Science.gov

Sample records for dominate fungal communities

  1. Chytrids dominate arctic marine fungal communities.

    PubMed

    Hassett, B T; Gradinger, R

    2016-06-01

    Climate change is altering Arctic ecosystem structure by changing weather patterns and reducing sea ice coverage. These changes are increasing light penetration into the Arctic Ocean that are forecasted to increase primary production; however, increased light can also induce photoinhibition and cause physiological stress in algae and phytoplankton that can favour disease development. Fungi are voracious parasites in many ecosystems that can modulate the flow of carbon through food webs, yet are poorly characterized in the marine environment. We provide the first data from any marine ecosystem in which fungi in the Chytridiomycota dominate fungal communities and are linked in their occurrence to light intensities and algal stress. Increased light penetration stresses ice algae and elevates disease incidence under reduced snow cover. Our results show that chytrids dominate Arctic marine fungal communities and have the potential to rapidly change primary production patterns with increased light penetration. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Yeasts dominate soil fungal communities in three lowland Neotropical rainforests.

    PubMed

    Dunthorn, Micah; Kauserud, Håvard; Bass, David; Mayor, Jordan; Mahé, Frédéric

    2017-08-11

    Forest soils typically harbour a vast diversity of fungi, but are usually dominated by filamentous (hyphae-forming) taxa. Compared to temperate and boreal forests, though, we have limited knowledge about the fungal diversity in tropical rainforest soils. Here we show, by environmental metabarcoding of soil samples collected in three Neotropical rainforests, that Yeasts dominate the fungal communities in terms of the number of sequencing reads and OTUs. These unicellular forms are commonly found in aquatic environments, and their hyperdiversity may be the result of frequent inundation combined with numerous aquatic microenvironments in these rainforests. Other fungi that are frequent in aquatic environments, such as the abundant Chytridiomycotina, were also detected. While there was low similarity in OTU composition within and between the three rainforests, the fungal communities in Central America were more similar to each other than the communities in South America, reflecting a general biogeographic pattern also seen in animals, plants, and protists. This article is protected by copyright. All rights reserved. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Differences in Soil Fungal Communities between European Beech (Fagus sylvatica L.) Dominated Forests Are Related to Soil and Understory Vegetation

    PubMed Central

    Schöning, Ingo; Boch, Steffen; Gawlich, Melanie; Schnabel, Beatrix; Fischer, Markus; Buscot, François

    2012-01-01

    Fungi are important members of soil microbial communities with a crucial role in biogeochemical processes. Although soil fungi are known to be highly diverse, little is known about factors influencing variations in their diversity and community structure among forests dominated by the same tree species but spread over different regions and under different managements. We analyzed the soil fungal diversity and community composition of managed and unmanaged European beech dominated forests located in three German regions, the Schwäbische Alb in Southwestern, the Hainich-Dün in Central and the Schorfheide Chorin in the Northeastern Germany, using internal transcribed spacer (ITS) rDNA pyrotag sequencing. Multiple sequence quality filtering followed by sequence data normalization revealed 1655 fungal operational taxonomic units. Further analysis based on 722 abundant fungal OTUs revealed the phylum Basidiomycota to be dominant (54%) and its community to comprise 71.4% of ectomycorrhizal taxa. Fungal community structure differed significantly (p≤0.001) among the three regions and was characterized by non-random fungal OTUs co-occurrence. Soil parameters, herbaceous understory vegetation, and litter cover affected fungal community structure. However, within each study region we found no difference in fungal community structure between management types. Our results also showed region specific significant correlation patterns between the dominant ectomycorrhizal fungal genera. This suggests that soil fungal communities are region-specific but nevertheless composed of functionally diverse and complementary taxa. PMID:23094057

  4. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development.

    PubMed

    Martínez-García, Laura B; Richardson, Sarah J; Tylianakis, Jason M; Peltzer, Duane A; Dickie, Ian A

    2015-03-01

    Little is known about the response of arbuscular mycorrhizal fungal communities to ecosystem development. We use a long-term soil chronosequence that includes ecosystem progression and retrogression to quantify the importance of host plant identity as a factor driving fungal community composition during ecosystem development. We identified arbuscular mycorrhizal fungi and plant species from 50 individual roots from each of 10 sites spanning 5-120 000 yr of ecosystem age using terminal restriction fragment length polymorphism (T-RFLP), Sanger sequencing and pyrosequencing. Arbuscular mycorrhizal fungal communities were highly structured by ecosystem age. There was strong niche differentiation, with different groups of operational taxonomic units (OTUs) being characteristic of early succession, ecosystem progression and ecosystem retrogression. Fungal alpha diversity decreased with ecosystem age, whereas beta diversity was high at early stages and lower in subsequent stages. A total of 39% of the variance in fungal communities was explained by host plant and site age, 29% of which was attributed to host and the interaction between host and site (24% and 5%, respectively). The strong response of arbuscular mycorrhizal fungi to ecosystem development appears to be largely driven by plant host identity, supporting the concept that plant and fungal communities are tightly coupled rather than independently responding to habitat. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  5. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest.

    PubMed

    Sun, Hui; Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O

    2016-05-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P< 0.001) and tree species (P< 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P< 0.04). The availability of soil nutrients (Ca [P= 0.002], Fe [P= 0.003], and P [P= 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P< 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest

    PubMed Central

    Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O.; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O.

    2016-01-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P < 0.001) and tree species (P < 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P < 0.04). The availability of soil nutrients (Ca [P = 0.002], Fe [P = 0.003], and P [P = 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P < 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. PMID:26896139

  7. Ectomycorrhizal-Dominated Boreal and Tropical Forests Have Distinct Fungal Communities, but Analogous Spatial Patterns across Soil Horizons

    PubMed Central

    McGuire, Krista L.; Allison, Steven D.; Fierer, Noah; Treseder, Kathleen K.

    2013-01-01

    Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0–20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling. PMID:23874569

  8. Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons.

    PubMed

    McGuire, Krista L; Allison, Steven D; Fierer, Noah; Treseder, Kathleen K

    2013-01-01

    Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0-20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.

  9. The Ectomycorrhizal Fungal Community in a Neotropical Forest Dominated by the Endemic Dipterocarp Pakaraimaea dipterocarpacea

    PubMed Central

    Smith, Matthew E.; Henkel, Terry W.; Uehling, Jessie K.; Fremier, Alexander K.; Clarke, H. David; Vilgalys, Rytas

    2013-01-01

    Ectomycorrhizal (ECM) plants and fungi can be diverse and abundant in certain tropical ecosystems. For example, the primarily paleotropical ECM plant family Dipterocarpaceae is one of the most speciose and ecologically important tree families in Southeast Asia. Pakaraimaea dipterocarpacea is one of two species of dipterocarp known from the Neotropics, and is also the only known member of the monotypic Dipterocarpaceae subfamily Pakaraimoideae. This Guiana Shield endemic is only known from the sandstone highlands of Guyana and Venezuela. Despite its unique phylogenetic position and unusual geographical distribution, the ECM fungal associations of P. dipterocarpacea are understudied throughout the tree’s range. In December 2010 we sampled ECM fungi on roots of P. dipterocarpacea and the co-occurring ECM tree Dicymbe jenmanii (Fabaceae subfamily Caesalpinioideae) in the Upper Mazaruni River Basin of Guyana. Based on ITS rDNA sequencing we documented 52 ECM species from 11 independent fungal lineages. Due to the phylogenetic distance between the two host tree species, we hypothesized that P. dipterocarpacea would harbor unique ECM fungi not found on the roots of D. jenmanii. Although statistical tests suggested that several ECM fungal species did exhibit host preferences for either P. dipterocarpacea or D. jenmanii, most of the ECM fungi were multi-host generalists. We also detected several ECM fungi that have never been found in long-term studies of nearby rainforests dominated by other Dicymbe species. One particular mushroom-forming fungus appears to be unique and may represent a new ECM lineage of Agaricales that is endemic to the Neotropics. PMID:23383090

  10. The ectomycorrhizal fungal community in a neotropical forest dominated by the endemic dipterocarp Pakaraimaea dipterocarpacea.

    PubMed

    Smith, Matthew E; Henkel, Terry W; Uehling, Jessie K; Fremier, Alexander K; Clarke, H David; Vilgalys, Rytas

    2013-01-01

    Ectomycorrhizal (ECM) plants and fungi can be diverse and abundant in certain tropical ecosystems. For example, the primarily paleotropical ECM plant family Dipterocarpaceae is one of the most speciose and ecologically important tree families in Southeast Asia. Pakaraimaea dipterocarpacea is one of two species of dipterocarp known from the Neotropics, and is also the only known member of the monotypic Dipterocarpaceae subfamily Pakaraimoideae. This Guiana Shield endemic is only known from the sandstone highlands of Guyana and Venezuela. Despite its unique phylogenetic position and unusual geographical distribution, the ECM fungal associations of P. dipterocarpacea are understudied throughout the tree's range. In December 2010 we sampled ECM fungi on roots of P. dipterocarpacea and the co-occurring ECM tree Dicymbe jenmanii (Fabaceae subfamily Caesalpinioideae) in the Upper Mazaruni River Basin of Guyana. Based on ITS rDNA sequencing we documented 52 ECM species from 11 independent fungal lineages. Due to the phylogenetic distance between the two host tree species, we hypothesized that P. dipterocarpacea would harbor unique ECM fungi not found on the roots of D. jenmanii. Although statistical tests suggested that several ECM fungal species did exhibit host preferences for either P. dipterocarpacea or D. jenmanii, most of the ECM fungi were multi-host generalists. We also detected several ECM fungi that have never been found in long-term studies of nearby rainforests dominated by other Dicymbe species. One particular mushroom-forming fungus appears to be unique and may represent a new ECM lineage of Agaricales that is endemic to the Neotropics.

  11. Evidence that chytrids dominate fungal communities in high-elevation soils.

    PubMed

    Freeman, K R; Martin, A P; Karki, D; Lynch, R C; Mitter, M S; Meyer, A F; Longcore, J E; Simmons, D R; Schmidt, S K

    2009-10-27

    Periglacial soils are one of the least studied ecosystems on Earth, yet they are widespread and are increasing in area due to retreat of glaciers worldwide. Soils in these environments are cold and during the brief summer are exposed to high levels of UV radiation and dramatic fluctuations in moisture and temperature. Recent research suggests that these environments harbor immense microbial diversity. Here we use sequencing of environmental DNA, culturing of isolates, and analysis of environmental variables to show that members of the Chytridiomycota (chytrids) dominate fungal biodiversity and perhaps decomposition processes in plant-free, high-elevation soils from the highest mountain ranges on Earth. The zoosporic reproduction of chytrids requires free water, yet we found that chytrids constituted over 70% of the ribosomal gene sequences of clone libraries from barren soils of the Himalayas and Rockies; by contrast, they are rare in other soil environments. Very few chytrids have been cultured, although we were successful at culturing chytrids from high-elevation sites throughout the world. In a more focused study of our sites in Colorado, we show that carbon sources that support chytrid growth (eolian deposited pollen and microbial phototrophs) are abundant and that soils are saturated with water for several months under the snow, thus creating ideal conditions for the development of a chytrid-dominated ecosystem. Our work broadens the known biodiversity of the Chytridomycota, and describes previously unsuspected links between aquatic and terrestrial ecosystems in alpine regions.

  12. Evidence that chytrids dominate fungal communities in high-elevation soils

    PubMed Central

    Freeman, K. R.; Martin, A. P.; Karki, D.; Lynch, R. C.; Mitter, M. S.; Meyer, A. F.; Longcore, J. E.; Simmons, D. R.; Schmidt, S. K.

    2009-01-01

    Periglacial soils are one of the least studied ecosystems on Earth, yet they are widespread and are increasing in area due to retreat of glaciers worldwide. Soils in these environments are cold and during the brief summer are exposed to high levels of UV radiation and dramatic fluctuations in moisture and temperature. Recent research suggests that these environments harbor immense microbial diversity. Here we use sequencing of environmental DNA, culturing of isolates, and analysis of environmental variables to show that members of the Chytridiomycota (chytrids) dominate fungal biodiversity and perhaps decomposition processes in plant-free, high-elevation soils from the highest mountain ranges on Earth. The zoosporic reproduction of chytrids requires free water, yet we found that chytrids constituted over 70% of the ribosomal gene sequences of clone libraries from barren soils of the Himalayas and Rockies; by contrast, they are rare in other soil environments. Very few chytrids have been cultured, although we were successful at culturing chytrids from high-elevation sites throughout the world. In a more focused study of our sites in Colorado, we show that carbon sources that support chytrid growth (eolian deposited pollen and microbial phototrophs) are abundant and that soils are saturated with water for several months under the snow, thus creating ideal conditions for the development of a chytrid-dominated ecosystem. Our work broadens the known biodiversity of the Chytridomycota, and describes previously unsuspected links between aquatic and terrestrial ecosystems in alpine regions. PMID:19826082

  13. Fungal diversity, dominance, and community structure in the rhizosphere of clonal Picea mariana plants throughout nursery production chronosequences.

    PubMed

    Vujanovic, V; Hamelin, R C; Bernier, L; Vujanovic, G; St-Arnaud, M

    2007-11-01

    Fungal diversity in the rhizosphere of healthy and diseased clonal black spruce (Picea mariana) plants was analyzed with regard to nursery production chronosequences. The four key production stages were sampled: mother plants (MP), 8-week-old cuttings (B + 0), second-year cuttings (B + 1), and third-year cuttings (B + 2). A total of 45 fungal taxa were isolated and identified based on cultural, phenotypic, and molecular characters. Members of phylum Ascomycota dominated, followed by Basidiomycota and Zygomycota. Diagnosis characters and distance analysis of the internal transcribed spacer rDNA sequences allowed the identification of 39 ascomycetous taxa. Many belong to the order Hypocreales, families Hypocreaceae and Nectriaceae, which contain many clusters of potentially pathogenic taxa (Cylindrocladium, Fusarium, and Neonectria) and are also ecologically associated with antagonistic taxa (Chaetomium, Hypocrea, Microsphaeropsis, Penicillium, Paecilomyces, Verticillium, Trichoderma, and Sporothrix). This is also the first report of a Cylindrocladium canadense association with disease symptoms and relation with Pestalotiopsis, Fusarium, Exserochilum, Rhizoctonia, and Xenochalara fungal consortia. Both production chronosequence and plant health considerably influenced fungal taxa assemblages. Unweighted pair-group arithmetic average clustering showed that isolates from MP, B + 0, and B + 1 plant rhizospheres clustered together within healthy or diseased health classes, whereas isolates from healthy and diseased B + 2 plants clustered together. Canonical correspondence analysis revealed substantial alteration in community assemblages with regard to plant health and yielded a principal axis direction that regrouped taxa associated with diseased plant rhizosphere soil, whereas the opposite axis direction was associated with healthy plants. Two diversity indices were defined and applied to assess the fungal taxa contribution (Tc) and persistence (Pi) throughout the

  14. Pezizomycotina dominates the fungal communities of South China Sea sponges Theonella swinhoei and Xestospongia testudinaria.

    PubMed

    Jin, Liling; Liu, Fang; Sun, Wei; Zhang, Fengli; Karuppiah, Valliappan; Li, Zhiyong

    2014-12-01

    Compared with the knowledge of sponge-associated bacterial diversity and ecological roles, the fungal diversity and ecological roles of sponges remain largely unknown. In this study, the fungal diversity and protein synthesis potential in two South China Sea sponges Theonella swinhoei and Xestospongia testudinaria were investigated by rRNA vs. rRNA gene analysis. EF4/fung5 was chosen after a series of PCR tests to target fungal 18S rRNA and 18S rRNA gene. Altogether, 283 high-quality sequences were obtained, which resulted in 26 Operational taxonomic units (OTUs) that were assigned to Ascomycota, Basidiomycota, and Blastocladiomycota. At subphylum level, 77.3% of sponge-derived sequences were affiliated with Pezizomycotina. The fungal compositions of T. swinhoei and X. testudinaria were different from that of ambient seawater. The predominant OTU shared between two sponges was rare in seawater, whereas the most abundant OTUs in seawater were not found in sponges. Additionally, the major OTUs of sponge cDNA datasets were shared in two sponges. The fungal diversity illustrated by sponge cDNA datasets correlated well with that derived from sponge DNA datasets, indicating that the major members of sponge-associated fungi had protein synthesis potential. This study highlighted the diversity of Pezizomycotina in marine sponge-fungi symbioses and the necessity of investigating ecological roles of sponge-associated fungi.

  15. Land use practices and ectomycorrhizal fungal communities from oak woodlands dominated by Quercus suber L. considering drought scenarios.

    PubMed

    Azul, Anabela Marisa; Sousa, João Paulo; Agerer, Reinhard; Martín, María P; Freitas, Helena

    2010-02-01

    Oak woodlands in the Mediterranean basin have been traditionally converted into agro-silvo-pastoral systems and exemplified sustainable land use in Europe. In Portugal, in line with the trend of other European countries, profound changes in management options during the twentieth century have led to landscape simplification. Landscapes are dynamic and the knowledge of future management planning combining biological conservation and soil productivity is needed, especially under the actual scenarios of drought and increasing evidence of heavy oak mortality. We examined the ectomycorrhizal (ECM) fungal community associated with cork oak in managed oak woodlands (called montado) under different land use practices, during summer. ECM fungal richness and abundance were assessed in 15 stands established in nine montados located in the Alentejo region (southern Portugal), using morphotyping and ITS rDNA analysis. Parameters related to the montados landscape characteristics, land use history over the last 25 years, climatic and edaphic conditions were taken into account. Fifty-five ECM fungal taxa corresponding to the most abundant fungal symbionts were distinguished on cork oak roots. Cenococcum geophilum and the families Russulaceae and Thelephoraceae explained 56% of the whole ECM fungal community; other groups were represented among the community: Cortinariaceae, Boletaceae, Amanita, Genea, Pisolithus, Scleroderma, and Tuber. There were pronounced differences in ECM fungal community structure among the 15 montados stands: C. geophilum was the only species common to all stands, tomentelloid and russuloid species were detected in 87-93% of the stands, Cortinariaceae was detected in 60% of the stands, and the other groups were more unequally distributed. Ordination analysis revealed that ECM fungal richness was positively correlated with the silvo-pastoral exploitation regime and low mortality of cork oak, while ECM fungal abundance was positively correlated with extensive

  16. An assessment of ectomycorrhizal fungal communities in Tasmanian temperate high-altitude Eucalyptus delegatensis forest reveals a dominance of the Cortinariaceae.

    PubMed

    Horton, Bryony M; Glen, Morag; Davidson, Neil J; Ratkowsky, David A; Close, Dugald C; Wardlaw, Tim J; Mohammed, Caroline

    2017-01-01

    Fungal diversity of Australian eucalypt forests remains underexplored. We investigated the ectomycorrhizal (EcM) fungal community characteristics of declining temperate eucalypt forests in Tasmania. Within this context, we explored the diversity of EcM fungi of two forest types in the northern highlands in the east and west of the island. We hypothesised that EcM fungal community richness and composition would differ between forest type but that the Cortinariaceae would be the dominant family irrespective of forest type. We proposed that EcM richness would be greater in the wet sclerophyll forest than the dry sclerophyll forest type. Using both sporocarps and EcM fungi from root tips amplified by PCR and sequenced in the rDNA ITS region, 175 EcM operational taxonomic units were identified of which 97 belonged to the Cortinariaceae. The Cortinariaceae were the most diverse family, in both the above and below ground communities. Three distinct fungal assemblages occurred within the wet and dry sclerophyll forest types and two geographic regions that were studied, although this pattern did not remain when only the root tip data were analysed. EcM sporocarp richness was unusually higher than root tip richness and EcM richness did not significantly differ among forest types. The results are discussed in relation to the importance of the Cortinariaceae and the drivers of EcM fungal community composition within these forests.

  17. Novel Root Fungal Consortium Associated with a Dominant Desert Grass▿

    PubMed Central

    Porras-Alfaro, Andrea; Herrera, Jose; Sinsabaugh, Robert L.; Odenbach, Kylea J.; Lowrey, Timothy; Natvig, Donald O.

    2008-01-01

    The broad distribution and high colonization rates of plant roots by a variety of endophytic fungi suggest that these symbionts have an important role in the function of ecosystems. Semiarid and arid lands cover more than one-third of the terrestrial ecosystems on Earth. However, a limited number of studies have been conducted to characterize root-associated fungal communities in semiarid grasslands. We conducted a study of the fungal community associated with the roots of a dominant grass, Bouteloua gracilis, at the Sevilleta National Wildlife Refuge in New Mexico. Internal transcribed spacer ribosomal DNA sequences from roots collected in May 2005, October 2005, and January 2006 were amplified using fungal-specific primers, and a total of 630 sequences were obtained, 69% of which were novel (less than 97% similarity with respect to sequences in the NCBI database). B. gracilis roots were colonized by at least 10 different orders, including endophytic, coprophilous, mycorrhizal, saprophytic, and plant pathogenic fungi. A total of 51 operational taxonomic units (OTUs) were found, and diversity estimators did not show saturation. Despite the high diversity found within B. gracilis roots, the root-associated fungal community is dominated by a novel group of dark septate fungi (DSF) within the order Pleosporales. Microscopic analysis confirmed that B. gracilis roots are highly colonized by DSF. Other common orders colonizing the roots included Sordariales, Xylariales, and Agaricales. By contributing to drought tolerance and nutrient acquisition, DSF may be integral to the function of arid ecosystems. PMID:18344349

  18. Novel root fungal consortium associated with a dominant desert grass.

    PubMed

    Porras-Alfaro, Andrea; Herrera, Jose; Sinsabaugh, Robert L; Odenbach, Kylea J; Lowrey, Timothy; Natvig, Donald O

    2008-05-01

    The broad distribution and high colonization rates of plant roots by a variety of endophytic fungi suggest that these symbionts have an important role in the function of ecosystems. Semiarid and arid lands cover more than one-third of the terrestrial ecosystems on Earth. However, a limited number of studies have been conducted to characterize root-associated fungal communities in semiarid grasslands. We conducted a study of the fungal community associated with the roots of a dominant grass, Bouteloua gracilis, at the Sevilleta National Wildlife Refuge in New Mexico. Internal transcribed spacer ribosomal DNA sequences from roots collected in May 2005, October 2005, and January 2006 were amplified using fungal-specific primers, and a total of 630 sequences were obtained, 69% of which were novel (less than 97% similarity with respect to sequences in the NCBI database). B. gracilis roots were colonized by at least 10 different orders, including endophytic, coprophilous, mycorrhizal, saprophytic, and plant pathogenic fungi. A total of 51 operational taxonomic units (OTUs) were found, and diversity estimators did not show saturation. Despite the high diversity found within B. gracilis roots, the root-associated fungal community is dominated by a novel group of dark septate fungi (DSF) within the order Pleosporales. Microscopic analysis confirmed that B. gracilis roots are highly colonized by DSF. Other common orders colonizing the roots included Sordariales, Xylariales, and Agaricales. By contributing to drought tolerance and nutrient acquisition, DSF may be integral to the function of arid ecosystems.

  19. Assessment of genetic diversity and distribution of endophytic fungal communities of Alternaria solani isolates associated with the dominant Karanja plants in Sanganer Region of Rajasthan.

    PubMed

    Tiwari, Kartikeya; Chittora, Manish

    2013-12-01

    Higher plants are ubiquitously colonized with fungal endophytes that often lack readily detectable structures. Current study examines the distribution of endophytic fungal communities within Karanja plants and diversity of novel fungal endophyte Alternaria solani isolates collected from different locations of Sanganer region of Rajasthan. Results confirmed that A. solani is a major fungal endophyte consortium associated with Karanja plants. PCR Amplified fragments using random amplified polymorphic DNA (RAPD) primers were subjected to unweighted pair group method analysis (UPGMA), which clearly distinguished twelve ecologically diverse A. solani isolates. A total of 58 RAPD loci were amplified, out of which 35 (60.34%) were polymorphic and 23 were monomorphic (39.66%) in nature. These polymorphic loci were identified with an average of 2.92 bands per primer. The efficacy of RAPD markers proved as an efficient marker system with respect to detection of polymorphism and number of loci scored and can be used for the identification of a particular isolates, thereby defining core collections and strengthening their exploitation in acquiring novel products produced by them.

  20. Pyrosequencing assessment of rhizosphere fungal communities from a soybean field.

    PubMed

    Sugiyama, Akifumi; Ueda, Yoshikatsu; Takase, Hisabumi; Yazaki, Kazufumi

    2014-10-01

    Soil fungal communities play essential roles in soil ecosystems, affecting plant growth and health. Rhizosphere bacterial communities have been shown to undergo dynamic changes during plant growth. This study utilized 454 pyrosequencing to analyze rhizosphere fungal communities during soybean growth. Members of the Ascomycota and Basiodiomycota dominated in all soils. There were no statistically significant changes at the phylum level among growth stages or between bulk and rhizosphere soils. In contrast, the relative abundance of small numbers of operational taxonomic units, 4 during growth and 28 between bulk and rhizosphere soils, differed significantly. Clustering analysis revealed that rhizosphere fungal communities were different from bulk fungal communities during growth stages of soybeans. Taken together, these results suggest that in contrast to rhizosphere bacterial communities, most constituents of rhizosphere fungal communities remained stable during soybean growth.

  1. Impact of metal pollution on fungal diversity and community structures.

    PubMed

    Op De Beeck, Michiel; Lievens, Bart; Busschaert, Pieter; Rineau, Francois; Smits, Mark; Vangronsveld, Jaco; Colpaert, Jan V

    2015-06-01

    The impact of metal pollution on plant communities has been studied extensively in the past, but little is known about the effects of metal pollution on fungal communities that occur in metal-polluted soils. Metal-tolerant ecotypes of the ectomycorrhizal fungus Suillus luteus are frequently found in pioneer pine forests in the Campine region in Belgium on metal-polluted soils. We hypothesized that metal pollution would play an important role in shaping below-ground fungal communities that occur in these soils and that Suillus luteus would be a dominant player. To test these hypotheses, the fungal communities in a young pine plantation in soil polluted with zinc, and cadmium were studied using 454 amplicon pyrosequencing. Results show that zinc, cadmium and soil organic matter content were strongly correlated with the fungal community composition, but no effects on fungal diversity were observed. As hypothesized, S. luteus was found to be a dominant member of the studied fungal communities. However, other dominant fungal species, such as Sistotrema sp., Wilcoxina mikolae and Cadophora finlandica were found as well. Their presence in metal-polluted sites is discussed. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Topographic diversity of fungal and bacterial communities in human skin.

    PubMed

    Findley, Keisha; Oh, Julia; Yang, Joy; Conlan, Sean; Deming, Clayton; Meyer, Jennifer A; Schoenfeld, Deborah; Nomicos, Effie; Park, Morgan; Kong, Heidi H; Segre, Julia A

    2013-06-20

    Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete's foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14 skin sites in 10 healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites--plantar heel, toenail and toe web--showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis.

  3. Fungal community on decomposing leaf litter undergoes rapid successional changes

    PubMed Central

    Voříšková, Jana; Baldrian, Petr

    2013-01-01

    Fungi are considered the primary decomposers of dead plant biomass in terrestrial ecosystems. However, current knowledge regarding the successive changes in fungal communities during litter decomposition is limited. Here we explored the development of the fungal community over 24 months of litter decomposition in a temperate forest with dominant Quercus petraea using 454-pyrosequencing of the fungal internal transcribed spacer (ITS) region and cellobiohydrolase I (cbhI) genes, which encode exocellulases, to specifically address cellulose decomposers. To quantify the involvement of phyllosphere fungi in litter decomposition, the fungal communities in live leaves and leaves immediately before abscission were also analysed. The results showed rapid succession of fungi with dramatic changes in the composition of the fungal community. Furthermore, most of the abundant taxa only temporarily dominated in the substrate. Fungal diversity was lowest at leaf senescence, increased until month 4 and did not significantly change during subsequent decomposition. Highly diverse community of phyllosphere fungi inhabits live oak leaves 2 months before abscission, and these phyllosphere taxa comprise a significant share of the fungal community during early decomposition up to the fourth month. Sequences assigned to the Ascomycota showed highest relative abundances in live leaves and during the early stages of decomposition. In contrast, the relative abundance of sequences assigned to the Basidiomycota phylum, particularly basidiomycetous yeasts, increased with time. Although cellulose was available in the litter during all stages of decomposition, the community of cellulolytic fungi changed substantially over time. The results indicate that litter decomposition is a highly complex process mediated by various fungal taxa. PMID:23051693

  4. Fungal Communities Associated with Degradation of Polyester Polyurethane in Soil▿

    PubMed Central

    Cosgrove, Lee; McGeechan, Paula L.; Robson, Geoff D.; Handley, Pauline S.

    2007-01-01

    Soil fungal communities involved in the biodegradation of polyester polyurethane (PU) were investigated. PU coupons were buried in two sandy loam soils with different levels of organic carbon: one was acidic (pH 5.5), and the other was more neutral (pH 6.7). After 5 months of burial, the fungal communities on the surface of the PU were compared with the native soil communities using culture-based and molecular techniques. Putative PU-degrading fungi were common in both soils, as <45% of the fungal colonies cleared the colloidal PU dispersion Impranil on solid medium. Denaturing gradient gel electrophoresis showed that fungal communities on the PU were less diverse than in the soil, and only a few species in the PU communities were detectable in the soil, indicating that only a small subset of the soil fungal communities colonized the PU. Soil type influenced the composition of the PU fungal communities. Geomyces pannorum and a Phoma sp. were the dominant species recovered by culturing from the PU buried in the acidic and neutral soils, respectively. Both fungi degraded Impranil and represented >80% of cultivable colonies from each plastic. However, PU was highly susceptible to degradation in both soils, losing up to 95% of its tensile strength. Therefore, different fungi are associated with PU degradation in different soils but the physical process is independent of soil type. PMID:17660302

  5. Fungal communities associated with degradation of polyester polyurethane in soil.

    PubMed

    Cosgrove, Lee; McGeechan, Paula L; Robson, Geoff D; Handley, Pauline S

    2007-09-01

    Soil fungal communities involved in the biodegradation of polyester polyurethane (PU) were investigated. PU coupons were buried in two sandy loam soils with different levels of organic carbon: one was acidic (pH 5.5), and the other was more neutral (pH 6.7). After 5 months of burial, the fungal communities on the surface of the PU were compared with the native soil communities using culture-based and molecular techniques. Putative PU-degrading fungi were common in both soils, as <45% of the fungal colonies cleared the colloidal PU dispersion Impranil on solid medium. Denaturing gradient gel electrophoresis showed that fungal communities on the PU were less diverse than in the soil, and only a few species in the PU communities were detectable in the soil, indicating that only a small subset of the soil fungal communities colonized the PU. Soil type influenced the composition of the PU fungal communities. Geomyces pannorum and a Phoma sp. were the dominant species recovered by culturing from the PU buried in the acidic and neutral soils, respectively. Both fungi degraded Impranil and represented >80% of cultivable colonies from each plastic. However, PU was highly susceptible to degradation in both soils, losing up to 95% of its tensile strength. Therefore, different fungi are associated with PU degradation in different soils but the physical process is independent of soil type.

  6. Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities

    PubMed Central

    Danielsen, L; Thürmer, A; Meinicke, P; Buée, M; Morin, E; Martin, F; Pilate, G; Daniel, R; Polle, A; Reich, M

    2012-01-01

    Fungal communities play a key role in ecosystem functioning. However, only little is known about their composition in plant roots and the soil of biomass plantations. The goal of this study was to analyze fungal biodiversity in their belowground habitats and to gain information on the strategies by which ectomycorrhizal (ECM) fungi form colonies. In a 2-year-old plantation, fungal communities in the soil and roots of three different poplar genotypes (Populus × canescens, wildtype and two transgenic lines with suppressed cinnamyl alcohol dehydrogenase activity) were analyzed by 454 pyrosequencing targeting the rDNA internal transcribed spacer 1 (ITS) region. The results were compared with the dynamics of the root-associated ECM community studied by morphotyping/Sanger sequencing in two subsequent years. Fungal species and family richness in the soil were surprisingly high in this simple plantation ecosystem, with 5944 operational taxonomic units (OTUs) and 186 described fungal families. These findings indicate the importance that fungal species are already available for colonization of plant roots (2399 OTUs and 115 families). The transgenic modification of poplar plants had no influence on fungal root or soil communities. Fungal families and OTUs were more evenly distributed in the soil than in roots, probably as a result of soil plowing before the establishment of the plantation. Saprophytic, pathogenic, and endophytic fungi were the dominating groups in soil, whereas ECMs were dominant in roots (87%). Arbuscular mycorrhizal diversity was higher in soil than in roots. Species richness of the root-associated ECM community, which was low compared with ECM fungi detected by 454 analyses, increased after 1 year. This increase was mainly caused by ECM fungal species already traced in the preceding year in roots. This result supports the priority concept that ECMs present on roots have a competitive advantage over soil-localized ECM fungi. PMID:22957194

  7. Tuber melanosporum, when dominant, affects fungal dynamics in truffle grounds.

    PubMed

    Napoli, Chiara; Mello, Antonietta; Borra, Ambrogio; Vizzini, Alfredo; Sourzat, Pierre; Bonfante, Paola

    2010-01-01

    The fruiting bodies of the ectomycorrhizal (ECM) fungus Tuber melanosporum are usually collected in an area devoid of vegetation which is defined as a 'burnt area' (brulé in French). Here, the soil fungal populations of inside and outside brulé were compared in order to understand whether the scanty plant cover was related to a change in fungal biodiversity. Both denaturing gradient gel electrophoresis (DGGE) and molecular cloning of the internal transcribed spacer (ITS) marker were employed on soil DNA to obtain profiles from nine truffle grounds and fungal sequences from one selected truffle ground sampled in two years. Denaturant gradient gel electrophoresis profiles from the two areas formed two distinct clusters while molecular cloning allowed 417 fungal sequences to be identified. T. melanosporum was the dominant fungus within the brulé. There were nine new haplotypes, which had never been detected in fruiting bodies. The Basidiomycota ECM fungi decreased within the brulé, indicating a competitive effect of T. melanosporum on the other ECM fungi. Among other factors, the dynamics of fungal populations seems to be correlated to brulé formation.

  8. Fungal Community Assembly in the Amazonian Dark Earth.

    PubMed

    Lucheta, Adriano Reis; Cannavan, Fabiana de Souza; Roesch, Luiz Fernando Wurdig; Tsai, Siu Mui; Kuramae, Eiko Eurya

    2016-05-01

    Here, we compare the fungal community composition and diversity in Amazonian Dark Earth (ADE) and the respective non-anthropogenic origin adjacent (ADJ) soils from four different sites in Brazilian Central Amazon using pyrosequencing of 18S ribosomal RNA (rRNA) gene. Fungal community composition in ADE soils were more similar to each other than their ADJ soils, except for only one site. Phosphorus and aluminum saturation were the main soil chemical factors contributing to ADE and ADJ fungal community dissimilarities. Differences in fungal richness were not observed between ADE and ADJ soil pairs regarding to the most sites. In general, the most dominant subphyla present in the soils were Pezizomycotina, Agaricomycotina, and Mortierellomycotina. The most abundant operational taxonomic units (OTUs) in ADE showed similarities with the entomopathogenic fungus Cordyceps confragosa and the saprobes Fomitopsis pinicola, Acremonium vitellinum, and Mortierellaceae sp., whereas OTUs similar to Aspergillus niger, Lithothelium septemseptatum, Heliocephala gracillis, and Pestalosphaeria sp. were more abundant in ADJ soils. Differences in fungal community composition were associated to soil chemical factors in ADE (P, Ca, Zn, Mg, organic matter, sum of bases, and base saturation) and ADJ (Al, potential acidity, Al saturation, B, and Fe) soils. These results contribute to a deeper view of the fungi communities in ADE and open new perspectives for entomopathogenic fungi studies.

  9. Spatial Distribution of Fungal Communities in an Arable Soil.

    PubMed

    Moll, Julia; Hoppe, Björn; König, Stephan; Wubet, Tesfaye; Buscot, François; Krüger, Dirk

    2016-01-01

    Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF) to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a) ploughed soil in 0-10 cm, b) rooted soil in 40-50 cm, c) root-free soil in 60-70 cm soil depth and d) maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit), occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment.

  10. Spatial Distribution of Fungal Communities in an Arable Soil

    PubMed Central

    Moll, Julia; Hoppe, Björn; König, Stephan; Wubet, Tesfaye; Buscot, François; Krüger, Dirk

    2016-01-01

    Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF) to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a) ploughed soil in 0–10 cm, b) rooted soil in 40–50 cm, c) root-free soil in 60–70 cm soil depth and d) maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit), occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment. PMID:26840453

  11. Diversity and distribution of fungal communities in lakes of Antarctica.

    PubMed

    Gonçalves, Vívian N; Vaz, Aline B M; Rosa, Carlos A; Rosa, Luiz H

    2012-11-01

    This study assessed the diversity and distribution of filamentous fungi obtained from water sampled from six lakes in the Antarctic Peninsula. One hundred and twenty-eight fungal isolates were purified and identified by analysis of nuclear rDNA ITS region sequences as belonging to 31 fungal different operational taxonomic units (OTUs). The most frequently isolated fungi were Geomyces pannorum and Mortierella sp.; these species occurred in six and three of the lakes sampled, respectively, and displayed the highest total colony-forming unit per L. Different species that have not been found to these lakes and/or had adapted to cold conditions were found. In general, the fungal community displayed low richness and high dominance indices. The species Cadophora cf. luteo-olivacea, Cadophora malorum, Davidiella tassiana, G. pannorum, Mortierella cf. alpina and Thelebolus cf. microsporus that were found in the lakes in question were also previously found in other cold ecosystems, such as Arctic, temperate and Alpine regions. The results of this study suggest the presence of an interesting aquatic fungal web, including symbionts, weak and strong saprophytes and parasite/pathogen fungal species. This aquatic web fungal may be a useful community model for further ecological and evolutionary studies of extreme habitats.

  12. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome.

    PubMed

    de Souza, Rafael Soares Correa; Okura, Vagner Katsumi; Armanhi, Jaderson Silveira Leite; Jorrín, Beatriz; Lozano, Núria; da Silva, Márcio José; González-Guerrero, Manuel; de Araújo, Laura Migliorini; Verza, Natália Cristina; Bagheri, Homayoun Chaichian; Imperial, Juan; Arruda, Paulo

    2016-06-30

    Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes.

  13. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome

    PubMed Central

    de Souza, Rafael Soares Correa; Okura, Vagner Katsumi; Armanhi, Jaderson Silveira Leite; Jorrín, Beatriz; Lozano, Núria; da Silva, Márcio José; González-Guerrero, Manuel; de Araújo, Laura Migliorini; Verza, Natália Cristina; Bagheri, Homayoun Chaichian; Imperial, Juan; Arruda, Paulo

    2016-01-01

    Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes. PMID:27358031

  14. Fungal-fungal associations affect the assembly of endophyte communities in maize (Zea mays).

    PubMed

    Pan, Jean J; May, Georgiana

    2009-10-01

    Many factors can affect the assembly of communities, ranging from species pools to habitat effects to interspecific interactions. In microbial communities, the predominant focus has been on the well-touted ability of microbes to disperse and the environment acting as a selective filter to determine which species are present. In this study, we investigated the role of biotic interactions (e.g., competition, facilitation) in fungal endophyte community assembly by examining endophyte species co-occurrences within communities using null models. We used recombinant inbred lines (genotypes) of maize (Zea mays) to examine community assembly at multiple habitat levels, at the individual plant and host genotype levels. Both culture-dependent and culture-independent approaches were used to assess endophyte communities. Communities were analyzed using the complete fungal operational taxonomic unit (OTU) dataset or only the dominant (most abundant) OTUs in order to ascertain whether species co-occurrences were different for dominant members compared to when all members were included. In the culture-dependent approach, we found that for both datasets, OTUs co-occurred on maize genotypes more frequently than expected under the null model of random species co-occurrences. In the culture-independent approach, we found that OTUs negatively co-occurred at the individual plant level but were not significantly different from random at the genotype level for either the dominant or complete datasets. Our results showed that interspecific interactions can affect endophyte community assembly, but the effects can be complex and depend on host habitat level. To our knowledge, this is the first study to examine endophyte community assembly in the same host species at multiple habitat levels. Understanding the processes and mechanisms that shape microbial communities will provide important insights into microbial community structure and the maintenance of microbial biodiversity.

  15. Fungal-to-bacterial dominance of soil detrital food-webs: Consequences for biogeochemistry

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2015-04-01

    Resolving fungal and bacterial groups within the microbial decomposer community is thought to capture disparate microbial life strategies, associating bacteria with an r-selected strategy for carbon (C) and nutrient use, and fungi with a K-selected strategy. Additionally, food-web models have established a widely held belief that the bacterial decomposer pathway in soil supports high turnover rates of easily available substrates, while the slower fungal pathway supports the decomposition of more complex organic material, thus characterising the biogeochemistry of the ecosystem. Three field-experiments to generate gradients of SOC-quality were assessed. (1) the Detritus Input, Removal, and Trenching - DIRT - experiment in a temperate forest in mixed hardwood stands at Harvard Forest LTER, US. There, experimentally adjusted litter input and root input had affected the SOC quality during 23 years. (2) field-application of 14-C labelled glucose to grassland soils, sampled over the course of 13 months to generate an age-gradient of SOM (1 day - 13 months). (3) The Park Grass Experiment at Rothamsted, UK, where 150-years continuous N-fertilisation (0, 50, 100, 150 kg N ha-1 y-1) has affected the quality of SOM in grassland soils. A combination of carbon stable and radio isotope studies, fungal and bacterial growth and biomass measurements, and C and N mineralisation (15N pool dilution) assays were used to investigate how SOC-quality influenced fungal and bacterial food-web pathways and the implications this had for C and nutrient turnover. There was no support that decomposer food-webs dominated by bacteria support high turnover rates of easily available substrates, while slower fungal-dominated decomposition pathways support the decomposition of more complex organic material. Rather, an association between high quality SOC and fungi emerges from the results. This suggests that we need to revise our basic understanding for soil microbial communities and the processes

  16. Assessment of soil fungal communities using pyrosequencing.

    PubMed

    Lim, Young Woon; Kim, Byung Kwon; Kim, Changmu; Jung, Hack Sung; Kim, Bong-Soo; Lee, Jae-Hak; Chun, Jongsik

    2010-06-01

    Pyrosequencing, a non-electrophoretic method of DNA sequencing, was used to investigate the extensive fungal community in soils of three islands in the Yellow Sea of Korea, between Korea and China. Pyrosequencing was carried out on amplicons derived from the 5' region of 18S rDNA. A total of 10,166 reads were obtained, with an average length of 103 bp. The maximum number of fungal phylotypes in soil predicted at 99% similarity was 3,334. The maximum numbers of phylotypes predicted at 97% and 95% similarities were 736 and 286, respectively. Through phylogenetic assignment using BLASTN, a total of 372 tentative taxa were identified. The majority of true fungal sequences recovered in this study belonged to the Ascomycota (182 tentative taxa in 2,708 reads) and Basidiomycota (172 tentative taxa in 6,837 reads). The predominant species of Ascomycota detected have been described as lichen-forming fungi, litter/wood decomposers, plant parasites, endophytes, and saprotrophs: Peltigera neopolydactyla (Lecanoromycetes), Paecilomyces sp. (Sordariomycetes), Phacopsis huuskonenii (Lecanoromycetes), and Raffaelea hennebertii (mitosporicAscomycota). The majority of sequences in the Basidiomycota matched ectomycorrhizal and wood rotting fungi, including species of the Agaricales and Aphyllophorales, respectively. A high number of sequences in the Thelephorales, Boletales, Stereales, Hymenochaetales, and Ceratobasidiomycetes were also detected. By applying high-throughput pyrosequencing, we observed a high diversity of soil fungi and found evidence that pyrosequencing is a reliable technique for investigating fungal communities in soils.

  17. Fungal Communities Respond to Long-Term CO2 Elevation by Community Reassembly

    PubMed Central

    Tu, Qichao; Yuan, Mengting; He, Zhili; Deng, Ye; Xue, Kai; Wu, Liyou; Hobbie, Sarah E.; Reich, Peter B.

    2015-01-01

    Fungal communities play a major role as decomposers in the Earth's ecosystems. Their community-level responses to elevated CO2 (eCO2), one of the major global change factors impacting ecosystems, are not well understood. Using 28S rRNA gene amplicon sequencing and co-occurrence ecological network approaches, we analyzed the response of soil fungal communities in the BioCON (biodiversity, CO2, and N deposition) experimental site in Minnesota, USA, in which a grassland ecosystem has been exposed to eCO2 for 12 years. Long-term eCO2 did not significantly change the overall fungal community structure and species richness, but significantly increased community evenness and diversity. The relative abundances of 119 operational taxonomic units (OTU; ∼27% of the total captured sequences) were changed significantly. Significantly changed OTU under eCO2 were associated with decreased overall relative abundance of Ascomycota, but increased relative abundance of Basidiomycota. Co-occurrence ecological network analysis indicated that eCO2 increased fungal community network complexity, as evidenced by higher intermodular and intramodular connectivity and shorter geodesic distance. In contrast, decreased connections for dominant fungal species were observed in the eCO2 network. Community reassembly of unrelated fungal species into highly connected dense modules was observed. Such changes in the co-occurrence network topology were significantly associated with altered soil and plant properties under eCO2, especially with increased plant biomass and NH4+ availability. This study provided novel insights into how eCO2 shapes soil fungal communities in grassland ecosystems. PMID:25616796

  18. High-throughput sequencing-based analysis of endogenetic fungal communities inhabiting the Chinese Cordyceps reveals unexpectedly high fungal diversity

    PubMed Central

    Xia, Fei; Chen, Xin; Guo, Meng-Yuan; Bai, Xiao-Hui; Liu, Yan; Shen, Guang-Rong; Li, Yu-Ling; Lin, Juan; Zhou, Xuan-Wei

    2016-01-01

    Chinese Cordyceps, known in Chinese as “DongChong XiaCao”, is a parasitic complex of a fungus (Ophiocordyceps sinensis) and a caterpillar. The current study explored the endogenetic fungal communities inhabiting Chinese Cordyceps. Samples were collected from five different geographical regions of Qinghai and Tibet, and the nuclear ribosomal internal transcribed spacer-1 sequences from each sample were obtained using Illumina high-throughput sequencing. The results showed that Ascomycota was the dominant fungal phylum in Chinese Cordyceps and its soil microhabitat from different sampling regions. Among the Ascomycota, 65 genera were identified, and the abundant operational taxonomic units showed the strongest sequence similarity to Ophiocordyceps, Verticillium, Pseudallescheria, Candida and Ilyonectria Not surprisingly, the genus Ophiocordyceps was the largest among the fungal communities identified in the fruiting bodies and external mycelial cortices of Chinese Cordyceps. In addition, fungal communities in the soil microhabitats were clustered separately from the external mycelial cortices and fruiting bodies of Chinese Cordyceps from different sampling regions. There was no significant structural difference in the fungal communities between the fruiting bodies and external mycelial cortices of Chinese Cordyceps. This study revealed an unexpectedly high diversity of fungal communities inhabiting the Chinese Cordyceps and its microhabitats. PMID:27625176

  19. High-throughput sequencing-based analysis of endogenetic fungal communities inhabiting the Chinese Cordyceps reveals unexpectedly high fungal diversity.

    PubMed

    Xia, Fei; Chen, Xin; Guo, Meng-Yuan; Bai, Xiao-Hui; Liu, Yan; Shen, Guang-Rong; Li, Yu-Ling; Lin, Juan; Zhou, Xuan-Wei

    2016-09-14

    Chinese Cordyceps, known in Chinese as "DongChong XiaCao", is a parasitic complex of a fungus (Ophiocordyceps sinensis) and a caterpillar. The current study explored the endogenetic fungal communities inhabiting Chinese Cordyceps. Samples were collected from five different geographical regions of Qinghai and Tibet, and the nuclear ribosomal internal transcribed spacer-1 sequences from each sample were obtained using Illumina high-throughput sequencing. The results showed that Ascomycota was the dominant fungal phylum in Chinese Cordyceps and its soil microhabitat from different sampling regions. Among the Ascomycota, 65 genera were identified, and the abundant operational taxonomic units showed the strongest sequence similarity to Ophiocordyceps, Verticillium, Pseudallescheria, Candida and Ilyonectria Not surprisingly, the genus Ophiocordyceps was the largest among the fungal communities identified in the fruiting bodies and external mycelial cortices of Chinese Cordyceps. In addition, fungal communities in the soil microhabitats were clustered separately from the external mycelial cortices and fruiting bodies of Chinese Cordyceps from different sampling regions. There was no significant structural difference in the fungal communities between the fruiting bodies and external mycelial cortices of Chinese Cordyceps. This study revealed an unexpectedly high diversity of fungal communities inhabiting the Chinese Cordyceps and its microhabitats.

  20. Nutrient input influences fungal community composition and size and can stimulate manganese (II) oxidation in caves.

    PubMed

    Carmichael, Sarah K; Zorn, Bryan T; Santelli, Cara M; Roble, Leigh A; Carmichael, Mary J; Bräuer, Suzanna L

    2015-08-01

    Little is known about the fungal role in biogeochemical cycling in oligotrophic ecosystems. This study compared fungal communities and assessed the role of exogenous carbon on microbial community structure and function in two southern Appalachian caves: an anthropogenically impacted cave and a near-pristine cave. Due to carbon input from shallow soils, the anthropogenically impacted cave had an order of magnitude greater fungal and bacterial quantitative-polymerase chain reaction (qPCR) gene copy numbers, had significantly greater community diversity, and was dominated by ascomycotal phylotypes common in early phase, labile organic matter decomposition. Fungal assemblages in the near-pristine cave samples were dominated by Basidiomycota typically found in deeper soils (and/or in late phase, recalcitrant organic matter decomposition), suggesting more oligotrophic conditions. In situ carbon and manganese (II) [Mn(II)] addition over 10 weeks resulted in growth of fungal mycelia followed by increased Mn(II) oxidation. A before/after comparison of the fungal communities indicated that this enrichment increased the quantity of fungal and bacterial cells, yet decreased overall fungal diversity. Anthropogenic carbon sources can therefore dramatically influence the diversity and quantity of fungi, impact microbial community function, and stimulate Mn(II) oxidation, resulting in a cascade of changes that can strongly influence nutrient and trace element biogeochemical cycles in karst aquifers. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Fungal community dynamics during a marine dinoflagellate (Noctiluca scintillans) bloom.

    PubMed

    Sun, Jing-Yun; Song, Yu; Ma, Zhi-Ping; Zhang, Huai-Jing; Yang, Zhong-Duo; Cai, Zhong-Hua; Zhou, Jin

    2017-10-04

    Contamination and eutrophication have caused serious ecological events (such as algal bloom) in coastal area. During this ecological process, microbial community structure is critical for algal bloom succession. The diversity and composition of bacteria and archaea communities in algal blooms have been widely investigated; however, those of fungi are poorly understood. To fill this gap, we used pyrosequencing and correlation approaches to assess fungal patterns and associations during a dinoflagellate (Noctiluca scintillans) bloom. Phylum level fungal types were predominated by Ascomycota, Chytridiomycota, Mucoromycotina, and Basidiomycota. At the genus level drastic changes were observed with Hysteropatella, Malassezia and Saitoella dominating during the initial bloom stage, while Malassezia was most abundant (>50%) during onset and peak-bloom stages. Saitoella and Lipomyces gradually became more abundant and, in the decline stage, contributed almost 70% of sequences. In the terminal stage of the bloom, Rozella increased rapidly to a maximum of 50-60%. Fungal population structure was significantly influenced by temperature and substrate (N and P) availability (P < 0.05). Inter-specific network analyses demonstrated that Rozella and Saitoella fungi strongly impacted the ecological trajectory of N. scintillans. The functional prediction show that symbiotrophic fungi was dominated in the onset stage; saprotroph type was the primary member present during the exponential growth period; whereas pathogentroph type fungi enriched in decline phase. Overall, fungal communities and functions correlated significantly with N. scintillans processes, suggesting that they may regulate dinoflagellate bloom fates. Our results will facilitate deeper understanding of the ecological importance of marine fungi and their roles in algal bloom formation and collapse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ectomycorrhizal fungal community structure of pinyon pines growing in two environmental extremes

    SciTech Connect

    Gehring, C.A.; Theimer, T.C.; Whitham, T.G.; Keim, P.

    1998-07-01

    The authors used molecular techniques to examine the ectomycorrhizal fungal community associated with pinyon pine (Pinus edulis) growing in two soil types in a semiarid region of northern Arizona. Pinyon performance (e.g., growth, reproduction, water stress) has been shown to be markedly lower in cinder than in sandy-loam environments. Fungal community composition and richness were determined using RFLP (restriction fragment length polymorphism) analysis of ectomycorrhizal root tips collected from three sites within each soil type. Several patterns emerged from these analyses. First, communities in both cinder and sandy-loam soils were dominated by one or a few abundant ectomytcorrhizal types, a species abundance pattern common to many plant and animal communities. Second, unlike the pattern for many other organisms, ectomycorrhizal fungal type richness was not correlated with measures of ecosystem productivity such as soil nutrient and moisture levels; cinder and sandy-loam soils had similar numbers of ectomycorrhizal fungal types. Third, soil type and fungal community composition were linked, as cluster analysis demonstrated greater similarity of fungal communities from sites within soil types than between them. Fourth, a preliminary survey of 14--45 ectomycorrhizal root tips from each of 20 trees at one cinder site indicated that trees were dominated by one or a few ectomycorrhizal RFLP types. Fifth, the RFLP patterns of some fungal sporocarps matched those of ectomycorrhizal root tips, but many did not, indicating that many of the ectomycorrhizal fungi at these sites fruit infrequently, whereas other fungi with more abundant sporocarps may not form ectomycorrhiza.

  3. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats

    NASA Astrophysics Data System (ADS)

    Comeau, André M.; Vincent, Warwick F.; Bernier, Louis; Lovejoy, Connie

    2016-07-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling.

  4. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats

    PubMed Central

    Comeau, André M.; Vincent, Warwick F.; Bernier, Louis; Lovejoy, Connie

    2016-01-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling. PMID:27444055

  5. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats.

    PubMed

    Comeau, André M; Vincent, Warwick F; Bernier, Louis; Lovejoy, Connie

    2016-07-22

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling.

  6. Diversity and Structure of Fungal Communities in Neotropical Rainforest Soils: The Effect of Host Recurrence.

    PubMed

    Schimann, Heidy; Bach, Cyrille; Lengelle, Juliette; Louisanna, Eliane; Barantal, Sandra; Murat, Claude; Buée, Marc

    2017-02-01

    The patterns of the distribution of fungal species and their potential interactions with trees remain understudied in Neotropical rainforests, which harbor more than 16,000 tree species, mostly dominated by endomycorrhizal trees. Our hypothesis was that tree species shape the non-mycorrhizal fungal assemblages in soil and litter and that the diversity of fungal communities in these two compartments is partly dependent on the coverage of trees in the Neotropical rainforest. In French Guiana, a long-term plantation and a natural forest were selected to test this hypothesis. Fungal ITS1 regions were sequenced from soil and litter samples from within the vicinity of tree species. A broad range of fungal taxa was found, with 42 orders and 14 classes. Significant spatial heterogeneity in the fungal communities was found without strong variation in the species richness and evenness among the tree plots. However, tree species shaped the fungal assemblages in the soil and litter, explaining up to 18 % of the variation among the communities in the natural forest. These results demonstrate that vegetation cover has an important effect on the structure of fungal assemblages inhabiting the soil and litter in Amazonian forests, illustrating the relative impact of deterministic processes on fungal community structures in these highly diverse ecosystems.

  7. Controls over fungal communities and consequences for nutrient cycling

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Majumder, P.; Bent, E.; Borneman, J.; Allison, S. D.; Hanson, C. A.

