNA datasets. For example, functional categories related to photosynthesis, circadian clock proteins, and heterocyst-associated genes were enriched in the biocrusts, where populations of Cyanobacteria were larger. Genes related to potassium metabolism were also more abundant in the biocrusts, suggesting differences in nutrient cycling between biocrusts and root zones. Finally, ten years of elevated atmospheric CO2 did not result in large shifts in taxonomic composition of the bacterial or fungal communities or the functional gene inventories in the shotgun metagenomes.

  10. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration

    PubMed Central

    Li, Song; Avera, Bethany N.; Strahm, Brian D.; Badgley, Brian D.

    2017-01-01

    ABSTRACT Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal

  11. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration.

    PubMed

    Sun, Shan; Li, Song; Avera, Bethany N; Strahm, Brian D; Badgley, Brian D

    2017-07-15

    Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery

  12. Diversity of endolithic fungal communities in dolomite and limestone rocks from Nanjiang Canyon in Guizhou karst area, China.

    PubMed

    Tang, Yuan; Lian, Bin

    2012-06-01

    The endolithic environment, the tiny pores and cracks in rocks, buffer microbial communities from a number of physical stresses, such as desiccation, rapid temperature variations, and UV radiation. Considerable knowledge has been acquired about the diversity of microorganisms in these ecosystems, but few culture-independent studies have been carried out on the diversity of fungi to date. Scanning electron microscopy of carbonate rock fragments has revealed that the rock samples contain certain kinds of filamentous fungi. We evaluated endolithic fungal communities from bare dolomite and limestone rocks collected from Nanjiang Canyon (a typical karst canyon in China) using culture-independent methods. Results showed that Ascomycota was absolutely dominant both in the dolomite and limestone fungal clone libraries. Basidiomycota and other eukaryotic groups (Bryophyta and Chlorophyta) were only detected occasionally or at low frequencies. The most common genus in the investigated carbonate rocks was Verrucaria. Some other lichen-forming fungi (e.g., Caloplaca, Exophiala, and Botryolepraria), Aspergillus, and Penicillium were also identified from the rock samples. The results provide a cross-section of the endolithic fungal communities in carbonate rocks and help us understand more about the role of microbes (fungi and other rock-inhabiting microorganisms) in rock weathering and pedogenesis.

  13. Dynamics of bacterial and fungal communities associated with eggshells during incubation

    PubMed Central

    Grizard, Stéphanie; Dini-Andreote, Francisco; Tieleman, B Irene; Salles, Joana F

    2014-01-01

    Microorganisms are closely associated with eggs and may play a determinant role in embryo survival. Yet, the majority of studies focusing on this association relied on culture-based methodology, eventually leading to a skewed assessment of microbial communities. By targeting the 16S rRNA gene and internal transcribed spacer (ITS) region, we, respectively, described bacterial and fungal communities on eggshells of the homing pigeon Columba livia. We explored their structure, abundance, and composition. Firstly, we showed that sampling technique affected the outcome of the results. While broadly used, the egg swabbing procedure led to a lower DNA extraction efficiency and provided different profiles of bacterial communities than those based on crushed eggshell pieces. Secondly, we observed shifts in bacterial and fungal communities during incubation. At late incubation, bacterial communities showed a reduction in diversity, while their abundance increased, possibly due to the competitive advantage of some species. When compared to their bacterial counterparts, fungal communities also decreased in diversity at late incubation. In that case, however, the decline was associated with a diminution of their overall abundance. Conclusively, our results showed that although incubation might inhibit microbial growth when compared to unincubated eggs, we observed the selective growth of specific bacterial species during incubation. Moreover, we showed that fungi are a substantial component of the microbial communities associated with eggshells and require further investigations in avian ecology. Identifying the functional roles of these microorganisms is likely to provide news insights into the evolutionary strategies that control embryo survival. We aimed to describe the dynamics of bacterial and fungal communities on homing pigeon eggshell surfaces. We investigated these communities at early and late incubation stages. PMID:24772289

  14. Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation.

    PubMed

    McGuire, Krista L; Fierer, Noah; Bateman, Carling; Treseder, Kathleen K; Turner, Benjamin L

    2012-05-01

    Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0-20 cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6 months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities.

  15. Distinct impacts of reductive soil disinfestation and chemical soil disinfestation on soil fungal communities and memberships.

    PubMed

    Zhao, Jun; Zhou, Xing; Jiang, Anqi; Fan, Juanzi; Lan, Tao; Zhang, Jinbo; Cai, Zucong

    2018-06-21

    Soil disinfestation is an important agricultural practice to conquer soil-borne diseases and thereby ensure crop productivity. Reductive soil disinfestation (RSD) had been developed as an environmentally friendly alternative to chemical soil disinfestation (CSD). However, the differences between CSD and RSD on soil-borne pathogen suppression and fungal community structure remain poorly understood. In this work, five treatments, i.e., untreated soil (CK), CSD with 0.5 t ha -1 dazomet (DZ), RSD with 10 t ha -1 ethanol (ET), 15 t ha -1 sugarcane bagasse (SB), and 15 t ha -1 bean dregs (BD), were performed to investigate their influences on disinfestation efficiency, fungal abundance, diversity, and community structure via quantitative PCR and high-throughput sequencing. RSD-related treatments, especially the BD treatment, effectively alleviated soil acidification and salinization. The fungal abundance and microbial activity considerably increased in the BD treatment and significantly declined in the DZ treatment as compared to the CK treatment. Moreover, both CSD and RSD-related treatments significantly inhibited the population of Fusarium oxysporum and the relative abundance of genus Fusarium. Fungal community structure was notably altered by CSD and RSD practices. Furthermore, both CSD and RSD harbored a distinct unique microbiome, with the DZ treatment dominated by the genus Mortierella and BD treatment predominated by the genera Zopfiella, Chaetomium, and Penicillium. Taken together, these results indicate that the BD treatment could considerably alleviate the soil deterioration, improve soil microbial activity, and reassemble a non-pathogen unique microbiome that have more disease-suppressive agents and thus might be a promising disinfestation practice to control soil-borne disease in monoculture system.

  16. Habitat filters in fungal endophyte community assembly

    USDA-ARS?s Scientific Manuscript database

    Fungal endophytes can influence host health, and more broadly, can instigate trophic cascades with effects scaling to the ecosystem level. Despite this, biotic mechanisms of endophyte community assembly are largely unknown. We used maize to investigate three potential habitat filters in endophyte co...

  17. Impact of endochitinase-transformed white spruce on soil fungal communities under greenhouse conditions.

    PubMed

    Lamarche, Josyanne; Stefani, Franck O P; Séguin, Armand; Hamelin, Richard C

    2011-05-01

    Chitinase genes isolated from plants, bacteria or fungi have been widely used in genetic engineering to enhance the resistance of crops and trees to fungal pathogens. However, there are concerns about the possible effect of chitinase-transformed plants on nontarget fungi. This study aimed at evaluating the impact of endochitinase-transformed white spruce on soil fungal communities. Endochitinase-expressing white spruce and untransformed controls were transplanted in soils from two natural forests and grown for 8 months in a greenhouse. Soil fungal biomass and diversity, estimated through species richness and Shannon and Rao diversity indices, were not different between transgenic and control tree rhizospheres. The fungal phylogenetic community structure was the same in soil samples from control and transgenic white spruces after 8 months. Soil type and presence of seedlings had a much more significant impact on fungal community structure than the insertion and expression of the ech42 transgene within the white spruce genome. The results suggest that the insertion and constitutive expression of the ech42 gene in white spruce did not significantly affect soil fungal biomass, diversity and community structure. © 2011 Her Majesty the Queen in Right of Canada FEMS Microbiology Ecology © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd.

  18. Soil pH is a Key Determinant of Soil Fungal Community Composition in the Ny-Ålesund Region, Svalbard (High Arctic)

    PubMed Central

    Zhang, Tao; Wang, Neng-Fei; Liu, Hong-Yu; Zhang, Yu-Qin; Yu, Li-Yan

    2016-01-01

    This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic). A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS) region. The following eight soil properties were analyzed: pH, organic carbon (C), organic nitrogen (N), ammonium nitrogen (NH4+-N), silicate silicon (SiO42--Si), nitrite nitrogen (NO2--N), phosphate phosphorus (PO43--P), and nitrate nitrogen (NO3--N). A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs) were found. of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>eight soil samples) were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda) and analysis of similarities (ANOSIM) revealed that soil pH (p = 0.001) was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8–9, whereas Sordariales predominated in soils of pH 7–8 and Coniochaetales predominated in soils of pH 6–7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic. PMID:26955371

  19. Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest.

    PubMed

    Mueller, Rebecca C; Paula, Fabiana S; Mirza, Babur S; Rodrigues, Jorge L M; Nüsslein, Klaus; Bohannan, Brendan J M

    2014-07-01

    Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests.

  20. How does conversion of natural tropical rainforest ecosystems affect soil bacterial and fungal communities in the Nile river watershed of Uganda?

    PubMed

    Alele, Peter O; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H

    2014-01-01

    Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring

  1. How Does Conversion of Natural Tropical Rainforest Ecosystems Affect Soil Bacterial and Fungal Communities in the Nile River Watershed of Uganda?

    PubMed Central

    Alele, Peter O.; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H.

    2014-01-01

    Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring

  2. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes.

    PubMed

    Zhang, Yuanchen; Kastman, Erik K; Guasto, Jeffrey S; Wolfe, Benjamin E

    2018-01-23

    Most studies of bacterial motility have examined small-scale (micrometer-centimeter) cell dispersal in monocultures. However, bacteria live in multispecies communities, where interactions with other microbes may inhibit or facilitate dispersal. Here, we demonstrate that motile bacteria in cheese rind microbiomes use physical networks created by filamentous fungi for dispersal, and that these interactions can shape microbial community structure. Serratia proteamaculans and other motile cheese rind bacteria disperse on fungal networks by swimming in the liquid layers formed on fungal hyphae. RNA-sequencing, transposon mutagenesis, and comparative genomics identify potential genetic mechanisms, including flagella-mediated motility, that control bacterial dispersal on hyphae. By manipulating fungal networks in experimental communities, we demonstrate that fungal-mediated bacterial dispersal can shift cheese rind microbiome composition by promoting the growth of motile over non-motile community members. Our single-cell to whole-community systems approach highlights the interactive dynamics of bacterial motility in multispecies microbiomes.

  3. Coupled Metagenomic and Chemical Analyses of Degrading Fungal Necromass and Implications for Fungal contributions to Stable Soil Organic Carbon

    NASA Astrophysics Data System (ADS)

    Egerton-Warburton, L. M.; Schreiner, K. M.; Morgan, B. S. T.; Schultz, J.; Blair, N. E.

    2016-12-01

    Fungi comprise a significant portion of total soil biomass, the turnover of which must represent a dominant flux within the soil carbon cycle. Fungal organic carbon (OC) can turn over on time scales of days to months, but this process is poorly understood. Here, we examined temporal changes in the chemical and microbial community composition of fungal necromass during a 2-month decomposition experiment in which Fusarium avenaceum (a common saprophyte) was exposed to a natural soil microbial community. Over the course of the experiment, residual fungal necromass was harvested and analyzed using FTIR and thermochemolysis-GCMS to examine chemical changes in the tissue. In addition, genomic DNA was extracted from tissues, amplified with barcoded ITS primers, and sequenced using the high-throughput Illumina platform to examine changes in microbial community composition. Up to 80% of the fungal necromass turned over in the first week. This rapid degradation phase corresponded to colonization of the necromass by known chitinolytic soil fungi including Mortierella species. Members of the Zygomycota and Ascomycota were among the dominant fungal groups involved in degradation with very small contributions from Basidiomycota. At the end of the 2-month degradation, only 15% of the original necromass remained. The residual material was rich in amide and C-O moieties which is consistent with previous work predicting that peptidoglycans are the main residual product from microbial tissue degradation. Straight-chain fatty acids exhibited varying degradation profiles, with some fatty acids (e.g. C16, C18:1) degrading more rapidly than bulk tissue while others maintained steady concentrations relative to bulk OC (C18) or increased in concentration throughout the degradation sequence (C24). These results indicate that the turnover of fungal necromass has the potential to rapidly and significantly influence a variety of soil OC properties including C/N ratios, lipid biomarker

  4. Mixed cropping regimes promote the soil fungal community under zero tillage.

    PubMed

    Silvestro, L B; Biganzoli, F; Stenglein, S A; Forjan, H; Manso, L; Moreno, M V

    2018-07-01

    Fungi of yield soils represent a significant portion of the microbial biomass and reflect sensitivity to changes in the ecosystem. Our hypothesis was that crops included in cropping regimes under the zero tillage system modify the structure of the soil fungi community. Conventional and molecular techniques provide complementary information for the analysis of diversity of fungal species and successful information to accept our hypothesis. The composition of the fungal community varied according to different crops included in the cropping regimes. However, we detected other factors as sources of variation among them, season and sampling depth. The mixed cropping regimes including perennial pastures and one crop per year promote fungal diversity and species with potential benefit to soil and crop. The winter season and 0-5 cm depth gave the largest evenness and fungal diversity. Trichoderma aureoviride and Rhizopus stolonifer could be used for monitoring changes in soil under zero tillage.

  5. Experimentally altered rainfall regimes and host root traits affect grassland arbuscular mycorrhizal fungal communities.

    PubMed

    Deveautour, Coline; Donn, Suzanne; Power, Sally A; Bennett, Alison E; Powell, Jeff R

    2018-04-01

    Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterized arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem. © 2018 John Wiley & Sons Ltd.

  6. Rapid response of soil fungal communities to low and high intensity fire

    NASA Astrophysics Data System (ADS)

    Smith, Jane E.; Cowan, Ariel D.; Reazin, Chris; Jumpponen, Ari

    2016-04-01

    Contemporary fires have created high-severity burn areas exceeding historical distributions in forests in the western United States. Until recently, the response of soil ecosystems to high intensity burns has been largely unknown. In complementary studies, we investigated the environmental effect of extreme soil heating, such that occurs with the complete combustion of large down wood during wildfires, on soil fungi and nutrients. We used TRFLP and next generation sequencing (Illumina MiSeq) to investigate the fungal communities. During the burning of large down wood, temperatures lethal to fungi were detected at 0-cm, 5-cm, and 10-cm depths in soils compared to 0-cm depth in soils receiving low intensity broadcast burns. We compared the soil fungal diversity in ten high intensity burned plots paired with adjacent low intensity burned plots before and one week after at 0-10 cm soil depth. Nonmetric Multidimensional Scaling (NMS) ordinations and analyses of taxon frequencies reveal a substantial community turnover and corresponding near complete replacement of the dominant basidiomycetes by ascomycetes in high intensity burns. These coarse-level taxonomic responses were primarily attributable to a few fire-responsive (phoenicoid) fungi, particularly Pyronema sp. and Morchella sp., whose frequencies increased more than 100-fold following high intensity burns. Pinus ponderosa seedlings planted one week post-burn were harvested after four months for EMF root tip analysis. We found: a) greater differences in soil properties and nutrients in high intensity burned soils compared to low intensity burned and unburned soils; b) no differences in EMF richness and diversity; and c) weak differences in community composition based on relative abundance between unburned and either burn treatments. These results confirm the combustion of large downed wood can alter the soil environment directly beneath it. However, an EMF community similar to low burned soils recolonized high

  7. Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica

    USDA-ARS?s Scientific Manuscript database

    The diversity of fungal communities from different substrates in Antarctica were studied and their capability to produce bioactive compounds. A one hundred and one fungal isolates were identified by molecular analysis in 35 different fungal taxa from 20 genera. Pseudogymnoascus sp. 3, Pseudogymnoasc...

  8. Pyrosequencing reveals regional differences in fruit-associated fungal communities

    PubMed Central

    Taylor, Michael W; Tsai, Peter; Anfang, Nicole; Ross, Howard A; Goddard, Matthew R

    2014-01-01

    We know relatively little of the distribution of microbial communities generally. Significant work has examined a range of bacterial communities, but the distribution of microbial eukaryotes is less well characterized. Humans have an ancient association with grape vines (Vitis vinifera) and have been making wine since the dawn of civilization, and fungi drive this natural process. While the molecular biology of certain fungi naturally associated with vines and wines is well characterized, complementary investigations into the ecology of fungi associated with fruiting plants is largely lacking. DNA sequencing technologies allow the direct estimation of microbial diversity from a given sample, avoiding culture-based biases. Here, we use deep community pyrosequencing approaches, targeted at the 26S rRNA gene, to examine the richness and composition of fungal communities associated with grapevines and test for geographical community structure among four major regions in New Zealand (NZ). We find over 200 taxa using this approach, which is 10-fold more than previously recovered using culture-based methods. Our analyses allow us to reject the null hypothesis of homogeneity in fungal species richness and community composition across NZ and reveal significant differences between major areas. PMID:24650123

  9. Changes in fungal community composition in response to experimental soil warming at the alpine treeline

    NASA Astrophysics Data System (ADS)

    Solly, Emily; Lindahl, Bjorn; Dawes, Melissa; Peter, Martina; Souza, Romulo; Rixen, Christian; Hagedorn, Frank

    2017-04-01

    Increased CO2 emissions and global warming may alter the composition of fungal communities through the reduction of low temperature limitation in the plant-soil system, faster nitrogen cycling and changes in the carbon allocation of host plants to the rhizosphere. Shifts in fungal community composition due to global changes are likely to affect the routes of carbon and nitrogen flows in the plant-soil system and alter the rates at which organic matter is decomposed. The main aim of our study was to estimate the effects of multiple years of free air CO2 enrichment (ambient concentration +200 ppm) and soil warming (+ 4°C) on the fungal community structure and composition. At an alpine treeline in Switzerland featuring two key high-elevation tree species, Larix decidua and Pinus uncinata, fungal communities within different organic horizons were analysed by high-throughput 454-pyrosequencing of ITS2 amplicons. In addition, we assessed the ectomycorrhizal community composition on root tips and monitored changes in sporocarp productivity of fungal species during the course of the experiment. Three years of experimental warming at the alpine treeline altered the composition of the fungal community in the organic horizons, whereas nine years of CO2 enrichment had only weak effects. Tree species influenced the composition of the fungal community and the magnitude of the responses of fungal functional groups to soil warming differed between plots with Larix and those with Pinus. The abundance of ectomycorrhizal fungi was positively correlated with nitrogen availability, and ectomycorrhizal taxa specialized for conditions of high nitrogen availability proliferated with warming, corresponding to considerable increases in extractable inorganic nitrogen in warmed soils. Changes in productivity of specific fungal fruiting bodies in response to soil warming (e.g. more Lactarius rufus sporocarps and less Hygrophorus speciousus sporocarps) were consistent with the 454-sequencing

  10. Links between Soil Fungal Diversity and Plant and Soil Properties on the Loess Plateau

    PubMed Central

    Yang, Yang; Dou, Yanxing; Huang, Yimei; An, Shaoshan

    2017-01-01

    Previous studies have revealed inconsistent correlations between fungal diversity and plant/soil properties from local to global scales. Here, we investigated the internal relationships between soil fungal diversity and plant/soil properties on the Loess Plateau following vegetation restoration, using Illumina sequencing of the internal transcribed spacer 2 (ITS2) region for fungal identification. We found significant effects of land use types (Af, Artificial forest; Ns, Natural shrub; Ag, Artificial grassland; Ng, Natural grassland; Sc, slope cropland) on soil fungal communities composition, and the dominant phyla were Ascomycota, Basidiomycota, and Zygomycota, which transitioned from Basidiomycota-dominant to Ascomycota-dominant community due to vegetation restoration. The Chao1 richness, Shannon’s diversity and ACE indices were significantly influenced by land use types with the order of Ns > Af > Ng > Ag > Sc, and the total number of OTUs varied widely. In contrast, Good’s coverage and Simpson’s diversity indicated no significant difference among land use types (p > 0.05). Correlation analysis showed that plant and soil properties were closely related to fungal diversity regardless of land use types. In addition, soil organic carbon (SOC) and Hplant (plant richness, Shannon-Wiener index) were strong driving factors that explained fungal diversity. As revealed by the structural equation model (SEM) and generalized additive models (GAMs), fungal diversity was directly and indirectly affected by soil and plant properties, respectively, providing evidence for strong links between soil fungal diversity and plant and soil properties on the Loess Plateau. PMID:29163460

  11. Links between Soil Fungal Diversity and Plant and Soil Properties on the Loess Plateau.

    PubMed

    Yang, Yang; Dou, Yanxing; Huang, Yimei; An, Shaoshan

    2017-01-01

    Previous studies have revealed inconsistent correlations between fungal diversity and plant/soil properties from local to global scales. Here, we investigated the internal relationships between soil fungal diversity and plant/soil properties on the Loess Plateau following vegetation restoration, using Illumina sequencing of the internal transcribed spacer 2 (ITS2) region for fungal identification. We found significant effects of land use types (Af, Artificial forest; Ns, Natural shrub; Ag, Artificial grassland; Ng, Natural grassland; Sc, slope cropland) on soil fungal communities composition, and the dominant phyla were Ascomycota, Basidiomycota , and Zygomycota , which transitioned from Basidiomycota -dominant to Ascomycota -dominant community due to vegetation restoration. The Chao1 richness, Shannon's diversity and ACE indices were significantly influenced by land use types with the order of Ns > Af > Ng > Ag > Sc, and the total number of OTUs varied widely. In contrast, Good's coverage and Simpson's diversity indicated no significant difference among land use types ( p > 0.05). Correlation analysis showed that plant and soil properties were closely related to fungal diversity regardless of land use types. In addition, soil organic carbon (SOC) and H plant (plant richness, Shannon-Wiener index) were strong driving factors that explained fungal diversity. As revealed by the structural equation model (SEM) and generalized additive models (GAMs), fungal diversity was directly and indirectly affected by soil and plant properties, respectively, providing evidence for strong links between soil fungal diversity and plant and soil properties on the Loess Plateau.

  12. Links between tree species, symbiotic fungal diversity and ecosystem functioning in simplified tropical ecosystems.

    PubMed

    Lovelock, Catherine E; Ewel, John J

    2005-07-01

    We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.

  13. Long-lasting effects of land use history on soil fungal communities in second-growth tropical rain forests.

    PubMed

    Bachelot, Benedicte; Uriarte, María; Zimmerman, Jess K; Thompson, Jill; Leff, Jonathan W; Asiaii, Ava; Koshner, Jenny; McGuire, Krista

    2016-09-01

    Our understanding of the long-lasting effects of human land use on soil fungal communities in tropical forests is limited. Yet, over 70% of all remaining tropical forests are growing in former agricultural or logged areas. We investigated the relationship among land use history, biotic and abiotic factors, and soil fungal community composition and diversity in a second-growth tropical forest in Puerto Rico. We coupled high-throughput DNA sequencing with tree community and environmental data to determine whether land use history had an effect on soil fungal community descriptors. We also investigated the biotic and abiotic factors that underlie such differences and asked whether the relative importance of biotic (tree diversity, basal tree area, and litterfall biomass) and abiotic (soil type, pH, iron, and total carbon, water flow, and canopy openness) factors in structuring soil fungal communities differed according to land use history. We demonstrated long-lasting effects of land use history on soil fungal communities. At our research site, most of the explained variation in soil fungal composition (R 2  = 18.6%), richness (R 2  = 11.4%), and evenness (R 2  = 10%) was associated with edaphic factors. Areas previously subject to both logging and farming had a soil fungal community with lower beta diversity and greater evenness of fungal operational taxonomic units (OTUs) than areas subject to light logging. Yet, fungal richness was similar between the two areas of historical land use. Together, these results suggest that fungal communities in disturbed areas are more homogeneous and diverse than in areas subject to light logging. Edaphic factors were the most strongly correlated with soil fungal composition, especially in areas subject to light logging, where soils are more heterogenous. High functional tree diversity in areas subject to both logging and farming led to stronger correlations between biotic factors and fungal composition than in areas subject

  14. Soil pH determines fungal diversity along an elevation gradient in Southwestern China.

    PubMed

    Liu, Dan; Liu, Guohua; Chen, Li; Wang, Juntao; Zhang, Limei

    2018-01-03

    Fungi play important roles in ecosystem processes, and the elevational pattern of fungal diversity is still unclear. Here, we examined the diversity of fungi along a 1,000 m elevation gradient on Mount Nadu, Southwestern China. We used MiSeq sequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs) and to measure the fungal composition and diversity. Though the species richness and phylogenetic diversity of the fungal community did not exhibit significant trends with increasing altitude, they were significantly lower at mid-altitudinal sites than at the base. The Bray-Curtis distance clustering also showed that the fungal communities varied significantly with altitude. A distance-based linear model multivariate analysis (DistLM) identified that soil pH dominated the explanatory power of the species richness (23.72%), phylogenetic diversity (24.25%) and beta diversity (28.10%) of the fungal community. Moreover, the species richness and phylogenetic diversity of the fungal community increased linearly with increasing soil pH (P<0.05). Our study provides evidence that pH is an important predictor of soil fungal diversity along elevation gradients in Southwestern China.

  15. Root-associated fungal community response to drought-associated changes in vegetation community.

    PubMed

    Dean, Sarah L; Warnock, Daniel D; Litvak, Marcy E; Porras-Alfaro, Andrea; Sinsabaugh, Robert

    2015-01-01

    Recent droughts in southwestern USA have led to large-scale mortality of piñon (Pinus edulis) in piñon-juniper woodlands. Piñon mortality alters soil moisture, nutrient and carbon availability, which could affect the root-associated fungal (RAF) communities and therefore the fitness of the remaining plants. We collected fine root samples at a piñon-juniper woodland and a juniper savannah site in central New Mexico. Roots were collected from piñon and juniper (Juniperus monosperma) trees whose nearest neighbors were live piñon, live juniper or dead piñon. RAF communities were analyzed by 454 pyrosequencing of the universal fungal ITS region. The most common taxa were Hypocreales and Chaetothyriales. More than 10% of ITS sequences could not be assigned taxonomy at the phylum level. Two of the unclassified OTUs significantly differed between savanna and woodland, had few like sequences in GenBank and formed new fungal clades with other unclassified RAF from arid plants, highlighting how little study has been done on the RAF of arid ecosystems. Plant host or neighbor did not affect RAF community composition. However, there was a significant difference between RAF communities from woodland vs. savanna, indicating that abiotic factors such as temperature and aridity might be more important in structuring these RAF communities than biotic factors such as plant host or neighbor identity. Ectomycorrhizal fungi (EM) were present in juniper as well as piñon in the woodland site, in contrast with previous research, but did not occur in juniper savanna, suggesting a potential shared EM network with juniper. RAF richness was lower in hosts that were neighbors of the opposite host. This may indicate competitive exclusion between fungi from different hosts. Characterizing these communities and their responses to environment and plant neighborhood is a step toward understanding the effects of drought on a biome that spans 19,000,000 ha of southwestern USA. © 2015 by The

  16. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus.

    PubMed

    Leff, Jonathan W; Lynch, Ryan C; Kane, Nolan C; Fierer, Noah

    2017-04-01

    Root and rhizosphere microbial communities can affect plant health, but it remains undetermined how plant domestication may influence these bacterial and fungal communities. We grew 33 sunflower (Helianthus annuus) strains (n = 5) that varied in their extent of domestication and assessed rhizosphere and root endosphere bacterial and fungal communities. We also assessed fungal communities in the sunflower seeds to investigate the degree to which root and rhizosphere communities were influenced by vertical transmission of the microbiome through seeds. Neither root nor rhizosphere bacterial communities were affected by the extent of sunflower domestication, but domestication did affect the composition of rhizosphere fungal communities. In particular, more modern sunflower strains had lower relative abundances of putative fungal pathogens. Seed-associated fungal communities strongly differed across strains, but several lines of evidence suggest that there is minimal vertical transmission of fungi from seeds to the adult plants. Our results indicate that plant-associated fungal communities are more strongly influenced by host genetic factors and plant breeding than bacterial communities, a finding that could influence strategies for optimizing microbial communities to improve crop yields. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Ecological succession reveals potential signatures of marine–terrestrial transition in salt marsh fungal communities

    PubMed Central

    Dini-Andreote, Francisco; Pylro, Victor Satler; Baldrian, Petr; van Elsas, Jan Dirk; Salles, Joana Falcão

    2016-01-01

    Marine-to-terrestrial transition represents one of the most fundamental shifts in microbial life. Understanding the distribution and drivers of soil microbial communities across coastal ecosystems is critical given the roles of microbes in soil biogeochemistry and their multifaceted influence on landscape succession. Here, we studied the fungal community dynamics in a well-established salt marsh chronosequence that spans over a century of ecosystem development. We focussed on providing high-resolution assessments of community composition, diversity and ecophysiological shifts that yielded patterns of ecological succession through soil formation. Notably, despite containing 10- to 100-fold lower fungal internal transcribed spacer abundances, early-successional sites revealed fungal richnesses comparable to those of more mature soils. These newly formed sites also exhibited significant temporal variations in β-diversity that may be attributed to the highly dynamic nature of the system imposed by the tidal regime. The fungal community compositions and ecophysiological assignments changed substantially along the successional gradient, revealing a clear signature of ecological replacement and gradually transforming the environment from a marine into a terrestrial system. Moreover, distance-based linear modelling revealed soil physical structure and organic matter to be the best predictors of the shifts in fungal β-diversity along the chronosequence. Taken together, our study lays the basis for a better understanding of the spatiotemporally determined fungal community dynamics in salt marshes and highlights their ecophysiological traits and adaptation in an evolving ecosystem. PMID:26824176

  18. Ecological succession reveals potential signatures of marine-terrestrial transition in salt marsh fungal communities.

    PubMed

    Dini-Andreote, Francisco; Pylro, Victor Satler; Baldrian, Petr; van Elsas, Jan Dirk; Salles, Joana Falcão

    2016-08-01

    Marine-to-terrestrial transition represents one of the most fundamental shifts in microbial life. Understanding the distribution and drivers of soil microbial communities across coastal ecosystems is critical given the roles of microbes in soil biogeochemistry and their multifaceted influence on landscape succession. Here, we studied the fungal community dynamics in a well-established salt marsh chronosequence that spans over a century of ecosystem development. We focussed on providing high-resolution assessments of community composition, diversity and ecophysiological shifts that yielded patterns of ecological succession through soil formation. Notably, despite containing 10- to 100-fold lower fungal internal transcribed spacer abundances, early-successional sites revealed fungal richnesses comparable to those of more mature soils. These newly formed sites also exhibited significant temporal variations in β-diversity that may be attributed to the highly dynamic nature of the system imposed by the tidal regime. The fungal community compositions and ecophysiological assignments changed substantially along the successional gradient, revealing a clear signature of ecological replacement and gradually transforming the environment from a marine into a terrestrial system. Moreover, distance-based linear modelling revealed soil physical structure and organic matter to be the best predictors of the shifts in fungal β-diversity along the chronosequence. Taken together, our study lays the basis for a better understanding of the spatiotemporally determined fungal community dynamics in salt marshes and highlights their ecophysiological traits and adaptation in an evolving ecosystem.

  19. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing.

    PubMed

    Galitskaya, Polina; Biktasheva, Liliya; Saveliev, Anatoly; Grigoryeva, Tatiana; Boulygina, Eugenia; Selivanovskaya, Svetlana

    2017-01-01

    Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil) and one discriminate component (sewage sludges of different origin) were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2) x 106 and (0.4±0.0) x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0) x105 and (6.1±0.2) x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was concluded that the

  20. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing

    PubMed Central

    Galitskaya, Polina; Saveliev, Anatoly; Grigoryeva, Tatiana; Boulygina, Eugenia; Selivanovskaya, Svetlana

    2017-01-01

    Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil) and one discriminate component (sewage sludges of different origin) were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2) x 106 and (0.4±0.0) x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0) x105 and (6.1±0.2) x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was concluded that the

  1. Fire regime, not time-since-fire, affects soil fungal community diversity and composition in temperate grasslands.

    PubMed

    Egidi, Eleonora; McMullan-Fisher, Sapphire; Morgan, John W; May, Tom; Zeeman, Ben; Franks, Ashley E

    2016-09-01

    Frequent burning is commonly undertaken to maintain diversity in temperate grasslands of southern Australia. How burning affects below-ground fungal community diversity remains unknown. We show, using a fungal rDNA metabarcoding approach (Illumina MiSeq), that the fungal community composition was influenced by fire regime (frequency) but not time-since-fire. Fungal community composition was resilient to direct fire effects, most likely because grassland fires transfer little heat to the soil. Differences in the fungal community composition due to fire regime was likely due to associated changes that occur in vegetation with recurrent fire, via the break up of obligate symbiotic relationships. However, fire history only partially explains the observed dissimilarity in composition among the soil samples, suggesting a distinctiveness in composition in each grassland site. The importance of considering changes in soil microbe communities when managing vegetation with fire is highlighted. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Fungal community structure of fallen pine and oak wood at different stages of decomposition in the Qinling Mountains, China.

    PubMed

    Yuan, Jie; Zheng, Xiaofeng; Cheng, Fei; Zhu, Xian; Hou, Lin; Li, Jingxia; Zhang, Shuoxin

    2017-10-24

    Historically, intense forest hazards have resulted in an increase in the quantity of fallen wood in the Qinling Mountains. Fallen wood has a decisive influence on the nutrient cycling, carbon budget and ecosystem biodiversity of forests, and fungi are essential for the decomposition of fallen wood. Moreover, decaying dead wood alters fungal communities. The development of high-throughput sequencing methods has facilitated the ongoing investigation of relevant molecular forest ecosystems with a focus on fungal communities. In this study, fallen wood and its associated fungal communities were compared at different stages of decomposition to evaluate relative species abundance and species diversity. The physical and chemical factors that alter fungal communities were also compared by performing correspondence analysis according to host tree species across all stages of decomposition. Tree species were the major source of differences in fungal community diversity at all decomposition stages, and fungal communities achieved the highest levels of diversity at the intermediate and late decomposition stages. Interactions between various physical and chemical factors and fungal communities shared the same regulatory mechanisms, and there was no tree species-specific influence. Improving our knowledge of wood-inhabiting fungal communities is crucial for forest ecosystem conservation.

  3. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    PubMed

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

  4. The effects of road building on arbuscular mycorrhizal fungal diversity in Huangshan Scenic Area.

    PubMed

    Yang, Anna; Tang, Dongmei; Jin, Xiulong; Lu, Lin; Li, Xiaohong; Liu, Kun

    2018-01-22

    Arbuscular mycorrhizal (AM) fungi are vital soil microbes that connect many individual plants into a large functional organism via a vast mycelial network under the ground. In this study, the changes of soil AM fungal community in response to road-building disturbance caused by tourism development in Huangshan (Yellow Mountain) Scenic Area are assessed. Road building have brought negative effects on AM fungal community, inducing lower diversity parameters, including species number, spore density and diversity indices. However, the dominant genus and species of AM fungi which play key roles in the AM fungal community composition are quite similar before and after road building. Moreover, there are no significant differences in species richness of AM fungi associated with plants, suggesting the tolerance of AM fungal community to the disturbance of road building.

  5. Bacterial, archaeal, and fungal community responses to acid mine drainage-laden pollution in a rice paddy soil ecosystem.

    PubMed

    Wang, Han; Zeng, Yufei; Guo, Chuling; Bao, Yanping; Lu, Guining; Reinfelder, John R; Dang, Zhi

    2018-03-01

    Lacking sufficient clean water, the paddy soils along the Hengshi River have suffered from long-term acid mine drainage (AMD) contamination. The impacted cropland is too heavily contaminated to grow food safely. The microbial communities inhabiting the environment play pivotal roles in the crop growth, health, and ecological services. In this study, the bacterial, archaeal, and fungal communities in the impacted paddy soil were examined using high-throughput Illumina MiSeq sequencing. The results showed that AMD irrigation considerably enriched the bacterial phylum Acidobacteria and the archaeal phylum Crenarchaeota, while the fungal community was more stable. The abundances of Acidobacteria and Crenarchaeota were significantly positively correlated with the AMD-related environmental factors of pH and heavy metals (Cu, Pb, and Zn). In the most contaminated samples, communities were dominated by the bacteria Candidatus Solibacter and Candidatus Koribacter from the Acidobacteria family. Functional gene profile analysis demonstrated that the energy metabolic processes of the microbial communities, especially C/N related pathways, have adjusted and are well-adapted to tolerating AMD contamination. The present study described the structural and functional differentiation of microbial communities in the rice paddy soil under AMD irrigation. The results are useful for the development of bioremediation strategies using native microbes in the cleanup and biorestoration of AMD-contaminated agriculture soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Effects of Phyllostachys edulis cultivation on soil bacterial and fungal community structure and diversity].

    PubMed

    Zhao, Tian Xin; Mao, Xin Wei; Cheng, Min; Chen, Jun Hui; Qin, Hua; Li, Yong Chun; Liang, Chen Fei; Xu, Qiu Fang

    2017-11-01

    This study examined how soil bacterial and fungal communities responded to the cultivation history of Moso bamboo in Anji and Changxing counties, Huzhou, Zhejiang, China. Soil samples (0-20 and 20-40 cm) were taken from bamboo plantations subjected to different cultivation histories and analyzed the community structures of soil bacterial and fungal by PCR-DGGE methods. It was found that soil bacterial and fungal communities varied greatly with the development of bamboo plantations which converted from Masson pine forest or formed via invading adjacent broadleaf shrub forest. Soil bacterial community structures exhibited a greater response to bamboo cultivation time than fungal community, but bacteria structure of surface soil displayed an ability of resiliency to disturbance and the tendency to recover to the original state. The cultivation time, sampling site and soil layer significantly affected the biodiversity of soil bacteria and fungi, especially the latter two factors. Redundancy analysis (RDA) of soil properties and bacteria or fungi communities showed that there were no accordant factors to drive the alteration of microbial structure, and the first two axes explained less than 65.0% of variance for most of the sampling sites and soil layers, indicating there existed soil parameters besides the five examined that contributed to microbial community alteration.

  7. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities.

    PubMed

    Neuenkamp, Lena; Moora, Mari; Öpik, Maarja; Davison, John; Gerz, Maret; Männistö, Minna; Jairus, Teele; Vasar, Martti; Zobel, Martin

    2018-01-25

    Interactions between communities of plants and arbuscular mycorrhizal (AM) fungi shape fundamental ecosystem properties. Experimental evidence suggests that compositional changes in plant and AM fungal communities should be correlated, but empirical data from natural ecosystems are scarce. We investigated the dynamics of covariation between plant and AM fungal communities during three stages of grassland succession, and the biotic and abiotic factors shaping these dynamics. Plant communities were characterised using vegetation surveys. AM fungal communities were characterised by 454-sequencing of the small subunit rRNA gene and identification against the AM fungal reference database MaarjAM. AM fungal abundance was estimated using neutral-lipid fatty acids (NLFAs). Multivariate correlation analysis (Procrustes) revealed a significant relationship between plant and AM fungal community composition. The strength of plant-AM fungal correlation weakened during succession following cessation of grassland management, reflecting changes in the proportion of plants exhibiting different AM status. Plant-AM fungal correlation was strong when the abundance of obligate AM plants was high, and declined as the proportion of facultative AM plants increased. We conclude that the extent to which plants rely on AM symbiosis can determine how tightly communities of plants and AM fungi are interlinked, regulating community assembly of both symbiotic partners. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  8. Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities.

    PubMed

    García de León, David; Moora, Mari; Öpik, Maarja; Neuenkamp, Lena; Gerz, Maret; Jairus, Teele; Vasar, Martti; Bueno, C Guillermo; Davison, John; Zobel, Martin

    2016-07-01

    Although mycorrhizas are expected to play a key role in community assembly during ecological succession, little is known about the dynamics of the symbiotic partners in natural systems. For instance, it is unclear how efficiently plants and arbuscular mycorrhizal (AM) fungi disperse into early successional ecosystems, and which, if either, symbiotic partner drives successional dynamics. This study describes the dynamics of plant and AM fungal communities, assesses correlation in the composition of plant and AM fungal communities and compares dispersal limitation of plants and AM fungi during succession. We studied gravel pits 20 and 50 years post abandonment and undisturbed grasslands in Western Estonia. The composition of plant and AM fungal communities was strongly correlated, and the strength of the correlation remained unchanged as succession progressed, indicating a stable dependence among mycorrhizal plants and AM fungi. A relatively high proportion of the AM fungal taxon pool was present in early successional sites, in comparison with the respective fraction of plants. These results suggest that AM fungi arrived faster than plants and may thus drive vegetation dynamics along secondary vegetation succession. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Species associations overwhelm abiotic conditions to dictate the structure and function of wood-decay fungal communities.

    PubMed

    Maynard, Daniel S; Covey, Kristofer R; Crowther, Thomas W; Sokol, Noah W; Morrison, Eric W; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2018-04-01

    Environmental conditions exert strong controls on the activity of saprotrophic microbes, yet abiotic factors often fail to adequately predict wood decomposition rates across broad spatial scales. Given that species interactions can have significant positive and negative effects on wood-decay fungal activity, one possibility is that biotic processes serve as the primary controls on community function, with abiotic controls emerging only after species associations are accounted for. Here we explore this hypothesis in a factorial field warming- and nitrogen-addition experiment by examining relationships among wood decomposition rates, fungal activity, and fungal community structure. We show that functional outcomes and community structure are largely unrelated to abiotic conditions, with microsite and plot-level abiotic variables explaining at most 19% of the total variability in decomposition and fungal activity, and 2% of the variability in richness and evenness. In contrast, taxonomic richness, evenness, and species associations (i.e., co-occurrence patterns) exhibited strong relationships with community function, accounting for 52% of the variation in decomposition rates and 73% in fungal activity. A greater proportion of positive vs. negative species associations in a community was linked to strong declines in decomposition rates and richness. Evenness emerged as a key mediator between richness and function, with highly even communities exhibiting a positive richness-function relationship and uneven communities exhibiting a negative or null response. These results suggest that community-assembly processes and species interactions are important controls on the function of wood-decay fungal communities, ultimately overwhelming substantial differences in abiotic conditions. © 2018 by the Ecological Society of America.

  10. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    PubMed Central

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P < 0.04, R2 > 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  11. Impact of land use on arbuscular mycorrhizal fungal communities in rural Canada.

    PubMed

    Dai, Mulan; Bainard, Luke D; Hamel, Chantal; Gan, Yantai; Lynch, Derek

    2013-11-01

    The influence of land use on soil bio-resources is largely unknown. We examined the communities of arbuscular mycorrhizal (AM) fungi in wheat-growing cropland, natural areas, and seminatural areas along roads. We sampled the Canadian prairie extensively (317 sites) and sampled 20 sites in the Atlantic maritime ecozone for comparison. The proportions of the different AM fungal taxa in the communities found at these sites varied with land use type and ecozones, based on pyrosequencing of 18S rRNA gene (rDNA) amplicons, but the lists of AM fungal taxa obtained from the different land use types and ecozones were very similar. In the prairie, the Glomeraceae family was the most abundant and diverse family of Glomeromycota, followed by the Claroideoglomeraceae, but in the Atlantic maritime ecozone, the Claroideoglomeraceae family was most abundant. In the prairie, species richness and Shannon's diversity index were highest in roadsides, whereas cropland had a higher degree of species richness than roadsides in the Atlantic maritime ecozone. The frequencies of occurrence of the different AM fungal taxa in croplands in the prairie and Atlantic maritime ecozones were highly correlated, but the AM fungal communities in these ecozones had different structures. We conclude that the AM fungal resources of soils are resilient to disturbance and that the richness of AM fungi under cropland management has been maintained, despite evidence of a structural shift imposed by this type of land use. Roadsides in the Canadian prairie are a good repository for the conservation of AM fungal diversity.

  12. Impact of Land Use on Arbuscular Mycorrhizal Fungal Communities in Rural Canada

    PubMed Central

    Dai, Mulan; Bainard, Luke D.; Gan, Yantai; Lynch, Derek

    2013-01-01

    The influence of land use on soil bio-resources is largely unknown. We examined the communities of arbuscular mycorrhizal (AM) fungi in wheat-growing cropland, natural areas, and seminatural areas along roads. We sampled the Canadian prairie extensively (317 sites) and sampled 20 sites in the Atlantic maritime ecozone for comparison. The proportions of the different AM fungal taxa in the communities found at these sites varied with land use type and ecozones, based on pyrosequencing of 18S rRNA gene (rDNA) amplicons, but the lists of AM fungal taxa obtained from the different land use types and ecozones were very similar. In the prairie, the Glomeraceae family was the most abundant and diverse family of Glomeromycota, followed by the Claroideoglomeraceae, but in the Atlantic maritime ecozone, the Claroideoglomeraceae family was most abundant. In the prairie, species richness and Shannon's diversity index were highest in roadsides, whereas cropland had a higher degree of species richness than roadsides in the Atlantic maritime ecozone. The frequencies of occurrence of the different AM fungal taxa in croplands in the prairie and Atlantic maritime ecozones were highly correlated, but the AM fungal communities in these ecozones had different structures. We conclude that the AM fungal resources of soils are resilient to disturbance and that the richness of AM fungi under cropland management has been maintained, despite evidence of a structural shift imposed by this type of land use. Roadsides in the Canadian prairie are a good repository for the conservation of AM fungal diversity. PMID:23995929

  13. Arbuscular mycorrhizal fungal community composition associated with Juniperus brevifolia in native Azorean forest

    NASA Astrophysics Data System (ADS)

    Melo, Catarina Drumonde; Luna, Sara; Krüger, Claudia; Walker, Christopher; Mendonça, Duarte; Fonseca, Henrique M. A. C.; Jaizme-Vega, Maria; da Câmara Machado, Artur

    2017-02-01

    The communities of glomeromycotan fungi (arbuscular mycorrhizal fungi, AMF) under native Juniperus brevifolia forest from two Azorean islands, Terceira and São Miguel, were compared, mainly by spore morphology, and when possible, by molecular analysis. Thirty-nine morphotypes were detected from 12 genera. Glomeromycotan fungal richness was similar in Terceira and São Miguel, but significantly different among the four fragments of native forest. Spore diversity and community composition differed significantly between the two islands. The less degraded island, Terceira, showed 10 exclusive morphotypes including more rare types, whereas the more disturbed forest on São Miguel showed 13 morphs, mostly of common types. Forests from Terceira were dominated by Acaulosporaceae and Glomeraceae. Whereas members of Acaulosporaceae, Glomeraceae and Ambisporaceae were most frequent and abundant in those from São Miguel. Spore abundance was greatest on Terceira, and correlated with soil chemical properties (pH), average monthly temperature and relative humidity.

  14. Persisting responses of salt marsh fungal communities to the Deepwater Horizon oil spill.

    PubMed

    Lumibao, Candice Y; Formel, Stephen; Elango, Vijaikrishnah; Pardue, John H; Blum, Michael; Van Bael, Sunshine A

    2018-06-18

    The plant microbiome, composed of diverse interacting microorganisms, is thought to undergird host integrity and well-being. Though it is well understood that environmental perturbations like oil pollution can alter the diversity and composition of microbiomes, remarkably little is known about how disturbance alters plant-fungal associations. Using Next-Generation sequencing of the 18S rDNA internal transcribed spacer (ITS1) region, we examined outcomes of enduring oil exposure on aboveground leaf and belowground endophytic root and rhizosphere fungal communities of Spartina alterniflora, a highly valued ecosystem engineer in southeastern Louisiana marshes affected by the 2010 Deepwater Horizon accident. We found that aboveground foliar fungal communities exhibited site-dependent compositional turnover with consequent loss in diversity according to oiling history. Rhizosphere soil communities also exhibited shifts in community composition associated with oiling history, whereas root endophytic communities did not. Oiling did not increase or decrease similarities among aboveground and belowground communities within an individual host, indicating that host plant characteristics exert stronger control than external factors on fungal community composition. These results show that fungal community responses to oiling vary within tissues of the same host plant, and that differences in the local environment, or alternatively, site-specific differences in residual oil constrain the magnitude of exposure responses. Our study offers novel perspectives on how environmental contaminants and perturbations can influence plant microbiomes, highlighting the importance of assessing long-term ecological outcomes of oil pollution to better understand how shifts in microbial communities influence plant performance and ecosystem function. Our findings are relevant to coastal management programs tasked with responding to oil spills and increasing pressures arising from intensifying

  15. Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient.

    PubMed

    Erlandson, Sonya R; Savage, Jessica A; Cavender-Bares, Jeannine M; Peay, Kabir G

    2016-01-01

    Influences of soil environment and willow host species on ectomycorrhizal fungi communities was studied across an hydrologic gradient in temperate North America. Soil moisture, organic matter and pH strongly predicted changes in fungal community composition. In contrast, increased fungal richness strongly correlated with higher plant-available phosphorus. The 93 willow trees sampled for ectomycorrhizal fungi included seven willow species. Host identity did not influence fungal richness or community composition, nor was there strong evidence of willow host preference for fungal species. Network analysis suggests that these mutualist interaction networks are not significantly nested or modular. Across a strong environmental gradient, fungal abiotic niche determined the fungal species available to associate with host plants within a habitat. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Fungi in the future: Interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities

    DOE PAGES

    Cotton, T. E. Anne; Fitter, Alastair H.; Miller, R. Michael; ...

    2015-01-05

    Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO 2) and ozone (O 3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean ( Glycine max) grown under elevated and ambient atmospheric concentrations of both CO 2 and O 3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO 2 altered themore » community composition of AM fungi, increasing the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O 3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO 2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi.« less

  17. Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities.

    PubMed

    Lilleskov, Erik A; Bruns, Thomas D; Horton, Thomas R; Taylor, D; Grogan, Paul

    2004-08-01

    Ectomycorrhizal fungal (EMF) communities are highly diverse at the stand level. To begin to understand what might lead to such diversity, and to improve sampling designs, we investigated the spatial structure of these communities. We used EMF community data from a number of studies carried out in seven mature and one recently fire-initiated forest stand. We applied various measures of spatial pattern to characterize distributions at EMF community and species levels: Mantel tests, Mantel correlograms, variance/mean and standardized variograms. Mantel tests indicated that in four of eight sites community similarity decreased with distance, whereas Mantel correlograms also found spatial autocorrelation in those four plus two additional sites. In all but one of these sites elevated similarity was evident only at relatively small spatial scales (< 2.6 m), whereas one exhibited a larger scale pattern ( approximately 25 m). Evenness of biomass distribution among cores varied widely among taxa. Standardized variograms indicated that most of the dominant taxa showed patchiness at a scale of less than 3 m, with a range from 0 to < or =17 m. These results have implications for both sampling scale and intensity to achieve maximum efficiency of community sampling. In the systems we examined, cores should be at least 3 m apart to achieve the greatest sampling efficiency for stand-level community analysis. In some cases even this spacing may result in reduced sampling efficiency arising from patterns of spatial autocorrelation. Interpretation of the causes and significance of these patterns requires information on the genetic identity of individuals in the communities.

  18. Functional outcomes of fungal community shifts driven by tree genotype and spatial-temporal factors in Mediterranean pine forests.

    PubMed

    Pérez-Izquierdo, Leticia; Zabal-Aguirre, Mario; Flores-Rentería, Dulce; González-Martínez, Santiago C; Buée, Marc; Rincón, Ana

    2017-04-01

    Fungi provide relevant ecosystem services contributing to primary productivity and the cycling of nutrients in forests. These fungal inputs can be decisive for the resilience of Mediterranean forests under global change scenarios, making necessary an in-deep knowledge about how fungal communities operate in these ecosystems. By using high-throughput sequencing and enzymatic approaches, we studied the fungal communities associated with three genotypic variants of Pinus pinaster trees, in 45-year-old common garden plantations. We aimed to determine the impact of biotic (i.e., tree genotype) and abiotic (i.e., season, site) factors on the fungal community structure, and to explore whether structural shifts triggered functional responses affecting relevant ecosystem processes. Tree genotype and spatial-temporal factors were pivotal structuring fungal communities, mainly by influencing their assemblage and selecting certain fungi. Diversity variations of total fungal community and of that of specific fungal guilds, together with edaphic properties and tree's productivity, explained relevant ecosystem services such as processes involved in carbon turnover and phosphorous mobilization. A mechanistic model integrating relations of these variables and ecosystem functional outcomes is provided. Our results highlight the importance of structural shifts in fungal communities because they may have functional consequences for key ecosystem processes in Mediterranean forests. © 2017 Society for Applied Microbiology and John Wiley and Sons Ltd.

