Zhang, Huining; Zhang, Kefeng; Jin, Huixia; Gu, Li; Yu, Xin
2015-11-01
Dissolved organic nitrogen (DON) is potential precursor of disinfection byproducts (DBPs), especially nitrogenous DBPs. In this study, we investigated the impact of biofilters on DON concentration changes in a drinking water plant. A small pilot plant was constructed next to a sedimentation tank in a drinking water plant and included activated carbon, quartz sand, anthracite, and ceramsite biofilters. As the biofilter layer depth increased, the DON concentration first decreased and then increased, and the variation in DON concentration differed among the biofilters. In the activated carbon biofilter, the DON concentration was reduced by the largest amount in the first part of the column and increased by the largest amount in the second part of the column. The biomass in the activated carbon filter was less than that in the quartz sand filter in the upper column. The heterotrophic bacterial proportion among bacterial flora in the activated carbon biofilter was the largest, which might be due to the significant reduction in DON in the first part of the column. Overall, the results indicate that the DON concentration in biofiltered water can be controlled via the selection of appropriate biofilter media. We propose that a two-layer biofilter with activated carbon in the upper layer and another media type in the lower layer could best reduce the DON concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pietsch, Constanze; Schulz, Carsten; Rovira, Pere; Kloas, Werner; Burkhardt-Holm, Patricia
2014-01-01
Deoxynivalenol (DON) frequently contaminates animal feed, including fish feed used in aquaculture. This study intends to further investigate the effects of DON on carp (Cyprinus carpio L.) at concentrations representative for commercial fish feeds. Experimental feeding with 352, 619 or 953 μg DON kg−1 feed resulted in unaltered growth performance of fish during six weeks of experimentation, but increased lipid peroxidation was observed in liver, head kidney and spleen after feeding of fish with the highest DON concentration. These effects of DON were mostly reversible by two weeks of feeding the uncontaminated control diet. Histopathological scoring revealed increased liver damage in DON-treated fish, which persisted even after the recovery phase. At the highest DON concentration, significantly more fat, and consequently, increased energy content, was found in whole fish body homogenates. This suggests that DON affects nutrient metabolism in carp. Changes of lactate dehydrogenase (LDH) activity in kidneys and muscle and high lactate levels in serum indicate an effect of DON on anaerobic metabolism. Serum albumin was reduced by feeding the medium and a high dosage of DON, probably due to the ribotoxic action of DON. Thus, the present study provides evidence of the effects of DON on liver function and metabolism. PMID:24566729
Stability of DON and DON-3-glucoside during baking as affected by the presence of food additives.
Vidal, Arnau; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia
2018-03-01
The mycotoxin deoxynivalenol (DON) is one of the most common mycotoxins of cereals worldwide, and its occurrence has been widely reported in raw wheat. The free mycotoxin form is not the only route of exposure; modified forms can also be present in cereal products. Deoxynivalenol-3-glucoside (DON-3-glucoside) is a common DON plant conjugate. The mycotoxin concentration could be affected by food processing; here, we studied the stability of DON and DON-3-glucoside during baking of small doughs made from white wheat flour and other ingredients. A range of common food additives and ingredients were added to assess possible interference: ascorbic acid (E300), citric acid (E330), sorbic acid (E200), calcium propionate (E282), lecithin (E322), diacetyltartaric acid esters of fatty acid mono- and diglycerides (E472a), calcium phosphate (E341), disodium diphosphate (E450i), xanthan gum (E415), polydextrose (E1200), sorbitol (E420i), sodium bicarbonate (E500i), wheat gluten and malt flour. The DON content was reduced by 40%, and the DON-3-glucoside concentration increased by >100%, after baking for 20 min at 180°C. This confirmed that DON and DON-3-glucoside concentrations can vary during heating, and DON-3-glucoside could even increase after baking. However, DON and DON-3-glucoside are not affected significantly by the presence of the food additives tested.