    2007-12-01

    Soils harbor a high diversity of microbes-- as many as 100 species of fungi within a square meter. If different species target different components of litter, a more diverse community of fungi should lead to faster decomposition rates. We examined the hypotheses that variation in substrate use among fungal groups and variation in nitrogen availability are both important controls over the diversity of fungi in an Alaskan boreal forest. Nitrogen availability was considered because microbes are often N-limited, and because humans are altering N availability via anthropogenic N deposition and global warming. We used nucleotide analogs to link fungal groups with their role in decomposition in field samples. Leaf litter collected from the forest floor was supplemented with one of four N-containing compounds. Bromodeoxyuridine (BrdU, a thymidine analog) was also added. After 48 hours incubation, DNA was extracted. Most growing fungi should have assimilated the BrdU into new DNA. Their genetic identity was determined using oligonucleotide fingerprinting of rRNA genes (OFRG). OFRG is an rRNA gene profiling method that sorts genes into taxonomic groups with a high degree of resolution, and has a large capacity for sample processing. Fungal groups that proliferated following the addition of a given compound probably metabolized that compound. We found that fungal taxa varied in their responses to different substrates, indicating that they differed in substrate use. Specifically, community composition of fungi was significantly different among substrate treatments (P < 0.001). In addition, of the 15 dominant taxa, seven displayed significant preferences for one substrate over another. For instance, taxa within the Helotiales preferred glutamate (P = 0.001); Sporidiales, tannin-protein complexes (P = 0.014); Saccharomycetales, arginine (P = 0.042); and Polyporales, arginine and lignocellulose (P = 0.040). In a complementary experiment, we used BrdU labeling to characterize

  8. Forest Age and Plant Species Composition Determine the Soil Fungal Community Composition in a Chinese Subtropical Forest

    PubMed Central

    Trogisch, Stefan; Both, Sabine; Scholten, Thomas; Bruelheide, Helge; Buscot, François

    2013-01-01

    Fungal diversity and community composition are mainly related to soil and vegetation factors. However, the relative contribution of the different drivers remains largely unexplored, especially in subtropical forest ecosystems. We studied the fungal diversity and community composition of soils sampled from 12 comparative study plots representing three forest age classes (Young: 10–40 yrs; Medium: 40–80 yrs; Old: ≥80 yrs) in Gutianshan National Nature Reserve in South-eastern China. Soil fungal communities were assessed employing ITS rDNA pyrotag sequencing. Members of Basidiomycota and Ascomycota dominated the fungal community, with 22 putative ectomycorrhizal fungal families, where Russulaceae and Thelephoraceae were the most abundant taxa. Analysis of similarity showed that the fungal community composition significantly differed among the three forest age classes. Forest age class, elevation of the study plots, and soil organic carbon (SOC) were the most important factors shaping the fungal community composition. We found a significant correlation between plant and fungal communities at different taxonomic and functional group levels, including a strong relationship between ectomycorrhizal fungal and non-ectomycorrhizal plant communities. Our results suggest that in subtropical forests, plant species community composition is the main driver of the soil fungal diversity and community composition. PMID:23826151

  9. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica.

    PubMed

    Godinho, Valéria M; Furbino, Laura E; Santiago, Iara F; Pellizzari, Franciane M; Yokoya, Nair S; Pupo, Diclá; Alves, Tânia M A; Junior, Policarpo A S; Romanha, Alvaro J; Zani, Carlos L; Cantrell, Charles L; Rosa, Carlos A; Rosa, Luiz H

    2013-07-01

    We surveyed the distribution and diversity of fungi associated with eight macroalgae from Antarctica and their capability to produce bioactive compounds. The collections yielded 148 fungal isolates, which were identified using molecular methods as belonging to 21 genera and 50 taxa. The most frequent taxa were Geomyces species (sp.), Penicillium sp. and Metschnikowia australis. Seven fungal isolates associated with the endemic Antarctic macroalgae Monostroma hariotii (Chlorophyte) displayed high internal transcribed spacer sequences similarities with the psychrophilic pathogenic fungus Geomyces destructans. Thirty-three fungal singletons (66%) were identified, representing rare components of the fungal communities. The fungal communities displayed high diversity, richness and dominance indices; however, rarefaction curves indicated that not all of the fungal diversity present was recovered. Penicillium sp. UFMGCB 6034 and Penicillium sp. UFMGCB 6120, recovered from the endemic species Palmaria decipiens (Rhodophyte) and M. hariotii, respectively, yielded extracts with high and selective antifungal and/or trypanocidal activities, in which a preliminary spectral analysis using proton nuclear magnetic resonance spectroscopy indicated the presence of highly functionalised aromatic compounds. These results suggest that the endemic and cold-adapted macroalgae of Antarctica shelter a rich, diversity and complex fungal communities consisting of a few dominant indigenous or mesophilic cold-adapted species, and a large number of rare and/or endemic taxa, which may provide an interesting model of algal-fungal interactions under extreme conditions as well as a potential source of bioactive compounds.

  10. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica

    PubMed Central

    Godinho, Valéria M; Furbino, Laura E; Santiago, Iara F; Pellizzari, Franciane M; Yokoya, Nair S; Pupo, Diclá; Alves, Tânia MA; S Junior, Policarpo A; Romanha, Alvaro J; Zani, Carlos L; Cantrell, Charles L; Rosa, Carlos A; Rosa, Luiz H

    2013-01-01

    We surveyed the distribution and diversity of fungi associated with eight macroalgae from Antarctica and their capability to produce bioactive compounds. The collections yielded 148 fungal isolates, which were identified using molecular methods as belonging to 21 genera and 50 taxa. The most frequent taxa were Geomyces species (sp.), Penicillium sp. and Metschnikowia australis. Seven fungal isolates associated with the endemic Antarctic macroalgae Monostroma hariotii (Chlorophyte) displayed high internal transcribed spacer sequences similarities with the psychrophilic pathogenic fungus Geomyces destructans. Thirty-three fungal singletons (66%) were identified, representing rare components of the fungal communities. The fungal communities displayed high diversity, richness and dominance indices; however, rarefaction curves indicated that not all of the fungal diversity present was recovered. Penicillium sp. UFMGCB 6034 and Penicillium sp. UFMGCB 6120, recovered from the endemic species Palmaria decipiens (Rhodophyte) and M. hariotii, respectively, yielded extracts with high and selective antifungal and/or trypanocidal activities, in which a preliminary spectral analysis using proton nuclear magnetic resonance spectroscopy indicated the presence of highly functionalised aromatic compounds. These results suggest that the endemic and cold-adapted macroalgae of Antarctica shelter a rich, diversity and complex fungal communities consisting of a few dominant indigenous or mesophilic cold-adapted species, and a large number of rare and/or endemic taxa, which may provide an interesting model of algal–fungal interactions under extreme conditions as well as a potential source of bioactive compounds. PMID:23702515

  11. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific

    PubMed Central

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems. PMID:26067836

  12. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific.

    PubMed

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems.

  13. Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida.

    PubMed

    Huang, Kui; Li, Fusheng; Wei, Yongfen; Chen, Xuemin; Fu, Xiaoyong

    2013-12-01

    Changes of bacterial and fungal community during vermicomposting of vegetable wastes by hatchling, juvenile and adult Eisenia foetida were investigated through analysis of the extracted bacterial 16S rDNA and fungal 18S rDNA with quantitative polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE) and sequencing. After 60days of composting, significantly lower values of microbial activity and bacterial and fungal densities were revealed in the products of composting with earthworms than in the control (without earthworms). PCR-DGGE images showed vermicomposting significantly enhanced the diversities of bacterial and fungal communities. However, for their structures, sequencing results revealed that, compared to the control where the bacterial Firmicutes were predominant, in the composts with earthworms, the bacterial Bacteroidetes and Actinomycetes, and the fungal Sordariomycetes were found dominant. In addition, some beneficial species of bacteria and fungi against pathogens were also isolated from the vermicomposting products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing.

    PubMed

    Davey, Marie L; Heegaard, Einar; Halvorsen, Rune; Ohlson, Mikael; Kauserud, Håvard

    2012-09-01

    Bryophytes are a dominant vegetation component of the boreal forest, but little is known about their associated fungal communities, including seasonal variation within them. Seasonal variation in the fungal biomass and composition of fungal communities associated with three widespread boreal bryophytes was investigated using HPLC assays of ergosterol and amplicon pyrosequencing of the internal transcribed spacer 2 (ITS2) region of rDNA. The bryophyte phyllosphere community was dominated by Ascomycota. Fungal biomass did not decline appreciably in winter (P=0.272). Significant host-specific patterns in seasonal variation of biomass were detected (P=0.003). Although seasonal effects were not the primary factors structuring community composition, collection date significantly explained (P=0.001) variation not attributed to locality, host, and tissue. Community homogenization and a reduction in turnover occurred with the onset of frost events and subzero air and soil temperatures. Fluctuations in the relative abundance of particular fungal groups seem to reflect the nature of their association with mosses, although conclusions are drawn with caution because of potential methodological bias. The moss-associated fungal community is dynamic, exhibiting seasonal turnover in composition and relative abundance of different fungal groups, and significant fungal biomass is present year-round, suggesting a winter-active fungal community. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  15. Soil fungal communities respond to grassland plant community richness and soil edaphics

    USDA-ARS?s Scientific Manuscript database

    Fungal communities in soil have significant influences on terrestrial ecosystem dynamics, yet our understanding of the drivers of fungal diversity and community structure in soil is limited. Fungal communities associated with the rhizosphere of four native perennial grassland plant species grown in ...

  16. Missing checkerboards? An absence of competitive signal in Alnus-associated ectomycorrhizal fungal communities

    PubMed Central

    Nguyen, Nhu; Cohen, Hannah; Peay, Kabir

    2014-01-01

    A number of recent studies suggest that interspecific competition plays a key role in determining the structure of ectomycorrhizal (ECM) fungal communities. Despite this growing consensus, there has been limited study of ECM fungal community dynamics in abiotically stressful environments, which are often dominated by positive rather than antagonistic interactions. In this study, we examined the ECM fungal communities associated with the host genus Alnus, which live in soils high in both nitrate and acidity. The nature of ECM fungal species interactions (i.e., antagonistic, neutral, or positive) was assessed using taxon co-occurrence and DNA sequence abundance correlational analyses. ECM fungal communities were sampled from root tips or mesh in-growth bags in three monodominant A. rubra plots at a site in Oregon, USA and identified using Illumina-based amplification of the ITS1 gene region. We found a total of 175 ECM fungal taxa; 16 of which were closely related to known Alnus-associated ECM fungi. Contrary to previous studies of ECM fungal communities, taxon co-occurrence analyses on both the total and Alnus-associated ECM datasets indicated that the ECM fungal communities in this system were not structured by interspecific competition. Instead, the co-occurrence patterns were consistent with either random assembly or significant positive interactions. Pair-wise correlational analyses were also more consistent with neutral or positive interactions. Taken together, our results suggest that interspecific competition does not appear to determine the structure of all ECM fungal communities and that abiotic conditions may be important in determining the specific type of interaction occurring among ECM fungi. PMID:25548729

  17. Fungal community assemblage of different soil compartments in mangrove ecosystem.

    PubMed

    Sanka Loganathachetti, Dinesh; Poosakkannu, Anbu; Muthuraman, Sundararaman

    2017-08-17

    The fungal communities of different soil compartments in mangrove ecosystem are poorly studied. We sequenced the internal transcribed spacer (ITS) regions to characterize the fungal communities in Avicennia marina root-associated soils (rhizosphere and pneumatophore) and bulk soil compartments. The rhizosphere but not pneumatophore soil compartment had significantly lower fungal species richness than bulk soil. However, bulk soil fungal diversity (Shannon diversity index) was significantly higher than both pneumatophore and rhizosphere soil compartments. The different soil compartments significantly affected the fungal community composition. Pairwise sample analyses showed that bulk soil microbial community composition significantly different from rhizosphere and pneumatophore soil compartments. There was, however no significant difference observed between rhizosphere and pneumatophore soil fungal community composition and they shared relatively more OTUs between them. Further, there was a significant correlation observed between fungal community compositional changes and carbon or nitrogen availability of different soil compartments. These results suggest that few characteristics such as fungal richness and taxa abundance of rhizosphere and pneumatophore soil compartments were significantly different in mangrove ecosystem.

  18. Divergent habitat filtering of root and soil fungal communities in temperate beech forests

    PubMed Central

    Goldmann, Kezia; Schröter, Kristina; Pena, Rodica; Schöning, Ingo; Schrumpf, Marion; Buscot, François; Polle, Andrea; Wubet, Tesfaye

    2016-01-01

    Distance decay, the general reduction in similarity of community composition with increasing geographical distance, is known as predictor of spatial variation and distribution patterns of organisms. However, changes in fungal communities along environmental gradients are little known. Here we show that distance decays of soil-inhabiting and root-associated fungal assemblages differ, and identify explanatory environmental variables. High-throughput sequencing analysis of fungal communities of beech-dominated forests at three study sites across Germany shows that root-associated fungi are recruited from the soil fungal community. However, distance decay is substantially weaker in the root-associated than in the soil community. Variance partitioning of factors contributing to the observed distance decay patterns support the hypothesis that host trees stabilize the composition of root-associated fungi communities, relative to soil communities. Thus, they not only have selective impacts on associated communities, but also buffer effects of changes in microclimatic and environmental variables that directly influence fungal community composition. PMID:27511465

  19. Divergent habitat filtering of root and soil fungal communities in temperate beech forests

    NASA Astrophysics Data System (ADS)

    Goldmann, Kezia; Schröter, Kristina; Pena, Rodica; Schöning, Ingo; Schrumpf, Marion; Buscot, François; Polle, Andrea; Wubet, Tesfaye

    2016-08-01

    Distance decay, the general reduction in similarity of community composition with increasing geographical distance, is known as predictor of spatial variation and distribution patterns of organisms. However, changes in fungal communities along environmental gradients are little known. Here we show that distance decays of soil-inhabiting and root-associated fungal assemblages differ, and identify explanatory environmental variables. High-throughput sequencing analysis of fungal communities of beech-dominated forests at three study sites across Germany shows that root-associated fungi are recruited from the soil fungal community. However, distance decay is substantially weaker in the root-associated than in the soil community. Variance partitioning of factors contributing to the observed distance decay patterns support the hypothesis that host trees stabilize the composition of root-associated fungi communities, relative to soil communities. Thus, they not only have selective impacts on associated communities, but also buffer effects of changes in microclimatic and environmental variables that directly influence fungal community composition.

  20. Investigation of the fungal community structures of imported wheat using high-throughput sequencing technology

    PubMed Central

    Wang, Ying; Zhang, Guiming; Gao, Ruifang; Xiang, Caiyu; Feng, Jianjun; Lou, Dingfeng; Liu, Ying

    2017-01-01

    This study introduced the application of high-throughput sequencing techniques to the investigation of microbial diversity in the field of plant quarantine. It examined the microbial diversity of wheat imported into China, and established a bioinformatics database of wheat pathogens based on high-throughput sequencing results. This study analyzed the nuclear ribosomal internal transcribed spacer (ITS) region of fungi through Illumina Miseq sequencing to investigate the fungal communities of both seeds and sieve-through. A total of 758,129 fungal ITS sequences were obtained from ten samples collected from five batches of wheat imported from the USA. These sequences were classified into 2 different phyla, 15 classes, 33 orders, 41 families, or 78 genera, suggesting a high fungal diversity across samples. Apairwise analysis revealed that the diversity of the fungal community in the sieve-through is significantly higher than those in the seeds. Taxonomic analysis showed that at the class level, Dothideomycetes dominated in the seeds and Sordariomycetes dominated in the sieve-through. In all, this study revealed the fungal community composition in the seeds and sieve-through of the wheat, and identified key differences in the fungal community between the seeds and sieve-through. PMID:28241020

  1. Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest.

    PubMed

    Corrales, Adriana; Arnold, A Elizabeth; Ferrer, Astrid; Turner, Benjamin L; Dalling, James W

    2016-01-01

    Neotropical montane forests are often dominated by ectomycorrhizal (EM) tree species, yet the diversity of their EM fungal communities remains poorly explored. In lower montane forests in western Panama, the EM tree species Oreomunnea mexicana (Juglandaceae) forms locally dense populations in forest otherwise characterized by trees that form arbuscular mycorrhizal (AM) associations. The objective of this study was to compare the composition of EM fungal communities associated with Oreomunnea adults, saplings, and seedlings across sites differing in soil fertility and the amount and seasonality of rainfall. Analysis of fungal nrITS DNA (nuclear ribosomal internal transcribed spacers) revealed 115 EM fungi taxa from 234 EM root tips collected from adults, saplings, and seedlings in four sites. EM fungal communities were equally species-rich and diverse across Oreomunnea developmental stages and sites, regardless of soil conditions or rainfall patterns. However, ordination analysis revealed high compositional turnover between low and high fertility/rainfall sites located ca. 6 km apart. The EM fungal community was dominated by Russula (ca. 36 taxa). Cortinarius, represented by 14 species and previously reported to extract nitrogen from organic sources under low nitrogen availability, was found only in low fertility/high rainfall sites. Phylogenetic diversity analyses of Russula revealed greater evolutionary distance among taxa found on sites with contrasting fertility and rainfall than was expected by chance, suggesting that environmental differences among sites may be important in structuring EM fungal communities. More research is needed to evaluate whether EM fungal taxa associated with Oreomunnea form mycorrhizal networks that might account for local dominance of this tree species in otherwise diverse forest communities.

  2. Response of fungal, bacterial and ureolytic communities to synthetic sheep urine deposition in a grassland soil.

    PubMed

    Singh, Brajesh K; Nunan, Naoise; Millard, Peter

    2009-10-01

    In grazed pastures, soil pH is raised in urine patches, causing dissolution of organic carbon and increased ammonium and nitrate concentrations, with potential effects on the structure and functioning of soil microbial communities. Here we examined the effects of synthetic sheep urine (SU) in a field study on dominant soil bacterial and fungal communities associated with bulk soil and plant roots (rhizoplane), using culture-independent methods and a new approach to investigate the ureolytic community. A differential response of bacteria and fungal communities to SU treatment was observed. The bacterial community showed a clear shift in composition after SU treatment, which was more pronounced in bulk soil than on the rhizoplane. The fungal community did not respond to SU treatment; instead, it was more affected by the time of sampling. Redundancy analysis of data indicated that the variation in the bacterial community was related to change in soil pH, while fungal community was more responsive to dissolution of organic carbon. Like the universal bacterial community, the ureolytic community was influenced by the SU treatment. However, different taxa within the ureolytic bacterial community responded differentially to the treatment. The ureolytic community comprised of members from a range of phylogenetically different taxa and could be used to measure the effect of environmental perturbations on the functional diversity of natural ecosystems.

  3. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil.

    PubMed

    Santalahti, Minna; Sun, Hui; Jumpponen, Ari; Pennanen, Taina; Heinonsalo, Jussi

    2016-11-01

    Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow. Boreal forest soil generally harbored diverse fungal communities across soil horizons. The communities shifted drastically and rapidly over time. In late winter, saprotrophs dominated the community and were replaced by ectomycorrhizal fungi during the growing season. Our studies are among the first to dissect the spatial and temporal dynamics in boreal forest ecosystems and highlights the ecological importance of vertically distinct communities and their rapid seasonal dynamics. As climate change is predicted to result in warmer and longer snow-free winter seasons, as well as increase the rooting depth of trees in boreal forest, the seasonal and vertical distribution of fungal communities may change. These changes are likely to affect the organic matter decomposition by the soil-inhabiting fungi and thus alter organic C pools.

  4. Analysis of bacterial and fungal communities in Marcha and Thiat, traditionally prepared amylolytic starters of India.

    PubMed

    Sha, Shankar Prasad; Jani, Kunal; Sharma, Avinash; Anupma, Anu; Pradhan, Pooja; Shouche, Yogesh; Tamang, Jyoti Prakash

    2017-09-08

    Marcha and thiat are traditionally prepared amylolytic starters use for production of various ethnic alcoholic beverages in Sikkim and Meghalaya states in India. In the present study we have tried to investigate the bacterial and fungal community composition of marcha and thiat by using high throughput sequencing. Characterization of bacterial community depicts phylum Proteobacteria is the most dominant in both marcha (91.4%) and thiat (53.8%), followed by Firmicutes, and Actinobacteria. Estimates of fungal community composition showed Ascomycota as the dominant phylum. Presence of Zygomycota in marcha distinguishes it from the thiat. The results of NGS analysis revealed dominance of yeasts in marcha whereas molds out numbers in case of thiat. This is the first report on microbial communities of traditionally prepared amylolytic starters of India using high throughput sequencing.

  5. Initial fungal colonizer affects mass loss and fungal community development in Picea abies logs 6 yr after inoculation

    Treesearch

    Daniel L. Lindner; Rimvydas Vasaitis; Ariana Kubartova; Johan Allmer; Hanna Johannesson; Mark T. Banik; Jan. Stenlid

    2011-01-01

    Picea abies logs were inoculated with Resinicium bicolor, Fomitopsis pinicola or left un-inoculated and placed in an old-growth boreal forest. Mass loss and fungal community data were collected after 6 yr to test whether simplification of the fungal community via inoculation affects mass loss and fungal community development. Three...

  6. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China.

    PubMed

    Wang, Shao-Kun; Zuo, Xiao-An; Zhao, Xue-Yong; Li, Yu-Qiang; Zhou, Xin; Lv, Peng; Luo, Yong-Qing; Yun, Jian-Ying

    2016-01-01

    Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.

  7. Fungicide Effects on Fungal Community Composition in the Wheat Phyllosphere

    PubMed Central

    Karlsson, Ida; Friberg, Hanna; Steinberg, Christian; Persson, Paula

    2014-01-01

    The fungicides used to control diseases in cereal production can have adverse effects on non-target fungi, with possible consequences for plant health and productivity. This study examined fungicide effects on fungal communities on winter wheat leaves in two areas of Sweden. High-throughput 454 sequencing of the fungal ITS2 region yielded 235 operational taxonomic units (OTUs) at the species level from the 18 fields studied. It was found that commonly used fungicides had moderate but significant effect on fungal community composition in the wheat phyllosphere. The relative abundance of several saprotrophs was altered by fungicide use, while the effect on common wheat pathogens was mixed. The fungal community on wheat leaves consisted mainly of basidiomycete yeasts, saprotrophic ascomycetes and plant pathogens. A core set of six fungal OTUs representing saprotrophic species was identified. These were present across all fields, although overall the difference in OTU richness was large between the two areas studied. PMID:25369054

  8. Substantial compositional turnover of fungal communities in an alpine ridge-to-snowbed gradient.

    PubMed

    Yao, Fang; Vik, Unni; Brysting, Anne K; Carlsen, Tor; Halvorsen, Rune; Kauserud, Håvard

    2013-10-01

    The main gradient in vascular plant, bryophyte and lichen species composition in alpine areas, structured by the topographic gradient from wind-exposed ridges to snowbeds, has been extensively studied. Tolerance to environmental stress, resulting from wind abrasion and desiccation towards windswept ridges or reduced growing season due to prolonged snow cover towards snowbeds, is an important ecological mechanism in this gradient. The extent to which belowground fungal communities are structured by the same topographic gradient and the eventual mechanisms involved are less well known. In this study, we analysed variation in fungal diversity and community composition associated with roots of the ectomycorrhizal plant Bistorta vivipara along the ridge-to-snowbed gradient. We collected root samples from fifty B. vivipara plants in ten plots in an alpine area in central Norway. The fungal communities were analysed using 454 pyrosequencing analyses of tag-encoded ITS1 amplicons. A distinct gradient in the fungal community composition was found that coincided with variation from ridge to snowbeds. This gradient was paralleled by change in soil content of carbon, nitrogen and phosphorus. A large proportion (66%) of the detected 801 nonsingleton operational taxonomic units (OTUs) were ascomycetes, while basidiomycetes dominated quantitatively (i.e. with respect to number of reads). Numerous fungal OTUs, many with taxonomic affinity to Sebacinales, Cortinarius and Meliniomyces, showed distinct affinities either to ridge or to snowbed plots, indicating habitat specialization. The compositional turnover of fungal communities along the gradient was not paralleled by a gradient in species richness.

  9. Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil.

    PubMed

    Zhang, Kaoping; Adams, Jonathan M; Shi, Yu; Yang, Teng; Sun, Ruibo; He, Dan; Ni, Yingying; Chu, Haiyan

    2017-09-01

    Rhizospheric fungi play major roles in both natural and agricultural ecosystems. However, little is known about the determinants of their diversity and biogeographic patterns. Here, we compared fungal communities in rhizosphere and bulk soils of wheat fields in the North China Plain. The rhizosphere had a lower fungal diversity (observed OTUs and Chao1) than bulk soil, and a distinct fungal community structure in rhizosphere compared with bulk soil. The relative importance of environmental factors and geographic distance for fungal distribution differed between rhizosphere and bulk soil. Environmental factors were the primary cause of variations in total fungal community and major fungal phyla in bulk soil. By contrast, fungal communities in soils loosely attached to roots were predictable from both environmental factors and influences of geographic distance. Communities in soils tightly attached to roots were mainly determined by geographic distance. Our results suggest that both contemporary environment processes (present-day abiotic and biotic environment characters) and historical processes (spatial isolation, dispersal limitation occurred in the past) dominate variations of fungal communities in wheat fields, but their relative importance of all these processes depends on the proximity of fungal community to the plant roots. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Fungal and bacterial community succession differs for three wood types during decay in a forest soil.

    PubMed

    Prewitt, Lynn; Kang, Youngmin; Kakumanu, Madhavi L; Williams, Mark

    2014-08-01

    Wood decomposition by soil microorganisms is vital to carbon and nutrient cycles of forested ecosystems. Different wood types decompose at different rates; however, it is not known if there are differences in microbial community succession associated with the decay of different wood types. In this study, the microbial community associated with the decay of pine (decay-susceptible wood), western red cedar (decay resistant) and ACQ-treated pine (Ammoniacal Copper Quaternary, preservative-treated pine for decay resistance) in forest soil was characterized using DNA sequencing, phospholipid fatty acid (PLFA) analysis, and microbial activity over a 26-month period. Bray-Curtis ordination using an internal transcribed spacer (ITS) sequence and PLFA data indicated that fungal communities changed during succession and that wood type altered the pattern of succession. Nondecay fungi decreased over the 26 months of succession; however, by 18 months of decay, there was a major shift in the fungal communities. By this time, Trametes elegans dominated cedar and Phlebia radiata dominated pine and ACQ-treated pine. The description of PLFA associated with ACQ-treated pine resembled cedar more than pine; however, both PLFA and ITS descriptions indicated that fungal communities associated with ACQ-treated pine were less dynamic, perhaps a result of the inhibition by the ACQ preservative, compared with pine and cedar. Overall, fungal community composition and succession were associated with wood type. Further research into the differences in community composition will help to discern their functional importance to wood decay.

  11. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland.

    PubMed

    Sohlberg, Elina; Bomberg, Malin; Miettinen, Hanna; Nyyssönen, Mari; Salavirta, Heikki; Vikman, Minna; Itävaara, Merja

    2015-01-01

    The diversity and functional role of fungi, one of the ecologically most important groups of eukaryotic microorganisms, remains largely unknown in deep biosphere environments. In this study we investigated fungal communities in packer-isolated bedrock fractures in Olkiluoto, Finland at depths ranging from 296 to 798 m below surface level. DNA- and cDNA-based high-throughput amplicon sequencing analysis of the fungal internal transcribed spacer (ITS) gene markers was used to examine the total fungal diversity and to identify the active members in deep fracture zones at different depths. Results showed that fungi were present in fracture zones at all depths and fungal diversity was higher than expected. Most of the observed fungal sequences belonged to the phylum Ascomycota. Phyla Basidiomycota and Chytridiomycota were only represented as a minor part of the fungal community. Dominating fungal classes in the deep bedrock aquifers were Sordariomycetes, Eurotiomycetes, and Dothideomycetes from the Ascomycota phylum and classes Microbotryomycetes and Tremellomycetes from the Basidiomycota phylum, which are the most frequently detected fungal taxa reported also from deep sea environments. In addition some fungal sequences represented potentially novel fungal species. Active fungi were detected in most of the fracture zones, which proves that fungi are able to maintain cellular activity in these oligotrophic conditions. Possible roles of fungi and their origin in deep bedrock groundwater can only be speculated in the light of current knowledge but some species may be specifically adapted to deep subsurface environment and may play important roles in the utilization and recycling of nutrients and thus sustaining the deep subsurface microbial community.

  12. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland

    PubMed Central

    Sohlberg, Elina; Bomberg, Malin; Miettinen, Hanna; Nyyssönen, Mari; Salavirta, Heikki; Vikman, Minna; Itävaara, Merja

    2015-01-01

    The diversity and functional role of fungi, one of the ecologically most important groups of eukaryotic microorganisms, remains largely unknown in deep biosphere environments. In this study we investigated fungal communities in packer-isolated bedrock fractures in Olkiluoto, Finland at depths ranging from 296 to 798 m below surface level. DNA- and cDNA-based high-throughput amplicon sequencing analysis of the fungal internal transcribed spacer (ITS) gene markers was used to examine the total fungal diversity and to identify the active members in deep fracture zones at different depths. Results showed that fungi were present in fracture zones at all depths and fungal diversity was higher than expected. Most of the observed fungal sequences belonged to the phylum Ascomycota. Phyla Basidiomycota and Chytridiomycota were only represented as a minor part of the fungal community. Dominating fungal classes in the deep bedrock aquifers were Sordariomycetes, Eurotiomycetes, and Dothideomycetes from the Ascomycota phylum and classes Microbotryomycetes and Tremellomycetes from the Basidiomycota phylum, which are the most frequently detected fungal taxa reported also from deep sea environments. In addition some fungal sequences represented potentially novel fungal species. Active fungi were detected in most of the fracture zones, which proves that fungi are able to maintain cellular activity in these oligotrophic conditions. Possible roles of fungi and their origin in deep bedrock groundwater can only be speculated in the light of current knowledge but some species may be specifically adapted to deep subsurface environment and may play important roles in the utilization and recycling of nutrients and thus sustaining the deep subsurface microbial community. PMID:26106376

  13. Changes in fungal communities along a boreal forest soil fertility gradient.

    PubMed

    Sterkenburg, Erica; Bahr, Adam; Brandström Durling, Mikael; Clemmensen, Karina E; Lindahl, Björn D

    2015-09-01

    Boreal forests harbour diverse fungal communities with decisive roles in decomposition and plant nutrition. Although changes in boreal plant communities along gradients in soil acidity and nitrogen (N) availability are well described, less is known about how fungal taxonomic and functional groups respond to soil fertility factors. We analysed fungal communities in humus and litter from 25 Swedish old-growth forests, ranging from N-rich Picea abies stands to acidic and N-poor Pinus sylvestris stands. 454-pyrosequencing of ITS2 amplicons was used to analyse community composition, and biomass was estimated by ergosterol analysis. Fungal community composition was significantly related to soil fertility at the levels of species, genera/orders and functional groups. Ascomycetes dominated in less fertile forests, whereas basidiomycetes increased in abundance in more fertile forests, both in litter and humus. The relative abundance of mycorrhizal fungi in the humus layer remained high even in the most fertile soils. Tolerance to acidity and nitrogen deficiency seems to be of greater importance than plant carbon (C) allocation patterns in determining responses of fungal communities to soil fertility, in old-growth boreal forests.

  14. Fungal Community Shifts in Structure and Function across a Boreal Forest Fire Chronosequence.

    PubMed

    Sun, Hui; Santalahti, Minna; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank; Raffaello, Tommaso; Jumpponen, Ari; Asiegbu, Fred O; Heinonsalo, Jussi

    2015-11-01

    Forest fires are a common natural disturbance in forested ecosystems and have a large impact on the microbial communities in forest soils. The response of soil fungal communities to forest fire is poorly documented. Here, we investigated fungal community structure and function across a 152-year boreal forest fire chronosequence using high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region and a functional gene array (GeoChip). Our results demonstrate that the boreal forest soil fungal community was most diverse soon after a fire disturbance and declined over time. The differences in the fungal communities were explained by changes in the abundance of basidiomycetes and ascomycetes. Ectomycorrhizal (ECM) fungi contributed to the increase in basidiomycete abundance over time, with the operational taxonomic units (OTUs) representing the genera Cortinarius and Piloderma dominating in abundance. Hierarchical cluster analysis by using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting differences in the potential to maintain essential biogeochemical soil processes. The site with the greatest biological diversity had also the most diverse genes. The genes involved in organic matter degradation in the mature forest, in which ECM fungi were the most abundant, were as common in the youngest site, in which saprotrophic fungi had a relatively higher abundance. This study provides insight into the impact of fire disturbance on soil fungal community dynamics.

  15. Fungal Community Shifts in Structure and Function across a Boreal Forest Fire Chronosequence

    PubMed Central

    Santalahti, Minna; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank; Raffaello, Tommaso; Jumpponen, Ari; Asiegbu, Fred O.; Heinonsalo, Jussi

    2015-01-01

    Forest fires are a common natural disturbance in forested ecosystems and have a large impact on the microbial communities in forest soils. The response of soil fungal communities to forest fire is poorly documented. Here, we investigated fungal community structure and function across a 152-year boreal forest fire chronosequence using high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region and a functional gene array (GeoChip). Our results demonstrate that the boreal forest soil fungal community was most diverse soon after a fire disturbance and declined over time. The differences in the fungal communities were explained by changes in the abundance of basidiomycetes and ascomycetes. Ectomycorrhizal (ECM) fungi contributed to the increase in basidiomycete abundance over time, with the operational taxonomic units (OTUs) representing the genera Cortinarius and Piloderma dominating in abundance. Hierarchical cluster analysis by using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting differences in the potential to maintain essential biogeochemical soil processes. The site with the greatest biological diversity had also the most diverse genes. The genes involved in organic matter degradation in the mature forest, in which ECM fungi were the most abundant, were as common in the youngest site, in which saprotrophic fungi had a relatively higher abundance. This study provides insight into the impact of fire disturbance on soil fungal community dynamics. PMID:26341215

  16. Reintroduction of locally extinct vertebrates impacts arid soil fungal communities.

    PubMed

    Clarke, Laurence J; Weyrich, Laura S; Cooper, Alan

    2015-06-01

    Introduced species have contributed to extinction of native vertebrates in many parts of the world. Changes to vertebrate assemblages are also likely to alter microbial communities through coextinction of some taxa and the introduction of others. Many attempts to restore degraded habitats involve removal of exotic vertebrates (livestock and feral animals) and reintroduction of locally extinct species, but the impact of such reintroductions on microbial communities is largely unknown. We used high-throughput DNA sequencing of the fungal internal transcribed spacer I (ITS1) region to examine whether replacing exotic vertebrates with reintroduced native vertebrates led to changes in soil fungal communities at a reserve in arid central Australia. Soil fungal diversity was significantly different between dune and swale (interdune) habitats. Fungal communities also differed significantly between sites with exotic or reintroduced native vertebrates after controlling for the effect of habitat. Several fungal operational taxonomic units (OTUs) found exclusively inside the reserve were present in scats from reintroduced native vertebrates, providing a direct link between the vertebrate assemblage and soil microbial communities. Our results show that changes to vertebrate assemblages through local extinctions and the invasion of exotic species can alter soil fungal communities. If local extinction of one or several species results in the coextinction of microbial taxa, the full complement of ecological interactions may never be restored. © 2015 John Wiley & Sons Ltd.

  17. Fungal community dynamics and driving factors during agricultural waste composting.

    PubMed

    Yu, Man; Zhang, Jiachao; Xu, Yuxin; Xiao, Hua; An, Wenhao; Xi, Hui; Xue, Zhiyong; Huang, Hongli; Chen, Xiaoyang; Shen, Alin

    2015-12-01

    This study was conducted to identify the driving factors behind fungal community dynamics during agricultural waste composting. Fungal community abundance and structure were determined by quantitative PCR and denaturing gradient gel electrophoresis analysis combined with DNA sequencing. The effects of physico-chemical parameters on fungal community abundance and structure were evaluated by least significant difference tests and redundancy analysis. The results showed that Cladosporium bruhnei, Hanseniaspora uvarum, Scytalidium thermophilum, Tilletiopsis penniseti, and Coprinopsis altramentaria were prominent during the composting process. The greatest variation in the distribution of fungal community structure was statistically explained by pile temperature and total organic carbon (TOC) (P < 0.05). A significant amount of the variation (74.6 %) was explained by these two parameters alone. Fungal community abundance was found to be significantly related to pH, while pH was significantly influenced by pile temperature and nitrate levels (P < 0.05), and these parameters were found to be the most likely to influence or be influenced by the fungal community during composting.

  18. Amplicon-pyrosequencing-based detection of compositional shifts in bryophyte-associated fungal communities along an elevation gradient.

    PubMed

    Davey, Marie L; Heegaard, Einar; Halvorsen, Rune; Kauserud, Håvard; Ohlson, Mikael

    2013-01-01

    Although bryophytes are a dominant vegetation component of boreal and alpine ecosystems, little is known about their associated fungal communities. HPLC assays of ergosterol (fungal biomass) and amplicon pyrosequencing of the ITS2 region of rDNA were used to investigate how the fungal communities associated with four bryophyte species changed across an elevational gradient transitioning from conifer forest to the low-alpine. Fungal biomass and OTU richness associated with the four moss hosts did not vary significantly across the gradient (P > 0.05), and both were more strongly affected by host and tissue type. Despite largely constant levels of fungal biomass, distinct shifts in community composition of fungi associated with Hylocomium, Pleurozium and Polytrichum occurred between the elevation zones of the gradient. This likely is a result of influence on fungal communities by major environmental factors such as temperature, directly or indirectly mediated by, or interacting with, the response of other components of the vegetation (i.e. the dominant trees). Fungal communities associated with Dicranum were an exception, exhibiting spatial autocorrelation between plots, and no significant structuring by elevation. Nevertheless, the detection of distinct fungal assemblages associated with a single host growing in different elevation zones along an elevational gradient is of particular relevance in the light of the ongoing changes in vegetation patterns in boreal and alpine systems due to global climate warming.

  19. Fungal communities in soils along a vegetative ecotone.

    PubMed

    Karst, Justine; Piculell, Bridget; Brigham, Christy; Booth, Michael; Hoeksema, Jason D

    2013-01-01

    We investigated the community composition and diversity of soil fungi along a sharp vegetative ecotone between coastal sage scrub (CSS) and nonnative annual grassland habitat at two sites in coastal California. USA- We pooled soil samples across 29 m transects on either side of the ecotone at each of the two sites, and. using clone libraries of fungal ribosomal DNA, we identified 280 operational taxonomic units (OTUs) from a total 40 g soil. We combined information from partial LSU and ITS sequences and found that the majority of OTUs belonged to the phylum Ascomycota, followed by Basidiomycota. Within the Ascomycota. a quarter of OTUs were Sordariomycetes. 17% were Leotiomycet.es, 16% were Dothideomycetes and the remaining OTUs were distributed among the classes Eurotiomycetes, Pezizomycetes, Lecanoromycetes, Orbiliomycetes and Arthoniomycetes. Within the Basidiomycota. all OTUs but one belonged to the subphylum Agaricomycotina. We also sampled plant communities at the same sites to offer a point of comparison for patterns in richness of fungal communities. Fungal communities had higher alpha and beta diversity than plant communities; fungal communities were approximately 20 times as rich as plant communities and the majority of OTUs were found in single soil samples. Soils harbored a unique mycoflora that did not reveal vegetative boundaries or site differences. High alpha and beta diversity and possible sampling artifacts necessitate extensive sampling to reveal differentiation in these fungal communities.

  20. Dynamics of growth and succession of bacterial and fungal communities during composting of feather waste.

    PubMed

    Korniłłowicz-Kowalska, Teresa; Bohacz, Justyna

    2010-02-01

    Succession of communities of different bacteria and fungi, mainly proteolytic and keratinolytic ones, was observed during composting of chicken feathers with pine bark (FB) and with pine bark/rye straw (FBS). The succession was dominated by fungal than bacterial communities. Bacteria, including Actinomycetes, grew intensively during the first 2-4 weeks of composting and included mainly proteolytic, rarely cellulolytic, populations; afterwards, bacteria were gradually replaced by fungi. Meso- and thermophilic ubiquitous fungi, including cellulolytic ones, appeared among fungal representatives as the first, while keratinolytic strains were detected in the compost biomass at the 6th week of the process. The development of strains within the second fungal group was significantly more intensive than that of cellulolytic populations. The intensity of growth of particular ecological-physiological communities was found to be dependent on chemical content and C/N ratio of biomass and was the strongest in C/N=25 composts.

  1. Spatiotemporal dynamics and correlation networks of bacterial and fungal communities in a membrane bioreactor.

    PubMed

    Jeong, So-Yeon; Yi, Taewoo; Lee, Chung-Hak; Kim, Tae Gwan

    2016-11-15

    To systematically study biofilm communities responsible for biofouling in membrane bioreactors (MBRs), we characterized the spatiotemporal dynamics of bacterial and fungal biofilm communities, and their networks, in a pilot-scale flat-sheet MBR treating actual municipal wastewater. Activated sludge (AS) and membrane samples were collected on days 4 and 8. The membranes were cut into 18 tiles, and bacterial and fungal communities were analyzed using next generation sequencing. Nonmetric multidimensional scaling (NMDS) plots revealed significant temporal variations in bacterial and fungal biofilm communities due to changes in the abundances of a few dominant members. Although the experimental conditions and inoculum species pools remained constant, variogram plots of bacterial and fungal communities revealed decay in local community similarity with geographic distance at each sampling time. Variogram modeling (exponential rise to maximum, R(2) ≥ 0.79) revealed that decay patterns of both communities were different between days 4 and 8. In addition, networks of bacteria or fungi alone were distinct in network composition between days 4 and 8. The day-8 networks were more compact and clustered than those of the earlier time point. Bacteria-fungi networks show that the number of inter-domain associations decreased from 113 to 40 with time, confirming that membrane biofilm is a complex consortium of bacteria and fungi. Spatiotemporal succession in biofilm communities may be common on MBR membranes, resulting from different geographic distributions of initial microbial populations and their priority effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency.

    PubMed

    Cho, Hyunjun; Kim, Mincheol; Tripathi, Binu; Adams, Jonathan

    2017-07-01

    Although disturbance is thought to be important in many ecological processes, responses of fungal communities to soil disturbance have been little studied experimentally. We subjected a soil microcosm to physical disturbance, at a range of frequencies designed to simulate ecological disturbance events. We analyzed the fungal community structure using Illumina HiSeq sequencing of the ITS1 region. Fungal diversity was found to decline with the increasing disturbance frequencies, with no sign of the "humpback" pattern found in many studies of larger sedentary organisms. There is thus no evidence of an effect of release from competition resulting from moderate disturbance-which suggests that competition and niche overlap may not be important in limiting soil fungal diversity. Changing disturbance frequency also led to consistent differences in community composition. There were clear differences in OTU-level composition, with different disturbance treatments each having distinct fungal communities. The functional profile of fungal groups (guilds) was changed by the level of disturbance frequency. These predictable differences in community composition suggest that soil fungi can possess different niches in relation to disturbance frequency, or time since last disturbance. Fungi appear to be most abundant relative to bacteria at intermediate disturbance frequencies, on the time scale we studied here.

  3. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    PubMed

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest. © 2015 John Wiley & Sons Ltd.

  4. Ascomycete fungal communities associated with early decaying leaves of Spartina spp. from central California estuaries.

    PubMed

    Lyons, Justine I; Alber, Merryl; Hollibaugh, James T

    2010-02-01

    Ascomycetous fungi play an important role in the early stages of decomposition of Spartina alterniflora, but their role in the decomposition of other Spartina species has not been investigated. Here we use fingerprint (terminal restriction fragment length polymorphism) and phylogenetic analyses of the 18S to 28S internal transcribed spacer region to compare the composition of the ascomycete fungal communities on early decay blades of Spartina species (Spartina alterniflora, Spartina densiflora, Spartina foliosa, and a hybrid (S. alterniflora x S. foliosa)) collected from three salt marshes in San Francisco Bay and one in Tomales Bay, California, USA. Phaeosphaeria spartinicola was found on all samples collected and was often dominant. Two other ascomycetes, Phaeosphaeria halima and Mycosphaerella sp. strain 2, were also common. These three species are the same ascomycetes previously identified as the dominant fungal decomposers on S. alterniflora on the east coast. Ascomycetes appeared to exhibit varying degrees of host specificity, demonstrated by grouping patterns on phylogenetic trees. Neither the exotic S. alterniflora nor the hybrid supported fungal flora different from that of the native S. foliosa. However, S. densiflora had a significantly different fungal community than the other species, and hosted at least two unique ascomycetes. Significant differences in the fungal decomposer communities were also detected within species (two clones of S. foliosa), but these were minor and may be due to morphological differences among the plants.

  5. Ectomycorrhizal fungal communities of pedunculate and sessile oak seedlings from bare-root forest nurseries.

    PubMed

    Leski, Tomasz; Pietras, Marcin; Rudawska, Maria

    2010-03-01

    In this study, we present the detailed molecular investigation of the ectomycorrhizal (ECM) community of Quercus petraea and Quercus robur seedlings grown in bare-root forest nurseries. In all tested oak samples, mycorrhizal colonization was nearly 100%. Morphological observation and molecular investigations (sequencing of fungal ITS rDNA) revealed a total of 23 mycorrhizal taxa. The most frequent and abundant fungal taxa were Hebeloma sacchariolens, Tuber sp., and Peziza sp.; from the detected fungal taxa, 20 were noted for Q. petraea and 23 for Q. robur. Depending on the nursery, the species richness of identified ECM fungal taxa for both oak species ranged from six to 11 taxa. The mean species richness for all nurseries was 5.36 and 5.82 taxa per Q. petraea and Q. robur sample, respectively. According to the analysis of similarity, ECM fungal communities were similar for Q. petraea and Q. robur (R = 0.019; p = 0.151). On the other hand, detected fungal communities were significantly different between nurseries (R = 0.927; p < 0.0001). Using the Spearman rank correlation, it was determined that the ectomycorrhizal diversity (in terms of richness, the Shannon diversity, evenness, and Simpson dominance indices) is significantly related to the soil parameters of each nursery. We conclude that individual nursery may be considered as separate ecological niches that strongly discriminate diversity of ECM fungi.

  6. Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data.

    PubMed

    Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F; Glöckner, Frank Oliver; Reich, Marlis

    2015-01-01

    Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of

  7. Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data

    PubMed Central

    Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F.; Glöckner, Frank Oliver; Reich, Marlis

    2015-01-01

    Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of

  8. Diverse honeydew-consuming fungal communities associated with scale insects.

    PubMed

    Dhami, Manpreet K; Weir, Bevan S; Taylor, Michael W; Beggs, Jacqueline R

    2013-01-01

    Sooty mould fungi are ubiquitous, abundant consumers of insect-honeydew that have been little-studied. They form a complex of unrelated fungi that coexist and compete for honeydew, which is a chemically complex resource. In this study, we used scanning electron microscopy in combination with T-RFLP community profiling and ITS-based tag-pyrosequencing to extensively describe the sooty mould community associated with the honeydews of two ecologically important New Zealand coelostomidiid scale insects, Coelostomidia wairoensis and Ultracoelostoma brittini. We tested the influence of host plant on the community composition of associated sooty moulds, and undertook limited analyses to examine the influence of scale insect species and geographic location. We report here a previously unknown degree of fungal diversity present in this complex, with pyrosequencing detecting on average 243 operational taxonomic units across the different sooty mould samples. In contrast, T-RFLP detected only a total of 24 different "species" (unique peaks). Nevertheless, both techniques identified similar patterns of diversity suggesting that either method is appropriate for community profiling. The composition of the microbial community associated with individual scale insect species varied although the differences may in part reflect variation in host preference and site. Scanning electron microscopy visualised an intertwined mass of fungal hyphae and fruiting bodies in near-intact physical condition, but was unable to distinguish between the different fungal communities on a morphological level, highlighting the need for molecular research. The substantial diversity revealed for the first time by pyrosequencing and our inability to identify two-thirds of the diversity to further than the fungal division highlights the significant gap in our knowledge of these fungal groups. This study provides a first extensive look at the community diversity of the fungal community closely associated

  9. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics.

    PubMed

    Gomes, Newton C Marcial; Fagbola, Olajire; Costa, Rodrigo; Rumjanek, Norma Gouvea; Buchner, Arno; Mendona-Hagler, Leda; Smalla, Kornelia

    2003-07-01

    The fungal population dynamics in soil and in the rhizospheres of two maize cultivars grown in tropical soils were studied by a cultivation-independent analysis of directly extracted DNA to provide baseline data. Soil and rhizosphere samples were taken from six plots 20, 40, and 90 days after planting in two consecutive years. A 1.65-kb fragment of the 18S ribosomal DNA (rDNA) amplified from the total community DNA was analyzed by denaturing gradient gel electrophoresis (DGGE) and by cloning and sequencing. A rhizosphere effect was observed for fungal populations at all stages of plant development. In addition, pronounced changes in the composition of fungal communities during plant growth development were found by DGGE. Similar types of fingerprints were observed in two consecutive growth periods. No major differences were detected in the fungal patterns of the two cultivars. Direct cloning of 18S rDNA fragments amplified from soil or rhizosphere DNA resulted in 75 clones matching 12 dominant DGGE bands. The clones were characterized by their HinfI restriction patterns, and 39 different clones representing each group of restriction patterns were sequenced. The cloning and sequencing approach provided information on the phylogeny of dominant amplifiable fungal populations and allowed us to determine a number of fungal phylotypes that contribute to each of the dominant DGGE bands. Based on the sequence similarity of the 18S rDNA fragment with existing fungal isolates in the database, it was shown that the rhizospheres of young maize plants seemed to select the Ascomycetes order Pleosporales, while different members of the Ascomycetes and basidiomycetic yeast were detected in the rhizospheres of senescent maize plants.

  10. Dynamics of Fungal Communities in Bulk and Maize Rhizosphere Soil in the Tropics

    PubMed Central

    Gomes, Newton C. Marcial; Fagbola, Olajire; Costa, Rodrigo; Rumjanek, Norma Gouvea; Buchner, Arno; Mendona-Hagler, Leda; Smalla, Kornelia

    2003-01-01

    The fungal population dynamics in soil and in the rhizospheres of two maize cultivars grown in tropical soils were studied by a cultivation-independent analysis of directly extracted DNA to provide baseline data. Soil and rhizosphere samples were taken from six plots 20, 40, and 90 days after planting in two consecutive years. A 1.65-kb fragment of the 18S ribosomal DNA (rDNA) amplified from the total community DNA was analyzed by denaturing gradient gel electrophoresis (DGGE) and by cloning and sequencing. A rhizosphere effect was observed for fungal populations at all stages of plant development. In addition, pronounced changes in the composition of fungal communities during plant growth development were found by DGGE. Similar types of fingerprints were observed in two consecutive growth periods. No major differences were detected in the fungal patterns of the two cultivars. Direct cloning of 18S rDNA fragments amplified from soil or rhizosphere DNA resulted in 75 clones matching 12 dominant DGGE bands. The clones were characterized by their HinfI restriction patterns, and 39 different clones representing each group of restriction patterns were sequenced. The cloning and sequencing approach provided information on the phylogeny of dominant amplifiable fungal populations and allowed us to determine a number of fungal phylotypes that contribute to each of the dominant DGGE bands. Based on the sequence similarity of the 18S rDNA fragment with existing fungal isolates in the database, it was shown that the rhizospheres of young maize plants seemed to select the Ascomycetes order Pleosporales, while different members of the Ascomycetes and basidiomycetic yeast were detected in the rhizospheres of senescent maize plants. PMID:12839741

  11. Ectomycorrhizal fungal communities in two North American oak forests respond to nitrogen addition.

    PubMed

    Avis, P G; Mueller, G M; Lussenhop, J

    2008-07-01

    How nitrogen (N) deposition impacts ectomycorrhizal (EM) fungal communities has been little studied in deciduous forests or across spatial scales. Here, it was tested whether N addition decreases species richness and shifts species composition across spatial scales in temperate deciduous oak forests. Combined molecular (terminal restriction fragment length polymorphism (T-RFLP), sequencing) and morphological approaches were used to measure EM fungal operational taxon unit (OTU) richness, community structure and composition at the spatial scale of the root, soil core and forest during a 3-yr N fertilization experiment in Quercus-dominated forests near Chicago, IL, USA. In N treatments, significantly lower OTU richness at the largest but not smaller spatial scales and a different community structure were detected. The effects of N appeared to be immediate, not cumulative. Ordination indicated the composition of EM fungal communities was determined by forest site and N fertilization. The EM fungi responded to a N increase that was low compared with other fertilization studies, suggesting that moderate increases in N deposition can affect EM fungal communities at larger spatial scales in temperate deciduous ecosystems. While responses at large spatial scales indicate that environmental factors can drive changes in these communities, untangling the impacts of abiotic from biotic factors remain limited by detection issues.

  12. Arctic root-associated fungal community composition reflects environmental filtering.

    PubMed

    Blaalid, Rakel; Davey, Marie L; Kauserud, Håvard; Carlsen, Tor; Halvorsen, Rune; Høiland, Klaus; Eidesen, Pernille B

    2014-02-01

    There is growing evidence that root-associated fungi have important roles in Arctic ecosystems. Here, we assess the diversity of fungal communities associated with roots of the ectomycorrhizal perennial herb Bistorta vivipara on the Arctic archipelago of Svalbard and investigate whether spatial separation and bioclimatic variation are important structuring factors of fungal community composition. We sampled 160 plants of B. vivipara from 32 localities across Svalbard. DNA was extracted from entire root systems, and 454 pyrosequencing of ITS1 amplicons was used to profile the fungal communities. The fungal communities were predominantly composed of Basidiomycota (55% of reads) and Ascomycota (35%), with the orders Thelephorales (24%), Agaricales (13.8%), Pezizales (12.6%) and Sebacinales (11.3%) accounting for most of the reads. Plants from the same site or region had more similar fungal communities to one another than plants from other sites or regions, and sites clustered together along a weak latitudinal gradient. Furthermore, a decrease in per-plant OTU richness with increasing latitude was observed. However, no statistically significant spatial autocorrelation between sites was detected, suggesting that environmental filtering, not dispersal limitation, causes the observed patterns. Our analyses suggest that while latitudinal patterns in community composition and richness might reflect bioclimatic influences at global spatial scales, at the smaller spatial scale of the Svalbard archipelago, these changes more likely reflect varied bedrock composition and associated edaphic factors. The need for further studies focusing on identifying those specific bioclimatic and edaphic factors structuring root-associated fungal community composition at both global and local scales is emphasized.

  13. Seasonal variation of the dominant allergenic fungal aerosols - One year study from southern Indian region.

    PubMed

    Priyamvada, Hema; Singh, Raj Kamal; Akila, M; Ravikrishna, R; Verma, Rama Shanker; Gunthe, Sachin S

    2017-09-11

    Quantitative estimations of fungal aerosols are important to understand their role in causing respiratory diseases to humans especially in the developing and highly populated countries. In this study we sampled and quantified the three most dominantly found allergenic airborne fungi, Aspergillus fumigatus, Cladosporium cladosporioides, and Alternaria alternata from ambient PM10 samples using the quantitative PCR (qPCR) technique in a southern tropical Indian region, for one full year. Highest concentrations of A. fumigatus and C. cladosporioides were observed during monsoon whereas A. alternata displayed an elevated concentration in winter. The meteorological parameters such as temperature, relative humidity, wind speed, and precipitation exhibited a substantial influence on the atmospheric concentrations of allergenic fungal aerosols. The morphological features of various allergenic fungal spores present in the PM10 were investigated and the spores were found to possess distinct structural features. In a maiden attempt over this region we correlate the ambient fungal concentrations with the epidemiological allergy occurrence to obtain firsthand and preliminary information about the causative fungal allergen to the inhabitants exposed to bioaerosols. Our findings may serve as an important reference to atmospheric scientists, aero-biologists, doctors, and general public.

  14. Metabarcoding of fungal communities associated with bark beetles.

    PubMed

    Miller, Kirsten E; Hopkins, Kevin; Inward, Daegan J G; Vogler, Alfried P

    2016-03-01

    Many species of fungi are closely allied with bark beetles, including many tree pathogens, but their species richness and patterns of distribution remain largely unknown. We established a protocol for metabarcoding of fungal communities directly from total genomic DNA extracted from individual beetles, showing that the ITS3/4 primer pair selectively amplifies the fungal ITS. Using three specimens of bark beetle from different species, we assess the fungal diversity associated with these specimens and the repeatability of these estimates in PCRs conducted with different primer tags. The combined replicates produced 727 fungal Operational Taxonomic Units (OTUs) for the specimen of Hylastes ater, 435 OTUs for Tomicus piniperda, and 294 OTUs for Trypodendron lineatum, while individual PCR reactions produced on average only 229, 54, and 31 OTUs for the three specimens, respectively. Yet, communities from PCR replicates were very similar in pairwise comparisons, in particular when considering species abundance, but differed greatly among the three beetle specimens. Different primer tags or the inclusion of amplicons in separate libraries did not impact the species composition. The ITS2 sequences were identified with the Lowest Common Ancestor approach and correspond to diverse lineages of fungi, including Ophiostomaceae and Leotiomycetes widely found to be tree pathogens. We conclude that Illumina MiSeq metabarcoding reliably captures fungal diversity associated with bark beetles, although numerous PCR replicates are recommended for an exhaustive sample. Direct PCR from beetle DNA extractions provides a rapid method for future surveys of fungal species diversity and their associations with bark beetles and environmental variables.