  19. Dominance-diversity relationships in ant communities differ with invasion.

    PubMed

    Arnan, Xavier; Andersen, Alan N; Gibb, Heloise; Parr, Catherine L; Sanders, Nathan J; Dunn, Robert R; Angulo, Elena; Baccaro, Fabricio B; Bishop, Tom R; Boulay, Raphaël; Castracani, Cristina; Cerdá, Xim; Toro, Israel Del; Delsinne, Thibaut; Donoso, David A; Elten, Emilie K; Fayle, Tom M; Fitzpatrick, Matthew C; Gómez, Crisanto; Grasso, Donato A; Grossman, Blair F; Guénard, Benoit; Gunawardene, Nihara; Heterick, Brian; Hoffmann, Benjamin D; Janda, Milan; Jenkins, Clinton N; Klimes, Petr; Lach, Lori; Laeger, Thomas; Leponce, Maurice; Lucky, Andrea; Majer, Jonathan; Menke, Sean; Mezger, Dirk; Mori, Alessandra; Moses, Jimmy; Munyai, Thinandavha Caswell; Paknia, Omid; Pfeiffer, Martin; Philpott, Stacy M; Souza, Jorge L P; Tista, Melanie; Vasconcelos, Heraldo L; Retana, Javier

    2018-05-30

    The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities. © 2018 John Wiley & Sons Ltd.

  20. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem.

    PubMed

    Jiang, Shengjing; Liu, Yongjun; Luo, Jiajia; Qin, Mingsen; Johnson, Nancy Collins; Öpik, Maarja; Vasar, Martti; Chai, Yuxing; Zhou, Xiaolong; Mao, Lin; Du, Guozhen; An, Lizhe; Feng, Huyuan

    2018-03-30

    Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole-plant-community (mixed roots) and single-plant-species (Elymus nutans roots) scales were described using pyro-sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal-suppression treatment in the field (whole-plant-community scale) and a glasshouse inoculation experiment (single-plant-species scale). Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole-plant-community and E. nutans scales. N-induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages. The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P-limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  1. Identification of Fungal Communities Associated with the Biodeterioration of Waterlogged Archeological Wood in a Han Dynasty Tomb in China

    PubMed Central

    Liu, Zijun; Wang, Yu; Pan, Xiaoxuan; Ge, Qinya; Ma, Qinglin; Li, Qiang; Fu, Tongtong; Hu, Cuiting; Zhu, Xudong; Pan, Jiao

    2017-01-01

    The Mausoleum of the Dingtao King (termed ‘M2’) is a large-scale huangchang ticou tomb that dates to the Western Han Dynasty (206 B.C.–25 A.D.). It is the highest-ranking Han Dynasty tomb discovered to date. However, biodeterioration on the surface of the tomb M2 is causing severe damage to its wooden materials. The aim of the present study was to give insight into the fungal communities colonized the wooden tomb. For this purpose, seven samples were collected from different sections of the tomb M2 which exhibited obvious biodeterioration in the form of white spots. Microbial structures associated with the white spots were observed with scanning electron microscopy. Fungal community structures were assessed for seven samples via a combination of high-throughput sequencing and culture-dependent techniques. Sequencing analyses identified 114 total genera that belonged to five fungal phyla. Hypochnicium was the most abundant genus across all samples and accounted for 98.61–99.45% of the total community composition. Further, Hypochnicium sp. and Mortierella sp. cultures were successfully isolated from the tomb samples, and were distinguished as Hypochnicium sp. WY-DT1 and Mortierella sp. NK-DT1, respectively. Cultivation-dependent experiments indicated that the dominant member, Hypochnicium sp. WY- DT1, could grow at low temperatures and significantly degraded cellulose and lignin. Thus, our results taken together suggest that this fungal strain must be regarded as a serious threat to the preservation of the wooden tomb M2. The results reported here are useful for informing future contamination mitigation efforts for the tomb M2 as well as other similar cultural artifacts. PMID:28890715

  2. Exploring the evolutionary ecology of fungal endophytes in agricultural systems: using functional traits to reveal mechanisms in community processes

    PubMed Central

    Saunders, Megan; Glenn, Anthony E; Kohn, Linda M

    2010-01-01

    All plants, including crop species, harbor a community of fungal endophyte species, yet we know little about the biotic factors that are important in endophyte community assembly. We suggest that the most direct route to understanding the mechanisms underlying community assembly is through the study of functional trait variation in the host and its fungal consortium. We review studies on crop endophytes that investigate plant and fungal traits likely to be important in endophyte community processes. We focus on approaches that could speed detection of general trends in endophyte community assembly: (i) use of the ‘assembly rules’ concept to identify specific mechanisms that influence endophyte community dynamics, (ii) measurement of functional trait variation in plants and fungi to better understand endophyte community processes and plant–fungal interactions, and (iii) investigation of microbe–microbe interactions, and fungal traits that mediate them. This approach is well suited for research in agricultural systems, where pair-wise host–fungus interactions and mechanisms of fungal–fungal competition have frequently been described. Areas for consideration include the possibility that human manipulation of crop phenotype and deployment of fungal biocontrol species can significantly influence endophyte community assembly. Evaluation of endophyte assembly rules may help to fine-tune crop management strategies. PMID:25567944

  3. Long-term No-Till: A Major Driver of Fungal Communities in Dryland Wheat Cropping Systems

    USDA-ARS?s Scientific Manuscript database

    In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-ter...

  4. Illumina MiSeq sequencing analysis of fungal diversity in stored dates.

    PubMed

    Al-Bulushi, Ismail M; Bani-Uraba, Muna S; Guizani, Nejib S; Al-Khusaibi, Mohammed K; Al-Sadi, Abdullah M

    2017-03-27

    Date palm has been a major fruit tree in the Middle East over thousands of years, especially in the Arabian Peninsula. Dates are consumed fresh (Rutab) or after partial drying and storage (Tamar) during off-season. The aim of the study was to provide in-depth analysis of fungal communities associated with the skin (outer part) and mesocarp (inner fleshy part) of stored dates (Tamar) of two cultivars (Khenizi and Burny) through the use of Illumina MiSeq sequencing. The study revealed the dominance of Ascomycota (94%) in both cultivars, followed by Chytridiomycota (4%) and Zygomycota (2%). Among the classes recovered, Eurotiomycetes, Dothideomycetes, Saccharomycetes and Sordariomycetes were the most dominant. A total of 54 fungal species were detected, with species belonging to Penicillium, Alternaria, Cladosporium and Aspergillus comprising more than 60% of the fungal reads. Some potentially mycotoxin-producing fungi were detected in stored dates, including Aspergillus flavus, A. versicolor and Penicillium citrinum, but their relative abundance was very limited (<0.5%). PerMANOVA analysis revealed the presence of insignificant differences in fungal communities between date parts or date cultivars, indicating that fungal species associated with the skin may also be detected in the mesocarp. It also indicates the possible contamination of dates from different cultivars with similar fungal species, even though if they are obtained from different areas. The analysis shows the presence of different fungal species in dates. This appears to be the first study to report 25 new fungal species in Oman and 28 new fungal species from date fruits. The study discusses the sources of fungi on dates and the presence of potentially mycotoxin producing fungi on date skin and mesocarp.

  5. Assessing the Effect of Litter Species on the Dynamic of Bacterial and Fungal Communities during Leaf Decomposition in Microcosm by Molecular Techniques

    PubMed Central

    Xu, Wenjing; Shi, Lingling; Chan, Onchim; Li, Jiao; Casper, Peter; Zou, Xiaoming

    2013-01-01

    Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis) and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well. PMID:24367682

  6. Land-use change and soil type are drivers of fungal and archaeal communities in the Pampa biome.

    PubMed

    Lupatini, Manoeli; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Suleiman, Afnan Khalil Ahmad; Fulthorpe, Roberta R; Roesch, Luiz Fernando Würdig

    2013-02-01

    The current study aimed to test the hypothesis that both land-use change and soil type are responsible for the major changes in the fungal and archaeal community structure and functioning of the soil microbial community in Brazilian Pampa biome. Soil samples were collected at sites with different land-uses (native grassland, native forest, Eucalyptus and Acacia plantation, soybean and watermelon field) and in a typical toposequence in Pampa biome formed by Paleudult, Albaqualf and alluvial soils. The structure of soil microbial community (archaeal and fungal) was evaluated by ribosomal intergenic spacer analysis and soil functional capabilities were measured by microbial biomass carbon and metabolic quotient. We detected different patterns in microbial community driven by land-use change and soil type, showing that both factors are significant drivers of fungal and archaeal community structure and biomass and microbial activity. Fungal community structure was more affected by land-use and archaeal community was more affected by soil type. Irrespective of the land-use or soil type, a large percentage of operational taxonomic unit were shared among the soils. We accepted the hypothesis that both land-use change and soil type are drivers of archaeal and fungal community structure and soil functional capabilities. Moreover, we also suggest the existence of a soil microbial core.

  7. Evaluation of different PCR primers for denaturing gradient gel electrophoresis (DGGE) analysis of fungal community structure in traditional fermentation starters used for Hong Qu glutinous rice wine.

    PubMed

    Lv, Xu-Cong; Jiang, Ya-Jun; Liu, Jie; Guo, Wei-Ling; Liu, Zhi-Bin; Zhang, Wen; Rao, Ping-Fan; Ni, Li

    2017-08-16

    principal component analysis. The statistical analysis results based on the band intensities of fungal DGGE profile showed that Saccharomyces cerevisiae, Saccharomycopsis fibuligera, Rhizopus oryzae, Monascus purpureus and Aspergillus niger were the dominant fungal species. In conclusion, the comparison of several primer sets for fungal PCR-DGGE would be useful to enrich our knowledge of the fungal community structures associated with traditional fermentation starters, which may facilitate the development of better starter cultures for manufacturing Chinese Hong Qu glutinous rice wine. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices

    PubMed Central

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H.; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan

    2016-01-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km2 along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  9. Fungal Communities Associated with the Biodegradation of Polyester Polyurethane Buried under Compost at Different Temperatures

    PubMed Central

    Zafar, Urooj; Houlden, Ashley

    2013-01-01

    Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future. PMID:24056469

  10. Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures.

    PubMed

    Zafar, Urooj; Houlden, Ashley; Robson, Geoffrey D

    2013-12-01

    Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future.

  11. Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities

    Treesearch

    Erik A. Lilleskov; Thomas D. Bruns; Thomas R. Horton; D. Lee Taylor; Paul Grogan

    2004-01-01

    Ectomycorrhizal fungal (EMF) communities are highly diverse at the stand level. To begin to understand what might lead to such diversity, and to improve sampling designs, we investigated the spatial structure of these communities. We used EMF community data from a number of studies carried out in seven mature and one recently fire-initiated forest stand. We applied...

  12. Banana-Associated Microbial Communities in Uganda Are Highly Diverse but Dominated by Enterobacteriaceae

    PubMed Central

    Rossmann, Bettina; Müller, Henry; Smalla, Kornelia; Mpiira, Samuel; Tumuhairwe, John Baptist; Staver, Charles

    2012-01-01

    Bananas are among the most widely consumed foods in the world. In Uganda, the country with the second largest banana production in the world, bananas are the most important staple food. The objective of this study was to analyze banana-associated microorganisms and to select efficient antagonists against fungal pathogens which are responsible for substantial yield losses. We studied the structure and function of microbial communities (endosphere, rhizosphere, and soil) obtained from three different traditional farms in Uganda by cultivation-independent (PCR-SSCP fingerprints of 16S rRNA/ITS genes, pyrosequencing of enterobacterial 16S rRNA gene fragments, quantitative PCR, fluorescence in situ hybridization coupled with confocal laser scanning microscopy, and PCR-based detection of broad-host-range plasmids and sulfonamide resistance genes) and cultivation-dependent methods. The results showed microhabitat-specific microbial communities that were significant across sites and treatments. Furthermore, all microhabitats contained a high number and broad spectrum of indigenous antagonists toward identified fungal pathogens. While bacterial antagonists were found to be enriched in banana plants, fungal antagonists were less abundant and mainly found in soil. The banana stem endosphere was the habitat with the highest bacterial counts (up to 109 gene copy numbers g−1). Here, enterics were found to be enhanced in abundance and diversity; they provided one-third of the bacteria and were identified by pyrosequencing with 14 genera, including not only potential human (Escherichia, Klebsiella, Salmonella, and Yersinia spp.) and plant (Pectobacterium spp.) pathogens but also disease-suppressive bacteria (Serratia spp.). The dominant role of enterics can be explained by the permanent nature and vegetative propagation of banana and the amendments of human, as well as animal, manure in these traditional cultivations. PMID:22562988

  13. Variations in bacterial and fungal community composition along the soil depth profiles determined by pyrosequencing

    NASA Astrophysics Data System (ADS)

    Ko, D.; Yoo, G.; Jun, S. C.; Yun, S. T.; Chung, H.

    2015-12-01

    Soil microorganisms play key roles in nutrient cycling, and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depth, we analyzed soil microbial activities and bacterial and fungal community composition in a soil profile of a fallow field located in central Korea. Soil samples were taken using 120-cm soil cores. To analyze the composition of bacterial and fungal communities, barcoded pyrosequnecing analysis of 16S rRNA genes (bacteria) and ITS region (fungi) was conducted. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1 and 17.5%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3 and 0.4%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively), a dominant fungal group at this site, showed no significant difference along the soil profile. To examine the vertical difference of microbial activities, activity of five extracellular enzymes that take part in cycling of C, N, and P in soil ecosystems, beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-xylosidase, beta-1,4-N-acetylglucosaminidase, and acid phosphatase were analyzed. The soil enzyme activity declined with soil depth. For example, acid phosphatase activity was 88.5 (± 14.6 (± 1 SE)), 30.0 (± 5.9), 18.0 (± 3.5), 14.1 (± 3.7), and 10.7 (± 3.8) nmol g-1 hr-1, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of

  14. Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting.

    PubMed

    Xi, Beidou; He, Xiaosong; Dang, Qiuling; Yang, Tianxue; Li, Mingxiao; Wang, Xiaowei; Li, Dan; Tang, Jun

    2015-11-01

    In this study, PCR-DGGE method was applied to investigate the impact of multi-stage inoculation treatment on the community composition of bacterial and fungal during municipal solid wastes (MSW) composting process. The results showed that the high temperature period was extended by the multi-stage inoculation treatment, 1day longer than initial-stage inoculation treatment, and 5days longer than non-inoculation treatment. The temperature of the secondary fermentation increased to 51°C with multi-stage inoculation treatment. The multi-stage inoculation method improved the community diversity of bacteria and fungi that the diversity indexes reached the maximum on the 17days and 20days respectively, avoided the competition between inoculations and indigenous microbes, and enhanced the growth of dominant microorganisms. The DNA sequence indicated that various kinds of uncultured microorganisms with determined ratios were detected, which were dominant microbes during the whole fermentation process. These findings call for further researches of compost microbial cultivation technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices.

    PubMed

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan; Niculita-Hirzel, Hélène

    2016-01-29

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Intercropped Silviculture Systems, a Key to Achieving Soil Fungal Community Management in Eucalyptus Plantations

    PubMed Central

    Rachid, Caio T. C. C.; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that. PMID:25706388

  17. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations.

    PubMed

    Rachid, Caio T C C; Balieiro, Fabiano C; Fonseca, Eduardo S; Peixoto, Raquel Silva; Chaer, Guilherme M; Tiedje, James M; Rosado, Alexandre S

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.

  18. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations

    DOE PAGES

    Caio T.C.C. Rachid; Balieiro, Fabiano C.; Fonseca, Eduardo S.; ...

    2015-02-23

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments:more » monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.« less

  19. Cohort Study of Airway Mycobiome in Adult Cystic Fibrosis Patients: Differences in Community Structure between Fungi and Bacteria Reveal Predominance of Transient Fungal Elements

    PubMed Central

    Sauer-Heilborn, Annette; Welte, Tobias; Guzman, Carlos A.; Abraham, Wolf-Rainer; Höfle, Manfred G.

    2015-01-01

    The respiratory mycobiome is an important but understudied component of the human microbiota. Like bacteria, fungi can cause severe lung diseases, but their infection rates are much lower. This study compared the bacterial and fungal communities of sputum samples from a large cohort of 56 adult patients with cystic fibrosis (CF) during nonexacerbation periods and under continuous antibiotic treatment. Molecular fingerprinting based on single-strand conformation polymorphism (SSCP) analysis revealed fundamental differences between bacterial and fungal communities. Both groups of microorganisms were taxonomically classified by identification of gene sequences (16S rRNA and internal transcript spacer), and prevalences of single taxa were determined for the entire cohort. Major bacterial pathogens were frequently observed, whereas fungi of known pathogenicity in CF were detected only in low numbers. Fungal species richness increased without reaching a constant level (saturation), whereas bacterial richness showed saturation after 50 patients were analyzed. In contrast to bacteria, a large number of fungal species were observed together with high fluctuations over time and among patients. These findings demonstrated that the mycobiome was dominated by transient species, which strongly suggested that the main driving force was their presence in inhaled air rather than colonization. Considering the high exposure of human airways to fungal spores, we concluded that fungi have low colonization abilities in CF, and colonization by pathogenic fungal species may be considered a rare event. A comprehensive understanding of the conditions promoting fungal colonization may offer the opportunity to prevent colonization and substantially reduce or even eliminate fungus-related disease progression in CF. PMID:26135861

  20. Characterizing root-associated fungal communities and soils of Douglas-fir (Pseudotsuga menziesii) stands that naturally produce Oregon white truffles (Tuber oregonense and Tuber gibbosum).

    PubMed

    Benucci, Gian Maria Niccolò; Lefevre, Charles; Bonito, Gregory

    2016-07-01

    Many truffle species in the genus Tuber are endemic to North America. Some of these have commercial value such as Tuber oregonense and Tuber gibbosum, commonly known as Oregon white truffles. Most of what is known about the ecology of these truffles comes from observational data. These truffle species form ectomycorrhizas with Douglas-fir (Pseudotsuga menziesii) and sometimes fruit abundantly in early successional forest regrowth. The goal of this study was to characterize fungal communities and soils associated with truffle-producing Douglas-fir sites. We extracted DNA from roots of five trees at four different truffle-producing Douglas-fir sites (n = 20). We amplified the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA (nrDNA) and sequenced amplicons with 454 pyrosequencing. After quality filtering, we assembled 15,713 sequences into 150 fungal operational taxonomic units (OTUs). Pezizomycetes (Tuber and Pyronemataceae) were the most abundant taxa detected followed by Helotiales. Agaricomycetes represented most by Thelephoraceae, Russulaceae, and Inocybaceae were also abundant. A total of five Tuber species were detected. T. oregonense was the most abundant OTU, followed by T. gibbosum and Wilcoxina mikolae. Fungal root endophytes were also detected and well represented by Chalara and Phialocephala spp. Fungal community structure and soil chemistry differed between sites. This study represents the first characterization of the fungal communities in Douglas-fir stands producing Oregon white truffles. We found that Tuber species can be dominant ectomycorrhizal symbionts of Douglas-fir. Truffle fungi are also important in forest health, food webs, and as a non-timber forest resource that can contribute to rural economies.

  1. Gene expression of indoor fungal communities under damp building conditions: Implications for human health.

    PubMed

    Hegarty, B; Dannemiller, K C; Peccia, J

    2018-03-03

    Dampness and visible mold growth in homes are associated with negative human health outcomes, but causal relationships between fungal exposure and health are not well established. The purpose of this study was to determine whether dampness in buildings impacts fungal community gene expression and how, in turn, gene expression may modulate human health impacts. A metatranscriptomic study was performed on house dust fungal communities to investigate the expression of genes and metabolic processes in chamber experiments at water activity levels of 0.5, 0.85, and 1.0. Fungi at water activities as low as 0.5 were metabolically active, focusing their transcriptional resources on primary processes essential for cell maintenance. Metabolic complexity increased with water activity where communities at 1.0 displayed more diverse secondary metabolic processes. Greater gene expression at increasing water activity has important implications for human health: Fungal communities at 1.0 a w upregulated a greater number of allergen-, mycotoxin-, and pathogenicity-encoding genes versus communities at 0.85 and 0.5 a w . In damp buildings, fungi may display increases in secondary metabolic processes with the potential for greater per-cell production of allergens, toxins, and pathogenicity. Assessments in wet versus dry buildings that do not account for this elevated health impact may not accurately reflect exposure. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Insights into Deep-Sea Sediment Fungal Communities from the East Indian Ocean Using Targeted Environmental Sequencing Combined with Traditional Cultivation

    PubMed Central

    Zhang, Xiao-yong; Tang, Gui-ling; Xu, Xin-ya; Nong, Xu-hua; Qi, Shu-Hua

    2014-01-01

    The fungal diversity in deep-sea environments has recently gained an increasing amount attention. Our knowledge and understanding of the true fungal diversity and the role it plays in deep-sea environments, however, is still limited. We investigated the fungal community structure in five sediments from a depth of ∼4000 m in the East India Ocean using a combination of targeted environmental sequencing and traditional cultivation. This approach resulted in the recovery of a total of 45 fungal operational taxonomic units (OTUs) and 20 culturable fungal phylotypes. This finding indicates that there is a great amount of fungal diversity in the deep-sea sediments collected in the East Indian Ocean. Three fungal OTUs and one culturable phylotype demonstrated high divergence (89%–97%) from the existing sequences in the GenBank. Moreover, 44.4% fungal OTUs and 30% culturable fungal phylotypes are new reports for deep-sea sediments. These results suggest that the deep-sea sediments from the East India Ocean can serve as habitats for new fungal communities compared with other deep-sea environments. In addition, different fungal community could be detected when using targeted environmental sequencing compared with traditional cultivation in this study, which suggests that a combination of targeted environmental sequencing and traditional cultivation will generate a more diverse fungal community in deep-sea environments than using either targeted environmental sequencing or traditional cultivation alone. This study is the first to report new insights into the fungal communities in deep-sea sediments from the East Indian Ocean, which increases our knowledge and understanding of the fungal diversity in deep-sea environments. PMID:25272044

  3. Effort versus reward: preparing samples for fungal community characterization in high-throughput sequencing surveys of soils

    USDA-ARS?s Scientific Manuscript database

    Next generation fungal amplicon sequencing is being used with increasing frequency to study fungal diversity in various ecosystems; however, the influence of sample preparation on the characterization of fungal community is poorly understood. We investigated the effects of four procedural modificati...

  4. Improved Selection of Internal Transcribed Spacer-Specific Primers Enables Quantitative, Ultra-High-Throughput Profiling of Fungal Communities

    PubMed Central

    Bokulich, Nicholas A.

    2013-01-01

    Ultra-high-throughput sequencing (HTS) of fungal communities has been restricted by short read lengths and primer amplification bias, slowing the adoption of newer sequencing technologies to fungal community profiling. To address these issues, we evaluated the performance of several common internal transcribed spacer (ITS) primers and designed a novel primer set and work flow for simultaneous quantification and species-level interrogation of fungal consortia. Primer comparison and validation were predicted in silico and by sequencing a “mock community” of mixed yeast species to explore the challenges of amplicon length and amplification bias for reconstructing defined yeast community structures. The amplicon size and distribution of this primer set are smaller than for all preexisting ITS primer sets, maximizing sequencing coverage of hypervariable ITS domains by very-short-amplicon, high-throughput sequencing platforms. This feature also enables the optional integration of quantitative PCR (qPCR) directly into the HTS preparatory work flow by substituting qPCR with these primers for standard PCR, yielding quantification of individual community members. The complete work flow described here, utilizing any of the qualified primer sets evaluated, can rapidly profile mixed fungal communities and capably reconstructed well-characterized beer and wine fermentation fungal communities. PMID:23377949

  5. Pumpkin powdery mildew disease severity influences the fungal diversity of the phyllosphere.

    PubMed

    Zhang, Zhuo; Luo, Luyun; Tan, Xinqiu; Kong, Xiao; Yang, Jianguo; Wang, Duanhua; Zhang, Deyong; Jin, Decai; Liu, Yong

    2018-01-01

    Phyllosphere microbiota play a crucial role in plant-environment interactions and their microbial community and function are influenced by biotic and abiotic factors. However, there is little research on how pathogens affect the microbial community of phyllosphere fungi. In this study, we collected 16 pumpkin ( Cucurbita moschata ) leaf samples which exhibited powdery mildew disease, with a severity ranging from L1 (least severe) to L4 (most severe). The fungal community structure and diversity was examined by Illumina MiSeq sequencing of the internal transcribed spacer (ITS) region of ribosomal RNA genes. The results showed that the fungal communities were dominated by members of the Basidiomycota and Ascomycota. The Podosphaera was the most dominant genus on these infected leaves, which was the key pathogen responsible for the pumpkin powdery mildew. The abundance of Ascomycota and Podosphaera increased as disease severity increased from L1 to L4, and was significantly higher at disease severity L4 ( P < 0.05). The richness and diversity of the fungal community increased from L1 to L2, and then declined from L2 to L4, likely due to the biotic pressure (i.e., symbiotic and competitive stresses among microbial species) at disease severity L4. Our results could give new perspectives on the changes of the leaf microbiome at different pumpkin powdery mildew disease severity.

  6. Molecular profiling of fungal communities in moisture damaged buildings before and after remediation - a comparison of culture-dependent and culture-independent methods

    PubMed Central

    2011-01-01

    Background Indoor microbial contamination due to excess moisture is an important contributor to human illness in both residential and occupational settings. However, the census of microorganisms in the indoor environment is limited by the use of selective, culture-based detection techniques. By using clone library sequencing of full-length internal transcribed spacer region combined with quantitative polymerase chain reaction (qPCR) for 69 fungal species or assay groups and cultivation, we have been able to generate a more comprehensive description of the total indoor mycoflora. Using this suite of methods, we assessed the impact of moisture damage on the fungal community composition of settled dust and building material samples (n = 8 and 16, correspondingly). Water-damaged buildings (n = 2) were examined pre- and post- remediation, and compared with undamaged reference buildings (n = 2). Results Culture-dependent and independent methods were consistent in the dominant fungal taxa in dust, but sequencing revealed a five to ten times higher diversity at the genus level than culture or qPCR. Previously unknown, verified fungal phylotypes were detected in dust, accounting for 12% of all diversity. Fungal diversity, especially within classes Dothideomycetes and Agaricomycetes tended to be higher in the water damaged buildings. Fungal phylotypes detected in building materials were present in dust samples, but their proportion of total fungi was similar for damaged and reference buildings. The quantitative correlation between clone library phylotype frequencies and qPCR counts was moderate (r = 0.59, p < 0.01). Conclusions We examined a small number of target buildings and found indications of elevated fungal diversity associated with water damage. Some of the fungi in dust were attributable to building growth, but more information on the material-associated communities is needed in order to understand the dynamics of microbial communities between building structures

  7. Molecular profiling of fungal communities in moisture damaged buildings before and after remediation--a comparison of culture-dependent and culture-independent methods.

    PubMed

    Pitkäranta, Miia; Meklin, Teija; Hyvärinen, Anne; Nevalainen, Aino; Paulin, Lars; Auvinen, Petri; Lignell, Ulla; Rintala, Helena

    2011-10-21

    Indoor microbial contamination due to excess moisture is an important contributor to human illness in both residential and occupational settings. However, the census of microorganisms in the indoor environment is limited by the use of selective, culture-based detection techniques. By using clone library sequencing of full-length internal transcribed spacer region combined with quantitative polymerase chain reaction (qPCR) for 69 fungal species or assay groups and cultivation, we have been able to generate a more comprehensive description of the total indoor mycoflora. Using this suite of methods, we assessed the impact of moisture damage on the fungal community composition of settled dust and building material samples (n = 8 and 16, correspondingly). Water-damaged buildings (n = 2) were examined pre- and post- remediation, and compared with undamaged reference buildings (n = 2). Culture-dependent and independent methods were consistent in the dominant fungal taxa in dust, but sequencing revealed a five to ten times higher diversity at the genus level than culture or qPCR. Previously unknown, verified fungal phylotypes were detected in dust, accounting for 12% of all diversity. Fungal diversity, especially within classes Dothideomycetes and Agaricomycetes tended to be higher in the water damaged buildings. Fungal phylotypes detected in building materials were present in dust samples, but their proportion of total fungi was similar for damaged and reference buildings. The quantitative correlation between clone library phylotype frequencies and qPCR counts was moderate (r = 0.59, p < 0.01). We examined a small number of target buildings and found indications of elevated fungal diversity associated with water damage. Some of the fungi in dust were attributable to building growth, but more information on the material-associated communities is needed in order to understand the dynamics of microbial communities between building structures and dust. The sequencing

  8. The Impact of Selective-Logging and Forest Clearance for Oil Palm on Fungal Communities in Borneo

    PubMed Central

    Kerfahi, Dorsaf; Tripathi, Binu M.; Lee, Junghoon; Edwards, David P.; Adams, Jonathan M.

    2014-01-01

    Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest. PMID:25405609

  9. The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo.

    PubMed

    Kerfahi, Dorsaf; Tripathi, Binu M; Lee, Junghoon; Edwards, David P; Adams, Jonathan M

    2014-01-01

    Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.

  10. Current investigations of fungal ectomycorrhizal communities in the Sierra Nevada Forest

    Treesearch

    Thomas D. Bruns; Annette M. Kretzer; Thomas R. Horton; Eric A-D. Stendell; Martin I. Bidartondo; Timothy M. Szaro

    2002-01-01

    Progress on two main studies on fungal ectomycorrhizal communities in the Sierra National Forest is discussed. One study examined the short-term effects of ground fire on the ectomycorrhizal community and the other examined the ectomycorrhizal associates of snow plant (Sarcodes sanguinea). In the ground-fire study we found that a large initial...

  11. Fungal communities in herbaceous medicinal plants from the malnad region, southern India.

    PubMed

    Krishnamurthy, Yelugere L; Naik, Shankar B; Jayaram, Shashikala

    2008-01-01

    Fungal communities were isolated from surface sterilized leaf segments of nine ethnopharmaceutically important medicinal herbs collected from the Bhadra River Project Area, the Malnad region, Southern India. A total of 2159 isolates belonging to 55 different fungal species were isolated from 3600 leaf segments collected during the wet and dry seasons. Chaetomium globosum (7.3%), Aureobasidium pullulans (6.1%), Cladosporium cladosporioides (3.9%), Curvularia lunata (1.9%), Nigrospora oryzae (1.7%), Alternaria alternata (1.3%), Botryosphaeria subglobosa (1.1%), Phoma multirostrata (0.9%), Aspergillus niger (0.8%), Fusarium oxysporum (0.7%), Rhizoctonia solani (0.4%), and Sphaeropsis sapenea (0.3%) were the most frequently isolated fungal species. Colonization rates of fungal species varied significantly between the two seasons. Host specificity was observed in some host plants.

  12. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers.

    PubMed

    Stursová, Martina; Zifčáková, Lucia; Leigh, Mary Beth; Burgess, Robert; Baldrian, Petr

    2012-06-01

    Organic matter decomposition in the globally widespread coniferous forests has an important role in the carbon cycle, and cellulose decomposition is especially important in this respect because cellulose is the most abundant polysaccharide in plant litter. Cellulose decomposition was 10 times faster in the fungi-dominated litter of Picea abies forest than in the bacteria-dominated soil. In the soil, the added (13)C-labelled cellulose was the main source of microbial respiration and was preferentially accumulated in the fungal biomass and cellulose induced fungal proliferation. In contrast, in the litter, bacterial biomass showed higher labelling after (13)C-cellulose addition and bacterial biomass increased. While 80% of the total community was represented by 104-106 bacterial and 33-59 fungal operational taxonomic units (OTUs), 80% of the cellulolytic communities of bacteria and fungi were only composed of 8-18 highly abundant OTUs. Both the total and (13)C-labelled communities differed substantially between the litter and soil. Cellulolytic bacteria in the acidic topsoil included Betaproteobacteria, Bacteroidetes and Acidobacteria, whereas these typically found in neutral soils were absent. Most fungal cellulose decomposers belonged to Ascomycota; cellulolytic Basidiomycota were mainly represented by the yeasts Trichosporon and Cryptococcus. Several bacteria and fungi demonstrated here to derive their carbon from cellulose were previously not recognized as cellulolytic. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Global changes alter soil fungal communities and alter rates of organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Moore, J.; Frey, S. D.

    2016-12-01

    Global changes - such as warming, more frequent and severe droughts, increasing atmospheric CO2, and increasing nitrogen (N) deposition rates - are altering ecosystem processes. The balance between soil carbon (C) accumulation and decomposition is determined in large part by the activity and biomass of detrital organisms, namely soil fungi, and yet their sensitivity to global changes remains unresolved. We present results from a meta-analysis of 200+ studies spanning manipulative and observational field experiments to quantify fungal responses to global change and expected consequences for ecosystem C dynamics. Warming altered the functional soil microbial community by reducing the ratio of fungi to bacteria (f:b) total fungal biomass. Additionally, warming reduced lignolytic enzyme activity generally by one-third. Simulated N deposition affected f:b differently than warming, but the effect on fungal biomass and activity was similar. The effect of N-enrichment on f:b was contingent upon ecosystem type; f:b increased in alpine meadows and heathlands but decreased in temperate forests following N-enrichment. Across ecosystems, fungal biomass marginally declined by 8% in N-enriched soils. In general, N-enrichment reduced fungal lignolytic enzyme activity, which could explain why soil C accumulates in some ecosystems following warming and N-enrichment. Several global change experiments have reported the surprising result that soil C builds up following increases in temperature and N deposition rates. While site-specific studies have examined the role of soil fungi in ecosystem responses to global change, we present the first meta-analysis documenting general patterns of global change impacts on soil fungal communities, biomass, and activity. In sum, we provide evidence that soil microbial community shifts and activity plays a large part in ecosystem responses to global changes, and have the potential to alter the magnitude of the C-climate feedback.

  14. Can we develop general predictive models of mycorrhizal fungal community-environment relationships?

    Treesearch

    Erik A. Lilleskov; Jeri L. Parrent

    2007-01-01

    Our understanding of the controls on mycorrhizal fungal species distribution and community organization is in its early childhood - especially when compared with that of the more mature fields of plant and animal community ecology and biogeography - largely because of the historical difficulty of gathering species distribution information.

  15. Light Structures Phototroph, Bacterial and Fungal Communities at the Soil Surface

    PubMed Central

    Davies, Lawrence O.; Schäfer, Hendrik; Marshall, Samantha; Bramke, Irene; Oliver, Robin G.; Bending, Gary D.

    2013-01-01

    The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0–3 mm) and bulk soil (3–12 mm) using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere. PMID:23894406

  16. Arbuscular Mycorrhizal Fungal Hyphae Alter Soil Bacterial Community and Enhance Polychlorinated Biphenyls Dissipation

    PubMed Central

    Qin, Hua; Brookes, Philip C.; Xu, Jianming

    2016-01-01

    We investigated the role of arbuscular mycorrhizal fungal (AMF) hyphae in alternation of soil microbial community and Aroclor 1242 dissipation. A two-compartment rhizobox system with double nylon meshes in the central was employed to exclude the influence of Cucurbita pepo L. root exudates on hyphal compartment soil. To assess the quantitative effect of AMF hyphae on soil microbial community, we separated the hyphal compartment soil into four horizontal layers from the central mesh to outer wall (e.g., L1–L4). Soil total PCBs dissipation rates ranged from 35.67% of L4 layer to 57.39% of L1 layer in AMF inoculated treatment, which were significant higher than the 17.31% of the control (P < 0.05). The dissipation rates of tri-, tetrachlorinated biphenyls as well as the total PCBs were significantly correlated with soil hyphal length (P < 0.01). Real-time quantitative PCR results indicated that the Rhodococcus-like bphC gene was 2–3 orders of magnitude more than that of Pseudomonas-like bphC gene, and was found responded positively to AMF. Phylogenetic analyses of the 16S rDNA sequenced by the Illumina Miseq sequencing platform indicated that AMF hyphae altered bacterial community compositions. The phylum Betaproteobacteria and Actinobacteria were dominated in the soil, while Burkholderiales and Actinomycetales were dominated at the order level. Taxa from the Comamonadaceae responded positively to AMF and trichlorinated biphenyl dissipation, while taxa from the Oxalobacteraceae and Streptomycetaceae responded negatively to AMF and PCB congener dissipation. Our results suggested that the AMF hyphal exudates as well as the hyphae per se did have quantitative effects on shaping soil microbial community, and could modify the PCBs dissipation processes consequently. PMID:27379068

  17. Fungal community composition and diversity vary with soil depths and landscape position in a no-till wheat cropping system.

    USDA-ARS?s Scientific Manuscript database

    Fungal communities in soil are critical to plant health and ecosystem processes in agricultural systems. Although the composition of fungal communities is often related to soil edaphic characteristic and host plant identity, there is a paucity of information on how communities vary with soil depth a...

  18. Analyses of fungal community by Illumina MiSeq platforms and characterization of Eurotium species on Liupao tea, a distinctive post-fermented tea from China.

    PubMed

    Mao, Yan; Wei, BaoYao; Teng, JianWen; Huang, Li; Xia, Ning

    2017-09-01

    Liupao tea is a distinctive Chinese dark tea obtained by indigenous tea fermentation facilitated by the symbiotic association of bacteria and fungi. The composition of fungal community in 4 Liupao tea samples stored for several years under natural microbial fermentation was evaluated by MiSeq sequencing. Taxonomic analysis revealed 3 phyla, 6 families, 8 genera. The genera Eurotium and Aspergillus were dominant fungi in almost all the samples. A total of 85 strains found in 41 other tea samples were species of Eurotium. amstelodami, Eurotium. niveoglaucum, Eurotium. repens, Eurotium. rubrum, Eurotium. tonophilum and Eurotium. cristatum by culture-dependent method. Of these species, E. repens, E. rubrum and E. tonophilum have not been previously associated with Liupao tea. This report is the first to reveal fungal flora composition using Illumina-based sequencing and provide useful information for relevant studies on the isolation of Eurotium species in Liupao tea. The predominant molds are Eurotium species, and the comparison of fungal diversity in dark teas is worth considering. The taxonomic analysis of the microbial community would also aid the further study of functional genes and metabolic pathways of Liupao tea fermentation. Copyright © 2017. Published by Elsevier Ltd.

  19. Highlighting patterns of fungal diversity and composition shaped by ocean currents using the East China Sea as a model.

    PubMed

    Li, Wei; Wang, Mengmeng; Pan, Haoqin; Burgaud, Gaëtan; Liang, Shengkang; Guo, Jiajia; Luo, Tian; Li, Zhaoxia; Zhang, Shoumei; Cai, Lei

    2018-01-01

    How ocean currents shape fungal transport, dispersal and more broadly fungal biogeography remains poorly understood. The East China Sea (ECS) is a complex and dynamic habitat with different water masses blending microbial communities. The internal transcribed spacer 2 region of fungal rDNA was analysed in water and sediment samples directly collected from the coastal (CWM), Kuroshio (KSWM), Taiwan warm (TWM) and the shelf mixed water mass (MWM), coupled with hydrographic properties measurements, to determine how ocean currents impact the fungal community composition. Almost 9k fungal operational taxonomic units (OTUs) spanning six phyla, 25 known classes, 102 orders and 694 genera were obtained. The typical terrestrial and freshwater fungal genus, Byssochlamys, was dominant in the CWM, while increasing abundance of a specific OTU affiliated with Aspergillus was revealed from coastal to open ocean water masses (TWM and KSWM). Compared with water samples, sediment harboured an increased diversity with distinct fungal communities. The proximity of the Yangtze and Qiantang estuaries homogenizes the surface water and sediment communities. A significant influence of ocean currents on community structure was found, which is believed to reduce proportionally the variation explained by environmental parameters at the scale of the total water masses. Dissolved oxygen and depth were identified as the major parameters structuring the fungal community. Our results indicate that passive fungal dispersal driven by ocean currents and river run-off, in conjunction with the distinct hydrographic conditions of individual water masses, shapes the fungal community composition and distribution pattern in the ECS. © 2017 John Wiley & Sons Ltd.

  20. Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children

    PubMed Central

    Dannemiller, Karen C.; Gent, Janneane F.; Leaderer, Brian P.; Peccia, Jordan

    2015-01-01

    Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next-generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structure were non-random and demonstrated species segregation (C-score, p<0.00001). Increased microbial richness was associated with the presence of pets, water leaks, longer AC use, suburban (vs. urban) homes, and dust composition measures (p<0.05). The most significant differences in community composition were observed for AC use and occupancy (people, children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building’s physical and occupant characteristics. PMID:25833176

  1. Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter.

    PubMed

    Sun, Ruibo; Dsouza, Melissa; Gilbert, Jack A; Guo, Xisheng; Wang, Daozhong; Guo, Zhibin; Ni, Yingying; Chu, Haiyan

    2016-12-01

    Organic matter application is a widely used practice to increase soil carbon content and maintain soil fertility. However, little is known about the effect of different types of organic matter, or the input of exogenous species from these materials, on soil fungal communities. In this study, fungal community composition was characterized from soils amended with three types of organic matter over a 30-year fertilization experiment. Chemical fertilization significantly changed soil fungal community composition and structure, which was exacerbated by the addition of organic matter, with the direction of change influenced by the type of organic matter used. The addition of organic matter significantly increased soil fungal richness, with the greatest richness achieved in soils amended with pig manure. Importantly, following addition of cow and pig manure, fungal taxa associated with these materials could be found in the soil, suggesting that these exogenous species can augment soil fungal composition. Moreover, the addition of organic matter decreased the relative abundance of potential pathogenic fungi. Overall, these results indicate that organic matter addition influences the composition and structure of soil fungal communities in predictable ways. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau

    NASA Astrophysics Data System (ADS)

    Nagano, Yuriko; Miura, Toshiko; Nishi, Shinro; Lima, Andre O.; Nakayama, Cristina; Pellizari, Vivian H.; Fujikura, Katsunori

    2017-12-01

    We investigated the fungal diversity in a total of 20 deep-sea sediment samples (of which 14 samples were associated with natural asphalt seeps and 6 samples were not associated) collected from two different sites at the Sao Paulo Plateau off Brazil by Ion Torrent PGM targeting ITS region of ribosomal RNA. Our results suggest that diverse fungi (113 operational taxonomic units (OTUs) based on clustering at 97% sequence similarity assigned into 9 classes and 31 genus) are present in deep-sea sediment samples collected at the Sao Paulo Plateau, dominated by Ascomycota (74.3%), followed by Basidiomycota (11.5%), unidentified fungi (7.1%), and sequences with no affiliation to any organisms in the public database (7.1%). However, it was revealed that only three species, namely Penicillium sp., Cadophora malorum and Rhodosporidium diobovatum, were dominant, with the majority of OTUs remaining a minor community. Unexpectedly, there was no significant difference in major fungal community structure between the asphalt seep and non-asphalt seep sites, despite the presence of mass hydrocarbon deposits and the high amount of macro organisms surrounding the asphalt seeps. However, there were some differences in the minor fungal communities, with possible asphalt degrading fungi present specifically in the asphalt seep sites. In contrast, some differences were found between the two different sampling sites. Classification of OTUs revealed that only 47 (41.6%) fungal OTUs exhibited >97% sequence similarity, in comparison with pre-existing ITS sequences in public databases, indicating that a majority of deep-sea inhabiting fungal taxa still remain undescribed. Although our knowledge on fungi and their role in deep-sea environments is still limited and scarce, this study increases our understanding of fungal diversity and community structure in deep-sea environments.

  3. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices.

    PubMed

    Tan, Yong; Cui, Yinshan; Li, Haoyu; Kuang, Anxiu; Li, Xiaoran; Wei, Yunlin; Ji, Xiuling

    2017-01-01

    Rhizosphere and endophytic fungal communities are considered critically important for plant health and soil fertility. In response to continuous cropping, Panax notoginseng becomes vulnerable to attack by fungal pathogens. In the present study, culture-independent Illumina MiSeq was used to investigate the rhizospheric and root endophytic fungi in response to continuous Panax notoginseng cropping practices. The results demonstrated that fungal diversity is increased inside the roots and in rhizospheric. Ascomycota, Zygomycota, Basidiomycota and Chytridiomycota were the dominant phyla detected during the continuous cropping of Panax notoginseng. The fungal diversity in the rhizospheric soil and roots of root-rot P. notoginseng plants are less than that of healthy plants in the same cultivating year, thus showing that root-rot disease also affects the community structure and diversity of rhizospheric and root endophytic fungi. Similarities in the major fungal components show that endophytic fungal communities are similar to rhizospheric soil fungal community based on a specialized subset of organisms. Canonical correspondence analysis on the fungal communities in root-rot rhizospheric from both healthy plants and rotation soils reveals that the soil pH and organic matter have the greatest impact upon the microbial community composition during continuous cropping, whereas soil nutrition status does not significantly affect the fungal community composition in response to continuous cropping practices. In addition, the results suggest that the unclassified genera Leotiomycetes, Cylindrocarpon, Fusarium and Mycocentrospora are shown as the potential pathogens which are responsible for the obstacles in continuous cropping of P. notoginseng. Further exploration of these potential pathogens might be useful for the biological control of continuous cropping of P. notoginseng. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Soil drying procedure affects the DNA quantification of Lactarius vinosus but does not change the fungal community composition.

    PubMed

    Castaño, Carles; Parladé, Javier; Pera, Joan; Martínez de Aragón, Juan; Alday, Josu G; Bonet, José Antonio

    2016-11-01

    Drying soil samples before DNA extraction is commonly used for specific fungal DNA quantification and metabarcoding studies, but the impact of different drying procedures on both the specific fungal DNA quantity and the fungal community composition has not been analyzed. We tested three different drying procedures (freeze-drying, oven-drying, and room temperature) on 12 different soil samples to determine (a) the soil mycelium biomass of the ectomycorrhizal species Lactarius vinosus using qPCR with a specifically designed TaqMan® probe and (b) the fungal community composition and diversity using the PacBio® RS II sequencing platform. Mycelium biomass of L. vinosus was significantly greater in the freeze-dried soil samples than in samples dried at oven and room temperature. However, drying procedures had no effect on fungal community composition or on fungal diversity. In addition, there were no significant differences in the proportions of fungi according to their functional roles (moulds vs. mycorrhizal species) in response to drying procedures. Only six out of 1139 operational taxonomic units (OTUs) had increased their relative proportions after soil drying at room temperature, with five of these OTUs classified as mould or yeast species. However, the magnitude of these changes was small, with an overall increase in relative abundance of these OTUs of approximately 2 %. These results suggest that DNA degradation may occur especially after drying soil samples at room temperature, but affecting equally nearly all fungi and therefore causing no significant differences in diversity and community composition. Despite the minimal effects caused by the drying procedures at the fungal community composition, freeze-drying resulted in higher concentrations of L. vinosus DNA and prevented potential colonization from opportunistic species.

  5. Vertical Structure of Phyllosphere Fungal Communities in a Tropical Forest in Thailand Uncovered by High-Throughput Sequencing.

    PubMed

    Izuno, Ayako; Kanzaki, Mamoru; Artchawakom, Taksin; Wachrinrat, Chongrak; Isagi, Yuji

    2016-01-01

    Phyllosphere fungi harbor a tremendous species diversity and play important ecological roles. However, little is known about their distribution patterns within forest ecosystems. We examined how species diversity and community composition of phyllosphere fungi change along a vertical structure in a tropical forest in Thailand. Fungal communities in 144 leaf samples from 19 vertical layers (1.28-34.4 m above ground) of 73 plant individuals (27 species) were investigated by metabarcoding analysis using Ion Torrent sequencing. In total, 1,524 fungal operational taxonomic units (OTUs) were detected among 890,710 reads obtained from the 144 leaf samples. Taxonomically diverse fungi belonging to as many as 24 orders of Ascomycota and 21 orders of Basidiomycota were detected, most of which inhabited limited parts of the lowest layers closest to the forest floor. Species diversity of phyllosphere fungi was the highest in the lowest layers closest to the forest floor, decreased with increasing height, and lowest in the canopy; 742 and 55 fungal OTUs were detected at the lowest and highest layer, respectively. On the layers close to the forest floor, phyllosphere fungal communities were mainly composed of low frequency OTUs and largely differentiated among plant individuals. Conversely, in the canopy, fungal communities consisted of similar OTUs across plant individuals, and as many as 86.1%-92.7% of the OTUs found in the canopy (≥22 m above ground) were also distributed in the lower layers. Overall, our study showed the variability of phyllosphere fungal communities along the vertical gradient of plant vegetation and environmental conditions, suggesting the significance of biotic and abiotic variation for the species diversity of phyllosphere fungi.

  6. Ectomycorrhizal Fungal Communities in Urban Parks Are Similar to Those in Natural Forests but Shaped by Vegetation and Park Age

    PubMed Central

    Liu, Xinxin; Kotze, D. Johan; Jumpponen, Ari; Francini, Gaia; Setälä, Heikki

    2017-01-01

    ABSTRACT Ectomycorrhizal (ECM) fungi are important mutualists for the growth and health of most boreal trees. Forest age and its host species composition can impact the composition of ECM fungal communities. Although plentiful empirical data exist for forested environments, the effects of established vegetation and its successional trajectories on ECM fungi in urban greenspaces remain poorly understood. We analyzed ECM fungi in 5 control forests and 41 urban parks of two plant functional groups (conifer and broadleaf trees) and in three age categories (10, ∼50, and >100 years old) in southern Finland. Our results show that although ECM fungal richness was marginally greater in forests than in urban parks, urban parks still hosted rich and diverse ECM fungal communities. ECM fungal community composition differed between the two habitats but was driven by taxon rank order reordering, as key ECM fungal taxa remained largely the same. In parks, the ECM communities differed between conifer and broadleaf trees. The successional trajectories of ECM fungi, as inferred in relation to the time since park construction, differed among the conifers and broadleaf trees: the ECM fungal communities changed over time under the conifers, whereas communities under broadleaf trees provided no evidence for such age-related effects. Our data show that plant-ECM fungus interactions in urban parks, in spite of being constructed environments, are surprisingly similar in richness to those in natural forests. This suggests that the presence of host trees, rather than soil characteristics or even disturbance regime of the system, determine ECM fungal community structure and diversity. IMPORTANCE In urban environments, soil and trees improve environmental quality and provide essential ecosystem services. ECM fungi enhance plant growth and performance, increasing plant nutrient acquisition and protecting plants against toxic compounds. Recent evidence indicates that soil-inhabiting fungal

  7. Ectomycorrhizal Fungal Communities in Urban Parks Are Similar to Those in Natural Forests but Shaped by Vegetation and Park Age.

    PubMed

    Hui, Nan; Liu, Xinxin; Kotze, D Johan; Jumpponen, Ari; Francini, Gaia; Setälä, Heikki

    2017-12-01

    Ectomycorrhizal (ECM) fungi are important mutualists for the growth and health of most boreal trees. Forest age and its host species composition can impact the composition of ECM fungal communities. Although plentiful empirical data exist for forested environments, the effects of established vegetation and its successional trajectories on ECM fungi in urban greenspaces remain poorly understood. We analyzed ECM fungi in 5 control forests and 41 urban parks of two plant functional groups (conifer and broadleaf trees) and in three age categories (10, ∼50, and >100 years old) in southern Finland. Our results show that although ECM fungal richness was marginally greater in forests than in urban parks, urban parks still hosted rich and diverse ECM fungal communities. ECM fungal community composition differed between the two habitats but was driven by taxon rank order reordering, as key ECM fungal taxa remained largely the same. In parks, the ECM communities differed between conifer and broadleaf trees. The successional trajectories of ECM fungi, as inferred in relation to the time since park construction, differed among the conifers and broadleaf trees: the ECM fungal communities changed over time under the conifers, whereas communities under broadleaf trees provided no evidence for such age-related effects. Our data show that plant-ECM fungus interactions in urban parks, in spite of being constructed environments, are surprisingly similar in richness to those in natural forests. This suggests that the presence of host trees, rather than soil characteristics or even disturbance regime of the system, determine ECM fungal community structure and diversity. IMPORTANCE In urban environments, soil and trees improve environmental quality and provide essential ecosystem services. ECM fungi enhance plant growth and performance, increasing plant nutrient acquisition and protecting plants against toxic compounds. Recent evidence indicates that soil-inhabiting fungal communities

  8. Enhancement of the Knowledge on Fungal Communities in Directly Brined Aloreña de Málaga Green Olive Fermentations by Metabarcoding Analysis

    PubMed Central

    Arroyo-López, Francisco Noé; Medina, Eduardo; Ruiz-Bellido, Miguel Ángel; Romero-Gil, Verónica; Montes-Borrego, Miguel

    2016-01-01

    Nowadays, our knowledge of the fungal biodiversity in fermented vegetables is limited although these microorganisms could have a great influence on the quality and safety of this kind of food. This work uses a metagenetic approach to obtain basic knowledge of the fungal community ecology during the course of fermentation of natural Aloreña de Málaga table olives, from reception of raw material to edible fruits. For this purpose, samples of brines and fruits were collected from two industries in Guadalhorce Valley (Málaga, Spain) at different moments of fermentation (0, 7, 30 and 120 days). The physicochemical and microbial counts performed during fermentation showed the typical evolution of this type of processes, mainly dominated by yeasts in apparent absence of Enterobacteriaceae and Lactobacillaceae. High-throughput barcoded pyrosequencing analysis of ITS1-5.8S-ITS2 region showed a low biodiversity of the fungal community, with the presence at 97% identity of 29 different fungal genera included in 105 operational taxonomic units (OTUs). The most important genera in the raw material at the moment of reception in the industry were Penicillium, Cladosporium, Malassezia, and Candida, whilst after 4 months of fermentation in brines Zygotorulaspora and Pichia were predominant, whereas in fruits were Candida, Penicillium, Debaryomyces and Saccharomyces. The fungal genera Penicillium, Pichia, and Zygotorulaspora were shared among the three types of substrates during all the course of fermentation, representing the core fungal population for this table olive specialty. A phylogenetic analysis of the ITS sequences allowed a more accurate assignment of diverse OTUs to Pichia manshurica, Candida parapsilosis/C. tropicalis, Candida diddensiae, and Citeromyces nyonensis clades. This study highlights the existence of a complex fungal consortium in olive fermentations including phytopathogenic, saprofitic, spoilage and fermentative genera. Insights into the ecology

  9. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments.