Zhang, Huining; Gu, Li; Liu, Bing; Gan, Huihui; Zhang, Kefeng; Jin, Huixia; Yu, Xin
2016-09-01
Dissolved organic nitrogen (DON) is a key precursor of numerous disinfection by-products (DBPs), especially nitrogenous DBPs (N-DBPs) formed during disinfection in drinking water treatment. To effectively control DBPs, reduction of the DON concentration before the disinfection process is critical. Traditional biofilters can increase the DON concentration in the effluent, so an improved biofilter is needed. In this study, an improved biofilter was set up with two-layer columns using activated carbon and quartz sand under different influent patterns. Compared with the single-layer filter, the two-layer biofilter controlled the DON concentration more efficiently. The two-point influent biofilter controlled the DON concentration more effectively than the single-point influent biofilter. The improved biofilter resulted in an environment (including matrix, DO, and pH) suitable for microbial growth. Along the depth of the biofilter column, the environment affected the microbial biomass and microbial activity and thus affected the DON concentration.
Choi, Byung-Kook; Jeong, Sang-Hee; Cho, Joon-Hyung; Shin, Hyo-Sook; Son, Seong-Wan; Yeo, Young-Keun; Kang, Hwan-Goo
2013-08-01
Mice were exposed to deoxynivalenol (DON) via drinking water at a concentration of 2 mg/L for 36 days. On day 8 of treatment, inactivated porcine parvovirus vaccine (PPV) was injected intraperitoneally. The relative and absolute weight of the spleen was significantly decreased in the DON-treated group (DON). Antibody titers to parvovirus in serum were 47.9 ± 2.4 in the vaccination group (Vac), but 15.2 ± 6.5 in the group treated with DON and vaccine (DON + Vac). The IgA and IgG was not different in the DON, Vac an,d DON + Vac groups. IgM was significantly lower only in the DON + Vac group. However IgE was significantly increased in the Vac and DON + Vac group, but no change was observed between the Vac and DON + Vac groups. The concentrations of IL-2, IL-4, GM-CSF, MCP-1 and Rantes in serum, and IL-1α in mesenteric lymph node and MIP-1β in spleen were significantly increased by DON treatment compared to control. The concentrations of IL-2, IL-5, IL-6, IL-9, IL-12, IL-13 and Rantes in thymus, of IL-2 in spleen, and of IL-1α, IL-1β, IL-3, IL-5, IL-10, IL-17, G-CSF, GM-CSF and MCP-1 in mesenteric lymph nodes were significantly decreased in mice compared to those in the Vac group, while concentrations of IL-1α, IL-2, IL-9, IL-13,G-CSF, GM-CSF, IFN-γ, MCP-1, MIP-1α and TNF-α were significantly increased in serum compared to the Vac group. In conclusion, the results presented here indicate that exposure to DON at 2.0 mg/L via drinking water can disrupt the immune response in vaccinated mice by modulating cytokines and chemokines involved in their immune response to infectious disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil
Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation ofmore » [{sup 3}H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [{sup 3}H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-{kappa}B, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.« less
Vidal, A; Marín, S; Morales, H; Ramos, A J; Sanchis, V
2014-06-01
Deoxynivalenol (DON) and ochratoxin A (OTA) are mycotoxins produced by fungal species which can contaminate, alone or simultaneously, cereal-based products such as bread. Due to the increasing interest in the beneficial effects of dietary bran, bran bread has attained high consumption. Usually, the higher mycotoxin concentrations in cereals are found in the external layers of the grain (bran), leading to higher concentration of DON and OTA in breads with added bran. Moreover, the use of sourdough in breadmaking is increasing, but no studies about its effect in the mycotoxins content exist. The objective of this study was to determine the variation of concentration of these mycotoxins during the breadmaking process including the following factors: two initial mycotoxin concentrations in the initial mix of ingredients, four different bran contents, and use of sourdough. OTA was confirmed to be quite stable during the breadmaking process, regardless of the assayed factors. DON concentration during breadmaking was not significantly affected by bran content of bread. However, it was significantly affected by kneading and fermentation steps in opposite way depending on sourdough use and flour contamination level: if DON reduction occurs during fermentation, this leads to a safer situation, but the possible increase in DON should be considered with care, as it can compensate the expected dilution effect by recipe. Finally, the results on deoxynivalenol-3-glucoside (DON-3-G), although preliminar, suggest an increase of this toxin during fermentation, but mainly during baking. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dissolved organic nitrogen budgets for upland, forested ecosystems in New England
Campbell, J.L.; Hornbeck, J.W.; McDowell, W.H.; Buso, D.C.; Shanley, J.B.; Likens, G.E.