  15. Soil fungal communities respond to grassland plant community richness and soil edaphics.

    PubMed

    LeBlanc, Nicholas; Kinkel, Linda L; Kistler, H Corby

    2015-07-01

    Fungal communities in soil have significant influences on terrestrial ecosystem dynamics, yet our understanding of the drivers of fungal diversity and community structure in soil is limited. Fungal communities associated with the rhizosphere of four native perennial grassland plant species, two legumes and two grasses, grown in monoculture and polyculture in a long-term field experiment were characterized. Reference databases were developed for, and amplicon libraries sequenced from, multiple-copy rRNA and single-copy protein-coding loci. Clustering and alignment-based pipelines were utilized to evaluate differences in fungal community structure and diversity in response to plant host, plant community richness, and soil edaphics. Fungal diversity increased in the rhizosphere of plants growing in polyculture plant communities as compared to monoculture plant communities. Fungal community structure was differentiated between legumes and grasses growing in monoculture but not in polyculture. To specifically monitor fungi in the genus Fusarium in the soil, the protein-coding locus was used to increase phylogenetic resolution and enrich for this taxon. These data show that fungal community richness and structure are strongly linked with plant community dynamics and associated soil edaphic characteristics in these grassland soils.

  16. Local adaptation to soil hypoxia determines the structure of an arbuscular mycorrhizal fungal community in roots from natural CO₂ springs.

    PubMed

    Maček, Irena; Dumbrell, Alex J; Nelson, Michaela; Fitter, Alastair H; Vodnik, Dominik; Helgason, Thorunn

    2011-07-01

    The processes responsible for producing and maintaining the diversity of natural arbuscular mycorrhizal (AM) fungal communities remain largely unknown. We used natural CO(2) springs (mofettes), which create hypoxic soil environments, to determine whether a long-term, directional, abiotic selection pressure could change AM fungal community structure and drive the selection of particular AM fungal phylotypes. We explored whether those phylotypes that appear exclusively in hypoxic soils are local specialists or widespread generalists able to tolerate a range of soil conditions. AM fungal community composition was characterized by cloning, restriction fragment length polymorphism typing, and the sequencing of small subunit rRNA genes from roots of four plant species growing at high (hypoxic) and low (control) geological CO(2) exposure. We found significant levels of AM fungal community turnover (β diversity) between soil types and the numerical dominance of two AM fungal phylotypes in hypoxic soils. Our results strongly suggest that direct environmental selection acting on AM fungi is a major factor regulating AM fungal communities and their phylogeographic patterns. Consequently, some AM fungi are more strongly associated with local variations in the soil environment than with their host plant's distribution.

  17. Indirect effects of a fungal entomopathogen, Lecanicillium lecanii (Hypocreales: Clavicipitaceae), on a coffee agroecosystem ant community.

    PubMed

    Macdonald, A J; Jackson, D; Zemenick, K

    2013-08-01

    Fungal entomopathogens are widely distributed across natural and managed systems, with numerous host species and likely a wide range of community impacts. While the potential for fungal pathogens to provide biological control has been explored in some detail, less is known about their community interactions. Here we investigate the effects of fungal epizootics of the entomopathogen Lecanicillium lecanii (Zimmerman) on a keystone mutualism between Azteca instabilis (F. Smith), a dominant arboreal ant, and the green coffee scale (Coccus viridis Green), as well as broader impacts on a coffee agroecosystem ant community. We hypothesized that seasonal epizootics cause shifts in the foraging ranges of A. instabilis as the ants adapt to the loss of the resource. We further hypothesized that the magnitude of these shifts depends on the availability of alternate resources located in neighboring shade trees. To test these hypotheses, we induced an epizootic in experimental sites, which were compared with control sites. Surveys of ant activity were undertaken pre- and post-epizootic. We found a decrease in foraging activity of A. instabilis and increase in activity of other ant species in the experimental sites post-epizootic. The decrease in abundance of A. instabilis foragers was greater on plants in which an epizootic was induced than in other plants. This relationship was modified by shade tree density where higher shade tree density was associated with larger decreases in A. intabilis foraging activity in coffee plants. These results demonstrate the potential for fungal entomopathogens to influence the structure and diversity of ecological communities.

  18. Root exudate diversity regulates soil fungal community composition and diversity

    USDA-ARS?s Scientific Manuscript database

    Plant diversity is thought to influence diversity of the soil microbial community, though how this occurs is poorly understood. We report that under greenhouse conditions, two model plant species (Arabidopsis thaliana and Medicago truncatula) show an inability to support the native soil fungal comm...

  19. Experimental soil warming at the treeline shifts fungal communities species

    NASA Astrophysics Data System (ADS)

    Solly, Emily; Lindahl, Björn; Dawes, Melissa; Peter, Martina; Rixen, Christian; Hagedorn, Frank

    2016-04-01

    In terrestrial ecosystems, fungi play a major role in decomposition processes, plant nutrient uptake and nutrient cycling. In high elevation ecosystems in Alpine and Arctic regions, the fungal community may be particularly sensitive to climate warming due to the removal of temperature limitation in the plant and soil system, faster nutrient cycling and changes in plant carbon allocation to maintain roots systems and sustain the rhizosphere. In our study, we estimated the effects of 9 years CO2 enrichment and three years of experimental soil warming on the community structure of fungal microorganisms in an alpine treeline ecosystem. In the Swiss Alps, we worked on a total of 40 plots, with c. 40-year-old Larix decidua and Pinus mugo ssp. uncinata trees (20 plots for each tree species). Half of the plots with each tree species were randomly assigned to an elevated CO2 treatment (ambient concentration +200 ppm), whereas the remaining plots received no supplementary CO2. Five individual plots for each combination of CO2 concentration and tree species were heated by an average of 4°C during the growing season with heating cables at the soil surface. At the treeline, the fungal diversity analyzed by high-throughput 454-sequencing of genetic markers, was generally low as compared to low altitude systems and mycorrhizal species made a particularly small contribution to the total fungal DNA. Soil warming led to a shift in the structure and composition of the fungal microbial community, with an increase of litter degraders and ectomycorrhizal fungi. We further observed changes in the productivity of specific fungal fruiting bodies (i.e. more Lactarius rufus sporocarps and less Hygrophorus lucorum sporocarps) during the course of the experiment, that were consistent with the 454-sequencing data. The warming effect was more pronounced in the Larix plots. These shifts were accompanied by an increased soil CO2 efflux (+40%), evidence of increased N availability and a

  20. Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs

    PubMed Central

    Abdelfattah, Ahmed; Wisniewski, Michael; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga

    2016-01-01

    An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to identify the composition of fungal communities associated with different strawberry organs (leaves, flowers, immature and mature fruits), grown on a farm using management practices that entailed the routine use of various chemical pesticides. ITS2 sequences clustered into 316 OTUs and Ascomycota was the dominant phyla (95.6%) followed by Basidiomycota (3.9%). Strawberry plants supported a high diversity of microbial organisms, but two genera, Botrytis and Cladosporium, were the most abundant, representing 70–99% of the relative abundance (RA) of all detected sequences. According to alpha and beta diversity analyses, strawberry organs displayed significantly different fungal communities with leaves having the most diverse fungal community, followed by flowers, and fruit. The interruption of chemical treatments for one month resulted in a significant modification in the structure of the fungal community of leaves and flowers while immature and mature fruit were not significantly affected. Several plant pathogens of other plant species, that would not be intuitively expected to be present on strawberry plants such as Erysiphe, were detected, while some common strawberry pathogens, such as Rhizoctonia, were less evident or absent. PMID:27490110

  1. Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs.

    PubMed

    Abdelfattah, Ahmed; Wisniewski, Michael; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Schena, Leonardo

    2016-01-01

    An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to identify the composition of fungal communities associated with different strawberry organs (leaves, flowers, immature and mature fruits), grown on a farm using management practices that entailed the routine use of various chemical pesticides. ITS2 sequences clustered into 316 OTUs and Ascomycota was the dominant phyla (95.6%) followed by Basidiomycota (3.9%). Strawberry plants supported a high diversity of microbial organisms, but two genera, Botrytis and Cladosporium, were the most abundant, representing 70-99% of the relative abundance (RA) of all detected sequences. According to alpha and beta diversity analyses, strawberry organs displayed significantly different fungal communities with leaves having the most diverse fungal community, followed by flowers, and fruit. The interruption of chemical treatments for one month resulted in a significant modification in the structure of the fungal community of leaves and flowers while immature and mature fruit were not significantly affected. Several plant pathogens of other plant species, that would not be intuitively expected to be present on strawberry plants such as Erysiphe, were detected, while some common strawberry pathogens, such as Rhizoctonia, were less evident or absent.

  2. Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica.

    PubMed

    Godinho, Valéria M; Gonçalves, Vívian N; Santiago, Iara F; Figueredo, Hebert M; Vitoreli, Gislaine A; Schaefer, Carlos E G R; Barbosa, Emerson C; Oliveira, Jaquelline G; Alves, Tânia M A; Zani, Carlos L; Junior, Policarpo A S; Murta, Silvane M F; Romanha, Alvaro J; Kroon, Erna Geessien; Cantrell, Charles L; Wedge, David E; Duke, Stephen O; Ali, Abbas; Rosa, Carlos A; Rosa, Luiz H

    2015-05-01

    We surveyed the diversity and capability of producing bioactive compounds from a cultivable fungal community isolated from oligotrophic soil of continental Antarctica. A total of 115 fungal isolates were obtained and identified in 11 taxa of Aspergillus, Debaryomyces, Cladosporium, Pseudogymnoascus, Penicillium and Hypocreales. The fungal community showed low diversity and richness, and high dominance indices. The extracts of Aspergillus sydowii, Penicillium allii-sativi, Penicillium brevicompactum, Penicillium chrysogenum and Penicillium rubens possess antiviral, antibacterial, antifungal, antitumoral, herbicidal and antiprotozoal activities. Bioactive extracts were examined using (1)H NMR spectroscopy and detected the presence of secondary metabolites with chemical shifts. Our results show that the fungi present in cold-oligotrophic soil from Antarctica included few dominant species, which may have important implications for understanding eukaryotic survival in cold-arid oligotrophic soils. We hypothesize that detailed further investigations may provide a greater understanding of the evolution of Antarctic fungi and their relationships with other organisms described in that region. Additionally, different wild pristine bioactive fungal isolates found in continental Antarctic soil may represent a unique source to discover prototype molecules for use in drug and biopesticide discovery studies.

  3. Vertical distribution of fungal communities in tallgrass prairie soil.

    PubMed

    Jumpponen, Ari; Jones, Kenneth L; Blair, John

    2010-01-01

    We used 454 sequencing of the internal transcribed spacer region to characterize fungal communities in tallgrass prairie soils subdivided into strata 0-10, 10-20, 30-40 and 50-60 cm deep. The dataset included more than 14000 fungal sequences distributed across Basidiomycota, Ascomycota, basal fungal lineages and Glomeromycota in order of decreasing frequency. As expected the community richness and diversity estimators tended to decrease with increasing depth. Although species richness was significantly reduced for samples from the deeper profiles, even the deepest stratum sampled contained richness of more than a third of that in the topmost stratum. More importantly, nonparametric multidimensional scaling (NMS) ordination analyses indicated that the fungal communities differed across vertical profiles, although only the topmost and deepest strata were significantly different when the NMS axis scores were compared by ANOVA. These results emphasize the importance of considering the fungal communities across the vertical strata because the deeper soil horizons might maintain a distinct community composition and thus contribute greatly to overall richness. The majority of operational taxonomic units (OTUs) declined in frequency with increasing depth, although a linear regression analysis indicated that some increased with increasing depth. The OTUs and BLAST-assigned taxa that showed increasing frequencies were mainly unculturable fungi, but some showed likely affinities to families Nectriaceae and Venturiaceae or to genus Pachnocybe. Although the ecological roles of the fungi in the deeper strata remain uncertain, we hypothesize that the fungi with preferences for deeper soil have adequate access to substrates and possess environmental tolerances that enable their persistence in those environments.

  4. Wildfires in Northern Siberian Larch Dominated Communities

    NASA Technical Reports Server (NTRS)

    Khaurk, Viacheslav I.; Ranson, Kenneth J.; Dvinskaya, Maria L.; Im, Sergey T.

    2011-01-01

    The fire history of the northern larch forests within the permafrost zone in a portion of northern Siberia (approx 66 deg N, 100 deg E) was studied. Since there is little to no human activities in this area fires within the study area were mostly caused by lightning. Fire return intervals (FRI) were estimated based on burn marks on tree stems and dates of tree natality. FRI values varied from 130 yr to 350 yr with 200 +/- 50 yr mean. In southerly larch dominated communities FRI was found to be shorter (77 +/- 20 yr at approx 61 deg. N, and 82 +/- 7 at 64 deg N), and longer at the northern boundary (approx 71 deg) of larch stands (320 +/- 50 yr). During the Little Ice Age period in the 16th to 18th centuries FRI was approximately twice as long as recorded in this study. Fire caused changes in the soil including increases in soil drainage and permafrost thawing depth and a radial growth increase of about 2 times (with more than 6 times observed). This effect may simulate the predicted warming impact on the larch growth in the permafrost zone.

  5. A Coexisting Fungal-Bacterial Community Stabilizes Soil Decomposition Activity in a Microcosm Experiment

    PubMed Central

    Ushio, Masayuki; Miki, Takeshi; Balser, Teri C.

    2013-01-01

    How diversity influences the stability of a community function is a major question in ecology. However, only limited empirical investigations of the diversity–stability relationship in soil microbial communities have been undertaken, despite the fundamental role of microbial communities in driving carbon and nutrient cycling in terrestrial ecosystems. In this study, we conducted a microcosm experiment to investigate the relationship between microbial diversity and stability of soil decomposition activities against changes in decomposition substrate quality by manipulating microbial community using selective biocides. We found that soil respiration rates and degradation enzyme activities by a coexisting fungal and bacterial community (a taxonomically diverse community) are more stable against changes in substrate quality (plant leaf materials) than those of a fungi-dominated or a bacteria-dominated community (less diverse community). Flexible changes in the microbial community composition and/or physiological state in the coexisting community against changes in substrate quality, as inferred by the soil lipid profile, may be the mechanism underlying this positive diversity–stability relationship. Our experiment demonstrated that the previously found positive diversity–stability relationship could also be valid in the soil microbial community. Our results also imply that the functional/taxonomic diversity and community ecology of soil microbes should be incorporated into the context of climate–ecosystem feedbacks. Changes in substrate quality, which could be induced by climate change, have impacts on decomposition process and carbon dioxide emission from soils, but such impacts may be attenuated by the functional diversity of soil microbial communities. PMID:24260368

  6. A coexisting fungal-bacterial community stabilizes soil decomposition activity in a microcosm experiment.

    PubMed

    Ushio, Masayuki; Miki, Takeshi; Balser, Teri C

    2013-01-01

    How diversity influences the stability of a community function is a major question in ecology. However, only limited empirical investigations of the diversity-stability relationship in soil microbial communities have been undertaken, despite the fundamental role of microbial communities in driving carbon and nutrient cycling in terrestrial ecosystems. In this study, we conducted a microcosm experiment to investigate the relationship between microbial diversity and stability of soil decomposition activities against changes in decomposition substrate quality by manipulating microbial community using selective biocides. We found that soil respiration rates and degradation enzyme activities by a coexisting fungal and bacterial community (a taxonomically diverse community) are more stable against changes in substrate quality (plant leaf materials) than those of a fungi-dominated or a bacteria-dominated community (less diverse community). Flexible changes in the microbial community composition and/or physiological state in the coexisting community against changes in substrate quality, as inferred by the soil lipid profile, may be the mechanism underlying this positive diversity-stability relationship. Our experiment demonstrated that the previously found positive diversity-stability relationship could also be valid in the soil microbial community. Our results also imply that the functional/taxonomic diversity and community ecology of soil microbes should be incorporated into the context of climate-ecosystem feedbacks. Changes in substrate quality, which could be induced by climate change, have impacts on decomposition process and carbon dioxide emission from soils, but such impacts may be attenuated by the functional diversity of soil microbial communities.

  7. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times

    PubMed Central

    Neher, Deborah A.; Weicht, Thomas R.; Bates, Scott T.; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  8. Soil bacterial and fungal communities across a pH gradient in an arable soil.

    PubMed

    Rousk, Johannes; Bååth, Erland; Brookes, Philip C; Lauber, Christian L; Lozupone, Catherine; Caporaso, J Gregory; Knight, Rob; Fierer, Noah

    2010-10-01

    Soils collected across a long-term liming experiment (pH 4.0-8.3), in which variation in factors other than pH have been minimized, were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria. We hypothesized that bacterial communities would be more strongly influenced by pH than fungal communities. To determine the relative abundance of bacteria and fungi, we used quantitative PCR (qPCR), and to analyze the composition and diversity of the bacterial and fungal communities, we used a bar-coded pyrosequencing technique. Both the relative abundance and diversity of bacteria were positively related to pH, the latter nearly doubling between pH 4 and 8. In contrast, the relative abundance of fungi was unaffected by pH and fungal diversity was only weakly related with pH. The composition of the bacterial communities was closely defined by soil pH; there was as much variability in bacterial community composition across the 180-m distance of this liming experiment as across soils collected from a wide range of biomes in North and South America, emphasizing the dominance of pH in structuring bacterial communities. The apparent direct influence of pH on bacterial community composition is probably due to the narrow pH ranges for optimal growth of bacteria. Fungal community composition was less strongly affected by pH, which is consistent with pure culture studies, demonstrating that fungi generally exhibit wider pH ranges for optimal growth.

  9. Fungal community succession and major components change during manufacturing process of Fu brick tea.

    PubMed

    Li, Qin; Huang, Jianan; Li, Yongdi; Zhang, Yiyang; Luo, Yu; Chen, Yuan; Lin, Haiyan; Wang, Kunbo; Liu, Zhonghua

    2017-07-31

    Fu brick tea is a unique post-fermented tea product which is fermented with microorganism during the manufacturing process. Metabolic analysis showed that most metabolites content were decreased during the manufacturing process of Fu brick tea, except GA (gallic acid). Illumina MiSeq sequencing of ITS gene amplicons was applied to analyze the fungal community succession. The genera Aspergillus, Cyberlindnera and Candida were predominant at the early stage of manufacturing process (from "primary dark tea" to "fermentation for 3 days"), but after the stage of "fermentation for 3 days" only Aspergillus was still dominated, and maintain a relatively constant until to the end of manufacturing process. The effects of metabolites on the structure of the fungal community were analyzed by redundancy analysis (RDA) and variation partitioning analysis (VPA). The results indicated that GCG (gallocatechin gallate), EGCG (epigallocatechin gallate) and GA as well as the interactions among them were the most probably ones to influence, or be influenced by the fungal communities during the fermentation process of Fu brick tea. This study revealed fungal succession, metabolite changes and their relationships, provided new insights into the mechanisms for manufacturing process of Fu brick tea.

  10. Impacts of Asian dust events on atmospheric fungal communities

    NASA Astrophysics Data System (ADS)

    Jeon, Eun Mi; Kim, Yong Pyo; Jeong, Kweon; Kim, Ik Soo; Eom, Suk Won; Choi, Young Zoo; Ka, Jong-Ok

    2013-12-01

    The composition of atmospheric fungi in Seoul during Asian dust events were assessed by culturing and by molecular methods such as mold specific quantitative PCR (MSQPCR) and internal transcribed spacer cloning (ITS cloning). Culturable fungal concentrations in the air were monitored from May 2008 to July 2011 and 3 pairs of ITS clone libraries, one during Asian dust (AD) day and the other during the adjacent non Asian dust (NAD) day for each pair, were constructed after direct DNA extraction from total suspended particles (TSP) samples. In addition, six aeroallergenic fungi in the atmosphere were also assessed by MSQPCR from October, 2009 to November, 2011. The levels of the airborne culturable fungal concentrations during AD days was significantly higher than that of NAD days (P < 0.005). In addition, the correlation of culturable fungal concentrations with particulate matters equal to or less than 10 μm in aerodynamic diameter (PM10) concentrations was observed to be high (0.775) for the AD days while correlation coefficients of PM10 as well as other particulate parameters with airborne fungal concentrations were significantly negative for the NAD days during intensive monitoring periods (May to June, 2008). It was found that during AD days several airborne allergenic fungal levels measured with MSQPCR increased up to 5-12 times depending on the species. Comparison of AD vs. NAD clones showed significant differences (P < 0.05) in all three cases using libshuff. In addition, high proportions of uncultured soil fungus isolated from semi-arid regions were observed only in AD clone libraries. Thus, it was concluded that AD impacts not only airborne fungal concentrations but also fungal communities.

  11. Plant genetics and interspecific competitive interactions determine ectomycorrhizal fungal community responses to climate change.

    PubMed

    Gehring, Catherine; Flores-Rentería, Dulce; Sthultz, Christopher M; Leonard, Tierra M; Flores-Rentería, Lluvia; Whipple, Amy V; Whitham, Thomas G

    2014-03-01

    Although the importance of plant-associated microbes is increasingly recognized, little is known about the biotic and abiotic factors that determine the composition of that microbiome. We examined the influence of plant genetic variation, and two stressors, one biotic and one abiotic, on the ectomycorrhizal (EM) fungal community of a dominant tree species, Pinus edulis. During three periods across 16 years that varied in drought severity, we sampled the EM fungal communities of a wild stand of P. edulis in which genetically based resistance and susceptibility to insect herbivory was linked with drought tolerance and the abundance of competing shrubs. We found that the EM fungal communities of insect-susceptible trees remained relatively constant as climate dried, while those of insect-resistant trees shifted significantly, providing evidence of a genotype by environment interaction. Shrub removal altered the EM fungal communities of insect-resistant trees, but not insect-susceptible trees, also a genotype by environment interaction. The change in the EM fungal community of insect-resistant trees following shrub removal was associated with greater shoot growth, evidence of competitive release. However, shrub removal had a 7-fold greater positive effect on the shoot growth of insect-susceptible trees than insect-resistant trees when shrub density was taken into account. Insect-susceptible trees had higher growth than insect-resistant trees, consistent with the hypothesis that the EM fungi associated with susceptible trees were superior mutualists. These complex, genetic-based interactions among species (tree-shrub-herbivore-fungus) argue that the ultimate impacts of climate change are both ecological and evolutionary.

  12. Ectomycorrhizal fungal community assembly on regenerating Douglas-fir after wildfire and clearcut harvesting.

    PubMed

    Barker, Jason S; Simard, Suzanne W; Jones, Melanie D; Durall, D M

    2013-08-01

    Wildfire severity in forests is projected to increase with warming and drying conditions associated with climate change. Our objective was to determine the impact of wildfire and clearcutting severity on the ectomycorrhizal fungal (EMF) community of Douglas-fir seedlings in the dry forests of interior British Columbia, Canada. We located our study within and surrounding the area of the McLure fire (August 2003). We hypothesized that disturbance would affect EMF community assembly due to reductions in fungal inoculum. Five treatments representing a range of disturbance severities were compared: high severity burn, low severity burn, screefed clearcut (manual removal of forest floor), clearcut, and undisturbed forest. EMF communities in the undisturbed forest were more complex than those in all disturbance treatments. However, aspects of community assembly varied with disturbance type, where the burn treatments had the simplest communities. After 4 months, regenerating seedlings in the burn treatments had the lowest colonization, but seedlings in all treatments were fully colonized within 1 year. EMF communities were similar among the four disturbance types, largely due to dominance of Wilcoxina throughout the study period. However, forest floor retention influenced community assembly as the EMF in the clearcut treatment, where forest floor was retained, had levels of diversity and richness comparable to the undisturbed forest. Overall, the results suggest that increasing forest floor disturbance can alter EMF community assembly in the first year of regeneration. A correlation between poorly colonized seedlings and seedling productivity also suggests a role for productivity in influencing community assembly.

  13. Community-level competition: asymmetrical dominance.

    PubMed Central

    Gilpin, M

    1994-01-01

    Ecological competition between entire communities of species occurs only when geographic barriers are suddenly removed. Recent empirical analysis suggests that, following the disappearance of a barrier, one community may swamp a second community, causing most or all of its species to go extinct. I provide theoretical insight into this result by showing that two "naive" competition communities mix randomly following the removal of a barrier. However, if the two communities have been "assembled," or self-organized, through a history of competitive exclusion, the communities are likely to battle as coordinated armies, with one or the other side ultimately claiming the entire landscape. PMID:8159734

  14. Mycorrhizal fungal diversity and community composition in a lithophytic and epiphytic orchid.

    PubMed

    Xing, Xiaoke; Gai, Xuege; Liu, Qiang; Hart, Miranda M; Guo, Shunxing

    2015-05-01

    Some orchid species are present as epiphytes and lithophytes in the same habitat, but little is known about the differences of their mycorrhizal fungal communities. We used Coelogyne viscosa, which occurs both as an epiphyte and a lithophyte, as a study system to investigate orchid mycorrhizal fungal communities in lithophytes and epiphytes in Xishuangbanna National Nature Reserve (Yunnan Province, China). Twenty-three fungal operational taxonomic units (OTUs) from 18 sampling sites were identified. Results indicated that mycorrhizal fungal community composition was different between epi- and lithophytes. When we analyzed the Tulasnellaceae and Sebacinales communities separately, we found that the Sebacinales fungal communities were significantly different in the two growth habitats, but the Tulasnellaceae fungal communities were not. Our results provide evidence for distinct orchid mycorrhiza fungal communities depending on the growth habitat of the orchid. Consistent with some recent investigations of mycorrhizal fungus community composition, this study suggests that for one orchid, growth habitat affects mycorrhizal symbioses.

  15. Linking fungal communities to wood density loss after 12 years of log decay.

    PubMed

    Kubartová, Ariana; Ottosson, Elisabet; Stenlid, Jan

    2015-05-01

    Changes in biodiversity might alter decomposition processes and, consequently, carbon and nutrient cycling. We examined fungal diversity and density loss in experimental Norway spruce logs after 12 years of decay in a hemiboreal forest. Between 28 and 50% of the original wood biomass remained, depending on the fungal community composition in the log, operational taxonomic unit (OTU) richness had only a minor effect on the log biomass. Although the communities were OTU rich (190-340 OTUs per log), the majority of OTUs were infrequent or rare; wood degradation therefore depended mostly on the most abundant OTUs and their decomposing abilities. The least decayed logs were characterized by continuous dominance of an earlier colonizer and by high within-log community diversity, which was significantly related to sample variables (position in log, density and moisture). In the most decayed logs, the earlier colonizers were generally replaced by white-rot species able to exploit the highly decomposed wood. The communities were relatively spatially uniform within whole logs, independent of the sample variables, whereas among-log diversity was high. Importance of fungal community composition in decomposition processes should be taken into account when studying and modeling carbon dynamics in forest ecosystems.

  16. Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic peninsula.

    PubMed

    Furbino, Laura E; Godinho, Valéria M; Santiago, Iara F; Pellizari, Franciane M; Alves, Tânia M A; Zani, Carlos L; Junior, Policarpo A S; Romanha, Alvaro J; Carvalho, Amanda G O; Gil, Laura H V G; Rosa, Carlos A; Minnis, Andrew M; Rosa, Luiz H

    2014-05-01

    We surveyed diversity patterns and engaged in bioprospecting for bioactive compounds of fungi associated with the endemic macroalgae, Monostroma hariotii and Pyropia endiviifolia, in Antarctica. A total of 239 fungal isolates were obtained, which were identified to represent 48 taxa and 18 genera using molecular methods. The fungal communities consisted of endemic, indigenous and cold-adapted cosmopolitan taxa, which displayed high diversity and richness, but low dominance indices. The extracts of endemic and cold-adapted fungi displayed biological activities and may represent sources of promising prototype molecules to develop drugs. Our results suggest that macroalgae along the marine Antarctic Peninsula provide additional niches where fungal taxa can survive and coexist with their host in the extreme conditions. We hypothesise that the dynamics of richness and dominance among endemic, indigenous and cold-adapted cosmopolitan fungal taxa might be used to understand and model the influence of climate change on the maritime Antarctic mycota.

  17. Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica.

    PubMed

    Santiago, Iara F; Soares, Marco Aurélio; Rosa, Carlos A; Rosa, Luiz H

    2015-11-01

    We surveyed the diversity, distribution and ecology of non-lichenised fungal communities associated with the Antarctic lichens Usnea antarctica and Usnea aurantiaco-atra across Antarctica. The phylogenetic study of the 438 fungi isolates identified 74 taxa from 21 genera of Ascomycota, Basidiomycota and Zygomycota. The most abundant taxa were Pseudogymnoascus sp., Thelebolus sp., Antarctomyces psychrotrophicus and Cryptococcus victoriae, which are considered endemic and/or highly adapted to Antarctica. Thirty-five fungi may represent new and/or endemic species. The fungal communities displayed high diversity, richness and dominance indices; however, the similarity among the communities was variable. After discovering rich and diverse fungal communities composed of symbionts, decomposers, parasites and endemic and cold-adapted cosmopolitan taxa, we introduced the term "lichensphere". We hypothesised that the lichensphere may represent a protected natural microhabitat with favourable conditions able to help non-lichenised fungi and other Antarctic life forms survive and disperse in the extreme environments of Antarctica.

  18. Fungal Community Structure in Disease Suppressive Soils Assessed by 28S LSU Gene Sequencing

    PubMed Central

    Penton, C. Ryan; Gupta, V. V. S. R.; Tiedje, James M.; Neate, Stephen M.; Ophel-Keller, Kathy; Gillings, Michael; Harvey, Paul; Pham, Amanda; Roget, David K.

    2014-01-01

    Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils ‘suppressive’ or ‘non-suppressive’ for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ∼994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria, Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression. PMID:24699870

  19. Phylogenetic diversity of fungal communities in areas accessible and not accessible to tourists in Naracoorte Caves.

    PubMed

    Adetutu, Eric M; Thorpe, Krystal; Bourne, Steven; Cao, Xiangsheng; Shahsavari, Esmaeil; Kirby, Greg; Ball, Andrew S

    2011-01-01

    The fungal diversity in areas accessible and not accessible to tourists at UNESCO World Heritage-listed Naracoorte Caves was investigated with culture-dependent and culture-independent techniques for assistance in cave management protocol development. The caves were selected based on tourist numbers and configurations: Stick Tomato (open, high numbers), Alexandra (lockable openings, high numbers) and Strawhaven (control; no access). Culture-based survey revealed Ascomycota dominance irrespective of sampling area with Microascales (Trichurus sp.) being most frequently isolated. Some Hypocreales-like sequences belonging to Fusarium sp., Trichoderma sp. and Neonectria sp. (Stick Tomato) were cultured only from areas not accessible to tourists. These orders also were detected by DGGE assay irrespective of sampling area. The predominance of Ascomycota (especially Microascales) suggested their important ecological roles in these caves. Culture-independent analysis showed higher Shannon fungal diversity values (from ITS-based DGGE profiles) in tourist-accessible areas of these caves than in inaccessible areas with the fungal community banding patterns being substantially different in Stick Tomato Cave. Further investigations are needed to determine the cause of the differences in the fungal communities of Stick Tomato Cave, although cave-related factors such as use, configuration and sediment heterogeneity might have contributed to these differences.

  20. Superimposed Pristine Limestone Aquifers with Marked Hydrochemical Differences Exhibit Distinct Fungal Communities

    PubMed Central

    Nawaz, Ali; Purahong, Witoon; Lehmann, Robert; Herrmann, Martina; Küsel, Kirsten; Totsche, Kai U.; Buscot, François; Wubet, Tesfaye

    2016-01-01

    Fungi are one important group of eukaryotic microorganisms in a diverse range of ecosystems, but their diversity in groundwater ecosystems is largely unknown. We used DNA-based pyro-tag sequencing of the fungal internal transcribed spacer (ITS) rDNA gene to investigate the presence and community structure of fungi at different sampling sites of two superimposed limestone aquifers ranging from 8.5 to 84 m depth in the newly established Hainich Critical Zone Exploratory (Hainich CZE). We detected a diversity of fungal OTUs in groundwater samples of all sampling sites. The relative percentage abundance of Basidiomycota was higher in the upper aquifer assemblage, whilst Ascomycota dominated the lower one. In parallel to differences in the hydrochemistry we found distinct fungal communities at all sampling sites. Classification into functional groups revealed an overwhelming majority of saprotrophs. Finding taxa common to all analyzed groundwater sites, point to a groundwater specific fungal microbiome. The presence of different functional groups and, in particular plant and cattle pathogens that are not typical of subsurface habitats, suggests links between the surface and subsurface biogeosphere due to rapid transportation across the fracture networks typical of karstic regions during recharge episodes. However, further studies including sampling series extended in both time and space are necessary to confirm this hypothesis. PMID:27242696

  1. Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic.

    PubMed

    Cox, Filipa; Newsham, Kevin K; Bol, Roland; Dungait, Jennifer A J; Robinson, Clare H

    2016-05-01

    Antarctica's extreme environment and geographical isolation offers a useful platform for testing the relative roles of environmental selection and dispersal barriers influencing fungal communities. The former process should lead to convergence in community composition with other cold environments, such as those in the Arctic. Alternatively, dispersal limitations should minimise similarity between Antarctica and distant northern landmasses. Using high-throughput sequencing, we show that Antarctica shares significantly more fungi with the Arctic, and more fungi display a bipolar distribution, than would be expected in the absence of environmental filtering. In contrast to temperate and tropical regions, there is relatively little endemism, and a strongly bimodal distribution of range sizes. Increasing southerly latitude is associated with lower endemism and communities increasingly dominated by fungi with widespread ranges. These results suggest that micro-organisms with well-developed dispersal capabilities can inhabit opposite poles of the Earth, and dominate extreme environments over specialised local species.

  2. Changes in soil fungal communities across a landscape of agricultural soil land-uses

    NASA Astrophysics Data System (ADS)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2012-12-01

    independent of culturing and to a greater sampling depth than has previously been used. Agricultural management was the dominant driver of fungal community similarity or difference. Each management type was distinct, with two fields differing in length of time in organic management converged to a similar community type. Contrary to previous findings, the diversity of fungi did not differ between the managements. Ascomycetes were the most common phylum represented by several taxa dominating the community. Most taxa in the conventional soils were shared with the organic and pasture managed soils, but there were a number of taxa that were only found in organic or pasture soils. This suggests that organic or pasture management is recruiting and supporting distinctive taxa compared to conventionally managed soils. Communities differed more with increasing geographic distance between sampling points within the same field, but across longer distances and managements, communities were less dissimilar. These results indicate that different managements are the major driver of soil fungal community structure. Both cosmopolitan and distinctive taxa are common across managements, but organic and pasture management seem to foster more distinct taxa than conventional soils. At the kilometer scale, management appears to be a more important factor in controlling community structure than biogeographic models.

  3. Infection with a Shoot-Specific Fungal Endophyte (Epichloë) Alters Tall Fescue Soil Microbial Communities.

    PubMed

    Rojas, Xavier; Guo, Jingqi; Leff, Jonathan W; McNear, David H; Fierer, Noah; McCulley, Rebecca L

    2016-07-01

    Tall fescue (Schedonorus arundinaceus) is a widespread grass that can form a symbiotic relationship with a shoot-specific fungal endophyte (Epichloë coenophiala). While the effects of fungal endophyte infection on fescue physiology and ecology have been relatively well studied, less attention has been given to how this relationship may impact the soil microbial community. We used high-throughput DNA sequencing and phospholipid fatty acid analysis to determine the structure and biomass of microbial communities in both bulk and rhizosphere soils from tall fescue stands that were either uninfected with E. coenophiala or were infected with the common toxic strain or one of several novel strains of the endophyte. We found that rhizosphere and bulk soils harbored distinct microbial communities. Endophyte presence, regardless of strain, significantly influenced soil fungal communities, but endophyte effects were less pronounced in prokaryotic communities. E. coenophiala presence did not change total fungal biomass but caused a shift in soil and rhizosphere fungal community composition, increasing the relative abundance of taxa within the Glomeromycota phylum and decreasing the relative abundance of genera in the Ascomycota phylum, including Lecanicillium, Volutella, Lipomyces, Pochonia, and Rhizoctonia. Our data suggests that tripartite interactions exist between the shoot endophyte E. coenophiala, tall fescue, and soil fungi that may have important implications for the functioning of soils, such as carbon storage, in fescue-dominated grasslands.

  4. Distinctive Feature of Microbial Communities and Bacterial Functional Profiles in Tricholoma matsutake Dominant Soil

    PubMed Central

    Oh, Seung-Yoon; Fong, Jonathan J.; Park, Myung Soo; Lim, Young Woon

    2016-01-01

    Tricholoma matsutake, the pine mushroom, is a valuable forest product with high economic value in Asia, and plays an important ecological role as an ectomycorrhizal fungus. Around the host tree, T. matsutake hyphae generate a distinctive soil aggregating environment called a fairy ring, where fruiting bodies form. Because T. matsutake hyphae dominate the soil near the fairy ring, this species has the potential to influence the microbial community. To explore the influence of T. matsutake on the microbial communities, we compared the microbial community and predicted bacterial function between two different soil types—T. matsutake dominant and T. matsutake minor. DNA sequence analyses showed that fungal and bacterial diversity were lower in the T. matsutake dominant soil compared to T. matsutake minor soil. Some microbial taxa were significantly more common in the T. matsutake dominant soil across geographic locations, many of which were previously identified as mycophillic or mycorrhiza helper bacteria. Between the two soil types, the predicted bacterial functional profiles (using PICRUSt) had significantly distinct KEGG modules. Modules for amino acid uptake, carbohydrate metabolism, and the type III secretion system were higher in the T. matsutake dominant soil than in the T. matsutake minor soil. Overall, similar microbial diversity, community structure, and bacterial functional profiles of the T. matsutake dominant soil across geographic locations suggest that T. matsutake may generate a dominance effect. PMID:27977803

  5. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  6. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing.

    PubMed

    Blaalid, Rakel; Carlsen, Tor; Kumar, Surendra; Halvorsen, Rune; Ugland, Karl Inne; Fontana, Giovanni; Kauserud, Håvard

    2012-04-01

    We investigated changes in the root-associated fungal communities associated with the ectomycorrhizal herb Bistorta vivipara along a primary succession gradient using 454 amplicon sequencing. Our main objective was to assess the degree of variation in fungal richness and community composition as vegetation cover increases along the chronosequence. Sixty root systems of B. vivipara were sampled in vegetation zones delimited by dated moraines in front of a retreating glacier in Norway. We extracted DNA from rinsed root systems, amplified the ITS1 region using fungal-specific primers and analysed the amplicons using 454 sequencing. Between 437 and 5063 sequences were obtained from each root system. Clustering analyses using a 98.5% sequence similarity cut-off yielded a total of 470 operational taxonomic units (OTUs), excluding singletons. Between eight and 41 fungal OTUs were detected within each root system. Already in the first stage of succession, a high fungal diversity was present in the B. vivipara root systems. Total number of OTUs increased significantly along the gradient towards climax vegetation, but the average number of OTUs per root system stayed unchanged. There was a high patchiness in distribution of fungal OTUs across root systems, indicating that stochastic processes to a large extent structure the fungal communities. However, time since deglaciation had impact on the fungal community structure, as a systematic shift in the community composition was observed along the chronosequence. Ectomycorrhizal basidiomycetes were the dominant fungi in the roots of B. vivipara, when it comes to both number of OTUs and number of sequences.

  7. Links Among Warming, Fungal Communities, and Carbon Fluxes in Boreal Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Czimczik, C. I.; Treseder, K. K.

    2006-12-01

    Microbial responses to climate change could drive positive feedbacks to the carbon cycle, particularly in high latitude ecosystems. We used molecular and enzymatic approaches to determine whether fungal communities changed in response to experimental warming in boreal forest ecosystems. We also measured the flux and 14C signature of soil respiration from warmed and unwarmed soils to link microbial responses with the carbon cycle. In an early-successional site recovering from a 1999 fire, warming significantly increased the activities of cellulose- and chitin-degrading enzymes by 17% and 30%, respectively. In a second site dominated by mature black spruce trees, the activity of the chitin-degrading enzyme declined significantly by 24%. However, warming did not affect soil CO2 fluxes in either site, or the source of soil respiration as measured by 14C isotopic analyses in the mature forest site. Together, these results suggest that warming does alter fungal community composition and potentially carbon substrate utilization. However, the total amount and 14C age of microbially-respired carbon does not change. Despite shifts in fungal community composition, ecosystem processes driven by microbial activity may be resistant to climate warming in these well-drained boreal ecosystems.

  8. Effect of karst rocky desertification on soil fungal communities in Southwest China.

    PubMed

    Wang, P C; Mo, B T; Chen, Y; Zeng, Q F; Wang, L B

    2016-07-29

    Karst mountainous ecosystems are associated with karst rocky desertification (KRD), which can greatly impact soil structure and function. Despite the importance of soil microbes as a major factor maintaining ecosystem stability, we know little about the effect on soil fungal communities of KRD in karst regions. We investigated this relationship across a gradient of KRD soils from Guizhou, China by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE). Fungal diversity indices (Shannon-Wiener, richness, and evenness) significantly differed (P < 0.05) based on KRD severity, being lowest in moderately affected areas. Cluster analysis showed that the five sites examined clustered into two main groups according to KRD grade (high and low). Moreover, a homology search using sequences recovered from PCR-DGGE bands showed that the dominant fungi in each community varied remarkably, and included Aspergillus, Aphanoascus, Blastomyces, Fusarium, Glomus, Geomyces, Gibberella, Mortierella, Tetracladium, and Tumularia species, and an unclassified group. In conclusion, these findings demonstrate that KRD has a significant impact on soil fungal communities.

  9. Toward Modeling the Resistance and Resilience of "Below-ground" Fungal Communities: A Mechanistic and Trait-Based Approach.

    PubMed

    Falconer, Ruth E; Otten, Wilfred; White, Nia A

    2015-01-01

    The role of fungi in shaping ecosystems is well evidenced and there is growing recognition of their importance among scientists and the general public. Establishing and separating the role of key local (soil chemical, biological, and physical properties) and global (climate, dispersal limitation) drivers in fungal community structure and functioning is currently a source of frustration to mycologists. The quest to determine niche processes and environmental characteristics shaping fungal community structure, known to be important for plant and animal communities, is proving difficult, resulting in the acknowledgment that niche neutral processes (climate, dispersal limitations) may dominate. The search for predictable patterns in fungal community structure may have been restricted as the "appropriate" scales at which to measure community structure and characterize the environment have not been fully determined yet, and the focus on taxonomy makes it difficult to link environmental characteristics to fungal traits. While key determinants of microbial community composition have been uncovered for some functional groups, the differential response of functional groups is largely unknown. Before we can truly understand what drives the development of microbial community structure, an understanding of the autecology of major fungal taxa and how they interact with their immediate environment (from the micro- up to kilometer scale) is urgently needed. Furthermore, key information and empirical data is missing at the microscale due to experimental difficulties in mapping this heterogeneous and opaque environment. We therefore present a framework that would help generate this much-needed empirical data and information at the microscale, together with modeling approaches to link the spatial and temporal scales. The latter is important as we propose that there is much to be gained by linking our understanding of fungal community responses across scales, in order to develop

  10. Composition of fungal soil communities varies with plant abundance and geographic origin

    PubMed Central

    Reininger, Vanessa; Martinez-Garcia, Laura B.; Sanderson, Laura; Antunes, Pedro M.

    2015-01-01

    Interactions of belowground fungal communities with exotic and native plant species may be important drivers of plant community structure in invaded grasslands. However, field surveys linking plant community structure with belowground fungal communities are missing. We investigated whether a selected number of abundant and relatively rare plants, either native or exotic, from an old-field site associate with different fungal communities. We also assessed whether these plants showed different symbiotic relationships with soil biota through their roots. We characterized the plant community and collected roots to investigate fungal communities using 454 pyrosequencing and assessed arbuscular mycorrhizal colonization and enemy-induced lesions. Differences in fungal communities were considered based on the assessment of α- and β diversity depending on plant ‘abundance’ and ‘origin’. Plant abundance and origin determined the fungal community. Fungal richness was higher for native abundant as opposed to relatively rare native plant species. However, this was not observed for exotics of contrasting abundance. Regardless of their origin, β diversity was higher for rare than for abundant species. Abundant exotics in the community, which happen to be grasses, were the least mycorrhizal whereas rare natives were most susceptible to enemy attack. Our results suggest that compared with exotics, the relative abundance of remnant native plant species in our old-field site is still linked to the structure of belowground fungal communities. In contrast, exotic species may act as a disturbing agent contributing towards the homogenization of soil fungal communities, potentially changing feedback interactions. PMID:26371291

  11. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs

    PubMed Central

    Mäkipää, Raisa; Rajala, Tiina; Schigel, Dmitry; Rinne, Katja T; Pennanen, Taina; Abrego, Nerea; Ovaskainen, Otso

    2017-01-01

    We investigated the interaction between fungal communities of soil and dead wood substrates. For this, we applied molecular species identification and stable isotope tracking to both soil and decaying wood in an unmanaged boreal Norway spruce-dominated stand. Altogether, we recorded 1990 operational taxonomic units, out of which more than 600 were shared by both substrates and 589 were found to exclusively inhabit wood. On average the soil was more species-rich than the decaying wood, but the species richness in dead wood increased monotonically along the decay gradient, reaching the same species richness and community composition as soil in the late stages. Decaying logs at all decay stages locally influenced the fungal communities from soil, some fungal species occurring in soil only under decaying wood. Stable isotope analyses suggest that mycorrhizal species colonising dead wood in the late decay stages actively transfer nitrogen and carbon between soil and host plants. Most importantly, Piloderma sphaerosporum and Tylospora sp. mycorrhizal species were highly abundant in decayed wood. Soil- and wood-inhabiting fungal communities interact at all decay phases of wood that has important implications in fungal community dynamics and thus nutrient transportation. PMID:28430188

  12. Characterization of rhizosphere and endophytic fungal communities from roots of Stipa purpurea in alpine steppe around Qinghai Lake.

    PubMed

    Lu, Dengxue; Jin, Hui; Yang, Xiaoyan; Zhang, Denghong; Yan, Zhiqiang; Li, Xiuzhuang; Zhao, Yuhui; Han, Rongbing; Qin, Bo

    2016-08-01

    Stipa purpurea is among constructive endemic species in the alpine steppe on the Qinghai-Xizang Plateau. To reveal the fungal community structure and diversity in the rhizosphere and roots of this important grass and to analyze the potential influence of different habitats on the structure of fungal communities, we explored the root endophyte and the directly associated rhizosphere communities of S. purpurea by using internal transcribed spacer rRNA cloning and sequencing methods. We found that the roots of S. purpurea are associated with a diverse consortium of Basidiomycota (59.8%) and Ascomycota (38.5%). Most fungi obtained from rhizosphere soil in S. purpurea have been identified as Ascomycetes, while the high proportion detected in roots were basidiomycetous endophytes. The species richness, diversity, and evenness of fungal assemblages were higher in roots than in the rhizosphere soil. Fungi inhabiting the rhizosphere and roots of S. purpurea are significantly different, and the rhizosphere and endophyte communities are largely independent with little overlap in the dominant phyla or operational taxonomic units. Taken together, these results suggested that a wide variety of fungal communities are associated with the roots and rhizosphere soil of S. purpurea and that the fungal assemblages are strongly influenced by different habitats.

  13. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny.

    PubMed

    Bell, Terrence H; El-Din Hassan, Saad; Lauron-Moreau, Aurélien; Al-Otaibi, Fahad; Hijri, Mohamed; Yergeau, Etienne; St-Arnaud, Marc

    2014-02-01

    Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray-Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg(-1) hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities.

  14. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny

    PubMed Central

    Bell, Terrence H; El-Din Hassan, Saad; Lauron-Moreau, Aurélien; Al-Otaibi, Fahad; Hijri, Mohamed; Yergeau, Etienne; St-Arnaud, Marc

    2014-01-01

    Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray–Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg−1 hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities. PMID:23985744

  15. Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China.

    PubMed

    He, Jinhong; Tedersoo, Leho; Hu, Ang; Han, Conghai; He, Dan; Wei, Hui; Jiao, Min; Anslan, Sten; Nie, Yanxia; Jia, Yongxia; Zhang, Gengxin; Yu, Guirui; Liu, Shirong; Shen, Weijun

    2017-07-01

    Whether and how seasonality of environmental variables impacts the spatial variability of soil fungal communities remain poorly understood. We assessed soil fungal diversity and community composition of five Chinese zonal forests along a latitudinal gradient spanning 23°N to 42°N in three seasons to address these questions. We found that soil fungal diversity increased linearly or parabolically with latitude. The seasonal variations in fungal diversity were more distinguishable in three temperate deciduous forests than in two subtropical evergreen forests. Soil fungal diversity was mainly correlated with edaphic factors such as pH and nutrient contents. Both latitude and its interactions with season also imposed significant impacts on soil fungal community composition (FCC), but the effects of latitude were stronger than those of season. Vegetational properties such as plant diversity and forest age were the dominant factors affecting FCC in the subtropical evergreen forests while edaphic properties were the dominant ones in the temperate deciduous forests. Our results indicate that latitudinal variation patterns of soil fungal diversity and FCC may differ among seasons. The stronger effect of latitude relative to that of season suggests a more important influence by the spatial than temporal heterogeneity in shaping soil fungal communities across zonal forests. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Strong coupling of plant and fungal community structure across western Amazonian rainforests.

    PubMed

    Peay, Kabir G; Baraloto, Christopher; Fine, Paul V A

    2013-09-01

    The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant-fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity.

  17. Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica

    USDA-ARS?s Scientific Manuscript database

    The diversity of fungal communities from different substrates in Antarctica were studied and their capability to produce bioactive compounds. A one hundred and one fungal isolates were identified by molecular analysis in 35 different fungal taxa from 20 genera. Pseudogymnoascus sp. 3, Pseudogymnoasc...

  18. Skin fungal community and its correlation with bacterial community of urban Chinese individuals.

    PubMed

    Leung, Marcus H Y; Chan, Kelvin C K; Lee, Patrick K H

    2016-08-24

    High-throughput sequencing has led to increased insights into the human skin microbiome. Currently, the majority of skin microbiome investigations are limited to characterizing prokaryotic communities, and our understanding of the skin fungal community (mycobiome) is limited, more so for cohorts outside of the western hemisphere. Here, the skin mycobiome across healthy Chinese individuals in Hong Kong are characterized. Based on a curated fungal reference database designed for skin mycobiome analyses, previously documented common skin colonizers are also abundant and prevalent in this cohort. However, genera associated with local terrains, food, and medicine are also detected. Fungal community composition shows interpersonal (Bray-Curtis ANOSIM = 0.398) and household (Bray-Curtis ANOSIM = 0.134) clustering. Roles of gender and age on diversity analyses are test- and site-specific, and, contrary to bacteria, the effect of household on fungal community composition dissimilarity between samples is insignificant. Site-specific, cross-domain positive and negative correlations at both community and operational taxonomic unit levels may uncover potential relationships between fungi and bacteria on skin. The studied Chinese population presents similar major fungal skin colonizers that are also common in western populations, but local outdoor environments and lifestyles may also contribute to mycobiomes of specific cohorts. Cohabitation plays an insignificant role in shaping mycobiome differences between individuals in this cohort. Increased understanding of fungal communities of non-western cohorts will contribute to understanding the size of the global skin pan-mycobiome, which will ultimately help understand relationships between environmental exposures, microbial populations, and the health of global humans.

  19. Assessing fungal community structure from mineral surfaces in Kartchner Caverns using multiplexed 454 pyrosequencing.

    PubMed

    Vaughan, Michael Joe; Nelson, Will; Soderlund, Carol; Maier, Raina M; Pryor, Barry M

    2015-07-01

    Research on the distribution and structure of fungal communities in caves is lacking. Kartchner Caverns is a wet and mineralogically diverse carbonate cave located in an escarpment of Mississippian Escabrosa limestone in the Whetstone Mountains, Arizona, USA. Fungal diversity from speleothem and rock wall surfaces was examined with 454 FLX Titanium sequencing technology using the Internal Transcribed Spacer 1 as a fungal barcode marker. Fungal diversity was estimated and compared between speleothem and rock wall surfaces, and its variation with distance from the natural entrance of the cave was quantified. Effects of environmental factors and nutrient concentrations in speleothem drip water at different sample sites on fungal diversity were also examined. Sequencing revealed 2,219 fungal operational taxonomic units (OTUs) at the 95% similarity level. Speleothems supported a higher fungal richness and diversity than rock walls. However, community membership and the taxonomic distribution of fungal OTUs at the class level did not differ significantly between speleothems and rock walls. Both OTU richness and diversity decreased significantly with increasing distance from the natural cave entrance. Community membership and taxonomic distribution of fungal OTUs also differed significantly between the sampling sites closest to the entrance and those furthest away. There was no significant effect of temperature, CO2 concentration, or drip water nutrient concentration on fungal community structure on either speleothems or rock walls. Together, these results suggest that proximity to the natural entrance is a critical factor in determining fungal community structure on mineral surfaces in Kartchner Caverns.

  20. Characterization of arbuscular mycorrhizal fungal communities with respect to zonal vegetation in a coastal dune ecosystem.

    PubMed

    Kawahara, Ai; Ezawa, Tatsuhiro

    2013-10-01

    Coastal dune vegetation distributes zonally along the environmental gradients of, e.g., soil disturbance. In the preset study, arbuscular mycorrhizal fungal communities in a coastal dune ecosystem were characterized with respect to tolerance to soil disturbance. Two grass species, Elymus mollis and Miscanthus sinensis, are distributed zonally in the seaward and landward slopes, respectively, in the primary dunes in Ishikari, Japan. The seaward slope is severely disturbed by wind, while the landward slope is stabilized by the thick root system of M. sinensis. The roots and rhizosphere soils of the two grasses were collected from the slopes. The soils were sieved to destruct the fungal hyphal networks, and soil trap culture was conducted to assess tolerance of the communities to disturbance, with parallel analysis of the field communities using a molecular ecological tool. In the landward communities, large shifts in the composition and increases in diversity were observed in the trap culture compared with the field, but in the seaward communities, the impact of trap culture was minimal. The landward field community was significantly nested within the landward trap culture community, implying that most members in the field community did not disappear in the trap culture. No nestedness was observed in the seaward communities. These observations suggest that disturbance-tolerant fungi have been preferentially selected in the seaward slope due to severe disturbance in the habitat. Whereas a limited number of fungi, which are not necessarily disturbance-sensitive, dominate in the stable landward slope, but high-potential diversity has been maintained in the habitat.

  1. Temporally Variable Geographical Distance Effects Contribute to the Assembly of Root-Associated Fungal Communities

    PubMed Central

    Barnes, Christopher J.; van der Gast, Christopher J.; Burns, Caitlin A.; McNamara, Niall P.; Bending, Gary D.

    2016-01-01

    Root-associated fungi are key contributors to ecosystem functioning, however, the factors which determine community assembly are still relatively poorly understood. This study simultaneously quantified the roles of geographical distance, environmental heterogeneity and time in determining root-associated fungal community composition at the local scale within a short rotation coppice (SRC) willow plantation. Culture independent molecular analyses of the root-associated fungal community suggested a strong but temporally variable effect of geographical distance among fungal communities in terms of composition at the local geographical level. Whilst these distance effects were most prevalent on October communities, soil pH had an effect on structuring of the communities throughout the sampling period. Given the temporal variation in the effects of geographical distance and the environment for shaping root-associated fungal communities, there is clearly need for a temporal component to sampling strategies in future investigations of fungal ecology. PMID:26941720

  2. Prospects and challenges for fungal metatranscriptomes of complex communities

    DOE PAGES

    Kuske, Cheryl Rae; Hesse, Cedar Nelson; Challacombe, Jean Faust; ...