    PubMed

    Jumpponen, A; Jones, K L

    2010-04-01

    *The fungal richness, diversity and community composition in the Quercus macrocarpa phyllosphere were compared across a growing season in trees located in six stands within and outside a small urban center using 454-sequencing and DNA tagging. The approaches did not differentiate between endophytic and epiphytic fungal communities. *Fungi accumulated in the phyllosphere rapidly and communities were temporally dynamic, with more than a third of the analyzed operational taxonomic units (OTUs) and half of the BLAST-inferred genera showing distinct seasonal patterns. The seasonal patterns could be explained by fungal life cycles or environmental tolerances. *The communities were hyperdiverse and differed between the urban and nonurban stands, albeit not consistently across the growing season. Foliar macronutrients (nitrogen (N), potassium (K) and sulfur (S)), micronutrients (boron (B), manganese (Mn) and selenium (Se)) and trace elements (cadmium (Cd), lead (Pb) and zinc (Zn)) were enriched in the urban trees, probably as a result of anthropogenic activities. Because of correlations with the experimental layout, these chemical elements should not be considered as community drivers without further empirical studies. *We suggest that a combination of mechanisms leads to differences between urban and nonurban communities. Among those are stand isolation and size, nutrient and pollutant accumulation plus stand management, including fertilization and litter removal.

  10. Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities.

    PubMed

    Davison, John; Moora, Mari; Öpik, Maarja; Ainsaar, Leho; Ducousso, Marc; Hiiesalu, Inga; Jairus, Teele; Johnson, Nancy; Jourand, Philippe; Kalamees, Rein; Koorem, Kadri; Meyer, Jean-Yves; Püssa, Kersti; Reier, Ülle; Pärtel, Meelis; Semchenko, Marina; Traveset, Anna; Vasar, Martti; Zobel, Martin

    2018-06-08

    Island biogeography theory is one of the most influential paradigms in ecology. That island characteristics, including remoteness, can profoundly modulate biological diversity has been borne out by studies of animals and plants. By contrast, the processes influencing microbial diversity in island systems remain largely undetermined. We sequenced arbuscular mycorrhizal (AM) fungal DNA from plant roots collected on 13 islands worldwide and compared AM fungal diversity on islands with existing data from mainland sites. AM fungal communities on islands (even those >6000 km from the closest mainland) comprised few endemic taxa and were as diverse as mainland communities. Thus, in contrast to patterns recorded among macro-organisms, efficient dispersal appears to outweigh the effects of taxogenesis and extinction in regulating AM fungal diversity on islands. Nonetheless, AM fungal communities on more distant islands comprised a higher proportion of previously cultured and large-spored taxa, indicating that dispersal may be human-mediated or require tolerance of significant environmental stress, such as exposure to sunlight or high salinity. The processes driving large-scale patterns of microbial diversity are a key consideration for attempts to conserve and restore functioning ecosystems in this era of rapid global change.

  11. Fungal Communities Including Plant Pathogens in Near Surface Air Are Similar across Northwestern Europe.

    PubMed

    Nicolaisen, Mogens; West, Jonathan S; Sapkota, Rumakanta; Canning, Gail G M; Schoen, Cor; Justesen, Annemarie F

    2017-01-01

    Information on the diversity of fungal spores in air is limited, and also the content of airborne spores of fungal plant pathogens is understudied. In the present study, a total of 152 air samples were taken from rooftops at urban settings in Slagelse, DK, Wageningen NL, and Rothamsted, UK together with 41 samples from above oilseed rape fields in Rothamsted. Samples were taken during 10-day periods in spring and autumn, each sample representing 1 day of sampling. The fungal content of samples was analyzed by metabarcoding of the fungal internal transcribed sequence 1 (ITS1) and by qPCR for specific fungi. The metabarcoding results demonstrated that season had significant effects on airborne fungal communities. In contrast, location did not have strong effects on the communities, even though locations were separated by up to 900 km. Also, a number of plant pathogens had strikingly similar patterns of abundance at the three locations. Rooftop samples were more diverse than samples taken above fields, probably reflecting greater mixing of air from a range of microenvironments for the rooftop sites. Pathogens that were known to be present in the crop were also found in air samples taken above the field. This paper is one of the first detailed studies of fungal composition in air with the focus on plant pathogens and shows that it is possible to detect a range of pathogens in rooftop air samplers using metabarcoding.

  12. Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children.

    PubMed

    Dannemiller, K C; Gent, J F; Leaderer, B P; Peccia, J

    2016-04-01

    Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next-generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structures were non-random and demonstrated species segregation (C-score, P < 0.00001). Increased microbial richness was associated with the presence of pets, water leaks, longer AC use, suburban (vs. urban) homes, and dust composition measures (P < 0.05). The most significant differences in community composition were observed for AC use and occupancy (people, children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building's physical and occupant characteristics. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Arbuscular mycorrhizal fungal assemblages in biological crusts from a Neotropical savanna are not related to the dominant perennial Trachypogon.

    PubMed

    Hernández-Hernández, R M; Roldán, A; Caravaca, F; Rodriguez-Caballero, G; Torres, M P; Maestre, F T; Alguacil, M M

    2017-01-01

    Knowledge of the arbuscular mycorrhizal fungal assemblages in the Trachypogon savanna ecosystems is very important to a better understanding of the ecological processes mediated by this soil microbial group that affects multiple ecosystem functions. Considering the hypothesis that the biocrusts can be linked to vegetation through the arbuscular fungi mycelial network, the objectives proposed in this study were to determine (i) whether there are arbuscular mycorrhizal fungi (AMF) in the biocrusts (ii) whether arbuscular mycorrhizal fungal assemblages are linked to the Trachypogon patches, and (iii) whether the composition of the assemblages is related to soil properties affected by microbiological activity. The community structure of the AMF was investigated in three habitats: rhizospheric soil and roots of Trachypogon vestitus, biological soil crusts, and bare soil. The canonical correspondence analysis showed that two soil properties related to enzymatic activity (protease and β-glucosidase) significantly affected the community composition of the AMF. The biocrusts in the Venezuelan savanna are colonized by an AM fungal community linked to that of the bare soil and significantly different from that hosted by the roots of the surrounding T. vestitus, suggesting that assemblages of AMF in biocrusts might be related more closely to those of annual plant species appearing in favorable conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Fungal and Bacterial Communities in Indoor Dust Follow Different Environmental Determinants.

    PubMed

    Weikl, Fabian; Tischer, Christina; Probst, Alexander J; Heinrich, Joachim; Markevych, Iana; Jochner, Susanne; Pritsch, Karin

    2016-01-01

    People spend most of their time inside buildings and the indoor microbiome is a major part of our everyday environment. It affects humans' wellbeing and therefore its composition is important for use in inferring human health impacts. It is still not well understood how environmental conditions affect indoor microbial communities. Existing studies have mostly focussed on the local (e.g., building units) or continental scale and rarely on the regional scale, e.g. a specific metropolitan area. Therefore, we wanted to identify key environmental determinants for the house dust microbiome from an existing collection of spatially (area of Munich, Germany) and temporally (301 days) distributed samples and to determine changes in the community as a function of time. To that end, dust samples that had been collected once from the living room floors of 286 individual households, were profiled for fungal and bacterial community variation and diversity using microbial fingerprinting techniques. The profiles were tested for their association with occupant behaviour, building characteristics, outdoor pollution, vegetation, and urbanization. Our results showed that more environmental and particularly outdoor factors (vegetation, urbanization, airborne particulate matter) affected the community composition of indoor fungi than of bacteria. The passage of time affected fungi and, surprisingly, also strongly affected bacteria. We inferred that fungal communities in indoor dust changed semi-annually, whereas bacterial communities paralleled outdoor plant phenological periods. These differences in temporal dynamics cannot be fully explained and should be further investigated in future studies on indoor microbiomes.

  15. Fungal and Bacterial Communities in Indoor Dust Follow Different Environmental Determinants

    PubMed Central

    Weikl, Fabian; Tischer, Christina; Probst, Alexander J.; Heinrich, Joachim; Markevych, Iana; Jochner, Susanne; Pritsch, Karin

    2016-01-01

    People spend most of their time inside buildings and the indoor microbiome is a major part of our everyday environment. It affects humans’ wellbeing and therefore its composition is important for use in inferring human health impacts. It is still not well understood how environmental conditions affect indoor microbial communities. Existing studies have mostly focussed on the local (e.g., building units) or continental scale and rarely on the regional scale, e.g. a specific metropolitan area. Therefore, we wanted to identify key environmental determinants for the house dust microbiome from an existing collection of spatially (area of Munich, Germany) and temporally (301 days) distributed samples and to determine changes in the community as a function of time. To that end, dust samples that had been collected once from the living room floors of 286 individual households, were profiled for fungal and bacterial community variation and diversity using microbial fingerprinting techniques. The profiles were tested for their association with occupant behaviour, building characteristics, outdoor pollution, vegetation, and urbanization. Our results showed that more environmental and particularly outdoor factors (vegetation, urbanization, airborne particulate matter) affected the community composition of indoor fungi than of bacteria. The passage of time affected fungi and, surprisingly, also strongly affected bacteria. We inferred that fungal communities in indoor dust changed semi-annually, whereas bacterial communities paralleled outdoor plant phenological periods. These differences in temporal dynamics cannot be fully explained and should be further investigated in future studies on indoor microbiomes. PMID:27100967

  16. Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root-associated soil of a wild perennial herb.

    PubMed

    Rasmussen, Pil U; Hugerth, Luisa W; Blanchet, F Guillaume; Andersson, Anders F; Lindahl, Björn D; Tack, Ayco J M

    2018-03-24

    Arbuscular mycorrhizal (AM) fungi form diverse communities and are known to influence above-ground community dynamics and biodiversity. However, the multiscale patterns and drivers of AM fungal composition and diversity are still poorly understood. We sequenced DNA markers from roots and root-associated soil from Plantago lanceolata plants collected across multiple spatial scales to allow comparison of AM fungal communities among neighbouring plants, plant subpopulations, nearby plant populations, and regions. We also measured soil nutrients, temperature, humidity, and community composition of neighbouring plants and nonAM root-associated fungi. AM fungal communities were already highly dissimilar among neighbouring plants (c. 30 cm apart), albeit with a high variation in the degree of similarity at this small spatial scale. AM fungal communities were increasingly, and more consistently, dissimilar at larger spatial scales. Spatial structure and environmental drivers explained a similar percentage of the variation, from 7% to 25%. A large fraction of the variation remained unexplained, which may be a result of unmeasured environmental variables, species interactions and stochastic processes. We conclude that AM fungal communities are highly variable among nearby plants. AM fungi may therefore play a major role in maintaining small-scale variation in community dynamics and biodiversity. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  17. Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO2 and O3

    Treesearch

    Carrie Andrew; Erik A. Lilleskov

    2009-01-01

    Sporocarp production is essential for ectomycorrhizal fungal recombination and dispersal, which influences fungal community dynamics. Increasing atmospheric carbon dioxide (CO2) and ozone (O3) affect host plant carbon gain and allocation, which may in turn influence ectomycorrhizal sporocarp production if the carbon...

  18. The Microbial Community Dynamics during the Vitex Honey Ripening Process in the Honeycomb

    PubMed Central

    Wen, Yaqin; Wang, Lin; Jin, Yue; Zhang, Jinzhen; Su, Lei; Zhang, Xiaoling; Zhou, Jinhui; Li, Yi

    2017-01-01

    The bacterial and fungal communities of vitex honey were surveyed by sequencing the 16S rRNA gene and the internal transcribed spacer region of ribosomal DNA. Vitex honey samples were analyzed at different stage of ripening; the vitex flower was also analyzed, and the effect of the chemical composition in the experimental setup was assessed. The results confirmed the presence of dominant Bacillus spp. as the dominant bacterial in honey, and yeast related genera was the main fungal in the honey, respectively. Lactococcus and Enterococcus were detected for the first time in honey. The proportion of most of the fungal community decreased during the honey ripening process. Multivariate analyses also showed that the fungal community of 5, 10, and 15 days honey samples tended to cluster together and were completely separated from the 1 day honey sample. The change in the fungal community showed a correlation with the variation in the chemical components, such as moisture and phenolic compounds. Together, these results suggest that ripening of honey could change its microbial composition, and decrease the potential risk of microbiology. PMID:28912763

  19. Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition

    USGS Publications Warehouse

    Blackwood, C.B.; Waldrop, M.P.; Zak, D.R.; Sinsabaugh, R. L.

    2007-01-01

    The fungal community of the forest floor was examined as the cause of previously reported increases in soil organic matter due to experimental N deposition in ecosystems producing predominantly high-lignin litter, and the opposite response in ecosystems producing low-lignin litter. The mechanism proposed to explain this phenomenon was that white-rot basidiomycetes are more important in the degradation of high-lignin litter than of low-lignin litter, and that their activity is suppressed by N deposition. We found that forest floor mass in the low-lignin sugar-maple dominated system decreased in October due to experimental N deposition, whereas forest floor mass of high-lignin oak-dominated ecosystems was unaffected by N deposition. Increased relative abundance of basidiomycetes in high-lignin forest floor was confirmed by denaturing gradient gel electrophoresis (DGGE) and sequencing. Abundance of basidiomycete laccase genes, encoding an enzyme used by white-rot basidiomycetes in the degradation of lignin, was 5-10 times greater in high-lignin forest floor than in low-lignin forest floor. While the differences between the fungal communities in different ecosystems were consistent with the proposed mechanism, no significant effects of N deposition were detected on DGGE profiles, laccase gene abundance, laccase length heterogeneity profiles, or phenol oxidase activity. Our observations indicate that the previously detected accumulation of soil organic matter in the high-lignin system may be driven by effects of N deposition on organisms in the mineral soil, rather than on organisms residing in the forest floor. However, studies of in situ gene expression and temporal and spatial variability within forest floor communities will be necessary to further relate the ecosystem dynamics of organic carbon to microbial communities and atmospheric N deposition. ?? 2007 The Authors; Journal compilation ?? 2007 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China.

    PubMed

    Liao, Hao; Zhang, Yuchen; Zuo, Qinyan; Du, Binbin; Chen, Wenli; Wei, Dan; Huang, Qiaoyun

    2018-04-20

    Soils, with non-uniform distribution of nutrients across different aggregate-size fractions, provide spatially heterogeneous microhabitats for microorganisms. However, very limited information is available on microbial distributions and their response to fertilizations across aggregate-size fractions in agricultural soils. Here, we examined the structures of bacterial and fungal communities across different aggregate-size fractions (2000-250 μm, 250-53 μm and <53 μm) in response to 35-years organic and/or chemical fertilization regimes in the soil of northeastern China by phospholipid fatty acid (PLFA) and high throughput sequencing (HTS) technology. Our results show that larger fractions (>53 μm), especially 250-53 μm aggregates, which contain more soil C and N, are associated with greater microbial biomass and higher fungi/bacteria ratio. We firstly reported the fungal community composition in different aggregate-size fractions by HTS technology and found more Ascomycota but less Zygomycota in larger fractions with higher C content across all fertilization regimes. Fertilization and aggregate-size fractions significantly affect the compositions of bacterial and fungal communities although their effects are different. The bacterial community is mainly driven by fertilization, especially chemical fertilizers, and is closely related to the shifts of soil P (phosphorus). The fungal community is preferentially impacted by different aggregate-size fractions and is more associated with the changes of soil C and N. The distinct responses of microbial communities suggest different mechanisms controlling the assembly of soil bacterial and fungal communities at aggregate scale. The investigations of both bacterial and fungal communities could provide a better understanding on nutrient cycling across aggregate-size fractions. Copyright © 2018. Published by Elsevier B.V.

  1. Modelling fungal growth in heterogeneous soil: analyses of the effect of soil physical structure on fungal community dynamics

    NASA Astrophysics Data System (ADS)

    Falconer, R.; Radoslow, P.; Grinev, D.; Otten, W.

    2009-04-01

    Fungi play a pivital role in soil ecosystems contributing to plant productivity. The underlying soil physical and biological processes responsible for community dynamics are interrelated and, at present, poorly understood. If these complex processes can be understood then this knowledge can be managed with an aim to providing more sustainable agriculture. Our understanding of microbial dynamics in soil has long been hampered by a lack of a theoretical framework and difficulties in observation and quantification. We will demonstrate how the spatial and temporal dynamics of fungi in soil can be understood by linking mathematical modelling with novel techniques that visualise the complex structure of the soil. The combination of these techniques and mathematical models opens up new possibilities to understand how the physical structure of soil affects fungal colony dynamics and also how fungal dynamics affect soil structure. We will quantify, using X ray tomography, soil structure for a range of artificially prepared microcosms. We characterise the soil structures using soil metrics such as porosity, fractal dimension, and the connectivity of the pore volume. Furthermore we will use the individual based fungal colony growth model of Falconer et al. 2005, which is based on the physiological processes of fungi, to assess the effect of soil structure on microbial dynamics by qualifying biomass abundances and distributions. We demonstrate how soil structure can critically affect fungal species interactions with consequences for biological control and fungal biodiversity.

  2. Repression of fungal plant pathogens and fungal-related contaminants: Selected ecosystem services by soil fauna communities in agroecosystems

    NASA Astrophysics Data System (ADS)

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Brunotte, Joachim; Weinert, Joachim

    2017-04-01

    In agroecosystems soil-borne fungal plant diseases are major yield-limiting factors which are difficult to control. Fungal plant pathogens, like Fusarium species, survive as a saprophyte in infected tissue like crop residues and endanger the health of the following crop by increasing the infection risk for specific plant diseases. In infected plant organs, these pathogens are able to produce mycotoxins. Mycotoxins like deoxynivalenol (DON) persist during storage, are heat resistant and of major concern for human and animal health after consumption of contaminated food and feed, respectively. Among fungivorous soil organisms, there are representatives of the soil fauna which are obviously antagonistic to a Fusarium infection and the contamination with mycotoxins. Specific members of the soil macro-, meso-, and microfauna provide a wide range of ecosystem services including the stimulation of decomposition processes which may result in the regulation of plant pathogens and the degradation of environmental contaminants. Investigations under laboratory conditions and in field were conducted to assess the functional linkage between soil faunal communities and plant pathogenic fungi (Fusarium culmorum). The aim was to examine if Fusarium biomass and the content of its mycotoxin DON decrease substantially in the presence of soil fauna (earthworms: Lumbricus terrestris, collembolans: Folsomia candida and nematodes: Aphelenchoides saprophilus) in a commercial cropping system managed with conservation tillage located in Northern Germany. The results of our investigations pointed out that the degradation performance of the introduced soil fauna must be considered as an important contribution to the biodegradation of fungal plant diseases and fungal-related contaminants. Different size classes within functional groups and the traits of keystone species appear to be significant for soil function and the provision of ecosystem services as in particular L. terrestris revealed to

  3. Natural succession on abandoned cropland effectively decreases the soil erodibility and improves the fungal diversity.

    PubMed

    Zhang, Chao; Liu, Guobin; Song, Zilin; Qu, Dong; Fang, Linchuan; Deng, Lei

    2017-10-01

    Changes in plants and soils during natural succession have been evaluated, but little is known about the effects of succession on the activities of soil microbes and their interactions with soil erodibility. We conducted a field study on the Chinese Loess Plateau, typical of this semiarid area, to determine the effect of secondary succession on the stability of soil structure against erosion and on the composition of soil fungal communities. Characteristics of plant, soil, and fungal communities were assessed across a 30-yr chronosequence of grassland developed from abandoned cropland. The diversity and composition of the fungal communities were determined using high-throughput sequencing of the internal transcribed spacer. Six grasslands were selected to represent different successional age classes: 0 (cropland), 5, 10, 15, 20, and 30 yr. Short-term decreases (initial 5 yr) in the amounts of soil organic carbon, total nitrogen, available phosphorus, and fungal biomass and in fungal diversity had returned to original levels (i.e., cropland) within 15 yr and were much higher after continued succession. Abandoning cropland for succession caused the soil erodibility (K) decrease and the aboveground coverage, soil nutrient levels, content of larger (>5 mm) water-stable aggregate, mean aggregate weight diameter, and diversity of the fungal communities improvement including arbuscular mycorrhizas (AMF), ectomycorrhizas (EMF), and saprotrophs. The fungal communities were dominated by Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota during the succession. The successional patterns of the plant and fungal communities were similar, although distinct fungal communities were not observed in the two initial stages, suggesting that fungal succession may develop more slowly than plant succession. Plant root biomass, EMF, and soil organic carbon content accounted for most of the variation of soil erodibility (28.6%, 19.5%, and 11.8%, respectively), indicating their

  4. Succession of fungal and oomycete communities in glyphosate-killed wheat roots

    USDA-ARS?s Scientific Manuscript database

    Dying roots of herbicide-killed weeds or volunteer plants can foster an increase in plant pathogens, such as Rhizoctonia and Pythium spp. and serve as a ‘greenbridge’ for pathogens infecting subsequent crops. To investigate the succession of fungal and oomycete communities after herbicide sprays, we...

  5. Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities.

    PubMed

    Filstrup, Christopher T; Hillebrand, Helmut; Heathcote, Adam J; Harpole, W Stanley; Downing, John A

    2014-04-01

    Freshwater biodiversity loss potentially disrupts ecosystem services related to water quality and may negatively impact ecosystem functioning and temporal community turnover. We analysed a data set containing phytoplankton and zooplankton community data from 131 lakes through 9 years in an agricultural region to test predictions that plankton communities with low biodiversity are less efficient in their use of limiting resources and display greater community turnover (measured as community dissimilarity). Phytoplankton resource use efficiency (RUE = biomass per unit resource) was negatively related to phytoplankton evenness (measured as Pielou's evenness), whereas zooplankton RUE was positively related to phytoplankton evenness. Phytoplankton and zooplankton RUE were high and low, respectively, when Cyanobacteria, especially Microcystis sp., dominated. Phytoplankton communities displayed slower community turnover rates when dominated by few genera. Our findings, which counter findings of many terrestrial studies, suggest that Cyanobacteria dominance may play important roles in ecosystem functioning and community turnover in nutrient-enriched lakes. © 2014 John Wiley & Sons Ltd/CNRS.

  6. Effects of multiple but low pesticide loads on aquatic fungal communities colonizing leaf litter.

    PubMed

    Talk, Anne; Kublik, Susanne; Uksa, Marie; Engel, Marion; Berghahn, Rüdiger; Welzl, Gerhard; Schloter, Michael; Mohr, Silvia

    2016-08-01

    In the first tier risk assessment (RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations (RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder (Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60days using a real farmer's pesticide application protocol for apple cropping. Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism (t-RFLP) of the fungal Internal Transcribed Spacer (ITS) region of the ribonucleic acid (RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability. Copyright © 2016. Published by Elsevier B.V.

  7. Fungal Genomics Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scalemore » genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.« less

  8. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems

    PubMed Central

    Sharma-Poudyal, Dipak; Schlatter, Daniel; Yin, Chuntao; Hulbert, Scot

    2017-01-01

    In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-term no-till (NT) plots adjacent to conventionally tilled (CT) plots, over three years at two locations in Washington state and one location in Idaho, US. We used pyrosequencing of the fungal ITS gene and identified 422 OTUs after rarefication. Fungal richness was higher in NT compared to CT, in two of the locations. Humicola nigrescens, Cryptococcus terreus, Cadophora spp. Hydnodontaceae spp., and Exophiala spp. were more abundant in NT, while species of Glarea, Coniochaetales, Mycosphaerella tassiana, Cryptococcus bhutanensis, Chaetomium perlucidum, and Ulocladium chartarum were more abundant in CT in most locations. Other abundant groups that did not show any trends were Fusarium, Mortierella, Penicillium, Aspergillus, and Macroventuria. Plant pathogens such as Rhizoctonia (Ceratobasidiaceae) were not abundant enough to see tillage differences, but Microdochium bolleyi, a weak root pathogen, was more abundant in NT. Our results suggest that NT fungi are better adapted at utilizing intact, decaying roots as a food source and may exist as root endophytes. CT fungi can utilize mature plant residues that are turned into the soil with tillage as pioneer colonizers, and then produce large numbers of conidia. But a larger proportion of the fungal community is not affected by tillage and may be niche generalists. PMID:28898288

  9. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems.

    PubMed

    Sharma-Poudyal, Dipak; Schlatter, Daniel; Yin, Chuntao; Hulbert, Scot; Paulitz, Timothy

    2017-01-01

    In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-term no-till (NT) plots adjacent to conventionally tilled (CT) plots, over three years at two locations in Washington state and one location in Idaho, US. We used pyrosequencing of the fungal ITS gene and identified 422 OTUs after rarefication. Fungal richness was higher in NT compared to CT, in two of the locations. Humicola nigrescens, Cryptococcus terreus, Cadophora spp. Hydnodontaceae spp., and Exophiala spp. were more abundant in NT, while species of Glarea, Coniochaetales, Mycosphaerella tassiana, Cryptococcus bhutanensis, Chaetomium perlucidum, and Ulocladium chartarum were more abundant in CT in most locations. Other abundant groups that did not show any trends were Fusarium, Mortierella, Penicillium, Aspergillus, and Macroventuria. Plant pathogens such as Rhizoctonia (Ceratobasidiaceae) were not abundant enough to see tillage differences, but Microdochium bolleyi, a weak root pathogen, was more abundant in NT. Our results suggest that NT fungi are better adapted at utilizing intact, decaying roots as a food source and may exist as root endophytes. CT fungi can utilize mature plant residues that are turned into the soil with tillage as pioneer colonizers, and then produce large numbers of conidia. But a larger proportion of the fungal community is not affected by tillage and may be niche generalists.

  10. Asymmetric response of root-associated fungal communities of an arbuscular mycorrhizal grass and an ectomycorrhizal tree to their coexistence in primary succession.

    PubMed

    Knoblochová, Tereza; Kohout, Petr; Püschel, David; Doubková, Pavla; Frouz, Jan; Cajthaml, Tomáš; Kukla, Jaroslav; Vosátka, Miroslav; Rydlová, Jana

    2017-11-01

    The arbuscular mycorrhizal (AM) grass Calamagrostis epigejos and predominantly ectomycorrhizal (EcM) tree Salix caprea co-occur at post-mining sites spontaneously colonized by vegetation. During succession, AM herbaceous vegetation is replaced by predominantly EcM woody species. To better understand the interaction of AM and EcM plants during vegetation transition, we studied the reciprocal effects of these species' coexistence on their root-associated fungi (RAF). We collected root and soil samples from three different microenvironments: stand of C. epigejos, under S. caprea canopy, and contact zone where roots of the two species interacted. RAF communities and mycorrhizal colonization were determined in sampled roots, and the soil was tested for EcM and AM inoculation potentials. Although the microenvironment significantly affected composition of the RAF communities in both plant species, the effect was greater in the case of C. epigejos RAF communities than in that of S. caprea RAF communities. The presence of S. caprea also significantly decreased AM fungal abundance in soil as well as AM colonization and richness of AM fungi in C. epigejos roots. Changes observed in the abundance and community composition of AM fungi might constitute an important factor in transition from AM-dominated to EcM-dominated vegetation during succession.

  11. Insights into fungal communities in composts revealed by 454-pyrosequencing: implications for human health and safety.

    PubMed

    De Gannes, Vidya; Eudoxie, Gaius; Hickey, William J

    2013-01-01

    Fungal community composition in composts of lignocellulosic wastes was assessed via 454-pyrosequencing of ITS1 libraries derived from the three major composting phases. Ascomycota represented most (93%) of the 27,987 fungal sequences. A total of 102 genera, 120 species, and 222 operational taxonomic units (OTUs; >97% similarity) were identified. Thirty genera predominated (ca. 94% of the sequences), and at the species level, sequences matching Chaetomium funicola and Fusarium oxysporum were the most abundant (26 and 12%, respectively). In all composts, fungal diversity in the mature phase exceeded that of the mesophilic phase, but there was no consistent pattern in diversity changes occurring in the thermophilic phase. Fifteen species of human pathogens were identified, eight of which have not been previously identified in composts. This study demonstrated that deep sequencing can elucidate fungal community diversity in composts, and that this information can have important implications for compost use and human health.

  12. Insights into fungal communities in composts revealed by 454-pyrosequencing: implications for human health and safety

    PubMed Central

    De Gannes, Vidya; Eudoxie, Gaius; Hickey, William J.

    2013-01-01

    Fungal community composition in composts of lignocellulosic wastes was assessed via 454-pyrosequencing of ITS1 libraries derived from the three major composting phases. Ascomycota represented most (93%) of the 27,987 fungal sequences. A total of 102 genera, 120 species, and 222 operational taxonomic units (OTUs; >97% similarity) were identified. Thirty genera predominated (ca. 94% of the sequences), and at the species level, sequences matching Chaetomium funicola and Fusarium oxysporum were the most abundant (26 and 12%, respectively). In all composts, fungal diversity in the mature phase exceeded that of the mesophilic phase, but there was no consistent pattern in diversity changes occurring in the thermophilic phase. Fifteen species of human pathogens were identified, eight of which have not been previously identified in composts. This study demonstrated that deep sequencing can elucidate fungal community diversity in composts, and that this information can have important implications for compost use and human health. PMID:23785368

  13. Glyphosate application increased catabolic activity of gram-negative bacteria but impaired soil fungal community.

    PubMed

    Liu, Yehao; Li, Yongchun; Hua, Xiaomei; Müller, Karin; Wang, Hailong; Yang, Tongyi; Wang, Qiong; Peng, Xin; Wang, Mengcheng; Pang, Yanjun; Qi, Jinliang; Yang, Yonghua

    2018-05-01

    Glyphosate is a non-selective organophosphate herbicide that is widely used in agriculture, but its effects on soil microbial communities are highly variable and often contradictory, especially for high dose applications. We applied glyphosate at two rates: the recommended rate of 50 mg active ingredient kg -1 soil and 10-fold this rate to simulate multiple glyphosate applications during a growing season. After 6 months, we investigated the effects on the composition of soil microbial community, the catabolic activity and the genetic diversity of the bacterial community using phospholipid fatty acids (PLFAs), community level catabolic profiles (CLCPs), and 16S rRNA denaturing gradient gel electrophoresis (DGGE). Microbial biomass carbon (C mic ) was reduced by 45%, and the numbers of the cultivable bacteria and fungi were decreased by 84 and 63%, respectively, under the higher glyphosate application rate. According to the PLFA analysis, the fungal biomass was reduced by 29% under both application rates. However, the CLCPs showed that the catabolic activity of the gram-negative (G-) bacterial community was significantly increased under the high glyphosate application rate. Furthermore, the DGGE analysis indicated that the bacterial community in the soil that had received the high glyphosate application rate was dominated by G- bacteria. Real-time PCR results suggested that copies of the glyphosate tolerance gene (EPSPS) increased significantly in the treatment with the high glyphosate application rate. Our results indicated that fungi were impaired through glyphosate while G- bacteria played an important role in the tolerance of microbiota to glyphosate applications.

  14. [Changes of diversity and composition of fungal communities in rhizosphere of Panax ginseng].

    PubMed

    Dong, Lin-Lin; Niu, Wei-Hao; Wang, Rui; Xu, Jiang; Zhang, Lian-Juan; Zhang, Jun; Chen, Shi-Lin

    2017-02-01

    Continuous cropping obstacles resulted in the yield losses of Panax ginseng, and affected the development of ginseng industry. Soil fungal communities participated in the key ecological process, and their changes of diversity and composition were related to the continuous cropping obstacles. We analyzed the changes of fungal diversity and composition in the rhizosphere of ginseng using the high-throughput sequencing method, stated the effects of ginseng cultivation on the micro-ecology, and provided effective strategies for overcoming continuous cropping obstacles. Compared to those of the forest soils, the fungal diversity of ginseng rhizosphere soils was increased, and the increasing trends were declined with an increasing years of ginseng cultivation; the relative abundance of Sordariomycetes, Alatospora, Eurotiomycetes, Leotiomycetes, Saccharomycetes, Mucorales and Pezizomycetes were increased in the rhizosphere of ginseng. Pearson's correlation index indicated that soil chemical perporties affected the relative abundance of fungal communities. pH was significantly related to the relative abundance of Dothideomycetes and Alatospora; the content of available potassium was markedly associated with the relative abundance of Dothideomycetes, Alatospora and Mucorales; the content of total nitrogen was significant correlation with the relative abundance of Sordariomycetes and Mucorales. These results indicated that fertilization was one of pivotal factors affecting the rhizosphere micro-ecology of ginseng, and optimization of fertilization system was an effective method to overcome continuous cropping obstacles. Copyright© by the Chinese Pharmaceutical Association.

  15. Temporal changes in fungal communities from buckwheat seeds and their effects on seed germination and seedling secondary metabolism.

    PubMed

    Kovačec, Eva; Likar, Matevž; Regvar, Marjana

    2016-05-01

    Seed-associated fungal communities affect multiple parameters of seed quality at all stages of production, from seed development to post-harvest storage and germination. We therefore investigated the diversity and dynamics of fungal communities in the seeds of common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (F. tataricum) from harvest to 1 y of storage. Fungal populations in seeds were relatively stable, comprised mainly of field fungi. Incidence of fungi was most likely determined by fungal interspecies direct interactions, as well as by their synthesis of volatile organic compounds. Most prominent antagonistic interactions were seen for two plant pathogens, Alternaria alternata on Botrytis cinerea. Detrimental effects of the fungi on seed germination and seedling development were related to fungal extracellular enzyme activity, and in particular to amylase, cellulase and, polyphenol oxidase. Polyphenol and tannin concentrations in buckwheat seedlings were related to fungal growth rate and intensity of fungal cellulase activity, respectively, which suggests that physical penetration of the fungi through the host tissues is probably the stimulus for the activation of plant defence reactions in these seedlings. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. Ectomycorrhizal fungal communities on seedlings and conspecific trees of Pinus mugo grown on the coastal dunes of the Curonian Spit in Lithuania.

    PubMed

    Aučina, Algis; Rudawska, Maria; Leski, Tomasz; Ryliškis, Darius; Pietras, Marcin; Riepšas, Edvardas

    2011-04-01

    Ectomycorrhizal (ECM) communities of mature trees and regenerating seedlings of a non-native tree species Pinus mugo grown in a harsh environment of the coastal region of the Curonian Spit National Park in Lithuania were assessed. We established three study sites (S1, S2, and S3) that were separated from each other by 15 km. The ECM species richness was rather low in particular for mature, 100-year-old trees: 12 ectomycorrhizal taxa were identified by molecular analysis from 11 distinguished morphotypes. All 12 taxa were present on seedlings and on mature trees, with between 8-11 and 9-11 taxa present on seedlings and mature trees, respectively. Cenococcum geophilum dominated all ECM communities, but the relative abundance of C. geophilum mycorrhizas was nearly two times higher on seedlings than on mature trees. Mycorrhizal associations formed by Wilcoxina sp., Lactarius rufus, and Russula paludosa were also abundant. Several fungal taxa were only occasionally detected, including Cortinarius sp., Cortinarius obtusus, Cortinarius croceus, and Meliniomyces sp. Shannon's diversity indices for the ECM assemblages of P. mugo ranged from 0.98 to 1.09 for seedling and from 1.05 to 1.31 for mature trees. According to analysis of similarity, the mycorrhizal communities were similar between the sites (R = 0.085; P = 0.06) and only slightly separated between seedlings and mature trees (R = 0.24; P < 0.0001). An incidental fruiting body survey that was conducted weakly reflected the below-ground assessment of the ECM fungal community and once again showed that ECM and fruiting body studies commonly supply different partial accounts of the true ECM fungal diversity. Our results show that P. mugo has moved into quite distinct habitats and is able to adapt a suite of ECM symbionts that sufficiently support growth and development of this tree and allow for natural seedling regeneration.

  17. Arthropods associated with fungal galls: do large galls support more abundant and diverse inhabitants?

    NASA Astrophysics Data System (ADS)

    Funamoto, Daichi; Sugiura, Shinji

    2017-02-01

    Fungus-induced galls can attract spore-feeding arthropods as well as gall-feeding ones, resulting in diverse communities. Do large fungal galls support more abundant and diverse arthropod communities than small fungal galls? To address this question, we investigated the structure of the arthropod community associated with bud galls induced by the fungus Melanopsichium onumae on the tree species Cinnamomum yabunikkei (Lauraceae) in central Japan. Thirteen species of arthropods were associated with M. onumae galls. Dominant arthropod species were represented by the larvae of a salpingid beetle (a spore feeder), a nitidulid beetle (a spore feeder), a cosmopterigid moth (a spore feeder), an unidentified moth (a gall tissue feeder), and a drosophilid species (a gall tissue feeder). Arthropod abundance and species richness were positively correlated with gall diameter. The majority of the most abundant species were more frequently found in large galls than in small ones, indicating that large fungal galls, which have more food and/or space for arthropods, could support a more abundant and diverse arthropod community.

  18. Diversity and Distribution of Aquatic Fungal Communities in the Ny-Ålesund Region, Svalbard (High Arctic): Aquatic Fungi in the Arctic.

    PubMed

    Zhang, Tao; Wang, Neng-Fei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-04-01

    We assessed the diversity and distribution of fungi in 13 water samples collected from four aquatic environments (stream, pond, melting ice water, and estuary) in the Ny-Ålesund Region, Svalbard (High Arctic) using 454 pyrosequencing with fungi-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Aquatic fungal communities in this region showed high diversity, with a total of 43,061 reads belonging to 641 operational taxonomic units (OTUs) being found. Of these OTUs, 200 belonged to Ascomycota, 196 to Chytridiomycota, 120 to Basidiomycota, 13 to Glomeromycota, and 10 to early diverging fungal lineages (traditional Zygomycota), whereas 102 belonged to unknown fungi. The major orders were Helotiales, Eurotiales, and Pleosporales in Ascomycota; Chytridiales and Rhizophydiales in Chytridiomycota; and Leucosporidiales and Sporidiobolales in Basidiomycota. The common fungal genera Penicillium, Rhodotorula, Epicoccum, Glaciozyma, Holtermanniella, Betamyces, and Phoma were identified. Interestingly, the four aquatic environments in this region harbored different aquatic fungal communities. Salinity, conductivity, and temperature were important factors in determining the aquatic fungal diversity and community composition. The results suggest the presence of diverse fungal communities and a considerable number of potentially novel fungal species in Arctic aquatic environments, which can provide reliable data for studying the ecological and evolutionary responses of fungi to climate change in the Arctic ecosystem.

  19. The Patterns and Drivers of Bacterial and Fungal β-Diversity in a Typical Dryland Ecosystem of Northwest China.

    PubMed

    Wang, Jianming; Zhang, Tianhan; Li, Liping; Li, Jingwen; Feng, Yiming; Lu, Qi

    2017-01-01

    Dryland ecosystems cover more than 30% of the terrestrial area of China, while processes that shape the biogeographic patterns of bacterial and fungal β-diversity have rarely been evaluated synchronously. To compare the biogeographic patterns and its drivers of bacterial and fungal β-diversity, we collected 62 soil samples from a typical dryland region of northwest China. We assessed bacterial and fungal communities by sequencing bacterial 16S rRNA gene and fungal ITS data. Meanwhile, the β-diversity was decomposed into two components: species replacement (species turnover) and nestedness to further explore the bacterial and fungal β-diversity patterns and its causes. The results show that both bacterial and fungal β-diversity were derived almost entirely from species turnover rather than from species nestedness. Distance-decay relationships confirmed that the geographic patterns of bacterial and fungal β-diversity were significantly different. Environmental factors had the dominant influence on both the bacterial and fungal β-diversity and species turnover, however, the role of geographic distance varied across bacterial and fungal communities. Furthermore, both bacterial and fungal nestedness did not significantly respond to the environmental and geographic distance. Our findings suggest that the different response of bacterial and fungal species turnover to dispersal limitation and other, unknown processes may result in different biogeographic patterns of bacterial and fungal β-diversity in the drylands of northwest China. Together, we highlight that the drivers of β-diversity patterns vary between bacterial and fungal communities, and microbial β-diversity are driven by multiple factors in the drylands of northwest China.

  20. Biofilm and Planktonic Bacterial and Fungal Communities Transforming High-Molecular-Weight Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Folwell, Benjamin D.

    2016-01-01

    High-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs) are natural components of fossil fuels that are carcinogenic and persistent in the environment, particularly in oil sands process-affected water (OSPW). Their hydrophobicity and tendency to adsorb to organic matter result in low bioavailability and high recalcitrance to degradation. Despite the importance of microbes for environmental remediation, little is known about those involved in HMW-PAH transformations. Here, we investigated the transformation of HMW-PAHs using samples of OSPW and compared the bacterial and fungal community compositions attached to hydrophobic filters and in suspension. It was anticipated that the hydrophobic filters with sorbed HMW-PAHs would select for microbes that specialize in adhesion. Over 33 days, more pyrene was removed (75% ± 11.7%) than the five-ring PAHs benzo[a]pyrene (44% ± 13.6%) and benzo[b]fluoranthene (41% ± 12.6%). For both bacteria and fungi, the addition of PAHs led to a shift in community composition, but thereafter the major factor determining the fungal community composition was whether it was in the planktonic phase or attached to filters. In contrast, the major determinant of the bacterial community composition was the nature of the PAH serving as the carbon source. The main bacteria enriched by HMW-PAHs were Pseudomonas, Bacillus, and Microbacterium species. This report demonstrates that OSPW harbors microbial communities with the capacity to transform HMW-PAHs. Furthermore, the provision of suitable surfaces that encourage PAH sorption and microbial adhesion select for different fungal and bacterial species with the potential for HMW-PAH degradation. PMID:26850299

  1. Moisture parameters and fungal communities associated with gypsum drywall in buildings.

    PubMed

    Dedesko, Sandra; Siegel, Jeffrey A

    2015-12-08

    Uncontrolled excess moisture in buildings is a common problem that can lead to changes in fungal communities. In buildings, moisture parameters can be classified by location and include assessments of moisture in the air, at a surface, or within a material. These parameters are not equivalent in dynamic indoor environments, which makes moisture-induced fungal growth in buildings a complex occurrence. In order to determine the circumstances that lead to such growth, it is essential to have a thorough understanding of in situ moisture measurement, the influence of building factors on moisture parameters, and the levels of these moisture parameters that lead to indoor fungal growth. Currently, there are disagreements in the literature on this topic. A literature review was conducted specifically on moisture-induced fungal growth on gypsum drywall. This review revealed that there is no consistent measurement approach used to characterize moisture in laboratory and field studies, with relative humidity measurements being most common. Additionally, many studies identify a critical moisture value, below which fungal growth will not occur. The values defined by relative humidity encompassed the largest range, while those defined by moisture content exhibited the highest variation. Critical values defined by equilibrium relative humidity were most consistent, and this is likely due to equilibrium relative humidity being the most relevant moisture parameter to microbial growth, since it is a reasonable measure of moisture available at surfaces, where fungi often proliferate. Several sources concur that surface moisture, particularly liquid water, is the prominent factor influencing microbial changes and that moisture in the air and within a material are of lesser importance. However, even if surface moisture is assessed, a single critical moisture level to prevent fungal growth cannot be defined, due to a number of factors, including variations in fungal genera and

  2. Composition of fungal communities in soil and endophytic in raspberry production systems

    USDA-ARS?s Scientific Manuscript database

    Fungi play important roles as decomposers, plant symbionts and pathogens in soil. While endophytes are microorganisms that dwell within plant tissues and have a symbiotic association with the host. The structures of fungal communities in the soil and in endophytic association are dependent up comple...

  3. Poorly known microbial taxa dominate the microbiome of permafrost thaw ponds.

    PubMed

    Wurzbacher, Christian; Nilsson, R Henrik; Rautio, Milla; Peura, Sari

    2017-08-01

    In the transition zone of the shifting permafrost border, thaw ponds emerge as hotspots of microbial activity, processing the ancient carbon freed from the permafrost. We analyzed the microbial succession across a gradient of recently emerged to older ponds using three molecular markers: one universal, one bacterial and one fungal. Age was a major modulator of the microbial community of the thaw ponds. Surprisingly, typical freshwater taxa comprised only a small fraction of the community. Instead, thaw ponds of all age classes were dominated by enigmatic bacterial and fungal phyla. Our results on permafrost thaw ponds lead to a revised perception of the thaw pond ecosystem and their microbes, with potential implications for carbon and nutrient cycling in this increasingly important class of freshwaters.

  4. Effort versus Reward: Preparing Samples for Fungal Community Characterization in High-Throughput Sequencing Surveys of Soils

    PubMed Central

    Song, Zewei; Schlatter, Dan; Kennedy, Peter; Kinkel, Linda L.; Kistler, H. Corby; Nguyen, Nhu; Bates, Scott T.

    2015-01-01

    Next generation fungal amplicon sequencing is being used with increasing frequency to study fungal diversity in various ecosystems; however, the influence of sample preparation on the characterization of fungal community is poorly understood. We investigated the effects of four procedural modifications to library preparation for high-throughput sequencing (HTS). The following treatments were considered: 1) the amount of soil used in DNA extraction, 2) the inclusion of additional steps (freeze/thaw cycles, sonication, or hot water bath incubation) in the extraction procedure, 3) the amount of DNA template used in PCR, and 4) the effect of sample pooling, either physically or computationally. Soils from two different ecosystems in Minnesota, USA, one prairie and one forest site, were used to assess the generality of our results. The first three treatments did not significantly influence observed fungal OTU richness or community structure at either site. Physical pooling captured more OTU richness compared to individual samples, but total OTU richness at each site was highest when individual samples were computationally combined. We conclude that standard extraction kit protocols are well optimized for fungal HTS surveys, but because sample pooling can significantly influence OTU richness estimates, it is important to carefully consider the study aims when planning sampling procedures. PMID:25974078

  5. Community structure and succession regulation of fungal consortia in the lignocellulose-degrading process on natural biomass.

    PubMed

    Tian, Baoyu; Wang, Chunxiang; Lv, Ruirui; Zhou, Junxiong; Li, Xin; Zheng, Yi; Jin, Xiangyu; Wang, Mengli; Ye, Yongxia; Huang, Xinyi; Liu, Ping

    2014-01-01

    The study aims to investigate fungal community structures and dynamic changes in forest soil lignocellulose-degrading process. rRNA gene clone libraries for the samples collected in different stages of lignocellulose degradation process were constructed and analyzed. A total of 26 representative RFLP types were obtained from original soil clone library, including Mucoromycotina (29.5%), unclassified Zygomycetes (33.5%), Ascomycota (32.4%), and Basidiomycota (4.6%). When soil accumulated with natural lignocellulose, 16 RFLP types were identified from 8-day clone library, including Basidiomycota (62.5%), Ascomycota (36.1%), and Fungi incertae sedis (1.4%). After enrichment for 15 days, identified 11 RFLP types were placed in 3 fungal groups: Basidiomycota (86.9%), Ascomycota (11.5%), and Fungi incertae sedis (1.6%). The results showed richer, more diversity and abundance fungal groups in original forest soil. With the degradation of lignocellulose, fungal groups Mucoromycotina and Ascomycota decreased gradually, and wood-rotting fungi Basidiomycota increased and replaced the opportunist fungi to become predominant group. Most of the fungal clones identified in sample were related to the reported lignocellulose-decomposing strains. Understanding of the microbial community structure and dynamic change during natural lignocellulose-degrading process will provide us with an idea and a basis to construct available commercial lignocellulosic enzymes or microbial complex.

  6. Fungal community composition and function after long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3

    Treesearch

    Ivan P. Edwards; Donald R. Zak

    2011-01-01

    The long-term effects of rising atmospheric carbon dioxide (CO2) and tropospheric O3 concentrations on fungal communities in soil are not well understood. Here, we examine fungal community composition and the activities of cellobiohydrolase and N-acetylglucosaminidase (NAG) after 10 years of exposure to 1...

  7. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils

    PubMed Central

    Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio

    2016-01-01

    ABSTRACT We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. IMPORTANCE Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels

  8. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils.

    PubMed

    Alguacil, Maria Del Mar; Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio

    2016-06-01

    We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels) were the main factors

  9. Effects of artificial defoliation of pines on the structure and physiology of the soil fungal community of a mixed pine-spruce forest

    NASA Technical Reports Server (NTRS)

    Cullings, Ken; Raleigh, Christopher; New, Michael H.; Henson, Joan

    2005-01-01

    Loss of photosynthetic area can affect soil microbial communities by altering the availability of fixed carbon. We used denaturing gradient gel electrophoresis (DGGE) and Biolog filamentous-fungus plates to determine the effects of artificial defoliation of pines in a mixed pine-spruce forest on the composition of the fungal community in a forest soil. As measured by DGGE, two fungal species were affected significantly by the defoliation of pines (P < 0.001); the frequency of members of the ectomycorrhizal fungus genus Cenococcum decreased significantly, while the frequency of organisms of an unidentified soil fungus increased. The decrease in the amount of Cenococcum organisms may have occurred because of the formation of extensive hyphal networks by species of this genus, which require more of the carbon fixed by their host, or because this fungus is dependent upon quantitative differences in spruce root exudates. The defoliation of pines did not affect the overall composition of the soil fungal community or fungal-species richness (number of species per core). Biolog filamentous-fungus plate assays indicated a significant increase (P < 0.001) in the number of carbon substrates utilized by the soil fungi and the rate at which these substrates were used, which could indicate an increase in fungal-species richness. Thus, either small changes in the soil fungal community give rise to significant increases in physiological capabilities or PCR bias limits the reliability of the DGGE results. These data indicate that combined genetic and physiological assessments of the soil fungal community are needed to accurately assess the effect of disturbance on indigenous microbial systems.

  10. Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan.

    PubMed

    Jia, Shuzheng; Nakano, Takashi; Hattori, Masahira; Nara, Kazuhide

    2017-11-01

    Pyroleae species are perennial understory shrubs, many of which are partial mycoheterotrophs. Most fungi colonizing Pyroleae roots are ectomycorrhizal (ECM) and share common mycobionts with their Pyroleae hosts. However, such mycobiont sharing has neither been examined in depth before nor has the interspecific variation in sharing among Pyroleae species. Here, we examined root-associated fungal communities in three co-existing Pyroleae species, including Pyrola alpina, Pyrola incarnata, and Orthilia secunda, with reference to co-existing ECM fungi on the surrounding trees in the same soil blocks in subalpine coniferous forests. We identified 42, 75, and 18 fungal molecular operational taxonomic units in P. alpina, P. incarnata, and O. secunda roots, respectively. Mycobiont sharing with surrounding trees, which was defined as the occurrence of the same mycobiont between Pyroleae and surrounding trees in each soil block, was most frequent among P. incarnata (31 of 44 plants). In P. alpina, sharing was confirmed in 12 of 37 plants, and the fungal community was similar to that of P. incarnata. Mycobiont sharing was least common in O. secunda, found in only 5 of 32 plants. Root-associated fungi of O. secunda were dominated by Wilcoxina species, which were absent from the surrounding ECM roots in the same soil blocks. These results indicate that mycobiont sharing with surrounding trees does not equally occur among Pyroleae plants, some of which may develop independent mycorrhizal associations with ECM fungi, as suggested in O. secunda at our research sites.

  11. MycoCosm, an Integrated Fungal Genomics Resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabalov, Igor; Grigoriev, Igor

    2012-03-16

    MycoCosm is a web-based interactive fungal genomics resource, which was first released in March 2010, in response to an urgent call from the fungal community for integration of all fungal genomes and analytical tools in one place (Pan-fungal data resources meeting, Feb 21-22, 2010, Alexandria, VA). MycoCosm integrates genomics data and analysis tools to navigate through over 100 fungal genomes sequenced at JGI and elsewhere. This resource allows users to explore fungal genomes in the context of both genome-centric analysis and comparative genomics, and promotes user community participation in data submission, annotation and analysis. MycoCosm has over 4500 unique visitors/monthmore » or 35000+ visitors/year as well as hundreds of registered users contributing their data and expertise to this resource. Its scalable architecture allows significant expansion of the data expected from JGI Fungal Genomics Program, its users, and integration with external resources used by fungal community.« less

  12. Comparison of Fungal Community in Black Pepper-Vanilla and Vanilla Monoculture Systems Associated with Vanilla Fusarium Wilt Disease.