2000-01-01
Relatively high deposition of nitrogen (N) in the northeastern United States has caused concern because sites could become N saturated. In the past, mass-balance studies have been used to monitor the N status of sites and to investigate the impact of increased N deposition. Typically, these efforts have focused on dissolved inorganic forms of N (DIN = NH4-N + NO3-N) and have largely ignored dissolved organic nitrogen (DON) due to difficulties in its analysis. Recent advances in the measurement of total dissolved nitrogen (TDN) have facilitated measurement of DON as the residual of TDN - DIN. We calculated DON and DIN budgets using data on precipitation and streamwater chemistry collected from 9 forested watersheds at 4 sites in New England. TDN in precipitation was composed primarily of DIN. Net retention of TDN ranged from 62 to 89% (4.7 to 10 kg ha-1 yr-1) of annual inputs. DON made up the majority of TDN in stream exports, suggesting that inclusion of DON is critical to assessing N dynamics even in areas with large anthropogenic inputs of DIN. Despite the dominance of DON in streamwater, precipitation inputs of DON were approximately equal to outputs. DON concentrations in streamwater did not appear significantly influenced by seasonal biological controls, but did increase with discharge on some watersheds. Streamwater NO3-N was the only fraction of N that exhibited a seasonal pattern, with concentrations increasing during the winter months and peaking during snowmelt runoff. Concentrations of NO3-N varied considerably among watersheds and are related to DOC:DON ratios in streamwater. Annual DIN exports were negatively correlated with streamwater DOC:DON ratios, indicating that these ratios might be a useful index of N status of upland forests.
Manda, Gina; Mocanu, Mihaela Andreea; Marin, Daniela Eliza; Taranu, Ionelia
2015-02-16
Contamination of crops used for food and feed production with Fusarium mycotoxins, such as deoxynivalenol (DON), raise important health and economic issues all along the food chain. Acute exposure to high DON concentrations can alter the intestinal barrier, while chronic exposure to lower doses may exert more subtle effects on signal transduction pathways, leading to disturbances in cellular homeostasis. Using real-time cellular impedance measurements, we studied the effects exerted in vitro by low concentrations of DON (0.37-1.50 μM), relevant for mycotoxin-contaminated food, on the proliferation of undifferentiated Caco-2 cells presenting a tumorigenic phenotype. A 1.5 μM concentration of DON maintained cell adherence of non-proliferating Caco-2 cells, whilst arresting the growth of actively proliferating cells compared with control Caco-2 cells in vitro. At 0.37 μM, DON enhanced Caco-2 cell metabolism, thereby triggering a moderate increase in cell proliferation. The results of the current study suggested that low concentrations of DON commonly detected in food may either limit or sustain the proliferation of colon cancer cells, depending on their proliferation status and on DON concentration. Soluble factors released by Lactobacillus strains can partially counteract the inhibitory action of DON on actively proliferating colon cancer cells. The study also emphasized that real-time cellular impedance measurements were a valuable tool for investigating the dynamics of cellular responses to xenobiotics.
Ren, Zhihua; Wang, Yachao; Deng, Huidan; Deng, Youtian; Deng, Junliang; Zuo, Zhicai; Wang, Ya; Peng, Xi; Cui, Hengmin; Shen, Liuhong; Ma, Xiaoping; Fang, Jing
2015-04-01
Deoxynivalenol (DON) immunotoxicity and its induction of cytokines and related genes in the splenic lymphocytes of chickens have not been completely elucidated. In the present study, we aimed to evaluate the effects of 48 h of different DON treatments (0 μg/mL, 0.2 μg/mL, 0.8 μg/mL, 3.2 μg/mL, 12.5 μg/mL, and 50 μg/mL) on the secretion and the mRNA expressions of some cytokine genes, such as interleukin-1beta (IL-1β), IL-1RI, IL-2, IL-4, IL-6, IL-10, IL-12β, and IFN-γ in chicken splenic lymphocytes. The concentrations of IL-1RI, IL-6, IL-10, and IFN-γ were increased with the DON concentrations increasing (P<0.05 or P<0.01). However, the concentrations of IL-1β, IL-2, IL-4, and IL-12β were decreased with the DON concentrations increasing (P<0.05 or P<0.01). Except IL-1β, the mRNA expressions of the other cytokines were up-regulated by DON. The highest mRNA expressions values of IL-1RI, IL-4, IL-10, IL-12β, and IFN-γ were at 50 μg/mL DON treatment groups (P<0.05 or P<0.01), while the highest mRNA expressions values of IL-2 and IL-6 were at 12.5 μg/mL DON treatment groups (P<0.05 or P<0.01). Our data revealed that the potent effects of DON in affecting the secretion and the mRNA expression of the related cytokines in chicken splenic lymphocytes in vitro. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, You-Xin; Chen, Hung-Yu; Wang, Wei; Yeh, Jun-Xian; Chou, Wen-Chen; Gong, Gwo-Ching; Tsai, Fu-Jung; Huang, Shih-Jen; Lin, Cheng-Ting