    2015-01-22

    We report that the ability to extract and purify messenger RNA directly from plants, decomposing organic matter and soil, followed by high-throughput sequencing of the pool of expressed genes, has spawned the emerging research area of metatranscriptomics. Each metatranscriptome provides a snapshot of the composition and relative abundance of actively transcribed genes, and thus provides an assessment of the interactions between soil microorganisms and plants, and collective microbial metabolic processes in many environments. We highlight current approaches for analysis of fungal transcriptome and metatranscriptome datasets across a gradient of community complexity, and note benefits and pitfalls associated with those approaches.more » Finally, we discuss knowledge gaps that limit our current ability to interpret metatranscriptome datasets and suggest future research directions that will require concerted efforts within the scientific community.« less

  3. Prospects and challenges for fungal metatranscriptomes of complex communities

    SciTech Connect

    Kuske, Cheryl Rae; Hesse, Cedar Nelson; Challacombe, Jean Faust; Herr, Joshua R.; Cullen, Daniel; Mueller, Rebecca C.; Tsang, Adrian; Vilgalys, Rytas

    2015-01-22

    We report that the ability to extract and purify messenger RNA directly from plants, decomposing organic matter and soil, followed by high-throughput sequencing of the pool of expressed genes, has spawned the emerging research area of metatranscriptomics. Each metatranscriptome provides a snapshot of the composition and relative abundance of actively transcribed genes, and thus provides an assessment of the interactions between soil microorganisms and plants, and collective microbial metabolic processes in many environments. We highlight current approaches for analysis of fungal transcriptome and metatranscriptome datasets across a gradient of community complexity, and note benefits and pitfalls associated with those approaches. Finally, we discuss knowledge gaps that limit our current ability to interpret metatranscriptome datasets and suggest future research directions that will require concerted efforts within the scientific community.

  4. Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient.

    PubMed

    Egan, Cameron P; Callaway, Ragan M; Hart, Miranda M; Pither, Jason; Klironomos, John

    2017-04-01

    Despite the importance of arbuscular mycorrhizal (AM) fungi within terrestrial ecosystems, we know little about how natural AM fungal communities are structured. To date, the majority of studies examining AM fungal community diversity have focused on single habitats with similar environmental conditions, with relatively few studies having assessed the diversity of AM fungi over large-scale environmental gradients. In this study, we characterized AM fungal communities in the soil along a high-elevation gradient in the North American Rocky Mountains. We focused on phylogenetic patterns of AM fungal communities to gain insight into how AM fungal communities are naturally assembled. We found that alpine AM fungal communities had lower phylogenetic diversity relative to lower elevation communities, as well as being more heterogeneous in composition than either treeline or subalpine communities. AM fungal communities were phylogenetically clustered at all elevations sampled, suggesting that environmental filtering, either selection by host plants or fungal niches, is the primary ecological process structuring communities along the gradient.

  5. Fungal and Bacterial Communities in the Rhizosphere of Pinus tabulaeformis Related to the Restoration of Plantations and Natural Secondary Forests in the Loess Plateau, Northwest China

    PubMed Central

    Yu, Hong-Xia; Wang, Chun-Yan; Tang, Ming

    2013-01-01

    Chinese pine (Pinus tabulaeformis Carr.) is widely planted for restoration in destroyed ecosystems of the Loess Plateau in China. Although soil microbial communities are important subsurface components of the terrestrial ecosystems, little is known about fungal and bacterial communities in the rhizosphere of planted and natural P. tabulaeformis forests in the region. In this study, fungal and bacterial communities in the rhizosphere of P. tabulaeformis were analyzed by nested PCR-DGGE (denaturing gradient gel electrophoresis). Diversity analysis revealed that the values of the Shannon-Wiener index (H) and the Simpson index (D) of fungal communities were higher in natural secondary forests than in plantations except for the 3-year-old site. Moreover, the values of species richness, H, and D of the bacterial communities were also higher in the former. Totally, 18 fungal and 19 bacterial DGGE band types were successfully retrieved and sequenced. The dominant fungi in the rhizosphere of P. tabulaeformis belonged to the phylum of Basidiomycota, while the dominant bacteria belonged to the phylum of Proteobacteria. Principal component analysis indicated that fungal and bacterial species were more unitary in plantations than in natural secondary forests, and the majority of them were more likely to appear in the latter. Correlation analysis showed no significant correlation between the fungal and bacterial community diversities. PMID:24459438

  6. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests.

    PubMed

    Clemmensen, Karina E; Finlay, Roger D; Dahlberg, Anders; Stenlid, Jan; Wardle, David A; Lindahl, Björn D

    2015-03-01

    Boreal forest soils store a major proportion of the global terrestrial carbon (C) and below-ground inputs contribute as much as above-ground plant litter to the total C stored in the soil. A better understanding of the dynamics and drivers of root-associated fungal communities is essential to predict long-term soil C storage and climate feedbacks in northern ecosystems. We used 454-pyrosequencing to identify fungal communities across fine-scaled soil profiles in a 5000 yr fire-driven boreal forest chronosequence, with the aim of pinpointing shifts in fungal community composition that may underlie variation in below-ground C sequestration. In early successional-stage forests, higher abundance of cord-forming ectomycorrhizal fungi (such as Cortinarius and Suillus species) was linked to rapid turnover of mycelial biomass and necromass, efficient nitrogen (N) mobilization and low C sequestration. In late successional-stage forests, cord formers declined, while ericoid mycorrhizal ascomycetes continued to dominate, potentially facilitating long-term humus build-up through production of melanized hyphae that resist decomposition. Our results suggest that cord-forming ectomycorrhizal fungi and ericoid mycorrhizal fungi play opposing roles in below-ground C storage. We postulate that, by affecting turnover and decomposition of fungal tissues, mycorrhizal fungal identity and growth form are critical determinants of C and N sequestration in boreal forests.

  7. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities

    NASA Astrophysics Data System (ADS)

    Zhou, Xingang; Zhang, Jianhui; Gao, Danmei; Gao, Huan; Guo, Meiyu; Li, Li; Zhao, Mengliang; Wu, Fengzhi

    2017-01-01

    Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1α genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents.

  8. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities

    PubMed Central

    Zhou, Xingang; Zhang, Jianhui; Gao, Danmei; Gao, Huan; Guo, Meiyu; Li, Li; Zhao, Mengliang; Wu, Fengzhi

    2017-01-01

    Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1α genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents. PMID:28134269

  9. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities.

    PubMed

    Zhou, Xingang; Zhang, Jianhui; Gao, Danmei; Gao, Huan; Guo, Meiyu; Li, Li; Zhao, Mengliang; Wu, Fengzhi

    2017-01-30

    Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1α genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents.

  10. Minor changes in soil bacterial and fungal community composition occur in response to monsoon precipitation in a semiarid grassland.

    PubMed

    McHugh, Theresa A; Koch, George W; Schwartz, Egbert

    2014-08-01

    Arizona and New Mexico receive half of their annual precipitation during the summer monsoon season, making this large-scale rain event critical for ecosystem productivity. We used the monsoon rains to explore the responses of soil bacterial and fungal communities to natural moisture pulses in a semiarid grassland. Through 454 pyrosequencing of the 16S rRNA gene and ITS region, we phylogenetically characterized these communities at 22 time points during a summer season. Relative humidity increased before the rains arrived, creating conditions in soil that allowed for the growth of microorganisms. During the course of the study, the relative abundances of most bacterial phyla showed little variation, though some bacterial populations responded immediately to an increase in soil moisture once the monsoon rains arrived. The Firmicutes phylum experienced over a sixfold increase in relative abundance with increasing water availability. Conversely, Actinobacteria, the dominant taxa at our site, were negatively affected by the increase in water availability. No relationship was found between bacterial diversity and soil water potential. Bacterial community structure was unrelated to all environmental variables that we measured, with the exception of a significant relationship with atmospheric relative humidity. Relative abundances of fungal phyla fluctuated more throughout the season than bacterial abundances did. Variation in fungal community structure was unrelated to soil water potential and to most environmental variables. However, ordination analysis showed a distinct fungal community structure late in the season, probably due to plant senescence.

  11. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants

    PubMed Central

    Gehring, Catherine A.; Mueller, Rebecca C.; Haskins, Kristin E.; Rubow, Tine K.; Whitham, Thomas G.

    2014-01-01

    Plants and mycorrhizal fungi influence each other’s abundance, diversity, and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of plant parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis), and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors, and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future. PMID:25009537

  12. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants.

    PubMed

    Gehring, Catherine A; Mueller, Rebecca C; Haskins, Kristin E; Rubow, Tine K; Whitham, Thomas G

    2014-01-01

    Plants and mycorrhizal fungi influence each other's abundance, diversity, and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of plant parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis), and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors, and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future.

  13. Impact of alien pines on local arbuscular mycorrhizal fungal communities-evidence from two continents.

    PubMed

    Gazol, Antonio; Zobel, Martin; Cantero, Juan José; Davison, John; Esler, Karen J; Jairus, Teele; Öpik, Maarja; Vasar, Martti; Moora, Mari

    2016-06-01

    The introduction of alien plants can influence biodiversity and ecosystems. However, its consequences for soil microbial communities remain poorly understood. We addressed the impact of alien ectomycorrhizal (EcM) pines on local arbuscular mycorrhizal (AM) fungal communities in two regions with contrasting biogeographic histories: in South Africa, where no native EcM plant species are present; and in Argentina, where EcM trees occur naturally. The effect of alien pines on AM fungal communities differed between these regions. In South Africa, plantations of alien EcM pines exhibited lower AM fungal richness and significantly altered community composition, compared with native fynbos. In Argentina, the richness and composition of local AM fungal communities were similar in plantations of alien EcM pines and native forest. However, the presence of alien pines resulted in slight changes to the phylogenetic structure of root AM fungal communities in both regions. In pine clearcut areas in South Africa, the richness and composition of AM fungal communities were intermediate between the native fynbos and the alien pine plantation, which is consistent with natural regeneration of former AM fungal communities following pine removal. We conclude that the response of local AM fungal communities to alien EcM pines differs between biogeographic regions with different histories of species coexistence.

  14. Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana Lamb.) in Pb-Zn mine sites of central south China.

    PubMed

    Huang, Jian; Nara, Kazuhide; Lian, Chunlan; Zong, Kun; Peng, Kejian; Xue, Shengguo; Shen, Zhenguo

    2012-11-01

    To advance our understanding of ectomycorrhizal fungal communities in mining areas, the diversity and composition of ectomycorrhizal fungi associated with Masson pine (Pinus massoniana Lamb.) and soil chemistry were investigated in Taolin lead-zinc (Pb-Zn) mine tailings (TLT), two fragmented forest patches in a Huayuan Pb-Zn mineland (HY1 and HY2), and a non-polluted forest in Taolin in central south China. Ectomycorrhizal fungal species were identified by morphotyping and sequence analyses of the internally transcribed spacer regions of ribosomal DNA. The two study sites in the Huayuan mineland (HY1 and HY2) were significantly different in soil Pb, Zn, and cadmium (Cd) concentrations, but no significant difference was observed in ectomycorrhizal colonization, ectomycorrhizal fungal richness, diversity, or rank-abundance. In addition, the similarity of ectomycorrhizal fungal communities between HY1 and HY2 was quite high (Sørensen similarity index = 0.47). Thus, the concentration of heavy metals may not be determining factors in the structure of these communities. In the tailings, however, significantly lower ectomycorrhizal colonization and ectomycorrhizal fungal richness were observed. The amounts of Pb and Zn in the tailing sand were higher than the non-polluted forest but far lower than in HY1. Thus, these heavy metals did not account for the reduced colonization and ectomycorrhizal fungal richness in TLT. The ectomycorrhizal fungal community in TLT was dominated by four pioneer species (Rhizopogon buenoi, Tomentella ellisii, Inocybe curvipes, and Suillus granulatus), which collectively accounted for 93.2 % of root tip colonization. The immature soil conditions in tailing (low N and P, sand texture, and lack of organic matter) may only allow certain pioneer ectomycorrhizal fungal species to colonize the site. When soil samples from four sites were combined, we found that the occurrences of major ectomycorrhizal fungal taxa were not clearly related to the

  15. Ectomycorrhizal fungal communities of Coccoloba uvifera (L.) L. mature trees and seedlings in the neotropical coastal forests of Guadeloupe (Lesser Antilles).

    PubMed

    Séne, Seynabou; Avril, Raymond; Chaintreuil, Clémence; Geoffroy, Alexandre; Ndiaye, Cheikh; Diédhiou, Abdala Gamby; Sadio, Oumar; Courtecuisse, Régis; Sylla, Samba Ndao; Selosse, Marc-André; Bâ, Amadou

    2015-10-01

    We studied belowground and aboveground diversity and distribution of ectomycorrhizal (EM) fungal species colonizing Coccoloba uvifera (L.) L. (seagrape) mature trees and seedlings naturally regenerating in four littoral forests of the Guadeloupe island (Lesser Antilles). We collected 546 sporocarps, 49 sclerotia, and morphotyped 26,722 root tips from mature trees and seedlings. Seven EM fungal species only were recovered among sporocarps (Cantharellus cinnabarinus, Amanita arenicola, Russula cremeolilacina, Inocybe littoralis, Inocybe xerophytica, Melanogaster sp., and Scleroderma bermudense) and one EM fungal species from sclerotia (Cenococcum geophilum). After internal transcribed spacer (ITS) sequencing, the EM root tips fell into 15 EM fungal taxa including 14 basidiomycetes and 1 ascomycete identified. Sporocarp survey only weakly reflected belowground assessment of the EM fungal community, although 5 fruiting species were found on roots. Seagrape seedlings and mature trees had very similar communities of EM fungi, dominated by S. bermudense, R. cremeolilacina, and two Thelephoraceae: shared species represented 93 % of the taxonomic EM fungal diversity and 74 % of the sampled EM root tips. Furthermore, some significant differences were observed between the frequencies of EM fungal taxa on mature trees and seedlings. The EM fungal community composition also varied between the four investigated sites. We discuss the reasons for such a species-poor community and the possible role of common mycorrhizal networks linking seagrape seedlings and mature trees in regeneration of coastal forests.

  16. Fungal communities of young and mature hypersaline microbial mats.

    PubMed

    Cantrell, Sharon A; Tkavc, Rok; Gunde-Cimerman, Nina; Zalar, Polona; Acevedo, Manuel; Báez-Félix, Claribel

    2013-01-01

    Microbial mats are a laminated organic-sedimentary ecosystem, found in a wide range of habitats. Fluctuating diel and seasonal physicochemical gradients characterize these ecosystems, resulting in both strata and microenvironments that harbor specific microbial communities. This study was undertaken to compare two types of microbial mats across seasons to further understand the structure of fungal communities in hypersaline microbial mats and their seasonal dynamics. The structure and diversity of fungal communities was documented in young transient and mature hypersaline microbial mats from a tropical region (Puerto Rico) using one culture-dependent and three culture-independent molecular techniques based on the internal transcribed spacer (ITS) region of ribosomal DNA: terminal restriction fragment length polymorphism (TRFLP), denaturing gradient gel electrophoresis (DGGE) and clone libraries. Two microbial mats (one young and transient, one mature) were sampled in Nov 2007 (wet season), Jan 2008 (intermediate season) and Mar 2008 (dry season) in the Cabo Rojo Solar Salterns on the southwestern coast of Puerto Rico. Traditional and molecular techniques revealed strong spatial and temporal heterogeneities in both microbial mats. Higher abundance of isolates and phylotypes were observed during the wet season, and diversity decreased from the top (oxic) to the bottom (anoxic) layers in both seasons. Some of the species isolated belong to the genera Aspergillus, Cladosporium, Hortaea, Pichia and Wallemia, which often are isolated from hypersaline environments. The most abundant clones belong to Acremonium strictum and Cladosporium halotolerans, which were not isolated in pure culture. The differences observed using culture-based and molecular techniques demonstrates the need of combining methods to study the diversity of fungi in a given substrate.

  17. The biogeography of fungal communities in wetland sediments along the Changjiang River and other sites in China

    PubMed Central

    Wu, Bing; Tian, Jianqing; Bai, Chunming; Xiang, Meichun; Sun, Jingzu; Liu, Xingzhong

    2013-01-01

    Whether fungal community structure depends more on historical factors or on contemporary factors is controversial. This study used culture-dependent and -independent (polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)) methods to assess the influence of historical and contemporary factors on the distributions of fungi in the wetland sediments at 10 locations along the Changjiang River and at 10 other locations in China. The culture-dependent approach detected greater species diversity (177 operational taxonomic units (OTUs)) than PCR-DGGE analysis (145 OTUs), and the species in the genera of Penicillium (relative frequency=16.8%), Fusarium (15.4%), Aspergillus (7.6%), Trichoderma (5.8%) and Talaromyces (4.2%) were dominant. On the basis of DGGE data, fungal diversity along the Changjiang River increased from upstream to downstream; altitude explained 44.8% of this variation in diversity. And based on the data from all 20 locations, the fungal communities were geographically clustered into three groups: Southern China, Northern China and the Qinghai-Tibetan Plateau. Multivariate regression tree analysis for data from the 20 locations indicated that the fungal community was influenced primarily by location (which explained 61.8% of the variation at a large scale), followed by total potassium (9.4%) and total nitrogen (3.5%) at a local scale. These results are consistent with the concept that geographic distance is the dominant factor driving variation in fungal diversity at a regional scale (1000–4000 km), whereas environmental factors (total potassium and total nitrogen) explain variation in fungal diversity at a local scale (<1000 km). PMID:23446835

  18. Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem.

    PubMed

    Kim, Yong-Chan; Gao, Cheng; Zheng, Yong; He, Xin-Hua; Yang, Wei; Chen, Liang; Wan, Shi-Qiang; Guo, Liang-Dong

    2015-05-01

    Understanding the response of arbuscular mycorrhizal (AM) fungi to warming and nitrogen (N) fertilization is critical to assess the impact of anthropogenic disturbance on ecosystem functioning under global climate change scenarios. In this study, AM fungal communities were examined in a full factorial design with warming and N addition in a semiarid steppe in northern China. Warming significantly increased AM fungal spore density, regardless of N addition, whilst N addition significantly decreased AM fungal extraradical hyphal density, regardless of warming. A total of 79 operational taxonomic units (OTUs) of AM fungi were recovered by 454 pyrosequencing of SSU rDNA. Warming, but not N addition, had a significant positive effect on AM fungal OTU richness, while warming and N addition significantly increased AM fungal Shannon diversity index. N addition, but not warming, significantly altered the AM fungal community composition. Furthermore, the changes in AM fungal community composition were associated with shifts in plant community composition indirectly caused by N addition. These findings highlight the different effects of warming and N addition on AM fungal communities and contribute to understanding AM fungal community responses to global environmental change scenarios in semiarid steppe ecosystems.

  19. Infant fungal communities: current knowledge and research opportunities.

    PubMed

    Ward, Tonya L; Knights, Dan; Gale, Cheryl A

    2017-02-13

    The microbes colonizing the infant gastrointestinal tract have been implicated in later-life disease states such as allergies and obesity. Recently, the medical research community has begun to realize that very early colonization events may be most impactful on future health, with the presence of key taxa required for proper immune and metabolic development. However, most studies to date have focused on bacterial colonization events and have left out fungi, a clinically important sub-population of the microbiota. A number of recent findings indicate the importance of host-associated fungi (the mycobiota) in adult and infant disease states, including acute infections, allergies, and metabolism, making characterization of early human mycobiota an important frontier of medical research. This review summarizes the current state of knowledge with a focus on factors influencing infant mycobiota development and associations between early fungal exposures and health outcomes. We also propose next steps for infant fungal mycobiome research, including longitudinal studies of mother-infant pairs while monitoring long-term health outcomes, further exploration of bacterium-fungus interactions, and improved methods and databases for mycobiome quantitation.

  20. Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Womack, A. M.; Artaxo, P. E.; Ishida, F. Y.; Mueller, R. C.; Saleska, S. R.; Wiedemann, K. T.; Bohannan, B. J. M.; Green, J. L.

    2015-11-01

    Fungi are ubiquitous in the atmosphere and may play an important role in atmospheric processes. We investigated the composition and diversity of fungal communities over the Amazon rainforest canopy and compared these communities to fungal communities found in terrestrial environments. We characterized the total fungal community and the metabolically active portion of the community using high-throughput DNA and RNA sequencing and compared these data to predictions generated by a mass-balance model. We found that the total community was primarily comprised of fungi from the phylum Basidiomycota. In contrast, the active community was primarily composed of members of the phylum Ascomycota and included a high relative abundance of lichen fungi, which were not detected in the total community. The relative abundance of Basidiomycota and Ascomycota in the total and active communities was consistent with our model predictions, suggesting that this result was driven by the relative size and number of spores produced by these groups. When compared to other environments, fungal communities in the atmosphere were most similar to communities found in tropical soils and leaf surfaces. Our results demonstrate that there are significant differences in the composition of the total and active fungal communities in the atmosphere, and that lichen fungi, which have been shown to be efficient ice nucleators, may be abundant members of active atmospheric fungal communities over the forest canopy.

  1. Arbuscular mycorrhizal fungal community composition associated with Juniperus brevifolia in native Azorean forest

    NASA Astrophysics Data System (ADS)

    Melo, Catarina Drumonde; Luna, Sara; Krüger, Claudia; Walker, Christopher; Mendonça, Duarte; Fonseca, Henrique M. A. C.; Jaizme-Vega, Maria; da Câmara Machado, Artur

    2017-02-01

    The communities of glomeromycotan fungi (arbuscular mycorrhizal fungi, AMF) under native Juniperus brevifolia forest from two Azorean islands, Terceira and São Miguel, were compared, mainly by spore morphology, and when possible, by molecular analysis. Thirty-nine morphotypes were detected from 12 genera. Glomeromycotan fungal richness was similar in Terceira and São Miguel, but significantly different among the four fragments of native forest. Spore diversity and community composition differed significantly between the two islands. The less degraded island, Terceira, showed 10 exclusive morphotypes including more rare types, whereas the more disturbed forest on São Miguel showed 13 morphs, mostly of common types. Forests from Terceira were dominated by Acaulosporaceae and Glomeraceae. Whereas members of Acaulosporaceae, Glomeraceae and Ambisporaceae were most frequent and abundant in those from São Miguel. Spore abundance was greatest on Terceira, and correlated with soil chemical properties (pH), average monthly temperature and relative humidity.

  2. Local Adaptation to Soil Hypoxia Determines the Structure of an Arbuscular Mycorrhizal Fungal Community in Roots from Natural CO2 Springs ▿ †

    PubMed Central

    Maček, Irena; Dumbrell, Alex J.; Nelson, Michaela; Fitter, Alastair H.; Vodnik, Dominik; Helgason, Thorunn

    2011-01-01

    The processes responsible for producing and maintaining the diversity of natural arbuscular mycorrhizal (AM) fungal communities remain largely unknown. We used natural CO2 springs (mofettes), which create hypoxic soil environments, to determine whether a long-term, directional, abiotic selection pressure could change AM fungal community structure and drive the selection of particular AM fungal phylotypes. We explored whether those phylotypes that appear exclusively in hypoxic soils are local specialists or widespread generalists able to tolerate a range of soil conditions. AM fungal community composition was characterized by cloning, restriction fragment length polymorphism typing, and the sequencing of small subunit rRNA genes from roots of four plant species growing at high (hypoxic) and low (control) geological CO2 exposure. We found significant levels of AM fungal community turnover (β diversity) between soil types and the numerical dominance of two AM fungal phylotypes in hypoxic soils. Our results strongly suggest that direct environmental selection acting on AM fungi is a major factor regulating AM fungal communities and their phylogeographic patterns. Consequently, some AM fungi are more strongly associated with local variations in the soil environment than with their host plant's distribution. PMID:21622777

  3. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands.

    PubMed

    Kyaschenko, Julia; Clemmensen, Karina E; Hagenbo, Andreas; Karltun, Erik; Lindahl, Björn D

    2017-04-01

    Forestry reshapes ecosystems with respect to tree age structure, soil properties and vegetation composition. These changes are likely to be paralleled by shifts in microbial community composition with potential feedbacks on ecosystem functioning. Here, we assessed fungal communities across a chronosequence of managed Pinus sylvestris stands and investigated correlations between taxonomic composition and extracellular enzyme activities. Not surprisingly, clear-cutting had a negative effect on ectomycorrhizal fungal abundance and diversity. In contrast, clear-cutting favoured proliferation of saprotrophic fungi correlated with enzymes involved in holocellulose decomposition. During stand development, the re-establishing ectomycorrhizal fungal community shifted in composition from dominance by Atheliaceae in younger stands to Cortinarius and Russula species in older stands. Late successional ectomycorrhizal taxa correlated with enzymes involved in mobilisation of nutrients from organic matter, indicating intensified nutrient limitation. Our results suggest that maintenance of functional diversity in the ectomycorrhizal fungal community may sustain long-term forest production by retaining a capacity for symbiosis-driven recycling of organic nutrient pools.

  4. Loss of diversity in wood-inhabiting fungal communities affects decomposition activity in Norway spruce wood

    PubMed Central

    Valentín, Lara; Rajala, Tiina; Peltoniemi, Mikko; Heinonsalo, Jussi; Pennanen, Taina; Mäkipää, Raisa

    2014-01-01

    Hundreds of wood-inhabiting fungal species are now threatened, principally due to a lack of dead wood in intensively managed forests, but the consequences of reduced fungal diversity on ecosystem functioning are not known. Several experiments have shown that primary productivity is negatively affected by a loss of species, but the effects of microbial diversity on decomposition are less studied. We studied the relationship between fungal diversity and the in vitro decomposition rate of slightly, moderately and heavily decayed Picea abies wood with indigenous fungal communities that were diluted to examine the influence of diversity. Respiration rate, wood-degrading hydrolytic enzymes and fungal community structure were assessed during a 16-week incubation. The number of observed OTUs in DGGE was used as a measure of fungal diversity. Respiration rate increased between early- and late-decay stages. Reduced fungal diversity was associated with lower respiration rates during intermediate stages of decay, but no effects were detected at later stages. The activity of hydrolytic enzymes varied among decay stages and fungal dilutions. Our results suggest that functioning of highly diverse communities of the late-decay stage were more resistant to the loss of diversity than less diverse communities of early decomposers. This indicates the accumulation of functional redundancy during the succession of the fungal community in decomposing substrates. PMID:24904544

  5. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape.

    PubMed

    Zimmerman, Naupaka B; Vitousek, Peter M

    2012-08-07

    We surveyed endophytic fungal communities in leaves of a single tree species (Metrosideros polymorpha) across wide environmental gradients (500-5,500 mm of rain/y; 10-22 °C mean annual temperature) spanning short geographic distances on Mauna Loa Volcano, Hawai'i. Using barcoded amplicon pyrosequencing at 13 sites (10 trees/site; 10 leaves/tree), we found very high levels of diversity within sites (a mean of 551 ± 134 taxonomic units per site). However, among-site diversity contributed even more than did within-site diversity to the overall richness of more than 4,200 taxonomic units observed in M. polymorpha, and this among-site variation in endophyte community composition correlated strongly with temperature and rainfall. These results are consistent with suggestions that foliar endophytic fungi are hyperdiverse. They further suggest that microbial diversity may be even greater than has been assumed and that broad-scale environmental controls such as temperature and rainfall can structure eukaryotic microbial diversity. Appropriately constrained study systems across strong environmental gradients present a useful means to understand the environmental factors that structure the diversity of microbial communities.

  6. Fungal communities influence root exudation rates in pine seedlings.

    PubMed

    Meier, Ina C; Avis, Peter G; Phillips, Richard P

    2013-03-01

    Root exudates are hypothesized to play a central role in belowground food webs, nutrient turnover, and soil C dynamics in forests, but little is known about the extent to which root-associated microbial communities influence exudation rates in trees. We used a novel experimental technique to inoculate loblolly pine (Pinus taeda L.) seedlings with indigenous forest fungi to examine how diverse fungal communities influence exudation. Surface-sterilized seeds were sown in intact, unsieved soil cores for 14 weeks to promote root colonization by fungi. After 14 weeks, we transferred seedlings and root-associated fungi into cuvettes and measured exudate accumulation in trap solutions. Both the abundance and identity of root-associated fungi influenced exudation. Exudation rates were greatest in root systems least colonized by ectomycorrhizal (ECM) fungi and most colonized by putative pathogenic and saprotrophic fungi. However, the ECM community composition was not a strong determinant of exudation rates. These results suggest that environmental conditions that influence the degree to which tree roots are colonized by pathogenic and saprotrophic vs. mutualistic fungi are likely to mediate fluxes of labile C in forest soils, with consequences for soil biogeochemistry and ecosystem processes. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA).

    PubMed

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2011-08-01

    During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days

    PubMed Central

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing. PMID:27148180

  9. Watershed scale fungal community characterization along a pH gradient in a subsurface environment co-contaminated with uranium and nitrate

    SciTech Connect

    Jasrotia, Puja; Green, Stefan; Canion, Andy; Overholt, Will; Prakash, Om; Wafula, Dennis; Hubbard, Daniela; Watson, David B; Schadt, Christopher Warren; Brooks, Scott C; Kostka,

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.

  10. Watershed-scale fungal community characterization along a pH gradient in a subsurface environment cocontaminated with uranium and nitrate.

    PubMed

    Jasrotia, Puja; Green, Stefan J; Canion, Andy; Overholt, Will A; Prakash, Om; Wafula, Denis; Hubbard, Daniela; Watson, David B; Schadt, Christopher W; Brooks, Scott C; Kostka, Joel E

    2014-03-01

    The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.

  11. Watershed-Scale Fungal Community Characterization along a pH Gradient in a Subsurface Environment Cocontaminated with Uranium and Nitrate

    PubMed Central

    Jasrotia, Puja; Green, Stefan J.; Canion, Andy; Overholt, Will A.; Prakash, Om; Wafula, Denis; Hubbard, Daniela; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions. PMID:24389927

  12. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere

    PubMed Central

    Paungfoo-Lonhienne, Chanyarat; Yeoh, Yun Kit; Kasinadhuni, Naga Rup Pinaki; Lonhienne, Thierry G. A.; Robinson, Nicole; Hugenholtz, Philip; Ragan, Mark A.; Schmidt, Susanne

    2015-01-01

    Fungi play important roles as decomposers, plant symbionts and pathogens in soils. The structure of fungal communities in the rhizosphere is the result of complex interactions among selection factors that may favour beneficial or detrimental relationships. Using culture-independent fungal community profiling, we have investigated the effects of nitrogen fertilizer dosage on fungal communities in soil and rhizosphere of field-grown sugarcane. The results show that the concentration of nitrogen fertilizer strongly modifies the composition but not the taxon richness of fungal communities in soil and rhizosphere. Increased nitrogen fertilizer dosage has a potential negative impact on carbon cycling in soil and promotes fungal genera with known pathogenic traits, uncovering a negative effect of intensive fertilization. PMID:25728892

  13. Strong coupling of plant and fungal community structure across western Amazonian rainforests

    PubMed Central

    Peay, Kabir G; Baraloto, Christopher; Fine, Paul VA

    2013-01-01

    The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant–fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity. PMID:23598789

  14. Concentration of Petroleum-Hydrocarbon Contamination Shapes Fungal Endophytic Community Structure in Plant Roots

    PubMed Central

    Bourdel, Guillaume; Roy-Bolduc, Alice; St-Arnaud, Marc; Hijri, Mohamed

    2016-01-01

    Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous pattern of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs) retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of pollution reduce fungal

  15. Concentration of Petroleum-Hydrocarbon Contamination Shapes Fungal Endophytic Community Structure in Plant Roots.

    PubMed

    Bourdel, Guillaume; Roy-Bolduc, Alice; St-Arnaud, Marc; Hijri, Mohamed

    2016-01-01

    Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous pattern of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs) retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of pollution reduce fungal

  16. Foliar fungal communities strongly differ between habitat patches in a landscape mosaic

    PubMed Central

    Robin, Cécile; Capdevielle, Xavier; Delière, Laurent; Vacher, Corinne

    2016-01-01

    Background Dispersal events between habitat patches in a landscape mosaic can structure ecological communities and influence the functioning of agrosystems. Here we investigated whether short-distance dispersal events between vineyard and forest patches shape foliar fungal communities. We hypothesized that these communities homogenize between habitats over the course of the growing season, particularly along habitat edges, because of aerial dispersal of spores. Methods We monitored the richness and composition of foliar and airborne fungal communities over the season, along transects perpendicular to edges between vineyard and forest patches, using Illumina sequencing of the Internal Transcribed Spacer 2 (ITS2) region. Results In contrast to our expectation, foliar fungal communities in vineyards and forest patches increasingly differentiate over the growing season, even along habitat edges. Moreover, the richness of foliar fungal communities in grapevine drastically decreased over the growing season, in contrast to that of forest trees. The composition of airborne communities did not differ between habitats. The composition of oak foliar fungal communities change between forest edge and centre. Discussion These results suggest that dispersal events between habitat patches are not major drivers of foliar fungal communities at the landscape scale. Selective pressures exerted in each habitat by the host plant, the microclimate and the agricultural practices play a greater role, and might account for the differentiation of foliar fugal communities between habitats. PMID:27833817

  17. Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types.

    PubMed

    Zhang, X F; Zhao, L; Xu, S J; Liu, Y Z; Liu, H Y; Cheng, G D

    2013-04-01

    This study investigated the effects of environmental variables on the bacterial and fungal communities of the Beilu River (on the Tibetan Plateau) permafrost soils with different vegetation types. Microbial communities were sampled from meadow, steppe and desert steppe permafrost soils during May, June, August and November, and they were analysed by both pyrosequencing and the use of Biolog EcoPlates. The dominant bacterial and fungal phyla in meadow and steppe soils were Proteobacteria and Ascomycota, whereas Actinobacteria and Basidiomycota predominated in desert steppe soils. The bacterial communities in meadow soils degraded amines and amino acids very rapidly, while polymers were degraded rapidly by steppe communities. The RDA patterns showed that the microbial communities differed greatly between meadow, steppe and desert steppe, and they were related to variations in the soil moisture, C/N ratio and pH. A UniFrac analysis detected clear differences between the desert steppe bacterial community and others, and seasonal shifts were observed. The fungal UniFrac patterns differed significantly between meadow and steppe soils. There were significant correlations between the bacterial diversity (H') and soil moisture (r = 0.506) and C/N (r = 0.527). The fungal diversity (Hf') was significantly correlated with the soil pH (r = 0.541). The soil moisture, C/N ratio and pH were important determinants of the microbial community structure in Beilu River permafrost soils. These results may provide a useful baseline for predicting the variation in microbial communities in response to climate changes. © 2012 The Society for Applied Microbiology.

  18. Digging the New York City Skyline: Soil Fungal Communities in Green Roofs and City Parks

    PubMed Central

    McGuire, Krista L.; Payne, Sara G.; Palmer, Matthew I.; Gillikin, Caitlyn M.; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M.; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A.; Massmann, Audrey L.; Orazi, Giulia; Essene, Adam; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs. PMID:23469260

  19. Digging the New York City Skyline: soil fungal communities in green roofs and city parks.

    PubMed

    McGuire, Krista L; Payne, Sara G; Palmer, Matthew I; Gillikin, Caitlyn M; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A; Massmann, Audrey L; Orazi, Giulia; Essene, Adam; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.

  20. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    PubMed

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

  1. Fungal community associated with fermentation and storage of Fuzhuan brick-tea.

    PubMed

    Xu, Aiqing; Wang, Yuanliang; Wen, Jieyu; Liu, Ping; Liu, Ziyin; Li, Zongjun

    2011-03-15

    Chinese Fuzhuan brick-tea is a unique microbial fermented tea characterized by a period of fungal growth during its manufacturing process. The aim of the present study was to characterize, both physicochemically and microbiologically, traditional industrial production processes of Fuzhuan brick-tea. Fermenting tea samples were collected from the largest manufacturer. Physicochemical analyses showed that the low water content in the tea substrates provided optimal growth conditions for xerophilic fungi. The fungal communities existing in tea materials, fermenting tea, and stored teas were monitored by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) targeting the D1 region of the 26S rRNA genes, followed by sequencing of the amplicons. Results revealed that the microorganisms were from, or closely related to, the genera Eurotium, Debaryomyces, Aspergillus, Verticillium, Pichia, Pestalotiopsis, Rhizomucor and Beauveria. This is the first report of Debaryomyces participating in the processing of Fuzhuan brick-tea. We concluded that the dominant genera Eurotium, Debaryomyces and Aspergillus are beneficial fungi associated with the fermentation of Fuzhuan brick-tea. The genus Beauveria was present in the stored Fuzhuan brick-tea, which may help protect tea products from insect spoilage. The remaining four genera were of minor importance in the manufacturing of Fuzhuan brick-tea. The predominant Eurotium species, a strain named Eurotium sp. FZ, was phenotypically and genotypically identified as Eurotium cristatum. High performance thin layer chromatography analysis of anthraquinones showed that emodin existed in all the dark tea samples, but physcion was only detectable in the tea fermented by E. cristatum. The PCR-DGGE approach was an effective and convenient means for profiling the fungal communities in Fuzhuan brick-tea. These results may help promote the use of microbial consortia as starter cultures to stabilize and improve the quality

  2. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type.

    PubMed

    Procter, Andrew C; Ellis, J Christopher; Fay, Philip A; Polley, H Wayne; Jackson, Robert B

    2014-12-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P < 0.04, R(2) > 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R(2) = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2.

  3. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth.

    PubMed

    Wang, Ziting; Li, Tong; Wen, Xiaoxia; Liu, Yang; Han, Juan; Liao, Yuncheng; DeBruyn, Jennifer M

    2017-01-01

    Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years) conservation (chisel plow, zero) and conventional (plow) tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS) gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1) differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2) tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in tillage regimes may

  4. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda)

    PubMed Central

    Oono, Ryoko; Lefèvre, Emilie; Simha, Anita; Lutzoni, François

    2015-01-01

    Fungal endophytes represent one of the most ubiquitous plant symbionts on Earth and are phylogenetically diverse. The structure and diversity of endophyte communities have been shown to depend on host taxa and climate, but there have been relatively few studies exploring endophyte communities throughout host maturity. We compared foliar fungal endophyte communities between seedlings and adult trees of loblolly pines (Pinus taeda) at the same seasons and locations by culturing and culture-independent methods. We sequenced the internal transcribed spacer region and adjacent partial large subunit nuclear ribosomal RNA gene (ITS–LSU amplicon) to delimit operational taxonomic units and phylogenetically characterize the communities. Despite the lower infection frequency in seedlings compared to adult trees, seedling needles were receptive to a more diverse community of fungal endophytes. Culture-free method confirmed the presence of commonly cultured OTUs from adult needles but revealed several new OTUs from seedling needles that were not found with culturing methods. The two most commonly cultured OTUs in adults were rarely cultured from seedlings, suggesting that host age is correlated with a selective enrichment for specific endophytes. This shift in endophyte species dominance may be indicative of a functional change between these fungi and their loblolly pine hosts. PMID:26399186

  5. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda).

    PubMed

    Oono, Ryoko; Lefèvre, Emilie; Simha, Anita; Lutzoni, François

    2015-10-01

    Fungal endophytes represent one of the most ubiquitous plant symbionts on Earth and are phylogenetically diverse. The structure and diversity of endophyte communities have been shown to depend on host taxa and climate, but there have been relatively few studies exploring endophyte communities throughout host maturity. We compared foliar fungal endophyte communities between seedlings and adult trees of loblolly pines (Pinus taeda) at the same seasons and locations by culturing and culture-independent methods. We sequenced the internal transcribed spacer region and adjacent partial large subunit nuclear ribosomal RNA gene (ITS-LSU amplicon) to delimit operational taxonomic units and phylogenetically characterize the communities. Despite the lower infection frequency in seedlings compared to adult trees, seedling needles were receptive to a more diverse community of fungal endophytes. Culture-free method confirmed the presence of commonly cultured OTUs from adult needles but revealed several new OTUs from seedling needles that were not found with culturing methods. The two most commonly cultured OTUs in adults were rarely cultured from seedlings, suggesting that host age is correlated with a selective enrichment for specific endophytes. This shift in endophyte species dominance may be indicative of a functional change between these fungi and their loblolly pine hosts. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Rapid response of soil fungal communities to low and high intensity fire

    NASA Astrophysics Data System (ADS)

    Smith, Jane E.; Cowan, Ariel D.; Reazin, Chris; Jumpponen, Ari

    2016-04-01

    Contemporary fires have created high-severity burn areas exceeding historical distributions in forests in the western United States. Until recently, the response of soil ecosystems to high intensity burns has been largely unknown. In complementary studies, we investigated the environmental effect of extreme soil heating, such that occurs with the complete combustion of large down wood during wildfires, on soil fungi and nutrients. We used TRFLP and next generation sequencing (Illumina MiSeq) to investigate the fungal communities. During the burning of large down wood, temperatures lethal to fungi were detected at 0-cm, 5-cm, and 10-cm depths in soils compared to 0-cm depth in soils receiving low intensity broadcast burns. We compared the soil fungal diversity in ten high intensity burned plots paired with adjacent low intensity burned plots before and one week after at 0-10 cm soil depth. Nonmetric Multidimensional Scaling (NMS) ordinations and analyses of taxon frequencies reveal a substantial community turnover and corresponding near complete replacement of the dominant basidiomycetes by ascomycetes in high intensity burns. These coarse-level taxonomic responses were primarily attributable to a few fire-responsive (phoenicoid) fungi, particularly Pyronema sp. and Morchella sp., whose frequencies increased more than 100-fold following high intensity burns. Pinus ponderosa seedlings planted one week post-burn were harvested after four months for EMF root tip analysis. We found: a) greater differences in soil properties and nutrients in high intensity burned soils compared to low intensity burned and unburned soils; b) no differences in EMF richness and diversity; and c) weak differences in community composition based on relative abundance between unburned and either burn treatments. These results confirm the combustion of large downed wood can alter the soil environment directly beneath it. However, an EMF community similar to low burned soils recolonized high

  7. A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees

    PubMed Central

    Shakya, Migun; Gottel, Neil; Castro, Hector; Yang, Zamin K.; Gunter, Lee; Labbé, Jessy; Muchero, Wellington; Bonito, Gregory; Vilgalys, Rytas; Tuskan, Gerald; Podar, Mircea; Schadt, Christopher W.

    2013-01-01

    Bacterial and fungal communities associated with plant roots are central to the host health, survival and growth. However, a robust understanding of the root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watersheds to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to its associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall host genotypic distances did not have a significant effect on corresponding communities that

  8. A multifactor analysis of fungal and bacterial community structure of the root microbiome of mature Populus deltoides trees

    SciTech Connect

    Shakya, Migun; Gottel, Neil R; Castro Gonzalez, Hector F; Yang, Zamin; Gunter, Lee E; Labbe, Jessy L; Muchero, Wellington; Bonito, Gregory; Vilgalys, Rytas; Tuskan, Gerald A; Podar, Mircea; Schadt, Christopher Warren

    2013-01-01

    Bacterial and fungal communities associated with plant roots are central to the host- health, survival and growth. However, a robust understanding of root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watersheds to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to it s associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall genotypic distances did not have a significant effect on corresponding communities that could be

  9. Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities.

    PubMed

    Moora, Mari; Davison, John; Öpik, Maarja; Metsis, Madis; Saks, Ülle; Jairus, Teele; Vasar, Martti; Zobel, Martin

    2014-12-01

    Arbuscular mycorrhizal (AM) fungi play an important role in ecosystems, but little is known about how soil AM fungal community composition varies in relation to habitat type and land-use intensity. We molecularly characterized AM fungal communities in soil samples (n = 88) from structurally open (permanent grassland, intensive and sustainable agriculture) and forested habitats (primeval forest and spruce plantation). The habitats harboured significantly different AM fungal communities, and there was a broad difference in fungal community composition between forested and open habitats, the latter being characterized by higher average AM fungal richness. Within both open and forest habitats, intensive land use significantly influenced community composition. There was a broad difference in the phylogenetic structure of AM fungal communities between mechanically disturbed and nondisturbed habitats. Taxa from Glomeraceae served as indicator species for the nondisturbed habitats, while taxa from Archaeosporaceae, Claroideoglomeraceae and Diversisporaceae were indicators for the disturbed habitats. The distribution of these indicator taxa among habitat types in the MaarjAM global database of AM fungal diversity was in accordance with their local indicator status.

  10. Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO2 and O3

    Treesearch

    Carrie Andrew; Erik A. Lilleskov

    2009-01-01

    Sporocarp production is essential for ectomycorrhizal fungal recombination and dispersal, which influences fungal community dynamics. Increasing atmospheric carbon dioxide (CO2) and ozone (O3) affect host plant carbon gain and allocation, which may in turn influence ectomycorrhizal sporocarp production if the carbon...

  11. Root-associated fungal community response to drought-associated changes in vegetation community.

    PubMed

    Dean, Sarah L; Warnock, Daniel D; Litvak, Marcy E; Porras-Alfaro, Andrea; Sinsabaugh, Robert

    2015-01-01

    Recent droughts in southwestern USA have led to large-scale mortality of piñon (Pinus edulis) in piñon-juniper woodlands. Piñon mortality alters soil moisture, nutrient and carbon availability, which could affect the root-associated fungal (RAF) communities and therefore the fitness of the remaining plants. We collected fine root samples at a piñon-juniper woodland and a juniper savannah site in central New Mexico. Roots were collected from piñon and juniper (Juniperus monosperma) trees whose nearest neighbors were live piñon, live juniper or dead piñon. RAF communities were analyzed by 454 pyrosequencing of the universal fungal ITS region. The most common taxa were Hypocreales and Chaetothyriales. More than 10% of ITS sequences could not be assigned taxonomy at the phylum level. Two of the unclassified OTUs significantly differed between savanna and woodland, had few like sequences in GenBank and formed new fungal clades with other unclassified RAF from arid plants, highlighting how little study has been done on the RAF of arid ecosystems. Plant host or neighbor did not affect RAF community composition. However, there was a significant difference between RAF communities from woodland vs. savanna, indicating that abiotic factors such as temperature and aridity might be more important in structuring these RAF communities than biotic factors such as plant host or neighbor identity. Ectomycorrhizal fungi (EM) were present in juniper as well as piñon in the woodland site, in contrast with previous research, but did not occur in juniper savanna, suggesting a potential shared EM network with juniper. RAF richness was lower in hosts that were neighbors of the opposite host. This may indicate competitive exclusion between fungi from different hosts. Characterizing these communities and their responses to environment and plant neighborhood is a step toward understanding the effects of drought on a biome that spans 19,000,000 ha of southwestern USA.

  12. Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities.

    PubMed

    Filstrup, Christopher T; Hillebrand, Helmut; Heathcote, Adam J; Harpole, W Stanley; Downing, John A

    2014-04-01

    Freshwater biodiversity loss potentially disrupts ecosystem services related to water quality and may negatively impact ecosystem functioning and temporal community turnover. We analysed a data set containing phytoplankton and zooplankton community data from 131 lakes through 9 years in an agricultural region to test predictions that plankton communities with low biodiversity are less efficient in their use of limiting resources and display greater community turnover (measured as community dissimilarity). Phytoplankton resource use efficiency (RUE = biomass per unit resource) was negatively related to phytoplankton evenness (measured as Pielou's evenness), whereas zooplankton RUE was positively related to phytoplankton evenness. Phytoplankton and zooplankton RUE were high and low, respectively, when Cyanobacteria, especially Microcystis sp., dominated. Phytoplankton communities displayed slower community turnover rates when dominated by few genera. Our findings, which counter findings of many terrestrial studies, suggest that Cyanobacteria dominance may play important roles in ecosystem functioning and community turnover in nutrient-enriched lakes.

  13. Arbuscular mycorrhizal fungal assemblages in biological crusts from a Neotropical savanna are not related to the dominant perennial Trachypogon.

    PubMed

    Hernández-Hernández, R M; Roldán, A; Caravaca, F; Rodriguez-Caballero, G; Torres, M P; Maestre, F T; Alguacil, M M

    2017-01-01

    Knowledge of the arbuscular mycorrhizal fungal assemblages in the Trachypogon savanna ecosystems is very important to a better understanding of the ecological processes mediated by this soil microbial group that affects multiple ecosystem functions. Considering the hypothesis that the biocrusts can be linked to vegetation through the arbuscular fungi mycelial network, the objectives proposed in this study were to determine (i) whether there are arbuscular mycorrhizal fungi (AMF) in the biocrusts (ii) whether arbuscular mycorrhizal fungal assemblages are linked to the Trachypogon patches, and (iii) whether the composition of the assemblages is related to soil properties affected by microbiological activity. The community structure of the AMF was investigated in three habitats: rhizospheric soil and roots of Trachypogon vestitus, biological soil crusts, and bare soil. The canonical correspondence analysis showed that two soil properties related to enzymatic activity (protease and β-glucosidase) significantly affected the community composition of the AMF. The biocrusts in the Venezuelan savanna are colonized by an AM fungal community linked to that of the bare soil and significantly different from that hosted by the roots of the surrounding T. vestitus, suggesting that assemblages of AMF in biocrusts might be related more closely to those of annual plant species appearing in favorable conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Characterisation of fungal communities of developmental stages in table grape grown in the northern region of South Africa.

    PubMed

    Carmichael, P C; Siyoum, N; Chidamba, L; Korsten, L

    2017-09-01

    To determine fungal communities that characterise table grapes during berry development. Two agro-ecologically different table grape commercial farms (site A and B) were used in this study. Samples were collected at full bloom, pea size and mature stages, from three positions (inside centre, eastern and western peripheral-ends) per site. Total DNA extraction, Illumina sequencing and analysis of 18 pooled samples for fungal diversity targeting ITS1-2 generated a total of 2035933 high quality sequences. The phylum Ascomycota (77.0%) and Basidiomycota (23.0%) were the most dominant, while the genera, Alternaria (33.1%) and Cladosporium (24.2%) were the overall dominant postharvest decay causing fungi throughout the developmental stages. Inside centre of site A were more diverse at full bloom (3.82) than those at the peripheral-ends (<3.8), while at site B, the peripheral-ends showed better diversity, particularly the eastern part at both full bloom (3.3) and pea size (3.7). Fungal population diversity varies with different phenological table grape growth stages and is further influenced by site and vine position within a specific vineyard. The information on fungal diversity and succession in table grapes during preharvest growth stages is critical in the development of a more targeted control strategy, to improve postharvest quality of table grapes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. A hydrogen-based subsurface microbial community dominated by methanogens

    USGS Publications Warehouse

    Chapelle, F.H.; O'Neil, Kyle; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1-5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16s ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  16. A hydrogen-based subsurface microbial community dominated by methanogens

    NASA Astrophysics Data System (ADS)

    Chapelle, Francis H.; O'Neill, Kathleen; Bradley, Paul M.; Methé, Barbara A.; Ciufo, Stacy A.; Knobel, LeRoy L.; Lovley, Derek R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16S ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  17. A hydrogen-based subsurface microbial community dominated by methanogens.

    PubMed

    Chapelle, Francis H; O'Neill, Kathleen; Bradley, Paul M; Methé, Barbara A; Ciufo, Stacy A; Knobel, LeRoy L; Lovley, Derek R

    2002-01-17

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16S ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  18. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

    PubMed Central

    Dias, Juliana; Marcondes, Marcos I.; Noronha, Melline F.; Resende, Rafael T.; Machado, Fernanda S.; Mantovani, Hilário C.; Dill-McFarland, Kimberly A.; Suen, Garret

    2017-01-01

    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative

  19. Fungal Communities Associated with the Biodegradation of Polyester Polyurethane Buried under Compost at Different Temperatures

    PubMed Central

    Zafar, Urooj; Houlden, Ashley

    2013-01-01

    Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future. PMID:24056469

  20. Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures.

    PubMed

    Zafar, Urooj; Houlden, Ashley; Robson, Geoffrey D

    2013-12-01

    Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future.

  1. Variations in bacterial and fungal community composition along the soil depth profiles determined by pyrosequencing

    NASA Astrophysics Data System (ADS)

    Ko, D.; Yoo, G.; Jun, S. C.; Yun, S. T.; Chung, H.

    2015-12-01

    Soil microorganisms play key roles in nutrient cycling, and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depth, we analyzed soil microbial activities and bacterial and fungal community composition in a soil profile of a fallow field located in central Korea. Soil samples were taken using 120-cm soil cores. To analyze the composition of bacterial and fungal communities, barcoded pyrosequnecing analysis of 16S rRNA genes (bacteria) and ITS region (fungi) was conducted. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1 and 17.5%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3 and 0.4%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively), a dominant fungal group at this site, showed no significant difference along the soil profile. To examine the vertical difference of microbial activities, activity of five extracellular enzymes that take part in cycling of C, N, and P in soil ecosystems, beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-xylosidase, beta-1,4-N-acetylglucosaminidase, and acid phosphatase were analyzed. The soil enzyme activity declined with soil depth. For example, acid phosphatase activity was 88.5 (± 14.6 (± 1 SE)), 30.0 (± 5.9), 18.0 (± 3.5), 14.1 (± 3.7), and 10.7 (± 3.8) nmol g-1 hr-1, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of

  2. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic.

    PubMed

    Timling, I; Walker, D A; Nusbaum, C; Lennon, N J; Taylor, D L

    2014-07-01

    Fungi are abundant and functionally important in the Arctic, yet comprehensive studies of their diversity in relation to geography and environment are not available. We sampled soils in paired plots along the North American Arctic Transect (NAAT), which spans all five bioclimatic subzones of the Arctic. Each pair of plots contrasted relatively bare, cryoturbated patterned-ground features (PGFs) and adjacent vegetated between patterned-ground features (bPGFs). Fungal communities were analysed via sequencing of 7834 ITS-LSU clones. We recorded 1834 OTUs - nearly half the fungal richness previously reported for the entire Arctic. These OTUs spanned eight phyla, 24 classes, 75 orders and 120 families, but were dominated by Ascomycota, with one-fifth belonging to lichens. Species richness did not decline with increasing latitude, although there was a decline in mycorrhizal taxa that was offset by an increase in lichen taxa. The dominant OTUs were widespread even beyond the Arctic, demonstrating no dispersal limitation. Yet fungal communities were distinct in each subzone and were correlated with soil pH, climate and vegetation. Communities in subzone E were distinct from the other subzones, but similar to those of the boreal forest. Fungal communities on disturbed PGFs differed significantly from those of paired stable areas in bPGFs. Indicator species for PGFs included lichens and saprotrophic fungi, while bPGFs were characterized by ectomycorrhizal and pathogenic fungi. Our results suggest that the Arctic does not host a unique mycoflora, while Arctic fungi are highly sensitive to climate and vegetation, with potential to migrate rapidly as global change unfolds. © 2014 John Wiley & Sons Ltd.

  3. Diverse ecological roles within fungal communities in decomposing logs of Picea abies.

    PubMed

    Ottosson, Elisabet; Kubartová, Ariana; Edman, Mattias; Jönsson, Mari; Lindhe, Anders; Stenlid, Jan; Dahlberg, Anders

    2015-03-01

    Fungal communities in Norway spruce (Picea abies) logs in two forests in Sweden were investigated by 454-sequence analyses and by examining the ecological roles of the detected taxa. We also investigated the relationship between fruit bodies and mycelia in wood and whether community assembly was affected by how the dead wood was formed. Fungal communities were highly variable in terms of phylogenetic composition and ecological roles: 1910 fungal operational taxonomic units (OTUs) were detected; 21% were identified to species level. In total, 58% of the OTUs were ascomycetes and 31% basidiomycetes. Of the 231 337 reads, 38% were ascomycetes and 60% basidiomycetes. Ecological roles were assigned to 35% of the OTUs, accounting for 62% of the reads. Wood-decaying fungi were the most common group; however, other saprotrophic, mycorrhizal, lichenized, parasitic and endophytic fungi were also common. Fungal communities in logs formed by stem breakage were different to those in logs originating from butt breakage or uprooting. DNA of specific species was detected in logs many years after the last recorded fungal fruiting. Combining taxonomic identification with knowledge of ecological roles may provide valuable insights into properties of fungal communities; however, precise ecological information about many fungal species is still lacking.