    PubMed

    Xiong, Wu; Zhao, Qingyun; Xue, Chao; Xun, Weibing; Zhao, Jun; Wu, Huasong; Li, Rong; Shen, Qirong

    2016-01-01

    Long-term vanilla monocropping often results in the occurrence of vanilla Fusarium wilt disease, seriously affecting its production all over the world. In the present study, vanilla exhibited significantly less Fusarium wilt disease in the soil of a long-term continuously cropped black pepper orchard. The entire fungal communities of bulk and rhizosphere soils between the black pepper-vanilla system (i.e., vanilla cropped in the soil of a continuously cropped black pepper orchard) and vanilla monoculture system were compared through the deep pyrosequencing. The results showed that the black pepper-vanilla system revealed a significantly higher fungal diversity than the vanilla monoculture system in both bulk and rhizosphere soils. The UniFrac-weighted PCoA analysis revealed significant differences in bulk soil fungal community structures between the two cropping systems, and fungal community structures were seriously affected by the vanilla root system. In summary, the black pepper-vanilla system harbored a lower abundance of Fusarium oxysporum in the vanilla rhizosphere soil and increased the putatively plant-beneficial fungal groups such as Trichoderma and Penicillium genus, which could explain the healthy growth of vanilla in the soil of the long-term continuously cropped black pepper field. Thus, cropping vanilla in the soil of continuously cropped black pepper fields for maintaining the vanilla industry is executable and meaningful as an agro-ecological system.

  13. Comparison of Fungal Community in Black Pepper-Vanilla and Vanilla Monoculture Systems Associated with Vanilla Fusarium Wilt Disease

    PubMed Central

    Xiong, Wu; Zhao, Qingyun; Xue, Chao; Xun, Weibing; Zhao, Jun; Wu, Huasong; Li, Rong; Shen, Qirong

    2016-01-01

    Long-term vanilla monocropping often results in the occurrence of vanilla Fusarium wilt disease, seriously affecting its production all over the world. In the present study, vanilla exhibited significantly less Fusarium wilt disease in the soil of a long-term continuously cropped black pepper orchard. The entire fungal communities of bulk and rhizosphere soils between the black pepper-vanilla system (i.e., vanilla cropped in the soil of a continuously cropped black pepper orchard) and vanilla monoculture system were compared through the deep pyrosequencing. The results showed that the black pepper-vanilla system revealed a significantly higher fungal diversity than the vanilla monoculture system in both bulk and rhizosphere soils. The UniFrac-weighted PCoA analysis revealed significant differences in bulk soil fungal community structures between the two cropping systems, and fungal community structures were seriously affected by the vanilla root system. In summary, the black pepper-vanilla system harbored a lower abundance of Fusarium oxysporum in the vanilla rhizosphere soil and increased the putatively plant-beneficial fungal groups such as Trichoderma and Penicillium genus, which could explain the healthy growth of vanilla in the soil of the long-term continuously cropped black pepper field. Thus, cropping vanilla in the soil of continuously cropped black pepper fields for maintaining the vanilla industry is executable and meaningful as an agro-ecological system. PMID:26903995

  14. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests

    DOE PAGES

    Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Petersen, Sheryl M.; ...

    2016-02-04

    Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, andmore » affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Furthermore, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.« less

  15. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests.

    PubMed

    Carrino-Kyker, Sarah R; Kluber, Laurel A; Petersen, Sheryl M; Coyle, Kaitlin P; Hewins, Charlotte R; DeForest, Jared L; Smemo, Kurt A; Burke, David J

    2016-03-01

    Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, and affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Thus, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Petersen, Sheryl M.

    Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, andmore » affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Furthermore, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.« less

  17. Effect of environmental parameters on biodiversity of the fungal component in lithic Antarctic communities.

    PubMed

    Selbmann, Laura; Onofri, Silvano; Coleine, Claudia; Buzzini, Pietro; Canini, Fabiana; Zucconi, Laura

    2017-11-01

    A wide sampling of rocks, colonized by microbial epi-endolithic communities, was performed along an altitudinal gradient from sea level to 3600 m asl and sea distance from the coast to 100 km inland along the Victoria Land Coast, Antarctica. Seventy-two rock samples of different typology, representative of the entire survey, were selected and studied using denaturing gradient gel electrophoresis to compare variation in fungal diversity according to environmental conditions along this altitudinal and sea distance transect. Lichenized fungi were largely predominant in all the samples studied and the biodiversity was heavily influenced even by minimal local variations. The n-MDS analysis showed that altitude and sea distance affect fungal biodiversity, while sandstone allows the communities to maintain high biodiversity indices. The Pareto-Lorenz curves indicate that all the communities analyzed are highly adapted to extreme conditions but scarcely resilient, so any external perturbation may have irreversible effects on these fragile ecosystems.

  18. Azoxystrobin and soil interactions: degradation and impact on soil bacterial and fungal communities.

    PubMed

    Adetutu, E M; Ball, A S; Osborn, A M

    2008-12-01

    To provide an independent assessment of azoxystrobin effects on nontarget soil bacteria and fungi and generate some baseline information on azoxystrobin's persistence in soil. Plate based assay showed that azoxystrobin exhibited differential toxicity upon cultured fungi at different application rates. While (14)C labelled isotopes experiments showed that less than 1% of azoxystrobin was mineralized, degradation studies revealed over 60% azoxystrobin breakdown over 21 days. PCR DGGE analysis of 16S and 18S rRNA genes from different soil microcosms showed that azoxystrobin had some effects on fungal community after 21 days (up to 84 days) of incubation in either light or dark soil microcosms. Light incubations increased fungal diversity while dark incubations reduced fungal diversity. Bacterial diversity was unaffected. Significant biotic breakdown of parent azoxystrobin occurred within 21 days even in the absence of light. Azoxystrobin under certain conditions can reduce fungal soil diversity. One of the few independent assessments of azoxystrobin (a widely used strobilurins fungicide) effects on soil fungi when used at the recommended rate. Azoxystrobin and metabolites may persist after 21 days and affect soil fungi.

  19. A comparison of fungal endophytic community diversity in tree leaves of rural and urban temperate forests of Kanto district, eastern Japan.

    PubMed

    Matsumura, Emi; Fukuda, Kenji

    2013-03-01

    To clarify the effects of forest fragmentation and a change in tree species composition following urbanization on endophytic fungal communities, we isolated fungal endophytes from the foliage of nine tree species in suburban (Kashiwa City, Chiba) and rural (Mt. Wagakuni, Ibaraki; Mt. Takao, Tokyo) forests and compared the fungal communities between sites and host tree species. Host specificity was evaluated using the index of host specificity (Si), and the number of isolated species, total isolation frequency, and the diversity index were calculated. From just one to several host-specific species were recognized in all host tree species at all sites. The total isolation frequency of all fungal species on Quercus myrsinaefolia, Quercus serrata, and Chamaecyparis obtusa and the total isolation frequency of host-specific species on Q. myrsinaefolia, Q. serrata, and Eurya japonica were significantly lower in Kashiwa than in the rural forests. The similarity indices (nonmetric multidimensional scaling (NMS) and CMH) of endophytic communities among different tree species were higher in Kashiwa, as many tree species shared the same fungal species in the suburban forest. Endophytic fungi with a broad host range were grouped into four clusters suggesting their preference for conifer/broadleaves and evergreen/deciduous trees. Forest fragmentation and isolation by urbanization have been shown to cause the decline of host-specific fungal species and a decrease in β diversity of endophytic communities, i.e., endophytic communities associated with tree leaves in suburban forests were found to be depauperate. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  20. Bacterial and fungal core microbiomes associated with small grain silages during ensiling and aerobic spoilage.

    PubMed

    Duniere, Lysiane; Xu, Shanwei; Long, Jin; Elekwachi, Chijioke; Wang, Yuxi; Turkington, Kelly; Forster, Robert; McAllister, Tim A

    2017-03-03

    Describing the microbial populations present in small grain silage and understanding their changes during ensiling is of interest for improving the nutrient value of these important forage crops. Barley, oat and triticale forages as well as an intercropped mixture of the 3 crops were harvested and ensiled in mini silos for a period of 90 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics and nutritive value were assessed in terminal silages and bacterial and fungal communities during ensiling and aerobic exposure were described using 16S and 18S rDNA sequencing, respectively. All small grain silages exhibited chemical traits that were associated with well ensiled forages, such as low pH value (4.09 ± 0.28) and high levels of lactic acid (59.8 ± 14.59 mg/g DM). The number of microbial core genome operational taxonomic units (OTUs) decreased with time of ensiling. Taxonomic bacterial community profiles were dominated by the Lactobacillales after fermentation, with a notable increase in Bacillales as a result of aerobic exposure. Diversity of the fungal core microbiome was shown to also be reduced during ensiling. Operational taxonomic units assigned to filamentous fungi were found in the core microbiome at ensiling and after aerobic exposure, whereas the Saccharomycetales were the dominate yeast population after 90 days of ensiling and aerobic exposure. Bacterial and fungal orders typically associated with silage spoilage were identified in the core microbiome after aerobic exposure. Next Generation Sequencing was successfully used to describe bacterial communities and the first record of fungal communities throughout the process of ensiling and utilization. Adequately describing the microbial ecology of silages could lead to improved ensiling practices and the selection of silage inoculants that act synergistically with the natural forage microbiome.

  1. Relationship between the Decomposition Process of Coarse Woody Debris and Fungal Community Structure as Detected by High-Throughput Sequencing in a Deciduous Broad-Leaved Forest in Japan

    PubMed Central

    Yamashita, Satoshi; Masuya, Hayato; Abe, Shin; Masaki, Takashi; Okabe, Kimiko

    2015-01-01

    We examined the relationship between the community structure of wood-decaying fungi, detected by high-throughput sequencing, and the decomposition rate using 13 years of data from a forest dynamics plot. For molecular analysis and wood density measurements, drill dust samples were collected from logs and stumps of Fagus and Quercus in the plot. Regression using a negative exponential model between wood density and time since death revealed that the decomposition rate of Fagus was greater than that of Quercus. The residual between the expected value obtained from the regression curve and the observed wood density was used as a decomposition rate index. Principal component analysis showed that the fungal community compositions of both Fagus and Quercus changed with time since death. Principal component analysis axis scores were used as an index of fungal community composition. A structural equation model for each wood genus was used to assess the effect of fungal community structure traits on the decomposition rate and how the fungal community structure was determined by the traits of coarse woody debris. Results of the structural equation model suggested that the decomposition rate of Fagus was affected by two fungal community composition components: one that was affected by time since death and another that was not affected by the traits of coarse woody debris. In contrast, the decomposition rate of Quercus was not affected by coarse woody debris traits or fungal community structure. These findings suggest that, in the case of Fagus coarse woody debris, the fungal community structure is related to the decomposition process of its host substrate. Because fungal community structure is affected partly by the decay stage and wood density of its substrate, these factors influence each other. Further research on interactive effects is needed to improve our understanding of the relationship between fungal community structure and the woody debris decomposition process

  2. Coupled Metagenomic and Chemical Analyses of Degrading Fungal Necromass and Implications for Microbial Contributions to Stable Soil OC

    NASA Astrophysics Data System (ADS)

    Schreiner, K. M.; Morgan, B. S. T.; Schultz, J.; Blair, N. E.; Egerton-Warburton, L. M.

    2014-12-01

    Fungi comprise a significant portion of total soil biomass, the turnover of which must represent a dominant flux within the soil carbon cycle. Fungal OC can turn over on time scales of days to months, but this process is poorly understood. Here, we examined temporal changes in the chemical and microbial community composition of fungal necromass during a 2 month decomposition experiment in which Fusarium avenaceum (a common saprophyte) was exposed to a natural soil microbial community. Over the course of the experiment, residual fungal necromass was harvested and analyzed using FTIR and thermochemolysis-GCMS to examine chemical changes in the tissue. Additionally, genomic DNA was extracted from tissues, amplified with barcoded ITS primers, and sequenced using the high-throughput Illumina platform to examine changes in microbial community composition. Up to 80% of the fungal necromass turned over in the first week. This rapid degradation phase corresponded to colonization of the necromass by known chitinolytic soil fungi including Mortierella species. Zygomycetes and Ascomycetes were among the dominant fungal species involved in degradation with very small contributions from Basidiomycetes. At the end of the 2 month degradation, only 15% of the original necromass remained. The residual material was rich in amide and C-O moieties which is consistent with previous work predicting that peptidoglycans are the main residual product from microbial tissue degradation. Straight-chain fatty acids exhibit varying degradation profiles, with some fatty acids (e.g. C16 and C18:1) degrading more rapidly than bulk tissue, others maintaining steady concentrations relative to bulk OC (e.g. C18), and some increasing in concentration throughout the degradation (e.g. C24). These results indicate that the turnover of fungal necromass has the potential to significantly influence a variety of soil OC properties, including C/N ratios, lipid biomarker distributions, and OC turnover times.

  3. Namib Desert edaphic bacterial, fungal and archaeal communities assemble through deterministic processes but are influenced by different abiotic parameters.

    PubMed

    Johnson, Riegardt M; Ramond, Jean-Baptiste; Gunnigle, Eoin; Seely, Mary; Cowan, Don A

    2017-03-01

    The central Namib Desert is hyperarid, where limited plant growth ensures that biogeochemical processes are largely driven by microbial populations. Recent research has shown that niche partitioning is critically involved in the assembly of Namib Desert edaphic communities. However, these studies have mainly focussed on the Domain Bacteria. Using microbial community fingerprinting, we compared the assembly of the bacterial, fungal and archaeal populations of microbial communities across nine soil niches from four Namib Desert soil habitats (riverbed, dune, gravel plain and salt pan). Permutational multivariate analysis of variance indicated that the nine soil niches presented significantly different physicochemistries (R 2  = 0.8306, P ≤ 0.0001) and that bacterial, fungal and archaeal populations were soil niche specific (R 2  ≥ 0.64, P ≤ 0.001). However, the abiotic drivers of community structure were Domain-specific (P < 0.05), with P, clay and sand fraction, and NH 4 influencing bacterial, fungal and archaeal communities, respectively. Soil physicochemistry and soil niche explained over 50% of the variation in community structure, and communities displayed strong non-random patterns of co-occurrence. Taken together, these results demonstrate that in central Namib Desert soil microbial communities, assembly is principally driven by deterministic processes.

  4. Effects of Water Stress on the Endophytic Fungal Communities of Pinus koraiensis Needles Infected by Cenangium ferruginosum

    PubMed Central

    Lee, Sun Keun; Lee, Seung Kyu; Bae, Hanhong; Seo, Sang-Tae

    2014-01-01

    To examine the effects of water stress and Cenangium ferruginosum (CF) on the fungal endophytic community of needles of Pinus koraiensis (PK), fungal endophytes isolated from the needles of 5-year-old PK seedlings were compared before and after exposure to water stress conditions and artificial inoculation with CF ascospores. Artificial CF inoculation was successfully confirmed using PCR with CF-specific primers (CfF and CfR). For comparison of the degree of water deficit in water-stressed and control groups of PK seedlings infected with CF, the water saturation deficit and water potential were measured. Lower water potential estimates were found in the water-stressed seedlings than in the control group. The fungal endophytes isolated from the second-year needles of non-water-stressed seedlings before and after CF inoculation revealed that primary saprobes were approximately 30% and 71.7%, respectively, and the remaining endophytes were rot fungi or pathogens. Sixty days after CF inoculation, diverse fungal endophytes in the first-year needles were isolated from the water-stressed seedlings. However, some fungal endophytes isolated from the non-water-stressed seedlings were also identified. Fungal endophytes in the second-year needles of the water-stressed and non-water-stressed seedlings were approximately 8% and 71.7% of saprobes, respectively, and the remaining endophytes were rot fungi or pathogens. On the basis of the results, we conclude that water deficit and CF can have an effect on fungal endophytic communities in the needles of PK seedlings. PMID:25606004

  5. Prospects and challenges for fungal metatranscriptomes of complex communities

    DOE PAGES

    Kuske, Cheryl Rae; Hesse, Cedar Nelson; Challacombe, Jean Faust; ...

    2015-01-22

    We report that the ability to extract and purify messenger RNA directly from plants, decomposing organic matter and soil, followed by high-throughput sequencing of the pool of expressed genes, has spawned the emerging research area of metatranscriptomics. Each metatranscriptome provides a snapshot of the composition and relative abundance of actively transcribed genes, and thus provides an assessment of the interactions between soil microorganisms and plants, and collective microbial metabolic processes in many environments. We highlight current approaches for analysis of fungal transcriptome and metatranscriptome datasets across a gradient of community complexity, and note benefits and pitfalls associated with those approaches.more » Finally, we discuss knowledge gaps that limit our current ability to interpret metatranscriptome datasets and suggest future research directions that will require concerted efforts within the scientific community.« less

  6. Bacterial and fungal community composition and functioning of two different peatlands in China

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Tian, Jianqing; Bu, Zhaojun; Chen, Huai; Zhu, Qiuan; Peng, Changhui

    2017-04-01

    Peatlands are important carbon sinks which store one third of the global soil carbon ( 550 Gt) with only 3% of the land surface. The slow rate of organic matter decomposition associated with low microbial diversity and limited functioning under cold, acidic and anoxic condition is of critical importance in controlling biogeochemical cycles in northern peatlands. To evaluate the variation in microbial community composition and functionality can advance our understanding of the underlying mechanisms of the biogeochemical processes and interactions. However, there is still a lack of information for Chinese peatlands. Here, we sampled peat profiles at three different depths (10-20, 30-40 and 60-70 cm) from two typical peatlands in China: a rich fen in Qinghai-Tibet Plateau (QTP) and a poor fen in the Changbai Mountains (CBM). We investigated the bacterial (16S rRNA) and fungal (ITS2) community composition and diversity with high-throughput sequencing and predicted the metagenome functioning with PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States). The results showed that Proteobacteria, Acidobacteria and Actinobacteria were the most abundant bacterial phyla in the upper peat layer (10-20 cm) for both sites, with increasing abundance of Chloroflexi and Bacteroidetes down to the saturated zone (60-70 cm in CMB; 30-40 and 60-70 cm in QTP). For fungi, Ascomycota, Ciliophora and Basidiomycota were the most abundant phyla in both sites, with decreasing Ciliophora abundance down to the saturated zone. The α-diversity of both bacterial and fungal showed a decreasing trend with depth in QTP, with the largest diversity occurring at the depth of 30-40 cm in CMB. Regardless of sampling sites, the bacterial communities at the depth of 60-70 cm were more similar than the other depths. The fungal community was clustered into two groups, corresponding to two sampling sites. The variation in fungal community with depth was larger in QTP than in

  7. Biofouling of reverse-osmosis membranes during tertiary wastewater desalination: microbial community composition.

    PubMed

    Al Ashhab, Ashraf; Herzberg, Moshe; Gillor, Osnat

    2014-03-01

    Reverse-osmosis (RO) desalination is frequently used for the production of high-quality water from tertiary treated wastewater (TTWW). However, the RO desalination process is often hampered by biofouling, including membrane conditioning, microbial adhesion, and biofilm growth. The vast majority of biofilm exploration concentrated on the role of bacteria in biofouling neglecting additional microbial contributors, i.e., fungi and archaea. To better understand the RO biofouling process, bacterial, archaeal and fungal diversity was characterized in a laboratory-scale RO desalination plant exploring the TTWW (RO feed), the RO membrane and the RO feed tube biofilms. We sequenced 77,400 fragments of the ribosome small subunit-encoding gene (16S and 18S rRNA) to identify the microbial community members in these matrices. Our results suggest that the bacterial, archaeal but not fungal community significantly differ from the RO membrane biofouling layer to the feedwater and tube biofilm (P < 0.01). Moreover, the RO membrane supported a more diverse community compared to the communities monitored in the feedwater and the biofilm attached to the RO feedwater tube. The tube biofilm was dominated by Actinobacteria (91.2 ± 4.6%), while the Proteobacteria phylum dominated the feedwater and RO membrane (at relative abundance of 92.3 ± 4.4% and 71.5 ± 8.3%, respectively), albeit comprising different members. The archaea communities were dominated by Crenarchaeota (53.0 ± 6.9%, 32.5 ± 7.2% and 69%, respectively) and Euryarchaeota (43.3 ± 6.3%, 23.2 ± 4.8% and 24%, respectively) in all three matrices, though the communities' composition differed. But the fungal communities composition was similar in all matrices, dominated by Ascomycota (97.6 ± 2.7%). Our results suggest that the RO membrane is a selective surface, supporting unique bacterial, and to a lesser extent archaeal communities, yet it does not select for a fungal community. Copyright © 2013

  8. Fungal Community Associated with Dactylopius (Hemiptera: Coccoidea: Dactylopiidae) and Its Role in Uric Acid Metabolism

    PubMed Central

    Vera-Ponce de León, Arturo; Sanchez-Flores, Alejandro; Rosenblueth, Mónica; Martínez-Romero, Esperanza

    2016-01-01

    We studied fungal species associated with the carmine cochineal Dactylopius coccus and other non-domesticated Dactylopius species using culture-dependent and -independent methods. Thirty seven fungi were isolated in various culture media from insect males and females from different developmental stages and Dactylopius species. 26S rRNA genes and ITS sequences, from cultured fungal isolates revealed different species of Cryptococcus, Rhodotorula, Debaryomyces, Trametes, and Penicillium, which are genera newly associated with Dactylopius. Uric acid (UA) and uricase activity were detected in tissues extracts from different insect developmental stages. However, accumulation of high UA levels and low uricase activities were found only after antifungal treatments, suggesting an important role of fungal species in its metabolism. Additionally, uricolytic fungal isolates were identified and characterized that presumably are involved in nitrogen recycling metabolism. After metagenomic analyses from D. coccus gut and hemolymph DNA and from two published data sets, we confirmed the presence of fungal genes involved in UA catabolism, suggesting that fungi help in the nitrogen recycling process in Dactylopius by uricolysis. All these results show the importance of fungal communities in scale insects such as Dactylopius. PMID:27446001

  9. [Airborne fungal community composition in indoor environments in Beijing].

    PubMed

    Fang, Zhi-guo; Ouyang, Zhi-yun; Liu, Peng; Sun, Li; Wang, Xiao-yong

    2013-05-01

    Indoor environmental quality has significant effects on human health. It is reported that adults in China spent about 80%-90% of their time in indoor environments, and a number of physically handicapped people such as the elderly and infants stayed in the room even up to 95% of their total time. Moreover, air conditioner in indoor environments becomes more and more important in modern life, and a closed circulatory system can be formed among human body, room and air conditioner in indoor environments with an air conditioner, which can make the microbes such as bacteria, viruses and mold indoors propagate rapidly or abundantly. Therefore, studies on the microbial pollution in the air at places such as mall, classroom, office, and family home have been the research hotspots recently. In the present study, the community composition and concentration variation pattern of airborne fungi were investigated from Nov 2009 to Oct 2010 in 31 family homes with children in Beijing. Results showed that 24 generas of airborne fungi in family homes were identified from 225 isolates. The most common fungi were Penicillium, Cladosporium, Aspergillus, Alternaria and Phoma. The frequency of Penicillium, Cladosporium, Aspergillus, Alternaria and Monilia was much higher than those of other fungal genera in family home, and the frequency of Penicillium was more than 90%. As for the concentration percentage, airborne fungi with most high concentrations were Penicillium, Cladosporium, Aspergillus, No-sporing, and Alternaria, and totally accounted for more than 65.0%. Penicillium contributed to 32.2% of the total airborne fungi in family homes. In the 31 family homes selected, the fungal concentration in the air ranged from 62-3 498 CFU x m(-3), and the mean concentration was 837 CFU x m(-3). Seasonal variation pattern of total fungi, and Cladosporium, Aspergillus, Alternaria concentration was consistent, and the highest fungal concentration was observed in summer, followed by spring and

  10. Characterization of soil bacterial, archaeal and fungal communities inhabiting archaeological human-impacted layers at Monte Iato settlement (Sicily, Italy).

    PubMed

    Siles, José A; Öhlinger, Birgit; Cajthaml, Tomas; Kistler, Erich; Margesin, Rosa

    2018-01-30

    Microbial communities in human-impacted soils of ancient settlements have been proposed to be used as ecofacts (bioindicators) of different ancient anthropogenic activities. In this study, bacterial, archaeal and fungal communities inhabiting soil of three archaic layers, excavated at the archaeological site on Monte Iato (Sicily, Italy) and believed to have been created in a chronological order in archaic times in the context of periodic cultic feasts, were investigated in terms of (i) abundance (phospholipid fatty acid (PLFA) analysis and quantitative PCR)), (ii) carbon(C)-source consumption patterns (Biolog-Ecoplates) and (iii) diversity and community composition (Illumina amplicon sequencing). PLFA analyses demonstrated the existence of living bacteria and fungi in the soil samples of all three layers. The upper layer showed increased levels of organic C, which were not concomitant with an increment in the microbial abundance. In taxonomic terms, the results indicated that bacterial, archaeal and fungal communities were highly diverse, although differences in richness or diversity among the three layers were not detected for any of the communities. However, significantly different microbial C-source utilization patterns and structures of bacterial, archaeal and fungal communities in the three layers confirmed that changing features of soil microbial communities reflect different past human activities.

  11. How Does Salinity Shape Bacterial and Fungal Microbiomes of Alnus glutinosa Roots?

    PubMed Central

    Thiem, Dominika; Gołębiewski, Marcin; Hulisz, Piotr; Piernik, Agnieszka; Hrynkiewicz, Katarzyna

    2018-01-01

    Black alder (Alnus glutinosa Gaertn.) belongs to dual mycorrhizal trees, forming ectomycorrhizal (EM) and arbuscular (AM) root structures, as well as represents actinorrhizal plants that associate with nitrogen-fixing actinomycete Frankia sp. We hypothesized that the unique ternary structure of symbionts can influence community structure of other plant-associated microorganisms (bacterial and fungal endophytes), particularly under seasonally changing salinity in A. glutinosa roots. In our study we analyzed black alder root bacterial and fungal microbiome present at two forest test sites (saline and non-saline) in two different seasons (spring and fall). The dominant type of root microsymbionts of alder were ectomycorrhizal fungi, whose distribution depended on site (salinity): Tomentella, Lactarius, and Phialocephala were more abundant at the saline site. Mortierella and Naucoria (representatives of saprotrophs or endophytes) displayed the opposite tendency. Arbuscular mycorrhizal fungi belonged to Glomeromycota (orders Paraglomales and Glomales), however, they represented less than 1% of all identified fungi. Bacterial community structure depended on test site but not on season. Sequences affiliated with Rhodanobacter, Granulicella, and Sphingomonas dominated at the saline site, while Bradyrhizobium and Rhizobium were more abundant at the non-saline site. Moreover, genus Frankia was observed only at the saline site. In conclusion, bacterial and fungal community structure of alder root microsymbionts and endophytes depends on five soil chemical parameters: salinity, phosphorus, pH, saturation percentage (SP) as well as total organic carbon (TOC), and seasonality does not appear to be an important factor shaping microbial communities. Ectomycorrhizal fungi are the most abundant symbionts of mature alders growing in saline soils. However, specific distribution of nitrogen-fixing Frankia (forming root nodules) and association of arbuscular fungi at early stages of

  12. How Does Salinity Shape Bacterial and Fungal Microbiomes of Alnus glutinosa Roots?

    PubMed

    Thiem, Dominika; Gołębiewski, Marcin; Hulisz, Piotr; Piernik, Agnieszka; Hrynkiewicz, Katarzyna

    2018-01-01

    Black alder ( Alnus glutinosa Gaertn.) belongs to dual mycorrhizal trees, forming ectomycorrhizal (EM) and arbuscular (AM) root structures, as well as represents actinorrhizal plants that associate with nitrogen-fixing actinomycete Frankia sp. We hypothesized that the unique ternary structure of symbionts can influence community structure of other plant-associated microorganisms (bacterial and fungal endophytes), particularly under seasonally changing salinity in A. glutinosa roots. In our study we analyzed black alder root bacterial and fungal microbiome present at two forest test sites (saline and non-saline) in two different seasons (spring and fall). The dominant type of root microsymbionts of alder were ectomycorrhizal fungi, whose distribution depended on site (salinity): Tomentella , Lactarius , and Phialocephala were more abundant at the saline site. Mortierella and Naucoria (representatives of saprotrophs or endophytes) displayed the opposite tendency. Arbuscular mycorrhizal fungi belonged to Glomeromycota (orders Paraglomales and Glomales), however, they represented less than 1% of all identified fungi. Bacterial community structure depended on test site but not on season. Sequences affiliated with Rhodanobacter , Granulicella , and Sphingomonas dominated at the saline site, while Bradyrhizobium and Rhizobium were more abundant at the non-saline site. Moreover, genus Frankia was observed only at the saline site. In conclusion, bacterial and fungal community structure of alder root microsymbionts and endophytes depends on five soil chemical parameters: salinity, phosphorus, pH, saturation percentage (SP) as well as total organic carbon (TOC), and seasonality does not appear to be an important factor shaping microbial communities. Ectomycorrhizal fungi are the most abundant symbionts of mature alders growing in saline soils. However, specific distribution of nitrogen-fixing Frankia (forming root nodules) and association of arbuscular fungi at early stages

  13. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    DOE PAGES

    Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; ...

    2015-04-23

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes)more » in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.« less

  14. Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy

    PubMed Central

    Pachiadaki, Maria G.; Rédou, Vanessa; Beaudoin, David J.; Burgaud, Gaëtan; Edgcomb, Virginia P.

    2016-01-01

    The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in

  15. Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy.

    PubMed

    Pachiadaki, Maria G; Rédou, Vanessa; Beaudoin, David J; Burgaud, Gaëtan; Edgcomb, Virginia P

    2016-01-01

    The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in

  16. Metagenomic analysis of fungal diversity on strawberry plants and the effect of management practices on the fungal community structure of aerial organs

    USDA-ARS?s Scientific Manuscript database

    Metabarcoding, defined as Next Generation Sequencing (NGS) of amplicons of the ITS2 region (DNA barcode), was used to identify the composition of the fungal community on different strawberry organs i.e. leaves, flowers, and immature and mature fruits grown on a farm using disease and insect control ...

  17. Succession of bacterial and fungal communities within biofilms of a chlorinated drinking water distribution system.

    PubMed

    Douterelo, I; Fish, K E; Boxall, J B

    2018-09-15

    Understanding the temporal dynamics of multi-species biofilms in Drinking Water Distribution Systems (DWDS) is essential to ensure safe, high quality water reaches consumers after it passes through these high surface area reactors. This research studied the succession characteristics of fungal and bacterial communities under controlled environmental conditions fully representative of operational DWDS. Microbial communities were observed to increase in complexity after one month of biofilm development but they did not reach stability after three months. Changes in cell numbers were faster at the start of biofilm formation and tended to decrease over time, despite the continuing changes in bacterial community composition. Fungal diversity was markedly less than bacterial diversity and had a lag in responding to temporal dynamics. A core-mixed community of bacteria including Pseudomonas, Massillia and Sphingomonas and the fungi Acremonium and Neocosmopora were present constantly and consistently in the biofilms over time and conditions studied. Monitoring and managing biofilms and such ubiquitous core microbial communities are key control strategies to ensuring the delivery of safe drinking water via the current ageing DWDS infrastructure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Fungal communities in gardens of the leafcutter ant Atta cephalotes in forest and cabruca agrosystems of southern Bahia State (Brazil).

    PubMed

    Reis, Bárbara Monique Dos Santos; Silva, Aline; Alvarez, Martín Roberto; Oliveira, Tássio Brito de; Rodrigues, Andre

    2015-12-01

    Leaf-cutting ants interact with several fungi in addition to the fungal symbiont they cultivate for food. Here, we assessed alien fungal communities in colonies of Atta cephalotes. Fungus garden fragments were sampled from colonies in the Atlantic Rainforest and in a cabruca agrosystem in the state of Bahia (Brazil) in two distinct periods to evaluate whether differences in nest habitat influence the diversity of fungi in the ant colonies. We recovered a total of 403 alien fungi isolates from 628 garden fragments. The prevalent taxa found in these samples were Escovopsis sp. (26 %), Escovopsioides nivea (24 %), and Trichoderma spirale (10.9 %). Fungal diversity was similar between the colonies sampled in both areas suggesting that ants focus on reducing loads of alien fungi in the fungus gardens instead of avoiding specific fungi. However, fungal taxa composition differed between colonies sampled in the two areas and between the sampling periods. These differences are likely explained by the availability of plant substrates available for foraging over habitats and periods. Ordination analysis further supported that sampling period was the main attribute for community structuring but also revealed that additional factors may explain the structuring of fungal communities in colonies of A. cephalotes. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Serpentine Soils Do Not Limit Mycorrhizal Fungal Diversity

    PubMed Central

    Branco, Sara; Ree, Richard H.

    2010-01-01

    Background Physiologically stressful environments tend to host depauperate and specialized biological communities. Serpentine soils exemplify this phenomenon by imposing well-known constraints on plants; however, their effect on other organisms is still poorly understood. Methodology/Principal Findings We used a combination of field and molecular approaches to test the hypothesis that serpentine fungal communities are species-poor and specialized. We conducted surveys of ectomycorrhizal fungal diversity from adjacent serpentine and non-serpentine sites, described fungal communities using nrDNA Internal Transcribed Spacer (ITS) fragment and sequence analyses, and compared their phylogenetic community structure. Although we detected low fungal overlap across the two habitats, we found serpentine soils to support rich fungal communities that include representatives from all major fungal lineages. We failed to detect the phylogenetic signature of endemic clades that would result from specialization and adaptive radiation within this habitat. Conclusions/Significance Our results indicate that serpentine soils do not constitute an extreme environment for ectomycorrhizal fungi, and raise important questions about the role of symbioses in edaphic tolerance and the maintenance of biodiversity. PMID:20668696

  20. Relative Abundance of and Composition within Fungal Orders Differ between Cheatgrass (Bromus tectorum) and Sagebrush (Artemisia tridentata)-Associated Soils

    PubMed Central

    Weber, Carolyn F.; King, Gary M.; Aho, Ken

    2015-01-01

    Nonnative Bromus tectorum (cheatgrass) is decimating sagebrush steppe, one of the largest ecosystems in the Western United States, and is causing regional-scale shifts in the predominant plant-fungal interactions. Sagebrush, a native perennial, hosts arbuscular mycorrhizal fungi (AMF), whereas cheatgrass, a winter annual, is a relatively poor host of AMF. This shift is likely intertwined with decreased carbon (C)-sequestration in cheatgrass-invaded soils and alterations in overall soil fungal community composition and structure, but the latter remain unresolved. We examined soil fungal communities using high throughput amplicon sequencing (ribosomal large subunit gene) in the 0–4 cm and 4–8 cm depth intervals of six cores from cheatgrass- and six cores from sagebrush-dominated soils. Sagebrush core surfaces (0–4 cm) contained higher nitrogen and total C than cheatgrass core surfaces; these differences mirrored the presence of glomalin related soil proteins (GRSP), which has been associated with AMF activity and increased C-sequestration. Fungal richness was not significantly affected by vegetation type, depth or an interaction of the two factors. However, the relative abundance of seven taxonomic orders was significantly affected by vegetation type or the interaction between vegetation type and depth. Teloschistales, Spizellomycetales, Pezizales and Cantharellales were more abundant in sagebrush libraries and contain mycorrhizal, lichenized and basal lineages of fungi. Only two orders (Coniochaetales and Sordariales), which contain numerous economically important pathogens and opportunistic saprotrophs, were more abundant in cheatgrass libraries. Pleosporales, Agaricales, Helotiales and Hypocreales were most abundant across all libraries, but the number of genera detected within these orders was as much as 29 times lower in cheatgrass relative to sagebrush libraries. These compositional differences between fungal communities associated with cheatgrass- and

  1. The specific role of fungal community structure on soil aggregation and carbon sequestration: results from long-term field study in a paddy soil

    NASA Astrophysics Data System (ADS)

    Murugan, Rajasekaran; Kumar, Sanjay

    2015-04-01

    Soil aggregate stability is a crucial soil property that affects soil biota, biogeochemical processes and C sequestration. The relationship between soil aggregate stability and soil C cycling is well known but the influence of specific fungal community structure on this relationship is largely unknown in paddy soils. The aim of the present study was to evaluate the long-term fertilisation (mineral fertiliser-MIN; farmyard manure-FYM; groundnut oil cake-GOC) effects on soil fungal community shifts associated with soil aggregates under rice-monoculture (RRR) and rice-legume-rice (RLR) systems. Fungal and bacterial communities were characterized using phospholipid fatty acids, and glucosamine and muramic acid were used as biomarkers for fungal and bacterial residues, respectively. Microbial biomass C and N, fungal biomass and residues were significantly higher in the organic fertiliser treatments than in the MIN treatment, for all aggregate sizes under both crop rotation systems. In general, fungal/bacterial biomass ratio and fungal residue C/bacterial residue C ratio were significantly higher in macroaggregate fractions (> 2000 and 250-2000 μm) than in microaggregate fractions (53-250 and <53 μm). In both crop rotation systems, the long-term application of FYM and GOC led to increased accumulation of saprotrophic fungi (SF) in aggregate fractions > 2000 μm. In contrast, we found that arbuscular mycorrhizal fungi (AMF) was surprisingly higher in aggregate fractions > 2000 μm than in aggregate fraction 250-2000 μm under MIN treatment. The RLR system showed significantly higher AMF biomass and fungal residue C/ bacterial residue C ratio in both macroaggregate fractions compared to the RRR system. The strong relationships between SF, AMF and water stable aggregates shows the specific contribution of fungi community on soil aggregate stability. Our results highlight the fact that changes within fungal community structure play an important role in shaping the soil

  2. A heritable symbiont and host-associated factors shape fungal endophyte communities across spatial scales

    USDA-ARS?s Scientific Manuscript database

    Microbial ecologists are intensely interested in the processes governing microbial community assembly, progress has been limited by a lack of studies that span multiple geographical scales and levels of biological organization. High throughput sequencing was used to characterize foliar fungal endoph...

  3. Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica

    USDA-ARS?s Scientific Manuscript database

    Antarctica is a pristine and extreme environment that represents a unique opportunity for taxonomic, ecological and biotechnological studies of the microorganisms. In the present work, the fungal communities of rhizosphere soil of Deschampsia antarctica, soil, ornithogenic soil, marine and lake sedi...

  4. Assessment of Cu applications in two contrasting soils-effects on soil microbial activity and the fungal community structure.

    PubMed

    Keiblinger, Katharina M; Schneider, Martin; Gorfer, Markus; Paumann, Melanie; Deltedesco, Evi; Berger, Harald; Jöchlinger, Lisa; Mentler, Axel; Zechmeister-Boltenstern, Sophie; Soja, Gerhard; Zehetner, Franz

    2018-03-01

    Copper (Cu)-based fungicides have been used in viticulture to prevent downy mildew since the end of the 19th century, and are still used today to reduce fungal diseases. Consequently, Cu has built up in many vineyard soils, and it is still unclear how this affects soil functioning. The present study aimed to assess the short and medium-term effects of Cu contamination on the soil fungal community. Two contrasting agricultural soils, an acidic sandy loam and an alkaline silt loam, were used for an eco-toxicological greenhouse pot experiment. The soils were spiked with a Cu-based fungicide in seven concentrations (0-5000 mg Cu kg -1 soil) and alfalfa was grown in the pots for 3 months. Sampling was conducted at the beginning and at the end of the study period to test Cu toxicity effects on total microbial biomass, basal respiration and enzyme activities. Fungal abundance was analysed by ergosterol at both samplings, and for the second sampling, fungal community structure was evaluated via ITS amplicon sequences. Soil microbial biomass C as well as microbial respiration rate decreased with increasing Cu concentrations, with EC 50 ranging from 76 to 187 mg EDTA-extractable Cu kg -1 soil. Oxidative enzymes showed a trend of increasing activity at the first sampling, but a decline in peroxidase activity was observed for the second sampling. We found remarkable Cu-induced changes in fungal community abundance (EC 50 ranging from 9.2 to 94 mg EDTA-extractable Cu kg -1 soil) and composition, but not in diversity. A large number of diverse fungi were able to thrive under elevated Cu concentrations, though within the order of Hypocreales several species declined. A remarkable Cu-induced change in the community composition was found, which depended on the soil properties and, hence, on Cu availability.

  5. Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient.

    PubMed

    Collins, Courtney G; Stajich, Jason E; Weber, Sören E; Pombubpa, Nuttapon; Diez, Jeffrey M

    2018-04-19

    Global climate and land use change are altering plant and soil microbial communities worldwide, particularly in arctic and alpine biomes where warming is accelerated. The widespread expansion of woody shrubs into historically herbaceous alpine plant zones is likely to interact with climate to affect soil microbial community structure and function; however, our understanding of alpine soil ecology remains limited. This study aimed to (i) determine whether the diversity and community composition of soil fungi vary across elevation gradients and to (ii) assess the impact of woody shrub expansion on these patterns. In the White Mountains of California, sagebrush (Artemisia rothrockii) shrubs have been expanding upwards into alpine areas since 1960. In this study, we combined observational field data with a manipulative shrub removal experiment along an elevation transect of alpine shrub expansion. We utilized next-generation sequencing of the ITS1 region for fungi and joint distribution modelling to tease apart effects of the environment and intracommunity interactions on soil fungi. We found that soil fungal diversity declines and community composition changes with increasing elevation. Both abiotic factors (primarily soil moisture and soil organic C) and woody sagebrush range expansion had significant effects on these patterns. However, fungal diversity and relative abundance had high spatial variation, overwhelming the predictive power of vegetation type, elevation and abiotic soil conditions at the landscape scale. Finally, we observed positive and negative associations among fungal taxa which may be important in structuring community responses to global change. © 2018 John Wiley & Sons Ltd.

  6. Arbuscular mycorrhizal fungal community composition affected by original elevation rather than translocation along an altitudinal gradient on the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zheng, Yong; Gao, Cheng; Duan, Ji-Chuang; Wang, Shi-Ping; Guo, Liang-Dong

    2016-11-01

    Elucidating arbuscular mycorrhizal (AM) fungal responses to elevation changes is critical to improve understanding of microbial function in ecosystems under global asymmetrical climate change scenarios. Here we examined AM fungal community in a two-year reciprocal translocation of vegetation-intact soil blocks along an altitudinal gradient (3,200 m to 3,800 m) in an alpine meadow on the Qinghai-Tibet Plateau. AM fungal spore density was significantly higher at lower elevation than at higher elevation regardless of translocation, except that this parameter was significantly increased by upward translocation from original 3,200 m to 3,400 m and 3,600 m. Seventy-three operational taxonomic units (OTUs) of AM fungi were recovered using 454-pyrosequencing of 18S rDNA sequences at a 97% sequence similarity. Original elevation, downward translocation and upward translocation did not significantly affect AM fungal OTU richness. However, with increasing altitude the OTU richness of Acaulosporaceae and Ambisporaceae increased, but the OTU richness of Gigasporaceae and Glomeraceae decreased generally. The AM fungal community composition was significantly structured by original elevation but not by downward translocation and upward translocation. Our findings highlight that compared with the short-term reciprocal translocation, original elevation is a stronger determinant in shaping AM fungal community in the Qinghai-Tibet alpine meadow.

  7. Arbuscular mycorrhizal fungal community composition affected by original elevation rather than translocation along an altitudinal gradient on the Qinghai-Tibet Plateau.

    PubMed

    Yang, Wei; Zheng, Yong; Gao, Cheng; Duan, Ji-Chuang; Wang, Shi-Ping; Guo, Liang-Dong

    2016-11-09

    Elucidating arbuscular mycorrhizal (AM) fungal responses to elevation changes is critical to improve understanding of microbial function in ecosystems under global asymmetrical climate change scenarios. Here we examined AM fungal community in a two-year reciprocal translocation of vegetation-intact soil blocks along an altitudinal gradient (3,200 m to 3,800 m) in an alpine meadow on the Qinghai-Tibet Plateau. AM fungal spore density was significantly higher at lower elevation than at higher elevation regardless of translocation, except that this parameter was significantly increased by upward translocation from original 3,200 m to 3,400 m and 3,600 m. Seventy-three operational taxonomic units (OTUs) of AM fungi were recovered using 454-pyrosequencing of 18S rDNA sequences at a 97% sequence similarity. Original elevation, downward translocation and upward translocation did not significantly affect AM fungal OTU richness. However, with increasing altitude the OTU richness of Acaulosporaceae and Ambisporaceae increased, but the OTU richness of Gigasporaceae and Glomeraceae decreased generally. The AM fungal community composition was significantly structured by original elevation but not by downward translocation and upward translocation. Our findings highlight that compared with the short-term reciprocal translocation, original elevation is a stronger determinant in shaping AM fungal community in the Qinghai-Tibet alpine meadow.

  8. Arbuscular mycorrhizal fungal community composition affected by original elevation rather than translocation along an altitudinal gradient on the Qinghai-Tibet Plateau

    PubMed Central

    Yang, Wei; Zheng, Yong; Gao, Cheng; Duan, Ji-Chuang; Wang, Shi-Ping; Guo, Liang-Dong

    2016-01-01

    Elucidating arbuscular mycorrhizal (AM) fungal responses to elevation changes is critical to improve understanding of microbial function in ecosystems under global asymmetrical climate change scenarios. Here we examined AM fungal community in a two-year reciprocal translocation of vegetation-intact soil blocks along an altitudinal gradient (3,200 m to 3,800 m) in an alpine meadow on the Qinghai-Tibet Plateau. AM fungal spore density was significantly higher at lower elevation than at higher elevation regardless of translocation, except that this parameter was significantly increased by upward translocation from original 3,200 m to 3,400 m and 3,600 m. Seventy-three operational taxonomic units (OTUs) of AM fungi were recovered using 454-pyrosequencing of 18S rDNA sequences at a 97% sequence similarity. Original elevation, downward translocation and upward translocation did not significantly affect AM fungal OTU richness. However, with increasing altitude the OTU richness of Acaulosporaceae and Ambisporaceae increased, but the OTU richness of Gigasporaceae and Glomeraceae decreased generally. The AM fungal community composition was significantly structured by original elevation but not by downward translocation and upward translocation. Our findings highlight that compared with the short-term reciprocal translocation, original elevation is a stronger determinant in shaping AM fungal community in the Qinghai-Tibet alpine meadow. PMID:27827400

  9. Soil fungal community and fuctional diversity assessments of agroecosystems in the Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    Soil fungi perform a variety of ecosystem functions that are crucial to maintaining agroecosystem sustainability including aggregate stability and soil carbon storage. The purpose of this study was to compare soil fungal communities and functional diversity in integrated crop and livestock (ICL) sy...

  10. RNA-based analyses reveal fungal communities structured by a senescence gradient in the moss Dicranum scoparium and the presence of putative multi-trophic fungi.

    PubMed

    Chen, Ko-Hsuan; Liao, Hui-Ling; Arnold, A Elizabeth; Bonito, Gregory; Lutzoni, François

    2018-06-01

    Diverse plant-associated fungi are thought to have symbiotrophic and saprotrophic states because they can be isolated from both dead and living plant tissues. However, such tissues often are separated in time and space, and fungal activity at various stages of plant senescence is rarely assessed directly in fungal community studies. We used fungal ribosomal RNA metatranscriptomics to detect active fungal communities across a natural senescence gradient within wild-collected gametophytes of Dicranum scoparium (Bryophyta) to understand the distribution of active fungal communities in adjacent living, senescing and dead tissues. Ascomycota were active in all tissues across the senescence gradient. By contrast, Basidiomycota were prevalent and active in senescing and dead tissues. Several fungi were detected as active in living and dead tissues, suggesting their capacity for multi-trophy. Differences in community assembly detected by metatranscriptomics were echoed by amplicon sequencing of cDNA and compared to culture-based inferences and observation of fungal fruit bodies in the field. The combination of amplicon sequencing of cDNA and metatranscriptomics is promising for studying symbiotic systems with complex microbial diversity, allowing for the simultaneous detection of their presence and activity. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  11. Characterization of thermophilic fungal community associated with pile fermentation of Pu-erh tea.

    PubMed

    Zhang, Wei; Yang, Ruijuan; Fang, Wenjun; Yan, Liang; Lu, Jun; Sheng, Jun; Lv, Jie

    2016-06-16

    This study aimed to characterize the thermophilic fungi in pile-fermentation process of Pu-erh tea. Physicochemical analyses showed that the high temperature and low pH provided optimal conditions for propagation of fungi. A number of fungi, including Blastobotrys adeninivorans, Thermomyces lanuginosus, Rasamsonia emersonii, Aspergillus fumigatus, Rhizomucor pusillus, Rasamsonia byssochlamydoides, Rasamsonia cylindrospora, Aspergillus tubingensis, Aspergillus niger, Candida tropicalis and Fusarium graminearum were isolated as thermophilic fungi under combination of high temperature and acid culture conditions from Pu-erh tea pile-fermentation. The fungal communities were analyzed by PCR-DGGE. Results revealed that those fungi are closely related to Debaryomyces hansenii, Cladosporium cladosporioides, A. tubingensis, R. emersonii, R. pusillus, A. fumigatus and A. niger, and the last four presented as dominant species in the pile process. These four preponderant thermophilic fungi reached the order of magnitude of 10(7), 10(7), 10(7) and 10(6)copies/g dry tea, respectively, measured by real-time quantitative PCR (q-PCR). The results indicate that the thermophilic fungi play an important role in Pu-erh tea pile fermentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Changes in Arbuscular Mycorrhizal Fungal Abundance and Community Structure in Response to the Long-Term Manipulation of Inorganic Nutrients in a Lowland Tropical Forest

    NASA Astrophysics Data System (ADS)

    Sheldrake, Merlin; Rosenstock, Nicholas; Tanner, Ed

    2014-05-01

    The arbuscular mycorrhizal (AM) symbiosis is considered primarily mutualistic. In exchange for up to 30% of plants' total photosynthate, AM provide improved access to mineral nutrients. While there is evidence that AM fungi provide nitrogen, potassium and other nutrients to their host plants, most research has focused on their effect on plant phosphorus uptake. Pot experiments have shown, and field experiments have provided further support, that nutrient availability (primarily P, but also N) is inversely correlated with mycorrhizal colonization, indicating plant control over carbon losses to AM fungi. Yet pot experiments have also shown that some fungal species are more mutualistic than others and that AM colonization may cause decreased plant growth, suggesting that plant control is not absolute. AMF communities are diverse, and it is poorly understood how factors such as adaptation to local soil environment, fungal-plant compatibility, and plant nutrient status combine to shape AMF community structure. We conducted a study to examine the relative effects of N, P, and K addition on the AMF community in a plant species rich tropical forest, given the long-held belief that AMF are primarily involved in plant P uptake, particularly on weathered tropical soils. Our study site is the Barro Colorado Nature Monument in Panama. It is a 13 year-old factorial N, P, and K addition experiment (40 m x 40m plots; n=4) in an AMF dominated, old (>200 yr), secondary, tropical forest. Previous research has shown co-limitation by N, P, and K, but the strongest plant growth responses were obtained with K additions. We analyzed the AMF community using 454 pyrosequencing of the ribosomal small subunit (SSU) on both soils and the roots of the 6 dominant AMF tree species. Additionally, we used the AMF-specific neutral lipid fatty acid (NLFA) biomarker as a measure of AMF biomass. Both AMF biomass and community structure were altered by nutrient additions. AMF biomass in soil was reduced

  13. Exploring the evolutionary ecology of fungal endophyte in agricultural systems: using functional traits to reveal mechanisms in community processes

    USDA-ARS?s Scientific Manuscript database

    All plants, including crop species, harbor a community of fungal endophyte species, however, we know little about the biotic factors that are important in endophyte community assembly. We suggest that the most direct route to understanding the mechanisms underlying community assembly is through the...

  14. Patterns of macromycete community assemblage along an elevation gradient: options for fungal gradient and metacommunity analyse

    Treesearch

    Marko Gómez-Hernández; Guadalupe Williams-Linera; Roger Guevara; D. Jean Lodge

    2012-01-01

    Gradient analysis is rarely used in studies of fungal communities. Data on macromycetes from eight sites along an elevation gradient in central Veracruz, Mexico, were used to demonstrate methods for gradient analysis that can be applied to studies of communities of fungi. Selected sites from 100 to 3,500 m altitude represent tropical dry forest, tropical montane cloud...

  15. Bacterial, fungal, and plant communities exhibit no biomass or compositional response to two years of simulated nitrogen deposition in a semiarid grassland: Bacterial, fungal, and plant communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, Theresa A.; Morrissey, Ember M.; Mueller, Rebecca C.

    Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biologicalmore » soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.« less

  16. Bacterial, fungal, and plant communities exhibit no biomass or compositional response to two years of simulated nitrogen deposition in a semiarid grassland: Bacterial, fungal, and plant communities

    DOE PAGES

    McHugh, Theresa A.; Morrissey, Ember M.; Mueller, Rebecca C.; ...