2015-07-01
In this study, we collected and analyzed rainwater samples from Keelung, Taiwan, which is a coastal city located south of the East China Sea (ECS). From January 2012 until June 2013, 78 rainwater samples were collected over an 18-month period and were analyzed to examine the total dissolved nitrogen (TDN) and major ions in the rainwater. TDN can be divided into dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON). This study, which focused on the composition of DON, is the first study to employ ultrafiltration to separate DON in wet deposition into low molecular weight-DON (LMW-DON) and high molecular weight-DON (HMW-DON). The concentrations of dissolved nitrogen species observed in the research area between November 2012 and April 2013 were relatively high, whereas those observed between May 2013 and October 2012 were relatively low. The patterns of changes over time were similar to those of non-sea-salt (nss) ions. The concentration of nss-ions was high during months in which the total dissolved nitrogen concentration was also high, which occur frequently during the spring and winter. In addition, the concentration of nss-ions was low during months in which the TDN concentration was low, which primarily occurs during the summer. The amounts of DIN and DON accounted for 63 ± 5% and 37 ± 5% of the TDN, respectively, and the percentage of the DIN was higher during the spring and winter. The concentrations of LMW-DON and HMW-DON, which accounted for 84 ± 3% and 16 ± 3% of the DON, respectively, were both high in the winter and low in the summer. The percentage of LMW-DON increased in the summer, possibly because of the numerous oceanic air masses and typhoons. Furthermore, the percentage of HMW-DON increased in the spring, potentially due to biomass burning during agricultural activities. Regarding the wet deposition fluxes, the DIN (197 ± 10.27 mmol m-2 yr-1) and DON (129 ± 6.82 mmol m-2 yr-1) accounted for approximately 64% and 36% of the TDN, respectively, and the LMW-DON (108 ± 5.97 mmol m-2 yr-1) and HMW-DON (19 ± 1.02 mmol m-2 yr-1) accounted for 85% and 15% of the DON, respectively. The wet deposition flux of the nitrogen species observed in the research area was 332 ± 16.0 mmol m-2 yr-1, and the total flux (dry and wet deposition) was approximately 393.4 ± 25.2 mmol m-2 yr-1 (5508 ± 353 mg N m-2 yr-1).
Antonissen, Gunther; Van Immerseel, Filip; Pasmans, Frank; Ducatelle, Richard; Haesebrouck, Freddy; Timbermont, Leen; Verlinden, Marc; Janssens, Geert Paul Jules; Eeckhaut, Venessa; Eeckhout, Mia; De Saeger, Sarah; Hessenberger, Sabine; Martel, An; Croubels, Siska
2014-01-01
Both mycotoxin contamination of feed and Clostridium perfringens-induced necrotic enteritis have an increasing global economic impact on poultry production. Especially the Fusarium mycotoxin deoxynivalenol (DON) is a common feed contaminant. This study aimed at examining the predisposing effect of DON on the development of necrotic enteritis in broiler chickens. An experimental Clostridium perfringens infection study revealed that DON, at a contamination level of 3,000 to 4,000 µg/kg feed, increased the percentage of birds with subclinical necrotic enteritis from 20±2.6% to 47±3.0% (P<0.001). DON significantly reduced the transepithelial electrical resistance in duodenal segments (P<0.001) and decreased duodenal villus height (P = 0.014) indicating intestinal barrier disruption and intestinal epithelial damage, respectively. This may lead to an increased permeability of the intestinal epithelium and decreased absorption of dietary proteins. Protein analysis of duodenal content indeed showed that DON contamination resulted in a significant increase in total protein concentration (P = 0.023). Furthermore, DON had no effect on in vitro growth, alpha toxin production and netB toxin transcription of Clostridium perfringens. In conclusion, feed contamination with DON at concentrations below the European maximum guidance level of 5,000 µg/kg feed, is a predisposing factor for the development of necrotic enteritis in broilers. These results are associated with a negative effect of DON on the intestinal barrier function and increased intestinal protein availability, which may stimulate growth and toxin production of Clostridium perfringens.