  4. Experimental soil warming shifts the fungal community composition at the alpine treeline.

    PubMed

    Solly, Emily F; Lindahl, Björn D; Dawes, Melissa A; Peter, Martina; Souza, Rômulo C; Rixen, Christian; Hagedorn, Frank

    2017-07-01

    Increased CO2 emissions and global warming may alter the composition of fungal communities through the removal of temperature limitation in the plant-soil system, faster nitrogen (N) cycling and changes in the carbon (C) allocation of host plants to the rhizosphere. At a Swiss treeline featuring Larix decidua and Pinus uncinata, the effects of multiple years of CO2 enrichment and experimental soil warming on the fungal community composition in the organic horizons were analysed using 454-pyrosequencing of ITS2 amplicons. Sporocarp production and colonization of ectomycorrhizal root tips were investigated in parallel. Fungal community composition was significantly altered by soil warming, whereas CO2 enrichment had little effect. Tree species influenced fungal community composition and the magnitude of the warming responses. The abundance of ectomycorrhizal fungal taxa was positively correlated with N availability, and ectomycorrhizal taxa specialized for conditions of high N availability proliferated with warming, corresponding to considerable increases in inorganic N in warmed soils. Traits related to N utilization are important in determining the responses of ectomycorrhizal fungi to warming in N-poor cold ecosystems. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem N cycling and C storage at the alpine treeline. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Phylogenetic structure of ectomycorrhizal fungal communities of western hemlock changes with forest age and stand type.

    PubMed

    Lim, SeaRa; Berbee, Mary L

    2013-08-01

    On Vancouver Island, British Columbia, fertilization with nitrogen (N) and phosphorus (P) following clearcutting increases growth of western hemlock. To explore whether fertilization also resulted in ectomycorrhizal fungal communities that were more or less similar to neighboring unlogged stands, we sampled roots from western hemlock from three replicate plots from each of five different, well-characterized, forest stand types that differed in site type, and in logging and fertilization history. We harvested four samples of 100 ectomycorrhizal root tips from each plot, a total of 60 samples per stand type. From each sample, we analyzed fungal ribosomal internal transcribed spacers and 28S DNA, sequencing 15-29 clones per sample and 60-116 clones per plot. We detected 147 fungal operational taxonomic units among a total of 1435 sequences. Craterellus tubaeformis was frequently present and resulted in a pattern of phylogenetic overdispersion in the fungal communities. Fungal species composition was strongly correlated with foliar nitrogen concentration. However, other site quality factors were also important because the fertilized regenerating hemlock and mature hemlock-amabilis fir forests had similar foliar nitrogen content but little overlap in fungal species. Compared with unfertilized regenerating forests, fungal communities in N + P-fertilized regenerating forests had significantly more species overlap with old growth forests. However, the fungal communities of all regenerating forest were similar to one another and all differed significantly from older forests. By correlating fungal clades with habitats, this research improves understanding of how forest management can contribute to maintaining diverse ectomycorrhizal fungal communities across a landscape.

  6. Resistance and resilience of root fungal communities to water limitation in a temperate agroecosystem.

    PubMed

    Furze, Jessie R; Martin, Adam R; Nasielski, Joshua; Thevathasan, Naresh V; Gordon, Andrew M; Isaac, Marney E

    2017-05-01

    Understanding crop resilience to environmental stress is critical in predicting the consequences of global climate change for agricultural systems worldwide, but to date studies addressing crop resiliency have focused primarily on plant physiological and molecular responses. Arbuscular mycorrhizal fungi (AMF) form mutualisms with many crop species, and these relationships are key in mitigating the effects of abiotic stress in many agricultural systems. However, to date there is little research examining whether (1) fungal community structure in agroecosystems is resistant to changing environmental conditions, specifically water limitation and (2) resilience of fungal community structure is moderated by agricultural management systems, namely the integration of trees into cropping systems. Here, we address these uncertainties through a rainfall reduction field experiment that manipulated short-term water availability in a soybean-based (Glycine max L. Merr.) agroforest in Southern Ontario, Canada. We employed terminal restriction fragment length polymorphism analysis to determine the molecular diversity of both general fungal and AMF communities in soybean roots under no stress, stress (rainfall shelters added), and poststress (rainfall shelters removed). We found that general fungal and AMF communities sampled from soybean roots were resistant to rainfall reduction in a monoculture, but not in an agroforest. While AMF communities were unchanged after stress removal, general fungal communities were significantly different poststress in the agroforest, indicating a capacity for resiliency. Our study indicates that generalist fungi and AMF are responsive to changes in environmental conditions and that agroecosystem management plays a key role in the resistance and resilience of fungal communities to water limitation.

  7. Presence of Actinobacterial and Fungal Communities in Clean and Petroleum Hydrocarbon Contaminated Subsurface Soil

    PubMed Central

    Björklöf, Katarina; Karlsson, Sanja; Frostegård, Åsa; Jørgensen, Kirsten S

    2009-01-01

    Relatively little is known about the microbial communities adapted to soil environments contaminated with aged complex hydrocarbon mixtures, especially in the subsurface soil layers. In this work we studied the microbial communities in two different soil profiles down to the depth of 7 m which originated from a 30-year-old site contaminated with petroleum hydrocarbons (PHCs) and from a clean site next to the contaminated site. The concentration of oxygen in the contaminated soil profile was strongly reduced in soil layers below 1 m depth but not in the clean soil profile. Total microbial biomass and community composition was analyzed by phospholipid fatty acid (PLFA) measurements. The diversity of fungi and actinobacteria was investigated more in detail by construction of rDNA-based clone libraries. The results revealed that there was a significant and diverse microbial community in subsoils at depth below 2 m, also in conditions where oxygen was limiting. The diversity of actinobacteria was different in the two soil profiles; the contaminated soil profile was dominated by Mycobacterium -related sequences whereas sequences from the clean soil samples were related to other, generally uncultured organisms, some of which may represent two new subclasses of actinobacteria. One dominating fungal sequence which matched with the ascomycotes Acremonium sp. and Paecilomyces sp. was identified both in clean and in contaminated soil profiles. Thus, although the relative amounts of fungi and actinobacteria in these microbial communities were highest in the upper soil layers, many representatives from these groups were found in hydrocarbon contaminated subsoils even under oxygen limited conditions. PMID:19543551

  8. Endophytic bacterial and fungal communities transmitted from cotyledons and germs in peanut (Arachis hypogaea L.) sprouts.

    PubMed

    Huang, Yali; Kuang, Zaoyuan; Deng, Zujun; Zhang, Ren; Cao, Lixiang

    2017-07-01

    Seed-borne endophytes could be transmitted into sprouts. Whether this happened in peanuts and the difference between microbial taxa in peanut germs and cotyledons remain unknown. In this research, Illumina-based sequencing was employed to investigate the microbial taxa in peanut germs, cotyledons, and sprouts. Sulfur-oxidizing bacteria was isolated and inoculated into peanut sprouts, and then, the growth of peanut seedlings was measured. The results illustrated that diverse bacteria and fungi were detected in peanut germs, cotyledons, and sprouts. The number of bacterial OTUs declined with the germination from germs and cotyledons to sprouts. However, the number of fungal OTUs increased during the seedling procedure. Seed-borne dominant bacterial genera Halothiobacillus and Synechococcus and fungal genera Humicola, Emericella, and Penicillium were detected in sprouts. Based on the endophytic community information, the Halothiobacillus strains were isolated from sprouts. Pot experiments that illustrated the growth of peanut seedlings inoculated with the strain were promoted. These results provide new understanding into plant-microbe interactions in peanut and suggest that the selection for biocontrol agents based on mycobiome and bacteriome analysis is reliable and feasible compared with the present greenhouse selection.

  9. Bacterial and fungal communities in Pu'er tea samples of different ages.

    PubMed

    Tian, Jianqing; Zhu, Zixiang; Wu, Bing; Wang, Lin; Liu, Xingzhong

    2013-08-01

    Pu'er is a major kind of postfermented tea and is made with a "large leaf" variety of Camellia sinensis (C. sinensis assamica), whose distribution is limited to the mountains of southern Yunnan, China. The quality of Pu'er tea is believed to increase with storage (aging, maturing) because of postfermentation by microbes. The effect of storage period (from < 1 to 192 mo) on the bacteria and fungi in Pu'er tea was investigated by a culture-dependent and a PCR-DGGE method. The individual numbers of fungi and bacteria decreased with increasing storage time and were significantly greater in ripened tea than in raw Pu'er tea. Both methods indicated that yeast, Aspergillus spp., and Penicillium spp. were the dominant fungi in almost all the samples. However, the common bacteria detected by the culture-dependent method were species of Pseudomonas, Achromobacter, Alcaligenes, Sporosarcina, and Bacillus, whereas those detected by PCR-DGGE were species of Staphylococcus, Arthrobacter, and Streptomyces. According to ordination analysis, bacterial community structure differed between ripened and raw Pu'er tea. Bacterial diversity was positively correlated with aging time, while fungal diversity in both raw and ripened tea increased during the first 60 mo of aging and then decreased. Changes in polyphenol content were correlated with the changes in fungal diversity. These results suggest that the relationship between storage time and the quality of Pu'er tea is complex and involves changes in polyphenol content and microbial abundance and diversity.

  10. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    PubMed

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  11. Spatial and Temporal Variation of Archaeal, Bacterial and Fungal Communities in Agricultural Soils

    PubMed Central

    Pereira e Silva, Michele C.; Dias, Armando Cavalcante Franco; van Elsas, Jan Dirk; Salles, Joana Falcão

    2012-01-01

    Background Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. Methodology/Principal Findings In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal β-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal β-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers. Conclusions Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities. PMID:23284712

  12. Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests.

    PubMed

    Karpati, Amy S; Handel, Steven N; Dighton, John; Horton, Thomas R

    2011-08-01

    The presence and quality of the belowground mycorrhizal fungal community could greatly influence plant community structure and host species response. This study tests whether mycorrhizal fungal communities in areas highly impacted by anthropogenic disturbance and urbanization are less species rich or exhibit lower host root colonization rates when compared to those of less disturbed systems. Using a soil bioassay, we sampled the ectomycorrhizal fungal (EMF) communities associating with Quercus rubra (northern red oak) seedlings in soil collected from seven sites: two mature forest reference sites and five urban sites of varying levels of disturbance. Morphological and polymerase chain reaction-restriction fragment length polymorphism analyses of fungi colonizing root tips revealed that colonization rates and fungal species richness were significantly lower on root systems of seedlings grown in disturbed site soils. Analysis of similarity showed that EMF community composition was not significantly different among several urban site soils but did differ significantly between mature forest sites and all but one urban site. We identified a suite of fungal species that occurred across several urban sites. Lack of a diverse community of belowground mutualists could be a constraint on urban plant community development, especially of late-successional woodlands. Analysis of urban EMF communities can add to our understanding of urban plant community structure and should be addressed during ecological assessment before pragmatic decisions to restore habitats are framed.

  13. Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition.

    PubMed

    Dang, Christian K; Schindler, Markus; Chauvet, Eric; Gessner, Mark O

    2009-01-01

    Diel temperature oscillations are a nearly ubiquitous phenomenon, with amplitudes predicted to change along with mean temperatures under global-warming scenarios. Impact assessments of global warming have largely disregarded diel temperature oscillations, even though key processes in ecosystems, such as decomposition, may be affected. We tested the effect of a 5 degrees C temperature increase with and without diel oscillations on litter decomposition by fungal communities in stream microcosms. Five temperature regimes with identical thermal sums (degree days) were applied: constant 3 degrees and 8 degrees C; diel temperature oscillations of 5 degrees C around each mean; and oscillations of 9 degrees C around 8 degrees C. Temperature oscillations around 8 degrees C (warming scenario), but not 3 degrees C (ambient scenario), accelerated decomposition by 18% (5 degrees C oscillations) and 31% (9 degrees C oscillations), respectively, compared to the constant temperature regime at 8 degrees C. Community structure was not affected by oscillating temperatures, although the rise in mean temperature from 3 degrees to 8 degrees C consistently shifted the relative abundance of species. A simple model using temperature-growth responses of the dominant fungal decomposers accurately described the experimentally observed pattern, indicating that the effect of temperature oscillations on decomposition in our warming scenario was caused by strong curvilinear responses of species to warming at low temperature, particularly of the species becoming most abundant at 8 degrees C (Tetracladium marchalianum). These findings underscore the need to consider species-specific temperature characteristics in concert with changes in communities when assessing consequences of global warming on ecosystem processes.

  14. Most of the Dominant Members of Amphibian Skin Bacterial Communities Can Be Readily Cultured

    PubMed Central

    Becker, Matthew H.; Hughey, Myra C.; Swartwout, Meredith C.; Jensen, Roderick V.; Belden, Lisa K.

    2015-01-01

    Currently, it is estimated that only 0.001% to 15% of bacteria in any given system can be cultured by use of commonly used techniques and media, yet culturing is critically important for investigations of bacterial function. Despite this situation, few studies have attempted to link culture-dependent and culture-independent data for a single system to better understand which members of the microbial community are readily cultured. In amphibians, some cutaneous bacterial symbionts can inhibit establishment and growth of the fungal pathogen Batrachochytrium dendrobatidis, and thus there is great interest in using these symbionts as probiotics for the conservation of amphibians threatened by B. dendrobatidis. The present study examined the portion of the culture-independent bacterial community (based on Illumina amplicon sequencing of the 16S rRNA gene) that was cultured with R2A low-nutrient agar and whether the cultured bacteria represented rare or dominant members of the community in the following four amphibian species: bullfrogs (Lithobates catesbeianus), eastern newts (Notophthalmus viridescens), spring peepers (Pseudacris crucifer), and American toads (Anaxyrus americanus). To determine which percentage of the community was cultured, we clustered Illumina sequences at 97% similarity, using the culture sequences as a reference database. For each amphibian species, we cultured, on average, 0.59% to 1.12% of each individual's bacterial community. However, the average percentage of bacteria that were culturable for each amphibian species was higher, with averages ranging from 2.81% to 7.47%. Furthermore, most of the dominant operational taxonomic units (OTUs), families, and phyla were represented in our cultures. These results open up new research avenues for understanding the functional roles of these dominant bacteria in host health. PMID:26162880

  15. Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest.

    PubMed

    Smith, Matthew E; Henkel, Terry W; Catherine Aime, M; Fremier, Alex K; Vilgalys, Rytas

    2011-11-01

    • The ectomycorrhizal (ECM) symbiosis was historically considered restricted to the temperate zones, but recent studies have shown the importance of this symbiosis across the tropics. We examined ECM fungal diversity, host plant phylogeny and ECM host preferences in a rainforest dominated by the leguminous host plants Dicymbe corymbosa, Dicymbe altsonii and Aldina insignis. • Ectomycorrhizal fungi were identified by internal transcribed spacer rDNA sequencing and host species were verified with chloroplast trnL sequencing. To test whether Dicymbe and Aldina represent independent gains of the ECM symbiosis, we constructed a Fabaceae phylogeny using MatK and trnL. We identified four independent ECM lineages within the Fabaceae. • We detected a diverse community of 118 ECM species dominated by the /clavulina, /russula-lactarius, /boletus, and /tomentella-thelephora lineages. Ectomycorrhizal species in Agaricales, Atheliales and Polyporales may represent previously unrecognized tropical-endemic ECM lineages. Previous studies suggested that ECM fungi did not diversify in the tropics, but the /clavulina lineage appears to have a center of diversity in tropical South America. • Dicymbe and Aldina represent independent gains of the ECM symbiosis in Fabaceae but their fungal symbionts showed no host preferences. Spatial factors are more important than hosts in structuring the ECM fungal community in this ecosystem. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  16. Changes in fungal community composition in response to experimental soil warming at the alpine treeline

    NASA Astrophysics Data System (ADS)

    Solly, Emily; Lindahl, Bjorn; Dawes, Melissa; Peter, Martina; Souza, Romulo; Rixen, Christian; Hagedorn, Frank

    2017-04-01

    Increased CO2 emissions and global warming may alter the composition of fungal communities through the reduction of low temperature limitation in the plant-soil system, faster nitrogen cycling and changes in the carbon allocation of host plants to the rhizosphere. Shifts in fungal community composition due to global changes are likely to affect the routes of carbon and nitrogen flows in the plant-soil system and alter the rates at which organic matter is decomposed. The main aim of our study was to estimate the effects of multiple years of free air CO2 enrichment (ambient concentration +200 ppm) and soil warming (+ 4°C) on the fungal community structure and composition. At an alpine treeline in Switzerland featuring two key high-elevation tree species, Larix decidua and Pinus uncinata, fungal communities within different organic horizons were analysed by high-throughput 454-pyrosequencing of ITS2 amplicons. In addition, we assessed the ectomycorrhizal community composition on root tips and monitored changes in sporocarp productivity of fungal species during the course of the experiment. Three years of experimental warming at the alpine treeline altered the composition of the fungal community in the organic horizons, whereas nine years of CO2 enrichment had only weak effects. Tree species influenced the composition of the fungal community and the magnitude of the responses of fungal functional groups to soil warming differed between plots with Larix and those with Pinus. The abundance of ectomycorrhizal fungi was positively correlated with nitrogen availability, and ectomycorrhizal taxa specialized for conditions of high nitrogen availability proliferated with warming, corresponding to considerable increases in extractable inorganic nitrogen in warmed soils. Changes in productivity of specific fungal fruiting bodies in response to soil warming (e.g. more Lactarius rufus sporocarps and less Hygrophorus speciousus sporocarps) were consistent with the 454-sequencing

  17. Responses of Soil Fungal Populations and Communities to the Thinning of Cryptomeria Japonica Forests

    PubMed Central

    Lin, Wan-Rou; Wang, Pi-Han; Chen, Wen-Cheng; Lai, Chao-Ming; Winder, Richard Scott

    2016-01-01

    Forest management activities, such as tree thinning, alter forest ecology, including key components of forest ecosystems, including fungal communities. In the present study, we investigate the effects of forest thinning intensity on the populations and structures of fungal soil communities in the Cryptomeria japonica forests of central Taiwan as well as the dynamics of soil fungi communities in these forests after a thinning disturbance. Although the populations of soil fungi significantly increased in the first 6 months after thinning, these increases had subsided by 9 months. This pulse was attributed to a transient increase in the populations of rapid colonizers. A multiple regression analysis positively correlated fungal populations with organic matter content and cellulase activity. Thinning initially provided large amounts of fresh leaves and roots as nutrient-rich substrates for soil fungi. Denaturing gradient gel electrophoresis (DGGE) profiles indicated that soil fungal communities significantly differed among plots with 0% (control), 25%, and 50% tree thinning in the first 21 months post-thinning, with no significant differences being observed after 21 months. The fungal communities of these forest soils also changed with the seasons, and an interactive relationship was detected between seasons and treatments. Seasonal variations in fungal communities were the most pronounced after 50% tree thinning. The results of the present study demonstrate that the soil fungi of Taiwanese C. japonica forests are very sensitive to thinning disturbances, but recover stability after a relatively short period of time. PMID:26903369

  18. Ecological Succession Pattern of Fungal Community in Soil along a Retreating Glacier

    PubMed Central

    Tian, Jianqing; Qiao, Yuchen; Wu, Bing; Chen, Huai; Li, Wei; Jiang, Na; Zhang, Xiaoling; Liu, Xingzhong

    2017-01-01

    Accelerated by global climate changing, retreating glaciers leave behind soil chronosequences of primary succession. Current knowledge of primary succession is mainly from studies of vegetation dynamics, whereas information about belowground microbes remains unclear. Here, we combined shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. We investigated fungal succession and community assembly via high-throughput sequencing along a well-established glacier forefront chronosequence that spans 2–188 years of deglaciation. Shannon diversity and evenness peaked at a distance of 370 m and declined afterwards. The response of fungal diversity to distance varied in different phyla. Basidiomycota Shannon diversity significantly decreased with distance, while the pattern of Rozellomycota Shannon diversity was unimodal. Abundance of most frequencies OTU2 (Cryptococcus terricola) increased with successional distance, whereas that of OTU65 (Tolypocladium tundrense) decreased. Based on null deviation analyses, composition of the fungal community was initially governed by deterministic processes strongly but later less deterministic processes. Our results revealed that distance, altitude, soil microbial biomass carbon, soil microbial biomass nitrogen and NH4+–N significantly correlated with fungal community composition along the chronosequence. These results suggest that the drivers of fungal community are dynamics in a glacier chronosequence, that may relate to fungal ecophysiological traits and adaptation in an evolving ecosystem. The information will provide understanding the mechanistic underpinnings of microbial community assembly during ecosystem succession under different scales and scenario. PMID:28649234

  19. Responses of Soil Fungal Populations and Communities to the Thinning of Cryptomeria Japonica Forests.

    PubMed

    Lin, Wan-Rou; Wang, Pi-Han; Chen, Wen-Cheng; Lai, Chao-Ming; Winder, Richard Scott

    2016-01-01

    Forest management activities, such as tree thinning, alter forest ecology, including key components of forest ecosystems, including fungal communities. In the present study, we investigate the effects of forest thinning intensity on the populations and structures of fungal soil communities in the Cryptomeria japonica forests of central Taiwan as well as the dynamics of soil fungi communities in these forests after a thinning disturbance. Although the populations of soil fungi significantly increased in the first 6 months after thinning, these increases had subsided by 9 months. This pulse was attributed to a transient increase in the populations of rapid colonizers. A multiple regression analysis positively correlated fungal populations with organic matter content and cellulase activity. Thinning initially provided large amounts of fresh leaves and roots as nutrient-rich substrates for soil fungi. Denaturing gradient gel electrophoresis (DGGE) profiles indicated that soil fungal communities significantly differed among plots with 0% (control), 25%, and 50% tree thinning in the first 21 months post-thinning, with no significant differences being observed after 21 months. The fungal communities of these forest soils also changed with the seasons, and an interactive relationship was detected between seasons and treatments. Seasonal variations in fungal communities were the most pronounced after 50% tree thinning. The results of the present study demonstrate that the soil fungi of Taiwanese C. japonica forests are very sensitive to thinning disturbances, but recover stability after a relatively short period of time.

  20. Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities

    Treesearch

    Erik A. Lilleskov; Thomas D. Bruns; Thomas R. Horton; D. Lee Taylor; Paul Grogan

    2004-01-01

    Ectomycorrhizal fungal (EMF) communities are highly diverse at the stand level. To begin to understand what might lead to such diversity, and to improve sampling designs, we investigated the spatial structure of these communities. We used EMF community data from a number of studies carried out in seven mature and one recently fire-initiated forest stand. We applied...

  1. Banana-Associated Microbial Communities in Uganda Are Highly Diverse but Dominated by Enterobacteriaceae

    PubMed Central

    Rossmann, Bettina; Müller, Henry; Smalla, Kornelia; Mpiira, Samuel; Tumuhairwe, John Baptist; Staver, Charles

    2012-01-01

    Bananas are among the most widely consumed foods in the world. In Uganda, the country with the second largest banana production in the world, bananas are the most important staple food. The objective of this study was to analyze banana-associated microorganisms and to select efficient antagonists against fungal pathogens which are responsible for substantial yield losses. We studied the structure and function of microbial communities (endosphere, rhizosphere, and soil) obtained from three different traditional farms in Uganda by cultivation-independent (PCR-SSCP fingerprints of 16S rRNA/ITS genes, pyrosequencing of enterobacterial 16S rRNA gene fragments, quantitative PCR, fluorescence in situ hybridization coupled with confocal laser scanning microscopy, and PCR-based detection of broad-host-range plasmids and sulfonamide resistance genes) and cultivation-dependent methods. The results showed microhabitat-specific microbial communities that were significant across sites and treatments. Furthermore, all microhabitats contained a high number and broad spectrum of indigenous antagonists toward identified fungal pathogens. While bacterial antagonists were found to be enriched in banana plants, fungal antagonists were less abundant and mainly found in soil. The banana stem endosphere was the habitat with the highest bacterial counts (up to 109 gene copy numbers g−1). Here, enterics were found to be enhanced in abundance and diversity; they provided one-third of the bacteria and were identified by pyrosequencing with 14 genera, including not only potential human (Escherichia, Klebsiella, Salmonella, and Yersinia spp.) and plant (Pectobacterium spp.) pathogens but also disease-suppressive bacteria (Serratia spp.). The dominant role of enterics can be explained by the permanent nature and vegetative propagation of banana and the amendments of human, as well as animal, manure in these traditional cultivations. PMID:22562988

  2. Banana-associated microbial communities in Uganda are highly diverse but dominated by Enterobacteriaceae.

    PubMed

    Rossmann, Bettina; Müller, Henry; Smalla, Kornelia; Mpiira, Samuel; Tumuhairwe, John Baptist; Staver, Charles; Berg, Gabriele

    2012-07-01

    Bananas are among the most widely consumed foods in the world. In Uganda, the country with the second largest banana production in the world, bananas are the most important staple food. The objective of this study was to analyze banana-associated microorganisms and to select efficient antagonists against fungal pathogens which are responsible for substantial yield losses. We studied the structure and function of microbial communities (endosphere, rhizosphere, and soil) obtained from three different traditional farms in Uganda by cultivation-independent (PCR-SSCP fingerprints of 16S rRNA/ITS genes, pyrosequencing of enterobacterial 16S rRNA gene fragments, quantitative PCR, fluorescence in situ hybridization coupled with confocal laser scanning microscopy, and PCR-based detection of broad-host-range plasmids and sulfonamide resistance genes) and cultivation-dependent methods. The results showed microhabitat-specific microbial communities that were significant across sites and treatments. Furthermore, all microhabitats contained a high number and broad spectrum of indigenous antagonists toward identified fungal pathogens. While bacterial antagonists were found to be enriched in banana plants, fungal antagonists were less abundant and mainly found in soil. The banana stem endosphere was the habitat with the highest bacterial counts (up to 10(9) gene copy numbers g(-1)). Here, enterics were found to be enhanced in abundance and diversity; they provided one-third of the bacteria and were identified by pyrosequencing with 14 genera, including not only potential human (Escherichia, Klebsiella, Salmonella, and Yersinia spp.) and plant (Pectobacterium spp.) pathogens but also disease-suppressive bacteria (Serratia spp.). The dominant role of enterics can be explained by the permanent nature and vegetative propagation of banana and the amendments of human, as well as animal, manure in these traditional cultivations.

  3. Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Soil microbial communities in dryland ecosystems play important roles as root associates of the widely spaced plants and as the dominant members of biological soil crusts (biocrusts) colonizing the plant interspaces. We employed rRNA gene sequencing (bacterial 16S/fungal large subunit) and shotgun metagenomic sequencing to compare the microbial communities inhabiting the root zones of the dominant shrub, Larrea tridentata (creosote bush), and the interspace biocrusts in a Mojave desert shrubland within the Nevada Free Air CO2 Enrichment (FACE) experiment. Most of the numerically abundant bacteria and fungi were present in both the biocrusts and root zones, although the proportional abundance of those members differed significantly between habitats. Biocrust bacteria were predominantly Cyanobacteria while root zones harbored significantly more Actinobacteria and Proteobacteria. Pezizomycetes fungi dominated the biocrusts while Dothideomycetes were highest in root zones. Functional gene abundances in metagenome sequence datasets reflected the taxonomic differences noted in the 16S rRNA datasets. For example, functional categories related to photosynthesis, circadian clock proteins, and heterocyst-associated genes were enriched in the biocrusts, where populations of Cyanobacteria were larger. Genes related to potassium metabolism were also more abundant in the biocrusts, suggesting differences in nutrient cycling between biocrusts and root zones. Finally, ten years of elevated atmospheric CO2 did not result in large shifts in taxonomic composition of the bacterial or fungal communities or the functional gene inventories in the shotgun metagenomes.

  4. New perspectives towards analysing fungal communities in terrestrial environments

    PubMed

    Kowalchuk

    1999-06-01

    Fungi play key roles in numerous ecosystem functions, and recent advances in the study of fungal diversity and ecology have led to a greater appreciation of this group of microeukaryotes. The application of a variety of nucleic acid techniques to fungal classification and phylogeny has led to a number of evolutionary insights, and has also begun to provide the necessary information for identification of unknown isolates and DNA sequences. These data, together with direct molecular characterisation of fungi in the field, provide new possibilities to describe fungal diversity and distribution. Such advances will no doubt also provide the means for a more detailed interpretation of ecological experiments.

  5. Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest

    PubMed Central

    Mueller, Rebecca C; Paula, Fabiana S; Mirza, Babur S; Rodrigues, Jorge LM; Nüsslein, Klaus; Bohannan, Brendan JM

    2014-01-01

    Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests. PMID:24451208

  6. Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest.

    PubMed

    Mueller, Rebecca C; Paula, Fabiana S; Mirza, Babur S; Rodrigues, Jorge L M; Nüsslein, Klaus; Bohannan, Brendan J M

    2014-07-01

    Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests.

  7. Genotype-Specific Variation in the Structure of Root Fungal Communities Is Related to Chickpea Plant Productivity

    PubMed Central

    Hamel, Chantal; Gan, Yantai; Tar'an, Bunyamin; Knight, Joan Diane

    2015-01-01

    Increasing evidence supports the existence of variations in the association of plant roots with symbiotic fungi that can improve plant growth and inhibit pathogens. However, it is unclear whether intraspecific variations in the symbiosis exist among plant cultivars and if they can be used to improve crop productivity. In this study, we determined genotype-specific variations in the association of chickpea roots with soil fungal communities and evaluated the effect of root mycota on crop productivity. A 2-year field experiment was conducted in southwestern Saskatchewan, the central zone of the chickpea growing region of the Canadian prairie. The effects of 13 cultivars of chickpea, comprising a wide range of phenotypes and genotypes, were tested on the structure of root-associated fungal communities based on internal transcribed spacer (ITS) and 18S rRNA gene markers using 454 amplicon pyrosequencing. Chickpea cultivar significantly influenced the structure of the root fungal community. The magnitude of the effect varied with the genotypes evaluated, and effects were consistent across years. For example, the roots of CDC Corrine, CDC Cory, and CDC Anna hosted the highest fungal diversity and CDC Alma and CDC Xena the lowest. Fusarium sp. was dominant in chickpea roots but was less abundant in CDC Corrine than the other cultivars. A bioassay showed that certain of these fungal taxa, including Fusarium species, can reduce the productivity of chickpea, whereas Trichoderma harzianum can increase chickpea productivity. The large variation in the profile of chickpea root mycota, which included growth-promoting and -inhibiting species, supports the possibility of improving the productivity of chickpea by improving its root mycota in chickpea genetic improvement programs using traditional breeding techniques. PMID:25616789

  8. Pine Forest Harvest Leads to Decade-Scale Alterations in Soil Fungal Communities

    NASA Astrophysics Data System (ADS)

    Boutton, T. W.; Mushinski, R. M.; Gentry, T. J.

    2016-12-01

    Forestlands provide a multitude of ecosystem services, and sustainable management is crucial to maintaining the benefits of these ecosystems. Intensive organic matter removal (OMR) of logging residues and forest litter during forest harvest may result in long-term alterations to soil properties and processes. Because fungal activity regulates essential biogeochemical processes in forestlands, changes in soil fungal community structure following OMR may translate into altered soil function. Using a replicated field experiment in southern pine forest in eastern Texas, USA, we sampled soil to a depth of 1 m to assess the impact of intensive OMR on soil fungal communities. Soils were collected from replicated (n = 3 ) loblolly pine (Pinus taeda L.) stands subjected to 3 different harvest intensities (i.e., unharvested old growth stands, bole-only harvest stands, and whole-tree harvest + forest floor removal stands) in 1997. Nearly two decades after trees were harvested and replanted, next generation sequencing of the fungal internal transcribed spacer showed the diversity and community structure of the entire fungal community was altered relative to the unharvested stands. The relative abundance of Ascomycetes increased as OMR intensity increased and was positively correlated to concurrent changes in soil pH. The community composition of fungal functional groups (e.g., ecto- and arbuscular mycorrhizal, saprophytic fungi) was also altered by OMR. The most abundant taxa, Russula exhibited significant reductions in response to increasing intensity of OMR. Results of this study illustrate a linkage between anthropogenically-induced aboveground perturbation, edaphic factors, and belowground soil fungal communities of southern pine forests. Also, these results indicate that tree harvesting effects on soil fungal communities can persist for decades post-harvest, with potential implications for soil functional characteristics.

  9. Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation.

    PubMed

    McGuire, Krista L; Fierer, Noah; Bateman, Carling; Treseder, Kathleen K; Turner, Benjamin L

    2012-05-01

    Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0-20 cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6 months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities.

  10. Distinct bacterial communities dominate tropical and temperate zone leaf litter.

    PubMed

    Kim, Mincheol; Kim, Woo-Sung; Tripathi, Binu M; Adams, Jonathan

    2014-05-01

    Little is known of the bacterial community of tropical rainforest leaf litter and how it might differ from temperate forest leaf litter and from the soils underneath. We sampled leaf litter in a similarly advanced stage of decay, and for comparison, we also sampled the surface layer of soil, at three tropical forest sites in Malaysia and four temperate forest sites in South Korea. Illumina sequencing targeting partial bacterial 16S ribosomal ribonucleic acid (rRNA) gene revealed that the bacterial community composition of both temperate and tropical litter is quite distinct from the soils underneath. Litter in both temperate and tropical forest was dominated by Proteobacteria and Actinobacteria, while soil is dominated by Acidobacteria and, to a lesser extent, Proteobacteria. However, bacterial communities of temperate and tropical litter clustered separately from one another on an ordination. The soil bacterial community structures were also distinctive to each climatic zone, suggesting that there must be a climate-specific biogeographical pattern in bacterial community composition. The differences were also found in the level of diversity. The temperate litter has a higher operational taxonomic unit (OTU) diversity than the tropical litter, paralleling the trend in soil diversity. Overall, it is striking that the difference in community composition between the leaf litter and the soil a few centimeters underneath is about the same as that between leaf litter in tropical and temperate climates, thousands of kilometers apart. However, one substantial difference was that the leaf litter of two tropical forest sites, Meranti and Forest Research Institute Malaysia (FRIM), was overwhelmingly dominated by the single genus Burkholderia, at 37 and 23 % of reads, respectively. The 454 sequencing result showed that most Burkholderia species in tropical leaf litter belong to nonpathogenic "plant beneficial" lineages. The differences from the temperate zone in the bacterial

  11. Arbuscular Mycorrhizal Fungal Hyphae Alter Soil Bacterial Community and Enhance Polychlorinated Biphenyls Dissipation

    PubMed Central

    Qin, Hua; Brookes, Philip C.; Xu, Jianming

    2016-01-01

    We investigated the role of arbuscular mycorrhizal fungal (AMF) hyphae in alternation of soil microbial community and Aroclor 1242 dissipation. A two-compartment rhizobox system with double nylon meshes in the central was employed to exclude the influence of Cucurbita pepo L. root exudates on hyphal compartment soil. To assess the quantitative effect of AMF hyphae on soil microbial community, we separated the hyphal compartment soil into four horizontal layers from the central mesh to outer wall (e.g., L1–L4). Soil total PCBs dissipation rates ranged from 35.67% of L4 layer to 57.39% of L1 layer in AMF inoculated treatment, which were significant higher than the 17.31% of the control (P < 0.05). The dissipation rates of tri-, tetrachlorinated biphenyls as well as the total PCBs were significantly correlated with soil hyphal length (P < 0.01). Real-time quantitative PCR results indicated that the Rhodococcus-like bphC gene was 2–3 orders of magnitude more than that of Pseudomonas-like bphC gene, and was found responded positively to AMF. Phylogenetic analyses of the 16S rDNA sequenced by the Illumina Miseq sequencing platform indicated that AMF hyphae altered bacterial community compositions. The phylum Betaproteobacteria and Actinobacteria were dominated in the soil, while Burkholderiales and Actinomycetales were dominated at the order level. Taxa from the Comamonadaceae responded positively to AMF and trichlorinated biphenyl dissipation, while taxa from the Oxalobacteraceae and Streptomycetaceae responded negatively to AMF and PCB congener dissipation. Our results suggested that the AMF hyphal exudates as well as the hyphae per se did have quantitative effects on shaping soil microbial community, and could modify the PCBs dissipation processes consequently. PMID:27379068

  12. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi

    PubMed Central

    Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Gilbert, Gregory S; Kadowaki, Kohmei

    2013-01-01

    In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities. PMID:23762515

  13. Community composition of root-associated fungi in a Quercus-dominated temperate forest: "codominance" of mycorrhizal and root-endophytic fungi.

    PubMed

    Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Gilbert, Gregory S; Kadowaki, Kohmei

    2013-05-01

    In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities.

  14. Ecological succession reveals potential signatures of marine-terrestrial transition in salt marsh fungal communities.

    PubMed

    Dini-Andreote, Francisco; Pylro, Victor Satler; Baldrian, Petr; van Elsas, Jan Dirk; Salles, Joana Falcão

    2016-08-01

    Marine-to-terrestrial transition represents one of the most fundamental shifts in microbial life. Understanding the distribution and drivers of soil microbial communities across coastal ecosystems is critical given the roles of microbes in soil biogeochemistry and their multifaceted influence on landscape succession. Here, we studied the fungal community dynamics in a well-established salt marsh chronosequence that spans over a century of ecosystem development. We focussed on providing high-resolution assessments of community composition, diversity and ecophysiological shifts that yielded patterns of ecological succession through soil formation. Notably, despite containing 10- to 100-fold lower fungal internal transcribed spacer abundances, early-successional sites revealed fungal richnesses comparable to those of more mature soils. These newly formed sites also exhibited significant temporal variations in β-diversity that may be attributed to the highly dynamic nature of the system imposed by the tidal regime. The fungal community compositions and ecophysiological assignments changed substantially along the successional gradient, revealing a clear signature of ecological replacement and gradually transforming the environment from a marine into a terrestrial system. Moreover, distance-based linear modelling revealed soil physical structure and organic matter to be the best predictors of the shifts in fungal β-diversity along the chronosequence. Taken together, our study lays the basis for a better understanding of the spatiotemporally determined fungal community dynamics in salt marshes and highlights their ecophysiological traits and adaptation in an evolving ecosystem.

  15. Ecological succession reveals potential signatures of marine–terrestrial transition in salt marsh fungal communities

    PubMed Central

    Dini-Andreote, Francisco; Pylro, Victor Satler; Baldrian, Petr; van Elsas, Jan Dirk; Salles, Joana Falcão

    2016-01-01

    Marine-to-terrestrial transition represents one of the most fundamental shifts in microbial life. Understanding the distribution and drivers of soil microbial communities across coastal ecosystems is critical given the roles of microbes in soil biogeochemistry and their multifaceted influence on landscape succession. Here, we studied the fungal community dynamics in a well-established salt marsh chronosequence that spans over a century of ecosystem development. We focussed on providing high-resolution assessments of community composition, diversity and ecophysiological shifts that yielded patterns of ecological succession through soil formation. Notably, despite containing 10- to 100-fold lower fungal internal transcribed spacer abundances, early-successional sites revealed fungal richnesses comparable to those of more mature soils. These newly formed sites also exhibited significant temporal variations in β-diversity that may be attributed to the highly dynamic nature of the system imposed by the tidal regime. The fungal community compositions and ecophysiological assignments changed substantially along the successional gradient, revealing a clear signature of ecological replacement and gradually transforming the environment from a marine into a terrestrial system. Moreover, distance-based linear modelling revealed soil physical structure and organic matter to be the best predictors of the shifts in fungal β-diversity along the chronosequence. Taken together, our study lays the basis for a better understanding of the spatiotemporally determined fungal community dynamics in salt marshes and highlights their ecophysiological traits and adaptation in an evolving ecosystem. PMID:26824176

  16. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic).

    PubMed

    Zhang, Tao; Wang, Neng Fei; Zhang, Yu Qin; Liu, Hong Yu; Yu, Li Yan

    2015-10-23

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic.

  17. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices

    PubMed Central

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H.; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan

    2016-01-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km2 along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  18. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    PubMed Central

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-01-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic. PMID:26494429

  19. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-10-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic.

  20. Colonization-Competition Tradeoffs as a Mechanism Driving Successional Dynamics in Ectomycorrhizal Fungal Communities

    PubMed Central

    Kennedy, Peter G.; Higgins, Logan M.; Rogers, Rachel H.; Weber, Marjorie G.

    2011-01-01

    Colonization-competition tradeoffs have been shown to be important determinants of succession in plant and animal communities, but their role in ectomycorrhizal (ECM) fungal communities is not well understood. To experimentally examine whether strong spore-based competitors remain dominant on plant root tips as competition shifts to mycelial-based interactions, we investigated the mycelial competitive interactions among three naturally co-occurring ECM species (Rhizopogon occidentalis, R. salebrosus, and Suillus pungens). Each species was grown alone and in all pair-wise combinations on P. muricata seedlings in experimental microcosms and culture assays. Competitive outcomes were assessed from ECM root tip colonization, soil mycelial abundance, and mycelial growth in culture. In the microcosm experiment, we observed a clear competitive hierarchy of R. salebrosus>R. occidentalis>S. pungens. Competitive effects were also apparent in the culture assays, however, no similar hierarchy was present. These results contrast with our previous findings from spore-based competition, suggesting that ECM competitive outcomes can be life-stage dependent. The differing competitive abilities observed here also showed general correspondence with patterns of ECM succession in Pinus muricata forests, indicating that competitive interactions may significantly influence temporal patterns of ECM community structure. PMID:21949867

  1. Diversity of endolithic fungal communities in dolomite and limestone rocks from Nanjiang Canyon in Guizhou karst area, China.

    PubMed

    Tang, Yuan; Lian, Bin

    2012-06-01

    The endolithic environment, the tiny pores and cracks in rocks, buffer microbial communities from a number of physical stresses, such as desiccation, rapid temperature variations, and UV radiation. Considerable knowledge has been acquired about the diversity of microorganisms in these ecosystems, but few culture-independent studies have been carried out on the diversity of fungi to date. Scanning electron microscopy of carbonate rock fragments has revealed that the rock samples contain certain kinds of filamentous fungi. We evaluated endolithic fungal communities from bare dolomite and limestone rocks collected from Nanjiang Canyon (a typical karst canyon in China) using culture-independent methods. Results showed that Ascomycota was absolutely dominant both in the dolomite and limestone fungal clone libraries. Basidiomycota and other eukaryotic groups (Bryophyta and Chlorophyta) were only detected occasionally or at low frequencies. The most common genus in the investigated carbonate rocks was Verrucaria. Some other lichen-forming fungi (e.g., Caloplaca, Exophiala, and Botryolepraria), Aspergillus, and Penicillium were also identified from the rock samples. The results provide a cross-section of the endolithic fungal communities in carbonate rocks and help us understand more about the role of microbes (fungi and other rock-inhabiting microorganisms) in rock weathering and pedogenesis.

  2. Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: Gringos bajo el bosque.

    PubMed

    Hayward, Jeremy; Horton, Thomas R; Nuñez, Martin A

    2015-10-01

    Coinvasive ectomycorrhizal (ECM) fungi allow Pinaceae species to invade regions otherwise lacking compatible symbionts, but ECM fungal communities permitting Pinaceae invasions are poorly understood. In the context of Pinaceae invasions on Isla Victoria, Nahuel Huapi National Park, Argentina, we asked: what ECM fungi are coinvading with Pinaceae hosts on Isla Victoria; are some ECM fungal species or genera more prone to invade than others; and are all ECM fungal species that associate with Northern Hemisphere hosts also nonnative, or are some native fungi compatible with nonnative plants? We sampled ECMs from 226 Pinaceae host plant individuals, both planted individuals and recruits, growing inside and invading from plantations. We used molecular techniques to examine ECM fungal communities associating with these trees. A distinctive subset of the ECM fungal community predominated far from plantations, indicating differences between highly invasive and less invasive ECM fungi. Some fungal invaders reported here have been detected in other locations around the world, suggesting strong invasion potential. Fungi that were frequently detected far from plantations are often found in early-successional sites in the native range, while fungi identified as late-successional species in the native range are rarely found far from plantations, suggesting a means for predicting potential fungal coinvaders.

  3. Fungi in the future: Interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities

    DOE PAGES

    Cotton, T. E. Anne; Fitter, Alastair H.; Miller, R. Michael; ...

    2015-01-05

    Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO2) and ozone (O3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean (Glycine max) grown under elevated and ambient atmospheric concentrations of both CO2 and O3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO2 altered the community composition of AM fungi, increasingmore » the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi.« less

  4. Fungi in the future: Interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities

    SciTech Connect

    Cotton, T. E. Anne; Fitter, Alastair H.; Miller, R. Michael; Dumbrell, Alex J.; Helgason, Thorunn

    2015-01-05

    Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO2) and ozone (O3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean (Glycine max) grown under elevated and ambient atmospheric concentrations of both CO2 and O3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO2 altered the community composition of AM fungi, increasing the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi.

  5. Establishment of ectomycorrhizal fungal community on isolated Nothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests: does fruit-body type matter?

    PubMed

    Tedersoo, Leho; Gates, Genevieve; Dunk, Chris W; Lebel, Teresa; May, Tom W; Kõljalg, Urmas; Jairus, Teele

    2009-08-01

    Decaying wood provides an important habitat for animals and forms a seed bed for many shade-intolerant, small-seeded plants, particularly Nothofagus. Using morphotyping and rDNA sequence analysis, we compared the ectomycorrhizal fungal community of isolated N. cunninghamii seedlings regenerating in decayed wood against that of mature tree roots in the forest floor soil. The /cortinarius, /russula-lactarius, and /laccaria were the most species-rich and abundant lineages in forest floor soil in Australian sites at Yarra, Victoria and Warra, Tasmania. On root tips of seedlings in dead wood, a subset of the forest floor taxa were prevalent among them species of /laccaria, /tomentella-thelephora, and /descolea, but other forest floor dominants were rare. Statistical analyses suggested that the fungal community differs between forest floor soil and dead wood at the level of both species and phylogenetic lineage. The fungal species colonizing isolated seedlings on decayed wood in austral forests were taxonomically dissimilar to the species dominating in similar habitats in Europe. We conclude that formation of a resupinate fruit body type on the underside of decayed wood is not necessarily related to preferential root colonization in decayed wood. Rather, biogeographic factors as well as differential dispersal and competitive abilities of fungal taxa are likely to play a key role in structuring the ectomycorrhizal fungal community on isolated seedlings in decaying wood.

  6. Variation of soil arbuscular mycorrhizal fungal communities across land use gradient

    NASA Astrophysics Data System (ADS)

    Moora, M.; Davison, J.; Metsis, M.; Öpik, M.; Vasar, M.; Zobel, M.

    2012-04-01

    Arbuscular mycorrhizal (AM) fungi (phylum Glomeromycota) colonize the roots of most terrestrial plants, facilitating mineral nutrient uptake from soil in exchange for plant-assimilated carbon. While investigating functional aspects of plant-AM fungi interactions has been a major focus of research, there is increasing interest in describing and explaining the distribution of AM fungal diversity. Different management practices has been shown to influence the AM fungal communities while more intense management can bring along the loss of AM fungal diversity. Such a loss may have negative consequences on ecosystem service delivery, primary production and soil sustainability. However, due to cryptic lifestyle of AM fungi, relatively few information is available about variability of diversity and composition of AM fungal communities in the soils from differently managed ecosystems. To study the variation of soil AM fungal communities in response to the land use intensity, replicated soil samples were collected along land use gradient from intensively managed agricultural fields, organic fields, forest plantations and managed natural forest to primeval forest in Estonia. Soil AM fungal communities were described using molecular tools: DNA extraction, amplicon isolation and 454 large scale parallel pyrosequencing. Glomeromycota sequences were amplified using the SSU rDNA primers NS31 and AML2. We shall analyse and describe AM fungal community changes along land use intensity gradient and seek finding indicator taxa characteristic to particular land use types. We shall also address changes in the diversity of AM fungal taxa and check whether the decrease of diversity along land use intensity is a ubiquitous phenomenon.

  7. Effect of organic matter enrichment on the fungal community in limestone cave sediments.

    PubMed

    Marques, E L S; Dias, J C T; Silva, G S; Pirovani, C P; Rezende, R P

    2016-09-02

    Caves are considered major touristic attractions. The management plans of many such caves include limiting the number of visitors; however, the human impact on microbial communities within caves is rarely considered. Therefore, the aim of this study was to evaluate the impact of human-transferred organic matter on the fungal microcosms growing on cave sediments. Samples were collected from a Brazilian limestone cave and cultured with 0.25 or 0.5% 1:1 (w/w) beef and yeast extract (simulating organic matter) under laboratory conditions. The contaminated fungal community was then evaluated at days 0, 30, 180, and 365 after inoculation by polymerase chain reaction denaturing gradient gel electrophoresis. We observed changes in the fungal communities with time, as well as the concentration of added organic matter, compared to the control fungal communities. Additionally, the contaminated microcosms showed a greater number of operational taxonomic units compared to the controls. These findings suggest that tourist activity could cause fungal outbreaks of possible human pathogens, demonstrating the importance of fungal monitoring in these caves.

  8. Impact of endochitinase-transformed white spruce on soil fungal communities under greenhouse conditions.

    PubMed

    Lamarche, Josyanne; Stefani, Franck O P; Séguin, Armand; Hamelin, Richard C

    2011-05-01

    Chitinase genes isolated from plants, bacteria or fungi have been widely used in genetic engineering to enhance the resistance of crops and trees to fungal pathogens. However, there are concerns about the possible effect of chitinase-transformed plants on nontarget fungi. This study aimed at evaluating the impact of endochitinase-transformed white spruce on soil fungal communities. Endochitinase-expressing white spruce and untransformed controls were transplanted in soils from two natural forests and grown for 8 months in a greenhouse. Soil fungal biomass and diversity, estimated through species richness and Shannon and Rao diversity indices, were not different between transgenic and control tree rhizospheres. The fungal phylogenetic community structure was the same in soil samples from control and transgenic white spruces after 8 months. Soil type and presence of seedlings had a much more significant impact on fungal community structure than the insertion and expression of the ech42 transgene within the white spruce genome. The results suggest that the insertion and constitutive expression of the ech42 gene in white spruce did not significantly affect soil fungal biomass, diversity and community structure. © 2011 Her Majesty the Queen in Right of Canada FEMS Microbiology Ecology © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd.

  9. Repression of fungal plant pathogens and fungal-related contaminants: Selected ecosystem services by soil fauna communities in agroecosystems

    NASA Astrophysics Data System (ADS)

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Brunotte, Joachim; Weinert, Joachim

    2017-04-01

    In agroecosystems soil-borne fungal plant diseases are major yield-limiting factors which are difficult to control. Fungal plant pathogens, like Fusarium species, survive as a saprophyte in infected tissue like crop residues and endanger the health of the following crop by increasing the infection risk for specific plant diseases. In infected plant organs, these pathogens are able to produce mycotoxins. Mycotoxins like deoxynivalenol (DON) persist during storage, are heat resistant and of major concern for human and animal health after consumption of contaminated food and feed, respectively. Among fungivorous soil organisms, there are representatives of the soil fauna which are obviously antagonistic to a Fusarium infection and the contamination with mycotoxins. Specific members of the soil macro-, meso-, and microfauna provide a wide range of ecosystem services including the stimulation of decomposition processes which may result in the regulation of plant pathogens and the degradation of environmental contaminants. Investigations under laboratory conditions and in field were conducted to assess the functional linkage between soil faunal communities and plant pathogenic fungi (Fusarium culmorum). The aim was to examine if Fusarium biomass and the content of its mycotoxin DON decrease substantially in the presence of soil fauna (earthworms: Lumbricus terrestris, collembolans: Folsomia candida and nematodes: Aphelenchoides saprophilus) in a commercial cropping system managed with conservation tillage located in Northern Germany. The results of our investigations pointed out that the degradation performance of the introduced soil fauna must be considered as an important contribution to the biodegradation of fungal plant diseases and fungal-related contaminants. Different size classes within functional groups and the traits of keystone species appear to be significant for soil function and the provision of ecosystem services as in particular L. terrestris revealed to

  10. Bacterial and Fungal Community Structures in Loess Plateau Grasslands with Different Grazing Intensities

    PubMed Central

    Huhe; Chen, Xianjiang; Hou, Fujiang; Wu, Yanpei; Cheng, Yunxiang

    2017-01-01

    The Loess Plateau of China is one of the most fragile ecosystems worldwide; thus, human production activities need to be conducted very cautiously. In this study, MiSeq high-throughput sequencing was applied to assess the relationship between bacterial and fungal community structures and changes in vegetation and soil physical and chemical properties induced by grazing, in four grasslands with different levels of grazing intensity (0, 2.67, 5.33, and 8.67 sheep/ha) in the semiarid region of the Loess Plateau. The relative abundances of the bacterial community in the grasslands with 2.67 and 5.33 sheep/ha were significantly higher than those in grasslands with 0 and 8.67 sheep/ha, and the fungal diversity was significantly lower for grasslands with 2.67 sheep/ha than for the other grasslands. Redundancy analysis (RDA) showed that plant biomass, nitrate, and total nitrogen have significant effects on bacterial community structure, whereas nitrate and total nitrogen also significantly affect fungal community structure. Variation partitioning showed that soil and plant characteristics influence the bacterial and fungal community structures; these characteristics explained 51.9 and 52.9% of the variation, respectively. Thus, bacterial and fungal community structures are very sensitive to grazing activity and change to different extents with different grazing intensities. Based on our findings, a grazing intensity of about 2.67 sheep/ha is considered the most appropriate in semiarid grassland of the Loess Plateau. PMID:28439265

  11. Bacterial and Fungal Community Structures in Loess Plateau Grasslands with Different Grazing Intensities.

    PubMed

    Huhe; Chen, Xianjiang; Hou, Fujiang; Wu, Yanpei; Cheng, Yunxiang

    2017-01-01

    The Loess Plateau of China is one of the most fragile ecosystems worldwide; thus, human production activities need to be conducted very cautiously. In this study, MiSeq high-throughput sequencing was applied to assess the relationship between bacterial and fungal community structures and changes in vegetation and soil physical and chemical properties induced by grazing, in four grasslands with different levels of grazing intensity (0, 2.67, 5.33, and 8.67 sheep/ha) in the semiarid region of the Loess Plateau. The relative abundances of the bacterial community in the grasslands with 2.67 and 5.33 sheep/ha were significantly higher than those in grasslands with 0 and 8.67 sheep/ha, and the fungal diversity was significantly lower for grasslands with 2.67 sheep/ha than for the other grasslands. Redundancy analysis (RDA) showed that plant biomass, nitrate, and total nitrogen have significant effects on bacterial community structure, whereas nitrate and total nitrogen also significantly affect fungal community structure. Variation partitioning showed that soil and plant characteristics influence the bacterial and fungal community structures; these characteristics explained 51.9 and 52.9% of the variation, respectively. Thus, bacterial and fungal community structures are very sensitive to grazing activity and change to different extents with different grazing intensities. Based on our findings, a grazing intensity of about 2.67 sheep/ha is considered the most appropriate in semiarid grassland of the Loess Plateau.

  12. Multi-element fingerprinting and high throughput sequencing identify multiple elements that affect fungal communities in Quercus macrocarpa foliage.

    PubMed

    Jumpponen, Ari; Keating, Karen; Gadbury, Gary; Jones, Kenneth L; Mattox, J David

    2010-09-01

    Diverse fungal mutualists, pathogens and saprobes colonize plant leaves. These fungi face a complex environment, in which stochastic dispersal interplays with abiotic and biotic filters. However, identification of the specific factors that drive the community assembly seems unattainable. We mined two broad data sets and identified chemical elements, to which dominant molecular operational taxonomic units (OTUs) in the foliage of a native tree respond most extremely. While many associations could be identified, potential complicating issues emerged. Those were related to unevenly distributed OTU frequency data, a large number of potentially explanatory variables, and the disproportionate effects of outlier observations.