    2017-03-13

    Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biologicalmore » soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.« less

  17. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?

    PubMed

    Arnold, A Elizabeth; Lutzoni, F

    2007-03-01

    Fungal endophytes are found in asymptomatic photosynthetic tissues of all major lineages of land plants. The ubiquity of these cryptic symbionts is clear, but the scale of their diversity, host range, and geographic distributions are unknown. To explore the putative hyperdiversity of tropical leaf endophytes, we compared endophyte communities along a broad latitudinal gradient from the Canadian arctic to the lowland tropical forest of central Panama. Here, we use molecular sequence data from 1403 endophyte strains to show that endophytes increase in incidence, diversity, and host breadth from arctic to tropical sites. Endophyte communities from higher latitudes are characterized by relatively few species from many different classes of Ascomycota, whereas tropical endophyte assemblages are dominated by a small number of classes with a very large number of endophytic species. The most easily cultivated endophytes from tropical plants have wide host ranges, but communities are dominated by a large number of rare species whose host range is unclear. Even when only the most easily cultured species are considered, leaves of tropical trees represent hotspots of fungal species diversity, containing numerous species not yet recovered from other biomes. The challenge remains to recover and identify those elusive and rarely cultured taxa with narrower host ranges, and to elucidate the ecological roles of these little-known symbionts in tropical forests.

  18. Leaf-associated fungal diversity in acidified streams: insights from combining traditional and molecular approaches.

    PubMed

    Clivot, Hugues; Cornut, Julien; Chauvet, Eric; Elger, Arnaud; Poupin, Pascal; Guérold, François; Pagnout, Christophe

    2014-07-01

    We combined microscopic and molecular methods to investigate fungal assemblages on alder leaf litter exposed in the benthic and hyporheic zones of five streams across a gradient of increasing acidification for 4 weeks. The results showed that acidification and elevated Al concentrations strongly depressed sporulating aquatic hyphomycetes diversity in both zones of streams, while fungal diversity assessed by denaturing gradient gel electrophoresis (DGGE) appeared unaffected. Clone library analyses revealed that fungal communities on leaves were dominated by members of Ascomycetes and to a lesser extent by Basidiomycetes and Chytridiomycetes. An important contribution of terrestrial fungi was observed in both zones of the most acidified stream and in the hyporheic zone of the reference circumneutral stream. The highest leaf breakdown rate was observed in the circumneutral stream and occurred in the presence of both the highest diversity of sporulating aquatic hyphomycetes and the highest contribution to clone libraries of sequences affiliated with aquatic hyphomycetes. Both methods underline the major role played by aquatic hyphomycetes in leaf decomposition process. Our findings also bring out new highlights on the identity of leaf-associated fungal communities and their responses to anthropogenic alteration of running water ecosystems. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    USGS Publications Warehouse

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-01-01

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha−1 yr−1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  20. Proliferation of the biocontrol agent Fusarium oxysporum f. sp. strigae and its impact on indigenous rhizosphere fungal communities in maize under different agro-ecologies.

    PubMed

    Zimmermann, Judith; Musyoki, Mary K; Cadisch, Georg; Rasche, Frank

    2016-06-01

    Our objectives were to (1) monitor the proliferation of the biocontrol agent (BCA) Fusarium oxysporum f. sp. strigae strain "Foxy-2", an effective soil-borne BCA against the parasitic weed Striga hermonthica , in the rhizosphere of maize under different agro-ecologies, and (2) investigate its impact on indigenous rhizosphere fungal community abundance and composition. Field experiments were conducted in Busia and Homa Bay districts in western Kenya during two cropping seasons to account for effects of soil type, climate, growth stage and seasonality. Maize seeds were coated with or without "Foxy-2" and soils were artificially infested with S. hermonthica seeds. One treatment with nitrogen rich organic residues ( Tithonia diversifolia ) was established to compensate hypothesized resource competition between "Foxy-2" and the indigenous fungal community. Rhizosphere soil samples collected at three growth stages (i.e., EC30, EC60, EC90) of maize were subjected to abundance measurement of "Foxy-2" and total indigenous fungi using quantitative polymerase chain reaction (qPCR) analysis. Terminal restriction fragment length polymorphism (TRFLP) analysis was used to assess potential alterations in the fungal community composition in response to "Foxy-2" presence. "Foxy-2" proliferated stronger in the soils with a sandy clay texture (Busia) than in those with a loamy sand texture (Homa Bay) and revealed slightly higher abundance in the second season. "Foxy-2" had, however, only a transient suppressive effect on total indigenous fungal abundance which ceased in the second season and was further markedly compensated after addition of T. diversifolia residues. Likewise, community structure of the indigenous fungal community was mainly altered by maize growth stages, but not by "Foxy-2". In conclusion, no adverse effects of "Foxy-2" inoculation on indigenous fungal rhizosphere communities were observed corroborating the safety of this BCA under the given agro-ecologies.

  1. Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone.

    PubMed

    Peay, Kabir G; Kennedy, Peter G; Davies, Stuart J; Tan, Sylvester; Bruns, Thomas D

    2010-01-01

    *Relatively little is known about diversity or structure of tropical ectomycorrhizal communities or their roles in tropical ecosystem dynamics. In this study, we present one of the largest molecular studies to date of an ectomycorrhizal community in lowland dipterocarp rainforest. *We sampled roots from two 0.4 ha sites located across an ecotone within a 52 ha forest dynamics plot. Our plots contained > 500 tree species and > 40 species of ectomycorrhizal host plants. Fungi were identified by sequencing ribosomal RNA genes. *The community was dominated by the Russulales (30 species), Boletales (17), Agaricales (18), Thelephorales (13) and Cantharellales (12). Total species richness appeared comparable to molecular studies of temperate forests. Community structure changed across the ecotone, although it was not possible to separate the role of environmental factors vs host plant preferences. Phylogenetic analyses were consistent with a model of community assembly where habitat associations are influenced by evolutionary conservatism of functional traits within ectomycorrhizal lineages. *Because changes in the ectomycorrhizal fungal community parallel those of the tree community at this site, this study demonstrates the potential link between the distribution of tropical tree diversity and the distribution of tropical ectomycorrhizal diversity in relation to local-scale edaphic variation.

  2. Fungal community, Fusarium head blight complex and secondary metabolites associated with malting barley grains harvested in Umbria, central Italy.

    PubMed

    Beccari, Giovanni; Senatore, Maria Teresa; Tini, Francesco; Sulyok, Michael; Covarelli, Lorenzo

    2018-05-20

    In recent years, due to the negative impact of toxigenic mycobiota and of the accumulation of their secondary metabolites in malting barley grains, monitoring the evolution of fungal communities in a certain cultivation area as well as detecting the different mycotoxins present in the raw material prior to malting and brewing processes have become increasingly important. In this study, a survey was carried out on malting barley samples collected after their harvest in the Umbria region (central Italy). Samples were analyzed to determine the composition of the fungal community, to identify the isolated Fusarium species, to quantify fungal secondary metabolites in the grains and to characterize the in vitro mycotoxigenic profile of a subset of the isolated Fusarium strains. The fungal community of barley grains was mainly composed of microorganisms belonging to the genus Alternaria (77%), followed by those belonging to the genus Fusarium (27%). The Fusarium head blight (FHB) complex was represented by nine species with the predominance of Fusarium poae (37%), followed by Fusarium avenaceum (23%), Fusarium graminearum (22%) and Fusarium tricinctum (7%). Secondary metabolites biosynthesized by Alternaria and Fusarium species were present in the analyzed grains. Among those biosynthesized by Fusarium species, nivalenol and enniatins were the most prevalent ones. Type A trichothecenes (T-2 and HT-2 toxins) as well as beauvericin were also present with a high incidence. Conversely, the number of samples contaminated with deoxynivalenol was low. Conjugated forms, such as deoxynivalenol-3-glucoside and HT-2-glucoside, were detected for the first time in malting barley grains cultivated in the surveyed area. In addition, strains of F. avenaceum and F. tricinctum showed the ability to biosynthesize in vitro high concentrations of enniatins. The analysis of fungal secondary metabolites, both in the grains and in vitro, revealed also the presence of other compounds, for which

  3. Alteration of microbial community structure affects diesel biodegradation in an Arctic soil.

    PubMed

    Bell, Terrence H; Yergeau, Etienne; F Juck, Dave; G Whyte, Lyle; W Greer, Charles

    2013-07-01

    A wide range of microbial taxa are active in hydrocarbon-contaminated Arctic soils, and many are capable of hydrocarbon metabolism. The most effective hydrocarbon degraders may not naturally dominate following contamination events, so shifts in microbial abundance could potentially increase hydrocarbon biodegradation. In this study, we contaminated an Arctic soil with diesel and used gentamicin and vancomycin to inhibit distinct portions of the microbial community. We measured diesel loss using gas chromatography, bacterial and fungal abundance with qPCR, and assessed bacterial diversity and community composition through Ion Torrent sequencing of 16S rRNA gene amplicons. The combined addition of both antibiotics increased diesel biodegradation significantly relative to the no-antibiotic treatment, despite reduced bacterial and fungal abundance; however, this effect was not observed when nutrients were also added. All treatments produced unique bacterial communities, and both Xanthomonadaceae and Micrococcineae were dominant in the dual antibiotic treatment. The bacterial communities resulting from dual gentamicin and vancomycin addition were similar both with and without nutrients, although nutrient addition produced a much larger fungal population, which may partly explain the differences in biodegradation between these two treatments. These results suggest that the most efficient hydrocarbon-degrading community may not always be promoted naturally in contaminated soils. © Her Majesty the Queen in Right of Canada 2013.

  4. The Contribution of DNA Metabarcoding to Fungal Conservation: Diversity Assessment, Habitat Partitioning and Mapping Red-Listed Fungi in Protected Coastal Salix repens Communities in the Netherlands

    PubMed Central

    Geml, József; Gravendeel, Barbara; van der Gaag, Kristiaan J.; Neilen, Manon; Lammers, Youri; Raes, Niels; Semenova, Tatiana A.; de Knijff, Peter; Noordeloos, Machiel E.

    2014-01-01

    Western European coastal sand dunes are highly important for nature conservation. Communities of the creeping willow (Salix repens) represent one of the most characteristic and diverse vegetation types in the dunes. We report here the results of the first kingdom-wide fungal diversity assessment in S. repens coastal dune vegetation. We carried out massively parallel pyrosequencing of ITS rDNA from soil samples taken at ten sites in an extended area of joined nature reserves located along the North Sea coast of the Netherlands, representing habitats with varying soil pH and moisture levels. Fungal communities in Salix repens beds are highly diverse and we detected 1211 non-singleton fungal 97% sequence similarity OTUs after analyzing 688,434 ITS2 rDNA sequences. Our comparison along a north-south transect indicated strong correlation between soil pH and fungal community composition. The total fungal richness and the number OTUs of most fungal taxonomic groups negatively correlated with higher soil pH, with some exceptions. With regard to ecological groups, dark-septate endophytic fungi were more diverse in acidic soils, ectomycorrhizal fungi were represented by more OTUs in calcareous sites, while detected arbuscular mycorrhizal genera fungi showed opposing trends regarding pH. Furthermore, we detected numerous red listed species in our samples often from previously unknown locations, indicating that some of the fungal species currently considered rare may be more abundant in Dutch S. repens communities than previously thought. PMID:24937200

  5. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters.

    PubMed

    Bourceret, Amélia; Cébron, Aurélie; Tisserant, Emilie; Poupin, Pascal; Bauda, Pascale; Beguiristain, Thierry; Leyval, Corinne

    2016-04-01

    Industrial wasteland soils with aged PAH and heavy metal contaminations are environments where pollutant toxicity has been maintained for decades. Although the communities may be well adapted to the presence of stressors, knowledge about microbial diversity in such soils is scarce. Soil microbial community dynamics can be driven by the presence of plants, but the impact of plant development on selection or diversification of microorganisms in these soils has not been established yet. To test these hypotheses, aged-contaminated soil samples from a field trial were collected. Plots planted with alfalfa were compared to bare soil plots, and bacterial and fungal diversity and abundance were assessed after 2 and 6 years. Using pyrosequencing of 16S rRNA gene and ITS amplicons, we showed that the bacterial community was dominated by Proteobacteria, Actinobacteria, and Bacteroidetes and was characterized by low Acidobacteria abundance, while the fungal community was mainly represented by members of the Ascomycota. The short-term toxic impact of pollutants usually reduces the microbial diversity, yet in our samples bacterial and fungal species richness and diversity was high suggesting that the community structure and diversity adapted to the contaminated soil over decades. The presence of plants induced higher bacterial and fungal diversity than in bare soil. It also increased the relative abundance of bacterial members of the Actinomycetales, Rhizobiales, and Xanthomonadales orders and of most fungal orders. Multivariate analysis showed correlations between microbial community structure and heavy metal and PAH concentrations over time, but also with edaphic parameters (C/N, pH, phosphorus, and nitrogen concentrations).

  6. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    DOE PAGES

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-09-04

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing ofmore » ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha –1 yr –1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. As a result, given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.« less

  7. Rapid change of AM fungal community in a rain-fed wheat field with short-term plastic film mulching practice.

    PubMed

    Liu, Yongjun; Mao, Lin; He, Xinhua; Cheng, Gang; Ma, Xiaojun; An, Lizhe; Feng, Huyuan

    2012-01-01

    Plastic film mulching (PFM) is a widely used agricultural practice in the temperate semi-arid Loess Plateau of China. However, how beneficial soil microbes, arbuscular mycorrhizal (AM) fungi in particular, respond to the PFM practice is not known. Here, a field experiment was performed to study the effects of a 3-month short-term PFM practice on AM fungi in plots planted with spring wheat (Triticum aestivum L. cv. Dingxi-2) in the Loess Plateau. AM colonization, spore density, wheat spike weight, and grain phosphorus (P) content were significantly increased in the PFM treatments, and these changes were mainly attributable to changes in soil properties such as available P and soil moisture. Alkaline phosphatase activity was significantly higher in PFM soils, but levels of AM fungal-related glomalin were similar between treatments. A total of nine AM fungal phylotypes were detected in root samples based on AM fungal SSU rDNA analyses, with six and five phylotypes in PFM and no-PFM plots, respectively. Although AM fungal phylotype richness was not statistically different between treatments, the community compositions were different, with four and three specific phylotypes in the PFM and no-PFM plots, respectively. A significant and rapid change in AM fungal, wheat, and soil variables following PFM suggested that the functioning of the AM symbiosis had been changed in the wheat field under PFM. Future studies are needed to investigate whether PFM applied over a longer term has a similar effect on the AM fungal community and their functioning in an agricultural ecosystem.

  8. Similar processes but different environmental filters for soil bacterial and fungal community composition turnover on a broad spatial scale.

    PubMed

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P A; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landescommunities' composition turnovers. The relative importance of processes and filters was assessed by distance-based redundancy analysis. This study demonstrates significant community composition turnover rates for soil bacteria and fungi, which were dependent on the region. Bacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at coarse (80 to

  9. Comparison of pectin-degrading fungal communities in temperate forests using glycosyl hydrolase family 28 pectinase primers targeting Ascomycete fungi.

    PubMed

    Gacura, Matthew D; Sprockett, Daniel D; Heidenreich, Bess; Blackwood, Christopher B

    2016-04-01

    Fungi have developed a wide assortment of enzymes to break down pectin, a prevalent polymer in plant cell walls that is important in plant defense and structure. One enzyme family used to degrade pectin is the glycosyl hydrolase family 28 (GH28). In this study we developed primers for the amplification of GH28 coding genes from a database of 293 GH28 sequences from 40 fungal genomes. The primers were used to successfully amplify GH28 pectinases from all Ascomycota cultures tested, but only three out of seven Basidiomycota cultures. In addition, we further tested the primers in PCRs on metagenomic DNA extracted from senesced tree leaves from different forest ecosystems, followed by cloning and sequencing. Taxonomic specificity for Ascomycota GH28 genes was tested by comparing GH28 composition in leaves to internal transcribed spacer (ITS) amplicon composition using pyrosequencing. All sequences obtained from GH28 primers were classified as Ascomycota; in contrast, ITS sequences indicated that fungal communities were up to 39% Basidiomycetes. Analysis of leaf samples indicated that both forest stand and ecosystem type were important in structuring fungal communities. However, site played the prominent role in explaining GH28 composition, whereas ecosystem type was more important for ITS composition, indicating possible genetic drift between populations of fungi. Overall, these primers will have utility in understanding relationships between fungal community composition and ecosystem processes, as well as detection of potentially pathogenic Ascomycetes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fungal communities from the calcareous deep-sea sediments in the Southwest India Ridge revealed by Illumina sequencing technology.

    PubMed

    Zhang, Likui; Kang, Manyu; Huang, Yangchao; Yang, Lixiang

    2016-05-01

    The diversity and ecological significance of bacteria and archaea in deep-sea environments have been thoroughly investigated, but eukaryotic microorganisms in these areas, such as fungi, are poorly understood. To elucidate fungal diversity in calcareous deep-sea sediments in the Southwest India Ridge (SWIR), the internal transcribed spacer (ITS) regions of rRNA genes from two sediment metagenomic DNA samples were amplified and sequenced using the Illumina sequencing platform. The results revealed that 58-63 % and 36-42 % of the ITS sequences (97 % similarity) belonged to Basidiomycota and Ascomycota, respectively. These findings suggest that Basidiomycota and Ascomycota are the predominant fungal phyla in the two samples. We also found that Agaricomycetes, Leotiomycetes, and Pezizomycetes were the major fungal classes in the two samples. At the species level, Thelephoraceae sp. and Phialocephala fortinii were major fungal species in the two samples. Despite the low relative abundance, unidentified fungal sequences were also observed in the two samples. Furthermore, we found that there were slight differences in fungal diversity between the two sediment samples, although both were collected from the SWIR. Thus, our results demonstrate that calcareous deep-sea sediments in the SWIR harbor diverse fungi, which augment the fungal groups in deep-sea sediments. This is the first report of fungal communities in calcareous deep-sea sediments in the SWIR revealed by Illumina sequencing.

  11. Macro and Microelements Drive Diversity and Composition of Prokaryotic and Fungal Communities in Hypersaline Sediments and Saline-Alkaline Soils.

    PubMed

    Liu, Kaihui; Ding, Xiaowei; Tang, Xiaofei; Wang, Jianjun; Li, Wenjun; Yan, Qingyun; Liu, Zhenghua

    2018-01-01

    Understanding the effects of environmental factors on microbial communities is critical for microbial ecology, but it remains challenging. In this study, we examined the diversity (alpha diversity) and community compositions (beta diversity) of prokaryotes and fungi in hypersaline sediments and salinized soils from northern China. Environmental variables were highly correlated, but they differed significantly between the sediments and saline soils. The compositions of prokaryotic and fungal communities in the hypersaline sediments were different from those in adjacent saline-alkaline soils, indicating a habitat-specific microbial distribution pattern. The macroelements (S, P, K, Mg, and Fe) and Ca were, respectively, correlated closely with the alpha diversity of prokaryotes and fungi, while the macronutrients (e.g., Na, S, P, and Ca) were correlated with the prokaryotic and fungal beta-diversity ( P ≤ 0.05). And, the nine microelements (e.g., Al, Ba, Co, Hg, and Mn) and micronutrients (Ba, Cd, and Sr) individually shaped the alpha diversity of prokaryotes and fungi, while the six microelements (e.g., As, Ba, Cr, and Ge) and only the trace elements (Cr and Cu), respectively, influenced the beta diversity of prokaryotes and fungi ( P < 0.05). Variation-partitioning analysis (VPA) showed that environmental variables jointly explained 55.49% and 32.27% of the total variation for the prokaryotic and fungal communities, respectively. Together, our findings demonstrate that the diversity and community composition of the prokaryotes and fungi were driven by different macro and microelements in saline habitats, and that geochemical elements could more widely regulate the diversity and community composition of prokaryotes than these of fungi.

  12. Macro and Microelements Drive Diversity and Composition of Prokaryotic and Fungal Communities in Hypersaline Sediments and Saline–Alkaline Soils

    PubMed Central

    Liu, Kaihui; Ding, Xiaowei; Tang, Xiaofei; Wang, Jianjun; Li, Wenjun; Yan, Qingyun; Liu, Zhenghua

    2018-01-01

    Understanding the effects of environmental factors on microbial communities is critical for microbial ecology, but it remains challenging. In this study, we examined the diversity (alpha diversity) and community compositions (beta diversity) of prokaryotes and fungi in hypersaline sediments and salinized soils from northern China. Environmental variables were highly correlated, but they differed significantly between the sediments and saline soils. The compositions of prokaryotic and fungal communities in the hypersaline sediments were different from those in adjacent saline–alkaline soils, indicating a habitat-specific microbial distribution pattern. The macroelements (S, P, K, Mg, and Fe) and Ca were, respectively, correlated closely with the alpha diversity of prokaryotes and fungi, while the macronutrients (e.g., Na, S, P, and Ca) were correlated with the prokaryotic and fungal beta-diversity (P ≤ 0.05). And, the nine microelements (e.g., Al, Ba, Co, Hg, and Mn) and micronutrients (Ba, Cd, and Sr) individually shaped the alpha diversity of prokaryotes and fungi, while the six microelements (e.g., As, Ba, Cr, and Ge) and only the trace elements (Cr and Cu), respectively, influenced the beta diversity of prokaryotes and fungi (P < 0.05). Variation-partitioning analysis (VPA) showed that environmental variables jointly explained 55.49% and 32.27% of the total variation for the prokaryotic and fungal communities, respectively. Together, our findings demonstrate that the diversity and community composition of the prokaryotes and fungi were driven by different macro and microelements in saline habitats, and that geochemical elements could more widely regulate the diversity and community composition of prokaryotes than these of fungi. PMID:29535703

  13. Stress tolerance of soil fungal communities from native Atlantic forests, reforestations, and a sand mining degraded area.

    PubMed

    Ferreira, Paulo C; Pupin, Breno; Rangel, Drauzio E N

    2018-06-01

    Microorganisms are essential to the functionality of the soil, particularly in organic matter decomposition and nutrient cycling, which regulate plant productivity and shape the soil structure. However, biotic and abiotic stresses greatly disrupt soil fungal communities and, thereby, disturb the ecosystem. This study quantified seasonal tolerances to UV-B radiation and heat of fungal communities, which could be cultured, found in soil from two native Atlantic forest fragments called F1 and F2, five reforested areas (RA) planted in 1994, 1997, 2004, 2007, and 2009 with native species of the Atlantic forest, and one sand mining degraded soil (SMDS). The cold activity of the soil fungal communities (FC) from the eight different areas was also studied. Higher tolerance to UV-B radiation and heat was found in the FC from the SMDS and the 2009RA, where the incidence of heat and UV radiation from sun was more intense, which caused selection for fungal taxa that were more UV-B and heat tolerant in those areas. Conversely, the FC from the native forests and older reforested sites were very susceptible to heat and UV-B radiation. The cold activity of the soil FC from different areas of the study showed an erratic pattern of responses among the sampling sites. Little difference in tolerance to UV-B radiation and heat was found among the FC of soil samples collected in different seasons; in general soil FC collected in winter were less tolerant to UV-B radiation, but not for heat. In conclusion, FC from SMDS soil that receive intense heat and UV radiation, as well as with low nutrient availability, were more tolerant to both UV-B radiation and heat. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Deep Ion Torrent sequencing identifies soil fungal community shifts after frequent prescribed fires in a southeastern US forest ecosystem.

    PubMed

    Brown, Shawn P; Callaham, Mac A; Oliver, Alena K; Jumpponen, Ari

    2013-12-01

    Prescribed burning is a common management tool to control fuel loads, ground vegetation, and facilitate desirable game species. We evaluated soil fungal community responses to long-term prescribed fire treatments in a loblolly pine forest on the Piedmont of Georgia and utilized deep Internal Transcribed Spacer Region 1 (ITS1) amplicon sequencing afforded by the recent Ion Torrent Personal Genome Machine (PGM). These deep sequence data (19,000 + reads per sample after subsampling) indicate that frequent fires (3-year fire interval) shift soil fungus communities, whereas infrequent fires (6-year fire interval) permit system resetting to a state similar to that without prescribed fire. Furthermore, in nonmetric multidimensional scaling analyses, primarily ectomycorrhizal taxa were correlated with axes associated with long fire intervals, whereas soil saprobes tended to be correlated with the frequent fire recurrence. We conclude that (1) multiplexed Ion Torrent PGM analyses allow deep cost effective sequencing of fungal communities but may suffer from short read lengths and inconsistent sequence quality adjacent to the sequencing adaptor; (2) frequent prescribed fires elicit a shift in soil fungal communities; and (3) such shifts do not occur when fire intervals are longer. Our results emphasize the general responsiveness of these forests to management, and the importance of fire return intervals in meeting management objectives. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition.

    PubMed

    Baldrian, Petr; Kolařík, Miroslav; Stursová, Martina; Kopecký, Jan; Valášková, Vendula; Větrovský, Tomáš; Zifčáková, Lucia; Snajdr, Jaroslav; Rídl, Jakub; Vlček, Cestmír; Voříšková, Jana

    2012-02-01

    Soils of coniferous forest ecosystems are important for the global carbon cycle, and the identification of active microbial decomposers is essential for understanding organic matter transformation in these ecosystems. By the independent analysis of DNA and RNA, whole communities of bacteria and fungi and its active members were compared in topsoil of a Picea abies forest during a period of organic matter decomposition. Fungi quantitatively dominate the microbial community in the litter horizon, while the organic horizon shows comparable amount of fungal and bacterial biomasses. Active microbial populations obtained by RNA analysis exhibit similar diversity as DNA-derived populations, but significantly differ in the composition of microbial taxa. Several highly active taxa, especially fungal ones, show low abundance or even absence in the DNA pool. Bacteria and especially fungi are often distinctly associated with a particular soil horizon. Fungal communities are less even than bacterial ones and show higher relative abundances of dominant species. While dominant bacterial species are distributed across the studied ecosystem, distribution of dominant fungi is often spatially restricted as they are only recovered at some locations. The sequences of cbhI gene encoding for cellobiohydrolase (exocellulase), an essential enzyme for cellulose decomposition, were compared in soil metagenome and metatranscriptome and assigned to their producers. Litter horizon exhibits higher diversity and higher proportion of expressed sequences than organic horizon. Cellulose decomposition is mediated by highly diverse fungal populations largely distinct between soil horizons. The results indicate that low-abundance species make an important contribution to decomposition processes in soils.

  16. Testing Potential Effects of Maize Expressing the Bacillus thuringiensis Cry1Ab Endotoxin (Bt Maize) on Mycorrhizal Fungal Communities via DNA- and RNA-Based Pyrosequencing and Molecular Fingerprinting

    PubMed Central

    Kuramae, Eiko E.; Hillekens, Remy; de Hollander, Mattias; Kiers, E. Toby; Röling, Wilfred F. M.; Kowalchuk, George A.; van der Heijden, Marcel G. A.

    2012-01-01

    The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF. PMID:22885748

  17. Similar Processes but Different Environmental Filters for Soil Bacterial and Fungal Community Composition Turnover on a Broad Spatial Scale

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P. A.; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landescommunity composition turnover rates for soil bacteria and fungi, which were dependent on the region. Bacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at coarse (80 to

  18. Ectomycorrhizal fungal associates of Pinus contorta in soils associated with a hot spring in Norris Geyser Basin, Yellowstone National Park, Wyoming

    NASA Technical Reports Server (NTRS)

    Cullings, K.; Makhija, S.

    2001-01-01

    Molecular methods and comparisons of fruiting patterns (i.e., presence or absence of fungal fruiting bodies in different soil types) were used to determine ectomycorrhizal (EM) associates of Pinus contorta in soils associated with a thermal soil classified as ultra-acidic to extremely acidic (pH 2 to 4). EM were sampled by obtaining 36 soil cores from six paired plots (three cores each) of both thermal soils and forest soils directly adjacent to the thermal area. Fruiting bodies (mushrooms) were collected for molecular identification and to compare fruiting body (above-ground) diversity to below-ground diversity. Our results indicate (i) that there were significant decreases in both the level of EM infection (130 +/- 22 EM root tips/core in forest soil; 68 +/- 22 EM root tips/core in thermal soil) and EM fungal species richness (4.0 +/- 0.5 species/core in forest soil; 1.2 +/- 0.2 species/core in thermal soil) in soils associated with the thermal feature; (ii) that the EM mycota of thermal soils was comprised of a small set of dominant species and included very few rare species, while the EM mycota of forest soils contained a few dominant species and several rare EM fungal species; (iii) that Dermocybe phoenecius and a species of Inocybe, which was rare in forest soils, were the dominant EM fungal species in thermal soils; (iv) that other than the single Inocybe species, there was no overlap in the EM fungal communities of the forest and thermal soils; and (v) that the fungal species forming the majority of the above-ground fruiting structures in thermal soils (Pisolithus tinctorius, which is commonly used in remediation of acid soils) was not detected on a single EM root tip in either type of soil. Thus, P. tinctorius may have a different role in these thermal soils. Our results suggest that this species may not perform well in remediation of all acid soils and that factors such as pH, soil temperature, and soil chemistry may interact to influence EM fungal

  19. Effects of forest management practices in temperate beech forests on bacterial and fungal communities involved in leaf litter degradation.

    PubMed

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Jariyavidyanont, Katalee; Kaunzner, Jennifer; Juncheed, Kantida; Uengwetwanit, Tanaporn; Rudloff, Renate; Schulz, Elke; Hofrichter, Martin; Schloter, Michael; Krüger, Dirk; Buscot, François

    2015-05-01

    Forest management practices (FMPs) significantly influence important ecological processes and services in Central European forests, such as leaf litter decomposition and nutrient cycling. Changes in leaf litter diversity, and thus, its quality as well as microbial community structure and function induced by different FMPs were hypothesized to be the main drivers causing shifts in decomposition rates and nutrient release in managed forests. In a litterbag experiment lasting 473 days, we aimed to investigate the effects of FMPs (even-aged timber management, selective logging and unmanaged) on bacterial and fungal communities involved in leaf litter degradation over time. Our results showed that microbial communities in leaf litter were strongly influenced by both FMPs and sampling date. The results from nonmetric multidimensional scaling (NMDS) ordination revealed distinct patterns of bacterial and fungal successions over time in leaf litter. We demonstrated that FMPs and sampling dates can influence a range of factors, including leaf litter quality, microbial macronutrients, and pH, which significantly correlate with microbial community successions.

  20. Resource availability controls fungal diversity across a plant diversity gradient

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.; Blackwood, C.B.; Curtis, C.D.; Tilman, D.

    2006-01-01

    Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales. ?? 2006 Blackwell Publishing Ltd/CNRS.

  1. Host-Specialist Dominated Ectomycorrhizal Communities of Pinus cembra are not Affected by Temperature Manipulation

    PubMed Central

    Rainer, Georg; Kuhnert, Regina; Unterholzer, Mara; Dresch, Philipp; Gruber, Andreas; Peintner, Ursula

    2015-01-01

    Ectomycorrhizae (EM) are important for the survival of seedlings and trees, but how they will react to global warming or changes in soil fertility is still in question. We tested the effect of soil temperature manipulation and nitrogen fertilization on EM communities in a high-altitude Pinus cembra afforestation. The trees had been inoculated in the 1960s in a nursery with a mixture of Suillus placidus, S. plorans and S. sibircus. Sampling was performed during the third year of temperature manipulation in June and October 2013. Root tips were counted, sorted into morphotypes, and sequenced. Fungal biomass was measured as ergosterol and hyphal length. The EM potential of the soil was assessed with internal transcribed spacers (ITS) clone libraries from in-growth mesh bags (MB). Temperature manipulation of ± 1 °C had no effect on the EM community. A total of 33 operational taxonomic units (OTUs) were identified, 20 from the roots, 13 from MB. The inoculated Suillus spp. colonized 82% of the root tips, thus demonstrating that the inoculation was sustainable. Nitrogen fertilization had no impact on the EM community, but promoted depletion in soil organic matter, and caused a reduction in soil fungal biomass. PMID:29376899

  2. Invasive fungal infections after natural disasters.

    PubMed

    Benedict, Kaitlin; Park, Benjamin J

    2014-03-01

    The link between natural disasters and subsequent fungal infections in disaster-affected persons has been increasingly recognized. Fungal respiratory conditions associated with disasters include coccidioidomycosis, and fungi are among several organisms that can cause near-drowning pneumonia. Wound contamination with organic matter can lead to post-disaster skin and soft tissue fungal infections, notably mucormycosis. The role of climate change in the environmental growth, distribution, and dispersal mechanisms of pathogenic fungi is not fully understood; however, ongoing climate change could lead to increased disaster-associated fungal infections. Fungal infections are an often-overlooked clinical and public health issue, and increased awareness by health care providers, public health professionals, and community members regarding disaster-associated fungal infections is needed.

  3. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape

    PubMed Central

    Zimmerman, Naupaka B.; Vitousek, Peter M.

    2012-01-01

    We surveyed endophytic fungal communities in leaves of a single tree species (Metrosideros polymorpha) across wide environmental gradients (500–5,500 mm of rain/y; 10–22 °C mean annual temperature) spanning short geographic distances on Mauna Loa Volcano, Hawai’i. Using barcoded amplicon pyrosequencing at 13 sites (10 trees/site; 10 leaves/tree), we found very high levels of diversity within sites (a mean of 551 ± 134 taxonomic units per site). However, among-site diversity contributed even more than did within-site diversity to the overall richness of more than 4,200 taxonomic units observed in M. polymorpha, and this among-site variation in endophyte community composition correlated strongly with temperature and rainfall. These results are consistent with suggestions that foliar endophytic fungi are hyperdiverse. They further suggest that microbial diversity may be even greater than has been assumed and that broad-scale environmental controls such as temperature and rainfall can structure eukaryotic microbial diversity. Appropriately constrained study systems across strong environmental gradients present a useful means to understand the environmental factors that structure the diversity of microbial communities. PMID:22837398

  4. Convergent bacterial microbiotas in the fungal agricultural systems of insects.

    PubMed

    Aylward, Frank O; Suen, Garret; Biedermann, Peter H W; Adams, Aaron S; Scott, Jarrod J; Malfatti, Stephanie A; Glavina del Rio, Tijana; Tringe, Susannah G; Poulsen, Michael; Raffa, Kenneth F; Klepzig, Kier D; Currie, Cameron R

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes. The cultivation of fungi for food is a behavior that has evolved independently in ants, beetles, and termites and has enabled many species of these insects to become ecologically important and widely distributed herbivores and forest pests. Although the primary fungal cultivars of these insects have been studied for decades, comparatively little is known of their bacterial microbiota. In this study, we show that diverse fungus-growing insects are associated with a common bacterial community composed of the

  5. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    PubMed Central

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; Tiedje, James M.

    2016-01-01

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungal community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation. PMID:27313569

  6. A High-Level Fungal Diversity in the Intertidal Sediment of Chinese Seas Presents the Spatial Variation of Community Composition.

    PubMed

    Li, Wei; Wang, Mengmeng; Bian, Xiaomeng; Guo, Jiajia; Cai, Lei

    2016-01-01

    The intertidal region is one of the most dynamic environments in the biosphere, which potentially supports vast biodiversity. Fungi have been found to play important roles in marine ecosystems, e.g., as parasites or symbionts of plants and animals, and as decomposers of organic materials. The fungal diversity in intertidal region, however, remains poorly understood. In this study, sediment samples from various intertidal habitats of Chinese seas were collected and investigated for determination of fungal community and spatial distribution. Through ribosomal RNA internal transcribed spacer-2 (ITS2) metabarcoding, a high-level fungal diversity was revealed, as represented by 6,013 OTUs that spanned six phyla, 23 classes, 84 orders and 526 genera. The presence of typical decomposers (e.g., Corollospora in Ascomycota and Lepiota in Basidiomycota) and pathogens (e.g., Olpidium in Chytriomycota, Actinomucor in Zygomycota and unidentified Rozellomycota spp.), and even mycorrhizal fungi (e.g., Glomus in Glomeromycota) indicated a complicated origin of intertidal fungi. Interestingly, a small proportion of sequences were classified to obligate marine fungi (e.g., Corollospora, Lignincola, Remispora, Sigmoidea ). Our data also showed that the East China Sea significantly differed from other regions in terms of species richness and community composition, indicating a profound effect of the huge discharge of the Yangtze River. No significant difference in fungal communities was detected, however, among habitat types (i.e., aquaculture, dock, plant, river mouth and tourism). These observations raise further questions on adaptation of these members to environments and the ecological functions they probably perform.

  7. A High-Level Fungal Diversity in the Intertidal Sediment of Chinese Seas Presents the Spatial Variation of Community Composition

    PubMed Central

    Li, Wei; Wang, Mengmeng; Bian, Xiaomeng; Guo, Jiajia; Cai, Lei

    2016-01-01

    The intertidal region is one of the most dynamic environments in the biosphere, which potentially supports vast biodiversity. Fungi have been found to play important roles in marine ecosystems, e.g., as parasites or symbionts of plants and animals, and as decomposers of organic materials. The fungal diversity in intertidal region, however, remains poorly understood. In this study, sediment samples from various intertidal habitats of Chinese seas were collected and investigated for determination of fungal community and spatial distribution. Through ribosomal RNA internal transcribed spacer-2 (ITS2) metabarcoding, a high-level fungal diversity was revealed, as represented by 6,013 OTUs that spanned six phyla, 23 classes, 84 orders and 526 genera. The presence of typical decomposers (e.g., Corollospora in Ascomycota and Lepiota in Basidiomycota) and pathogens (e.g., Olpidium in Chytriomycota, Actinomucor in Zygomycota and unidentified Rozellomycota spp.), and even mycorrhizal fungi (e.g., Glomus in Glomeromycota) indicated a complicated origin of intertidal fungi. Interestingly, a small proportion of sequences were classified to obligate marine fungi (e.g., Corollospora, Lignincola, Remispora, Sigmoidea). Our data also showed that the East China Sea significantly differed from other regions in terms of species richness and community composition, indicating a profound effect of the huge discharge of the Yangtze River. No significant difference in fungal communities was detected, however, among habitat types (i.e., aquaculture, dock, plant, river mouth and tourism). These observations raise further questions on adaptation of these members to environments and the ecological functions they probably perform. PMID:28066402

  8. Redefining the Chronic-Wound Microbiome: Fungal Communities Are Prevalent, Dynamic, and Associated with Delayed Healing

    PubMed Central

    Kalan, Lindsay; Loesche, Michael; Hodkinson, Brendan P.; Heilmann, Kristopher; Ruthel, Gordon

    2016-01-01

    ABSTRACT Chronic nonhealing wounds have been heralded as a silent epidemic, causing significant morbidity and mortality especially in elderly, diabetic, and obese populations. Polymicrobial biofilms in the wound bed are hypothesized to disrupt the highly coordinated and sequential events of cutaneous healing. Both culture-dependent and -independent studies of the chronic-wound microbiome have almost exclusively focused on bacteria, omitting what we hypothesize are important fungal contributions to impaired healing and the development of complications. Here we show for the first time that fungal communities (the mycobiome) in chronic wounds are predictive of healing time, associated with poor outcomes, and form mixed fungal-bacterial biofilms. We longitudinally profiled 100, nonhealing diabetic-foot ulcers with high-throughput sequencing of the pan-fungal internal transcribed spacer 1 (ITS1) locus, estimating that up to 80% of wounds contain fungi, whereas cultures performed in parallel captured only 5% of colonized wounds. The “mycobiome” was highly heterogeneous over time and between subjects. Fungal diversity increased with antibiotic administration and onset of a clinical complication. The proportions of the phylum Ascomycota were significantly greater (P = 0.015) at the beginning of the study in wounds that took >8 weeks to heal. Wound necrosis was distinctly associated with pathogenic fungal species, while taxa identified as allergenic filamentous fungi were associated with low levels of systemic inflammation. Directed culturing of wounds stably colonized by pathogens revealed that interkingdom biofilms formed between yeasts and coisolated bacteria. Combined, our analyses provide enhanced resolution of the mycobiome during impaired wound healing, its role in chronic disease, and impact on clinical outcomes. PMID:27601572

  9. Nitrogen Deposition Reduces Decomposition Rates Through Shifts in Microbial Community Composition and Function

    NASA Astrophysics Data System (ADS)

    Waldrop, M.; Zak, D.; Sinsabaugh, R.

    2002-12-01

    Atmospheric nitrogen (N) deposition may alter soil biological activity in northern hardwood forests by repressing phenol oxidase enzyme activity and altering microbial community composition, thereby slowing decomposition and increasing the export of phenolic compounds. We tested this hypothesis by adding 13C-labelled cellobiose, vanillin, and catechol to control and N fertilized soils (30 and 80 kg ha-1) collected from three forests; two dominated by Acer Saccharum and one dominated by Quercus Alba and Quercus Velutina. While N deposition increased total microbial respiration, it decreased soil oxidative enzyme activities, resulting in slower degradation rates of all compounds, and larger DOC pools. This effect was larger in the oak forest, where fungi dominate C-cycling processes. DNA and 13C-phospolipid analyses showed that N addition altered the fungal community and reduced the activity of fungal and bacterial populations in soil, potentially explaining reduced soil enzyme activities and incomplete decomposition.

  10. High-Throughput Sequencing of Microbial Community Diversity and Dynamics during Douchi Fermentation.

    PubMed

    Yang, Lin; Yang, Hui-Lin; Tu, Zong-Cai; Wang, Xiao-Lan

    2016-01-01

    Douchi is a type of Chinese traditional fermented food that is an important source of protein and is used in flavouring ingredients. The end product is affected by the microbial community present during fermentation, but exactly how microbes influence the fermentation process remains poorly understood. We used an Illumina MiSeq approach to investigate bacterial and fungal community diversity during both douchi-koji making and fermentation. A total of 181,443 high quality bacterial 16S rRNA sequences and 221,059 high quality fungal internal transcribed spacer reads were used for taxonomic classification, revealing eight bacterial and three fungal phyla. Firmicutes, Actinobacteria and Proteobacteria were the dominant bacterial phyla, while Ascomycota and Zygomycota were the dominant fungal phyla. At the genus level, Staphylococcus and Weissella were the dominant bacteria, while Aspergillus and Lichtheimia were the dominant fungi. Principal coordinate analysis showed structural separation between the composition of bacteria in koji making and fermentation. However, multivariate analysis of variance based on unweighted UniFrac distances did identify distinct differences (p <0.05), and redundancy analysis identified two key genera that are largely responsible for the differences in bacterial composition between the two steps. Staphylococcus was enriched in koji making, while Corynebacterium was enriched in fermentation. This is the first investigation to integrate douchi fermentation and koji making and fermentation processes through this technological approach. The results provide insight into the microbiome of the douchi fermentation process, and reveal a structural separation that may be stratified by the environment during the production of this traditional fermented food.

  11. High-Throughput Sequencing of Microbial Community Diversity and Dynamics during Douchi Fermentation

    PubMed Central

    Tu, Zong-cai; Wang, Xiao-lan

    2016-01-01

    Douchi is a type of Chinese traditional fermented food that is an important source of protein and is used in flavouring ingredients. The end product is affected by the microbial community present during fermentation, but exactly how microbes influence the fermentation process remains poorly understood. We used an Illumina MiSeq approach to investigate bacterial and fungal community diversity during both douchi-koji making and fermentation. A total of 181,443 high quality bacterial 16S rRNA sequences and 221,059 high quality fungal internal transcribed spacer reads were used for taxonomic classification, revealing eight bacterial and three fungal phyla. Firmicutes, Actinobacteria and Proteobacteria were the dominant bacterial phyla, while Ascomycota and Zygomycota were the dominant fungal phyla. At the genus level, Staphylococcus and Weissella were the dominant bacteria, while Aspergillus and Lichtheimia were the dominant fungi. Principal coordinate analysis showed structural separation between the composition of bacteria in koji making and fermentation. However, multivariate analysis of variance based on unweighted UniFrac distances did identify distinct differences (p <0.05), and redundancy analysis identified two key genera that are largely responsible for the differences in bacterial composition between the two steps. Staphylococcus was enriched in koji making, while Corynebacterium was enriched in fermentation. This is the first investigation to integrate douchi fermentation and koji making and fermentation processes through this technological approach. The results provide insight into the microbiome of the douchi fermentation process, and reveal a structural separation that may be stratified by the environment during the production of this traditional fermented food. PMID:27992473

  12. [Diversity and tissue distribution of fungal endophytes in Alpinia officinarum: an important south-China medicinal plant].

    PubMed

    Zhou, Ren-Chao; Huang, Juan; Li, Ze-En; Li, Shu-Bin

    2014-08-01

    In the present study, terminal-restriction fragment length polymorphism (T-RFLP) technique was applied to assess the diversity and tissue distribution of the fungal endophyte communities of Alpinia officinarum collected from Longtang town in Xuwen county, Guangdong province, China, at which the pharmacological effect of the medicine plant is traditional considered to be the significantly higher than that in any other growth areas in China. A total of 28 distinct Terminal-Restriction Fragment (T-RFs) were detected with HhaI Mono-digestion targeted amplified fungal nuclear ribosomal internal transcribed spacer region sequences (rDNA ITS) from the root, rhizome, stem, and leaf internal tissues of A. officinarum plant, indicating that at least 28 distinct fungal species were able to colonize the internal tissue of the host plant. The rDNA ITS-T-RFLP profiles obtained from different tissues of the host plant were obvious distinct. And the numbers of total T-RFs, and the dominant T-RFs detected from various tissues were significantly different. Based on the obtained T-RFLP profiles, Shannon's diversity index and the Shannon's evenness index were calculated, which were significantly different among tissues (P < 0.05). Furthermore, two types of active chemicals, total volatile oils by water vapor distillation method and galangin by methanol extraction-HPLC method, were examined in the each tissue of the tested plant. Both of tested components were detected in all of the four tissues of the medicine plant with varying contents. And the highest was in rhizome tissue. Correlation analysis revealed there were significant negative correlations between both of the tested active components contents and calculated Shannon's diversity index, as well as the Shannon's evenness index of the fungal endophyte communities of the host plant (P = 0, Pearson correlation coefficient ≤ -0.962), and significant positive correlations between both of the tested active components contents and

  13. Fueling the Future with Fungal Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have beenmore » sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.« less

  14. Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil

    PubMed Central

    Krüger, Claudia; Kohout, Petr; Janoušková, Martina; Püschel, David; Frouz, Jan; Rydlová, Jana

    2017-01-01

    Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age. PMID:28473828

  15. Combined Effects of Dissolved Nutrients and Oxygen on Plant Litter Decomposition and Associated Fungal Communities.

    PubMed

    Gomes, Patrícia Pereira; Ferreira, Verónica; Tonin, Alan M; Medeiros, Adriana Oliveira; Júnior, José Francisco Gonçalves

    2018-05-01

    Aquatic ecosystems worldwide have been substantially altered by human activities, which often induce changes in multiple factors that can interact to produce complex effects. Here, we evaluated the combined effects of dissolved nutrients (nitrogen [N] and phosphorus [P]; three levels: concentration found in oligotrophic streams in the Cerrado biome, 10× and 100× enriched) and oxygen (O 2 ; three levels: hypoxic [4% O 2 ], depleted [55% O 2 ], and saturated [96% O 2 ]) on plant litter decomposition and associated fungal decomposers in laboratory microcosms simulating stream conditions under distinct scenarios of water quality deterioration. Senescent leaves of Maprounea guianensis were incubated for 10 days in an oligotrophic Cerrado stream to allow microbial colonization and subsequently incubated in microcosms for 21 days. Leaves lost 1.1-3.0% of their initial mass after 21 days, and this was not affected either by nutrients or oxygen levels. When considering simultaneous changes in nutrients and oxygen concentrations, simulating increased human pressure, fungal biomass accumulation, and sporulation rates were generally inhibited. Aquatic hyphomycete community structure was also affected by changes in nutrients and oxygen availability, with stronger effects found in hypoxic treatments than in depleted or saturated oxygen treatments. This study showed that the effects of simultaneous changes in the availability of dissolved nutrients and oxygen in aquatic environments can influence the activity and composition of fungal communities, although these effects were not translated into changes in litter decomposition rates.

  16. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity.

    PubMed

    Illeghems, Koen; De Vuyst, Luc; Papalexandratou, Zoi; Weckx, Stefan

    2012-01-01

    This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly γ-Proteobacteria) and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni). Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques.

  17. Fungal Genetics and Functional Diversity of Microbial Communities in the Soil under Long-Term Monoculture of Maize Using Different Cultivation Techniques

    PubMed Central

    Gałązka, Anna; Grządziel, Jarosław

    2018-01-01

    Fungal diversity in the soil may be limited under natural conditions by inappropriate environmental factors such as: nutrient resources, biotic and abiotic factors, tillage system and microbial interactions that prevent the occurrence or survival of the species in the environment. The aim of this paper was to determine fungal genetic diversity and community level physiological profiling of microbial communities in the soil under long-term maize monoculture. The experimental scheme involved four cultivation techniques: direct sowing (DS), reduced tillage (RT), full tillage (FT), and crop rotation (CR). Soil samples were taken in two stages: before sowing of maize (DSBS-direct sowing, RTBS-reduced tillage, FTBS-full tillage, CRBS-crop rotation) and the flowering stage of maize growth (DSF-direct sowing, RTF-reduced tillage, FTF-full tillage, CRF-crop rotation). The following plants were used in the crop rotation: spring barley, winter wheat and maize. The study included fungal genetic diversity assessment by ITS-1 next generation sequencing (NGS) analyses as well as the characterization of the catabolic potential of microbial communities (Biolog EcoPlates) in the soil under long-term monoculture of maize using different cultivation techniques. The results obtained from the ITS-1 NGS technique enabled to classify and correlate the fungi species or genus to the soil metabolome. The research methods used in this paper have contributed to a better understanding of genetic diversity and composition of the population of fungi in the soil under the influence of the changes that have occurred in the soil under long-term maize cultivation. In all cultivation techniques, the season had a great influence on the fungal genetic structure in the soil. Significant differences were found on the family level (P = 0.032, F = 3.895), genus level (P = 0.026, F = 3.313) and on the species level (P = 0.033, F = 2.718). This study has shown that: (1) fungal diversity was changed under the

  18. Ecosystem and Community Responses to Rainfall Manipulations in Shrublands Depends on Dominant Vegetation Cover

    NASA Astrophysics Data System (ADS)

    Esch, E. H.; Lipson, D.; Kim, J. B.; Cleland, E. E.

    2014-12-01

    Southern California is predicted to face decreasing precipitation with increased interannual variability in the coming century. Native shrublands in this area are increasingly invaded by exotic annual grasses, though invasion dynamics can vary by rainfall scenario, with wet years generally associated with high invasion pressure. Interplay between rainfall and invasion scenarios can influence carbon stocks and community composition. Here we asked how invasion alters ecosystem and community responses in drought versus high rainfall scenarios, as quantified by community identity, biomass production, and the normalized difference vegetation index (NDVI). To do this, we performed a rainfall manipulation experiment with paired plots dominated either by native shrubs or exotic herbaceous species, subjected to treatments of 50%, 100%, or 150% of ambient rainfall. The study site was located in a coastal sage scrub ecosystem, with patches dominated by native shrubs and exotic grasses located in San Diego County, USA. During two growing seasons, we found that native, herbaceous biomass production was significantly affected by rainfall treatment (p<0.05 for both years), though was not affected by dominant community composition. Photosynthetic biomass production of shrub species also varied by treatment (p=0.035). Exotic biomass production showed a significant interaction between dominant community composition and rainfall treatment, and both individual effects (p<0.001 for all). NDVI showed similar results, but also indicated the importance of rainfall timing on overall biomass production between years. Community composition data showed certain species, of both native and exotic identities, segregating by treatment. These results indicate that exotic species are more sensitive to rainfall, and that increased rainfall may promote greater carbon storage in annual dominated communities when compared to shrub dominated communities in high rainfall years, but with drought, this

  19. Invasive Fungal Infections after Natural Disasters

    PubMed Central

    Benedict, Kaitlin

    2014-01-01

    The link between natural disasters and subsequent fungal infections in disaster-affected persons has been increasingly recognized. Fungal respiratory conditions associated with disasters include coccidioidomycosis, and fungi are among several organisms that can cause near-drowning pneumonia. Wound contamination with organic matter can lead to post-disaster skin and soft tissue fungal infections, notably mucormycosis. The role of climate change in the environmental growth, distribution, and dispersal mechanisms of pathogenic fungi is not fully understood; however, ongoing climate change could lead to increased disaster-associated fungal infections. Fungal infections are an often-overlooked clinical and public health issue, and increased awareness by health care providers, public health professionals, and community members regarding disaster-associated fungal infections is needed. PMID:24565446

  20. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska

    PubMed Central

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-01-01

    Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. PMID:25156129

  1. Evaluating the Impact of DNA Extraction Method on the Representation of Human Oral Bacterial and Fungal Communities

    PubMed Central

    Biswas, Kristi; Taylor, Michael W.; Gear, Kim

    2017-01-01

    The application of high-throughput, next-generation sequencing technologies has greatly improved our understanding of the human oral microbiome. While deciphering this diverse microbial community using such approaches is more accurate than traditional culture-based methods, experimental bias introduced during critical steps such as DNA extraction may compromise the results obtained. Here, we systematically evaluate four commonly used microbial DNA extraction methods (MoBio PowerSoil® DNA Isolation Kit, QIAamp® DNA Mini Kit, Zymo Bacterial/Fungal DNA Mini PrepTM, phenol:chloroform-based DNA isolation) based on the following criteria: DNA quality and yield, and microbial community structure based on Illumina amplicon sequencing of the V3–V4 region of the 16S rRNA gene of bacteria and the internal transcribed spacer (ITS) 1 region of fungi. Our results indicate that DNA quality and yield varied significantly with DNA extraction method. Representation of bacterial genera in plaque and saliva samples did not significantly differ across DNA extraction methods and DNA extraction method showed no effect on the recovery of fungal genera from plaque. By contrast, fungal diversity from saliva was affected by DNA extraction method, suggesting that not all protocols are suitable to study the salivary mycobiome. PMID:28099455

  2. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists

    PubMed Central

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0–7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils. PMID

  3. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists.