Ren, Zhihua; Wang, Yachao; Deng, Huidan; Deng, Youtian; Deng, Junliang; Zuo, Zhicai; Wang, Ya; Peng, Xi; Cui, Hengmin; Shen, Liuhong
2015-01-01
We investigated the immunotoxicity and cytotoxicity of deoxynivalenol (DON), a mycotoxin, and the mechanism by which it induces apoptosis. Chicken splenic lymphocytes treated with 0-50μg/mL DON for 48h inhibited growth of splenic lymphocytes in a dose-dependent manner, as revealed by the Cell Counting Kit-8 (CCK-8) bioassay. Annexin V-fluorescein isothiocyanate staining indicated that the number of apoptotic and necrotic cells were significantly higher compared with the control (P<0.01). DON treatment induced ROS accumulation, resulting in reduced mitochondrial transmembrane potential, as detected by flow cytometry and 2',7'-dichlorofluorescein acetate and rhodamine 123 labeling, respectively. Enzyme linked immunosorbent assays revealed that the concentrations of p53, Bax, Bak-1, and Caspase-3 increased with increasing DON concentration (P<0.05 or P<0.01), whereas the concentrations of Bcl-2 decreased (P<0.01) compared with the control. These data suggest that DON induces apoptosis in splenic lymphocytes via a ROS-mediated mitochondrial pathway. Copyright © 2014. Published by Elsevier B.V.
Antonissen, Gunther; Ducatelle, Richard; Haesebrouck, Freddy; Timbermont, Leen; Verlinden, Marc; Janssens, Geert Paul Jules; Eeckhaut, Venessa; Eeckhout, Mia; De Saeger, Sarah; Hessenberger, Sabine; Martel, An; Croubels, Siska
2014-01-01
Both mycotoxin contamination of feed and Clostridium perfringens-induced necrotic enteritis have an increasing global economic impact on poultry production. Especially the Fusarium mycotoxin deoxynivalenol (DON) is a common feed contaminant. This study aimed at examining the predisposing effect of DON on the development of necrotic enteritis in broiler chickens. An experimental Clostridium perfringens infection study revealed that DON, at a contamination level of 3,000 to 4,000 µg/kg feed, increased the percentage of birds with subclinical necrotic enteritis from 20±2.6% to 47±3.0% (P<0.001). DON significantly reduced the transepithelial electrical resistance in duodenal segments (P<0.001) and decreased duodenal villus height (P = 0.014) indicating intestinal barrier disruption and intestinal epithelial damage, respectively. This may lead to an increased permeability of the intestinal epithelium and decreased absorption of dietary proteins. Protein analysis of duodenal content indeed showed that DON contamination resulted in a significant increase in total protein concentration (P = 0.023). Furthermore, DON had no effect on in vitro growth, alpha toxin production and netB toxin transcription of Clostridium perfringens. In conclusion, feed contamination with DON at concentrations below the European maximum guidance level of 5,000 µg/kg feed, is a predisposing factor for the development of necrotic enteritis in broilers. These results are associated with a negative effect of DON on the intestinal barrier function and increased intestinal protein availability, which may stimulate growth and toxin production of Clostridium perfringens. PMID:25268498
Xiao, H; Wu, M M; Tan, B E; Yin, Y L; Li, T J; Xiao, D F; Li, L
2013-10-01
The mycotoxin deoxynivalenol (DON) is a food contaminant that leads to reduced feed intake and reduced BW gain, as well as organ impairment. On the other hand, antimicrobial peptides have been shown to have positive effects on growth performance, nutrient digestibility, and immune function. The purpose of this study was to investigate the protective effects of composite antimicrobial peptides (CAP) on piglets challenged with DON. After a 7-d adaptation period, 28 individually housed piglets (Duroc × Landrace × Large Yorkshire) weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (7 pigs/treatment): negative control, basal diet (NC), basal diet + 0.4% CAP (CAP), basal diet + 4 mg/kg DON (DON), and basal diet + 4 ppm DON + 0.4% CAP (DON + CAP). On d 15 and 30 after the initiation of treatment, blood samples were collected for the determination of blood profile. Piglets were monitored for 30 d to assess performance and then were slaughtered to obtain organs for the determination of the relative weight of organs. The results showed that dietary supplementation with DON decreased (P < 0.05) ADFI, ADG, and G:F, whereas dietary supplementation with CAP improved ADG and G:F (P < 0.05). The relative weight of the kidney and pancreas was greater and the relative weight of the spleen was lighter in the DON treatment than in the other 3 treatments (P < 0.05). There were no effects (P > 0.05) on other relative weights of viscera, except the relative weight of the gallbladder, but the diamine oxidase activity in the liver decreased in DON-treated piglets (P < 0.05). Piglets in the DON treatment had increased serum concentrations of alkaline phosphatase, alanine transaminase, and aspartate aminotransferase and a dramatic decrease in total protein (P < 0.05), whereas there were no differences (P > 0.05) between the DON + CAP treatment and the other treatments. The DON treatment decreased the numbers of red blood cells and platelets, as well as the serum catalase concentrations, and decreased the serum concentrations of H2O2, maleic dialdehyde, and nitric oxide (P < 0.05). The numbers of platelets and thrombocytocrit, as well as the serum concentrations of catalase, were greater, whereas the maleic dialdehyde concentrations were decreased, in both the CAP and DON + CAP treatments compared with the other treatments (P < 0.05). Compared with the control treatment, DON decreased peripheral lymphocyte proliferation on d 15, whereas supplementation with CAP increased it on d 15 and 30 (P < 0.05). These findings indicate that CAP could improve feed efficiency, immune function, and antioxidation capacity and alleviate organ damage, and thus, it has a protective effect in piglets challenged with DON.
Vidal, Arnau; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia
2015-07-01
The stability of deoxynivalenol (DON), deoxynivalenol-3-glucoside (DON-3-glucoside), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), de-epoxy-deoxynivalenol (DOM-1) and ochratoxin A (OTA) during thermal processing has been studied. Baking temperature, time and initial mycotoxin concentration in the raw materials were assayed as factors. An improved UPLC-MS/MS method to detect DON, DON-3-glucoside, 3-ADON, 15-ADON and DOM-1 in wheat baked products was developed in the present assay. The results highlighted the importance of temperature and time in mycotoxin stability in heat treatments. OTA is more stable than DON in a baking treatment. Interestingly, the DON-3-glucoside concentrations increased (>300%) under mild baking conditions. On the other hand, it was rapidly reduced under harsh conditions. The 3-ADON decreased during the heat treatment; while DOM-1 increased after the heating process. Finally, the data followed first order kinetics for analysed mycotoxins and thermal constant rates (k) were calculated. This parameter can be a useful tool for prediction of mycotoxin levels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pellerin, B.A.; Kaushal, S.S.; McDowell, W.H.
2006-01-01
Although the effects of anthropogenic nitrogen (N) inputs on the dynamics of inorganic N in watersheds have been studied extensively, "the influence of N enrichment on organic N loss" is not as well understood. We compiled and synthesized data on surface water N concentrations from 348 forested and human-dominated watersheds with a range of N loads (from less than 100 to 7,100 kg N km-2 y-1) to evaluate the effects of N loading via atmospheric deposition, fertilization, and wastewater on dissolved organic N (DON) concentrations. Our results indicate that, on average, DON accounts for half of the total dissolved N (TDN) concentrations from forested watersheds, but it accounts for a smaller fraction of TDN in runoff from urban and agricultural watersheds with higher N loading. A significant but weak correlation (r 2 = 0.06) suggests that N loading has little influence on DON concentrations in forested watersheds. This result contrasts with observations from some plot-scale N fertilization studies and suggests that variability in watershed characteristics and climate among forested watersheds may be a more important control on DON losses than N loading from atmospheric sources. Mean DON concentrations were positively correlated, however, with N load across the entire land-use gradient (r 2 = 0.37, P < 0.01), with the highest concentrations found in agricultural and urban watersheds. We hypothesize that both direct contributions of DON from wastewater and agricultural amendments and indirect transformations of inorganic N to organic N represent important sources of DON to surface waters in human-dominated watersheds. We conclude that DON is an important component of N loss in surface waters draining forested and human-dominated watersheds and suggest several research priorities that may be useful in elucidating the role of N enrichment in watershed DON dynamics. ?? 2006 Springer Science+Business Media, Inc.