  13. Multi-element fingerprinting and high throughput sequencing identify multiple elements that affect fungal communities in Quercus macrocarpa foliage

    PubMed Central

    Keating, Karen; Gadbury, Gary; Jones, Kenneth L; Mattox, J David

    2010-01-01

    Diverse fungal mutualists, pathogens and saprobes colonize plant leaves. These fungi face a complex environment, in which stochastic dispersal interplays with abiotic and biotic filters. However, identification of the specific factors that drive the community assembly seems unattainable. We mined two broad data sets and identified chemical elements, to which dominant molecular operational taxonomic units (OTUs) in the foliage of a native tree respond most extremely. While many associations could be identified, potential complicating issues emerged. Those were related to unevenly distributed OTU frequency data, a large number of potentially explanatory variables and the disproportionate effects of outlier observations. PMID:21490423

  14. Stochastic processes dominate during boreal bryophyte community assembly.

    PubMed

    Fenton, Nicole J; Bergeron, Yves

    2013-09-01

    Why are plant species found in certain locations and not in others? The study of community assembly rules has attempted to answer this question, and many studies articulate the historic dichotomy of deterministic (predictable niches) vs. stochastic (random or semi-random processes). The study of successional sequences to determine whether they converge, as would be expected by deterministic theory, or diverge, as stochastic theory would suggest, has been one method used to investigate this question. In this article we ask the question: Do similar boreal bryophyte communities develop in the similar habitat created by convergent succession after fires of different severities? Or do the stochastic processes generated by fires of different severity lead to different communities? Specifically we predict that deterministic structure will be more important for large forest-floor species than stochastic processes, and that the inverse will be true for small bryophyte species. We used multivariate regression trees and model selection to determine the relative weight of structure (forest structure, substrates, soil structure) and processes (fire severity) for two groups of bryophyte species sampled in 12 sites (seven high-severity and five low-severity fires). Contrary to our first hypothesis, processes were as important for large forest-floor bryophytes as for small pocket species. Fire severity, its interaction with the quality of available habitat, and its impact on the creation of biological legacies played dominant roles in determining community structure. In this study, sites with nearly identical forest structure, generated via convergent succession after high- and low-severity fire, were compared to see whether these sites supported similar bryophyte communities. While similar to some degree, both the large forest-floor species and the pocket species differed after high-severity fire compared to low-severity fire. This result suggests that the "how," or process of

  15. A comparison of fungal communities from four salt marsh plants using automated ribosomal intergenic spacer analysis (ARISA).

    PubMed

    Torzilli, Albert P; Sikaroodi, Masoumeh; Chalkley, David; Gillevet, Patrick M

    2006-01-01

    Fungal decomposers are important contributors to the detritus-based food webs of salt marsh ecosystems. Knowing the composition of salt marsh fungal communities is essential in understanding how detritus processing is affected by changes in community dynamics. Automated ribosomal intergenic spacer analysis (ARISA) was used to examine the composition of fungal communities associated with four temperate salt marsh plants, Spartina alterniflora (short and tall forms), Juncus roemerianus, Distichlis spicata and Sarcocornia perennis. Plant tissues were homogenized and subjected to a particle-filtration protocol that yielded 106 microm particulate fractions, which were used as a source of fungal isolates and fungal DNA. Genera identified from sporulating cultures demonstrated that the 106 microm particles from each host plant were reliable sources of fungal DNA for ARISA. Analysis of ARISA data by principal component analysis (PCA), principal coordinate analysis (PCO) and species diversity comparisons indicated that the fungal communities from the two grasses, S. alterniflora and D. spicata were more similar to each other than they were to the distinct communities associated with J. roemerianus and S. perennis. Principal component analysis also showed no consistent, seasonal pattern in the composition of these fungal communities. Comparisons of ARISA fingerprints from the different fungal communities and those from pure cultures of selected Spartina ascomycetes supported the host/substrate specificity observed for the fungal communities.

  16. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    PubMed Central

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P < 0.04, R2 > 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  17. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests.

    PubMed

    Mahé, Frédéric; de Vargas, Colomban; Bass, David; Czech, Lucas; Stamatakis, Alexandros; Lara, Enrique; Singer, David; Mayor, Jordan; Bunge, John; Sernaker, Sarah; Siemensmeyer, Tobias; Trautmann, Isabelle; Romac, Sarah; Berney, Cédric; Kozlov, Alexey; Mitchell, Edward A D; Seppey, Christophe V W; Egge, Elianne; Lentendu, Guillaume; Wirth, Rainer; Trueba, Gabriel; Dunthorn, Micah

    2017-03-20

    High animal and plant richness in tropical rainforest communities has long intrigued naturalists. It is unknown if similar hyperdiversity patterns are reflected at the microbial scale with unicellular eukaryotes (protists). Here we show, using environmental metabarcoding of soil samples and a phylogeny-aware cleaning step, that protist communities in Neotropical rainforests are hyperdiverse and dominated by the parasitic Apicomplexa, which infect arthropods and other animals. These host-specific parasites potentially contribute to the high animal diversity in the forests by reducing population growth in a density-dependent manner. By contrast, too few operational taxonomic units (OTUs) of Oomycota were found to broadly drive high tropical tree diversity in a host-specific manner under the Janzen-Connell model. Extremely high OTU diversity and high heterogeneity between samples within the same forests suggest that protists, not arthropods, are the most diverse eukaryotes in tropical rainforests. Our data show that protists play a large role in tropical terrestrial ecosystems long viewed as being dominated by macroorganisms.

  18. Patterns of macromycete community assemblage along an elevation gradient: options for fungal gradient and metacommunity analyse

    Treesearch

    Marko Gómez-Hernández; Guadalupe Williams-Linera; Roger Guevara; D. Jean Lodge

    2012-01-01

    Gradient analysis is rarely used in studies of fungal communities. Data on macromycetes from eight sites along an elevation gradient in central Veracruz, Mexico, were used to demonstrate methods for gradient analysis that can be applied to studies of communities of fungi. Selected sites from 100 to 3,500 m altitude represent tropical dry forest, tropical montane cloud...

  19. Current investigations of fungal ectomycorrhizal communities in the Sierra Nevada Forest

    Treesearch

    Thomas D. Bruns; Annette M. Kretzer; Thomas R. Horton; Eric A-D. Stendell; Martin I. Bidartondo; Timothy M. Szaro

    2002-01-01

    Progress on two main studies on fungal ectomycorrhizal communities in the Sierra National Forest is discussed. One study examined the short-term effects of ground fire on the ectomycorrhizal community and the other examined the ectomycorrhizal associates of snow plant (Sarcodes sanguinea). In the ground-fire study we found that a large initial...

  20. Can we develop general predictive models of mycorrhizal fungal community-environment relationships?

    Treesearch

    Erik A. Lilleskov; Jeri L. Parrent

    2007-01-01

    Our understanding of the controls on mycorrhizal fungal species distribution and community organization is in its early childhood - especially when compared with that of the more mature fields of plant and animal community ecology and biogeography - largely because of the historical difficulty of gathering species distribution information.

  1. Effort versus reward: preparing samples for fungal community characterization in high-throughput sequencing surveys of soils

    USDA-ARS?s Scientific Manuscript database

    Next generation fungal amplicon sequencing is being used with increasing frequency to study fungal diversity in various ecosystems; however, the influence of sample preparation on the characterization of fungal community is poorly understood. We investigated the effects of four procedural modificati...

  2. Environmental controls on fungal community composition and abundance over 3 years in native and degraded shrublands.

    PubMed

    Glinka, Clare; Hawkes, Christine V

    2014-11-01

    Soil fungal communities have high local diversity and turnover, but the relative contribution of environmental and regional drivers to those patterns remains poorly understood. Local factors that contribute to fungal diversity include soil properties and the plant community, but there is also evidence for regional dispersal limitation in some fungal communities. We used different plant communities with different soil conditions and experimental manipulations of both vegetation and dispersal to distinguish among these factors. Specifically, we compared native shrublands with former native shrublands that had been disturbed or converted to pasture, resulting in soils progressively more enriched in carbon and nutrients. We tested the role of vegetation via active removal, and we manipulated dispersal by adding living soil inoculum from undisturbed native sites. Soil fungi were tracked for 3 years, with samples taken at ten time points from June 2006 to June 2009. We found that soil fungal abundance, richness, and community composition responded primarily to soil properties, which in this case were a legacy of plant community degradation. In contrast, dispersal had no effect on soil fungi. Temporal variation in soil fungi was partly related to drought status, yet it was much broader in native sites compared to pastures, suggesting some buffering due to the increased soil resources in the pasture sites. The persistence of soil fungal communities over 3 years in this study suggests that soil properties can act as a strong local environmental filter. Largely persistent soil fungal communities also indicate the potential for strong biotic resistance and soil legacies, which presents a challenge for both the prediction of how fungi respond to environmental change and our ability to manipulate fungi in efforts such as ecosystem restoration.

  3. Fungal phyllosphere communities are altered by indirect interactions among trophic levels.

    PubMed

    Perez, Jose L; French, J Victor; Summy, Kenneth R; Baines, Anita Davelos; Little, Christopher R

    2009-05-01

    Trophic interactions involving predators, herbivores, and plants have been described in terrestrial systems. However, there is almost no information on the effect of trophic interactions on microbial phyllosphere community abundance, diversity, or structure. In this study, the interaction between a parasitoid, an insect herbivore, and the fungal phyllosphere community is examined. Parasitoid wasps have an indirect negative impact on fungal community diversity. On the citrus phyllosphere, the exotic wasp species, Amitus hesperidum and Encarsia opulenta, may parasitize the citrus blackfly (Aleurocanthus woglumi). If parasitism levels are low, the blackfly may produce significant amounts of honeydew secretions on the surface of the leaf. Honeydew deposition provides a carbon-rich substrate for the development of fungal growth persisting as sooty mold on the leaves. Leaves from sooty mold-infested grapefruit (Citrus paradisi) trees were collected from multiple orchards in south Texas. The effect of different levels of exotic parasite activity, citrus blackfly, and sooty mold infestation on phyllosphere mycobiota community structure and diversity was examined. Our results suggest the presence of the parasitoid may lead to a top-down trophic cascade affecting phyllosphere fungal community diversity and structure. Additionally, persistent sooty mold deposits that have classically been referred to as Capnodium citri (and related asexual morphological forms) actually comprise a myriad of fungal species including many saprophytes and potential fruit and foliar pathogens of citrus.

  4. Community ecology of fungal pathogens on Bromus tectorum [Chapter 7

    Treesearch

    Susan E. Meyer; Julie Beckstead; JanaLynn Pearce

    2016-01-01

    Bromus tectorum L. (cheatgrass or downy brome) presents a rich resource for soil microorganisms because of its abundant production of biomass, seeds, and surface litter. Many of these organisms are opportunistic saprophytes, but several fungal species regularly found in B. tectorum stands function as facultative or obligate pathogens. These organisms interact...

  5. Identification of Fungal Communities Associated with the Biodeterioration of Waterlogged Archeological Wood in a Han Dynasty Tomb in China

    PubMed Central

    Liu, Zijun; Wang, Yu; Pan, Xiaoxuan; Ge, Qinya; Ma, Qinglin; Li, Qiang; Fu, Tongtong; Hu, Cuiting; Zhu, Xudong; Pan, Jiao

    2017-01-01

    The Mausoleum of the Dingtao King (termed ‘M2’) is a large-scale huangchang ticou tomb that dates to the Western Han Dynasty (206 B.C.–25 A.D.). It is the highest-ranking Han Dynasty tomb discovered to date. However, biodeterioration on the surface of the tomb M2 is causing severe damage to its wooden materials. The aim of the present study was to give insight into the fungal communities colonized the wooden tomb. For this purpose, seven samples were collected from different sections of the tomb M2 which exhibited obvious biodeterioration in the form of white spots. Microbial structures associated with the white spots were observed with scanning electron microscopy. Fungal community structures were assessed for seven samples via a combination of high-throughput sequencing and culture-dependent techniques. Sequencing analyses identified 114 total genera that belonged to five fungal phyla. Hypochnicium was the most abundant genus across all samples and accounted for 98.61–99.45% of the total community composition. Further, Hypochnicium sp. and Mortierella sp. cultures were successfully isolated from the tomb samples, and were distinguished as Hypochnicium sp. WY-DT1 and Mortierella sp. NK-DT1, respectively. Cultivation-dependent experiments indicated that the dominant member, Hypochnicium sp. WY- DT1, could grow at low temperatures and significantly degraded cellulose and lignin. Thus, our results taken together suggest that this fungal strain must be regarded as a serious threat to the preservation of the wooden tomb M2. The results reported here are useful for informing future contamination mitigation efforts for the tomb M2 as well as other similar cultural artifacts. PMID:28890715

  6. Identification of Fungal Communities Associated with the Biodeterioration of Waterlogged Archeological Wood in a Han Dynasty Tomb in China.

    PubMed

    Liu, Zijun; Wang, Yu; Pan, Xiaoxuan; Ge, Qinya; Ma, Qinglin; Li, Qiang; Fu, Tongtong; Hu, Cuiting; Zhu, Xudong; Pan, Jiao

    2017-01-01

    The Mausoleum of the Dingtao King (termed 'M2') is a large-scale huangchang ticou tomb that dates to the Western Han Dynasty (206 B.C.-25 A.D.). It is the highest-ranking Han Dynasty tomb discovered to date. However, biodeterioration on the surface of the tomb M2 is causing severe damage to its wooden materials. The aim of the present study was to give insight into the fungal communities colonized the wooden tomb. For this purpose, seven samples were collected from different sections of the tomb M2 which exhibited obvious biodeterioration in the form of white spots. Microbial structures associated with the white spots were observed with scanning electron microscopy. Fungal community structures were assessed for seven samples via a combination of high-throughput sequencing and culture-dependent techniques. Sequencing analyses identified 114 total genera that belonged to five fungal phyla. Hypochnicium was the most abundant genus across all samples and accounted for 98.61-99.45% of the total community composition. Further, Hypochnicium sp. and Mortierella sp. cultures were successfully isolated from the tomb samples, and were distinguished as Hypochnicium sp. WY-DT1 and Mortierella sp. NK-DT1, respectively. Cultivation-dependent experiments indicated that the dominant member, Hypochnicium sp. WY- DT1, could grow at low temperatures and significantly degraded cellulose and lignin. Thus, our results taken together suggest that this fungal strain must be regarded as a serious threat to the preservation of the wooden tomb M2. The results reported here are useful for informing future contamination mitigation efforts for the tomb M2 as well as other similar cultural artifacts.

  7. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration.

    PubMed

    Sun, Shan; Li, Song; Avera, Bethany N; Strahm, Brian D; Badgley, Brian D

    2017-07-15

    Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities.IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery

  8. Structure and species composition of ectomycorrhizal fungal communities colonizing seedlings and adult trees of Pinus montezumae in Mexican neotropical forests.

    PubMed

    Reverchon, Frédérique; Ortega-Larrocea, María del Pilar; Bonilla-Rosso, Germán; Pérez-Moreno, Jesús

    2012-05-01

    Mexico is a center of diversity for pines, but few studies have examined the ectomycorrhizal (ECM) fungal communities associated with pines in this country. We investigated the ECM communities associated with Pinus montezumae seedlings and mature trees in neotropical forests of central Mexico and compared their structure and species composition. Root tips were sampled on both planted seedlings and naturally occurring adult trees. A total of 42 ECM operational taxonomic units (OTUs) was found on P. montezumae. Diversity and similarity indices showed that community structure was similar for both plant growth stages, but phylogenetic diversity and Chao-estimated richness were higher for seedlings. Species composition differed between communities. The dominant OTUs belonged to the families Atheliaceae, Cortinariaceae, and Sebacinaceae, although different taxa appeared to colonize seedlings and adults. Only 12 OTUs were shared between seedlings and adults, which suggests that ECM fungi which colonize seedlings are still not fully incorporated into mycelial networks and that ECM taxa colonizing young individuals of P. montezumae are likely to come from fungal propagules. Intra-generic diversity could be an insurance mechanism to maintain forest productivity under stressed conditions. This is the first report describing the abundance of Atheliaceae in tree roots in neotropical ecosystems. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Biodegradation of polyester polyurethane during commercial composting and analysis of associated fungal communities.

    PubMed

    Zafar, Urooj; Nzeram, Petrus; Langarica-Fuentes, Adrian; Houlden, Ashley; Heyworth, Alan; Saiani, Alberto; Robson, Geoff D

    2014-04-01

    In this study the biodegradation of polyurethane (PU) during the maturation stage of a commercial composting process was investigated. PU coupons were buried in the centre and at the surface of a 10 m high compost pile. Fungal communities colonising polyester PU coupons were compared with the native compost communities using culture based and molecular techniques. Putative polyester PU degrading fungi were ubiquitous in compost and rapidly colonised the surface of polyester PU coupons with significant deterioration. As the temperature decreased, fungal diversity in the compost and on the surface of the polyester PU coupons increased and selection of fungal community on the polyester PU coupons occurs that is different from the surrounding compost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment.

    PubMed

    Badia-Fabregat, Marina; Lucas, Daniel; Pereira, Maria Alcina; Alves, Madalena; Pennanen, Taina; Fritze, Hannu; Rodríguez-Mozaz, Sara; Barceló, Damià; Vicent, Teresa; Caminal, Glòria

    2016-03-01

    Source point treatment of effluents with a high load of pharmaceutical active compounds (PhACs), such as hospital wastewater, is a matter of discussion among the scientific community. Fungal treatments have been reported to be successful in degrading this type of pollutants and, therefore, the white-rot fungus Trametes versicolor was applied for the removal of PhACs from veterinary hospital wastewater. Sixty-six percent removal was achieved in a non-sterile batch bioreactor inoculated with T. versicolor pellets. On the other hand, the study of microbial communities by means of DGGE and phylogenetic analyses led us to identify some microbial interactions and helped us moving to a continuous process. PhAC removal efficiency achieved in the fungal treatment operated in non-sterile continuous mode was 44 % after adjusting the C/N ratio with respect to the previously calculated one for sterile treatments. Fungal and bacterial communities in the continuous bioreactors were monitored as well.

  11. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations

    DOE PAGES

    Caio T.C.C. Rachid; Balieiro, Fabiano C.; Fonseca, Eduardo S.; ...

    2015-02-23

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments:more » monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.« less

  12. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations

    SciTech Connect

    Caio T.C.C. Rachid; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.

    2015-02-23

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.

  13. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations.

    PubMed

    Rachid, Caio T C C; Balieiro, Fabiano C; Fonseca, Eduardo S; Peixoto, Raquel Silva; Chaer, Guilherme M; Tiedje, James M; Rosado, Alexandre S

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.

  14. Initial phylogenetic relatedness of saprotrophic fungal communities affects subsequent litter decomposition rates.

    PubMed

    Kivlin, Stephanie N; Treseder, Kathleen K

    2015-05-01

    Ecosystem-level consequences of biodiversity loss of macroorganisms are well understood, while the repercussions of species extirpation in microbial systems are not. We manipulated species richness and phylogenetic relatedness of saprotrophic fungi in situ in a boreal forest to address this issue. Litter decomposition rates (as total mass loss) after 2 months were significantly higher in the least phylogenetically related fungal assemblages. Likewise, cellulose loss was also highest in the most distantly related treatments after 1 year. There were marginal effects of species richness on mass loss that only affected decomposition after 2 months. At the end of 1 year of decomposition, most fungal communities had collapsed from their original diversity to two species, mainly in the Penicillium or Hypocrea clades. Two concurrent processes may explain these results: competition between closely related fungal taxa and phylogenetic conservation in cellulose decomposition. Our results suggest that phylogenetic relatedness of fungal communities may be a more appropriate metric than species richness or community composition to predict functional responses of fungal communities to global change.

  15. Intercropped Silviculture Systems, a Key to Achieving Soil Fungal Community Management in Eucalyptus Plantations

    PubMed Central

    Rachid, Caio T. C. C.; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that. PMID:25706388

  16. A dominant function of CCaMK in intracellular accommodation of bacterial and fungal endosymbionts

    PubMed Central

    Hayashi, Teruyuki; Banba, Mari; Shimoda, Yoshikazu; Kouchi, Hiroshi; Hayashi, Makoto; Imaizumi-Anraku, Haruko

    2010-01-01

    In legumes, Ca2+/calmodulin-dependent protein kinase (CCaMK) is a component of the common symbiosis genes that are required for both root nodule (RN) and arbuscular mycorrhiza (AM) symbioses and is thought to be a decoder of Ca2+ spiking, one of the earliest cellular responses to microbial signals. A gain-of-function mutation of CCaMK has been shown to induce spontaneous nodulation without rhizobia, but the significance of CCaMK activation in bacterial and/or fungal infection processes is not fully understood. Here we show that a gain-of-function CCaMKT265D suppresses loss-of-function mutations of common symbiosis genes required for the generation of Ca2+ spiking, not only for nodule organogenesis but also for successful infection of rhizobia and AM fungi, demonstrating that the common symbiosis genes upstream of Ca2+ spiking are required solely to activate CCaMK. In RN symbiosis, however, CCaMKT265D induced nodule organogenesis, but not rhizobial infection, on Nod factor receptor (NFRs) mutants. We propose a model of symbiotic signaling in host legume plants, in which CCaMK plays a key role in the coordinated induction of infection thread formation and nodule organogenesis. PMID:20409002

  17. Whose truffle is this? Distribution patterns of ectomycorrhizal fungal diversity in Tuber melanosporum brûlés developed in multi-host Mediterranean plant communities.

    PubMed

    Taschen, Elisa; Sauve, Mathieu; Taudiere, Adrien; Parlade, Javier; Selosse, Marc-André; Richard, Franck

    2015-08-01

    In the Mediterranean region, patches of vegetation recovering from disturbance and transiently dominated by shrubs produce one of the world's most prized fungi, the black truffle (Tuber melanosporum). In these successional plant communities, we have fragmentary knowledge of the distribution of T. melanosporum in space among ectomycorrhizal (ECM) host species and in time. Molecular identification of hosts (Restriction Fragment Length Polymorphism) and fungi (Internal Transcribed Spacer sequencing) and quantification of T. melanosporum mycelium (quantitative Polymerase Chain Reaction) were employed to evaluate the presence of T. melanosporum on four dominant ECM host species (Quercus ilex, Quercus  coccifera, Arbutus unedo, Cistus albidus) and the extent to which their respective ECM communities shared fungal diversity, over the course of development of truffle grounds, from recent unproductive brûlés to senescent ones where production has stopped. We found that truffle grounds host rich communities in which multi-host fungal species dominate in frequency. When considering both ECM tips and soil mycelia, we documented a dynamic and spatially heterogeneous pattern of T. melanosporum distribution in soils and a presence of ECM tips restricted to Q. ilex roots. This study advances our knowledge of the ecology of T. melanosporum, and provides insight into the extent of ECM fungal sharing among plant species that dominate Mediterranean landscapes. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities.

    PubMed

    Asemaninejad, Asma; Thorn, R Greg; Lindo, Zoë

    2017-04-01

    Peatlands play an important role in global climate change through sequestration of atmospheric CO2. Climate-driven changes in the structure of fungal communities in boreal peatlands that favor saprotrophic fungi can substantially impact carbon dynamics and nutrient cycling in these crucial ecosystems. In a mesocosm study using a full factorial design, 100 intact peat monoliths, complete with living Sphagnum and above-ground vascular vegetation, were subjected to three climate change variables (increased temperature, reduced water table, and elevated CO2 concentrations). Peat litterbags were placed in mesocosms, and fungal communities in litterbags were monitored over 12 months to assess the impacts of climate change variables on peat-inhabiting fungi. Changes in fungal richness, diversity, and community composition were assessed using Illumina MiSeq sequencing of ribosomal DNA (rDNA). While general fungal richness reduced under warming conditions, Ascomycota exhibited higher diversity under increased temperature treatments over the course of the experiment. Both increased temperature and lowered water table position drove shifts in fungal community composition with a strong positive effect on endophytic and mycorrhizal fungi (including one operational taxonomic unit (OTU) tentatively identified as Barrenia panicia) and different groups of saprotrophs identified as Mortierella, Galerina, and Mycena. These shifts were observed during a predicted degradative succession in the decomposer community as different carbon substrates became available. Since fungi play a central role in peatland communities, increased abundances of saprotrophic fungi under warming conditions, at the expense of reduced fungal richness overall, may increase decomposition rates under future climate scenarios and could potentially aggravate the impacts of climate change.

  19. Host identity impacts rhizosphere fungal communities associated with three alpine plant species.

    PubMed

    Becklin, Katie M; Hertweck, Kate L; Jumpponen, Ari

    2012-04-01

    Fungal diversity and composition are still relatively unknown in many ecosystems; however, host identity and environmental conditions are hypothesized to influence fungal community assembly. To test these hypotheses, we characterized the richness, diversity, and composition of rhizosphere fungi colonizing three alpine plant species, Taraxacum ceratophorum, Taraxacum officinale, and Polemonium viscosum. Roots were collected from open meadow and willow understory habitats at treeline on Pennsylvania Mountain, Colorado, USA. Fungal small subunit ribosomal DNA was sequenced using fungal-specific primers, sample-specific DNA tags, and 454 pyrosequencing. We classified operational taxonomic units (OTUs) as arbuscular mycorrhizal (AMF) or non-arbuscular mycorrhizal (non-AMF) fungi and then tested whether habitat or host identity influenced these fungal communities. Approximately 14% of the sequences represented AMF taxa (44 OTUs) with the majority belonging to Glomus groups A and B. Non-AMF sequences represented 186 OTUs belonging to Ascomycota (58%), Basidiomycota (26%), Zygomycota (14%), and Chytridiomycota (2%) phyla. Total AMF and non-AMF richness were similar between habitats but varied among host species. AMF richness and diversity per root sample also varied among host species and were highest in T. ceratophorum compared with T. officinale and P. viscosum. In contrast, non-AMF richness and diversity per root sample were similar among host species except in the willow understory where diversity was reduced in T. officinale. Fungal community composition was influenced by host identity but not habitat. Specifically, T. officinale hosted a different AMF community than T. ceratophorum and P. viscosum while P. viscosum hosted a different non-AMF community than T. ceratophorum and T. officinale. Our results suggest that host identity has a stronger effect on rhizosphere fungi than habitat. Furthermore, although host identity influenced both AMF and non-AMF, this effect

  20. Fungal communities in the garden chamber soils of leaf-cutting ants.

    PubMed

    Rodrigues, Andre; Passarini, Michel R Z; Ferro, Milene; Nagamoto, Nilson S; Forti, Luiz C; Bacci, Maurício; Sette, Lara D; Pagnocca, Fernando C

    2014-11-01

    Leaf-cutting ants modify the properties of the soil adjacent to their nests. Here, we examined whether such an ant-altered environment impacts the belowground fungal communities. Fungal diversity and community structure of soil from the fungus garden chambers of Atta sexdens rubropilosa and Atta bisphaerica, two widespread leaf-cutting ants in Brazil, were determined and compared with non-nest soils. Culture-dependent methods revealed similar species richness but different community compositions between both types of soils. Penicillium janthinellum and Trichoderma spirale were the prevalent isolates in fungus chamber soils and non-nest soils, respectively. In contrast to cultivation methods, analyses of clone libraries based on the internal transcribed spacer (ITS) region indicated that richness of operational taxonomic units significantly differed between soils of the fungus chamber and non-nest soils. FastUnifrac analyses based on ITS sequences further revealed a clear distinction in the community structure between both types of soils. Plectania milleri and an uncultured Clavariaceae fungus were prevalent in fungus chamber soils and non-nest soils, respectively. FastUnifrac analyses also revealed that fungal community structures of soil from the garden chambers markedly differed among ant species. Our findings suggest that leaf-cutting ants affect fungal communities in the soil from the fungus chamber in comparison to non-nest soils.

  1. Mycorrhizal networks affect ectomycorrhizal fungal community similarity between conspecific trees and seedlings.

    PubMed

    Bingham, Marcus A; Simard, Suzanne W

    2012-05-01

    Ectomycorrhizal (EM) networks (MN) are thought to be an important mode of EM fungal colonization of coniferous seedlings. How MNs affect EM communities on seedlings, and how this varies with biotic and abiotic factors, is integral to understanding their importance in seedling establishment. We examined EM fungal community similarity between mature trees and conspecific interior Douglas-fir (Pseudotsuga menziesii var. glauca) seedlings in two experiments where seed and nursery-grown seedlings originating from different locations were planted at various distances from trees along a climatic gradient. At harvest, trees shared 60% of their fungal taxa in common with outplanted seedlings and 77% with germinants, indicating potential for seedlings to join the network of residual trees. In both experiments, community similarity between trees and seedlings increased with drought. However, community similarity was lower among nursery seedlings growing at 2.5 m from trees when they were able to form an MN, suggesting MNs reduced seedling EM fungal richness. For field germinants, MNs resulted in lower community similarity in the driest climates. Distance from trees affected community similarity of nursery seedlings to trees, but there was no interaction of provenance with MNs in their effect on similarity in either nursery seedlings or field germinants as hypothesized. We conclude that MNs of trees influence EM colonization patterns of seedlings, and the strength of these effects increases with climatic drought. © Springer-Verlag 2012

  2. Strong linkage between plant and soil fungal communities along a successional coastal dune system.

    PubMed

    Roy-Bolduc, Alice; Laliberté, Etienne; Boudreau, Stéphane; Hijri, Mohamed

    2016-10-01

    Complex interactions between plants and soil microorganisms drive key ecosystem and community properties such as productivity and diversity. In nutrient-poor systems such as sand dunes, plant traits and fungal symbioses related to nutrient acquisition can strongly influence vegetation dynamics. We investigated plant and fungal communities in a relic foredune plain located on an archipelago in Québec, Canada. We detected distinct communities across the edaphic and successional gradient. Our results showed a clear increase in plant species richness, as well as in the diversity of nutrient-acquisition strategies. We also found a strong correlation between aboveground vegetation and soil fungal communities, and both responded similarly to soil physicochemical properties. Soil pH influenced the composition of plant and fungal communities, and could act as an important environmental filter along this relic foredune plain. The increasing functional diversity in plant nutrient-acquisition strategies across the gradient might favor resource partitioning and facilitation among co-occurring plant species. The coordinated changes in soil microbial and plant communities highlight the importance of aboveground-belowground linkages and positive biotic interactions during ecological succession in nutrient-poor environments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Fungal endophytic communities associated to the phyllosphere of grapevine cultivars under different types of management.

    PubMed

    Varanda, Carla Marisa Reis; Oliveira, Mônica; Materatski, Patrick; Landum, Miguel; Clara, Maria Ivone Esteves; Félix, Maria do Rosário

    2016-12-01

    Fungal endophytes present in different asymptomatic grapevine plants (Vitis vinifera L.) located in different vineyards within Alentejo, a highly important viticulture region in Portugal, were identified in this study. Sampled grapevine plants included the three most representative cultivars in the region, Syrah, Cabernet Sauvignon, and Aragonez, growing under two different modes of management, conventional and biological. Sixteen fungal taxa were identified through sequencing of the internal transcribed spacer region. Total number of endophytic fungi isolated showed significant differences both in management mode and in cultivars, with higher numbers in grapevines under conventional mode and from Syrah cultivar. The composition of fungal endophytic communities did not show significant differences among cultivars, but differences were observed between fungal communities isolated from grapevines under biological or conventional modes. The most fungal taxa isolated from grapevines cultivated under biological mode were Alternaria alternata, Cladosporium sp., and Nigrospora oryzae, and under conventional mode Botrytis cinerea, Epicoccum nigrum, and Epicoccum sp. These differences suggest that the different products used in grapevine production have impacts in fungal endophytic composition. Further investigation of the identified fungi with respect to their antagonistic characteristics and potential use in plant protection to ensure food safety is now in course. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. Lichen-Associated Fungal Community in Hypogymnia hypotrypa (Parmeliaceae, Ascomycota) Affected by Geographic Distribution and Altitude

    PubMed Central

    Wang, Yanyan; Zheng, Yong; Wang, Xinyu; Wei, Xinli; Wei, Jiangchun

    2016-01-01

    Lichen-associated fungal species have already been investigated in almost all the main growth forms of lichens, however, whether or not they are homogeneous and constant within each lichen species are still inconclusive. Moreover, the related ecological factors to affect and structure the fungal composition have been poorly studied. In order to answer these questions, we took Hypogymnia hypotrypa as a model to study the relationship between the lichen-associated fungal composition and two ecological factors, i.e., site and altitude, using the method of IlluminaMiSeq sequencing. Four different sites and two levels of altitude were included in this study, and the effects of site and altitude on fungal community composition were assessed at three levels, i.e., operational taxonomic unit (OTU), class and phylum. The results showed that a total of 50 OTUs were identified and distributed in 4 phyla, 13 classes, and 20 orders. The lichen-associated fungal composition within H. hypotrypa were significantly affected by both site and altitude at OTU and class levels, while at the phylum level, it was only affected by altitude. While the lichen associated fungal communities were reported to be similar with endophytic fungi of the moss, our results indicated the opposite results in some degree. But whether there exist specific OTUs within this lichen species corresponding to different sites and altitudes is still open. More lichen species and ecological factors would be taken into the integrated analyses to address these knowledge gaps in the near future. PMID:27547204

  5. Spatial community structure of mountain pine beetle fungal symbionts across a latitudinal gradient.

    PubMed

    Roe, Amanda D; James, Patrick M A; Rice, Adrianne V; Cooke, Janice E K; Sperling, Felix A H

    2011-08-01

    Symbiont redundancy in obligate insect-fungal systems is thought to buffer the insect host against symbiont loss and to extend the environmental conditions under which the insect can persist. The mountain pine beetle is associated with at least three well-known and putatively obligate ophiostomatoid fungal symbionts that vary in their environmental tolerances. To better understand the spatial variation in beetle-fungal symbiotic associations, we examined the community composition of ophiostomatoid fungi associated with the mountain pine beetle as a function of latitude and elevation. The region investigated represents the leading edge of a recent outbreak of mountain pine beetle in western Canada. Using regression and principal components analysis, we identified significant spatial patterns in fungal species abundances that indicate symmetrical replacement between two of the three fungi along a latitudinal gradient and little variation in response to elevation. We also identified significant variation in the prevalence of pair-wise species combinations that occur within beetle galleries. Frequencies of pair-wise combinations were significantly different from what was expected given overall species abundances. These results suggest that complex processes of competitive exclusion and coexistence help determine fungal community composition and that the consequences of these processes vary spatially. The presence of three fungal symbionts in different proportions and combinations across a wide range of environmental conditions may help explain the success of mountain pine beetle attacks across a broad geographic range.

  6. Ectomycorrhizal fungal communities associated with Pinus thunbergii in the eastern coastal pine forests of Korea.

    PubMed

    Obase, Keisuke; Cha, Joo Young; Lee, Jong Kyu; Lee, Sang Yong; Lee, Jin Ho; Chun, Kun Woo

    2009-11-01

    We investigated the ectomycorrhizal (ECM) fungal colonization status of Pinus thunbergii mature trees and regenerating seedlings varying in age in coastal pine forests on the east coast of Korea. We established one 20 x 20-m plot at each of two study sites at P. thunbergii coastal forests in Samcheok. Fifty soil blocks (5 x 5 x 15 cm) were sampled at regular intervals, and ten P. thunbergii seedlings of age 0, 1-3, 3-5, and 5-10 years were sampled in each study plot. In total of 27 ECM fungal taxa, Cenococcum geophilum was dominant, followed by Russula sp., Sebacina sp., and unidentified Cortinuris sp. in mature trees. In 0-year-old seedlings, some fungal species such as Sebacina sp., C. geophilum, and unidentified Cortinarius sp. were dominant whereas only C. geophilum was dominant after 1 year, and there were no apparent succession patterns in ECM fungal compositions beyond a host age of 1 year. Most ECM fungal taxa that had colonized seedlings of each age class were also observed in roots of mature trees in each site. These taxa accounted for 86.7-100% and 96.4-98.4% of ECM abundance in seedlings and mature trees, respectively. The results indicate that the species composition of ECM fungal taxa colonizing seedlings of different age in forests is similar to that of surrounding mature trees. Our results also showed that C. geophilum is a common and dominant ECM fungus in P. thunbergii coastal forests and might play a significant role in their regeneration.

  7. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities.

    PubMed

    Gosney, Benjamin J; O Reilly-Wapstra, Julianne M; Forster, Lynne G; Barbour, Robert C; Iason, Glenn R; Potts, Brad M

    2014-01-01

    Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.

  8. Genetic and Ontogenetic Variation in an Endangered Tree Structures Dependent Arthropod and Fungal Communities

    PubMed Central

    Gosney, Benjamin J.; O′Reilly-Wapstra, Julianne M.; Forster, Lynne G.; Barbour, Robert C.; Iason, Glenn R.; Potts, Brad M.

    2014-01-01

    Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings. PMID:25469641

  9. Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil.

    PubMed

    Mathimaran, N; Ruh, R; Vullioud, P; Frossard, E; Jansa, J

    2005-12-01

    Arbuscular mycorrhizal fungal (AMF) spore communities were surveyed in a long-term field fertilization experiment in Switzerland, where different amounts of phosphorus (P) were applied to soil. Plots receiving no P as well as plots systematically fertilized in excess to plant needs for 31 years were used to test the hypothesis that application of P fertilizer changes the composition and diversity of AMF communities. AMF spores were isolated from the field soil, identified, and counted so as to quantify the effect of P fertilization on AMF spore density, composition, and diversity. Trap cultures were established from field soil with four host plants (sunflower, leek, maize, and Crotalaria grahamiana), and the spore communities were then analyzed in substrate samples from the pots. Altogether, nine AMF species were detected in the soil. No evidence has been acquired for effect of P fertilization on spore density, composition, and diversity of AMF in both the field soil and in trap cultures. On the other hand, we observed strong effect of crop plant species on spore densities in the soil, the values being lowest under rapeseed and highest under Phacelia tanacetifolia covercrop. The identity of plant species in trap pots also significantly affected composition and diversity of associated AMF communities, probably due to preferential establishment of symbiosis between certain plant and AMF species. AMF spore communities under mycorrhizal host plants (wheat and Phacelia in the fields and four host plant species in trap pots) were dominated by a single AMF species, Glomus intraradices. This resulted in exceptionally low AMF spore diversity that seems to be linked to high clay content of the soil.

  10. Endosymbiont dominated bacterial communities in a dwarf spider.

    PubMed

    Vanthournout, Bram; Hendrickx, Frederik

    2015-01-01

    The microbial community of spiders is little known, with previous studies focussing primarily on the medical importance of spiders as vectors of pathogenic bacteria and on the screening of known cytoplasmic endosymbiont bacteria. These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders. In order to have a more complete overview of the bacterial species that can be present in spiders, we applied a combination of a cloning assay, DGGE profiling and high-throughput sequencing on multiple individuals of the dwarf spider Oedothorax gibbosus. This revealed a co-infection of at least three known (Wolbachia, Rickettsia and Cardinium) and the detection of a previously unreported endosymbiont bacterium (Rhabdochlamydia) in spiders. 16S rRNA gene sequences of Rhabdochlamydia matched closely with those of Candidatus R. porcellionis, which is currently only reported as a pathogen from a woodlouse and with Candidatus R. crassificans reported from a cockroach. Remarkably, this bacterium appears to present in very high proportions in one of the two populations only, with all investigated females being infected. We also recovered Acinetobacter in high abundance in one individual. In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species. In contrast to previously reported screening studies of terrestrial arthropods, our results suggest that the bacterial communities in this spider species are dominated by, or even restricted to endosymbiont bacteria. Given the high prevalence of endosymbiont species in spiders, this bacterial community pattern could be widespread in the Araneae order.

  11. Endosymbiont Dominated Bacterial Communities in a Dwarf Spider

    PubMed Central

    Vanthournout, Bram; Hendrickx, Frederik

    2015-01-01

    The microbial community of spiders is little known, with previous studies focussing primarily on the medical importance of spiders as vectors of pathogenic bacteria and on the screening of known cytoplasmic endosymbiont bacteria. These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders. In order to have a more complete overview of the bacterial species that can be present in spiders, we applied a combination of a cloning assay, DGGE profiling and high-throughput sequencing on multiple individuals of the dwarf spider Oedothorax gibbosus. This revealed a co-infection of at least three known (Wolbachia, Rickettsia and Cardinium) and the detection of a previously unreported endosymbiont bacterium (Rhabdochlamydia) in spiders. 16S rRNA gene sequences of Rhabdochlamydia matched closely with those of Candidatus R. porcellionis, which is currently only reported as a pathogen from a woodlouse and with Candidatus R. crassificans reported from a cockroach. Remarkably, this bacterium appears to present in very high proportions in one of the two populations only, with all investigated females being infected. We also recovered Acinetobacter in high abundance in one individual. In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species. In contrast to previously reported screening studies of terrestrial arthropods, our results suggest that the bacterial communities in this spider species are dominated by, or even restricted to endosymbiont bacteria. Given the high prevalence of endosymbiont species in spiders, this bacterial community pattern could be widespread in the Araneae order. PMID:25706947

  12. Unravelling Soil Fungal Communities from Different Mediterranean Land-Use Backgrounds

    PubMed Central

    Nilsson, R. Henrik; Girlanda, Mariangela; Vizzini, Alfredo; Bonfante, Paola; Bianciotto, Valeria

    2012-01-01

    Background Fungi strongly influence ecosystem structure and functioning, playing a key role in many ecological services as decomposers, plant mutualists and pathogens. The Mediterranean area is a biodiversity hotspot that is increasingly threatened by intense land use. Therefore, to achieve a balance between conservation and human development, a better understanding of the impact of land use on the underlying fungal communities is needed. Methodology/Principal Findings We used parallel pyrosequencing of the nuclear ribosomal ITS regions to characterize the fungal communities in five soils subjected to different anthropogenic impact in a typical Mediterranean landscape: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards. Marked differences in the distribution of taxon assemblages among the different sites and communities were found. Data analyses consistently indicated a sharp distinction of the fungal community of the cork oak forest soil from those described in the other soils. Each soil showed features of the fungal assemblages retrieved which can be easily related to the above-ground settings: ectomycorrhizal phylotypes were numerous in natural sites covered by trees, but were nearly completely missing from the anthropogenic and grass-covered sites; similarly, coprophilous fungi were common in grazed sites. Conclusions/Significance Data suggest that investigation on the below-ground fungal community may provide useful elements on the above-ground features such as vegetation coverage and agronomic procedures, allowing to assess the cost of anthropogenic land use to hidden diversity in soil. Datasets provided in this study may contribute to future searches for fungal bio-indicators as biodiversity markers of a specific site or a land-use degree. PMID:22536336

  13. Fungal Community Successions in Rhizosphere Sediment of Seagrasses Enhalus acoroides under PAHs Stress

    PubMed Central

    Ling, Juan; Zhang, Yanying; Wu, Meilin; Wang, Youshao; Dong, Junde; Jiang, Yufeng; Yang, Qingsong; Zeng, Siquan

    2015-01-01

    Seagrass meadows represent one of the highest productive marine ecosystems and are of great ecological and economic values. Recently, they have been confronted with worldwide decline. Fungi play important roles in sustaining the ecosystem health as degraders of polycyclic aromatic hydrocarbons (PAHs), but fewer studies have been conducted in seagrass ecosystems. Hence, we investigated the dynamic variations of the fungal community succession under PAH stress in rhizosphere sediment of seagrasses Enhalus acoroides in this study. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), quantitative PCR (qPCR) and a clone library have been employed to analyze the fungal community’s shifts. Sequencing results of DGGE and the clone library showed that the predominant species belong to phyla Ascomycota and Basidiomycota. The abundance of three groups decreased sharply over the incubation period, whereas they demonstrated different fungal diversity patterns. Both the exposure time and the PAH concentrations affected the microbial diversity as assessed by PCR-DGGE analysis. Redundancy analysis (RDA) indicated that significant factors driving community shifts were ammonium and pH (p < 0.05). Significant amounts of the variations (31.1%) were explained by pH and ammonium, illustrating that those two parameters were the most likely ones to influence or be influenced by the fungal communities’ changes. Investigation results also indicated that fungal communities in seagrass meadow were very sensitive to PAH-induced stress and may be used as potential indicators for the PAH contamination. PMID:26096007

  14. Amplification of soil fungal community DNA using the ITS86F and ITS4 primers.

    PubMed

    Vancov, Tony; Keen, Brad

    2009-07-01

    Internal transcribed spacer (ITS) 86F and ITS4 and the ITS1-F and ITS86R primer pairs were tested to specifically amplify fungal community DNA extracted from soil. Libraries were constructed from PCR-amplified fragments, sequenced and compared against sequences deposited in GenBank. The results confirmed that the ITS86F and ITS4 primer pair was selectively specific for the Ascomycetes, Basidiomycetes and Zygomycetes fungal clades. Amplified products generated by the ITS1F and ITS86R primer pair also aligned with sequences from a range of species within the Ascomycete and Basidiomycete clades but not from the Zygomycete. Both primer sets demonstrated fungal specificity and appear to be well suited for rapid PCR-based (fingerprinting) analysis of environmental fungal community DNA. This is the first reported use and assessment of the ITS86F and ITS4 and the ITS1-F and ITS86R primer pairs in amplifying fungal community DNA from soil.

  15. Fungal communities in sediments of subtropical Chinese seas as estimated by DNA metabarcoding

    PubMed Central

    Li, Wei; Wang, Meng Meng; Wang, Xi Guang; Cheng, Xiao Li; Guo, Jia Jia; Bian, Xiao Meng; Cai, Lei

    2016-01-01

    Ribosomal RNA internal transcribed spacer-1 (ITS1) metabarcoding was used to investigate the distribution patterns of fungal communities and the factors influencing these patterns in subtropical Chinese seas, including the southern and northern Yellow Sea and the Bohai Sea. These seas were found to harbor high levels of fungal diversity, with 816 operational taxonomic units (OTUs) that span 130 known genera, 36 orders, 14 classes and 5 phyla. Ascomycota was the most abundant phylum, containing 72.18% and 79.61% of all OTUs and sequences, respectively, followed by Basidiomycota (19.98%, 18.64%), Zygomycota (1.10%, 0.11%), Chytridiomycota (0.25%, 0.04%) and Rozellomycota (0.12%, 0.006%). The compositions of fungal communities across these three sea regions were found to be vary, which may be attributed to sediment source, geographical distance, latitude and some environmental factors such as the temperature and salinity of bottom water, water depth, total nitrogen, and the ratio of total organic carbon to nitrogen. Among these environmental factors, the temperature of bottom water is the most important driver that governs the distribution patterns of fungal communities across the sampled seas. Our data also suggest that the cold-water mass of the Yellow Sea likely balances competitive relationships between fungal taxa rather than increasing species richness levels. PMID:27198490

  16. Characterization of fungal communities in house dust samples collected from central Portugal-a preliminary survey.

    PubMed

    Sousa, Ana C A; Almeida, Joana R S L; Pereira, Cristiana C; Ramiro Pastorinho, M; Pereira, Ângela M C; Nogueira, António J A; Taborda-Barata, Luís; Teixeira, João P; Correia, António C M; Alves, Artur

    2014-01-01

    House dust is a repository and concentrator of many chemical and biological agents including fungi. Considering that dust acts as a long-term reservoir of airborne fungi and that cumulative exposure is more relevant to potential health problems than single-day or short-term exposure, characterization of fungal communities in dust samples is of paramount importance. In the present study, the fungal composition of Portuguese house dust samples was determined. A total of 28 samples were obtained from vacuum cleaner deposits from households located in central Portugal. DNA was extracted from dust samples and fungal communities were analyzed using a culture-independent polymerase chain reaction (PCR)- denaturing gradient gel electrophoresis (DGGE) approach. Cultural analyses were also performed in order to identify the viable fungi species present in selected samples. Fungal diversity, reported as the number of operational taxonomic units (OTU), varied between 9 and 56 OTU. This analysis of viable fungi showed that Aspergillus was the most abundant genus, followed by Penicillium, Mucor, and Rhizomucor. Trichoderma, Chrysosporium, Fusarium, Rhizopus, and Stachybotrys were found in a limited number of houses. Our results demonstrated that dust is, in fact, home for a diverse and heterogeneous fungal community and that some of the species found are known allergic agents with severe negative impacts on human health.

  17. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus.

    PubMed

    Leff, Jonathan W; Lynch, Ryan C; Kane, Nolan C; Fierer, Noah

    2017-04-01

    Root and rhizosphere microbial communities can affect plant health, but it remains undetermined how plant domestication may influence these bacterial and fungal communities. We grew 33 sunflower (Helianthus annuus) strains (n = 5) that varied in their extent of domestication and assessed rhizosphere and root endosphere bacterial and fungal communities. We also assessed fungal communities in the sunflower seeds to investigate the degree to which root and rhizosphere communities were influenced by vertical transmission of the microbiome through seeds. Neither root nor rhizosphere bacterial communities were affected by the extent of sunflower domestication, but domestication did affect the composition of rhizosphere fungal communities. In particular, more modern sunflower strains had lower relative abundances of putative fungal pathogens. Seed-associated fungal communities strongly differed across strains, but several lines of evidence suggest that there is minimal vertical transmission of fungi from seeds to the adult plants. Our results indicate that plant-associated fungal communities are more strongly influenced by host genetic factors and plant breeding than bacterial communities, a finding that could influence strategies for optimizing microbial communities to improve crop yields.

  18. Temporal variation of Bistorta vivipara-associated ectomycorrhizal fungal communities in the High Arctic.

    PubMed

    Mundra, Sunil; Bahram, Mohammad; Tedersoo, Leho; Kauserud, Håvard; Halvorsen, Rune; Eidesen, Pernille Bronken

    2015-12-01

    Ectomycorrhizal (ECM) fungi are important for efficient nutrient uptake of several widespread arctic plant species. Knowledge of temporal variation of ECM fungi, and the relationship of these patterns to environmental variables, is essential to understand energy and nutrient cycling in Arctic ecosystems. We sampled roots of Bistorta vivipara ten times over two years; three times during the growing-season (June, July and September) and twice during winter (November and April) of both years. We found 668 ECM OTUs belonging to 25 different ECM lineages, whereof 157 OTUs persisted throughout all sampling time-points. Overall, ECM fungal richness peaked in winter and species belonging to Cortinarius, Serendipita and Sebacina were more frequent in winter than during summer. Structure of ECM fungal communities was primarily affected by spatial factors. However, after accounting for spatial effects, significant seasonal variation was evident revealing correspondence with seasonal changes in environmental conditions. We demonstrate that arctic ECM richness and community structure differ between summer (growing-season) and winter, possibly due to reduced activity of the core community, and addition of fungi adapted for winter conditions forming a winter-active fungal community. Significant month × year interactions were observed both for fungal richness and community composition, indicating unpredictable between-year variation. Our study indicates that addressing seasonal changes requires replication over several years. © 2015 John Wiley & Sons Ltd.

  19. Seasonal dynamics of fungal communities in a temperate oak forest soil.

    PubMed

    Voříšková, Jana; Brabcová, Vendula; Cajthaml, Tomáš; Baldrian, Petr

    2014-01-01

    Fungi are the agents primarily responsible for the transformation of plant-derived carbon in terrestrial ecosystems. However, little is known of their responses to the seasonal changes in resource availability in deciduous forests, including photosynthate allocation below ground and seasonal inputs of fresh litter. Vertical stratification of and seasonal changes in fungal abundance, activity and community composition were investigated in the litter, organic and upper mineral soils of a temperate Quercus petraea forest using ergosterol and extracellular enzyme assays and amplicon 454-pyrosequencing of the rDNA-ITS region. Fungal activity, biomass and diversity decreased substantially with soil depth. The highest enzyme activities were detected in winter, especially in litter, where these activities were followed by a peak in fungal biomass during spring. The litter community exhibited more profound seasonal changes than did the community in the deeper horizons. In the litter, saprotrophic genera reached their seasonal maxima in autumn, but summer typically saw the highest abundance of ectomycorrhizal taxa. Although the composition of the litter community changes over the course of the year, the mineral soil shows changes in biomass. The fungal community is affected by season. Litter decomposition and phytosynthate allocation represent important factors contributing to the observed variations.

  20. [Effects of wheat root exudates on cucumber growth and soil fungal community structure].

    PubMed

    Wu, Feng-Zhi; Li, Min; Cao, Peng; Ma, Ya-Fei; Wang, Li-Li

    2014-10-01

    With wheat as the donor plant and cucumber as the receptor plant, this study investigated the effects of root exudates from wheat cultivars with different allelopathic potentials (positive or negative) and companion cropping with wheat on soil fungal community structure by PCR-DGGE method and cucumber growth. Results showed that the wheat root exudates with positive allelopathic potential increased height and stem diameter of cucumber seedlings significantly, compared to the control seedlings (W) after 6 days and 12 days treatment, respectively. Also, wheat root exudates with both positive and negative allelopathic potential increased the seedling height of cucumber significantly after 18 days treatment. The wheat root exudates with different allelopathic potentials decreased the band number, Shannon and evenness indices of soil fungal community significantly in cucumber seedling rhizosphere, and those in the soil with the control seedlings (W) were also significantly higher than that in the control soil without seedlings (Wn) after 6 days treatment. The band number, Shannon and evenness indices in all the treatments were significantly higher than those in the control soil without seedlings (Wn) after 18 days treatment. Companion cropping with negative allelopathic potential wheat decreased the Shannon and evenness indices of soil fungi community significantly in the cucumber seedling rhizosphere, suggesting the wheat root exudates and companion cropping with wheat changed soil fungal community structure in the cucumber seedling rhizosphere. The results of DGGE map and the principal component analysis showed that companion cropping with wheat cultivars with different allelopathic potentials changed soil fungal community structure in cucumber seedling rhizosphere.

  1. A fungal metallo-beta-lactamase necessary for biotransformation of maize phytoprotectant compounds

    USDA-ARS?s Scientific Manuscript database

    Xenobiotic compounds such as phytochemicals, microbial metabolites, and agrochemicals can impact the diversity and frequency of fungal species occurring in agricultural environments. Resistance to xenobiotics may allow plant pathogenic fungi to dominate the overall fungal community, with potential ...

  2. The effect of sulfur on the composition of arbuscular mycorrhizal fungal communities during the pod-setting stage of different soybean cultivars.

    PubMed

    Jie, Weiguang; Cai, Baiyan; Zhang, Yong; Li, Jin; Ge, Jingping

    2012-11-01

    This study sought to investigate the effect of sulfur levels on changes in the fungal community composition of arbuscular mycorrhizae (AM) at the pod-setting stage and the relationship between the amount of applied sulfur and AM fungal diversity in different soybean cultivars. The objective of the research was to determine the optimal sulfur application level for different soybean cultivars and to improve soybean yield and quality from the perspective of AM fungal diversity. Three soybean cultivars, Heinong 44, Heinong 48, and Heinong 37, were selected as study materials. In addition to 0.033 g each of N, P(2)O(5) and K(2)O per kg of soil, 0, 0.02, 0.04, or 0.06 g of elemental sulfur was applied to each kg of soil for the four treatment groups, S1, S2, S3, and S4, respectively. The AM fungal community structure was analyzed in the soil and root of different soybean cultivars using the PCR-DGGE technology. The results indicated a significant effect of sulfur on the AM fungal community structure in the roots and rhizospheric soil of different soybean cultivars. The three soybean cultivars in group S2 exhibited the highest diversity in AM fungus. Significant changes in the dominant fungal species were observed in the DGGE fingerprints of each sample, and Glomus, Funneliformis, Rhizophagus, and Claroideoglomus fungi were the dominant species of AM fungus in the roots and soil of soybean. The application of an appropriate amount of sulfur improved the diversity of AM fungi in roots and rhizospheric soil of different soybean cultivars.

  3. Changes in ectomycorrhizal fungal community composition and declining diversity along a 2-million-year soil chronosequence.

    PubMed

    Albornoz, Felipe E; Teste, François P; Lambers, Hans; Bunce, Michael; Murray, Dáithí C; White, Nicole E; Laliberté, Etienne

    2016-10-01

    Ectomycorrhizal (ECM) fungal communities covary with host plant communities along soil fertility gradients, yet it is unclear whether this reflects changes in host composition, fungal edaphic specialization or priority effects during fungal community establishment. We grew two co-occurring ECM plant species (to control for host identity) in soils collected along a 2-million-year chronosequence representing a strong soil fertility gradient and used soil manipulations to disentangle the effects of edaphic properties from those due to fungal inoculum. Ectomycorrhizal fungal community composition changed and richness declined with increasing soil age; these changes were linked to pedogenesis-driven shifts in edaphic properties, particularly pH and resin-exchangeable and organic phosphorus. However, when differences in inoculum potential or soil abiotic properties among soil ages were removed while host identity was held constant, differences in ECM fungal communities and richness among chronosequence stages disappeared. Our results show that ECM fungal communities strongly vary during long-term ecosystem development, even within the same hosts. However, these changes could not be attributed to short-term fungal edaphic specialization or differences in fungal inoculum (i.e. density and composition) alone. Rather, they must reflect longer-term ecosystem-level feedback between soil, vegetation and ECM fungi during pedogenesis. © 2016 John Wiley & Sons Ltd.