    PubMed

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun; Ezawa, Tatsuhiro

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0-7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils.

  4. Mycobiome of the Bat White Nose Syndrome Affected Caves and Mines Reveals Diversity of Fungi and Local Adaptation by the Fungal Pathogen Pseudogymnoascus (Geomyces) destructans

    PubMed Central

    Rajkumar, Sunanda S.; Li, Xiaojiang; Okoniewski, Joseph C.; Hicks, Alan C.; Davis, April D.; Broussard, Kelly; LaDeau, Shannon L.; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2014-01-01

    Current investigations of bat White Nose Syndrome (WNS) and the causative fungus Pseudogymnoascus (Geomyces) destructans (Pd) are intensely focused on the reasons for the appearance of the disease in the Northeast and its rapid spread in the US and Canada. Urgent steps are still needed for the mitigation or control of Pd to save bats. We hypothesized that a focus on fungal community would advance the understanding of ecology and ecosystem processes that are crucial in the disease transmission cycle. This study was conducted in 2010–2011 in New York and Vermont using 90 samples from four mines and two caves situated within the epicenter of WNS. We used culture-dependent (CD) and culture-independent (CI) methods to catalogue all fungi (‘mycobiome’). CD methods included fungal isolations followed by phenotypic and molecular identifications. CI methods included amplification of DNA extracted from environmental samples with universal fungal primers followed by cloning and sequencing. CD methods yielded 675 fungal isolates and CI method yielded 594 fungal environmental nucleic acid sequences (FENAS). The core mycobiome of WNS comprised of 136 operational taxonomic units (OTUs) recovered in culture and 248 OTUs recovered in clone libraries. The fungal community was diverse across the sites, although a subgroup of dominant cosmopolitan fungi was present. The frequent recovery of Pd (18% of samples positive by culture) even in the presence of dominant, cosmopolitan fungal genera suggests some level of local adaptation in WNS-afflicted habitats, while the extensive distribution of Pd (48% of samples positive by real-time PCR) suggests an active reservoir of the pathogen at these sites. These findings underscore the need for integrated disease control measures that target both bats and Pd in the hibernacula for the control of WNS. PMID:25264864

  5. Mycobiome of the bat white nose syndrome affected caves and mines reveals diversity of fungi and local adaptation by the fungal pathogen Pseudogymnoascus (Geomyces) destructans.

    PubMed

    Zhang, Tao; Victor, Tanya R; Rajkumar, Sunanda S; Li, Xiaojiang; Okoniewski, Joseph C; Hicks, Alan C; Davis, April D; Broussard, Kelly; LaDeau, Shannon L; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2014-01-01

    Current investigations of bat White Nose Syndrome (WNS) and the causative fungus Pseudogymnoascus (Geomyces) destructans (Pd) are intensely focused on the reasons for the appearance of the disease in the Northeast and its rapid spread in the US and Canada. Urgent steps are still needed for the mitigation or control of Pd to save bats. We hypothesized that a focus on fungal community would advance the understanding of ecology and ecosystem processes that are crucial in the disease transmission cycle. This study was conducted in 2010-2011 in New York and Vermont using 90 samples from four mines and two caves situated within the epicenter of WNS. We used culture-dependent (CD) and culture-independent (CI) methods to catalogue all fungi ('mycobiome'). CD methods included fungal isolations followed by phenotypic and molecular identifications. CI methods included amplification of DNA extracted from environmental samples with universal fungal primers followed by cloning and sequencing. CD methods yielded 675 fungal isolates and CI method yielded 594 fungal environmental nucleic acid sequences (FENAS). The core mycobiome of WNS comprised of 136 operational taxonomic units (OTUs) recovered in culture and 248 OTUs recovered in clone libraries. The fungal community was diverse across the sites, although a subgroup of dominant cosmopolitan fungi was present. The frequent recovery of Pd (18% of samples positive by culture) even in the presence of dominant, cosmopolitan fungal genera suggests some level of local adaptation in WNS-afflicted habitats, while the extensive distribution of Pd (48% of samples positive by real-time PCR) suggests an active reservoir of the pathogen at these sites. These findings underscore the need for integrated disease control measures that target both bats and Pd in the hibernacula for the control of WNS.

  6. Host and tissue variations overshadow the response of boreal moss-associated fungal communities to increased nitrogen load.

    PubMed

    Davey, Marie L; Skogen, Marte J; Heegaard, Einar; Halvorsen, Rune; Kauserud, Håvard; Ohlson, Mikael

    2017-01-01

    Human activity has more than doubled the amount of nitrogen entering the global nitrogen cycle, and the boreal forest biome is a nitrogen-limited ecosystem sensitive to nitrogen load perturbation. Although bryophyte-associated microbes contribute significantly to boreal forest ecosystem function, particularly in carbon and nitrogen cycling, little is known about their responses to anthropogenic global change. Amplicon pyrosequencing of the ITS2 region of rDNA was used to investigate how fungal communities associated with three bryophyte species responded to increased nitrogen loads in a long-term fertilization experiment in a boreal Picea abies forest in southern Norway. Overall, OTU richness, community composition and the relative abundance of specific ecological guilds were primarily influenced by host species identity and tissue type. Although not the primary factor affecting fungal communities, nitrogen addition did impact the abundance of specific guilds of fungi and the resulting overall community composition. Increased nitrogen loads decreased ectomycorrhizal abundance, with Amphinema, Cortinarius, Russula and Tylospora OTUs responding negatively to fertilization. Pathogen abundance increased with fertilization, particularly in the moss pathogen Eocronartium. Saprophytic fungi were both positively and negatively impacted by the nitrogen addition, indicating a complex community level response. The overshadowing of the effects of increased nitrogen loads by variation related to host and tissue type highlights the complexity of bryophyte-associated microbial communities and the intricate nature of their responses to anthropogenic global change. © 2016 John Wiley & Sons Ltd.

  7. Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing

    PubMed Central

    Geistlinger, Joerg; Wibberg, Daniel; Deubel, Annette; Zwanzig, Jessica; Babin, Doreen; Schlüter, Andreas; Schellenberg, Ingo

    2018-01-01

    Fungal communities in agricultural soils are assumed to be affected by soil and crop management. Our intention was to investigate the impact of different tillage and fertilization practices on fungal communities in a long-term crop rotation field trial established in 1992 in Central Germany. Two winter wheat fields in replicated strip-tillage design, comprising conventional vs. conservation tillage, intensive vs. extensive fertilization and different pre-crops (maize vs. rapeseed) were analyzed by a metabarcoding approach applying Illumina paired-end sequencing of amplicons generated by two recently developed primer pairs targeting the two fungal Internal Transcribed Spacer regions (ITS1, ITS2). Analysis of 5.1 million high-quality sequence reads uncovered a diverse fungal community in the two fields, composed of 296 fungal genera including 3,398 Operational Taxonomic Units (OTUs) at the 97% sequence similarity threshold. Both primer pairs detected the same fungal phyla (Basidio-, Asco-, Zygo-, Glomero- and Chytridiomycota), but in different relative abundances. OTU richness was higher in the ITS1 dataset, while ITS2 data were more diverse and of higher evenness. Effects of farming practice on fungal community structures were revealed. Almost two-thirds of the fungal genera were represented in all different soil treatments, whereas the remaining genera clearly responded to farming practice. Principal Component Analysis revealed four distinct clusters according to tillage practice and pre-crop. Analysis of Variance (ANOVA) substantiated the results and proved significant influences of tillage and pre-crop, while fertilization had the smallest and non-significant effect. In-depth analysis of putative phytopathogenic and plant beneficial fungal groups indicated distinct responses; for example Fusarium was significantly enriched in the intensively fertilized conservation tillage variants with the pre-crop maize, while Phoma displayed significant association with

  8. Characterization of the bacterial and fungal microbiome in indoor dust and outdoor air samples: a pilot study.

    PubMed

    Hanson, Blake; Zhou, Yanjiao; Bautista, Eddy J; Urch, Bruce; Speck, Mary; Silverman, Frances; Muilenberg, Michael; Phipatanakul, Wanda; Weinstock, George; Sodergren, Erica; Gold, Diane R; Sordillo, Joanne E

    2016-06-15

    Environmental microbes have been associated with both protective and adverse health effects in children and adults. Epidemiological studies often rely on broad biomarkers of microbial exposure (i.e. endotoxin, 1 → 3-beta-d-glucan), but fail to identify the taxonomic composition of the microbial community. Our aim was to characterize the bacterial and fungal microbiome in different types of environmental samples collected in studies of human health effects. We determined the composition of microbial communities present in home, school and outdoor air samples by amplifying and sequencing regions of rRNA genes from bacteria (16S) and fungi (18S and ITS). Samples for this pilot study included indoor settled dust (from both a Boston area birth cohort study on Home Allergens and Asthma (HAA) (n = 12) and a study of school exposures and asthma symptoms (SICAS) (n = 1)), as well as fine and coarse concentrated outdoor ambient particulate (CAP) samples (n = 9). Sequencing of amplified 16S, 18S, and ITS regions was performed on the Roche-454 Life Sciences Titanium pyrosequencing platform. Indoor dust samples were dominated by Gram-positive bacteria (Firmicutes and Actinobacteria); the most abundant bacterial genera were those related to human flora (Streptococcus, Staphylococcus, Corynebacterium and Lactobacillus). Outdoor CAPs were dominated by Gram-negative Proteobacteria from water and soil sources, in particular the genera Acidovorax, and Brevundimonas (which were present at very low levels or entirely absent in indoor dust). Phylum-level fungal distributions identified by 18S or ITS regions showed very similar findings: a predominance of Ascomycota in indoor dust and Basidiomycota in outdoor CAPs. ITS sequencing of fungal genera in indoor dust showed significant proportions of Aureobasidium and Leptosphaerulina along with some contribution from Cryptococcus, Epicoccum, Aspergillus and the human commensal Malassezia. ITS sequencing detected more than 70 fungal genera

  9. Impacts of biochar on bioavailability of the fungicide azoxystrobin: a comparison of the effect on biodegradation rate and toxicity to the fungal community.

    PubMed

    Sopeña, Fatima; Bending, Gary D

    2013-06-01

    There is great interest in using biochar (BC) as a soil amendment to provide a long-term repository of carbon to mitigate climate change. BC can have major impacts on soil biogeochemical cycling processes, largely by the sorption and protection of organic matter from microbial turnover. Application of BC to agricultural soil could also affect the efficacy, fate and environmental impact of pesticides. In the current study we investigated the effect of BC on bioavailability of the fungicide azoxystrobin in soil. We found that application of BC had no effect on sorption or degradation of azoxystrobin, even at a rate of 2% w/w. While azoxystrobin reduced dehydrogenase activity, BC addition greatly increased dehydrogenase, although the inhibitory effect of azoxystrobin was still evident in BC amended soil. Using Terminal Restriction Fragment Length Polymorphism of fungal SSU rRNA gene ITS regions it was found that azoxystrobin altered the structure of the soil fungal community, although this effect was dampened by BC addition. BC application had minor effects on fungal community structure. We conclude that measurement of the effect of BC on pesticide bioavailability by analysis of biodegradation rate and non-target effects on fungal community structure gave contrasting conclusions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Tree genetics defines fungal partner communities that may confer drought tolerance.

    PubMed

    Gehring, Catherine A; Sthultz, Christopher M; Flores-Rentería, Lluvia; Whipple, Amy V; Whitham, Thomas G

    2017-10-17

    Plant genetic variation and soil microorganisms are individually known to influence plant responses to climate change, but the interactive effects of these two factors are largely unknown. Using long-term observational studies in the field and common garden and greenhouse experiments of a foundation tree species ( Pinus edulis ) and its mutualistic ectomycorrhizal fungal (EMF) associates, we show that EMF community composition is under strong plant genetic control. Seedlings acquire the EMF community of their seed source trees (drought tolerant vs. drought intolerant), even when exposed to inoculum from the alternate tree type. Drought-tolerant trees had 25% higher growth and a third the mortality of drought-intolerant trees over the course of 10 y of drought in the wild, traits that were also observed in their seedlings in a common garden. Inoculation experiments show that EMF communities are critical to drought tolerance. Drought-tolerant and drought-intolerant seedlings grew similarly when provided sterile EMF inoculum, but drought-tolerant seedlings grew 25% larger than drought-intolerant seedlings under dry conditions when each seedling type developed its distinct EMF community. This demonstration that particular combinations of plant genotype and mutualistic EMF communities improve the survival and growth of trees with drought is especially important, given the vulnerability of forests around the world to the warming and drying conditions predicted for the future.

  11. Fungal Genomics for Energy and Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for usersmore » to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.« less

  12. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.T. Rader

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment.more » Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.« less

  13. Plant pathogens but not antagonists change in soil fungal communities across a land abandonment gradient in a Mediterranean landscape

    NASA Astrophysics Data System (ADS)

    Bosso, L.; Lacatena, F.; Varlese, R.; Nocerino, S.; Cristinzio, G.; Russo, D.

    2017-01-01

    We assessed whether the presence and abundance of plant pathogens and antagonists change in soil fungal communities along a land abandonment gradient. The study was carried out in the Cilento area (Southern Italy) at a site with three different habitats found along a land abandonment gradient: agricultural land, Mediterranean shrubland and woodland. For all microbiological substrates the colony forming units were about 3.1 × 106 g-1 soil for agricultural land and about 1.1 × 106 g-1 soil for Mediterranean shrubland and woodland. We found the following genera in all habitats: Cladosporium, Mortierella, Penicillium and Trichoderma. In agricultural land, the significantly most abundant fungus genera were Aspergillus, Fusarium, Cylindrocarpon and Nectria; in Mediterranean shrubland, Rhizopus and Trichoderma; and in woodland, Bionectria, Mortierella, Cladosporium, Diplodia, Paecilomyces, Penicillium and Trichoderma. We found a total of 8, 8 and 9 species of fungal antagonist, and 16, 6 and 6 species of fungal plant pathogens in agricultural land, Mediterranean shrubland and woodland respectively. Fungal plant pathogens decreased significantly over a land abandonment gradient, while we no found significant differences among fungal antagonists in the three habitats. We conclude that a decrease in the number of fungal pathogen species occurs when formerly cultivated areas are abandoned. On the other hand, fungal antagonists seem not to be affected by this process.

  14. Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2016-09-01

    The root-associated microbiome is a key determinant of pollutant degradation, soil nutrient availability and plant biomass productivity, but could not be examined in depth prior to recent advances in high-throughput sequencing. Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of vascular plants. They are known to enhance mineral uptake and promote plant growth and are postulated to influence the processes involved in phytoremediation. Amplicon sequencing approaches have previously shown that petroleum hydrocarbon pollutant (PHP) concentration strongly influences AMF community structure in in situ phytoremediation experiments. We examined how AMF communities and their spore-associated microbiomes were structured within the rhizosphere of three plant species growing spontaneously in three distinct waste decantation basins of a former petrochemical plant. Our results show that the AMF community was only affected by PHP concentrations, while the AMF-associated fungal and bacterial communities were significantly affected by both PHP concentrations and plant species identity. We also found that some AMF taxa were either positively or negatively correlated with some fungal and bacterial groups. Our results suggest that in addition to PHP concentrations and plant species identity, AMF community composition may also shape the community structure of bacteria and fungi associated with AMF spores. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Diversity and Spatial Structure of Belowground Plant–Fungal Symbiosis in a Mixed Subtropical Forest of Ectomycorrhizal and Arbuscular Mycorrhizal Plants

    PubMed Central

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S.

    2014-01-01

    Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant–fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant–fungal symbiosis in subtropical forests is complex in that it includes “non-typical” plant–fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in

  16. Diversity and spatial structure of belowground plant-fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants.

    PubMed

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S

    2014-01-01

    Plant-mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant-fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant-fungal symbiosis in subtropical forests is complex in that it includes "non-typical" plant-fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that

  17. Fungal keratitis.

    PubMed

    Tuli, Sonal S

    2011-01-01

    What is the most appropriate management of fungal keratitis? Traditionally, topical Natamycin is the most commonly used medication for filamentous fungi while Amphotericin B is most commonly used for yeast. Voriconazole is rapidly becoming the drug of choice for all fungal keratitis because of its wide spectrum of coverage and increased penetration into the cornea. Repeated debridement of the ulcer is recommended for the penetration of topical medications. While small, peripheral ulcers may be treated in the community, larger or central ulcers, especially if associated with signs suggestive of anterior chamber penetration should be referred to a tertiary center. Prolonged therapy for approximately four weeks is usually necessary.

  18. Soil bacterial and fungal community responses across a conservation reserve program chronosequence in Texas high plains region

    USDA-ARS?s Scientific Manuscript database

    We investigated changes in soil bacterial and fungal communities with increasing restoration time across a Conservation Reserve Program chronosequence (CRP) on fine sandy loam soils in the Texas high plains region. Soil samples (0-10cm) were collected in 2012 and 2014 from seven dryland croplands (0...

  19. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function.

    PubMed

    Cheeke, Tanya E; Phillips, Richard P; Brzostek, Edward R; Rosling, Anna; Bever, James D; Fransson, Petra

    2017-04-01

    While it is well established that plants associating with arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi cycle carbon (C) and nutrients in distinct ways, we have a limited understanding of whether varying abundance of ECM and AM plants in a stand can provide integrative proxies for key biogeochemical processes. We explored linkages between the relative abundance of AM and ECM trees and microbial functioning in three hardwood forests in southern Indiana, USA. Across each site's 'mycorrhizal gradient', we measured fungal biomass, fungal : bacterial (F : B) ratios, extracellular enzyme activities, soil carbon : nitrogen ratio, and soil pH over a growing season. We show that the percentage of AM or ECM trees in a plot promotes microbial communities that both reflect and determine the C to nutrient balance in soil. Soils dominated by ECM trees had higher F : B ratios and more standing fungal biomass than AM stands. Enzyme stoichiometry in ECM soils shifted to higher investment in extracellular enzymes needed for nitrogen and phosphorus acquisition than in C-acquisition enzymes, relative to AM soils. Our results suggest that knowledge of mycorrhizal dominance at the stand or landscape scale may provide a unifying framework for linking plant and microbial community dynamics, and predicting their effects on ecological function. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Woody plant encroachment, and its removal, impact bacterial and fungal communities across stream and terrestrial habitats in a tallgrass prairie ecosystem.

    PubMed

    Veach, Allison M; Dodds, Walter K; Jumpponen, Ari

    2015-10-01

    Woody plant encroachment has become a global threat to grasslands and has caused declines in aboveground richness and changes in ecosystem function; yet we have a limited understanding on the effects of these phenomena on belowground microbial communities. We completed riparian woody plant removals at Konza Prairie Biological Station, Kansas and collected soils spanning land-water interfaces in removal and woody vegetation impacted areas. We measured stream sediments and soils for edaphic variables (C and N pools, soil water content, pH) and bacterial (16S rRNA genes) and fungal (ITS2 rRNA gene repeat) communities using Illumina MiSeq metabarcoding. Bacterial richness and diversity decreased with distance from streams. Fungal richness decreased with distance from the stream in wooded areas, but was similar across landscape position while Planctomycetes and Basidiomycota relative abundance was lower in removal areas. Cyanobacteria, Ascomycota, Chytridiomycota and Glomeromycota relative abundance was greater in removal areas. Ordination analyses indicated that bacterial community composition shifted more across land-water interfaces than fungi yet both were marginally influenced by treatment. This study highlights the impacts of woody encroachment restoration on grassland bacterial and fungal communities which likely subsequently affects belowground processes and plant health in this ecosystem. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination

    PubMed Central

    Mello, Ivani Souza; Vendruscullo, Suzana Junges; da Silva, Gilvan Ferreira; da Cunha, Cátia Nunes; White, James Francis

    2017-01-01

    The endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis were examined with respect to soil mercury (Hg) contamination. Plants were collected in places with and without Hg+2 for isolation and identification of their endophytic root fungi. We evaluated frequency of colonization, number of isolates and richness, indices of diversity and similarity, functional traits (hydrolytic enzymes, siderophores, indoleacetic acid, antibiosis and metal tolerance) and growth promotion of Aeschynomene fluminensis inoculated with endophytic fungi on soil with mercury. The frequency of colonization, structure and community function, as well as the abundant distribution of taxa of endophytic fungi were influenced by mercury contamination, with higher endophytic fungi in hosts in soil with mercury. The presence or absence of mercury in the soil changes the profile of the functional characteristics of the endophytic fungal community. On the other hand, tolerance of lineages to multiple metals is not associated with contamination. A. fluminensis depends on its endophytic fungi, since plants free of endophytic fungi grew less than expected due to mercury toxicity. In contrast plants containing certain endophytic fungi showed good growth in soil containing mercury, even exceeding growth of plants cultivated in soil without mercury. The data obtained confirm the hypothesis that soil contamination by mercury alters community structure of root endophytic fungi in terms of composition, abundance and species richness. The inoculation of A. fluminensis with certain strains of stress tolerant endophytic fungi contribute to colonization and establishment of the host and may be used in processes that aim to improve phytoremediation of soils with toxic concentrations of mercury. PMID:28742846

  2. Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination.

    PubMed

    Pietro-Souza, William; Mello, Ivani Souza; Vendruscullo, Suzana Junges; Silva, Gilvan Ferreira da; Cunha, Cátia Nunes da; White, James Francis; Soares, Marcos Antônio

    2017-01-01

    The endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis were examined with respect to soil mercury (Hg) contamination. Plants were collected in places with and without Hg+2 for isolation and identification of their endophytic root fungi. We evaluated frequency of colonization, number of isolates and richness, indices of diversity and similarity, functional traits (hydrolytic enzymes, siderophores, indoleacetic acid, antibiosis and metal tolerance) and growth promotion of Aeschynomene fluminensis inoculated with endophytic fungi on soil with mercury. The frequency of colonization, structure and community function, as well as the abundant distribution of taxa of endophytic fungi were influenced by mercury contamination, with higher endophytic fungi in hosts in soil with mercury. The presence or absence of mercury in the soil changes the profile of the functional characteristics of the endophytic fungal community. On the other hand, tolerance of lineages to multiple metals is not associated with contamination. A. fluminensis depends on its endophytic fungi, since plants free of endophytic fungi grew less than expected due to mercury toxicity. In contrast plants containing certain endophytic fungi showed good growth in soil containing mercury, even exceeding growth of plants cultivated in soil without mercury. The data obtained confirm the hypothesis that soil contamination by mercury alters community structure of root endophytic fungi in terms of composition, abundance and species richness. The inoculation of A. fluminensis with certain strains of stress tolerant endophytic fungi contribute to colonization and establishment of the host and may be used in processes that aim to improve phytoremediation of soils with toxic concentrations of mercury.

  3. Mesoherbivores affect grasshopper communities in a megaherbivore-dominated South African savannah.

    PubMed

    van der Plas, Fons; Olff, Han

    2014-06-01

    African savannahs are among the few places on earth where diverse communities of mega- and meso-sized ungulate grazers dominate ecosystem functioning. Less conspicuous, but even more diverse, are the communities of herbivorous insects such as grasshoppers, which share the same food. Various studies investigated the community assembly of these groups separately, but it is poorly known how ungulate communities shape grasshopper communities. Here, we investigated how ungulate species of different body size alter grasshopper communities in a South African savannah. White rhino is the most abundant vertebrate herbivore in our study site. Other common mesoherbivores include buffalo, zebra and impala. We hypothesized that white rhinos would have greater impact than mesoherbivores on grasshopper communities. Using 10-year-old exclosures, at eight sites we compared the effects of ungulates on grasshopper communities in three nested treatments: (i) unfenced plots ('control plots') with all vertebrate herbivores present, (ii) plots with a low cable fence, excluding white rhino ('megaherbivore exclosures'), and (iii) plots with tall fences, excluding all herbivores larger than rodents ('complete ungulate exclosures'). In each plot, we collected data of vegetation structure, grass and grasshopper community composition. Complete ungulate exclosures contained 30% taller vegetation than megaherbivore exclosures and they were dominated by different grass and grasshopper species. Grasshoppers in complete ungulate exclosures were on average 3.5 mm longer than grasshoppers in megaherbivore exclosures, possibly due to changes in plant communities or vegetation structure. We conclude that surprisingly, in this megaherbivore hotspot, mesoherbivores, instead of megaherbivores, most strongly affect grasshopper communities.

  4. Comparison of pectin-degrading fungal communities in temperate forests using glycosyl hydrolase family 28 pectinase primers targeting Ascomycete fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gacura, Matthew D.; Sprockett, Daniel D.; Heidenreich, Bess

    Here, fungi have developed a wide assortment of enzymes to break down pectin, a prevalent polymer in plant cell walls that is important in plant defense and structure. One enzyme family used to degrade pectin is the glycosyl hydrolase family 28 (GH28). In this studywe developed primers for the amplification of GH28 coding genes from a database of 293 GH28 sequences from40 fungal genomes. The primerswere used to successfully amplify GH28 pectinases from all Ascomycota cultures tested, but only three out of seven Basidiomycota cultures. In addition, we further tested the primers in PCRs on metagenomic DNA extracted from senescedmore » tree leaves from different forest ecosystems, followed by cloning and sequencing. Taxonomic specificity for Ascomycota GH28 genes was tested by comparing GH28 composition in leaves to internal transcribed spacer (ITS) amplicon composition using pyrosequencing. All sequences obtained from GH28 primers were classified as Ascomycota; in contrast, ITS sequences indicated that fungal communitieswere up to 39% Basidiomycetes. Analysis of leaf samples indicated that both forest stand and ecosystemtype were important in structuring fungal communities. However, site played the prominent role in explaining GH28 composition, whereas ecosystem type was more important for ITS composition, indicating possible genetic drift between populations of fungi. Overall, these primers will have utility in understanding relationships between fungal community composition and ecosystem processes, as well as detection of potentially pathogenic Ascomycetes.« less

  5. Comparison of pectin-degrading fungal communities in temperate forests using glycosyl hydrolase family 28 pectinase primers targeting Ascomycete fungi

    DOE PAGES

    Gacura, Matthew D.; Sprockett, Daniel D.; Heidenreich, Bess; ...

    2016-02-17

    Here, fungi have developed a wide assortment of enzymes to break down pectin, a prevalent polymer in plant cell walls that is important in plant defense and structure. One enzyme family used to degrade pectin is the glycosyl hydrolase family 28 (GH28). In this studywe developed primers for the amplification of GH28 coding genes from a database of 293 GH28 sequences from40 fungal genomes. The primerswere used to successfully amplify GH28 pectinases from all Ascomycota cultures tested, but only three out of seven Basidiomycota cultures. In addition, we further tested the primers in PCRs on metagenomic DNA extracted from senescedmore » tree leaves from different forest ecosystems, followed by cloning and sequencing. Taxonomic specificity for Ascomycota GH28 genes was tested by comparing GH28 composition in leaves to internal transcribed spacer (ITS) amplicon composition using pyrosequencing. All sequences obtained from GH28 primers were classified as Ascomycota; in contrast, ITS sequences indicated that fungal communitieswere up to 39% Basidiomycetes. Analysis of leaf samples indicated that both forest stand and ecosystemtype were important in structuring fungal communities. However, site played the prominent role in explaining GH28 composition, whereas ecosystem type was more important for ITS composition, indicating possible genetic drift between populations of fungi. Overall, these primers will have utility in understanding relationships between fungal community composition and ecosystem processes, as well as detection of potentially pathogenic Ascomycetes.« less

  6. Communities of Putative Ericoid Mycorrhizal Fungi Isolated from Alpine Dwarf Shrubs in Japan: Effects of Host Identity and Microhabitat.

    PubMed

    Koizumi, Takahiko; Nara, Kazuhide

    2017-06-24

    Dwarf shrubs of the family Ericaceae are common in arctic and alpine regions. Many of these plants are associated with ericoid mycorrhizal (ERM) fungi, which allow them to take nutrients and water from the soil under harsh environmental conditions and, thus, affect host plant survival. Despite the importance of ERM fungi to alpine plant communities, limited information is available on the effects of microhabitat and host identity on ERM fungal communities. We investigated the communities of putative ERM fungi isolated from five dwarf shrub species (Arcterica nana, Diapensia lapponica, Empetrum nigrum, Loiseleuria procumbens, and Vaccinium vitis-idaea) that co-occur in an alpine region of Japan, with reference to distinct microhabitats provided by large stone pine (Pinus pumila) shrubs (i.e. bare ground, the edge of stone pine shrubs, and the inside of stone pine shrubs). We obtained 703 fungal isolates from 222 individual plants. These isolates were classified into 55 operational taxonomic units (OTUs) based on the sequencing of internal transcribed spacer regions in ribosomal DNA. These putative ERM fungal communities were dominated by Helotiales fungi for all host species. Cistella and Trimmatostroma species, which have rarely been detected in ERM roots in previous studies, were abundant. ERM fungal communities were significantly different among microhabitats (R 2 =0.28), while the host effect explained less variance in the fungal communities after excluding the microhabitat effect (R 2 =0.17). Our results suggest that the host effect on ERM fungal communities is minor and the distributions of hosts and fungal communities may be assessed based on microhabitat conditions.

  7. Communities of Putative Ericoid Mycorrhizal Fungi Isolated from Alpine Dwarf Shrubs in Japan: Effects of Host Identity and Microhabitat

    PubMed Central

    Koizumi, Takahiko; Nara, Kazuhide

    2017-01-01

    Dwarf shrubs of the family Ericaceae are common in arctic and alpine regions. Many of these plants are associated with ericoid mycorrhizal (ERM) fungi, which allow them to take nutrients and water from the soil under harsh environmental conditions and, thus, affect host plant survival. Despite the importance of ERM fungi to alpine plant communities, limited information is available on the effects of microhabitat and host identity on ERM fungal communities. We investigated the communities of putative ERM fungi isolated from five dwarf shrub species (Arcterica nana, Diapensia lapponica, Empetrum nigrum, Loiseleuria procumbens, and Vaccinium vitis-idaea) that co-occur in an alpine region of Japan, with reference to distinct microhabitats provided by large stone pine (Pinus pumila) shrubs (i.e. bare ground, the edge of stone pine shrubs, and the inside of stone pine shrubs). We obtained 703 fungal isolates from 222 individual plants. These isolates were classified into 55 operational taxonomic units (OTUs) based on the sequencing of internal transcribed spacer regions in ribosomal DNA. These putative ERM fungal communities were dominated by Helotiales fungi for all host species. Cistella and Trimmatostroma species, which have rarely been detected in ERM roots in previous studies, were abundant. ERM fungal communities were significantly different among microhabitats (R2=0.28), while the host effect explained less variance in the fungal communities after excluding the microhabitat effect (R2=0.17). Our results suggest that the host effect on ERM fungal communities is minor and the distributions of hosts and fungal communities may be assessed based on microhabitat conditions. PMID:28529264

  8. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.

    PubMed

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-02-01

    Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. © 2014 The Authors. Global Change

  9. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    DOE PAGES

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; ...

    2016-06-02

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less

  10. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less

  11. JGI Fungal Genomics Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functionalmore » genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here« less

  12. Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition.

    PubMed

    Smith, Alistair J H; Potvin, Lynette R; Lilleskov, Erik A

    2015-11-01

    Ectomycorrhizal fungi (EcMF) typically colonize nursery seedlings, but nutritional and growth effects of these communities are only partly understood. To examine these effects, Picea glauca seedlings collected from a tree nursery naturally colonized by three dominant EcMF were divided between fertilized and unfertilized treatments. After one growing season seedlings were harvested, ectomycorrhizas identified using DNA sequencing, and seedlings analyzed for leaf nutrient concentration and content, and biomass parameters. EcMF community structure-nutrient interactions were tested using nonmetric multidimensional scaling (NMDS) combined with vector analysis of foliar nutrients and biomass. We identified three dominant species: Amphinema sp., Atheliaceae sp., and Thelephora terrestris. NMDS + envfit revealed significant community effects on seedling nutrition that differed with fertilization treatment. PERMANOVA and regression analyses uncovered significant species effects on host nutrient concentration, content, and stoichiometry. Amphinema sp. had a significant positive effect on phosphorus (P), calcium and zinc concentration, and P content; in contrast, T. terrestris had a negative effect on P concentration. In the unfertilized treatment, percent abundance of the Amphinema sp. negatively affected foliar nitrogen (N) concentration but not content, and reduced foliar N/P. In fertilized seedlings, Amphinema sp. was positively related to foliar concentrations of N, magnesium, and boron, and both concentration and content of manganese, and Atheliaceae sp. had a negative relationship with P content. Findings shed light on the community and species effects on seedling condition, revealing clear functional differences among dominants. The approach used should be scalable to explore function in more complex communities composed of unculturable EcMF.

  13. Fungal keratitis

    PubMed Central

    Tuli, Sonal S

    2011-01-01

    Clinical question: What is the most appropriate management of fungal keratitis? Results: Traditionally, topical Natamycin is the most commonly used medication for filamentous fungi while Amphotericin B is most commonly used for yeast. Voriconazole is rapidly becoming the drug of choice for all fungal keratitis because of its wide spectrum of coverage and increased penetration into the cornea. Implementation: Repeated debridement of the ulcer is recommended for the penetration of topical medications. While small, peripheral ulcers may be treated in the community, larger or central ulcers, especially if associated with signs suggestive of anterior chamber penetration should be referred to a tertiary center. Prolonged therapy for approximately four weeks is usually necessary. PMID:21468333

  14. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    DOE PAGES

    Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.; ...

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associatedmore » with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.« less

  15. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associatedmore » with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.« less

  16. Dynamics and diversity of microbial community succession in traditional fermentation of Shanxi aged vinegar.

    PubMed

    Nie, Zhiqiang; Zheng, Yu; Du, Hongfu; Xie, Sankuan; Wang, Min

    2015-05-01

    The traditional fermentation of Shanxi aged vinegar (SAV), a well-known traditional Chinese vinegar, generally involves the preparation of starter daqu, starch saccharification, alcoholic fermentation (AF) and acetic acid fermentation (AAF). Dynamics and diversity of microbial community succession in daqu and other fermentation stages were investigated by denaturing gradient gel electrophoresis (DGGE). Results showed that eight bacterial genera and four fungal genera were found in daqu. However, Staphylococcus, Saccharopolyspora, Bacillus, Oceanobacillus, Enterobacter, Streptomyces, Eurotium, Monascus and Pichia in daqu were eradicated during AF. Four bacterial genera and three fungal genera were found in this stage. Weissella, Lactobacillus, Streptococcus, Saccharomyces, and Saccharomycopsis were the dominant microorganisms in the late stage of AF. During AAF, four bacterial genera and four fungal genera were found. Weissella, Streptococcus, Klebsiella, Escherichia, and Cladosporium gradually disappeared; the dominant microorganisms were Acetobacter, Lactobacillus, Saccharomycopsis, and Alternaria in the late stage of AAF. Alpha diversity metrics showed that fungal diversity in daqu was greater than that in AF and AAF. By contrast, bacterial diversity decreased from daqu to AF and increased in the first three days of AAF and then decreased. Hence, these results could help understand dynamics of microbial community succession in continuous fermentation of traditional Chinese vinegars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Identification of Cellulose-Responsive Bacterial and Fungal Communities in Geographically and Edaphically Different Soils by Using Stable Isotope Probing

    PubMed Central

    Eichorst, Stephanie A.

    2012-01-01

    Many bacteria and fungi are known to degrade cellulose in culture, but their combined response to cellulose in different soils is unknown. Replicate soil microcosms amended with [13C]cellulose were used to identify bacterial and fungal communities responsive to cellulose in five geographically and edaphically different soils. The diversity and composition of the cellulose-responsive communities were assessed by DNA-stable isotope probing combined with Sanger sequencing of small-subunit and large-subunit rRNA genes for the bacterial and fungal communities, respectively. In each soil, the 13C-enriched, cellulose-responsive communities were of distinct composition compared to the original soil community or 12C-nonenriched communities. The composition of cellulose-responsive taxa, as identified by sequence operational taxonomic unit (OTU) similarity, differed in each soil. When OTUs were grouped at the bacterial order level, we found that members of the Burkholderiales, Caulobacteriales, Rhizobiales, Sphingobacteriales, Xanthomonadales, and the subdivision 1 Acidobacteria were prevalent in the 13C-enriched DNA in at least three of the soils. The cellulose-responsive fungi were identified as members of the Trichocladium, Chaetomium, Dactylaria, and Arthrobotrys genera, along with two novel Ascomycota clusters, unique to one soil. Although similarities were identified in higher-level taxa among some soils, the composition of cellulose-responsive bacteria and fungi was generally unique to a certain soil type, suggesting a strong potential influence of multiple edaphic factors in shaping the community. PMID:22287013

  18. Functional Diversity of Fungal Communities in Soil Contaminated with Diesel Oil.

    PubMed

    Borowik, Agata; Wyszkowska, Jadwiga; Oszust, Karolina

    2017-01-01

    The widespread use and consumption of crude oil draws the public's attention to the fate of petroleum hydrocarbons in the environment, as they can permeate the soil environment in an uncontrollable manner. Contamination of soils with petroleum products, including diesel oil (DO), can cause changes in the microbiological soil properties. The effect of diesel oil on the functional diversity of fungi was tested in a model experiment during 270 days. Fungi were isolated from soil and identified. The functional diversity of fungal communities was also determined. Fungi were identified with the MALDI-TOF method, while the functional diversity was determined using FF-plates made by Biolog ® , with 95 carbon sources. Moreover, the diesel oil degradation dynamics was assessed. The research showed that soil contaminated with diesel oil is characterized by a higher activity of oxireductases and a higher number of fungi than soil not exposed to the pressure of this product. The DO pollution has an adverse effect on the diversity of fungal community. This is proved by significantly lower values of the Average Well-Color Development, substrates Richness (R) and Shannon-Weaver (H) indices at day 270 after contamination. The consequences of DO affecting soil not submitted to remediation are persistent. After 270 days, only 64% of four-ringed, 28% of five-ringed, 21% of 2-3-ringed and 16% of six-ringed PAHs underwent degradation. The lasting effect of DO on communities of fungi led to a decrease in their functional diversity. The assessment of the response of fungi to DO pollution made on the basis of the development of colonies on Petri dishes [Colony Development (CD) and Eco-physiological Diversity (EP) indices] is consistent with the analysis based on the FF MicroPlate system by Biolog ® . Thus, a combination of the FF MicroPlate system by Biolog ® with the simultaneous calculation of CD and EP indices alongside the concurrent determination of the content of PAHs and activity

  19. Functional Diversity of Fungal Communities in Soil Contaminated with Diesel Oil

    PubMed Central

    Borowik, Agata; Wyszkowska, Jadwiga; Oszust, Karolina

    2017-01-01

    The widespread use and consumption of crude oil draws the public’s attention to the fate of petroleum hydrocarbons in the environment, as they can permeate the soil environment in an uncontrollable manner. Contamination of soils with petroleum products, including diesel oil (DO), can cause changes in the microbiological soil properties. The effect of diesel oil on the functional diversity of fungi was tested in a model experiment during 270 days. Fungi were isolated from soil and identified. The functional diversity of fungal communities was also determined. Fungi were identified with the MALDI-TOF method, while the functional diversity was determined using FF-plates made by Biolog®, with 95 carbon sources. Moreover, the diesel oil degradation dynamics was assessed. The research showed that soil contaminated with diesel oil is characterized by a higher activity of oxireductases and a higher number of fungi than soil not exposed to the pressure of this product. The DO pollution has an adverse effect on the diversity of fungal community. This is proved by significantly lower values of the Average Well-Color Development, substrates Richness (R) and Shannon–Weaver (H) indices at day 270 after contamination. The consequences of DO affecting soil not submitted to remediation are persistent. After 270 days, only 64% of four-ringed, 28% of five-ringed, 21% of 2–3-ringed and 16% of six-ringed PAHs underwent degradation. The lasting effect of DO on communities of fungi led to a decrease in their functional diversity. The assessment of the response of fungi to DO pollution made on the basis of the development of colonies on Petri dishes [Colony Development (CD) and Eco-physiological Diversity (EP) indices] is consistent with the analysis based on the FF MicroPlate system by Biolog®. Thus, a combination of the FF MicroPlate system by Biolog® with the simultaneous calculation of CD and EP indices alongside the concurrent determination of the content of PAHs and

  20. Validation and Application of a PCR Primer Set to Quantify Fungal Communities in the Soil Environment by Real-Time Quantitative PCR

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Christen, Richard; Dequiedt, Samuel; Mougel, Christophe; Lelièvre, Mélanie; Jolivet, Claudy; Shahbazkia, Hamid Reza; Guillou, Laure; Arrouays, Dominique; Ranjard, Lionel

    2011-01-01

    Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1 / FF390. This in silico analysis of the specificity of FR1 / FF390 also provided additional information to the previously published analysis on this primer set. The specificity of the primer set FR1 / FF390 for Fungi was validated in vitro by cloning - sequencing the amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of soil texture, organic carbon content, C∶N ratio and land use in determining fungal abundance in soils. PMID:21931659

  1. Defoliation and arbuscular mycorrhizal fungi shape plant communities in overgrazed semi-arid grasslands.

    PubMed

    Yang, Xin; Shen, Yue; Liu, Nan; Wilson, Gail W T; Cobb, Adam B; Zhang, Yingjun

    2018-05-30

    Overgrazing substantially contributes to global grassland degradation by decreasing plant community productivity and diversity through trampling, defoliation, and removal of nutrients. Arbuscular mycorrhizal (AM) fungi also play a critical role in plant community diversity, composition, and primary productivity, maintaining ecosystem functions. However, interactions between grazing disturbances, such as trampling and defoliation, and AM fungi in grassland communities are not well known. We examined influences of trampling, defoliation, and AM fungi on semi-arid grassland plant community composition for three years, by comparing all combinations of these factors. Benomyl fungicide was applied to reduce AM fungal abundance. Overgrazing typically resulted in reduced dominance of Stipa Krylovii, contributing to degradation of typical steppe grasslands. Our results indicated trampling generally had little effect on plant community composition, unless combined with defoliation or AM fungal suppression. Defoliation was the main component of grazing that promoted dominance of Potentilla acaulis over Stipa krylovii and Artemisia frigida, presumably by alleviating light limitation. In non-defoliated plots, AM fungi promoted A. frigida, with a concomitant reduction in S. krylovii growth compared to corresponding AM suppressed plots. Our results indicate AM fungi and defoliation jointly suppress S. krylovii biomass; however, prolonged defoliation weakens mycorrhizal influence on plant community composition. These findings give new insight into dominant plant species shifts in degraded semi-arid grasslands. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing

    NASA Astrophysics Data System (ADS)

    Wu, Linkun; Chen, Jun; Wu, Hongmiao; Wang, Juanying; Wu, Yanhong; Lin, Sheng; Khan, Muhammad Umar; Zhang, Zhongyi; Lin, Wenxiong

    2016-05-01

    Under consecutive monoculture, the biomass and quality of Pseudostellaria heterophylla declines significantly. In this study, a three-year field experiment was conducted to identify typical growth inhibition effects caused by extended monoculturing of P. heterophylla. Deep pyrosequencing was used to examine changes in the structure and composition of soil fungal community along a three-year gradient of monoculture. The results revealed a distinct separation between the newly planted plot and the two-year, three-year monocultured plots. The Shannon and Simpson diversity indices were significantly higher in the two-year and three-year monoculture soils than in the newly planted soil. Consecutive monoculture of this plant led to a significant increase in relative abundance of Fusarium, Trichocladium and Myrothecium and Simplicillium, etc., but a significant decrease in the relative abundance of Penicillium. Quantitative PCR analysis confirmed a significant increase in Fusarium oxysporum, an agent known to cause wilt and rot disease of P. heterophylla. Furthermore, phenolic acid mixture at a ratio similar to that found in the rhizosphere could promote mycelial growth of pathogenic F. oxysporum. Overall, this study demonstrated that consecutive monoculture of P. heterophylla can alter the fungal community in the rhizosphere, including enrichment of host-specific pathogenic fungi at the expense of plant-beneficial fungi.

  3. Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent.

    PubMed

    Wang, Ke; Mao, Hailong; Li, Xiangkun

    2018-02-01

    The metabolic function of microbial community dominated organics and nutrients transformation in aerobic composting process. In this study, the metabolic characteristics of bacterial and fungal communities were evaluated in 60 days composting of sludge and pumice by using FUNGuild and PICRUSt, respectively. The results showed that microbial community structure and metabolic characteristics were distinctively different at four composting periods. Bacterial genes related to carbohydrate metabolisms decreased during the first 30 days, but bacterial sequences associated with oxidative phosphorylation and fatty acids synthesis were enhanced in curing phase. Most of fungal animal pathogen and plant pathogen disappeared after treatment, and the abundance of saprotroph fungi increased from 44.3% to 97.8%. Oxidation reduction potential (ORP) significantly increased from -28 to 175 mV through incubation. RDA analysis showed that ORP was a crucial factor on the succession of both bacterial and fungal communities in sludge composting system. Copyright © 2017. Published by Elsevier Ltd.

  4. Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem

    Treesearch

    Alena K. Oliver; Mac A. Callaham; Ari Jumpponen

    2015-01-01

    Prescribed fire is an important management tool to reduce fuel loads, to remove non-fire adapted species and to sustain fire-adapted taxa in many forested ecosystems of the southeastern USA. Yet, the long-term effects of recurring prescribed fires on soil fungi and their communities in these ecosystems remain unclear. We Illumina MiSeq sequenced and analyzed fungal...

  5. Soil bacterial and fungal community successions under the stress of chlorpyrifos application and molecular characterization of chlorpyrifos-degrading isolates using ERIC-PCR*

    PubMed Central

    Chen, Lie-zhong; Li, Yan-li; Yu, Yun-long

    2014-01-01

    Chlorpyrifos is a widely used insecticide in recent years, and it will produce adverse effects on soil when applied on crops or mixed with soil. In this study, nested polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were combined to explore the bacterial and fungal community successions in soil treated with 5 and 20 mg/kg of chlorpyrifos. Furthermore, isolates capable of efficiently decomposing chlorpyrifos were molecular-typed using enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). Under the experimental conditions, degradation of chlorpyrifos in soil was interpreted with the first-order kinetics, and the half-lives of chlorpyrifos at 5 and 20 mg/kg doses were calculated to be 8.25 and 8.29 d, respectively. DGGE fingerprint and principal component analysis (PCA) indicated that the composition of the fungal community was obviously changed with the chlorpyrifos treatment, and that samples of chlorpyrifos treatment were significantly separated from those of the control from the beginning to the end. While for the bacterial community, chlorpyrifos-treated soil samples were apparently different in the first 30 d and recovered to a similar level of the control up until 60 d, and the distance in the PCA between the chlorpyrifos-treated samples and the control was getting shorter through time and was finally clustered into one group. Together, our results demonstrated that the application of chlorpyrifos could affect the fungal community structure in a quick and lasting way, while only affecting the bacterial community in a temporary way. Finally, nine typical ERIC types of chlorpyrifos-degrading isolates were screened. PMID:24711353

  6. Dynamic preferential allocation to arbuscular mycorrhizal fungi explains fungal succession and coexistence.

    PubMed

    Bachelot, Benedicte; Lee, Charlotte T

    2018-02-01

    Evidence accumulates about the role of arbuscular mycorrhizal (AM) fungi in shaping plant communities, but little is known about the factors determining the biomass and coexistence of several types of AM fungi in a plant community. Here, using a consumer-resource framework that treats the relationship between plants and fungi as simultaneous, reciprocal exploitation, we investigated what patterns of dynamic preferential plant carbon allocation to empirically-defined fungal types (on-going partner choice) would be optimal for plants, and how these patterns depend on successional dynamics. We found that ruderal AM fungi can dominate under low steady-state nutrient availability, and competitor AM fungi can dominate at higher steady-state nutrient availability; these are conditions characteristic of early and late succession, respectively. We also found that dynamic preferential allocation alone can maintain a diversity of mutualists, suggesting that on-going partner choice is a new coexistence mechanism for mutualists. Our model can therefore explain both mutualist coexistence and successional strategy, providing a powerful tool to derive testable predictions. © 2017 by the Ecological Society of America.

  7. Characterization of the bacterial and fungal microbiome in indoor dust and outdoor air samples: a pilot study†

    PubMed Central

    Hanson, Blake; Zhou, Yanjiao; Bautista, Eddy J.; Urch, Bruce; Speck, Mary; Silverman, Frances; Muilenberg, Michael; Phipatanakul, Wanda; Weinstock, George; Sodergren, Erica; Gold, Diane R.; Sordillo, Joanne E.

    2016-01-01

    Environmental microbes have been associated with both protective and adverse health effects in children and adults. Epidemiological studies often rely on broad biomarkers of microbial exposure (i.e. endotoxin, 1→3, Beta-D glucan), but fail to identify the taxonomic composition of the microbial community. Our aim was to characterize the bacterial and fungal microbiome in different types of environmental samples collected in studies of human health effects. We determined the composition of microbial communities present in home, school and outdoor air samples by amplifying and sequencing regions of rRNA genes from bacteria (16S) and fungi (18S and ITS). Samples for this pilot study included indoor settled dust (from both a Boston area birth cohort study on Home Allergens and Asthma (HAA)(n=12) and a study of school exposures and asthma symptoms (SICAS) (n=1)), as well as fine and coarse concentrated outdoor ambient particulate (CAP) samples (n=9). Sequencing of amplified 16S, 18S, and ITS regions was performed on the Roche-454 Life Sciences Titanium pyrosequencing platform. Indoor dust samples were dominated by gram-positive bacteria (Firmicutes and Actinobacteria); the most abundant bacterial genera were those related to human flora (Streptococcus, Staphylococcus, Corynebacterium and Lactobacillus). Outdoor CAPs were dominated by gram-negative Proteobacteria from water and soil sources, in particular the genera Acidovorax, and Brevundimonas (which were present at very low levels or entirely absent in indoor dust). Phylum-level fungal distributions identified by 18S or ITS regions showed very similar findings: a predominance of Ascomycota in indoor dust and Basidiomycota in outdoor CAPs. ITS sequencing of fungal genera in indoor dust showed significant proportions of Aureobasidium and Leptosphaerulina along with some contribution from Cryptococcus, Epicoccum, Aspergillus and the human commensal Malassezia. ITS sequencing detected an additional 70 fungal genera in

  8. Soil Type Has a Stronger Role than Dipterocarp Host Species in Shaping the Ectomycorrhizal Fungal Community in a Bornean Lowland Tropical Rain Forest

    PubMed Central

    Essene, Adam L.; Shek, Katherine L.; Lewis, J. D.; Peay, Kabir G.; McGuire, Krista L.