Changes in the dissolved nitrogen pool across land cover gradients in Wisconsin streams.
Stanley, Emily H; Maxted, Jeffrey T
2008-10-01
Increases in anthropogenic nitrogen fixation have resulted in wide-scale enrichment of aquatic ecosystems. Existing biogeochemical theory suggests that N enrichment is associated with increasing concentrations of nitrate; however, dissolved organic nitrogen (DON) is often a major component of the total dissolved nitrogen (TDN) pool in streams and rivers, and its concentration can be significantly elevated in human-influenced basins. We examined N concentrations during summer base flow conditions in 324 Wisconsin streams to determine whether DON was a significant component of TDN and how its relative contribution changed across a gradient of increasing human (agriculture and urban) land use for 84 of these sites. Total dissolved nitrogen varied from 0.09 to 20.74 mg/L, and although DON was significantly higher in human-dominated basins relative to forested and mixed-cover basins, its concentration increased relatively slowly in response to increasing human land cover. This limited response reflected a replacement of wetland-derived DON in low-N streams by anthropogenic sources in human-dominated sites, such that net changes in DON were small across the land use gradient. Nitrate-N increased exponentially in response to greater human land cover, and NH4-N and NO2-N were present at low levels. Nitrite-N exceeded NH4-N at 20% of sites and reached a maximum concentration of 0.10 mg/L. This examination suggests that basic mechanisms driving N losses from old-growth forests subject to N saturation also shape the summertime N pool in Wisconsin streams, in addition to other processes dictated by landscape context. The overwhelming role of human land use in determining the relative and absolute composition of the summertime N pool included (1) rapid increases in NO3-N, (2) limited changes in DON, and (3) the unexpected occurrence of NO2-N. High (>3 mg/L) TDN conditions dominated by NO3-N, regardless of landscape context or forms of N inputs, indicate a state of "N hypersaturation", which appears to be increasingly common in human-influenced streams and rivers. Many sites in agriculturally rich areas had NO2-N and NO3-N concentrations that, if sustained, are at chronically toxic levels for sensitive aquatic biota, suggesting that N enrichment now has local consequences for resident stream biota in addition to contributing to coastal eutrophication.
Autio, Iida; Soinne, Helena; Helin, Janne; Asmala, Eero; Hoikkala, Laura
2016-04-01
We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5-9 % of the DOC and 45 % of the DON were degraded by the bacterial communities within 2-3 months. Simultaneously, the proportion of humic-like compounds in the DOM pool increased. Bioavailable DON accounted for approximately one-third of the total bioavailable dissolved nitrogen, and thus, terrestrial DON can markedly contribute to the coastal plankton dynamics and support the heterotrophic food web.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, Brian D; Bernhardt, Emily; Roberts, Brian
Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios ({approx}25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolvedmore » organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO{sub 3}{sup -}] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high.« less
Badr, El-Sayed A
2016-10-01
Increases in human activity have resulted in enhanced anthropogenic inputs of nitrogen (N) and carbon (C) into the Nile River. The Damietta Branch of the Nile is subject to inputs from industrial, agricultural, and domestic wastewater. This study investigated the distribution and seasonality of dissolved organic nitrogen (DON), dissolved organic carbon (DOC), and nutrients in the Nile Damietta Branch. Water samples were collected from 24 sites between May 2009 and February 2010. Dissolved organic nitrogen concentrations averaged 251 ± 115 μg/l, with a range of 90.2-671 μg/l, and contributed 40.8 ± 17.7 % to the total dissolved nitrogen (TDN) pool. Relative to autumn and winter, DON was a larger fraction of the TDN pool during spring and summer indicating the influence of bacterioplankton on the nitrogen cycle. Concentrations of DOC ranged from 2.23 to 11.3 mg/l with an average of 5.15 ± 2.36 mg/l, reflecting a high organic matter load from anthropogenic sources within the study area, and were highest during autumn. Higher values of biochemical oxygen demand (BOD), chemical oxygen demand (COD), DON, nitrate, and phosphate occurred downstream of the Damietta Branch and were probably due to anthropogenic inputs to the Nile from the Damietta district. A bacterial incubation experiment indicated that 52.1-95.0 % of DON was utilized by bacteria within 21 days. The decrease in DON concentration was accompanied by an increase in nitrate concentration of 54.8-87.3 %, presumably through DON mineralization. Based on these results, we recommend that water quality assessments consider DON and DOC, as their omission may result in an underestimation of the total organic matter load and impact.