  4. Responses of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variableacross five ecosystems

    SciTech Connect

    Weber, Carolyn F; Zak, Donald R; Hungate, Bruce; Jackson, Robert B; Vilgalys, Rytas; Evans, R David; Schadt, Christopher Warren; Megonigal, J. Patrick; Kuske, Cheryl R

    2011-01-01

    Elevated atmospheric CO(2) generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO(2) . To investigate the impacts of ecosystem type and elevated atmospheric CO(2) on cellulolytic fungal communities, we sequenced 10 677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO(2) . The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P-values; < 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114-member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO(2) exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO(2) (550 mol mol(-1) ) than under ambient CO(2) (360 mol mol(-1) CO(2) ). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU-specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long-term exposure to elevated atmospheric CO(2) .

  5. Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soil.

    PubMed

    Urban, Alexander; Puschenreiter, Markus; Strauss, Joseph; Gorfer, Markus

    2008-09-01

    The community of ectomycorrhizal (ECM) and co-associated fungi from a serpentine site forested with Pinus sylvestris and Quercus petraea was explored, to improve the understanding of ECM diversity in naturally metalliferous soils. ECM fungi were identified by a combination of morphotyping and direct sequencing of the nuclear ribosomal internal transcribed spacer region 2 and of a part of the large-subunit region. Co-associated fungi from selected ECM were identified by restriction fragment length polymorphism and sequencing of representative clones from libraries. Polymerase chain reaction with species-specific primers was applied to assess patterns of association of ECM and co-associated fungi. Twenty ECM species were differentiated. Aphyllophoralean fungi representing several basidiomycete orders and Russulaceae were dominant. Phialocephala fortinii was the most frequently encountered taxon from the diverse assemblage of ECM co-associated fungi. A ribotype representing a deeply branching ascomycete lineage known from ribosomal deoxyribonucleic acid sequences only was detected in some ECM samples. A broad taxonomic range of fungi have the potential to successfully colonise tree roots under the extreme edaphic conditions of serpentine soils. Distribution patterns of ECM-co-associated fungi hint at the importance of specific inter-fungal interactions, which are hypothesised to be a relevant factor for the maintenance of ECM diversity.

  6. Characterization of thermophilic fungal community associated with pile fermentation of Pu-erh tea.

    PubMed

    Zhang, Wei; Yang, Ruijuan; Fang, Wenjun; Yan, Liang; Lu, Jun; Sheng, Jun; Lv, Jie

    2016-06-16

    This study aimed to characterize the thermophilic fungi in pile-fermentation process of Pu-erh tea. Physicochemical analyses showed that the high temperature and low pH provided optimal conditions for propagation of fungi. A number of fungi, including Blastobotrys adeninivorans, Thermomyces lanuginosus, Rasamsonia emersonii, Aspergillus fumigatus, Rhizomucor pusillus, Rasamsonia byssochlamydoides, Rasamsonia cylindrospora, Aspergillus tubingensis, Aspergillus niger, Candida tropicalis and Fusarium graminearum were isolated as thermophilic fungi under combination of high temperature and acid culture conditions from Pu-erh tea pile-fermentation. The fungal communities were analyzed by PCR-DGGE. Results revealed that those fungi are closely related to Debaryomyces hansenii, Cladosporium cladosporioides, A. tubingensis, R. emersonii, R. pusillus, A. fumigatus and A. niger, and the last four presented as dominant species in the pile process. These four preponderant thermophilic fungi reached the order of magnitude of 10(7), 10(7), 10(7) and 10(6)copies/g dry tea, respectively, measured by real-time quantitative PCR (q-PCR). The results indicate that the thermophilic fungi play an important role in Pu-erh tea pile fermentation.

  7. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland.

    PubMed

    Cassman, Noriko A; Leite, Marcio F A; Pan, Yao; de Hollander, Mattias; van Veen, Johannes A; Kuramae, Eiko E

    2016-03-29

    Inorganic fertilization and mowing alter soil factors with subsequent effects-direct and indirect - on above- and below-ground communities. We explored direct and indirect effects of long-term fertilization (N, P, NPK, Liming) and twice yearly mowing on the plant, bacterial and fungal communities and soil factors. We analyzed co-variation using 16S and 18S rRNA genes surveys, and plant frequency and edaphic factors across treatments. The plant and fungal communities were distinct in the NPK and L treatments, while the bacterial communities and soil factors were distinct in the N and L treatments. Plant community diversity and evenness had low diversity in the NPK and high diversity in the liming treatment, while the diversity and evenness of the bacterial and fungal communities did not differ across treatments, except of higher diversity and evenness in the liming treatment for the bacteria. We found significant co-structures between communities based on plant and fungal comparisons but not between plant and bacterial nor bacterial and fungal comparisons. Our results suggested that the plant and fungal communities are more tightly linked than either community with the bacterial community in fertilized soils. We found co-varying plant, bacterial and fungal taxa in different treatments that may indicate ecological interactions.

  8. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland

    PubMed Central

    Cassman, Noriko A.; Leite, Marcio F. A.; Pan, Yao; de Hollander, Mattias; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    Inorganic fertilization and mowing alter soil factors with subsequent effects–direct and indirect - on above- and below-ground communities. We explored direct and indirect effects of long-term fertilization (N, P, NPK, Liming) and twice yearly mowing on the plant, bacterial and fungal communities and soil factors. We analyzed co-variation using 16S and 18S rRNA genes surveys, and plant frequency and edaphic factors across treatments. The plant and fungal communities were distinct in the NPK and L treatments, while the bacterial communities and soil factors were distinct in the N and L treatments. Plant community diversity and evenness had low diversity in the NPK and high diversity in the liming treatment, while the diversity and evenness of the bacterial and fungal communities did not differ across treatments, except of higher diversity and evenness in the liming treatment for the bacteria. We found significant co-structures between communities based on plant and fungal comparisons but not between plant and bacterial nor bacterial and fungal comparisons. Our results suggested that the plant and fungal communities are more tightly linked than either community with the bacterial community in fertilized soils. We found co-varying plant, bacterial and fungal taxa in different treatments that may indicate ecological interactions. PMID:27020916

  9. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland

    NASA Astrophysics Data System (ADS)

    Cassman, Noriko A.; Leite, Marcio F. A.; Pan, Yao; de Hollander, Mattias; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-03-01

    Inorganic fertilization and mowing alter soil factors with subsequent effects–direct and indirect - on above- and below-ground communities. We explored direct and indirect effects of long-term fertilization (N, P, NPK, Liming) and twice yearly mowing on the plant, bacterial and fungal communities and soil factors. We analyzed co-variation using 16S and 18S rRNA genes surveys, and plant frequency and edaphic factors across treatments. The plant and fungal communities were distinct in the NPK and L treatments, while the bacterial communities and soil factors were distinct in the N and L treatments. Plant community diversity and evenness had low diversity in the NPK and high diversity in the liming treatment, while the diversity and evenness of the bacterial and fungal communities did not differ across treatments, except of higher diversity and evenness in the liming treatment for the bacteria. We found significant co-structures between communities based on plant and fungal comparisons but not between plant and bacterial nor bacterial and fungal comparisons. Our results suggested that the plant and fungal communities are more tightly linked than either community with the bacterial community in fertilized soils. We found co-varying plant, bacterial and fungal taxa in different treatments that may indicate ecological interactions.

  10. How does conversion of natural tropical rainforest ecosystems affect soil bacterial and fungal communities in the Nile river watershed of Uganda?

    PubMed

    Alele, Peter O; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H

    2014-01-01

    Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring

  11. How Does Conversion of Natural Tropical Rainforest Ecosystems Affect Soil Bacterial and Fungal Communities in the Nile River Watershed of Uganda?

    PubMed Central

    Alele, Peter O.; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H.

    2014-01-01

    Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring

  12. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa.

    PubMed

    Beauregard, M S; Hamel, C; Atul-Nayyar; St-Arnaud, M

    2010-02-01

    Soil function may be affected by cropping practices impacting the soil microbial community. The effect of different phosphorus (P) fertilization rates (0, 20, or 40 kg P(2)O(5) ha(-1)) on soil microbial diversity was studied in 8-year-old alfalfa monocultures. The hypothesis that P fertilization modifies soil microbial community was tested using denaturing gradient gel electrophoresis and phospholipids fatty acid (PLFA) profiling to describe soil bacteria, fungi, and arbuscular mycorrhizal (AM) fungi diversity. Soil parameters related to fertility (soil phosphate flux, soluble P, moisture, phosphatase and dehydrogenase assays, and carbon and nitrogen content of the light fraction of soil organic matter) were also monitored and related to soil microbial ribotype profiles. Change in soil P fertility with the application of fertilizer had no effect on crop yield in 8 years, but on the year of this study was associated with shifts in the composition of fungal and bacterial communities without affecting their richness, as evidenced by the absence of effect on the average number of ribotypes detected. However, variation in soil P level created by a history of differential fertilization did not significantly influence AM fungi ribotype assemblages nor AM fungi biomass measured with the PLFA 16:1omega5. Fertilization increased P flux and soil soluble P level but reduced soil moisture and soil microbial activity, as revealed by dehydrogenase assay. Results suggest that soil P fertility management could influence soil processes involving soil microorganisms. Seasonal variations were also recorded in microbial activity, soil soluble P level as well as in the abundance of specific bacterial and fungal PLFA indicators of soil microbial biomass.

  13. Dynamics of bacterial and fungal communities associated with eggshells during incubation

    PubMed Central

    Grizard, Stéphanie; Dini-Andreote, Francisco; Tieleman, B Irene; Salles, Joana F

    2014-01-01

    Microorganisms are closely associated with eggs and may play a determinant role in embryo survival. Yet, the majority of studies focusing on this association relied on culture-based methodology, eventually leading to a skewed assessment of microbial communities. By targeting the 16S rRNA gene and internal transcribed spacer (ITS) region, we, respectively, described bacterial and fungal communities on eggshells of the homing pigeon Columba livia. We explored their structure, abundance, and composition. Firstly, we showed that sampling technique affected the outcome of the results. While broadly used, the egg swabbing procedure led to a lower DNA extraction efficiency and provided different profiles of bacterial communities than those based on crushed eggshell pieces. Secondly, we observed shifts in bacterial and fungal communities during incubation. At late incubation, bacterial communities showed a reduction in diversity, while their abundance increased, possibly due to the competitive advantage of some species. When compared to their bacterial counterparts, fungal communities also decreased in diversity at late incubation. In that case, however, the decline was associated with a diminution of their overall abundance. Conclusively, our results showed that although incubation might inhibit microbial growth when compared to unincubated eggs, we observed the selective growth of specific bacterial species during incubation. Moreover, we showed that fungi are a substantial component of the microbial communities associated with eggshells and require further investigations in avian ecology. Identifying the functional roles of these microorganisms is likely to provide news insights into the evolutionary strategies that control embryo survival. We aimed to describe the dynamics of bacterial and fungal communities on homing pigeon eggshell surfaces. We investigated these communities at early and late incubation stages. PMID:24772289

  14. Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient.

    PubMed

    Erlandson, Sonya R; Savage, Jessica A; Cavender-Bares, Jeannine M; Peay, Kabir G

    2016-01-01

    Influences of soil environment and willow host species on ectomycorrhizal fungi communities was studied across an hydrologic gradient in temperate North America. Soil moisture, organic matter and pH strongly predicted changes in fungal community composition. In contrast, increased fungal richness strongly correlated with higher plant-available phosphorus. The 93 willow trees sampled for ectomycorrhizal fungi included seven willow species. Host identity did not influence fungal richness or community composition, nor was there strong evidence of willow host preference for fungal species. Network analysis suggests that these mutualist interaction networks are not significantly nested or modular. Across a strong environmental gradient, fungal abiotic niche determined the fungal species available to associate with host plants within a habitat. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities.

    PubMed

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2016-09-01

    Many arctic ecological processes are regulated by soil temperature that is tightly interconnected with snow cover distribution and persistence. Recently, various climate-induced changes have been observed in arctic tundra ecosystems, e.g. shrub expansion, resulting in reduction in albedo and greater C fixation in aboveground vegetation as well as increased rates of soil C mobilization by microbes. Importantly, the net effects of these shifts are unknown, in part because our understanding of belowground processes is limited. Here, we focus on the effects of increased snow depth, and as a consequence, increased winter soil temperature on ectomycorrhizal (ECM) fungal communities in dry and moist tundra. We analyzed deep DNA sequence data from soil samples taken at a long-term snow fence experiment in Northern Alaska. Our results indicate that, in contrast with previously observed responses of plants to increased snow depth at the same experimental site, the ECM fungal community of the dry tundra was more affected by deeper snow than the moist tundra community. In the dry tundra, both community richness and composition were significantly altered while in the moist tundra, only community composition changed significantly while richness did not. We observed a decrease in richness of Tomentella, Inocybe and other taxa adapted to scavenge the soil for labile N forms. On the other hand, richness of Cortinarius, and species with the ability to scavenge the soil for recalcitrant N forms, did not change. We further link ECM fungal traits with C soil pools. If future warmer atmospheric conditions lead to greater winter snow fall, changes in the ECM fungal community will likely influence C emissions and C fixation through altering N plant availability, fungal biomass and soil-plant C-N dynamics, ultimately determining important future interactions between the tundra biosphere and atmosphere.

  16. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum).

    PubMed

    Ek-Ramos, María J; Zhou, Wenqing; Valencia, César U; Antwi, Josephine B; Kalns, Lauren L; Morgan, Gaylon D; Kerns, David L; Sword, Gregory A

    2013-01-01

    Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides) and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey provides

  17. Spatial and Temporal Variation in Fungal Endophyte Communities Isolated from Cultivated Cotton (Gossypium hirsutum)

    PubMed Central

    Ek-Ramos, María J.; Zhou, Wenqing; Valencia, César U.; Antwi, Josephine B.; Kalns, Lauren L.; Morgan, Gaylon D.; Kerns, David L.; Sword, Gregory A.

    2013-01-01

    Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides) and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey provides

  18. Fungal Community Associated with Dactylopius (Hemiptera: Coccoidea: Dactylopiidae) and Its Role in Uric Acid Metabolism

    PubMed Central

    Vera-Ponce de León, Arturo; Sanchez-Flores, Alejandro; Rosenblueth, Mónica; Martínez-Romero, Esperanza

    2016-01-01

    We studied fungal species associated with the carmine cochineal Dactylopius coccus and other non-domesticated Dactylopius species using culture-dependent and -independent methods. Thirty seven fungi were isolated in various culture media from insect males and females from different developmental stages and Dactylopius species. 26S rRNA genes and ITS sequences, from cultured fungal isolates revealed different species of Cryptococcus, Rhodotorula, Debaryomyces, Trametes, and Penicillium, which are genera newly associated with Dactylopius. Uric acid (UA) and uricase activity were detected in tissues extracts from different insect developmental stages. However, accumulation of high UA levels and low uricase activities were found only after antifungal treatments, suggesting an important role of fungal species in its metabolism. Additionally, uricolytic fungal isolates were identified and characterized that presumably are involved in nitrogen recycling metabolism. After metagenomic analyses from D. coccus gut and hemolymph DNA and from two published data sets, we confirmed the presence of fungal genes involved in UA catabolism, suggesting that fungi help in the nitrogen recycling process in Dactylopius by uricolysis. All these results show the importance of fungal communities in scale insects such as Dactylopius. PMID:27446001

  19. Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture.

    PubMed

    Hannula, S Emilia; Morriën, Elly; de Hollander, Mattias; van der Putten, Wim H; van Veen, Johannes A; de Boer, Wietse

    2017-10-01

    Activities of rhizosphere microbes are key to the functioning of terrestrial ecosystems. It is commonly believed that bacteria are the major consumers of root exudates and that the role of fungi in the rhizosphere is mostly limited to plant-associated taxa, such as mycorrhizal fungi, pathogens and endophytes, whereas less is known about the role of saprotrophs. In order to test the hypothesis that the role of saprotrophic fungi in rhizosphere processes increases with increased time after abandonment from agriculture, we determined the composition of fungi that are active in the rhizosphere along a chronosequence of ex-arable fields in the Netherlands. Intact soil cores were collected from nine fields that represent three stages of land abandonment and pulse labeled with (13)CO2. The fungal contribution to metabolization of plant-derived carbon was evaluated using phospholipid analysis combined with stable isotope probing (SIP), whereas fungal diversity was analyzed using DNA-SIP combined with 454-sequencing. We show that in recently abandoned fields most of the root-derived (13)C was taken up by bacteria but that in long-term abandoned fields most of the root-derived (13)C was found in fungal biomass. Furthermore, the composition of the active functional fungal community changed from one composed of fast-growing and pathogenic fungal species to one consisting of beneficial and slower-growing fungal species, which may have essential consequences for the carbon flow through the soil food web and consequently nutrient cycling and plant succession.

  20. Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica

    USDA-ARS?s Scientific Manuscript database

    Antarctica is a pristine and extreme environment that represents a unique opportunity for taxonomic, ecological and biotechnological studies of the microorganisms. In the present work, the fungal communities of rhizosphere soil of Deschampsia antarctica, soil, ornithogenic soil, marine and lake sedi...

  1. Soil fungal community and fuctional diversity assessments of agroecosystems in the Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    Soil fungi perform a variety of ecosystem functions that are crucial to maintaining agroecosystem sustainability including aggregate stability and soil carbon storage. The purpose of this study was to compare soil fungal communities and functional diversity in integrated crop and livestock (ICL) sy...

  2. First evidence for seasonal fluctuations in lichen- and bark-colonising fungal communities.

    PubMed

    Beck, Andreas; Peršoh, Derek; Rambold, Gerhard

    2014-03-01

    Endophytic fungal communities in leaves of deciduous trees usually undergo pronounced seasonal changes. We hypothesised that such compositional shifts are predominantly caused by annuality of the leaves and therefore less pronounced in fungi colonising the perennial substrates bark and corticolous lichens. To test this hypothesis, thalli of the foliose lichen-forming fungal species Xanthoria parietina and Physconia distorta, along with the adjacent bark, were sampled during spring and autumn at two sides of a single tree in southern Germany. Analysis of clone libraries by restriction fragment length polymorphism (RFLP) revealed 588 singleton and 221 non-singleton RFLP-types of non-lichenised fungi. The communities differed significantly between host lichen species. Season and exposure had only a significant impact when the two factors were combined in the analysis. Accordingly, bark- and/or the lichen-associated fungal communities change throughout the year's course, a finding that rejects the initial hypothesis. This survey revealed valuable information for future broad-based studies, by indicating that a relatively high diversity of non-lichenised fungi is associated with corticolous lichen thalli and the adjacent bark. Furthermore, the structure of non-lichenised fungal assemblages associated with corticolous lichen communities obviously depends at least on the following factors: 'lichen species', 'exposure', and 'season'.

  3. Fungal community responses to past and future atmospheric CO2 differ by soil type

    USDA-ARS?s Scientific Manuscript database

    Soils sequester and release substantial atmospheric carbon, but the biological responses of soils to rising CO2 are not well understood. We studied fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250-500 ppm) on two soil types, a black clay and a sandy...

  4. Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities.

    PubMed

    García de León, David; Moora, Mari; Öpik, Maarja; Neuenkamp, Lena; Gerz, Maret; Jairus, Teele; Vasar, Martti; Bueno, C Guillermo; Davison, John; Zobel, Martin

    2016-07-01

    Although mycorrhizas are expected to play a key role in community assembly during ecological succession, little is known about the dynamics of the symbiotic partners in natural systems. For instance, it is unclear how efficiently plants and arbuscular mycorrhizal (AM) fungi disperse into early successional ecosystems, and which, if either, symbiotic partner drives successional dynamics. This study describes the dynamics of plant and AM fungal communities, assesses correlation in the composition of plant and AM fungal communities and compares dispersal limitation of plants and AM fungi during succession. We studied gravel pits 20 and 50 years post abandonment and undisturbed grasslands in Western Estonia. The composition of plant and AM fungal communities was strongly correlated, and the strength of the correlation remained unchanged as succession progressed, indicating a stable dependence among mycorrhizal plants and AM fungi. A relatively high proportion of the AM fungal taxon pool was present in early successional sites, in comparison with the respective fraction of plants. These results suggest that AM fungi arrived faster than plants and may thus drive vegetation dynamics along secondary vegetation succession.

  5. Composition of fungal communities in soil and endophytic in raspberry production systems

    USDA-ARS?s Scientific Manuscript database

    Fungi play important roles as decomposers, plant symbionts and pathogens in soil. While endophytes are microorganisms that dwell within plant tissues and have a symbiotic association with the host. The structures of fungal communities in the soil and in endophytic association are dependent up comple...

  6. Isolation and identification of fungal communities in compost and vermicompost.

    PubMed

    Anastasi, Antonella; Varese, Giovanna Cristina; Marchisio, Valeria Filipello

    2005-01-01

    This research illustrates the qualitative and quantitative composition of the mycoflora of both a green compost (thermophilically produced from plant debris) and a vermicompost (mesophilically produced by the action of earthworms on plant and animal wastes after thermophilic preconditioning). Fungi were isolated using three media (PDA, CMC, PDA plus cycloheximide), incubated at three temperatures (24, 37 and 45 C). Substantial qualiquantitative differences in the species composition of the two composts were observed. The total fungal load was up to 8.2 X 10(5) CFU/g dwt in compost and 4.0 x 10(5) CFU/g dwt in vermicompost. A total of 194 entities were isolated: 118 from green compost, 142 from vermicompost; 66 were common to both. Structural characterization of this kind is necessary to determine the most appropriate application of a compost and its hygienic quality.

  7. Dominant Coalitions and Dominant General Management Logic: A Case Study of Community College Degree Completion

    ERIC Educational Resources Information Center

    Leone, Lucian Anthony

    2016-01-01

    Community colleges in the United States are faced with several challenges, one of which is increasing the percentage of students that earn an associate degree. Research (American Association of Community Colleges, 2012; Amey, 2005; Eddy, 2010; Roueche, 2008) suggests that community college administrators need to think, act, manage, and lead in…

  8. Dominant Coalitions and Dominant General Management Logic: A Case Study of Community College Degree Completion

    ERIC Educational Resources Information Center

    Leone, Lucian Anthony

    2016-01-01

    Community colleges in the United States are faced with several challenges, one of which is increasing the percentage of students that earn an associate degree. Research (American Association of Community Colleges, 2012; Amey, 2005; Eddy, 2010; Roueche, 2008) suggests that community college administrators need to think, act, manage, and lead in…

  9. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments.

    PubMed

    Jumpponen, A; Jones, K L

    2010-04-01

    *The fungal richness, diversity and community composition in the Quercus macrocarpa phyllosphere were compared across a growing season in trees located in six stands within and outside a small urban center using 454-sequencing and DNA tagging. The approaches did not differentiate between endophytic and epiphytic fungal communities. *Fungi accumulated in the phyllosphere rapidly and communities were temporally dynamic, with more than a third of the analyzed operational taxonomic units (OTUs) and half of the BLAST-inferred genera showing distinct seasonal patterns. The seasonal patterns could be explained by fungal life cycles or environmental tolerances. *The communities were hyperdiverse and differed between the urban and nonurban stands, albeit not consistently across the growing season. Foliar macronutrients (nitrogen (N), potassium (K) and sulfur (S)), micronutrients (boron (B), manganese (Mn) and selenium (Se)) and trace elements (cadmium (Cd), lead (Pb) and zinc (Zn)) were enriched in the urban trees, probably as a result of anthropogenic activities. Because of correlations with the experimental layout, these chemical elements should not be considered as community drivers without further empirical studies. *We suggest that a combination of mechanisms leads to differences between urban and nonurban communities. Among those are stand isolation and size, nutrient and pollutant accumulation plus stand management, including fertilization and litter removal.

  10. Global changes alter soil fungal communities and alter rates of organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Moore, J.; Frey, S. D.

    2016-12-01

    Global changes - such as warming, more frequent and severe droughts, increasing atmospheric CO2, and increasing nitrogen (N) deposition rates - are altering ecosystem processes. The balance between soil carbon (C) accumulation and decomposition is determined in large part by the activity and biomass of detrital organisms, namely soil fungi, and yet their sensitivity to global changes remains unresolved. We present results from a meta-analysis of 200+ studies spanning manipulative and observational field experiments to quantify fungal responses to global change and expected consequences for ecosystem C dynamics. Warming altered the functional soil microbial community by reducing the ratio of fungi to bacteria (f:b) total fungal biomass. Additionally, warming reduced lignolytic enzyme activity generally by one-third. Simulated N deposition affected f:b differently than warming, but the effect on fungal biomass and activity was similar. The effect of N-enrichment on f:b was contingent upon ecosystem type; f:b increased in alpine meadows and heathlands but decreased in temperate forests following N-enrichment. Across ecosystems, fungal biomass marginally declined by 8% in N-enriched soils. In general, N-enrichment reduced fungal lignolytic enzyme activity, which could explain why soil C accumulates in some ecosystems following warming and N-enrichment. Several global change experiments have reported the surprising result that soil C builds up following increases in temperature and N deposition rates. While site-specific studies have examined the role of soil fungi in ecosystem responses to global change, we present the first meta-analysis documenting general patterns of global change impacts on soil fungal communities, biomass, and activity. In sum, we provide evidence that soil microbial community shifts and activity plays a large part in ecosystem responses to global changes, and have the potential to alter the magnitude of the C-climate feedback.

  11. Impact of Land Use on Arbuscular Mycorrhizal Fungal Communities in Rural Canada

    PubMed Central

    Dai, Mulan; Bainard, Luke D.; Gan, Yantai; Lynch, Derek

    2013-01-01

    The influence of land use on soil bio-resources is largely unknown. We examined the communities of arbuscular mycorrhizal (AM) fungi in wheat-growing cropland, natural areas, and seminatural areas along roads. We sampled the Canadian prairie extensively (317 sites) and sampled 20 sites in the Atlantic maritime ecozone for comparison. The proportions of the different AM fungal taxa in the communities found at these sites varied with land use type and ecozones, based on pyrosequencing of 18S rRNA gene (rDNA) amplicons, but the lists of AM fungal taxa obtained from the different land use types and ecozones were very similar. In the prairie, the Glomeraceae family was the most abundant and diverse family of Glomeromycota, followed by the Claroideoglomeraceae, but in the Atlantic maritime ecozone, the Claroideoglomeraceae family was most abundant. In the prairie, species richness and Shannon's diversity index were highest in roadsides, whereas cropland had a higher degree of species richness than roadsides in the Atlantic maritime ecozone. The frequencies of occurrence of the different AM fungal taxa in croplands in the prairie and Atlantic maritime ecozones were highly correlated, but the AM fungal communities in these ecozones had different structures. We conclude that the AM fungal resources of soils are resilient to disturbance and that the richness of AM fungi under cropland management has been maintained, despite evidence of a structural shift imposed by this type of land use. Roadsides in the Canadian prairie are a good repository for the conservation of AM fungal diversity. PMID:23995929

  12. Exploring the Bilingualism of a Migrant Community through Language Dominance

    ERIC Educational Resources Information Center

    Santello, Marco

    2014-01-01

    This study outlines a linguistic profile of two subgroups of Italian English circumstantial bilinguals - one dominant in English and the other dominant in Italian--by exploring for the first time their linguistic repertoire through the Gradient Bilingual Dominance Scale (Dunn & Fox Tree, 2009). The scale takes into account language…

  13. Exploring the Bilingualism of a Migrant Community through Language Dominance

    ERIC Educational Resources Information Center

    Santello, Marco

    2014-01-01

    This study outlines a linguistic profile of two subgroups of Italian English circumstantial bilinguals - one dominant in English and the other dominant in Italian--by exploring for the first time their linguistic repertoire through the Gradient Bilingual Dominance Scale (Dunn & Fox Tree, 2009). The scale takes into account language…

  14. Functional outcomes of fungal community shifts driven by tree genotype and spatial-temporal factors in Mediterranean pine forests.

    PubMed

    Pérez-Izquierdo, Leticia; Zabal-Aguirre, Mario; Flores-Rentería, Dulce; González-Martínez, Santiago C; Buée, Marc; Rincón, Ana

    2017-02-09

    Fungi provide relevant ecosystem services contributing to primary productivity and the cycling of nutrients in forests. These fungal inputs can be decisive for the resilience of Mediterranean forests under global change scenarios, making necessary an in-deep knowledge about how fungal communities operate in these ecosystems. By using high-throughput sequencing and enzymatic approaches, we studied the fungal communities associated with three genotypic variants of Pinus pinaster trees, in 45-year-old common garden plantations. We aimed to determine the impact of biotic (i.e., tree genotype) and abiotic (i.e., season, site) factors on the fungal community structure, and to explore whether structural shifts triggered functional responses affecting relevant ecosystem processes. Tree genotype and spatial-temporal factors were pivotal structuring fungal communities, mainly by influencing their assemblage and selecting certain fungi. Diversity variations of total fungal community and of that of specific fungal guilds, together with edaphic properties and tree's productivity, explained relevant ecosystem services such as processes involved in carbon turnover and phosphorous mobilization. A mechanistic model integrating relations of these variables and ecosystem functional outcomes is provided. Our results highlight the importance of structural shifts in fungal communities because they may have functional consequences for key ecosystem processes in Mediterranean forests.

  15. Representative sampling of natural biofilms: influence of substratum type on the bacterial and fungal communities structure.

    PubMed

    Hellal, Jennifer; Michel, Caroline; Barsotti, Vanessa; Laperche, Valérie; Garrido, Francis; Joulian, Catherine

    2016-01-01

    In situ biofilm sampling is a key step for the study of natural biofilms and using methodologies that reflect natural diversity is necessary to guarantee representative sampling. Here, we focalise on the impact of the type of substrata on which biofilms grow on bacterial and fungal communities' structure. The indirect molecular approach, Denaturing Gel Gradient Electrophoresis (DGGE) of a gene fragment coding for either 16S rRNA or 28S rRNA, for bacteria or fungi respectively, was used to evaluate the variability of microbial community structures among different biofilm substrata: natural (pebbles, live plants, wood and sediment), or artificial (glass, Plexiglas(®) and sterile wood), in a small river (the Loiret, France). Multivariate statistics, band richness and diversity indexes (Shannon and Simpson) were used to highlight variations in community structure between substrata. Results showed variations of bacterial and fungal diversity between different substrata according to substratum properties/origin (natural or artificial, organic or inorganic) but there was no optimal substratum for sampling, and artificial substrata were not significantly less applicable than natural substrata. Pooling 4 different substrata types allowed a higher bacterial and fungal biodiversity recovery. Point contact sampling may thus gain in robustness by increasing the number of substrata considered. Fungal species richness was similar to the bacterial one on most substrata which suggested they should be more frequently considered in riverine biofilm studies.

  16. Cohort Study of Airway Mycobiome in Adult Cystic Fibrosis Patients: Differences in Community Structure between Fungi and Bacteria Reveal Predominance of Transient Fungal Elements.

    PubMed

    Kramer, Rolf; Sauer-Heilborn, Annette; Welte, Tobias; Guzman, Carlos A; Abraham, Wolf-Rainer; Höfle, Manfred G

    2015-09-01

    The respiratory mycobiome is an important but understudied component of the human microbiota. Like bacteria, fungi can cause severe lung diseases, but their infection rates are much lower. This study compared the bacterial and fungal communities of sputum samples from a large cohort of 56 adult patients with cystic fibrosis (CF) during nonexacerbation periods and under continuous antibiotic treatment. Molecular fingerprinting based on single-strand conformation polymorphism (SSCP) analysis revealed fundamental differences between bacterial and fungal communities. Both groups of microorganisms were taxonomically classified by identification of gene sequences (16S rRNA and internal transcript spacer), and prevalences of single taxa were determined for the entire cohort. Major bacterial pathogens were frequently observed, whereas fungi of known pathogenicity in CF were detected only in low numbers. Fungal species richness increased without reaching a constant level (saturation), whereas bacterial richness showed saturation after 50 patients were analyzed. In contrast to bacteria, a large number of fungal species were observed together with high fluctuations over time and among patients. These findings demonstrated that the mycobiome was dominated by transient species, which strongly suggested that the main driving force was their presence in inhaled air rather than colonization. Considering the high exposure of human airways to fungal spores, we concluded that fungi have low colonization abilities in CF, and colonization by pathogenic fungal species may be considered a rare event. A comprehensive understanding of the conditions promoting fungal colonization may offer the opportunity to prevent colonization and substantially reduce or even eliminate fungus-related disease progression in CF. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Enhancement of the Knowledge on Fungal Communities in Directly Brined Aloreña de Málaga Green Olive Fermentations by Metabarcoding Analysis

    PubMed Central

    Arroyo-López, Francisco Noé; Medina, Eduardo; Ruiz-Bellido, Miguel Ángel; Romero-Gil, Verónica; Montes-Borrego, Miguel

    2016-01-01

    Nowadays, our knowledge of the fungal biodiversity in fermented vegetables is limited although these microorganisms could have a great influence on the quality and safety of this kind of food. This work uses a metagenetic approach to obtain basic knowledge of the fungal community ecology during the course of fermentation of natural Aloreña de Málaga table olives, from reception of raw material to edible fruits. For this purpose, samples of brines and fruits were collected from two industries in Guadalhorce Valley (Málaga, Spain) at different moments of fermentation (0, 7, 30 and 120 days). The physicochemical and microbial counts performed during fermentation showed the typical evolution of this type of processes, mainly dominated by yeasts in apparent absence of Enterobacteriaceae and Lactobacillaceae. High-throughput barcoded pyrosequencing analysis of ITS1-5.8S-ITS2 region showed a low biodiversity of the fungal community, with the presence at 97% identity of 29 different fungal genera included in 105 operational taxonomic units (OTUs). The most important genera in the raw material at the moment of reception in the industry were Penicillium, Cladosporium, Malassezia, and Candida, whilst after 4 months of fermentation in brines Zygotorulaspora and Pichia were predominant, whereas in fruits were Candida, Penicillium, Debaryomyces and Saccharomyces. The fungal genera Penicillium, Pichia, and Zygotorulaspora were shared among the three types of substrates during all the course of fermentation, representing the core fungal population for this table olive specialty. A phylogenetic analysis of the ITS sequences allowed a more accurate assignment of diverse OTUs to Pichia manshurica, Candida parapsilosis/C. tropicalis, Candida diddensiae, and Citeromyces nyonensis clades. This study highlights the existence of a complex fungal consortium in olive fermentations including phytopathogenic, saprofitic, spoilage and fermentative genera. Insights into the ecology

  18. Cohort Study of Airway Mycobiome in Adult Cystic Fibrosis Patients: Differences in Community Structure between Fungi and Bacteria Reveal Predominance of Transient Fungal Elements

    PubMed Central

    Sauer-Heilborn, Annette; Welte, Tobias; Guzman, Carlos A.; Abraham, Wolf-Rainer; Höfle, Manfred G.

    2015-01-01

    The respiratory mycobiome is an important but understudied component of the human microbiota. Like bacteria, fungi can cause severe lung diseases, but their infection rates are much lower. This study compared the bacterial and fungal communities of sputum samples from a large cohort of 56 adult patients with cystic fibrosis (CF) during nonexacerbation periods and under continuous antibiotic treatment. Molecular fingerprinting based on single-strand conformation polymorphism (SSCP) analysis revealed fundamental differences between bacterial and fungal communities. Both groups of microorganisms were taxonomically classified by identification of gene sequences (16S rRNA and internal transcript spacer), and prevalences of single taxa were determined for the entire cohort. Major bacterial pathogens were frequently observed, whereas fungi of known pathogenicity in CF were detected only in low numbers. Fungal species richness increased without reaching a constant level (saturation), whereas bacterial richness showed saturation after 50 patients were analyzed. In contrast to bacteria, a large number of fungal species were observed together with high fluctuations over time and among patients. These findings demonstrated that the mycobiome was dominated by transient species, which strongly suggested that the main driving force was their presence in inhaled air rather than colonization. Considering the high exposure of human airways to fungal spores, we concluded that fungi have low colonization abilities in CF, and colonization by pathogenic fungal species may be considered a rare event. A comprehensive understanding of the conditions promoting fungal colonization may offer the opportunity to prevent colonization and substantially reduce or even eliminate fungus-related disease progression in CF. PMID:26135861

  19. Light structures phototroph, bacterial and fungal communities at the soil surface.

    PubMed

    Davies, Lawrence O; Schäfer, Hendrik; Marshall, Samantha; Bramke, Irene; Oliver, Robin G; Bending, Gary D

    2013-01-01

    The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm) and bulk soil (3-12 mm) using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  20. Light Structures Phototroph, Bacterial and Fungal Communities at the Soil Surface

    PubMed Central

    Davies, Lawrence O.; Schäfer, Hendrik; Marshall, Samantha; Bramke, Irene; Oliver, Robin G.; Bending, Gary D.

    2013-01-01

    The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0–3 mm) and bulk soil (3–12 mm) using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere. PMID:23894406

  1. Fungal community in sclerotia of Japanese Beech forest soils in north eastern Japan

    NASA Astrophysics Data System (ADS)

    Fathia Amasya, Anzilni; Narisawa, Kazuhiko; Watanabe, Makiko

    2014-05-01

    Sclerotia are resting structures of ectomycorrhizal fungi and appear as a response to unfavorable environmental conditions such as desiccation. They are hard, black, comparatively smooth and mostly spherical. Sclerotia are formed in rhizosphere and the 14C ages of sclerotia from A horizons of volcanic ash soils may range from modern until ca. 100~1,200 yr B.P. Most sclerotia-forming fungal species are known to be host-specific plant pathogens and therefore their abundance may indicate the presence of their host plants. The purpose of this study was to investigate fungal communities in sclerotia with an interest in describing the existing or may have previously existed host plant community. To investigate fungal community inside of sclerotia by 16S rDNA gene clone library, several hundred of sclerotia (ca. 1g) were collected from Fagus crenata forest soil in north eastern Japan. The rDNA ITS regions were then amplified by the PCR using primer pair ITS-1F/ITS-4. Aliquots of the amplified DNA were digested with restriction endonucleases AluI, Hae III, and HhaI to obtain ITS-RFLPs. To obtain the fungal community profiles a quenching fluorescence primer was used for real-time quantitative PCR (qPCR) assay to monitor the PCR amplification and then used for T-RFLP. The predominant group determined by clone library analysis from the sclerotia was Ascomycota: Arthrinium arundinis, which has been reported to be one of the soil fungal species responsible for bamboo degradation and a pathogen for many species belonging to Poaceae family.

  2. Differential impacts of brassicaceous and nonbrassicaceous oilseed meals on soil bacterial and fungal communities.

    PubMed

    Hollister, Emily B; Hu, Ping; Wang, Autumn S; Hons, Frank M; Gentry, Terry J

    2013-03-01

    Demand for alternative fuels has sparked renewed interest in the production of biodiesel from oil-rich seeds. Oilseed meals are a byproduct of this process, and given their relatively high nutrient content, land application represents a potential value-added use. In this microcosm-based study, soil microbial community responses to amendments of a glucosinolate-containing brassicaceous oilseed meal (Brassica juncea, mustard), a non-glucosinolate-containing, nonbrassicaceous oilseed meal (Linum usitatissimum, flax), and a nonoilseed biomass (Sorghum bicolor) were characterized using a 28-day time series of replicated 16S rRNA gene and fungal ITS gene sequence libraries. We hypothesized that biomass type and glucosinolate content would alter community composition but that effects would diminish over time. Distinct separation occurred by amendment type, with mustard inducing large increases in the abundance of bacterial taxa associated with fungal disease suppression (e.g. Bacillus, Pseudomonas, and Streptomyces spp.). Dramatic shifts were seen among the fungi, too, with phylotype richness decreasing by > 60% following mustard addition. Changes in bacterial and fungal community composition were rapid, and distinct community types persisted throughout the study. Oilseed amendment, and mustard in particular, has the potential to alter soil microbial community structure substantially, and such changes are likely to be important in the context of ecosystem health. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Fungal community analysis by high-throughput sequencing of amplified markers – a user's guide

    PubMed Central

    Lindahl, Björn D; Nilsson, R Henrik; Tedersoo, Leho; Abarenkov, Kessy; Carlsen, Tor; Kjøller, Rasmus; Kõljalg, Urmas; Pennanen, Taina; Rosendahl, Søren; Stenlid, Jan; Kauserud, Håvard

    2013-01-01

    Novel high-throughput sequencing methods outperform earlier approaches in terms of resolution and magnitude. They enable identification and relative quantification of community members and offer new insights into fungal community ecology. These methods are currently taking over as the primary tool to assess fungal communities of plant-associated endophytes, pathogens, and mycorrhizal symbionts, as well as free-living saprotrophs. Taking advantage of the collective experience of six research groups, we here review the different stages involved in fungal community analysis, from field sampling via laboratory procedures to bioinformatics and data interpretation. We discuss potential pitfalls, alternatives, and solutions. Highlighted topics are challenges involved in: obtaining representative DNA/RNA samples and replicates that encompass the targeted variation in community composition, selection of marker regions and primers, options for amplification and multiplexing, handling of sequencing errors, and taxonomic identification. Without awareness of methodological biases, limitations of markers, and bioinformatics challenges, large-scale sequencing projects risk yielding artificial results and misleading conclusions. PMID:23534863

  4. Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages.

    PubMed

    Davison, John; Öpik, Maarja; Daniell, Tim J; Moora, Mari; Zobel, Martin

    2011-10-01

    We investigated whether arbuscular mycorrhizal fungal (AMF) communities in plant roots are random subsets of the local taxon pool or whether they reflect the action of certain community assembly rules. We studied AMF small subunit rRNA gene sequence groups in the roots of plant individuals belonging to 11 temperate forest understorey species. Empirical data were compared with null models assuming random association. Distinct fungal species pools were present in young and old successional forest. In both forest types, the richness of plant-AMF associations was lower than expected by chance, indicating a degree of partner selectivity. AMF communities were generally not characteristic of individual plant species, but those associated with ecological groups of plant species - habitat generalists and forest specialists - were nonrandom subsets of the available pool of fungal taxa and differed significantly from each other. Moreover, these AMF communities were the least distinctive in spring, but developed later in the season. Comparison with a global database showed that generalist plants tend to associate with generalist AMF. Thus, the habitat range of the host and a possible interaction with season played a role in the assembly of AMF communities in individual plant root systems. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Soil pH is a Key Determinant of Soil Fungal Community Composition in the Ny-Ålesund Region, Svalbard (High Arctic).

    PubMed

    Zhang, Tao; Wang, Neng-Fei; Liu, Hong-Yu; Zhang, Yu-Qin; Yu, Li-Yan

    2016-01-01

    This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic). A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS) region. The following eight soil properties were analyzed: pH, organic carbon (C), organic nitrogen (N), ammonium nitrogen (NH4 (+)-N), silicate silicon (SiO4 (2-)-Si), nitrite nitrogen (NO2 (-)-N), phosphate phosphorus (PO4 (3-)-P), and nitrate nitrogen (NO3 (-)-N). A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs) were found. of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>eight soil samples) were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda) and analysis of similarities (ANOSIM) revealed that soil pH (p = 0.001) was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8-9, whereas Sordariales predominated in soils of pH 7-8 and Coniochaetales predominated in soils of pH 6-7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic.

  6. Soil pH is a Key Determinant of Soil Fungal Community Composition in the Ny-Ålesund Region, Svalbard (High Arctic)

    PubMed Central

    Zhang, Tao; Wang, Neng-Fei; Liu, Hong-Yu; Zhang, Yu-Qin; Yu, Li-Yan

    2016-01-01

    This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic). A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS) region. The following eight soil properties were analyzed: pH, organic carbon (C), organic nitrogen (N), ammonium nitrogen (NH4+-N), silicate silicon (SiO42--Si), nitrite nitrogen (NO2--N), phosphate phosphorus (PO43--P), and nitrate nitrogen (NO3--N). A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs) were found. of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>eight soil samples) were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda) and analysis of similarities (ANOSIM) revealed that soil pH (p = 0.001) was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8–9, whereas Sordariales predominated in soils of pH 7–8 and Coniochaetales predominated in soils of pH 6–7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic. PMID:26955371

  7. Redefining the Chronic-Wound Microbiome: Fungal Communities Are Prevalent, Dynamic, and Associated with Delayed Healing.

    PubMed

    Kalan, Lindsay; Loesche, Michael; Hodkinson, Brendan P; Heilmann, Kristopher; Ruthel, Gordon; Gardner, Sue E; Grice, Elizabeth A

    2016-09-06

    Chronic nonhealing wounds have been heralded as a silent epidemic, causing significant morbidity and mortality especially in elderly, diabetic, and obese populations. Polymicrobial biofilms in the wound bed are hypothesized to disrupt the highly coordinated and sequential events of cutaneous healing. Both culture-dependent and -independent studies of the chronic-wound microbiome have almost exclusively focused on bacteria, omitting what we hypothesize are important fungal contributions to impaired healing and the development of complications. Here we show for the first time that fungal communities (the mycobiome) in chronic wounds are predictive of healing time, associated with poor outcomes, and form mixed fungal-bacterial biofilms. We longitudinally profiled 100, nonhealing diabetic-foot ulcers with high-throughput sequencing of the pan-fungal internal transcribed spacer 1 (ITS1) locus, estimating that up to 80% of wounds contain fungi, whereas cultures performed in parallel captured only 5% of colonized wounds. The "mycobiome" was highly heterogeneous over time and between subjects. Fungal diversity increased with antibiotic administration and onset of a clinical complication. The proportions of the phylum Ascomycota were significantly greater (P = 0.015) at the beginning of the study in wounds that took >8 weeks to heal. Wound necrosis was distinctly associated with pathogenic fungal species, while taxa identified as allergenic filamentous fungi were associated with low levels of systemic inflammation. Directed culturing of wounds stably colonized by pathogens revealed that interkingdom biofilms formed between yeasts and coisolated bacteria. Combined, our analyses provide enhanced resolution of the mycobiome during impaired wound healing, its role in chronic disease, and impact on clinical outcomes. Wounds are an underappreciated but serious complication for a diverse spectrum of diseases. High-risk groups, such as persons with diabetes, have a 25% lifetime

  8. Long-lasting effects of land use history on soil fungal communities in second-growth tropical rain forests.

    PubMed

    Bachelot, Benedicte; Uriarte, María; Zimmerman, Jess K; Thompson, Jill; Leff, Jonathan W; Asiaii, Ava; Koshner, Jenny; McGuire, Krista

    2016-09-01

    Our understanding of the long-lasting effects of human land use on soil fungal communities in tropical forests is limited. Yet, over 70% of all remaining tropical forests are growing in former agricultural or logged areas. We investigated the relationship among land use history, biotic and abiotic factors, and soil fungal community composition and diversity in a second-growth tropical forest in Puerto Rico. We coupled high-throughput DNA sequencing with tree community and environmental data to determine whether land use history had an effect on soil fungal community descriptors. We also investigated the biotic and abiotic factors that underlie such differences and asked whether the relative importance of biotic (tree diversity, basal tree area, and litterfall biomass) and abiotic (soil type, pH, iron, and total carbon, water flow, and canopy openness) factors in structuring soil fungal communities differed according to land use history. We demonstrated long-lasting effects of land use history on soil fungal communities. At our research site, most of the explained variation in soil fungal composition (R(2)  = 18.6%), richness (R(2)  = 11.4%), and evenness (R(2)  = 10%) was associated with edaphic factors. Areas previously subject to both logging and farming had a soil fungal community with lower beta diversity and greater evenness of fungal operational taxonomic units (OTUs) than areas subject to light logging. Yet, fungal richness was similar between the two areas of historical land use. Together, these results suggest that fungal communities in disturbed areas are more homogeneous and diverse than in areas subject to light logging. Edaphic factors were the most strongly correlated with soil fungal composition, especially in areas subject to light logging, where soils are more heterogenous. High functional tree diversity in areas subject to both logging and farming led to stronger correlations between biotic factors and fungal composition than in areas

  9. Functional Characterization of Endophytic Fungal Community Associated with Oryza sativa L. and Zea mays L.

    PubMed Central

    Potshangbam, Momota; Devi, S. Indira; Sahoo, Dinabandhu; Strobel, Gary A.

    2017-01-01

    In a natural ecosystem, the plant is in a symbiotic relationship with beneficial endophytes contributing huge impact on its host plant. Therefore, exploring beneficial endophytes and understanding its interaction is a prospective area of research. The present work aims to characterize the fungal endophytic communities associated with healthy maize and rice plants and to study the deterministic factors influencing plant growth and biocontrol properties against phytopathogens, viz, Pythium ultimum, Sclerotium oryzae, Rhizoctonia solani, and Pyricularia oryzae. A total of 123 endophytic fungi was isolated using the culture-dependent approach from different tissue parts of the plant. Most dominating fungal endophyte associated with both the crops belong to genus Fusarium, Sarocladium, Aspergillus, and Penicillium and their occurrence was not tissue specific. The isolates were screened for in vitro plant growth promotion, stress tolerance, disease suppressive mechanisms and based on the results, each culture from both the cereal crops was selected for further study. Acremonium sp. (ENF 31) and Penicillium simplicisssum (ENF22), isolated from maize and rice respectively could potentially inhibit the growth of all the tested pathogens with 46.47 ± 0.16 mm to 60.09 ± 0.04 mm range zone of inhibition for ENF31 and 35.48 ± 0.14 to 62.29 ± 0.15 mm for ENF22. Both significantly produce the defensive enzymes, ENF31 could tolerate a wide range of pH from 2 to 12, very important criteria, for studying plant growth in different soil types, especially acidic as it is widely prevalent here, making more land unsuitable for cultivation. ENF22 grows in pH range 3–12, with 10% salt tolerating ability, another factor of consideration. Study of root colonization during 7th to 30th days of growth phase reveals that ENF31 could colonize pleasantly in rice, though a maize origin, ranging from 1.02 to 1.21 log10 CFU/g root and in maize, it steadily colonizes ranging from 0.95 to 1

  10. Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community

    PubMed Central

    2017-01-01

    Fungi are morphologically, ecologically, metabolically, and phylogenetically diverse. They are known to produce numerous bioactive molecules, which makes them very useful for natural products researchers in their pursuit of discovering new chemical diversity with agricultural, industrial, and pharmaceutical applications. Despite their importance in natural products chemistry, identification of fungi remains a daunting task for chemists, especially those who do not work with a trained mycologist. The purpose of this review is to update natural products researchers about the tools available for molecular identification of fungi. In particular, we discuss (1) problems of using morphology alone in the identification of fungi to the species level; (2) the three nuclear ribosomal genes most commonly used in fungal identification and the potential advantages and limitations of the ITS region, which is the official DNA barcoding marker for species-level identification of fungi; (3) how to use NCBI-BLAST search for DNA barcoding, with a cautionary note regarding its limitations; (4) the numerous curated molecular databases containing fungal sequences; (5) the various protein-coding genes used to augment or supplant ITS in species-level identification of certain fungal groups; and (6) methods used in the construction of phylogenetic trees from DNA sequences to facilitate fungal species identification. We recommend that, whenever possible, both morphology and molecular data be used for fungal identification. Our goal is that this review will provide a set of standardized procedures for the molecular identification of fungi that can be utilized by the natural products research community. PMID:28199101

  11. Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community.

    PubMed

    Raja, Huzefa A; Miller, Andrew N; Pearce, Cedric J; Oberlies, Nicholas H

    2017-03-24

    Fungi are morphologically, ecologically, metabolically, and phylogenetically diverse. They are known to produce numerous bioactive molecules, which makes them very useful for natural products researchers in their pursuit of discovering new chemical diversity with agricultural, industrial, and pharmaceutical applications. Despite their importance in natural products chemistry, identification of fungi remains a daunting task for chemists, especially those who do not work with a trained mycologist. The purpose of this review is to update natural products researchers about the tools available for molecular identification of fungi. In particular, we discuss (1) problems of using morphology alone in the identification of fungi to the species level; (2) the three nuclear ribosomal genes most commonly used in fungal identification and the potential advantages and limitations of the ITS region, which is the official DNA barcoding marker for species-level identification of fungi; (3) how to use NCBI-BLAST search for DNA barcoding, with a cautionary note regarding its limitations; (4) the numerous curated molecular databases containing fungal sequences; (5) the various protein-coding genes used to augment or supplant ITS in species-level identification of certain fungal groups; and (6) methods used in the construction of phylogenetic trees from DNA sequences to facilitate fungal species identification. We recommend that, whenever possible, both morphology and molecular data be used for fungal identification. Our goal is that this review will provide a set of standardized procedures for the molecular identification of fungi that can be utilized by the natural products research community.

  12. A fungal mock community control for amplicon sequencing experiments

    USDA-ARS?s Scientific Manuscript database

    The field of microbial ecology has been profoundly advanced by the ability to profile the composition of complex microbial communities by means of high throughput amplicon sequencing of marker genes amplified directly from environmental genomic DNA extracts. However, it has become increasingly clear...

  13. Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales

    PubMed Central

    Horn, Sebastian; Caruso, Tancredi; Verbruggen, Erik; Rillig, Matthias C; Hempel, Stefan

    2014-01-01

    Next-generation sequencing technologies with markers covering the full Glomeromycota phylum were used to uncover phylogenetic community structure of arbuscular mycorrhizal fungi (AMF) associated with Festuca brevipila. The study system was a semi-arid grassland with high plant diversity and a steep environmental gradient in pH, C, N, P and soil water content. The AMF community in roots and rhizosphere soil were analyzed separately and consisted of 74 distinct operational taxonomic units (OTUs) in total. Community-level variance partitioning showed that the role of environmental factors in determining AM species composition was marginal when controlling for spatial autocorrelation at multiple scales. Instead, phylogenetic distance and spatial distance were major correlates of AMF communities: OTUs that were more closely related (and which therefore may have similar traits) were more likely to co-occur. This pattern was insensitive to phylogenetic sampling breadth. Given the minor effects of the environment, we propose that at small scales closely related AMF positively associate through biotic factors such as plant-AMF filtering and interactions within the soil biota. PMID:24824667

  14. Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales.

    PubMed

    Horn, Sebastian; Caruso, Tancredi; Verbruggen, Erik; Rillig, Matthias C; Hempel, Stefan

    2014-11-01

    Next-generation sequencing technologies with markers covering the full Glomeromycota phylum were used to uncover phylogenetic community structure of arbuscular mycorrhizal fungi (AMF) associated with Festuca brevipila. The study system was a semi-arid grassland with high plant diversity and a steep environmental gradient in pH, C, N, P and soil water content. The AMF community in roots and rhizosphere soil were analyzed separately and consisted of 74 distinct operational taxonomic units (OTUs) in total. Community-level variance partitioning showed that the role of environmental factors in determining AM species composition was marginal when controlling for spatial autocorrelation at multiple scales. Instead, phylogenetic distance and spatial distance were major correlates of AMF communities: OTUs that were more closely related (and which therefore may have similar traits) were more likely to co-occur. This pattern was insensitive to phylogenetic sampling breadth. Given the minor effects of the environment, we propose that at small scales closely related AMF positively associate through biotic factors such as plant-AMF filtering and interactions within the soil biota.

  15. Transcriptional Profiling of a Yeast Colony Provides New Insight into the Heterogeneity of Multicellular Fungal Communities

    PubMed Central

    Traven, Ana; Jänicke, Amrei; Harrison, Paul; Swaminathan, Angavai; Seemann, Torsten; Beilharz, Traude H.

    2012-01-01

    Understanding multicellular fungal structures is important for designing better strategies against human fungal pathogens. For example, the ability to form multicellular biofilms is a key virulence property of the yeast Candida albicans. C. albicans biofilms form on indwelling medical devices and are drug resistant, causing serious infections in hospital settings. Multicellular fungal communities are heterogeneous, consisting of cells experiencing different environments. Heterogeneity is likely important for the phenotypic characteristics of communities, yet it is poorly understood. Here we used colonies of the yeast Saccharomyces cerevisiae as a model fungal multicellular structure. We fractionated the outside colony layers from the cells in the center by FACS, using a Cit1-GFP marker expressed exclusively on the outside. Transcriptomics analysis of the two subpopulations revealed that the outside colony layers are actively growing by fermentative metabolism, while the cells residing on the inside are in a resting state and experience changes to mitochondrial activity. Our data shows several parallels with C. albicans biofilms providing insight into the contributions of heterogeneity to biofilm phenotypes. Hallmarks of C. albicans biofilms – the expression of ribosome and translation functions and activation of glycolysis and ergosterol biosynthesis occur on the outside of colonies, while expression of genes associates with sulfur assimilation is observed in the colony center. Cell wall restructuring occurs in biofilms, and cell wall functions are enriched in both fractions: the outside cells display enrichment of cell wall biosynthesis enzymes and cell wall proteins, while the inside cells express cell wall degrading enzymes. Our study also suggests that noncoding transcription and posttranscriptional mRNA regulation play important roles during growth of yeast in colonies, setting the scene for investigating these pathways in the development of multicellular

  16. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests.