    2017-01-01

    The role that mycorrhizal fungal associations play in the assembly of long-lived tree communities is poorly understood, especially in tropical forests, which have the highest tree diversity of any ecosystem. The lowland tropical rain forests of Southeast Asia are characterized by high levels of species richness within the family Dipterocarpaceae, the entirety of which has been shown to form obligate ectomycorrhizal (ECM) fungal associations. Differences in ECM assembly between co-occurring species of dipterocarp have been suggested, but never tested in adult trees, as a mechanism for maintaining the coexistence of closely related tree species in this family. Testing this hypothesis has proven difficult because the assembly of both dipterocarps and their ECM associates co-varies with the same edaphic variables. In this study, we used high-throughput DNA sequencing of soils and Sanger sequencing of root tips to evaluate how ECM fungi were structured within and across a clay–sand soil nutrient ecotone in a mixed-dipterocarp rain forest in Malaysian Borneo. We compared assembly patterns of ECM fungi in bulk soil to ECM root tips collected from three ecologically distinct species of dipterocarp. This design allowed us to test whether ECM fungi are more strongly structured by soil type or host specificity. As with previous studies of ECM fungi on this plot, we observed that clay vs. sand soil type strongly structured both the bulk soil and root tip ECM fungal communities. However, we also observed significantly different ECM communities associated with two of the three dipterocarp species evaluated on this plot. These results suggest that ECM fungal assembly on these species is shaped by a combination of biotic and abiotic factors, and that the soil edaphic niche occupied by different dipterocarp species may be mediated by distinct ECM fungal assemblages. PMID:29163567

  9. A hydrogen-based subsurface microbial community dominated by methanogens

    USGS Publications Warehouse

    Chapelle, F.H.; O'Neil, Kyle; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1-5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16s ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  10. Patterns of Arbuscular Mycorrhizal Fungal Distribution on Mainland and Island Sandy Coastal Plain Ecosystems in Brazil.

    PubMed

    da Silva, Iolanda Ramalho; de Souza, Francisco Adriano; da Silva, Danielle Karla Alves; Oehl, Fritz; Maia, Leonor Costa

    2017-10-01

    Although sandy coastal plains are important buffer zones to protect the coast line and maintain biological diversity and ecosystem services, these ecosystems have been endangered by anthropogenic activities. Thus, information on coastal biodiversity and forces shaping coastal biological diversity are extremely important for effective conservation strategies. In this study, we aimed to compare arbuscular mycorrhizal (AM) fungal communities from soil samples collected on the mainland and nearby islands located in Brazilian sandy coastal plain ecosystems (Restingas) to get information about AM fungal biogeography and identify factors shaping these communities. Soil samples were collected in 2013 and 2014 on the beachfront of the tropical sandy coastal plain at six sites (three island and three mainland locations) across the northeast, southeast, and south regions of Brazil. Overall, we recorded 53 AM fungal species from field and trap culture samples. The richness and diversity of AM fungal species did not differ between mainland and island locations, but AM fungal community assemblages were different between mainland and island environments and among most sites sampled. Glomeromycota communities registered from island samples showed higher heterogeneity than communities from mainland samples. Sandy coastal plains harbor diverse AM fungal communities structured by climatic, edaphic, and spatial factors, while the distance from the colonizing source (mainland environments) does not strongly affect the AM fungal communities in Brazilian coastal environments.

  11. Basidiomycete fungal communities in Australian sclerophyll forest soil are altered by repeated prescribed burning.

    PubMed

    Anderson, Ian C; Bastias, Brigitte A; Genney, David R; Parkin, Pamela I; Cairney, John W G

    2007-04-01

    Soil basidiomycetes play key roles in forest nutrient and carbon cycling processes, yet the diversity and structure of below ground basidiomycete communities remain poorly understood. Prescribed burning is a commonly used forest management practice and there is evidence that single fire events can have an impact on soil fungal communities but little is known about the effects of repeated prescribed burning. We have used internal transcribed spacer (ITS) terminal restriction fragment length polymorphism (T-RFLP) analysis to investigate the impacts of repeated prescribed burning every two or four years over a period of 30 years on soil basidiomycete communities in an Australian wet sclerophyll forest. Detrended correspondence analysis of ITS T-RFLP profiles separated basidiomycete communities in unburned control plots from those in burned plots, with those burned every two years being the most different from controls. Burning had no effect on basidiomycete species richness, thus these differences appear to be due to changes in community structure. Basidiomycete communities in the unburned control plots were vertically stratified in the upper 20 cm of soil, but no evidence was found for stratification in the burned plots, suggesting that repeated prescribed burning results in more uniform basidiomycete communities. Overall, the results demonstrate that repeated prescribed burning alters soil basidiomycete communities, with the effect being greater with more frequent burning.

  12. Sequencing-Based Analysis of the Bacterial and Fungal Composition of Kefir Grains and Milks from Multiple Sources

    PubMed Central

    Marsh, Alan J.; O’Sullivan, Orla; Hill, Colin; Ross, R. Paul; Cotter, Paul D.

    2013-01-01

    Kefir is a fermented milk-based beverage to which a number of health-promoting properties have been attributed. The microbes responsible for the fermentation of milk to produce kefir consist of a complex association of bacteria and yeasts, bound within a polysaccharide matrix, known as the kefir grain. The consistency of this microbial population, and that present in the resultant beverage, has been the subject of a number of previous, almost exclusively culture-based, studies which have indicated differences depending on geographical location and culture conditions. However, culture-based identification studies are limited by virtue of only detecting species with the ability to grow on the specific medium used and thus culture-independent, molecular-based techniques offer the potential for a more comprehensive analysis of such communities. Here we describe a detailed investigation of the microbial population, both bacterial and fungal, of kefir, using high-throughput sequencing to analyse 25 kefir milks and associated grains sourced from 8 geographically distinct regions. This is the first occasion that this technology has been employed to investigate the fungal component of these populations or to reveal the microbial composition of such an extensive number of kefir grains or milks. As a result several genera and species not previously identified in kefir were revealed. Our analysis shows that the bacterial populations in kefir are dominated by 2 phyla, the Firmicutes and the Proteobacteria. It was also established that the fungal populations of kefir were dominated by the genera Kazachstania, Kluyveromyces and Naumovozyma, but that a variable sub-dominant population also exists. PMID:23894461

  13. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources.

    PubMed

    Marsh, Alan J; O'Sullivan, Orla; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2013-01-01

    Kefir is a fermented milk-based beverage to which a number of health-promoting properties have been attributed. The microbes responsible for the fermentation of milk to produce kefir consist of a complex association of bacteria and yeasts, bound within a polysaccharide matrix, known as the kefir grain. The consistency of this microbial population, and that present in the resultant beverage, has been the subject of a number of previous, almost exclusively culture-based, studies which have indicated differences depending on geographical location and culture conditions. However, culture-based identification studies are limited by virtue of only detecting species with the ability to grow on the specific medium used and thus culture-independent, molecular-based techniques offer the potential for a more comprehensive analysis of such communities. Here we describe a detailed investigation of the microbial population, both bacterial and fungal, of kefir, using high-throughput sequencing to analyse 25 kefir milks and associated grains sourced from 8 geographically distinct regions. This is the first occasion that this technology has been employed to investigate the fungal component of these populations or to reveal the microbial composition of such an extensive number of kefir grains or milks. As a result several genera and species not previously identified in kefir were revealed. Our analysis shows that the bacterial populations in kefir are dominated by 2 phyla, the Firmicutes and the Proteobacteria. It was also established that the fungal populations of kefir were dominated by the genera Kazachstania, Kluyveromyces and Naumovozyma, but that a variable sub-dominant population also exists.

  14. House dust fungal communities' characterization: a double take on the six by sixty by six (6 × 60 × 6) project

    NASA Astrophysics Data System (ADS)

    Amaro, Raquel; Coelho, Sónia D.; Pastorinho, M. Ramiro; Taborda-Barata, Luís; Vaz-Patto, Maria A.; Monteiro, Marisa; Nepomuceno, Miguel C. S.; Lanzinha, Joăo C. G.; Teixeira, Joăo P.; Pereira, Cristiana C.; Sousa, Ana C. A.

    2016-11-01

    Fungi are a group of microbes that are found with particular incidence in the indoor environment. Their direct toxicity or capability of generating toxic compounds has been associated with a large number of adverse health effects, such as infectious diseases and allergies. Given that in modern society people spend a large part of their time indoors; fungal communities' characterization of this environmental compartment assumes paramount importance in the comprehension of health effects. House dust is an easy to obtain, time-integrative matrix, being its use in epidemiological studies on human exposure to environmental contaminants highly recommended. Furthermore, dust can carry a great variety of fungal content that undergoes a large number of processes that modulate and further complexify human exposure. Our study aims to identify and quantify the fungal community on house dust samples collected using two different methodologies (an approach not often seen in the literature): active (vacuum cleaner bags) and passive sampling (dust settled in petri dishes). Sampling was performed as part of the ongoing 6 × 60 × 6 Project in which six houses from Covilhă (Portugal), with building dates representative of six decades, were studied for a period of sixty days.

  15. A metagenomics-based approach to the top-down effect on the detritivore food web: a salamanders influence on fungal communities within a deciduous forest.

    PubMed

    Walker, Donald M; Lawrence, Brandy R; Esterline, Dakota; Graham, Sean P; Edelbrock, Michael A; Wooten, Jessica A

    2014-11-01

    The flow of energy within an ecosystem can be considered either top-down, where predators influence consumers, or bottom-up, where producers influence consumers. Plethodon cinereus (Red-backed Salamander) is a terrestrial keystone predator who feeds on invertebrates within the ecosystem. We investigated the impact of the removal of P. cinereus on the detritivore food web in an upland deciduous forest in northwest Ohio, U.S.A. A total of eight aluminum enclosures, each containing a single P. cinereus under a small log, were constructed in the deciduous forest. On Day 1 of the experiment, four salamanders were evicted from four of the eight enclosures. Organic matter and soil were collected from the center of each enclosure at Day 1 and Day 21. From each sample, DNA was extracted, fungal-specific amplification performed, and 454 pyrosequencing was used to sequence the nuclear ribosomal internal transcribed spacer (ITS2) region and partial ribosomal large subunit (LSU). Changes in overall fungal community composition or species diversity were not statistically significant between treatments. Statistically significant shifts in the most abundant taxonomic groups of fungi were documented in presence but not absence enclosures. We concluded that P. cinereus does not affect the overall composition or diversity of fungal communities, but does have an impact on specific groups of fungi. This study used a metagenomics-based approach to investigate a missing link among a keystone predator, P. cinereus, invertebrates, and fungal communities, all of which are critical in the detritivore food web.

  16. Degradation kinetics of chlorpyrifos and 3,5,6-trichloro-2-pyridinol (TCP) by fungal communities.

    PubMed

    Maya, K; Upadhyay, S N; Singh, R S; Dubey, Suresh K

    2012-12-01

    Fungal isolates obtained from soil were used for degrading chlorpyrifos (CP) and TCP. The percentage degradation ranged from 69.4 to 89.8 for CP and 62.2 to 92.6 for TCP after one week. The values of K(s) and V(max) were different for different isolates. The K(s) ranged from 66.66 to 169.5mg/L and V(max) from 6.56 to 40.4 mg/L/d for CP and from 53.19 to 163.9 mg/L and 3.41 to 40.40 mg/L/d, respectively, for TCP. Fungal community showed high affinity for both CP and TCP. The genetic relatedness of isolate F1 to Aspergillus sp., F2 and F3 to Penicillium sp., F4 to Eurotium sp. and F5 to Emericella sp. were confirmed. The degradation potential was in the order: F1>F2=F3>F4>F5. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Soil-foraging animals alter the composition and co-occurrence of microbial communities in a desert shrubland

    PubMed Central

    Eldridge, David J; Woodhouse, Jason N; Curlevski, Nathalie J A; Hayward, Matthew; Brown, Mark V; Neilan, Brett A

    2015-01-01

    Animals that modify their physical environment by foraging in the soil can have dramatic effects on ecosystem functions and processes. We compared bacterial and fungal communities in the foraging pits created by bilbies and burrowing bettongs with undisturbed surface soils dominated by biocrusts. Bacterial communities were characterized by Actinobacteria and Alphaproteobacteria, and fungal communities by Lecanoromycetes and Archaeosporomycetes. The composition of bacterial or fungal communities was not observed to vary between loamy or sandy soils. There were no differences in richness of either bacterial or fungal operational taxonomic units (OTUs) in the soil of young or old foraging pits, or undisturbed soils. Although the bacterial assemblage did not vary among the three microsites, the composition of fungi in undisturbed soils was significantly different from that in old or young foraging pits. Network analysis indicated that a greater number of correlations between bacterial OTUs occurred in undisturbed soils and old pits, whereas a greater number of correlations between fungal OTUs occurred in undisturbed soils. Our study suggests that digging by soil-disturbing animals is likely to create successional shifts in soil microbial and fungal communities, leading to functional shifts associated with the decomposition of organic matter and the fixation of nitrogen. Given the primacy of organic matter decomposition in arid and semi-arid environments, the loss of native soil-foraging animals is likely to impair the ability of these systems to maintain key ecosystem processes such as the mineralization of nitrogen and the breakdown of organic matter, and to recover from disturbance. PMID:25932616

  18. Soil Microbial Community Responses to Short-term Multiple Experimental Climate Change Drivers

    NASA Astrophysics Data System (ADS)

    Li, Guanlin; Lee, Jongyeol; Lee, Sohye; Roh, Yujin; Son, Yowhan

    2016-04-01

    Basidiomycota across all treatments; and 6) the shift induced by treatments in the dominant fungal group was larger than bacterial group. Since soil microorganisms differ in their susceptibility to stressors, the changes in the soil microbial communities may result from treatment-induced shifts in soil temperature and moisture. Our results indicate that climate change drivers and their interactions may cause changes in abundance and composition of soil microbial communities, especially for the fungal community. These results illustrate climate change drivers and their interactions may select for distinct soil microbial communities, and these community changes may shape the way ecosystems function in the future. This study was supported by National Research Foundation of Korea (NRF-2013R1A1A2012242).

  19. A next generation sequencing approach with a suitable bioinformatics workflow to study fungal diversity in bioaerosols released from two different types of composting plants.

    PubMed

    Mbareche, Hamza; Veillette, Marc; Bonifait, Laetitia; Dubuis, Marie-Eve; Benard, Yves; Marchand, Geneviève; Bilodeau, Guillaume J; Duchaine, Caroline

    2017-12-01

    Composting is used all over the world to transform different types of organic matter through the actions of complex microbial communities. Moving and handling composting material may lead to the emission of high concentrations of bioaerosols. High exposure levels are associated with adverse health effects among compost industry workers. Fungal spores are suspected to play a role in many respiratory illnesses. There is a paucity of information related to the detailed fungal diversity in compost as well as in the aerosols emitted through composting activities. The aim of this study was to analyze the fungal diversity of both organic matter and aerosols present in facilities that process domestic compost and facilities that process pig carcasses. This was accomplished using a next generation sequencing approach that targets the ITS1 genomic region. Multivariate analyses revealed differences in the fungal community present in samples coming from compost treating both raw materials. Furthermore, results show that the compost type affects the fungal diversity of aerosols emitted. Although 8 classes were evenly distributed in all samples, Eurotiomycetes were more dominant in carcass compost while Sordariomycetes were dominant in domestic compost. A large diversity profile was observed in bioaerosols from both compost types showing the presence of a number of pathogenic fungi newly identified in bioaerosols emitted from composting plants. Members of the family Herpotrichiellaceae and Gymnoascaceae which have been shown to cause human diseases were detected in compost and air samples. Moreover, some fungi were identified in higher proportion in air compared to compost. This is the first study to identify a high level of fungal diversity in bioaerosols present in composting plants suggesting a potential exposure risk for workers. This study suggests the need for creating guidelines that address human exposure to bioaerosols. The implementation of technical and organizational

  20. High-Fat Diet Changes Fungal Microbiomes and Interkingdom Relationships in the Murine Gut.

    PubMed

    Heisel, Timothy; Montassier, Emmanuel; Johnson, Abigail; Al-Ghalith, Gabriel; Lin, Yi-Wei; Wei, Li-Na; Knights, Dan; Gale, Cheryl A

    2017-01-01

    Dietary fat intake and shifts in gut bacterial community composition are associated with the development of obesity. To date, characterization of microbiota in lean versus obese subjects has been dominated by studies of gut bacteria. Fungi, recently shown to affect gut inflammation, have received little study for their role in obesity. We sought to determine the effects of high-fat diet on fungal and bacterial community structures in a mouse model using the internal transcribed spacer region 2 (ITS2) of fungal ribosomal DNA (rDNA) and the 16S rRNA genes of bacteria. Mice fed a high-fat diet had significantly different abundances of 19 bacterial and 6 fungal taxa than did mice fed standard chow, with high-fat diet causing similar magnitudes of change in overall fungal and bacterial microbiome structures. We observed strong and complex diet-specific coabundance relationships between intra- and interkingdom microbial pairs and dramatic reductions in the number of coabundance correlations in mice fed a high-fat diet compared to those fed standard chow. Furthermore, predicted microbiome functional modules related to metabolism were significantly less abundant in high-fat-diet-fed than in standard-chow-fed mice. These results suggest a role for fungi and interkingdom interactions in the association between gut microbiomes and obesity. IMPORTANCE Recent research shows that gut microbes are involved in the development of obesity, a growing health problem in developed countries that is linked to increased risk for cardiovascular disease. However, studies showing links between microbes and metabolism have been limited to the analysis of bacteria and have ignored the potential contribution of fungi in metabolic health. This study provides evidence that ingestion of a high-fat diet is associated with changes to the fungal (and bacterial) microbiome in a mouse model. In addition, we find that interkingdom structural and functional relationships exist between fungi and bacteria

  1. Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollister, Emily B; Schadt, Christopher Warren; Palumbo, Anthony Vito

    In the southern Great Plains (USA), encroachment of grassland ecosystems by Prosopis glandulosa (honey mesquite) is widespread. Mesquite encroachment alters net primary productivity, enhances stores of C and N in plants and soil, and leads to increased levels of soil microbial biomass and activity. While mesquite's impact on the biogeochemistry of the region is well established, it effects on soil microbial diversity and function are unknown. In this study, soils associated with four plant types (C{sub 3} perennial grasses, C{sub 4} midgrasses, C{sub 4} shortgrasses, and mesquite) from a mesquite-encroached mixed grass prairie were surveyed to in an attempt tomore » characterize the structure, diversity, and functional capacity of their soil microbial communities. rRNA gene cloning and sequencing were used in conjunction with the GeoChip functional gene array to evaluate these potential differences. Mesquite soil supported increased bacterial and fungal diversity and harbored a distinct fungal community relative to other plant types. Despite differences in composition and diversity, few significant differences were detected with respect to the potential functional capacity of the soil microbial communities. These results may suggest that a high level of functional redundancy exists within the bacterial portion of the soil communities; however, given the bias of the GeoChip toward bacterial functional genes, potential functional differences among soil fungi could not be addressed. The results of this study illustrate the linkages shared between above- and belowground communities and demonstrate that soil microbial communities, and in particular soil fungi, may be altered by the process of woody plant encroachment.« less

  2. Dominance of candidate Saccharibacteria in a membrane bioreactor treating medium age landfill leachate: Effects of organic load on microbial communities, hydrolytic potential and extracellular polymeric substances.

    PubMed

    Remmas, Nikolaos; Melidis, Paraschos; Zerva, Ioanna; Kristoffersen, Jon Bent; Nikolaki, Sofia; Tsiamis, George; Ntougias, Spyridon

    2017-08-01

    A membrane bioreactor (MBR), accomplishing high nitrogen removal efficiencies, was evaluated under various landfill leachate concentrations (50, 75 and 100% v/v). Proteinous and carbohydrate extracellular polymeric substances (EPS) and soluble microbial product (SMP) were strongly correlated (p<0.01) with organic load, salinity and NH 4 + -N. Exceptionally high β-glucosidase activities (6700-10,100Ug -1 ) were determined during MBR operation with 50% v/v leachate, as a result of the low organic carbon availability that extendedly induced β-glucosidases to breakdown the least biodegradable organic fraction. Illumina sequencing revealed that candidate Saccharibacteria were dominant, independently of the leachate concentration applied, whereas other microbiota (21.2% of total reads) disappeared when undiluted leachate was used. Fungal taxa shifted from a Saccharomyces- to a newly-described Cryptomycota-based community with increasing leachate concentration. Indeed, this is the first report on the dominance of candidate Saccharibacteria and on the examination of their metabolic behavior in a bioreactor treating real wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. High-Throughput Sequencing Reveals Drastic Changes in Fungal Communities in the Phyllosphere of Norway Spruce (Picea abies) Following Invasion of the Spruce Bud Scale (Physokermes piceae).

    PubMed

    Menkis, Audrius; Marčiulynas, Adas; Gedminas, Artūras; Lynikienė, Jūratė; Povilaitienė, Aistė

    2015-11-01

    The aim of this study was to assess the diversity and composition of fungal communities in damaged and undamaged shoots of Norway spruce (Picea abies) following recent invasion of the spruce bud scale (Physokermes piceae) in Lithuania. Sampling was done in July 2013 and included 50 random lateral shoots from ten random trees in each of five visually undamaged and five damaged 40-50-year-old pure stands of P. abies. DNA was isolated from 500 individual shoots, subjected to amplification of the internal transcribed spacer of fungal ribosomal DNA (ITS rDNA), barcoded and sequenced. Clustering of 149,426 high-quality sequences resulted in 1193 non-singleton contigs of which 1039 (87.1 %) were fungal. In total, there were 893 fungal taxa in damaged shoots and 608 taxa in undamaged shoots (p < 0.0001). Furthermore, 431 (41.5 %) fungal taxa were exclusively in damaged shoots, 146 (14.0 %) were exclusively in undamaged shoots, and 462 (44.5 %) were common to both types of samples. Correspondence analysis showed that study sites representing damaged and undamaged shoots were separated from each other, indicating that in these fungal communities, these were largely different and, therefore, heavily affected by P. piceae. In conclusion, the results demonstrated that invasive alien tree pests may have a profound effect on fungal mycobiota associated with the phyllosphere of P. abies, and therefore, in addition to their direct negative effect owing physical damage of the tissue, they may also indirectly determine health, sustainability and, ultimately, distribution of the forest tree species.

  4. Filamentous fungal diversity and community structure associated with the solid state fermentation of Chinese Maotai-flavor liquor.

    PubMed

    Chen, Bi; Wu, Qun; Xu, Yan

    2014-06-02

    Maotai-flavor liquor is produced by simultaneous saccharification and fermentation (SSF) process under solid state conditions, including Daqu (starter) making, stacking fermentation and alcohol fermentation stages. Filamentous fungi produce many enzymes to degrade the starch material into fermentable sugar during liquor fermentation. This study investigated the filamentous fungal community associated with liquor making process. Eight and seven different fungal species were identified by using culture-dependent and -independent method (PCR-denaturing gradient gel electrophoresis, DGGE) analyses, respectively. The traditional enumeration method showed that Daqu provided 7 fungal species for stacking fermentation. The total population of filamentous fungi increased from 3.4 × 10(3)cfu/g to 1.28 × 10(4)cfu/g in the first 3 days of stacking fermentation, and then decreased till the end. In alcohol fermentation in pits, the population continuously decreased and few fungal species survived (lower than 1 × 10(3)cfu/g) after 10 days. Therefore, stacking fermentation is an essential stage for the growth of filamentous fungi. Paecilomyces variotii, Aspergillus oryzae and Aspergillus terreus were detected by both methods, and P. variotii and A. oryzae were the predominant species. Meanwhile, P. variotii possessed the highest glucoamylase (3252 ± 526 U/g) and A. oryzae exhibited the highest α-amylase (1491 ± 324 U/g) activity among the cultivable fungal species. Furthermore, the variation of starch and reducing sugar content was consistent with the growth of P. variotii and A. oryzae in Zaopei (fermented grains) during stacking fermentation, which implied that the two filamentous fungi played an important role in producing amylase for hydrolyzing the starch. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Diversity, taxonomic composition, and functional aspects of fungal communities in living, senesced, and fallen leaves at five sites across North America

    PubMed Central

    Arnold, A. Elizabeth

    2016-01-01

    Background Fungal endophytes inhabit symptomless, living tissues of all major plant lineages to form one of earth’s most prevalent groups of symbionts. Many reproduce from senesced and/or decomposing leaves and can produce extracellular leaf-degrading enzymes, blurring the line between symbiotrophy and saprotrophy. To better understand the endophyte–saprotroph continuum we compared fungal communities and functional traits of focal strains isolated from living leaves to those isolated from leaves after senescence and decomposition, with a focus on foliage of woody plants in five biogeographic provinces ranging from tundra to subtropical scrub forest. Methods We cultured fungi from the interior of surface-sterilized leaves that were living at the time of sampling (i.e., endophytes), leaves that were dead and were retained in plant canopies (dead leaf fungi, DLF), and fallen leaves (leaf litter fungi, LLF) from 3–4 species of woody plants in each of five sites in North America. Our sampling encompassed 18 plant species representing two families of Pinophyta and five families of Angiospermae. Diversity and composition of fungal communities within and among leaf life stages, hosts, and sites were compared using ITS-partial LSU rDNA data. We evaluated substrate use and enzyme activity by a subset of fungi isolated only from living tissues vs. fungi isolated only from non-living leaves. Results Across the diverse biomes and plant taxa surveyed here, culturable fungi from living leaves were isolated less frequently and were less diverse than those isolated from non-living leaves. Fungal communities in living leaves also differed detectably in composition from communities in dead leaves and leaf litter within focal sites and host taxa, regardless of differential weighting of rare and abundant fungi. All focal isolates grew on cellulose, lignin, and pectin as sole carbon sources, but none displayed ligninolytic or pectinolytic activity in vitro. Cellulolytic activity

  6. Diversity, taxonomic composition, and functional aspects of fungal communities in living, senesced, and fallen leaves at five sites across North America.

    PubMed

    U'Ren, Jana M; Arnold, A Elizabeth

    2016-01-01

    Fungal endophytes inhabit symptomless, living tissues of all major plant lineages to form one of earth's most prevalent groups of symbionts. Many reproduce from senesced and/or decomposing leaves and can produce extracellular leaf-degrading enzymes, blurring the line between symbiotrophy and saprotrophy. To better understand the endophyte-saprotroph continuum we compared fungal communities and functional traits of focal strains isolated from living leaves to those isolated from leaves after senescence and decomposition, with a focus on foliage of woody plants in five biogeographic provinces ranging from tundra to subtropical scrub forest. We cultured fungi from the interior of surface-sterilized leaves that were living at the time of sampling (i.e., endophytes), leaves that were dead and were retained in plant canopies (dead leaf fungi, DLF), and fallen leaves (leaf litter fungi, LLF) from 3-4 species of woody plants in each of five sites in North America. Our sampling encompassed 18 plant species representing two families of Pinophyta and five families of Angiospermae. Diversity and composition of fungal communities within and among leaf life stages, hosts, and sites were compared using ITS-partial LSU rDNA data. We evaluated substrate use and enzyme activity by a subset of fungi isolated only from living tissues vs. fungi isolated only from non-living leaves. Across the diverse biomes and plant taxa surveyed here, culturable fungi from living leaves were isolated less frequently and were less diverse than those isolated from non-living leaves. Fungal communities in living leaves also differed detectably in composition from communities in dead leaves and leaf litter within focal sites and host taxa, regardless of differential weighting of rare and abundant fungi. All focal isolates grew on cellulose, lignin, and pectin as sole carbon sources, but none displayed ligninolytic or pectinolytic activity in vitro . Cellulolytic activity differed among fungal classes

  7. Patterns of fungal diversity in New Zealand Nothofagus forests.

    PubMed

    Johnston, Peter R; Johansen, Renee B; Williams, Alexandra F R; Paula Wikie, J; Park, Duckchul

    2012-03-01

    The development of protocols for the conservation of fungi requires knowledge of the factors controlling their distribution, diversity, and community composition. Here we compare patterns of variation in fungal communities across New Zealand's Nothofagus forests, reportedly the most myco-diverse in New Zealand and hence potentially key to effective conservation of fungi in New Zealand. Diversity of leaf endophytic fungi, as assessed by culturing on agar plates, is assessed for three Nothofagus sp. growing in mixed stands from four sites. Host species was found to have a greater influence on fungal community assemblage than site. The leaf endophyte communities associated with Nothofagus solandri and Nothofagus fusca (both Nothofagus subgenus Fuscopora), were more similar to each other than either were to the community associated with Nothofagus menziesii (Nothofagus subgenus Lophozonia). The broad taxonomic groups isolated, identified on the basis of internal transcribed spacer (ITS) sequences, were similar to those found in similar studies from other parts of the world, and from an earlier study on the endophyte diversity in four podocarp species from New Zealand, but there were few matches at species level. Average levels of endophyte species diversity associated with single Nothofagus species and single podocarp species were similar, despite historical literature and collection data recording more than twice as many fungal species on average from the Nothofagus species. The significance of these findings to fungal conservation is discussed. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Decrease in fungal biodiversity along an available phosphorous gradient in arable Andosol soils in Japan.

    PubMed

    Bao, Zhihua; Matsushita, Yuko; Morimoto, Sho; Hoshino, Yuko Takada; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Murakami, Hiroharu; Kuroyanagi, Yukiko; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2013-06-01

    Andosols comprise one of the most important soil groups for agricultural activities in Japan because they cover about 46.5% of arable upland fields. In this soil group, available phosphorus (P) is accumulated by application of excessive fertilizer, but little is known about the influence of increasing P availability on microbial community diversity at large scales. We collected soil samples from 9 agro-geographical sites with Andosol soils across an available P gradient (2048.1-59.1 mg P2O5·kg(-1)) to examine the influence of P availability on the fungal community diversity. We used polymerase chain reaction - denaturing gradient gel electrophoresis to analyze the fungal communities based on 18S rRNA genes. Statistical analyses revealed a high negative correlation between available P and fungal diversity (H'). Fungal diversity across all sites exhibited a significant hump-shaped relationship with available P (R(2) = 0.38, P < 0.001). In addition, the composition of the fungal community was strongly correlated with the available P gradient. The ribotype F6, which was positively correlated with available P, was closely related to Mortierella. The results show that both the diversity and the composition of the fungal community were influenced by available P concentrations in Andosols, at a large scale. This represents an important step toward understanding the processes responsible for the maintenance of fungal diversity in Andosolic soils.

  9. Fungal Microbiomes Associated with Green and Non-Green Building Materials

    PubMed Central

    Coombs, Kanistha; Vesper, Stephen; Green, Brett J.; Yermakov, Mikhail; Reponen, Tiina

    2018-01-01

    Water-damaged buildings can lead to fungal growth and occupant health problems. Green building materials, derived from renewable sources, are increasingly utilized in construction and renovations. However, the question as to what fungi will grow on these green compared to non-green materials, after they get wet, has not been adequately studied. By determining what fungi grow on each type of material, the potential health risks can be more adequately assessed. In this study, we inoculated green and non-green pieces of ceiling tile, composite board, drywall, and flooring with indoor dust containing a complex mixture of naturally occurring fungi. The materials were saturated with water and incubated for two months in a controlled environment. The resulting fungal microbiomes were evaluated using ITS amplicon sequencing. Overall, the richness and diversity of the mycobiomes on each pair of green and non-green pieces were not significantly different. However, different genera dominated on each type of material. For example, Aspergillus spp. had the highest relative abundance on green and non-green ceiling tiles and green composite boards, but Peniophora spp. dominated the non-green composite board. In contrast, Penicillium spp. dominated green and non-green flooring samples. Green gypsum board was dominated by Phialophora spp. and Stachybotrys spp., but non-green gypsum board by Myrothecium spp. These data suggest that water-damaged green and non-green building materials can result in mycobiomes that are dominated by fungal genera whose member species pose different potentials for health risks. PMID:29681691

  10. Fungal Microbiomes Associated with Green and Non-Green Building Materials.

    PubMed

    Coombs, Kanistha; Vesper, Stephen; Green, Brett J; Yermakov, Mikhail; Reponen, Tiina

    2017-01-01

    Water-damaged buildings can lead to fungal growth and occupant health problems. Green building materials, derived from renewable sources, are increasingly utilized in construction and renovations. However, the question as to what fungi will grow on these green compared to non-green materials, after they get wet, has not been adequately studied. By determining what fungi grow on each type of material, the potential health risks can be more adequately assessed. In this study, we inoculated green and non-green pieces of ceiling tile, composite board, drywall, and flooring with indoor dust containing a complex mixture of naturally occurring fungi. The materials were saturated with water and incubated for two months in a controlled environment. The resulting fungal microbiomes were evaluated using ITS amplicon sequencing. Overall, the richness and diversity of the mycobiomes on each pair of green and non-green pieces were not significantly different. However, different genera dominated on each type of material. For example, Aspergillus spp. had the highest relative abundance on green and non-green ceiling tiles and green composite boards, but Peniophora spp. dominated the non-green composite board. In contrast, Penicillium spp. dominated green and non-green flooring samples. Green gypsum board was dominated by Phialophora spp. and Stachybotrys spp., but non-green gypsum board by Myrothecium spp. These data suggest that water-damaged green and non-green building materials can result in mycobiomes that are dominated by fungal genera whose member species pose different potentials for health risks.

  11. Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China.

    PubMed

    Xiang, Dan; Verbruggen, Erik; Hu, Yajun; Veresoglou, Stavros D; Rillig, Matthias C; Zhou, Wenping; Xu, Tianle; Li, Huan; Hao, Zhipeng; Chen, Yongliang; Chen, Baodong

    2014-12-01

    We performed a landscape-scale investigation to compare the arbuscular mycorrhizal fungal (AMF) communities between grasslands and farmlands in the farming-pastoral ecotone of northern China. AMF richness and community composition were examined with 454 pyrosequencing. Structural equation modelling (SEM) and multivariate analyses were applied to disentangle the direct and indirect effects (mediated by multiple environmental factors) of land use on AMF. Land use conversion from grassland to farmland significantly reduced AMF richness and extraradical hyphal length density, and these land use types also differed significantly in AMF community composition. SEM showed that the effects of land use on AMF richness and hyphal length density in soil were primarily mediated by available phosphorus and soil structural quality. Soil texture was the strongest predictor of AMF community composition. Soil carbon, nitrogen and soil pH were also significantly correlated with AMF community composition, indicating that these abiotic variables could be responsible for some of the community composition differences among sites. Our study shows that land use has a partly predictable effect on AMF communities across this ecologically relevant area of China, and indicates that high soil phosphorus concentrations and poor soil structure are particularly detrimental to AMF in this fragile ecosystem. © 2014 The Author. New Phytologist © 2014 New Phytologist Trust.

  12. Organic farming increases richness of fungal taxa in the wheat phyllosphere.

    PubMed

    Karlsson, Ida; Friberg, Hanna; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula

    2017-07-01

    Organic farming is often advocated as an approach to mitigate biodiversity loss on agricultural land. The phyllosphere provides a habitat for diverse fungal communities that are important for plant health and productivity. However, it is still unknown how organic farming affects the diversity of phyllosphere fungi in major crops. We sampled wheat leaves from 22 organically and conventionally cultivated fields in Sweden, paired based on their geographical location and wheat cultivar. Fungal communities were described using amplicon sequencing and real-time PCR. Species richness was higher on wheat leaves from organically managed fields, with a mean of 54 operational taxonomic units (OTUs) compared with 40 OTUs for conventionally managed fields. The main components of the fungal community were similar throughout the 350-km-long sampling area, and seven OTUs were present in all fields: Zymoseptoria, Dioszegia fristingensis, Cladosporium, Dioszegia hungarica, Cryptococcus, Ascochyta and Dioszegia. Fungal abundance was highly variable between fields, 10 3 -10 5 internal transcribed spacer copies per ng wheat DNA, but did not differ between cropping systems. Further analyses showed that weed biomass was the strongest explanatory variable for fungal community composition and OTU richness. These findings help provide a more comprehensive understanding of the effect of organic farming on the diversity of organism groups in different habitats within the agroecosystem. © 2017 The Authors Molecular Ecology Published by John Wiley & Sons Ltd.

  13. The distribution of active β-glucosidase-producing microbial communities in composting.

    PubMed

    Zang, Xiangyun; Liu, Meiting; Wang, Han; Fan, Yihong; Zhang, Haichang; Liu, Jiawen; Xing, Enlu; Xu, Xiuhong; Li, Hongtao

    2017-12-01

    The composting ecosystem is a suitable source for the discovery of novel microorganisms and secondary metabolites. Cellulose degradation is an important part of the global carbon cycle, and β-glucosidases complete the final step of cellulose hydrolysis by converting cellobiose to glucose. This work analyzes the succession of β-glucosidase-producing microbial communities that persist throughout cattle manure - rice straw composting, and evaluates their metabolic activities and community advantage during the various phases of composting. Fungal and bacterial β-glucosidase genes belonging to glycoside hydrolase families 1 and 3 (GH1 and GH3) amplified from DNA were classified and gene abundance levels were analyzed. The major reservoirs of β-glucosidase genes were the fungal phylum Ascomycota and the bacterial phyla Firmicutes, Actinobacteria, Proteobacteria, and Deinococcus-Thermus. This indicates that a diverse microbial community utilizes cellobiose. The succession of dominant bacteria was also detected during composting. Firmicutes was the dominant bacteria in the thermophilic phase of composting; there was a shift to Actinomycetes in the maturing stage. Proteobacteria accounted for the highest proportions during the heating and thermophilic phases of composting. By contrast, the fungal phylum Ascomycota was a minor microbial community constituent in thermophilic phase of composting. Combined with the analysis of the temperature, cellulose degradation rate and the carboxymethyl cellulase and β-glucosidase activities showed that the bacterial GH1 family β-glucosidase genes make greater contribution in cellulose degradation at the later thermophilic stage of composting. In summary, even GH1 bacteria families β-glucosidase genes showing low abundance in DNA may be functionally important in the later thermophilic phase of composting. The results indicate that a complex community of bacteria and fungi expresses β-glucosidases in compost. Several

  14. Understanding fungal functional biodiversity during the mitigation of environmentally dispersed pentachlorophenol in cork oak forest soils.

    PubMed

    Varela, Adélia; Martins, Celso; Núñez, Oscar; Martins, Isabel; Houbraken, Jos A M P; Martins, Tiago M; Leitão, M Cristina; McLellan, Iain; Vetter, Walter; Galceran, M Teresa; Samson, Robert A; Hursthouse, Andrew; Silva Pereira, Cristina

    2015-08-01

    Pentachlorophenol (PCP) is globally dispersed and contamination of soil with this biocide adversely affects its functional biodiversity, particularly of fungi - key colonizers. Their functional role as a community is poorly understood, although a few pathways have been already elucidated in pure cultures. This constitutes here our main challenge - elucidate how fungi influence the pollutant mitigation processes in forest soils. Circumstantial evidence exists that cork oak forests in N. W. Tunisia - economically critical managed forests are likely to be contaminated with PCP, but the scientific evidence has previously been lacking. Our data illustrate significant forest contamination through the detection of undefined active sources of PCP. By solving the taxonomic diversity and the PCP-derived metabolomes of both the cultivable fungi and the fungal community, we demonstrate here that most strains (predominantly penicillia) participate in the pollutant biotic degradation. They form an array of degradation intermediates and by-products, including several hydroquinone, resorcinol and catechol derivatives, either chlorinated or not. The degradation pathway of the fungal community includes uncharacterized derivatives, e.g. tetrachloroguaiacol isomers. Our study highlights fungi key role in the mineralization and short lifetime of PCP in forest soils and provide novel tools to monitor its degradation in other fungi dominated food webs. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau.

    PubMed

    Chen, Yong-Liang; Deng, Ye; Ding, Jin-Zhi; Hu, Hang-Wei; Xu, Tian-Le; Li, Fei; Yang, Gui-Biao; Yang, Yuan-He

    2017-12-01

    Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales. Using high-throughput Illumina sequencing, this study compared soil bacterial, archaeal and fungal communities between the active and permafrost layers on the Tibetan Plateau. Our results indicated that microbial alpha diversity was significantly higher in the active layer than in the permafrost layer with the exception of fungal Shannon-Wiener index and Simpson's diversity index, and microbial community structures were significantly different between the two layers. Our results also revealed that environmental factors such as soil fertility (soil organic carbon, dissolved organic carbon and total nitrogen contents) were the primary drivers of the beta diversity of bacterial, archaeal and fungal communities in the active layer. In contrast, environmental variables such as the mean annual precipitation and total phosphorus played dominant roles in driving the microbial beta diversity in the permafrost layer. Spatial distance was important for predicting the bacterial and archaeal beta diversity in both the active and permafrost layers, but not for fungal communities. Collectively, these results demonstrated different driving factors of microbial beta diversity between the active layer and permafrost layer, implying that the drivers of the microbial beta diversity observed in the active layer cannot be used to predict the biogeographic patterns of the microbial beta diversity in the permafrost layer. © 2017 John Wiley & Sons Ltd.

  16. The effect of alum addition on microbial communities in poultry litter.

    PubMed

    Rothrock, M J; Cook, K L; Warren, J G; Sistani, K

    2008-08-01

    Alum [Al(2)(SO(4))(3).14H(2)O] is a common poultry litter amendment used to decrease water-soluble phosphorus or reduce ammonia volatilization, or both. Although the physiochemical effects of alum addition have been well researched, little attention has been given to the poultry litter microbial communities. The goal of this study was to use molecular biological methods [denaturing gradient gel electrophoresis (DGGE), community cloning, and quantitative real-time PCR] to characterize general, group-specific and pathogenic microbial communities in alum (10% wt/wt) and non-alum-treated litter. According to quantitative real-time PCR analyses, alum addition to the poultry litter resulted in significant reductions in both Campylobacter jejuni and Escherichia coli concentrations by the end of the first month of the experiment (3 log and 2 log, respectively). The concentrations of Salmonella spp. were below detection (<5 x 10(3) cell.g(-1) of litter) for the entire experiment. The DGGE analyses revealed significant reductions in the Clostridium/Eubacterium and low %GC gram-positive groups in the alum-treated litters by the end of the first month, with no bands detectable for either group after 8 wk of incubation. Conversely, minimal effects of alum addition were observed in the Actinomycetes community. The most significant shift in the microbial community (based on DGGE analyses) occurred in the fungal population, with a large increase in diversity and abundance within 1 mo of alum addition (1 dominant band on d 0 to 9 dominant bands at 4 wk). Specifically, the incidence of Aspergillus spp. increased from 0 to 50% of the sequences in fungal clone libraries (n = 80) over the course of the experiment. This suggests that the addition of alum to poultry litter potentially shifts the microbial populations from bacterially dominated to dominated by fungi. The ramifications of this shift in dominance are still unknown, and future work will be aimed at characterizing these fungi

  17. Combined Analyses of Bacterial, Fungal and Nematode Communities in Andosolic Agricultural Soils in Japan

    PubMed Central

    Bao, Zhihua; Ikunaga, Yoko; Matsushita, Yuko; Morimoto, Sho; Takada-Hoshino, Yuko; Okada, Hiroaki; Oba, Hirosuke; Takemoto, Shuhei; Niwa, Shigeru; Ohigashi, Kentaro; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2012-01-01

    We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols. PMID:22223474

  18. Combined analyses of bacterial, fungal and nematode communities in andosolic agricultural soils in Japan.

    PubMed

    Bao, Zhihua; Ikunaga, Yoko; Matsushita, Yuko; Morimoto, Sho; Takada-Hoshino, Yuko; Okada, Hiroaki; Oba, Hirosuke; Takemoto, Shuhei; Niwa, Shigeru; Ohigashi, Kentaro; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2012-01-01

    We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols.

  19. Fungal diversity in major oil-shale mines in China.

    PubMed

    Jiang, Shaoyan; Wang, Wenxing; Xue, Xiangxin; Cao, Chengyou; Zhang, Ying

    2016-03-01

    As an insufficiently utilized energy resource, oil shale is conducive to the formation of characteristic microbial communities due to its special geological origins. However, little is known about fungal diversity in oil shale. Polymerase chain reaction cloning was used to construct the fungal ribosomal deoxyribonucleic acid internal transcribed spacer (rDNA ITS) clone libraries of Huadian Mine in Jilin Province, Maoming Mine in Guangdong Province, and Fushun Mine in Liaoning Province. Pure culture and molecular identification were applied for the isolation of cultivable fungi in fresh oil shale of each mine. Results of clone libraries indicated that each mine had over 50% Ascomycota (58.4%-98.9%) and 1.1%-13.5% unidentified fungi. Fushun Mine and Huadian Mine had 5.9% and 28.1% Basidiomycota, respectively. Huadian Mine showed the highest fungal diversity, followed by Fushun Mine and Maoming Mine. Jaccard indexes showed that the similarities between any two of three fungal communities at the genus level were very low, indicating that fungi in each mine developed independently during the long geological adaptation and formed a community composition fitting the environment. In the fresh oil-shale samples of the three mines, cultivable fungal phyla were consistent with the results of clone libraries. Fifteen genera and several unidentified fungi were identified as Ascomycota and Basidiomycota using pure culture. Penicillium was the only genus found in all three mines. These findings contributed to gaining a clear understanding of current fungal resources in major oil-shale mines in China and provided useful information for relevant studies on isolation of indigenous fungi carrying functional genes from oil shale. Copyright © 2015. Published by Elsevier B.V.

  20. Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa.

    PubMed

    Broz, Amanda K; Manter, Daniel K; Vivanco, Jorge M

    2007-12-01

    Interactions between plants and soil microbes are important determinants of both above- and belowground community composition, and ultimately ecosystem function. As exotic plants continue to invade and modify native plant communities, there has been increasing interest in determining the influence of exotic invasives on native soil microbial communities. Here, using highly sensitive molecular techniques, we examine fungal abundance and diversity in the soil surrounding a particularly aggressive invasive plant species in North America, Centaurea maculosa Lam. In mixed stands, we show that this invasive weed can alter the native fungal community composition within its own rhizosphere and that of neighboring native plants. At higher densities, the effect of C. maculosa on native soil fungal communities was even greater. Our results demonstrate that this invasive weed can have significant effects not only on visible aboveground biodiversity but also on the native soil microbial community that extends beyond its rhizosphere.

  1. Afforestation alters community structure of soil fungi.

    PubMed

    Carson, Jennifer K; Gleeson, Deirdre B; Clipson, Nicholas; Murphy, Daniel V

    2010-07-01

    Relatively little is known about the effect of afforestation on soil fungal communities. This study demonstrated that afforestation altered fungal community structure and that changes were correlated to pools of soil C. Pasture at three locations on the same soil type was afforested with Eucalyptus globulus or Pinus pinaster. The structure of fungal communities under the three land uses was measured after 13y using automated ribosomal intergenic spacer analysis (ARISA). Afforestation significantly altered the structure of fungal communities. The effect of location on the structure of fungal communities was limited to pasture soils; although these contained the same plant species, the relative composition of each species varied between locations. Differences in the structure of fungal communities between pasture, E. globulus and P. pinaster were significantly correlated with changes in the amount of total organic C and microbial biomass-C in soil. Afforestation of patches of agricultural land may contribute to conserving soil fungi in agricultural landscapes by supporting fungal communities with different composition to agricultural soils. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Mycorrhizal fungal community relationship to root nitrogen concentration over a regional atmospheric nitrogen deposition gradient in the northeastern USA

    Treesearch

    Erik A. Lilleskov; Philip M. Wargo; Kristiina A. Vogt; Daniel J. Vogt

    2008-01-01

    Increased nitrogen (N) input has been found to alter ectomycorrhizal fungal communities over short deposition gradients and in fertilization experiments; however, its effects over larger spatial scales have not been determined. To address this gap, we reanalyzed data from a study originally designed to examine the effects of soil aluminum/calcium (Al/Ca) ratios on the...

  3. Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China

    PubMed Central

    Tian, Qin; Taniguchi, Takeshi; Shi, Wei-Yu; Li, Guoqing; Yamanaka, Norikazu; Du, Sheng

    2017-01-01

    Similar land-use types usually have similar soil properties, and, most likely, similar microbial communities. Here, we assessed whether land-use types or soil chemical properties are the primary drivers of soil microbial community composition, and how changes in one part of the ecosystem affect another. We applied Ion Torrent sequencing to the bacterial and fungal communities of five different land-use (vegetation) types in the Loess Plateau of China. We found that the overall trend of soil quality was natural forest > plantation > bare land. Dominant bacterial phyla consisted of Proteobacteria (42.35%), Actinobacteria (15.61%), Acidobacteria (13.32%), Bacteroidetes (8.43%), and Gemmatimonadetes (6.0%). The dominant fungi phyla were Ascomycota (40.39%), Basidiomycota (38.01%), and Zygomycota (16.86%). The results of Canonical Correspondence Analysis (CCA) and Redundancy Analysis (RDA) based on land-use types displayed groups according to the land-use types. Furthermore, the bacterial communities were mainly organized by soil organic carbon (SOC). The fungal communities were mainly related to available phosphorus (P). The results suggested that the changes of land use type generated changes in soil chemical properties, controlling the composition of microbial community in the semiarid Loess Plateau region. The microbial community could be an indicator for soil quality with respect to ecological restoration. PMID:28349918

  4. Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China

    NASA Astrophysics Data System (ADS)

    Tian, Qin; Taniguchi, Takeshi; Shi, Wei-Yu; Li, Guoqing; Yamanaka, Norikazu; Du, Sheng

    2017-03-01

    Similar land-use types usually have similar soil properties, and, most likely, similar microbial communities. Here, we assessed whether land-use types or soil chemical properties are the primary drivers of soil microbial community composition, and how changes in one part of the ecosystem affect another. We applied Ion Torrent sequencing to the bacterial and fungal communities of five different land-use (vegetation) types in the Loess Plateau of China. We found that the overall trend of soil quality was natural forest > plantation > bare land. Dominant bacterial phyla consisted of Proteobacteria (42.35%), Actinobacteria (15.61%), Acidobacteria (13.32%), Bacteroidetes (8.43%), and Gemmatimonadetes (6.0%). The dominant fungi phyla were Ascomycota (40.39%), Basidiomycota (38.01%), and Zygomycota (16.86%). The results of Canonical Correspondence Analysis (CCA) and Redundancy Analysis (RDA) based on land-use types displayed groups according to the land-use types. Furthermore, the bacterial communities were mainly organized by soil organic carbon (SOC). The fungal communities were mainly related to available phosphorus (P). The results suggested that the changes of land use type generated changes in soil chemical properties, controlling the composition of microbial community in the semiarid Loess Plateau region. The microbial community could be an indicator for soil quality with respect to ecological restoration.

  5. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.

    PubMed

    Kumar, Niraj; Palmer, Gerald R; Shah, Vishal; Walker, Virginia K

    2014-01-01

    The impact of silver nanoparticles (NPs) and microparticles (MPs) on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6%) of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria) dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages.

  6. Bacterial Community Succession in Pine-Wood Decomposition.

    PubMed

    Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  7. Bacterial Community Succession in Pine-Wood Decomposition

    PubMed Central

    Kielak, Anna M.; Scheublin, Tanja R.; Mendes, Lucas W.; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities. PMID:26973611

  8. Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration.

    PubMed

    Holste, Ellen K; Holl, Karen D; Zahawi, Rakan A; Kobe, Richard K

    2016-10-01

    Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species ( Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis ) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora , accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal-tree-soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.

  9. Fungal genome resources at NCBI.

    PubMed

    Robbertse, B; Tatusova, T

    2011-09-01

    The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/ is the quickest way to find resources of interest with fungal entries. Some tools though are resources specific and can be indirectly accessed from a particular database in the Entrez system. These include graphical viewers and comparative analysis tools such as TaxPlot, TaxMap and UniGene DDD (found via UniGene Homepage). Gene and BioProject pages also serve as portals to external data such as community annotation websites, BioGrid and UniProt. There are many different ways of accessing genomic data at NCBI. Depending on the focus and goal of research projects or the level of interest, a user would select a particular route for accessing genomic databases and resources. This review article describes methods of accessing fungal genome data and provides examples that illustrate the use of analysis tools.

  10. Elimination of fungicides in biopurification systems: Effect of fungal bioaugmentation on removal performance and microbial community structure.

    PubMed

    Murillo-Zamora, Sergio; Castro-Gutiérrez, Víctor; Masís-Mora, Mario; Lizano-Fallas, Verónica; Rodríguez-Rodríguez, Carlos E

    2017-11-01

    Bioaugmentation with ligninolytic fungi represents a potential way to improve the performance of biomixtures used in biopurification systems for the treatment of pesticide-containing agricultural wastewater. The fungus Trametes versicolor was employed in the bioaugmentation of a biomixture to be used in the simultaneous removal of seven fungicides. Liquid cultures of the fungus were able to remove tebuconazole, while no evidence of carbendazim, metalaxyl and triadimenol depletion was found. When applied in the biomixture, the bioaugmented matrix failed to remove all the triazole fungicides (including tebuconazole) under the assayed conditions, but was efficient to eliminate carbendazim, edifenphos and metalaxyl (the latter only after a second pesticide application). The re-addition of pesticides markedly increased the elimination of carbendazim and metalaxyl; nonetheless, no clear enhancement of the biomixture performance could be ascribed to fungal bioaugmentation, not even after the re-inoculation of fungal biomass. Detoxification efficiently took place in the biomixture (9 d after pesticide applications) according to acute tests on Daphnia magna. DGGE-analysis revealed only moderate time-divergence in bacterial and fungal communities, and a weak establishment of T. versicolor in the matrix. Data suggest that the non-bioaugmented biomixture is useful for the treatment of fungicides other than triazoles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak.

    PubMed

    Pec, Gregory J; Karst, Justine; Taylor, D Lee; Cigan, Paul W; Erbilgin, Nadir; Cooke, Janice E K; Simard, Suzanne W; Cahill, James F

    2017-01-01

    Western North American landscapes are rapidly being transformed by forest die-off caused by mountain pine beetle (Dendroctonus ponderosae), with implications for plant and soil communities. The mechanisms that drive changes in soil community structure, particularly for the highly prevalent ectomycorrhizal fungi in pine forests, are complex and intertwined. Critical to enhancing understanding will be disentangling the relative importance of host tree mortality from changes in soil chemistry following tree death. Here, we used a recent bark beetle outbreak in lodgepole pine (Pinus contorta) forests of western Canada to test whether the effects of tree mortality altered the richness and composition of belowground fungal communities, including ectomycorrhizal and saprotrophic fungi. We also determined the effects of environmental factors (i.e. soil nutrients, moisture, and phenolics) and geographical distance, both of which can influence the richness and composition of soil fungi. The richness of both groups of soil fungi declined and the overall composition was altered by beetle-induced tree mortality. Soil nutrients, soil phenolics and geographical distance influenced the community structure of soil fungi; however, the relative importance of these factors differed between ectomycorrhizal and saprotrophic fungi. The independent effects of tree mortality, soil phenolics and geographical distance influenced the community composition of ectomycorrhizal fungi, while the community composition of saprotrophic fungi was weakly but significantly correlated with the geographical distance of plots. Taken together, our results indicate that both deterministic and stochastic processes structure soil fungal communities following landscape-scale insect outbreaks and reflect the independent roles tree mortality, soil chemistry and geographical distance play in regulating the community composition of soil fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Comparisons of the fungal and protistan communities among different marine sponge holobionts by pyrosequencing.

    PubMed

    He, Liming; Liu, Fang; Karuppiah, Valliappan; Ren, Yi; Li, Zhiyong

    2014-05-01

    To date, the knowledge of eukaryotic communities associated with sponges remains limited compared with prokaryotic communities. In a manner similar to prokaryotes, it could be hypothesized that sponge holobionts have phylogenetically diverse eukaryotic symbionts, and the eukaryotic community structures in different sponge holobionts were probably different. In order to test this hypothesis, the communities of eukaryota associated with 11 species of South China Sea sponges were compared with the V4 region of 18S ribosomal ribonucleic acid gene using 454 pyrosequencing. Consequently, 135 and 721 unique operational taxonomic units (OTUs) of fungi and protists were obtained at 97 % sequence similarity, respectively. These sequences were assigned to 2 phyla of fungi (Ascomycota and Basidiomycota) and 9 phyla of protists including 5 algal phyla (Chlorophyta, Haptophyta, Streptophyta, Rhodophyta, and Stramenopiles) and 4 protozoal phyla (Alveolata, Cercozoa, Haplosporidia, and Radiolaria) including 47 orders (12 fungi, 35 protists). Entorrhizales of fungi and 18 orders of protists were detected in marine sponges for the first time. Particularly, Tilletiales of fungi and Chlorocystidales of protists were detected for the first time in marine habitats. Though Ascomycota, Alveolata, and Radiolaria were detected in all the 11 sponge species, sponge holobionts have different fungi and protistan communities according to OTU comparison and principal component analysis at the order level. This study provided the first insights into the fungal and protistan communities associated with different marine sponge holobionts using pyrosequencing, thus further extending the knowledge on sponge-associated eukaryotic diversity.

  13. Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition

    Treesearch

    Alistair J. H. Smith; Lynette R. Potvin; Erik A. Lilleskov

    2015-01-01

    Ectomycorrhizal fungi (EcMF) typically colonize nursery seedlings, but nutritional and growth effects of these communities are only partly understood. To examine these effects, Picea glauca seedlings collected from a tree nursery naturally colonized by three dominant EcMF were divided between fertilized and unfertilized treatments. After one...

  14. Specific Microbial Communities Associate with the Rhizosphere of Welwitschia mirabilis, a Living Fossil.

    PubMed

    Valverde, Angel; De Maayer, Pieter; Oberholster, Tanzelle; Henschel, Joh; Louw, Michele K; Cowan, Don

    2016-01-01

    Welwitschia mirabilis is an ancient and rare plant distributed along the western coast of Namibia and Angola. Several aspects of Welwitschia biology and ecology have been investigated, but very little is known about the microbial communities associated with this plant. This study reports on the bacterial and fungal communities inhabiting the rhizosphere of W. mirabilis and the surrounding bulk soil. Rhizosphere communities were dominated by sequences of Alphaproteobacteria and Euromycetes, while Actinobacteria, Alphaproteobacteria, and fungi of the class Dothideomycetes jointly dominated bulk soil communities. Although microbial communities within the rhizosphere and soil samples were highly variable, very few "species" (OTUs defined at a 97% identity cut-off) were shared between these two environments. There was a small 'core' rhizosphere bacterial community (formed by Nitratireductor, Steroidobacter, Pseudonocardia and three Phylobacteriaceae) that together with Rhizophagus, an arbuscular mycorrhizal fungus, and other putative plant growth-promoting microbes may interact synergistically to promote Welwitschia growth.

  15. Fungal endophytes of South China blueberry (Vaccinium dunalianum var. urophyllum).

    PubMed

    Li, Z-J; Shen, X-Y; Hou, C-L

    2016-12-01

    A total of 374 fungal endophyte strains were isolated from of Vaccinium dunalianum var. urophyllum (Ericaceae), a well-known cultivated blueberry in southern China. These fungal endophytes could be categorized into 25 morphotypes according to culture characteristics and molecular identification based on the internal transcribed spacer region. All of these isolates belonged to Ascomycota. Jaccard's (Jc) and Sorenson's similarity indices indicated that the species communities from the fruits and branches were closer to each other than to those from leaves. The leaves appeared to host the highest fungal biodiversity, and the fruits displayed the lowest diversity. This study is the first on endophytic fungi isolated from fruits, branches and leaves of blueberry plants. The results contribute to the body of knowledge on the biocontrol of pathogens associated with blueberry and develop the improvement of plant growth. By comparing with the different fungal communities, the leaves appeared to host the highest biodiversity. © 2016 The Society for Applied Microbiology.

  16. Fungal Diversity Is Not Determined by Mineral and Chemical Differences in Serpentine Substrates

    PubMed Central

    Daghino, Stefania; Murat, Claude; Sizzano, Elisa; Girlanda, Mariangela; Perotto, Silvia

    2012-01-01

    The physico-chemical properties of serpentine soils lead to strong selection of plant species. Whereas many studies have described the serpentine flora, little information is available on the fungal communities dwelling in these sites. Asbestos minerals, often associated with serpentine rocks, can be weathered by serpentine-isolated fungi, suggesting an adaptation to this substrate. In this study, we have investigated whether serpentine substrates characterized by the presence of rocks with distinct mineral composition could select for different fungal communities. Both fungal isolation and 454 pyrosequencing of amplicons obtained from serpentine samples following direct DNA extraction revealed some fungal taxa shared by the four ophiolitic substrates, but also highlighted several substrate-specific taxa. Bootstrap analysis of 454 OTU abundances indicated weak clustering of fungal assemblages from the different substrates, which did not match substrate classification based on exchangeable macronutrients and metals. Intra-substrate variability, as assessed by DGGE profiles, was similar across the four serpentine substrates, and comparable to inter-substrate variability. These findings indicate the absence of a correlation between the substrate (mineral composition and available cations) and the diversity of the fungal community. Comparison of culture-based and culture-independent methods supports the higher taxonomic precision of the former, as complementation of the better performance of the latter. PMID:23028507

  17. Characterization of juvenile maritime pine (Pinus pinaster Ait.) ectomycorrhizal fungal community using morphotyping, direct sequencing and fruitbodies sampling.

    PubMed

    Pestaña Nieto, Montserrat; Santolamazza Carbone, Serena

    2009-02-01

    Using ectomycorrhizal root tip morphotyping (anatomical and morphological identification), molecular analysis (internal transcribed spacer region amplification and sequencing), and fruitbody sampling, we assessed diversity and composition of the ectomycorrhizal fungal community colonizing juvenile Pinus pinaster Ait. under natural conditions in NW Spain. Overall, we found 15 Basidiomycetes and two Ascomycetes. Members of the family Thelephoraceae represented up to 59.4% of the samples. The most frequent species was Tomentella sublilacina followed by Thelephora terrestris, Russula drimeia, Suillus bovinus, and Paxillus involutus, while the less frequent were Pseudotomentella tristis, Lactarius subdulcis, Russula ochroleuca, and Entoloma conferendum. From October 2007 to June 2008, we sampled 208 sporocarps belonging to seven genera and nine species: Thelephora terrestris, Paxillus involutus, Suillus bovinus, Xerocomus badius, Scleroderma verrucosum, Amanita gemmata, A. rubescens, Amanita sp., and Russula sp. The species belonging to the genus Amanita, X. badius and S. verrucosum were not found on root samples. By comparing our results with a bibliographic review of papers published from 1922 to 2006, we found five genera and six species which have not been previously reported in symbiosis with P. pinaster. This is the first time that the diversity of the ectomycorrhizal fungal community associated with P. pinaster was investigated using molecular techniques. Considering that only 38% of the genera found by sequencing were found as fruitbodies, we conclude that integrating morphotyping and sporocarps surveys with molecular analysis of ectomycorrhizas is important to documenting the ectomycorrhizal fungus community.

  18. Fungal Taxa Target Different Carbon Substrates in Harvard Forest Soils

    NASA Astrophysics Data System (ADS)

    Hanson, C. A.; Allison, S. D.; Wallenstein, M. D.; Mellilo, J. M.; Treseder, K. K.

    2006-12-01

    The mineralization of soil organic carbon is a major component of the global carbon cycle and is largely controlled by soil microbial communities. However, little is known about the functional roles of soil microbes or whether different microbial taxa target different carbon substrates under natural conditions. To examine this possibility, we assessed the community composition of active fungi by using a novel nucleotide analog technique in soils from the Harvard Forest. We hypothesized that fungal community composition would shift in response to the addition of different substrates and that specific fungal taxa would respond differentially to particular carbon sources. To test this hypothesis, we added a nucleotide analog probe directly to soils in conjunction with one of five carbon compounds of increasing recalcitrance: glycine, sucrose, cellulose, tannin-protein complex, and lignin. During 48 hour incubations, the nucleotide analog was incorporated into newly replicated DNA of soil organisms that proliferated following the addition of the substrates. In this way, we labeled the DNA of microbes that respond to a particular carbon source. Labeled DNA was isolated and fungal Internal Transcribed Spacer (ITS) regions of ribosomal DNA (rDNA) were sequenced and analyzed to identify active fungi to near-species resolution. Diversity analyses at the ≥97% sequence similarity level indicated that taxonomic richness was greater under cellulose (Shannon Index: 3.23 ± 0.11 with ± 95% CI) and lignin (2.87 ± 0.15) additions than the other treatments (2.34 ± 0.16 to 2.64 ± 0.13). In addition, community composition of active fungi shifted under glycine, sucrose, and cellulose additions. Specifically, the community under glycine was significantly different from communities under control, cellulose, and tannin-protein (P<0.05). Additionally, the sucrose and cellulose communities were marginally different from the control community (P = 0.059 and 0.054, respectively) and

  19. Succession of biofilm communities responsible for biofouling of membrane bio-reactors (MBRs)

    PubMed Central

    Luo, Jinxue; Lv, Pengyi; Zhang, Jinsong; Fane, Anthony G.; McDougald, Diane

    2017-01-01

    Biofilm formation is one of the main factors associated with membrane biofouling in membrane bioreactors (MBRs). As such, it is important to identify the responsible organisms to develop targeted strategies to control biofouling. This study investigated the composition and changes in the microbial communities fouling MBR membranes over time and correlated those changes with an increase in transmembrane pressure (TMP). Based on qPCR data, bacteria were the dominant taxa of the biofilm (92.9–98.4%) relative to fungi (1.5–6.9%) and archaea (0.03–0.07%). NMDS analysis indicated that during the initial stages of operation, the biofilm communities were indistinguishable from those found in the sludge. However, the biofilm community significantly diverged from the sludge over time and ultimately showed a unique biofilm profile. This suggested that there was strong selection for a group of organisms that were biofilm specialists. This pattern of succession and selection was correlated with the rapid increase in TMP, where bacteria including Rhodospirillales, Sphingomonadales and Rhizobiales dominated the biofilm at this time. While most of the identified fungal OTUs matched Candida sp., the majority of fungal communities were unclassified by 18S rRNA gene sequencing. Collectively, the data suggests that bacteria, primarily, along with fungi may play an important role in the rapid TMP increase and loss of system performance. PMID:28686622

  20. Condensed tannins affect bacterial and fungal microbiomes and mycotoxin production during ensiling and upon aerobic exposure.

    PubMed

    Peng, Kai; Jin, Long; Niu, Yan D; Huang, Qianqian; McAllister, Tim A; Yang, Hee Eun; Denise, Hubert; Xu, Zhongjun; Acharya, Surya; Wang, Shunxi; Wang, Yuxi

    2017-12-15

    Purple prairie clover (PPC; Dalea purpurea Vent.) containing 84.5 g/kg DM of condensed tannin (CT) was ensiled without (Control) or with polyethylene glycol (PEG) for 76 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics were determined and bacterial and fungal communities were assessed using metagenomic sequencing. Addition of PEG that deactivated CT at ensiling increased ( P < 0.05∼0.001) soluble N, non-protein N, lactic acid, total volatile fatty acids, ammonia N, deoxynivalenol (DON) and ochratoxin A (OTA), but decreased ( P < 0.001) pH and water soluble carbohydrates. Concentration of DON and OTA increased ( P < 0.001) for both silages with the extent of increase being greater for Control than for PEG treated silage during aerobic exposure. The PEG treated silage exhibited higher ( P < 0.01∼0.001) copy numbers of total bacteria, Lactobacillus , yeasts and fungi than Control. Addition of PEG decreased ( P < 0.01) bacterial diversity during both ensiling and aerobic exposure, whereas it increased ( P < 0.05) fungal diversity during aerobic exposure. Addition of PEG at ensiling increased ( P < 0.05) abundances of Lactobacillus and Pediococcus , but decreased ( P < 0.01) abundances of Lactococcus and Leuconostoc Filamentous fungi were found in the microbiome at ensiling and after aerobic exposure, whereas the Bacillus were the dominate bacteria after aerobic exposure. In conclusion, CT decreased protein degradation and improved aerobic stability of silage. These desirable outcomes likely reflect the ability of PPC CT to inhibit those microorganisms involved in lowering silage quality and in the production of mycotoxins. IMPORTANCE The present study reports the effects of condensed tannins on the complex microbial communities involved in ensiling and aerobic exposure of purple prairie clover. This study documents the ability of condensed tannins to lower mycotoxin production and associated microbiome. Taxonomic bacterial

  1. The Interface between Fungal Biofilms and Innate Immunity.

    PubMed

    Kernien, John F; Snarr, Brendan D; Sheppard, Donald C; Nett, Jeniel E

    2017-01-01

    Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus , and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  2. Fungal Diversity in Field Mold-Damaged Soybean Fruits and Pathogenicity Identification Based on High-Throughput rDNA Sequencing

    PubMed Central

    Liu, Jiang; Deng, Jun-cai; Yang, Cai-qiong; Huang, Ni; Chang, Xiao-li; Zhang, Jing; Yang, Feng; Liu, Wei-guo; Wang, Xiao-chun; Yong, Tai-wen; Du, Jun-bo; Shu, Kai; Yang, Wen-yu

    2017-01-01

    Continuous rain and an abnormally wet climate during harvest can easily lead to soybean plants being damaged by field mold (FM), which can reduce seed yield and quality. However, to date, the underlying pathogen and its resistance mechanism have remained unclear. The objective of the present study was to investigate the fungal diversity of various soybean varieties and to identify and confirm the FM pathogenic fungi. A total of 62,382 fungal ITS1 sequences clustered into 164 operational taxonomic units (OTUs) with 97% sequence similarity; 69 taxa were recovered from the samples by internal transcribed spacer (ITS) region sequencing. The fungal community compositions differed among the tested soybeans, with 42 OTUs being amplified from all varieties. The quadratic relationships between fungal diversity and organ-specific mildew indexes were analyzed, confirming that mildew on soybean pods can mitigate FM damage to the seeds. In addition, four potentially pathogenic fungi were isolated from FM-damaged soybean fruits; morphological and molecular identification confirmed these fungi as Aspergillus flavus, A. niger, Fusarium moniliforme, and Penicillium chrysogenum. Further re-inoculation experiments demonstrated that F. moniliforme is dominant among these FM pathogenic fungi. These results lay the foundation for future studies on mitigating or preventing FM damage to soybean. PMID:28515718

  3. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types.

    PubMed

    Gottel, Neil R; Castro, Hector F; Kerley, Marilyn; Yang, Zamin; Pelletier, Dale A; Podar, Mircea; Karpinets, Tatiana; Uberbacher, Ed; Tuskan, Gerald A; Vilgalys, Rytas; Doktycz, Mitchel J; Schadt, Christopher W

    2011-09-01

    The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere.

  4. Fungal biogeography. Global diversity and geography of soil fungi.

    PubMed

    Tedersoo, Leho; Bahram, Mohammad; Põlme, Sergei; Kõljalg, Urmas; Yorou, Nourou S; Wijesundera, Ravi; Villarreal Ruiz, Luis; Vasco-Palacios, Aída M; Thu, Pham Quang; Suija, Ave; Smith, Matthew E; Sharp, Cathy; Saluveer, Erki; Saitta, Alessandro; Rosas, Miguel; Riit, Taavi; Ratkowsky, David; Pritsch, Karin; Põldmaa, Kadri; Piepenbring, Meike; Phosri, Cherdchai; Peterson, Marko; Parts, Kaarin; Pärtel, Kadri; Otsing, Eveli; Nouhra, Eduardo; Njouonkou, André L; Nilsson, R Henrik; Morgado, Luis N; Mayor, Jordan; May, Tom W; Majuakim, Luiza; Lodge, D Jean; Lee, Su See; Larsson, Karl-Henrik; Kohout, Petr; Hosaka, Kentaro; Hiiesalu, Indrek; Henkel, Terry W; Harend, Helery; Guo, Liang-dong; Greslebin, Alina; Grelet, Gwen; Geml, Jozsef; Gates, Genevieve; Dunstan, William; Dunk, Chris; Drenkhan, Rein; Dearnaley, John; De Kesel, André; Dang, Tan; Chen, Xin; Buegger, Franz; Brearley, Francis Q; Bonito, Gregory; Anslan, Sten; Abell, Sandra; Abarenkov, Kessy

    2014-11-28

    Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework. Copyright © 2014, American Association for the Advancement of Science.

  5. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. A new fungal large subunit ribosomal RNA primer for high throughput sequencing surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.

    The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300–400 bp region of the D2 hypervariable regionmore » of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R–LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Altogether, these findings show that the LR22R–LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods.« less

  7. A new fungal large subunit ribosomal RNA primer for high throughput sequencing surveys

    DOE PAGES

    Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.

    2015-12-09

    The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300–400 bp region of the D2 hypervariable regionmore » of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R–LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Altogether, these findings show that the LR22R–LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods.« less

  8. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers

    PubMed Central

    Kieft, Thomas L.; Kuloyo, Olukayode; Linage-Alvarez, Borja; van Heerden, Esta; Lindsay, Melody R.; Magnabosco, Cara; Wang, Wei; Wiggins, Jessica B.; Guo, Ling; Perlman, David H.; Kyin, Saw; Shwe, Henry H.; Harris, Rachel L.; Oh, Youmi; Yi, Min Joo; Purtschert, Roland; Slater, Greg F.; Ono, Shuhei; Wei, Siwen; Li, Long; Sherwood Lollar, Barbara; Onstott, Tullis C.

    2016-01-01

    Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface. PMID:27872277

  9. Estimated burden of fungal infections in Germany.

    PubMed

    Ruhnke, Markus; Groll, Andreas H; Mayser, Peter; Ullmann, Andrew J; Mendling, Werner; Hof, Herbert; Denning, David W

    2015-10-01

    In the late 1980's, the incidence of invasive fungal diseases (IFDs) in Germany was estimated with 36.000 IFDs per year. The current number of fungal infections (FI) occurring each year in Germany is still not known. In the actual analysis, data on incidence of fungal infections in various patients groups at risk for FI were calculated and mostly estimated from various (mostly national) resources. According to the very heterogenous data resources robust data or statistics could not be obtained but preliminary estimations could be made and compared with data from other areas in the world using a deterministic model that has consistently been applied in many countries by the LIFE program ( www.LIFE-worldwide.org). In 2012, of the 80.52 million population (adults 64.47 million; 41.14 million female, 39.38 million male), 20% are children (0-14 years) and 16% of population are ≥65 years old. Using local data and literature estimates of the incidence or prevalence of fungal infections, about 9.6 million (12%) people in Germany suffer from a fungal infection each year. These figures are dominated (95%) by fungal skin disease and recurrent vulvo-vaginal candidosis. In general, considerable uncertainty surrounds the total numbers because IFDs do not belong to the list of reportable infectious diseases in Germany and most patients were not hospitalised because of the IFD but a distinct underlying disease. © 2015 Blackwell Verlag GmbH.

  10. Specific Microbial Communities Associate with the Rhizosphere of Welwitschia mirabilis, a Living Fossil

    PubMed Central

    De Maayer, Pieter; Oberholster, Tanzelle; Henschel, Joh; Louw, Michele K.; Cowan, Don

    2016-01-01

    Welwitschia mirabilis is an ancient and rare plant distributed along the western coast of Namibia and Angola. Several aspects of Welwitschia biology and ecology have been investigated, but very little is known about the microbial communities associated with this plant. This study reports on the bacterial and fungal communities inhabiting the rhizosphere of W. mirabilis and the surrounding bulk soil. Rhizosphere communities were dominated by sequences of Alphaproteobacteria and Euromycetes, while Actinobacteria, Alphaproteobacteria, and fungi of the class Dothideomycetes jointly dominated bulk soil communities. Although microbial communities within the rhizosphere and soil samples were highly variable, very few “species” (OTUs defined at a 97% identity cut-off) were shared between these two environments. There was a small ‘core’ rhizosphere bacterial community (formed by Nitratireductor, Steroidobacter, Pseudonocardia and three Phylobacteriaceae) that together with Rhizophagus, an arbuscular mycorrhizal fungus, and other putative plant growth-promoting microbes may interact synergistically to promote Welwitschia growth. PMID:27064484

  11. Sediment Enzyme Activities and Microbial Community Diversity in an Oligotrophic Drinking Water Reservoir, Eastern China

    PubMed Central

    Zhang, Haihan; Huang, Tinglin; Liu, Tingting

    2013-01-01

    Drinking water reservoir plays a vital role in the security of urban water supply, yet little is known about microbial community diversity harbored in the sediment of this oligotrophic freshwater environmental ecosystem. In the present study, integrating community level physiological profiles (CLPPs), nested polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and clone sequence technologies, we examined the sediment urease and protease activities, bacterial community functional diversity, genetic diversity of bacterial and fungal communities in sediments from six sampling sites of Zhou cun drinking water reservoir, eastern China. The results showed that sediment urease activity was markedly distinct along the sites, ranged from 2.48 to 11.81 mg NH3-N/(g·24h). The highest average well color development (AWCD) was found in site C, indicating the highest metabolic activity of heterotrophic bacterial community. Principal component analysis (PCA) revealed tremendous differences in the functional (metabolic) diversity patterns of the sediment bacterial communities from different sites. Meanwhile, DGGE fingerprints also indicated spatial changes of genetic diversity of sediment bacterial and fungal communities. The sequence BLAST analysis of all the sediment samples found that Comamonas sp. was the dominant bacterial species harbored in site A. Alternaria alternate, Allomyces macrogynus and Rhizophydium sp. were most commonly detected fungal species in sediments of the Zhou cun drinking water reservoir. The results from this work provide new insights about the heterogeneity of sediment microbial community metabolic activity and genetic diversity in the oligotrophic drinking water reservoir. PMID:24205265

  12. A biotechnology perspective of fungal proteases.

    PubMed

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira Filho, Edivaldo Ximenes; Pessoa Junior, Adalberto; Magalhães, Pérola Oliveira

    2015-06-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  13. A single ectomycorrhizal fungal species can enable a Pinus invasion.

    PubMed

    Hayward, Jeremy; Horton, Thomas R; Pauchard, Aníbal; Nuñnez, Martin A

    2015-05-01

    Like all obligately ectomycorrhizal plants, pines require ectomycorrhizal fungal symbionts to complete their life cycle. Pines introduced into regions far from their native range are typically incompatible with local ectomycorrhizal fungi, and, when they invade, coinvade with fungi from their native range. While the identities and distributions of coinvasive fungal symbionts of pine invasions are poorly known, communities that have been studied are notably depauperate. However, it is not yet clear whether any number of fungal coinvaders is able to support a Pinaceae invasion, or whether very depauperate communities are unable to invade. Here, we ask whether there is evidence for a minimum species richness of fungal symbionts necessary to support a pine/ectomycorrhizal fungus coinvasion. We sampled a Pinus contorta invasion front near Coyhaique, Chile, using molecular barcoding to identify ectomycorrhizal fungi. We report that the site has a total richness of four species, and that many invasive trees appear to be supported by only a single ectomycorrhizal fungus, Suillus luteus. We conclude that a single ectomycorrhizal (ECM) fungus can suffice to enable a pine invasion.

  14. Impact of postfire logging on soil bacterial and fungal communities and soil biogeochemistry in a mixed-conifer forest in central Oregon

    Treesearch

    Tara N. Jennings; Jane E. Smith; Kermit Cromack; Elizabeth W. Sulzman; Donaraye McKay; Bruce A. Caldwell; Sarah I. Beldin

    2012-01-01

    Postfire logging recoups the economic value of timber killed by wildfire, but whether such forest management activity supports or impedes forest recovery in stands differing in structure from historic conditions remains unclear. The aim of this study was to determine the impact of mechanical logging after wildfire on soil bacterial and fungal communities and other...

  15. Functional Characterization of Endophytic Fungal Community Associated with Oryza sativa L. and Zea mays L.

    PubMed Central

    Potshangbam, Momota; Devi, S. Indira; Sahoo, Dinabandhu; Strobel, Gary A.

    2017-01-01

    In a natural ecosystem, the plant is in a symbiotic relationship with beneficial endophytes contributing huge impact on its host plant. Therefore, exploring beneficial endophytes and understanding its interaction is a prospective area of research. The present work aims to characterize the fungal endophytic communities associated with healthy maize and rice plants and to study the deterministic factors influencing plant growth and biocontrol properties against phytopathogens, viz, Pythium ultimum, Sclerotium oryzae, Rhizoctonia solani, and Pyricularia oryzae. A total of 123 endophytic fungi was isolated using the culture-dependent approach from different tissue parts of the plant. Most dominating fungal endophyte associated with both the crops belong to genus Fusarium, Sarocladium, Aspergillus, and Penicillium and their occurrence was not tissue specific. The isolates were screened for in vitro plant growth promotion, stress tolerance, disease suppressive mechanisms and based on the results, each culture from both the cereal crops was selected for further study. Acremonium sp. (ENF 31) and Penicillium simplicisssum (ENF22), isolated from maize and rice respectively could potentially inhibit the growth of all the tested pathogens with 46.47 ± 0.16 mm to 60.09 ± 0.04 mm range zone of inhibition for ENF31 and 35.48 ± 0.14 to 62.29 ± 0.15 mm for ENF22. Both significantly produce the defensive enzymes, ENF31 could tolerate a wide range of pH from 2 to 12, very important criteria, for studying plant growth in different soil types, especially acidic as it is widely prevalent here, making more land unsuitable for cultivation. ENF22 grows in pH range 3–12, with 10% salt tolerating ability, another factor of consideration. Study of root colonization during 7th to 30th days of growth phase reveals that ENF31 could colonize pleasantly in rice, though a maize origin, ranging from 1.02 to 1.21 log10 CFU/g root and in maize, it steadily colonizes ranging from 0.95 to 1

  16. Microbial community assembly and metabolic function during mammalian corpse decomposition

    USGS Publications Warehouse

    Metcalf, Jessica L; Xu, Zhenjiang Zech; Weiss, Sophie; Lax, Simon; Van Treuren, Will; Hyde, Embriette R.; Song, Se Jin; Amir, Amnon; Larsen, Peter; Sangwan, Naseer; Haarmann, Daniel; Humphrey, Greg C; Ackermann, Gail; Thompson, Luke R; Lauber, Christian; Bibat, Alexander; Nicholas, Catherine; Gebert, Matthew J; Petrosino, Joseph F; Reed, Sasha C.; Gilbert, Jack A; Lynne, Aaron M; Bucheli, Sibyl R; Carter, David O; Knight, Rob

    2016-01-01

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.

  17. Sulfur Metabolizing Microbes Dominate Microbial Communities in Andesite-Hosted Shallow-Sea Hydrothermal Systems

    PubMed Central

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan’s coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH4) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan. PMID:22970260

  18. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    PubMed

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  19. Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    NASA Astrophysics Data System (ADS)

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.

    2015-07-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  20. Water regime history drives responses of soil Namib Desert microbial communities to wetting events.

    PubMed

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A

    2015-07-21

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel "dry condition" control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  1. Microbial community changes as a possible factor controlling carbon sequestration in subsoil

    NASA Astrophysics Data System (ADS)

    Strücker, Juliane; Jörgensen, Rainer Georg

    2015-04-01

    In order to gain more knowledge regarding the microbial community and their influence on carbon sequestration in subsoil two depth profiles with different soil organic carbon (SOC) concentrations were sampled. The SOC concentrations developed naturally due to deposition and erosion. This experiment offers the opportunity to investigate to which extend natural SOC availability or other subsoil specific conditions influence the composition and the functional diversity of the microbial community and in return if there is any evidence how the microbial community composition affects carbon sequestration under these conditions. Soil samples were taken at four different depths on two neighbouring arable sites; one Kolluvisol with high SOC concentrations (8-12 g/kg) throughout the profile and one Luvisol with low SOC concentrations (3-4 g/kg) below 30 cm depth. The multi substrate induced respiration (MSIR) method was used to identify shifts in the functional diversity of the microbial community along the depth profiles. Amino sugars Muramic Acid and Glucosamine were measured as indicators for bacterial and fungal residues and ergosterol was determined as marker for saprotrophic fungi. The results of the discriminant analysis of the respiration values obtained from the 17 substrates used in the MSIR show that the substrate use in subsoil is different from the substrate use in topsoil. The amino sugar analysis and the ratio of ergosterol to microbial biomass C indicate that the fungal dominance of the microbial community decreases with depth. The results from this study support previous findings, which also observed decreasing fungal dominance with depth. Furthermore the MSIR approach shows clearly that not only the composition of the microbial community but also their substrate use changes with depth. Thus, a different microbial community with altered substrate requirements could be an important reason for enhanced carbon sequestration in subsoil. The fact that the MSIR

  2. Exploration of cultivable fungal communities in deep coal-bearing sediments from ∼1.3 to 2.5 km below the ocean floor.

    PubMed

    Liu, Chang-Hong; Huang, Xin; Xie, Tian-Ning; Duan, Ning; Xue, Ya-Rong; Zhao, Tan-Xi; Lever, Mark A; Hinrichs, Kai-Uwe; Inagaki, Fumio

    2017-02-01

    Although subseafloor sediments are known to harbour a vast number of microbial cells, the distribution, diversity, and origins of fungal populations remain largely unexplored. In this study, we cultivated fungi from 34 of 47 deep coal-associated sediment samples collected at depths ranging from 1289 to 2457 m below the seafloor (mbsf) off the Shimokita Peninsula, Japan (1118 m water depth). We obtained a total of 69 fungal isolates under strict contamination controls, representing 61 Ascomycota (14 genera, 23 species) and 8 Basidiomycota (4 genera, 4 species). Penicillium and Aspergillus relatives were the most dominant genera within the Ascomycetes, followed by the members of genera Cladosporium, Hamigera, Chaetomium, Eutypella, Acremonium, Aureobasidium, Candida, Eurotium, Exophiala, Nigrospora, Bionectria and Pseudocercosporella. Four Basidiomycota species were identified as genera Schizophyllum, Irpex, Bjerkandera and Termitomyces. Among these isolates, Cladosporium sphaerospermum and Aspergillus sydowii relatives were isolated from a thin lignite coal-sandstone formation at 2457 mbsf. Our results indicate that these cultivable fungal populations are indigenous, originating from past terrigenous environments, which have persisted, possibly as spores, through ∼20 million years of depositional history. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea)

    PubMed Central

    Abdelfattah, Ahmed; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Droby, Samir; Schena, Leonardo

    2015-01-01

    The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea) was investigated in different phenological stages (May, June, October and December) using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6%) and Basidiomycota (2.8%). A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii) was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions. PMID:26132745

  4. Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea).

    PubMed

    Abdelfattah, Ahmed; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Droby, Samir; Schena, Leonardo

    2015-01-01

    The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea) was investigated in different phenological stages (May, June, October and December) using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6%) and Basidiomycota (2.8%). A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii) was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions.

  5. Links between plant and fungal diversity in habitat fragments of coastal shrubland

    DOE PAGES

    Maltz, Mia R.; Treseder, Kathleen K.; McGuire, Krista L.

    2017-09-19

    Habitat fragmentation is widespread across ecosystems, detrimentally affecting biodiversity. Although most habitat fragmentation studies have been conducted on macroscopic organisms, microbial communities and fungal processes may also be threatened by fragmentation. This study investigated whether fragmentation, and the effects of fragmentation on plants, altered fungal diversity and function within a fragmented shrubland in southern California. Using fluorimetric techniques, we assayed enzymes from plant litter collected from fragments of varying sizes to investigate enzymatic responses to fragmentation. To isolate the effects of plant richness from those of fragment size on fungi, we deployed litter bags containing different levels of plant littermore » diversity into the largest fragment and incubated in the field for one year. Following field incubation, we determined litter mass loss and conducted molecular analyses of fungal communities. We found that leaf-litter enzyme activity declined in smaller habitat fragments with less diverse vegetation. Moreover, we detected greater litter mass loss in litter bags containing more diverse plant litter. Additionally, bags with greater plant litter diversity harbored greater numbers of fungal taxa. These findings suggest that both plant litter resources and fungal function may be affected by habitat fragmentation's constraints on plants, possibly because plant species differ chemically, and may thus decompose at different rates. Diverse plant assemblages may produce a greater variety of litter resources and provide more ecological niche space, which may support greater numbers of fungal taxa. Thus, reduced plant diversity may constrain both fungal taxa richness and decomposition in fragmented coastal shrublands. Altogether, our findings provide evidence that even fungi may be affected by human-driven habitat fragmentation via direct effects of fragmentation on plants. Our findings underscore the importance of

  6. Links between plant and fungal diversity in habitat fragments of coastal shrubland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Mia R.; Treseder, Kathleen K.; McGuire, Krista L.

    Habitat fragmentation is widespread across ecosystems, detrimentally affecting biodiversity. Although most habitat fragmentation studies have been conducted on macroscopic organisms, microbial communities and fungal processes may also be threatened by fragmentation. This study investigated whether fragmentation, and the effects of fragmentation on plants, altered fungal diversity and function within a fragmented shrubland in southern California. Using fluorimetric techniques, we assayed enzymes from plant litter collected from fragments of varying sizes to investigate enzymatic responses to fragmentation. To isolate the effects of plant richness from those of fragment size on fungi, we deployed litter bags containing different levels of plant littermore » diversity into the largest fragment and incubated in the field for one year. Following field incubation, we determined litter mass loss and conducted molecular analyses of fungal communities. We found that leaf-litter enzyme activity declined in smaller habitat fragments with less diverse vegetation. Moreover, we detected greater litter mass loss in litter bags containing more diverse plant litter. Additionally, bags with greater plant litter diversity harbored greater numbers of fungal taxa. These findings suggest that both plant litter resources and fungal function may be affected by habitat fragmentation's constraints on plants, possibly because plant species differ chemically, and may thus decompose at different rates. Diverse plant assemblages may produce a greater variety of litter resources and provide more ecological niche space, which may support greater numbers of fungal taxa. Thus, reduced plant diversity may constrain both fungal taxa richness and decomposition in fragmented coastal shrublands. Altogether, our findings provide evidence that even fungi may be affected by human-driven habitat fragmentation via direct effects of fragmentation on plants. Our findings underscore the importance of

  7. Mycorrhizal fungal growth responds to soil characteristics, but not host plant identity, during a primary lacustrine dune succession.

    PubMed

    Sikes, Benjamin A; Maherali, Hafiz; Klironomos, John N

    2014-04-01

    Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.

  8. An in situ inventory of fungi and their associated migrating bacteria in forest soils using fungal highway columns.

    PubMed

    Simon, Anaele; Hervé, Vincent; Al-Dourobi, Andrej; Verrecchia, Eric; Junier, Pilar

    2017-01-01

    Soils are complex ecosystems in which fungi and bacteria co-exist and interact. Fungal highways are a kind of interaction by which bacteria use fungal hyphae to disperse in soils. Despite the fact that fungal highways have been studied in laboratory models, the diversity of fungi and bacteria interacting in this way in soils is still unknown. Fungal highway columns containing two different culture media were used as a selective method to study the identity of fungi and bacteria able to migrate along the hyphae in three forest soils. Regardless of the soil type, fungi of the genus Mortierella (phylum Zygomycota) were selected inside the columns. In contrast, a diverse community of bacteria dominated by Firmicutes and Proteobacteria was observed. The results confirm the importance of bacteria affiliated to Burkholderia as potentially associated migrating bacteria in soils and indicate that other groups such as Bacillus and Clostridium are also highly enriched in the co-colonization of a new habitat (columns) associated to Mortierella. The diversity of potentially associated migrating bacteria brings a novel perspective on the indirect metabolic capabilities that could be favored by r-strategist fungi and supports the fact that these fungi should be considered as crucial actors in soil functioning. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields.

    PubMed

    Bai, Li; Cui, Jiaqi; Jie, Weiguang; Cai, Baiyan

    2015-11-01

    We used rhizosphere soil sampled from one field during zero year and two years of continuous cropping of high-protein soybean to analyze the taxonomic community compositions of fungi during periods of high-incidence of root rot. Our objectives were to identify the dominant pathogens in order to provide a theoretical basis for the study of pathogenesis as well as control tactics for soybean root rot induced by continuous cropping. A total of 17,801 modified internal transcribed spacer (ITS) sequences were obtained from three different soybean rhizosphere soil samples after zero year and 1 or 2 years of continuous cropping using 454 high-throughput sequencing. The dominant eumycote fungal were identified to be Ascomycota and Basidiomycota in the three soil samples. Continuous cropping of soybean affected the diversity of fungi in rhizosphere soils and increased the abundance of Thelebolus and Mortierellales significantly. Thanatephorus, Fusarium, and Alternaria were identified to be the dominant pathogenic fungal genera in rhizosphere soil from continuously cropped soybean fields. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase

    PubMed Central

    Abdelfattah, Ahmed; Wisniewski, Michael; Droby, Samir; Schena, Leonardo

    2016-01-01

    The fungal diversity in harvested apples from organic or conventional management practices was analyzed in different fruit locations (stem end, calyx end, peel, and wounded flesh) shortly after fruit purchase (T1) and after 2 weeks of storage (T5). A total of 5,760,162 high-quality fungal sequences were recovered and assigned to 8,504 Operational Taxonomic Units. Members of the phylum Ascomycota were dominant in all samples and accounted for 91.6% of the total number of detected sequences. This was followed by Basidiomycota (8%), Chytridiomycota (0.1%), and unidentified fungi (0.3%). Alpha and beta diversity analyses revealed the presence of significantly different fungal populations in the investigated fruit parts. Among detected fungi, the genus Penicillium prevailed in the peel and in the wounded flesh while Alternaria spp. prevailed in the calyx and stem end samples that included apple core tissues. Several taxonomic units that appear to be closely related to pathogenic fungi associated with secondary human infections were present in peel and wounds. Moreover, significantly different populations were revealed in organic and conventional apples and this result was consistent in all investigated fruit parts (calyx end, peel, stem end, and wounded flesh). Several unique taxa were exclusively detected in organic apples suggesting that management practices may have been a contributing factor in determining the taxa present. In contrast, little differences were revealed in the two assessment times (T1 and T5). Results of the present study represent an advancement of the current knowledge on the fungal microbiota in collected fruit tissues of apple. PMID:27766161

  11. Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase.

    PubMed

    Abdelfattah, Ahmed; Wisniewski, Michael; Droby, Samir; Schena, Leonardo

    2016-01-01

    The fungal diversity in harvested apples from organic or conventional management practices was analyzed in different fruit locations (stem end, calyx end, peel, and wounded flesh) shortly after fruit purchase (T1) and after 2 weeks of storage (T5). A total of 5,760,162 high-quality fungal sequences were recovered and assigned to 8,504 Operational Taxonomic Units. Members of the phylum Ascomycota were dominant in all samples and accounted for 91.6% of the total number of detected sequences. This was followed by Basidiomycota (8%), Chytridiomycota (0.1%), and unidentified fungi (0.3%). Alpha and beta diversity analyses revealed the presence of significantly different fungal populations in the investigated fruit parts. Among detected fungi, the genus Penicillium prevailed in the peel and in the wounded flesh while Alternaria spp. prevailed in the calyx and stem end samples that included apple core tissues. Several taxonomic units that appear to be closely related to pathogenic fungi associated with secondary human infections were present in peel and wounds. Moreover, significantly different populations were revealed in organic and conventional apples and this result was consistent in all investigated fruit parts (calyx end, peel, stem end, and wounded flesh). Several unique taxa were exclusively detected in organic apples suggesting that management practices may have been a contributing factor in determining the taxa present. In contrast, little differences were revealed in the two assessment times (T1 and T5). Results of the present study represent an advancement of the current knowledge on the fungal microbiota in collected fruit tissues of apple.

  12. Fungal spores as potential ice nuclei in fog/cloud water and snow

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Goncalves, Fabio L. T.; Schueller, Elisabeth; Puxbaum, Hans

    2010-05-01

    INTRODUCTION: In discussions about climate change and precipitation frequency biological ice nucleation has become an issue. While bacterial ice nucleation (IN) is already well characterized and even utilized in industrial processes such as the production of artificial snow or to improve freezing processes in food industry, less is known about the IN potential of fungal spores which are also ubiquitous in the atmosphere. A recent study performed at a mountain top in the Rocky Mountains suggests that fungal spores and/or pollen might play a role in increased IN abundance during periods of cloud cover (Bowers et al. 2009). In the present work concentrations of fungal spores in fog/cloud water and snow were determined. EXPERIMENTAL: Fog samples were taken with an active fog sampler in 2008 in a traffic dominated area and in a national park in São Paulo, Brazil. The number concentrations of fungal spores were determined by microscopic by direct enumeration by epifluorescence microscopy after staining with SYBR Gold nucleic acid gel stain (Bauer et al. 2008). RESULTS: In the fog water collected in the polluted area at a junction of two highly frequented highways around 22,000 fungal spores mL-1 were counted. Fog in the national park contained 35,000 spores mL-1. These results were compared with cloud water and snow samples from Mt. Rax, situated at the eastern rim of the Austrian Alps. Clouds contained on average 5,900 fungal spores mL-1 cloud water (1,300 - 11,000) or 2,200 spores m-3 (304 - 5,000). In freshly fallen snow spore concentrations were lower than in cloud water, around 1,000 fungal spores mL-1 were counted (Bauer et al. 2002). In both sets of samples representatives of the ice nucleating genus Fusarium could be observed. REFERENCES: Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., Puxbaum, H. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols

  13. Influence of Peanut Cultivars and Environmental Conditions on the Diversity and Community Composition of Pod Rot Soil Fungi in China.

    PubMed

    Wang, Mian; Chen, Mingna; Yang, Zhen; Chen, Na; Chi, Xiaoyuan; Pan, Lijuan; Wang, Tong; Yu, Shanlin; Guo, Xingqi

    2017-12-01

    Peanut yield and quality are seriously affected by pod rot pathogens worldwide, especially in China in recent years. The goals of this study are to analyze the structure of fungal communities of peanut pod rot in soil in three peanut cultivars and the correlation of pod rot with environmental variables using 454 pyrosequencing. A total of 46,723 internal transcribed spacer high-quality sequences were obtained and grouped into 1,706 operational taxonomic units at the 97% similarity cut-off level. The coverage, rank abundance, and the Chao 1 and Shannon diversity indices of the operational taxonomic units were analyzed. Members of the phylum Ascomycota were dominant, such as Fusarium , Chaetomium , Alternaria , and Sordariomycetes , followed by Basidiomycota. The results of the heatmap and redundancy analysis revealed significant variation in the composition of the fungal community among the three cultivar samples. The environmental conditions in different peanut cultivars may also influence on the structure of the fungal community. The results of this study suggest that the causal agent of peanut pod rot may be more complex, and cultivars and environmental conditions are both important contributors to the community structure of peanut pod rot fungi.

  14. Genetic characterization of uncultured fungal endophytes from Bouteloua eriopoda and Atriplex canescens

    Treesearch

    Mary E. Lucero; Jerry R. Barrow; Ruth Sedillo; Pedro Osuna-Avila; Isaac Reyes-Vera

    2008-01-01

    Obligate fungal endophytes form cryptic communities in vascular plants that can defy detection and isolation by microscopic examination of reproductive structures. Molecular detection by PCR amplification of fungal DNA sequences alone is insufficient, since target endophyte sequences are unknown and difficult to distinguish from sequences already characterized as plant...

  15. Elevated tropospheric CO2 and O3 may not alter initial wood decomposition rate or wood-decaying fungal community composition of Northern hardwoods

    Treesearch

    Emmanuel Ebanyenle; Andrew J. Burton; Andrew J. Storer; Dana L. Richter; Jessie A. Glaeser

    2016-01-01

    We examined the effects of elevated CO2 and/or O3 on the wood-decaying basidiomycete fungal community and wood decomposition rates at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) project. Mass loss rates were determined after one year of log decomposition on the soil...

  16. Microbial community assembly and metabolic function during mammalian corpse decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalf, J. L.; Xu, Z. Z.; Weiss, S.

    2015-12-10

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in lowmore » abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.« less

  17. Fungal Endophytes of Alpinia officinarum Rhizomes: Insights on Diversity and Variation across Growth Years, Growth Sites, and the Inner Active Chemical Concentration

    PubMed Central

    Shubin, Li; Juan, Huang; RenChao, Zhou; ShiRu, Xu; YuanXiao, Jin

    2014-01-01

    In the present study, the terminal-restriction fragment length polymorphism (T-RFLP) technique, combined with the use of a clone library, was applied to assess the baseline diversity of fungal endophyte communities associated with rhizomes of Alpinia officinarum Hance, a medicinal plant with a long history of use. A total of 46 distinct T-RFLP fragment peaks were detected using HhaI or MspI mono-digestion-targeted, amplified fungal rDNA ITS sequences from A. officinarum rhizomes. Cloning and sequencing of representative sequences resulted in the detection of members of 10 fungal genera: Pestalotiopsis, Sebacina, Penicillium, Marasmius, Fusarium, Exserohilum, Mycoleptodiscus, Colletotrichum, Meyerozyma, and Scopulariopsis. The T-RFLP profiles revealed an influence of growth year of the host plant on fungal endophyte communities in rhizomes of this plant species; whereas, the geographic location where A. officinarum was grown contributed to only limited variation in the fungal endophyte communities of the host tissue. Furthermore, non-metric multidimensional scaling (NMDS) analysis across all of the rhizome samples showed that the fungal endophyte community assemblages in the rhizome samples could be grouped according to the presence of two types of active indicator chemicals: total volatile oils and galangin. Our present results, for the first time, address a diverse fungal endophyte community is able to internally colonize the rhizome tissue of A. officinarum. The diversity of the fungal endophytes found in the A. officinarum rhizome appeared to be closely correlated with the accumulation of active chemicals in the host plant tissue. The present study also provides the first systematic overview of the fungal endophyte communities in plant rhizome tissue using a culture-independent method. PMID:25536070

  18. Fungal endophytes of Alpinia officinarum rhizomes: insights on diversity and variation across growth years, growth sites, and the inner active chemical concentration.

    PubMed

    Shubin, Li; Juan, Huang; RenChao, Zhou; ShiRu, Xu; YuanXiao, Jin

    2014-01-01

    In the present study, the terminal-restriction fragment length polymorphism (T-RFLP) technique, combined with the use of a clone library, was applied to assess the baseline diversity of fungal endophyte communities associated with rhizomes of Alpinia officinarum Hance, a medicinal plant with a long history of use. A total of 46 distinct T-RFLP fragment peaks were detected using HhaI or MspI mono-digestion-targeted, amplified fungal rDNA ITS sequences from A. officinarum rhizomes. Cloning and sequencing of representative sequences resulted in the detection of members of 10 fungal genera: Pestalotiopsis, Sebacina, Penicillium, Marasmius, Fusarium, Exserohilum, Mycoleptodiscus, Colletotrichum, Meyerozyma, and Scopulariopsis. The T-RFLP profiles revealed an influence of growth year of the host plant on fungal endophyte communities in rhizomes of this plant species; whereas, the geographic location where A. officinarum was grown contributed to only limited variation in the fungal endophyte communities of the host tissue. Furthermore, non-metric multidimensional scaling (NMDS) analysis across all of the rhizome samples showed that the fungal endophyte community assemblages in the rhizome samples could be grouped according to the presence of two types of active indicator chemicals: total volatile oils and galangin. Our present results, for the first time, address a diverse fungal endophyte community is able to internally colonize the rhizome tissue of A. officinarum. The diversity of the fungal endophytes found in the A. officinarum rhizome appeared to be closely correlated with the accumulation of active chemicals in the host plant tissue. The present study also provides the first systematic overview of the fungal endophyte communities in plant rhizome tissue using a culture-independent method.

  19. Fungal diversity from deep marine subsurface sediments (IODP 317, Canterbury Basin, New Zealand)

    NASA Astrophysics Data System (ADS)

    Redou, V.; Arzur, D.; Burgaud, G.; Barbier, G.

    2012-12-01

    Recent years have seen a growing interest regarding micro-eukaryotic communities in extreme environments as a third microbial domain after Bacteria and Archaea. However, knowledge is still scarce and the diversity of micro-eukaryotes in such environments remains hidden and their ecological role unknown. Our research program is based on the deep sedimentary layers of the Canterbury Basin in New Zealand (IODP 317) from the subsurface to the record depth of 1884 meters below seafloor. The objectives of our study are (i) to assess the genetic diversity of fungi in deep-sea sediments and (ii) identify the functional part in order to better understand the origin and the ecological role of fungal communities in this extreme ecosystem. Fingerprinting-based methods using capillary electrophoresis single-strand conformation polymorphism and denaturing high-performance liquid chromatography were used as a first step to raise our objectives. Molecular fungal diversity was assessed using amplification of ITS1 (Internal Transcribed Spacer 1) as a biomarker on 11 samples sediments from 3.76 to 1884 meters below seafloor. Fungal molecular signatures were detected throughout the sediment core. The phyla Ascomycota and Basidiomycota were revealed with DNA as well as cDNA. Most of the phylotypes are affiliated to environmental sequences and some to common fungal cultured species. The discovery of a present and metabolically active fungal component in this unique ecosystem allows some interesting first hypotheses that will be further combined to culture-based methods and deeper molecular methods (454 pyrosequencing) to highlight essential informations regarding physiology and ecological role of fungal communities in deep marine sediments.

  20. Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues.

    PubMed

    Bengelsdorf, Frank R; Gerischer, Ulrike; Langer, Susanne; Zak, Manuel; Kazda, Marian

    2013-04-01

    The resident microbiota was analyzed in a mesophilic, continuously operating biogas plant predominantly utilizing food residues, stale bread, and other waste cosubstrates together with pig manure and maize silage. The dominating bacterial, archaeal, and eukaryotic community members were characterized by two different 16S/18S rRNA gene culture-independent approaches. Prokaryotic 16S rRNA gene and eukaryotic 18S rRNA gene clone libraries were constructed and further analyzed by restriction fragment length polymorphism (RFLP), 16S/18S rRNA gene sequencing, and phylogenetic tree reconstruction. The most dominant bacteria belonged to the phyla Bacteriodetes, Chloroflexus, and Firmicutes. On the family level, the bacterial composition confirmed high differences among biogas plants studied so fare. In contrast, the methanogenic archaeal community was similar to that of other studied biogas plants. Furthermore, it was possible to identify fungi at the genus level, namely Saccharomyces and Mucor. Both genera, which are important for microbial degradation of complex compounds, were up to now not found in biogas plants. The results revealed their long-term presence as indicated by denaturating gradient gel electrophoresis (DGGE). The DGGE method confirmed that the main members of the microbial community were constantly present over more than one-year period. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.