    PubMed

    Hesse, Cedar N; Mueller, Rebecca C; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D; Zak, Donald R; Kuske, Cheryl R

    2015-01-01

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.

  17. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    PubMed Central

    Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D.; Zak, Donald R.; Kuske, Cheryl R.

    2015-01-01

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact. PMID:25954263

  18. Transcriptional profiling of a yeast colony provides new insight into the heterogeneity of multicellular fungal communities.

    PubMed

    Traven, Ana; Jänicke, Amrei; Harrison, Paul; Swaminathan, Angavai; Seemann, Torsten; Beilharz, Traude H

    2012-01-01

    Understanding multicellular fungal structures is important for designing better strategies against human fungal pathogens. For example, the ability to form multicellular biofilms is a key virulence property of the yeast Candida albicans. C. albicans biofilms form on indwelling medical devices and are drug resistant, causing serious infections in hospital settings. Multicellular fungal communities are heterogeneous, consisting of cells experiencing different environments. Heterogeneity is likely important for the phenotypic characteristics of communities, yet it is poorly understood. Here we used colonies of the yeast Saccharomyces cerevisiae as a model fungal multicellular structure. We fractionated the outside colony layers from the cells in the center by FACS, using a Cit1-GFP marker expressed exclusively on the outside. Transcriptomics analysis of the two subpopulations revealed that the outside colony layers are actively growing by fermentative metabolism, while the cells residing on the inside are in a resting state and experience changes to mitochondrial activity. Our data shows several parallels with C. albicans biofilms providing insight into the contributions of heterogeneity to biofilm phenotypes. Hallmarks of C. albicans biofilms - the expression of ribosome and translation functions and activation of glycolysis and ergosterol biosynthesis occur on the outside of colonies, while expression of genes associates with sulfur assimilation is observed in the colony center. Cell wall restructuring occurs in biofilms, and cell wall functions are enriched in both fractions: the outside cells display enrichment of cell wall biosynthesis enzymes and cell wall proteins, while the inside cells express cell wall degrading enzymes. Our study also suggests that noncoding transcription and posttranscriptional mRNA regulation play important roles during growth of yeast in colonies, setting the scene for investigating these pathways in the development of multicellular

  19. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    DOE PAGES

    Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; ...

    2015-04-23

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes)more » in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.« less

  20. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    SciTech Connect

    Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D.; Zak, Donald R.; Kuske, Cheryl R.

    2015-04-23

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.

  1. Molecular diversity of fungal and bacterial communities in the marine sponge Dragmacidon reticulatum.

    PubMed

    Passarini, Michel R Z; Miqueletto, Paula B; de Oliveira, Valéria M; Sette, Lara D

    2015-02-01

    The present work aimed to investigate the diversity of bacteria and filamentous fungi of southern Atlantic Ocean marine sponge Dragmacidon reticulatum using cultivation-independent approaches. Fungal ITS rDNA and 18S gene analyses (DGGE and direct sequencing approaches) showed the presence of representatives of three order (Polyporales, Malasseziales, and Agaricales) from the phylum Basidiomycota and seven orders belonging to the phylum Ascomycota (Arthoniales, Capnodiales, Dothideales, Eurotiales, Hypocreales, Pleosporales, and Saccharomycetales). On the other hand, bacterial 16S rDNA gene analyses by direct sequencing approach revealed the presence of representatives of seven bacterial phyla (Cyanobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Lentisphaerae, Chloroflexi, and Planctomycetes). Results from statistical analyses (rarefaction curves) suggested that the sampled clones covered the fungal diversity in the sponge samples studied, while for the bacterial community additional sampling would be necessary for saturation. This is the first report related to the molecular analyses of fungal and bacterial communities by cultivation-independent approaches in the marine sponges D. reticulatum. Additionally, the present work broadening the knowledge of microbial diversity associated to marine sponges and reports innovative data on the presence of some fungal genera in marine samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Experimental warming alters potential function of the fungal community in boreal forest.

    PubMed

    Treseder, Kathleen K; Marusenko, Yevgeniy; Romero-Olivares, Adriana L; Maltz, Mia R

    2016-10-01

    Fungal community composition often shifts in response to warmer temperatures, which might influence decomposition of recalcitrant carbon (C). We hypothesized that evolutionary trade-offs would enable recalcitrant C-using taxa to respond more positively to warming than would labile C-using taxa. Accordingly, we performed a warming experiment in an Alaskan boreal forest and examined changes in the prevalence of fungal taxa. In a complementary field trial, we characterized the ability of fungal taxa to use labile C (glucose), intermediate C (hemicellulose or cellulose), or recalcitrant C (lignin). We also assigned taxa to functional groups (e.g., free-living filamentous fungi, ectomycorrhizal fungi, and yeasts) based on taxonomic identity. We found that response to warming varied most among taxa at the order level, compared to other taxonomic ranks. Among orders, ability to use lignin was significantly related to increases in prevalence in response to warming. However, the relationship was weak, given that lignin use explained only 9% of the variability in warming responses. Functional groups also differed in warming responses. Specifically, free-living filamentous fungi and ectomycorrhizal fungi responded positively to warming, on average, but yeasts responded negatively. Overall, warming-induced shifts in fungal communities might be accompanied by an increased ability to break down recalcitrant C. This change in potential function may reduce soil C storage under global warming.

  3. Short-term impacts of energy wood harvesting on ectomycorrhizal fungal communities of Norway spruce saplings

    PubMed Central

    Huusko, Karoliina; Tarvainen, Oili; Saravesi, Karita; Pennanen, Taina; Fritze, Hannu; Kubin, Eero; Markkola, Annamari

    2015-01-01

    The increased demand for harvesting energy wood raises questions about its effects on the functioning of the forest ecosystems, soil processes and biodiversity. Impacts of tree stump removal on ectomycorrhizal fungal (EMF) communities of Norway spruce saplings were studied with 454-pyrosequencing in a 3-year field experiment replicated in 3 geographical areas. This is possibly the most thorough investigation of EMF communities associated with saplings grown on sites subjected to energy wood harvesting. To separate impacts of tree stump and logging residue removal on EMF and plant variables, we used three harvesting treatments with increasing complexity from patch mounding alone (P) to patch mounding combined with logging residue removal (RP), and patch mounding combined with both logging residue and stump removal (SRP). Saplings grown in uncut forests (F) served as references for harvesting treatments. A majority of sequences (>92%) and operational taxonomic units (OTUs, 55%) were assigned as EMF. EMF OTU richness, fungal community composition or sapling growth did not differ between harvesting treatments (P, RP and SRP), while EMF OTU richness, diversity and evenness were highest and sapling growth lowest in the undisturbed reference forests (F). The short study period may partially explain the similarities in fungal and sapling variables in different harvesting treatments. In conclusion, our results indicate that neither stump removal nor logging residue removal have significant additional negative impacts on EMF communities or growth of Norway spruce saplings in the short-term compared with the impacts of more conventional harvesting methods, including clear cutting and patch mounding. PMID:25171334

  4. Soil bacterial and fungal communities respond differently to various isothiocyanates added for biofumigation

    PubMed Central

    Hu, Ping; Hollister, Emily B.; Somenahally, Anilkumar C.; Hons, Frank M.; Gentry, Terry J.

    2015-01-01

    The meals from many oilseed crops have potential for biofumigation due to their release of biocidal compounds such as isothiocyanates (ITCs). Various ITCs are known to inhibit numerous pathogens; however, much less is known about how the soil microbial community responds to the different types of ITCs released from oilseed meals (SMs). To simulate applying ITC-releasing SMs to soil, we amended soil with 1% flax SM (contains no biocidal chemicals) along with four types of ITCs (allyl, butyl, phenyl, and benzyl ITC) in order to determine their effects on soil fungal and bacterial communities in a replicated microcosm study. Microbial communities were analyzed based on the ITS region for fungi and 16S rRNA gene for bacteria using qPCR and tag-pyrosequencing with 454 GS FLX titanium technology. A dramatic decrease in fungal populations (~85% reduction) was observed after allyl ITC addition. Fungal community compositions also shifted following ITC amendments (e.g., Humicola increased in allyl and Mortierella in butyl ITC amendments). Bacterial populations were less impacted by ITCs, although there was a transient increase in the proportion of Firmicutes, related to bacteria know to be antagonistic to plant pathogens, following amendment with allyl ITC. Our results indicate that the type of ITC released from SMs can result in differential impacts on soil microorganisms. This information will aid selection and breeding of plants for biofumigation-based control of soil-borne pathogens while minimizing the impacts on non-target microorganisms. PMID:25709600

  5. Unexpectedly High Beta-Diversity of Root-Associated Fungal Communities in the Bolivian Andes

    PubMed Central

    Barnes, Christopher J.; Maldonado, Carla; Frøslev, Tobias G.; Antonelli, Alexandre; Rønsted, Nina

    2016-01-01

    Bolivia is one of the most biologically diverse countries on the planet. Between the Andes and the Amazon drainage basin spans the Yungas, a vast forested region shown to be extremely species rich in macro-organisms. However, it remains unclear whether this high diversity is also reflected in microbial diversity. Here we assess the genetic, taxonomic and functional diversity of root-associated fungi surrounding Cinchona calisaya trees, a typical element of the intermediate altitudes of the Bolivian Yungas. We determine the relative effects of edaphic properties, climate, and geography in regulating fungal community assembly. We show that α-diversity for these fungal communities was similar to temperate and arid ecosystems, averaging 90.1 operational taxonomic units (OTUs) per sample, with reads predominantly assigned to the Ascomycota phylum and with a saprotrophic lifestyle. ß-diversity was calculated as the distance-decay rate, and in contrast to α-diversity, was exceptionally high with a rate of −0.407. Soil properties (pH and P) principally regulated fungal community assembly in an analogous manner to temperate environments, with pH and phosphorus explaining 7.8 and 7.2% of community variation respectively. Surprisingly, altitude does not influence community formation, and there is limited evidence that climate (precipitation and temperature) play a role. Our results suggest that sampling should be performed over a wide geographical and environmental range in order to capture the full root-associated fungal diversity in subtropical regions. This study sheds further light on the diversity and distribution of the world's “hidden biodiversity.” PMID:27630629

  6. Unexpectedly High Beta-Diversity of Root-Associated Fungal Communities in the Bolivian Andes.

    PubMed

    Barnes, Christopher J; Maldonado, Carla; Frøslev, Tobias G; Antonelli, Alexandre; Rønsted, Nina

    2016-01-01

    Bolivia is one of the most biologically diverse countries on the planet. Between the Andes and the Amazon drainage basin spans the Yungas, a vast forested region shown to be extremely species rich in macro-organisms. However, it remains unclear whether this high diversity is also reflected in microbial diversity. Here we assess the genetic, taxonomic and functional diversity of root-associated fungi surrounding Cinchona calisaya trees, a typical element of the intermediate altitudes of the Bolivian Yungas. We determine the relative effects of edaphic properties, climate, and geography in regulating fungal community assembly. We show that α-diversity for these fungal communities was similar to temperate and arid ecosystems, averaging 90.1 operational taxonomic units (OTUs) per sample, with reads predominantly assigned to the Ascomycota phylum and with a saprotrophic lifestyle. ß-diversity was calculated as the distance-decay rate, and in contrast to α-diversity, was exceptionally high with a rate of -0.407. Soil properties (pH and P) principally regulated fungal community assembly in an analogous manner to temperate environments, with pH and phosphorus explaining 7.8 and 7.2% of community variation respectively. Surprisingly, altitude does not influence community formation, and there is limited evidence that climate (precipitation and temperature) play a role. Our results suggest that sampling should be performed over a wide geographical and environmental range in order to capture the full root-associated fungal diversity in subtropical regions. This study sheds further light on the diversity and distribution of the world's "hidden biodiversity."

  7. Mycorrhizal Fungal Diversity and Community Composition in Two Closely Related Platanthera (Orchidaceae) Species

    PubMed Central

    Esposito, Fabiana; Jacquemyn, Hans; Waud, Michael; Tyteca, Daniel

    2016-01-01

    While it is generally acknowledged that orchid species rely on mycorrhizal fungi for completion of their life cycle, little is yet known about how mycorrhizal fungal diversity and community composition vary within and between closely related orchid taxa. In this study, we used 454 amplicon pyrosequencing to investigate variation in mycorrhizal communities between pure (allopatric) and mixed (sympatric) populations of two closely related Platanthera species (Platanthera bifolia and P. chlorantha) and putative hybrids. Consistent with previous research, the two species primarily associated primarily with members of the Ceratobasidiaceae and, to a lesser extent, with members of the Sebacinales and Tulasnellaceae. In addition, a large number of ectomycorrhizal fungi belonging to various families were observed. Although a considerable number of mycorrhizal fungi were common to both species, the fungal communities were significantly different between the two species. Individuals with intermediate morphology showed communities similar to P. bifolia, confirming previous results based on the genetic architecture and fragrance composition that putative hybrids essentially belonged to one of the parental species (P. bifolia). Differences in mycorrhizal communities between species were smaller in mixed populations than between pure populations, suggesting that variation in mycorrhizal communities was largely controlled by local environmental conditions. The small differences in mycorrhizal communities in mixed populations suggests that mycorrhizal fungi are most likely not directly involved in maintaining species boundaries between the two Platanthera species. However, seed germination experiments are needed to unambiguously assess the contribution of mycorrhizal divergence to reproductive isolation. PMID:27695108

  8. Mycorrhizal Fungal Diversity and Community Composition in Two Closely Related Platanthera (Orchidaceae) Species.

    PubMed

    Esposito, Fabiana; Jacquemyn, Hans; Waud, Michael; Tyteca, Daniel

    2016-01-01

    While it is generally acknowledged that orchid species rely on mycorrhizal fungi for completion of their life cycle, little is yet known about how mycorrhizal fungal diversity and community composition vary within and between closely related orchid taxa. In this study, we used 454 amplicon pyrosequencing to investigate variation in mycorrhizal communities between pure (allopatric) and mixed (sympatric) populations of two closely related Platanthera species (Platanthera bifolia and P. chlorantha) and putative hybrids. Consistent with previous research, the two species primarily associated primarily with members of the Ceratobasidiaceae and, to a lesser extent, with members of the Sebacinales and Tulasnellaceae. In addition, a large number of ectomycorrhizal fungi belonging to various families were observed. Although a considerable number of mycorrhizal fungi were common to both species, the fungal communities were significantly different between the two species. Individuals with intermediate morphology showed communities similar to P. bifolia, confirming previous results based on the genetic architecture and fragrance composition that putative hybrids essentially belonged to one of the parental species (P. bifolia). Differences in mycorrhizal communities between species were smaller in mixed populations than between pure populations, suggesting that variation in mycorrhizal communities was largely controlled by local environmental conditions. The small differences in mycorrhizal communities in mixed populations suggests that mycorrhizal fungi are most likely not directly involved in maintaining species boundaries between the two Platanthera species. However, seed germination experiments are needed to unambiguously assess the contribution of mycorrhizal divergence to reproductive isolation.

  9. Moisture parameters and fungal communities associated with gypsum drywall in buildings.

    PubMed

    Dedesko, Sandra; Siegel, Jeffrey A

    2015-12-08

    Uncontrolled excess moisture in buildings is a common problem that can lead to changes in fungal communities. In buildings, moisture parameters can be classified by location and include assessments of moisture in the air, at a surface, or within a material. These parameters are not equivalent in dynamic indoor environments, which makes moisture-induced fungal growth in buildings a complex occurrence. In order to determine the circumstances that lead to such growth, it is essential to have a thorough understanding of in situ moisture measurement, the influence of building factors on moisture parameters, and the levels of these moisture parameters that lead to indoor fungal growth. Currently, there are disagreements in the literature on this topic. A literature review was conducted specifically on moisture-induced fungal growth on gypsum drywall. This review revealed that there is no consistent measurement approach used to characterize moisture in laboratory and field studies, with relative humidity measurements being most common. Additionally, many studies identify a critical moisture value, below which fungal growth will not occur. The values defined by relative humidity encompassed the largest range, while those defined by moisture content exhibited the highest variation. Critical values defined by equilibrium relative humidity were most consistent, and this is likely due to equilibrium relative humidity being the most relevant moisture parameter to microbial growth, since it is a reasonable measure of moisture available at surfaces, where fungi often proliferate. Several sources concur that surface moisture, particularly liquid water, is the prominent factor influencing microbial changes and that moisture in the air and within a material are of lesser importance. However, even if surface moisture is assessed, a single critical moisture level to prevent fungal growth cannot be defined, due to a number of factors, including variations in fungal genera and

  10. Using molecular biology to study mycorrhizal fungal community ecology: Limits and perspectives.

    PubMed

    Chagnon, Pierre-Luc; Bainard, Luke D

    2015-01-01

    Molecular tools have progressively replaced morphological approaches to characterize microbial communities in nature. Arbuscular mycorrhizal (AM) fungi are no exception to this rule. Yet, one challenge posed by these symbionts is that they colonize simultaneously both plant roots and soil, which complicates their detection and quantification. In most studies conducted to date, AM fungal communities have been characterized from roots only, soil only or spores only. Here, we discuss the pitfalls associated to drawing ecological inferences using such datasets. We also conclude by arguing that molecular biology will contribute most to advance knowledge in AM fungal ecology if it is integrated into broader perspectives taking into account the natural history of these organisms. This calls for a better merging of molecular and morphological approaches, and the establishment of intensive, long-term research programs.

  11. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes.

    PubMed

    van der Wal, Annemieke; Geydan, Thomas D; Kuyper, Thomas W; de Boer, Wietse

    2013-07-01

    Filamentous fungi are critical to the decomposition of terrestrial organic matter and, consequently, in the global carbon cycle. In particular, their contribution to degradation of recalcitrant lignocellulose complexes has been widely studied. In this review, we focus on the functioning of terrestrial fungal decomposers and examine the factors that affect their activities and community dynamics. In relation to this, impacts of global warming and increased N deposition are discussed. We also address the contribution of fungal decomposer studies to the development of general community ecological concepts such as diversity-functioning relationships, succession, priority effects and home-field advantage. Finally, we indicate several research directions that will lead to a more complete understanding of the ecological roles of terrestrial decomposer fungi such as their importance in turnover of rhizodeposits, the consequences of interactions with other organisms and niche differentiation.

  12. Initial colonization, community assembly and ecosystem function: fungal colonist traits and litter biochemistry mediate decay rate.

    PubMed

    Cline, Lauren C; Zak, Donald R

    2015-10-01

    Priority effects are an important ecological force shaping biotic communities and ecosystem processes, in which the establishment of early colonists alters the colonization success of later-arriving organisms via competitive exclusion and habitat modification. However, we do not understand which biotic and abiotic conditions lead to strong priority effects and lasting historical contingencies. Using saprotrophic fungi in a model leaf decomposition system, we investigated whether compositional and functional consequences of initial colonization were dependent on initial colonizer traits, resource availability or a combination thereof. To test these ideas, we factorially manipulated leaf litter biochemistry and initial fungal colonist identity, quantifying subsequent community composition, using neutral genetic markers, and community functional characteristics, including enzyme potential and leaf decay rates. During the first 3 months, initial colonist respiration rate and physiological capacity to degrade plant detritus were significant determinants of fungal community composition and leaf decay, indicating that rapid growth and lignolytic potential of early colonists contributed to altered trajectories of community assembly. Further, initial colonization on oak leaves generated increasingly divergent trajectories of fungal community composition and enzyme potential, indicating stronger initial colonizer effects on energy-poor substrates. Together, these observations provide evidence that initial colonization effects, and subsequent consequences on litter decay, are dependent upon substrate biochemistry and physiological traits within a regional species pool. Because microbial decay of plant detritus is important to global C storage, our results demonstrate that understanding the mechanisms by which initial conditions alter priority effects during community assembly may be key to understanding the drivers of ecosystem-level processes. © 2015 John Wiley & Sons Ltd.

  13. Redefining the Chronic-Wound Microbiome: Fungal Communities Are Prevalent, Dynamic, and Associated with Delayed Healing

    PubMed Central

    Kalan, Lindsay; Loesche, Michael; Hodkinson, Brendan P.; Heilmann, Kristopher; Ruthel, Gordon

    2016-01-01

    ABSTRACT Chronic nonhealing wounds have been heralded as a silent epidemic, causing significant morbidity and mortality especially in elderly, diabetic, and obese populations. Polymicrobial biofilms in the wound bed are hypothesized to disrupt the highly coordinated and sequential events of cutaneous healing. Both culture-dependent and -independent studies of the chronic-wound microbiome have almost exclusively focused on bacteria, omitting what we hypothesize are important fungal contributions to impaired healing and the development of complications. Here we show for the first time that fungal communities (the mycobiome) in chronic wounds are predictive of healing time, associated with poor outcomes, and form mixed fungal-bacterial biofilms. We longitudinally profiled 100, nonhealing diabetic-foot ulcers with high-throughput sequencing of the pan-fungal internal transcribed spacer 1 (ITS1) locus, estimating that up to 80% of wounds contain fungi, whereas cultures performed in parallel captured only 5% of colonized wounds. The “mycobiome” was highly heterogeneous over time and between subjects. Fungal diversity increased with antibiotic administration and onset of a clinical complication. The proportions of the phylum Ascomycota were significantly greater (P = 0.015) at the beginning of the study in wounds that took >8 weeks to heal. Wound necrosis was distinctly associated with pathogenic fungal species, while taxa identified as allergenic filamentous fungi were associated with low levels of systemic inflammation. Directed culturing of wounds stably colonized by pathogens revealed that interkingdom biofilms formed between yeasts and coisolated bacteria. Combined, our analyses provide enhanced resolution of the mycobiome during impaired wound healing, its role in chronic disease, and impact on clinical outcomes. PMID:27601572

  14. Effects of multiple but low pesticide loads on aquatic fungal communities colonizing leaf litter.

    PubMed

    Talk, Anne; Kublik, Susanne; Uksa, Marie; Engel, Marion; Berghahn, Rüdiger; Welzl, Gerhard; Schloter, Michael; Mohr, Silvia

    2016-08-01

    In the first tier risk assessment (RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations (RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder (Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60days using a real farmer's pesticide application protocol for apple cropping. Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism (t-RFLP) of the fungal Internal Transcribed Spacer (ITS) region of the ribonucleic acid (RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability.

  15. Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities

    PubMed Central

    2009-01-01

    Background In forest ecosystems, communities of ectomycorrhizal fungi (ECM) are influenced by several biotic and abiotic factors. To understand their underlying dynamics, ECM communities have been surveyed with ribosomal DNA-based sequencing methods. However, most identification methods are both time-consuming and limited by the number of samples that can be treated in a realistic time frame. As a result of ongoing implementation, the array technique has gained throughput capacity in terms of the number of samples and the capacity for parallel identification of several species. Thus far, although phylochips (microarrays that are used to detect species) have been mostly developed to trace bacterial communities or groups of specific fungi, no phylochip has been developed to carry oligonucleotides for several ectomycorrhizal species that belong to different genera. Results We have constructed a custom ribosomal DNA phylochip to identify ECM fungi. Specific oligonucleotide probes were targeted to the nuclear internal transcribed spacer (ITS) regions from 95 fungal species belonging to 21 ECM fungal genera. The phylochip was first validated using PCR amplicons of reference species. Ninety-nine percent of the tested oligonucleotides generated positive hybridisation signals with their corresponding amplicons. Cross-hybridisation was mainly restricted at the genus level, particularly for Cortinarius and Lactarius species. The phylochip was subsequently tested with environmental samples that were composed of ECM fungal DNA from spruce and beech plantation fungal communities. The results were in concordance with the ITS sequencing of morphotypes and the ITS clone library sequencing results that were obtained using the same PCR products. Conclusion For the first time, we developed a custom phylochip that is specific for several ectomycorrhizal fungi. To overcome cross-hybridisation problems, specific filter and evaluation strategies that used spot signal intensity were

  16. Primer Sets Developed for Functional Genes Reveal Shifts in Functionality of Fungal Community in Soils.

    PubMed

    Hannula, S Emilia; van Veen, Johannes A

    2016-01-01

    Phylogenetic diversity of soil microbes is a hot topic at the moment. However, the molecular tools for the assessment of functional diversity in the fungal community are less developed than tools based on genes encoding the ribosomal operon. Here 20 sets of primers targeting genes involved mainly in carbon cycling were designed and/or validated and the functioning of soil fungal communities along a chronosequence of land abandonment from agriculture was evaluated using them. We hypothesized that changes in fungal community structure during secondary succession would lead to difference in the types of genes present in soils and that these changes would be directional. We expected an increase in genes involved in degradation of recalcitrant organic matter in time since agriculture. Out of the investigated genes, the richness of the genes related to carbon cycling was significantly higher in fields abandoned for longer time. The composition of six of the genes analyzed revealed significant differences between fields abandoned for shorter and longer time. However, all genes revealed significant variance over the fields studied, and this could be related to other parameters than the time since agriculture such as pH, organic matter, and the amount of available nitrogen. Contrary to our initial hypothesis, the genes significantly different between fields were not related to the decomposition of more recalcitrant matter but rather involved in degradation of cellulose and hemicellulose.

  17. Primer Sets Developed for Functional Genes Reveal Shifts in Functionality of Fungal Community in Soils

    PubMed Central

    Hannula, S. Emilia; van Veen, Johannes A.

    2016-01-01

    Phylogenetic diversity of soil microbes is a hot topic at the moment. However, the molecular tools for the assessment of functional diversity in the fungal community are less developed than tools based on genes encoding the ribosomal operon. Here 20 sets of primers targeting genes involved mainly in carbon cycling were designed and/or validated and the functioning of soil fungal communities along a chronosequence of land abandonment from agriculture was evaluated using them. We hypothesized that changes in fungal community structure during secondary succession would lead to difference in the types of genes present in soils and that these changes would be directional. We expected an increase in genes involved in degradation of recalcitrant organic matter in time since agriculture. Out of the investigated genes, the richness of the genes related to carbon cycling was significantly higher in fields abandoned for longer time. The composition of six of the genes analyzed revealed significant differences between fields abandoned for shorter and longer time. However, all genes revealed significant variance over the fields studied, and this could be related to other parameters than the time since agriculture such as pH, organic matter, and the amount of available nitrogen. Contrary to our initial hypothesis, the genes significantly different between fields were not related to the decomposition of more recalcitrant matter but rather involved in degradation of cellulose and hemicellulose. PMID:27965632

  18. Fungal and Bacterial Communities in Indoor Dust Follow Different Environmental Determinants

    PubMed Central

    Weikl, Fabian; Tischer, Christina; Probst, Alexander J.; Heinrich, Joachim; Markevych, Iana; Jochner, Susanne; Pritsch, Karin

    2016-01-01

    People spend most of their time inside buildings and the indoor microbiome is a major part of our everyday environment. It affects humans’ wellbeing and therefore its composition is important for use in inferring human health impacts. It is still not well understood how environmental conditions affect indoor microbial communities. Existing studies have mostly focussed on the local (e.g., building units) or continental scale and rarely on the regional scale, e.g. a specific metropolitan area. Therefore, we wanted to identify key environmental determinants for the house dust microbiome from an existing collection of spatially (area of Munich, Germany) and temporally (301 days) distributed samples and to determine changes in the community as a function of time. To that end, dust samples that had been collected once from the living room floors of 286 individual households, were profiled for fungal and bacterial community variation and diversity using microbial fingerprinting techniques. The profiles were tested for their association with occupant behaviour, building characteristics, outdoor pollution, vegetation, and urbanization. Our results showed that more environmental and particularly outdoor factors (vegetation, urbanization, airborne particulate matter) affected the community composition of indoor fungi than of bacteria. The passage of time affected fungi and, surprisingly, also strongly affected bacteria. We inferred that fungal communities in indoor dust changed semi-annually, whereas bacterial communities paralleled outdoor plant phenological periods. These differences in temporal dynamics cannot be fully explained and should be further investigated in future studies on indoor microbiomes. PMID:27100967

  19. Assessing the Effect of Litter Species on the Dynamic of Bacterial and Fungal Communities during Leaf Decomposition in Microcosm by Molecular Techniques

    PubMed Central

    Xu, Wenjing; Shi, Lingling; Chan, Onchim; Li, Jiao; Casper, Peter; Zou, Xiaoming

    2013-01-01

    Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis) and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well. PMID:24367682

  20. Assessing the effect of litter species on the dynamic of bacterial and fungal communities during leaf decomposition in microcosm by molecular techniques.

    PubMed

    Xu, Wenjing; Shi, Lingling; Chan, Onchim; Li, Jiao; Casper, Peter; Zou, Xiaoming

    2013-01-01

    Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis) and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well.

  1. Metagenomic analysis of fungal diversity on strawberry plants and the effect of management practices on the fungal community structure of aerial organs

    USDA-ARS?s Scientific Manuscript database

    Metabarcoding, defined as Next Generation Sequencing (NGS) of amplicons of the ITS2 region (DNA barcode), was used to identify the composition of the fungal community on different strawberry organs i.e. leaves, flowers, and immature and mature fruits grown on a farm using disease and insect control ...

  2. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting.

    PubMed

    Barnard, Romain L; Osborne, Catherine A; Firestone, Mary K

    2013-11-01

    The microbial response to summer desiccation reflects adaptation strategies, setting the stage for a large rainfall-induced soil CO2 pulse upon rewetting, an important component of the ecosystem carbon budget. In three California annual grasslands, the present (DNA-based) and potentially active (RNA-based) soil bacterial and fungal communities were tracked over a summer season and in response to controlled rewetting of intact soil cores. Phylogenetic marker genes for bacterial (16S) and fungal (28S) RNA and DNA were sequenced, and the abundances of these genes and transcripts were measured. Although bacterial community composition differed among sites, all sites shared a similar response pattern of the present and potentially active bacterial community to dry-down and wet-up. In contrast, the fungal community was not detectably different among sites, and was largely unaffected by dry-down, showing marked resistance to dessication. The potentially active bacterial community changed significantly as summer dry-down progressed, then returned to pre-dry-down composition within several hours of rewetting, displaying spectacular resilience. Upon rewetting, transcript copies of bacterial rpoB genes increased consistently, reflecting rapid activity resumption. Acidobacteria and Actinobacteria were the most abundant phyla present and potentially active, and showed the largest changes in relative abundance. The relative increase (Actinobacteria) and decrease (Acidobacteria) with dry-down, and the reverse responses to rewetting reflected a differential response, which was conserved at the phylum level and consistent across sites. These contrasting desiccation-related bacterial life-strategies suggest that predicted changes in precipitation patterns may affect soil nutrient and carbon cycling by differentially impacting activity patterns of microbial communities.

  3. Molecular profiling of fungal communities in moisture damaged buildings before and after remediation--a comparison of culture-dependent and culture-independent methods.

    PubMed

    Pitkäranta, Miia; Meklin, Teija; Hyvärinen, Anne; Nevalainen, Aino; Paulin, Lars; Auvinen, Petri; Lignell, Ulla; Rintala, Helena

    2011-10-21

    Indoor microbial contamination due to excess moisture is an important contributor to human illness in both residential and occupational settings. However, the census of microorganisms in the indoor environment is limited by the use of selective, culture-based detection techniques. By using clone library sequencing of full-length internal transcribed spacer region combined with quantitative polymerase chain reaction (qPCR) for 69 fungal species or assay groups and cultivation, we have been able to generate a more comprehensive description of the total indoor mycoflora. Using this suite of methods, we assessed the impact of moisture damage on the fungal community composition of settled dust and building material samples (n = 8 and 16, correspondingly). Water-damaged buildings (n = 2) were examined pre- and post- remediation, and compared with undamaged reference buildings (n = 2). Culture-dependent and independent methods were consistent in the dominant fungal taxa in dust, but sequencing revealed a five to ten times higher diversity at the genus level than culture or qPCR. Previously unknown, verified fungal phylotypes were detected in dust, accounting for 12% of all diversity. Fungal diversity, especially within classes Dothideomycetes and Agaricomycetes tended to be higher in the water damaged buildings. Fungal phylotypes detected in building materials were present in dust samples, but their proportion of total fungi was similar for damaged and reference buildings. The quantitative correlation between clone library phylotype frequencies and qPCR counts was moderate (r = 0.59, p < 0.01). We examined a small number of target buildings and found indications of elevated fungal diversity associated with water damage. Some of the fungi in dust were attributable to building growth, but more information on the material-associated communities is needed in order to understand the dynamics of microbial communities between building structures and dust. The sequencing

  4. Molecular profiling of fungal communities in moisture damaged buildings before and after remediation - a comparison of culture-dependent and culture-independent methods

    PubMed Central

    2011-01-01

    Background Indoor microbial contamination due to excess moisture is an important contributor to human illness in both residential and occupational settings. However, the census of microorganisms in the indoor environment is limited by the use of selective, culture-based detection techniques. By using clone library sequencing of full-length internal transcribed spacer region combined with quantitative polymerase chain reaction (qPCR) for 69 fungal species or assay groups and cultivation, we have been able to generate a more comprehensive description of the total indoor mycoflora. Using this suite of methods, we assessed the impact of moisture damage on the fungal community composition of settled dust and building material samples (n = 8 and 16, correspondingly). Water-damaged buildings (n = 2) were examined pre- and post- remediation, and compared with undamaged reference buildings (n = 2). Results Culture-dependent and independent methods were consistent in the dominant fungal taxa in dust, but sequencing revealed a five to ten times higher diversity at the genus level than culture or qPCR. Previously unknown, verified fungal phylotypes were detected in dust, accounting for 12% of all diversity. Fungal diversity, especially within classes Dothideomycetes and Agaricomycetes tended to be higher in the water damaged buildings. Fungal phylotypes detected in building materials were present in dust samples, but their proportion of total fungi was similar for damaged and reference buildings. The quantitative correlation between clone library phylotype frequencies and qPCR counts was moderate (r = 0.59, p < 0.01). Conclusions We examined a small number of target buildings and found indications of elevated fungal diversity associated with water damage. Some of the fungi in dust were attributable to building growth, but more information on the material-associated communities is needed in order to understand the dynamics of microbial communities between building structures

  5. Yucatán in black and red: Linking edaphic analysis and pyrosequencing-based assessment of bacterial and fungal community structures in the two main kinds of soil of Yucatán State.

    PubMed

    Estrada-Medina, Héctor; Canto-Canché, Blondy B; De Los Santos-Briones, César; O'Connor-Sánchez, Aileen

    2016-01-01

    Yucatán State is dominated by two kinds of soil, named "Black Leptosol" and "Red Leptosol", which are interwoven across the State. In this work, we analyzed the relation between the edaphic characteristics and the bacterial and fungal community structures in these two kinds of Leptosol. The results revealed that Black Leptosol (BlaS) had a higher content of calcium carbonates, organic matter, nitrogen, and phosphorus than Red Leptosol (RedS). The most outstanding difference in the bacterial community structure between BlaS and RedS was that while in BlaS Actinobacteria was the most abundant phylum (43.7%), followed by Acidobacteria (26.9%) and Proteobacteria (23.6%), in RedS the bacterial community was strongly dominated by Acidobacteria (83%). Two fungal phyla were identified in both kinds of soil; Ascomycota, with 77% in BlaS and 56% in RedS, and Basidiomycota, with 22% in RedS and only 0.67% in BlaS. The most relevant difference between the two fungal communities was that excepting for Fusarium sp., all the species they had were different. Thus, in contrast with bacterial communities, where most of the major OTUs were present in both kinds of soil, fungal communities appeared to be unique to each kind of Leptosol. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Dominant species, rather than diversity, regulates temporal stability of plant communities.

    PubMed

    Sasaki, Takehiro; Lauenroth, William K

    2011-07-01

    A growing body of empirical evidence suggests that the temporal stability of communities typically increases with diversity. The counterview to this is that dominant species, rather than diversity itself, might regulate temporal stability. However, empirical studies that have explicitly examined the relative importance of diversity and dominant species in maintaining community stability have yielded few clear-cut patterns. Here, using a long-term data set, we examined the relative importance of changes in diversity components and dominance hierarchy following the removal of a dominant C4 grass, Bouteloua gracilis, in stabilizing plant communities. We also examined the relationships between the variables of diversity and dominance hierarchy and the statistical components of temporal stability. We found a significant negative relationship between temporal stability and species richness, number of rare species, and relative abundance of rare species, whereas a significant positive relationship existed between temporal stability and relative abundance of the dominant species. Variances and covariances summed over all species significantly increased with increasing species richness, whereas they significantly decreased with increasing relative abundance of dominant species. We showed that temporal stability in a shortgrass steppe plant community was controlled by dominant species rather than by diversity itself. The generality of diversity-stability relationships might be restricted by the dynamics of dominant species, especially when they have characteristics that contribute to stability in highly stochastic systems. A clear implication is that dominance hierarchies and their changes might be among the most important ecological components to consider in managing communities to maintain ecosystem functioning.

  7. Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity.

    PubMed

    Kemler, Martin; Garnas, Jeff; Wingfield, Michael J; Gryzenhout, Marieka; Pillay, Kerry-Anne; Slippers, Bernard

    2013-01-01

    The Kingdom Fungi adds substantially to the diversity of life, but due to their cryptic morphology and lifestyle, tremendous diversity, paucity of formally described specimens, and the difficulty in isolating environmental strains into culture, fungal communities are difficult to characterize. This is especially true for endophytic communities of fungi living in healthy plant tissue. The developments in next generation sequencing technologies are, however, starting to reveal the true extent of fungal diversity. One of the promising new technologies, namely semiconductor sequencing, has thus far not been used in fungal diversity assessments. In this study we sequenced the internal transcribed spacer 1 (ITS1) nuclear encoded ribosomal RNA of the endophytic community of the economically important tree, Eucalyptus grandis, from South Africa using the Ion Torrent Personal Genome Machine (PGM). We determined the impact of various analysis parameters on the interpretation of the results, namely different sequence quality parameter settings, different sequence similarity cutoffs for clustering and filtering of databases for removal of sequences with incomplete taxonomy. Sequence similarity cutoff values only had a marginal effect on the identified family numbers, whereas different sequence quality filters had a large effect (89 vs. 48 families between least and most stringent filters). Database filtering had a small, but statistically significant, effect on the assignment of sequences to reference sequences. The community was dominated by Ascomycota, and particularly by families in the Dothidiomycetes that harbor well-known plant pathogens. The study demonstrates that semiconductor sequencing is an ideal strategy for environmental sequencing of fungal communities. It also highlights some potential pitfalls in subsequent data analyses when using a technology with relatively short read lengths.

  8. Ion Torrent PGM as Tool for Fungal Community Analysis: A Case Study of Endophytes in Eucalyptus grandis Reveals High Taxonomic Diversity

    PubMed Central

    Kemler, Martin; Garnas, Jeff; Wingfield, Michael J.; Gryzenhout, Marieka; Pillay, Kerry-Anne; Slippers, Bernard

    2013-01-01

    The Kingdom Fungi adds substantially to the diversity of life, but due to their cryptic morphology and lifestyle, tremendous diversity, paucity of formally described specimens, and the difficulty in isolating environmental strains into culture, fungal communities are difficult to characterize. This is especially true for endophytic communities of fungi living in healthy plant tissue. The developments in next generation sequencing technologies are, however, starting to reveal the true extent of fungal diversity. One of the promising new technologies, namely semiconductor sequencing, has thus far not been used in fungal diversity assessments. In this study we sequenced the internal transcribed spacer 1 (ITS1) nuclear encoded ribosomal RNA of the endophytic community of the economically important tree, Eucalyptus grandis, from South Africa using the Ion Torrent Personal Genome Machine (PGM). We determined the impact of various analysis parameters on the interpretation of the results, namely different sequence quality parameter settings, different sequence similarity cutoffs for clustering and filtering of databases for removal of sequences with incomplete taxonomy. Sequence similarity cutoff values only had a marginal effect on the identified family numbers, whereas different sequence quality filters had a large effect (89 vs. 48 families between least and most stringent filters). Database filtering had a small, but statistically significant, effect on the assignment of sequences to reference sequences. The community was dominated by Ascomycota, and particularly by families in the Dothidiomycetes that harbor well-known plant pathogens. The study demonstrates that semiconductor sequencing is an ideal strategy for environmental sequencing of fungal communities. It also highlights some potential pitfalls in subsequent data analyses when using a technology with relatively short read lengths. PMID:24358124

  9. Biofilm and Planktonic Bacterial and Fungal Communities Transforming High-Molecular-Weight Polycyclic Aromatic Hydrocarbons.

    PubMed

    Folwell, Benjamin D; McGenity, Terry J; Whitby, Corinne

    2016-04-01

    High-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs) are natural components of fossil fuels that are carcinogenic and persistent in the environment, particularly in oil sands process-affected water (OSPW). Their hydrophobicity and tendency to adsorb to organic matter result in low bioavailability and high recalcitrance to degradation. Despite the importance of microbes for environmental remediation, little is known about those involved in HMW-PAH transformations. Here, we investigated the transformation of HMW-PAHs using samples of OSPW and compared the bacterial and fungal community compositions attached to hydrophobic filters and in suspension. It was anticipated that the hydrophobic filters with sorbed HMW-PAHs would select for microbes that specialize in adhesion. Over 33 days, more pyrene was removed (75% ± 11.7%) than the five-ring PAHs benzo[a]pyrene (44% ± 13.6%) and benzo[b]fluoranthene (41% ± 12.6%). For both bacteria and fungi, the addition of PAHs led to a shift in community composition, but thereafter the major factor determining the fungal community composition was whether it was in the planktonic phase or attached to filters. In contrast, the major determinant of the bacterial community composition was the nature of the PAH serving as the carbon source. The main bacteria enriched by HMW-PAHs were Pseudomonas, Bacillus, and Microbacterium species. This report demonstrates that OSPW harbors microbial communities with the capacity to transform HMW-PAHs. Furthermore, the provision of suitable surfaces that encourage PAH sorption and microbial adhesion select for different fungal and bacterial species with the potential for HMW-PAH degradation.

  10. Biofilm and Planktonic Bacterial and Fungal Communities Transforming High-Molecular-Weight Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Folwell, Benjamin D.

    2016-01-01

    High-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs) are natural components of fossil fuels that are carcinogenic and persistent in the environment, particularly in oil sands process-affected water (OSPW). Their hydrophobicity and tendency to adsorb to organic matter result in low bioavailability and high recalcitrance to degradation. Despite the importance of microbes for environmental remediation, little is known about those involved in HMW-PAH transformations. Here, we investigated the transformation of HMW-PAHs using samples of OSPW and compared the bacterial and fungal community compositions attached to hydrophobic filters and in suspension. It was anticipated that the hydrophobic filters with sorbed HMW-PAHs would select for microbes that specialize in adhesion. Over 33 days, more pyrene was removed (75% ± 11.7%) than the five-ring PAHs benzo[a]pyrene (44% ± 13.6%) and benzo[b]fluoranthene (41% ± 12.6%). For both bacteria and fungi, the addition of PAHs led to a shift in community composition, but thereafter the major factor determining the fungal community composition was whether it was in the planktonic phase or attached to filters. In contrast, the major determinant of the bacterial community composition was the nature of the PAH serving as the carbon source. The main bacteria enriched by HMW-PAHs were Pseudomonas, Bacillus, and Microbacterium species. This report demonstrates that OSPW harbors microbial communities with the capacity to transform HMW-PAHs. Furthermore, the provision of suitable surfaces that encourage PAH sorption and microbial adhesion select for different fungal and bacterial species with the potential for HMW-PAH degradation. PMID:26850299

  11. Response of soil bacterial and fungal communities to summer drought and subsequent rainfall

    NASA Astrophysics Data System (ADS)

    Barnard, R. L.; Osborne, C.; Firestone, M. K.

    2011-12-01

    Rewetting of dry Mediterranean grasslands triggers a flush of carbon substrates, fueling a large soil CO2 pulse, which constitutes an important component of the annual carbon cycle in these ecosystems. However, little is known about the dynamics of activity and resource allocation of the soil microbial community over the dry summer period, which likely sets the stage for the rapid response upon rewetting. In three California grasslands, soil prokaryotic and fungal communities were assessed (by DNA- and RNA-based sequencing) several times over a summer to track changes in the soil microbial community characteristics. In a companion greenhouse-based study, soil from a California grassland was subjected to three different Spring-summer dry-down treatments over four months: weekly water inputs, weekly water inputs for two months followed by drought, and no water input. In both experiments, the present (DNA-based) and potentially active (RNA-based) soil bacterial and fungal communities were assessed over time by sequencing, and the abundance of selected genes determined by qPCR analysis. At the end of summer, soil CO2 efflux rates were determined during a controlled wet-up and the soil microbial community was also analyzed post-wet-up. In soil samples from the field, we found an overall increase in bacterial 16S DNA and fungal 28S DNA gene copies (but not of rRNA) over the summer. At each site, the composition of the RNA-based bacterial community changed significantly as summer drought progressed, then returned to pre-drought composition within several hours of rewetting. Upon rewetting, bacterial mRNA transcript copies significantly increased at all sites, reflecting rapid resumption of activity. In the Spring dry-down experiment, we found significantly more bacterial 16S DNA and fungal 28S DNA gene copies in the dry treatment than in the weekly-watered soil treatment. Upon rewetting, bacterial mRNA transcript copies increased dramatically in both treatments that

  12. Land-use change and soil type are drivers of fungal and archaeal communities in the Pampa biome.

    PubMed

    Lupatini, Manoeli; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Suleiman, Afnan Khalil Ahmad; Fulthorpe, Roberta R; Roesch, Luiz Fernando Würdig

    2013-02-01

    The current study aimed to test the hypothesis that both land-use change and soil type are responsible for the major changes in the fungal and archaeal community structure and functioning of the soil microbial community in Brazilian Pampa biome. Soil samples were collected at sites with different land-uses (native grassland, native forest, Eucalyptus and Acacia plantation, soybean and watermelon field) and in a typical toposequence in Pampa biome formed by Paleudult, Albaqualf and alluvial soils. The structure of soil microbial community (archaeal and fungal) was evaluated by ribosomal intergenic spacer analysis and soil functional capabilities were measured by microbial biomass carbon and metabolic quotient. We detected different patterns in microbial community driven by land-use change and soil type, showing that both factors are significant drivers of fungal and archaeal community structure and biomass and microbial activity. Fungal community structure was more affected by land-use and archaeal community was more affected by soil type. Irrespective of the land-use or soil type, a large percentage of operational taxonomic unit were shared among the soils. We accepted the hypothesis that both land-use change and soil type are drivers of archaeal and fungal community structure and soil functional capabilities. Moreover, we also suggest the existence of a soil microbial core.

  13. Effects of species diversity on establishment and coexistence: a phylloplane fungal community model system.

    PubMed

    Stohr, S N; Dighton, J

    2004-10-01

    A model system was devised, evaluating the influence that species diversity (species richness) has on fungal establishment and coexistence. Seven members of the fungal phylloplane community of Vaccinium macrocarpon (American cranberry) were selected to assess how species diversity affected development and coexistence of another community member, Pestalotia vaccinii. Pestalotia was engaged in competitive interactions on 1% Malt Extract Agar (MEA) petri dishes with each of the seven individual saprotrophs (two-way interaction), in random combinations with three of the seven saprotrophs (four-way interaction), and in random combinations with five of the seven saprotrophs (six-way interaction). The saprotrophic fungi used in this study were Aspergillus sp., Alternaria alternata, Cladosporium cladosporoides, Curvularia lunata, Epicoccum purpuracens, Penicillium sp., and Pithomyces chartarum. We hypothesized that species diversity would have a significant impact on the establishment and coexistence of Pestalotia vaccinii in culture. In an effort to minimize density-dependent effects, the number of viable spores employed in the three types of interactions was kept constant. Target spore concentrations of 50 viable spores of P. vaccinii and 50 saprotroph spores were used, regardless of the number of species involved in the interaction. This proved to be a very important factor in the experiment. As our results show, species diversity had little or no effect on the establishment and coexistence of Pestalotia vaccinii; however, spore density played an extremely important role in the establishment and development of fungal propagules in our model.

  14. Relative Importance of Individual Climatic Drivers Shaping Arbuscular Mycorrhizal Fungal Communities.

    PubMed

    Xiang, Dan; Veresoglou, Stavros D; Rillig, Matthias C; Xu, Tianle; Li, Huan; Hao, Zhipeng; Chen, Baodong

    2016-08-01

    The physiological tolerance hypothesis (PTH) postulates that it is the tolerance of species to climatic factors that determines overall community richness. Here, we tested whether a group of mutualistic microbes, Glomeromycota, is distributed in semi-arid environments in ways congruent with the PTH. For this purpose, we modeled with climatic predictors the niche of each of the four orders of Glomeromycota and identified predictors of arbuscular mycorrhizal (AM) fungal operational taxonomic unit (OTU) richness. Our dataset consisted of 50 paired grassland and farmland sites in the farming-pastoral ecotone of northern China. We observed shifts in the relative abundance of AM fungal orders in response to climatic variables but also declines in OTU richness in grassland sites that had experienced high precipitation during the preceding year which was incongruous with the PTH. We found pronounced differences across groups of Glomeromycotan fungi in their responses to climatic variables and identified strong dependencies of AM fungal communities on precipitation. Given that precipitation is expected to further decline in the farming-pastoral ecotone over the coming years and that mycorrhiza represents an integral constituent of ecosystem functioning, it is likely that the ecosystem services in the region will change accordingly.

  15. The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo.

    PubMed

    Kerfahi, Dorsaf; Tripathi, Binu M; Lee, Junghoon; Edwards, David P; Adams, Jonathan M

    2014-01-01

    Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.

  16. The Impact of Selective-Logging and Forest Clearance for Oil Palm on Fungal Communities in Borneo

    PubMed Central

    Kerfahi, Dorsaf; Tripathi, Binu M.; Lee, Junghoon; Edwards, David P.; Adams, Jonathan M.

    2014-01-01

    Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest. PMID:25405609

  17. Multiple markers pyrosequencing reveals highly diverse and host-specific fungal communities on the mangrove trees Avicennia marina and Rhizophora stylosa.

    PubMed

    Arfi, Yonathan; Buée, Marc; Marchand, Cyril; Levasseur, Anthony; Record, Eric

    2012-02-01

    Fungi are important actors in ecological processes and trophic webs in mangroves. Although saprophytic fungi occurring in the intertidal part of mangrove have been well studied, little is known about the diversity and structure of the fungal communities in this ecosystem or about the importance of functional groups like pathogens and mutualists. Using tag-encoded 454 pyrosequencing of the ITS1, ITS2, nu-ssu-V5 and nu-ssu-V7 regions, we studied and compared the fungal communities found on the marine and aerial parts of Avicennia marina and Rhizophora stylosa trees in a mangrove in New Caledonia. A total of 209,544 reads were analysed, corresponding to several thousand molecular operational taxonomic units (OTU). There is a marked zonation in the species distribution, with most of the OTU being found specifically in one of the microhabitat studied. Ascomycetes are the dominant phylum (82%), Basidiomycetes are very rare (3%), and 15% of the sequences correspond to unknown taxa. Our results indicate that host specificity is a key factor in the distribution of the highly diverse fungal communities, in both the aerial and intertidal parts of the trees. This study also validates the usefulness of multiple markers in tag-encoded pyrosequencing to consolidate and refine the assessment of the taxonomic diversity.

  18. Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil

    PubMed Central

    Krüger, Claudia; Kohout, Petr; Janoušková, Martina; Püschel, David; Frouz, Jan; Rydlová, Jana

    2017-01-01

    Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age. PMID:28473828

  19. Impact of an 8-Year-Old Transgenic Poplar Plantation on the Ectomycorrhizal Fungal Community ▿ †

    PubMed Central

    Stefani, Franck O. P.; Moncalvo, Jean-Marc; Séguin, Armand; Bérubé, Jean A.; Hamelin, Richard C.

    2009-01-01

    The long-term impact of field-deployed genetically modified trees on soil mutualistic organisms is not well known. This study aimed at evaluating the impact of poplars transformed with a binary vector containing the selectable nptII marker and β-glucuronidase reporter genes on ectomycorrhizal (EM) fungi 8 years after field deployment. We generated 2,229 fungal internal transcribed spacer (ITS) PCR products from 1,150 EM root tips and 1,079 fungal soil clones obtained from the organic and mineral soil horizons within the rhizosphere of three control and three transformed poplars. Fifty EM fungal operational taxonomic units were identified from the 1,706 EM fungal ITS amplicons retrieved. Rarefaction curves from both the root tips and soil clones were close to saturation, indicating that most of the EM species present were recovered. Based on qualitative and/or quantitative α- and β-diversity measurements, statistical analyses did not reveal significant differences between EM fungal communities associated with transformed poplars and the untransformed controls. However, EM communities recovered from the root tips and soil cloning analyses differed significantly from each other. We found no evidence of difference in the EM fungal community structure linked to the long-term presence of the transgenic poplars studied, and we showed that coupling root tip analysis with a soil DNA cloning strategy is a complementary approach to better document EM fungal diversity. PMID:19801471

  20. Wasp predation drives the assembly of fungal and fly communities on frog egg masses.

    PubMed

    Hughey, Myra C; Nicolás, Angie; Vonesh, James R; Warkentin, Karen M

    2012-04-01

    Community ecology aims to understand how species interactions shape species diversity and abundance. Although less studied than predatory or competitive interactions, facilitative interactions can be important in communities associated with ephemeral microhabitats. Successful recruitment from these habitats requires species to rapidly colonize, develop, and disperse during brief periods of habitat suitability. Interactions between organisms, including processing chain interactions whereby initial consumers alter resources in ways that improve their quality for subsequent consumers, could aid these processes. The terrestrial egg masses of red-eyed treefrogs (Agalychnis callidryas) are a resource for predatory wasps (Agelaia spp., Polybia rejecta) and a microhabitat and resource for saprovoric and pathogenic fungi and saprovoric flies (Megaselia spp., Psychoda savaiiensis). We investigate how interactions with wasps might facilitate fly and fungal colonization of and survival on frog egg masses. Our results indicate that wasps facilitate fungal colonization, whereas flies appear not to, and that both wasps and fungi generate frog egg carrion that attracts saprovoric flies to oviposit and increases the survival of fly larvae. While studies of colonization order often focus on inhibition by early colonizers of subsequent arrivals, this study demonstrates how early colonizers can facilitate the establishment of later ones, by modifying resources in ways that promote the location of and survival in habitat patches. This research draws attention to the diversity of interactions that can occur within ephemeral communities and emphasizes the role that positive interactions may play. Processing chain interactions may be a generally important mechanism increasing the diversity of local communities, including very ephemeral ones.

  1. Statistical test for tolerability of effects of an antifungal biocontrol strain on fungal communities in three arable soils.

    PubMed

    Antweiler, Kai; Schreiter, Susanne; Keilwagen, Jens; Baldrian, Petr; Kropf, Siegfried; Smalla, Kornelia; Grosch, Rita; Heuer, Holger

    2017-03-01

    A statistical method was developed to test for equivalence of microbial communities analysed by next-generation sequencing of amplicons. The test uses Bray-Curtis distances between the microbial community structures and is based on a two-sample jackknife procedure. This approach was applied to investigate putative effects of the antifungal biocontrol strain RU47 on fungal communities in three arable soils which were analysed by high-throughput ITS amplicon sequencing. Two contrasting workflows to produce abundance tables of operational taxonomic units from sequence data were applied. For both, the developed test indicated highly significant equivalence of the fungal communities with or without previous exposure to RU47 for all soil types, with reference to fungal community differences in conjunction with field site or cropping history. However, minor effects of RU47 on fungal communities were statistically significant using highly sensitive multivariate tests. Nearly all fungal taxa responding to RU47 increased in relative abundance indicating the absence of ecotoxicological effects. Use of the developed equivalence test is not restricted to evaluate effects on soil microbial communities by inoculants for biocontrol, bioremediation or other purposes, but could also be applied for biosafety assessment of compounds like pesticides, or genetically engineered plants. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis.

    PubMed

    van Elsas, J D; Duarte, G F; Keijzer-Wolters, A; Smit, E

    2000-12-15

    A molecular method for profiling of fungal communities in soil was applied in experiments in soil microcosms, with two objectives, (1) to assess the persistence of two se