Role of mycotoxins in herds with and without problems with tail necrosis in neonatal pigs.
Van Limbergen, Tommy; Devreese, Mathias; Croubels, Siska; Broekaert, Nathan; Michiels, Annelies; De Saeger, Sarah; Maes, Dominiek
2017-11-18
This study aimed to investigate a possible involvement of mycotoxins in neonatal tail necrosis in piglets. Ten affected and 10 non-affected farms were selected. Sow feed samples were analysed for the presence of 23 mycotoxins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Blood plasma samples of sows and their piglets were analysed for the presence of deoxynivalenol (DON), de-epoxydeoxynivalenol, T-2 and HT-2 toxin, zearalenone, alfa-zearalenol, and beta-zearalenol, using LC-MS/MS. Additionally, high-resolution mass spectrometry (HRMS) was performed to detect DON-glucuronide (DON-Glca). There was a significant difference between case herds and control herds for mean DON concentrations in feed and sow plasma. For piglet samples, concentrations of DON were above the limit of quantification of 0.1 ng/ml in only 12 samples. Positive correlations were found between DON concentrations in sow feed and plasma of sows; DON concentration in sow feed and DON-Glca concentration in plasma of sows; and between DON and DON-Glca concentration in sow-plasma. In conclusion, high prevalence of DON in feed samples was found, with significantly higher concentrations in case herds, as well as the presence of DON and DON-Glca in sow plasma. Additional research is needed to identify risk factors, including within-herd factors, associated with neonatal tail necrosis in piglets. © British Veterinary Association (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Wymore, A.; Rodriguez-Cardona, B.; Coble, A. A.; Potter, J.; Lopez Lloreda, C.; Perez Rivera, K.; De Jesus Roman, A.; Bernal, S.; Martí Roca, E.; Kram, P.; Hruska, J.; Prokishkin, A. S.; McDowell, W. H.
2016-12-01
Watershed nitrogen exports are often dominated by dissolved organic nitrogen (DON); yet, little is known about the role ambient DON plays in ecosystems. As an organic nutrient, DON may serve as either an energy source or as a nutrient source. One hypothesized control on DON is nitrate (NO3-) availability. Here we examine the interaction of NO3- and DON in streams across temperate forests, tropical rainforests, and Mediterranean and taiga biomes. Experimental streams also drain contrasting Critical Zones which provide gradients of vegetation, soil type and lithology (e.g. volcaniclastic, granitic, ultramafic, Siberian Traps Flood Basalt) in which to explore how the architecture of the Critical Zone affects microbial biogeochemical reactions. Streams ranged in background dissolved organic carbon (DOC) concentration (1-50 mg C/L) and DOC: NO3- ratios (10-2000). We performed a series of ecosystem-scale NO3- additions in multiple streams within each environment and measured the change in DON concentration. Results demonstrate that there is considerable temporal and spatial variation across systems with DON both increasing and decreasing in response to NO3- addition. Ecologically this suggests that DON can serve as both a nutrient source and an energy source to aquatic microbial communities. In contrast, DOC concentrations rarely changed in response to NO3- additions suggesting that the N-rich fraction of the ambient dissolved organic matter pool is more bioreactive than the C-rich fraction. Contrasting responses of the DON and DOC pools indicate different mechanisms controlling their respective cycling. It is likely that DON plays a larger role in ecosystems than previously recognized.
Lohölter, Malte; Meyer, Ulrich; Döll, Susanne; Manderscheid, Remy; Weigel, Hans-Joachim; Erbs, Martin; Höltershinken, Martin; Flachowsky, Gerhard; Dänicke, Sven
2012-11-01
Future livestock production is likely to be affected by both rising ambient temperatures and indirect effects mediated by modified growth conditions of feed plants such as increased atmospheric CO2 concentrations and drought. Corn was grown at elevated CO2 concentrations of 550 ppm and drought stress using free air carbon dioxide enrichment technology. Whole plant silages were generated and fed to sheep kept at three climatic treatments. Differential blood count was performed. Plasma DON and de-epoxy-DON concentration were measured. Warmer environment increased rectal and skin temperatures and respiration rates (p < 0.001 each) but did not affect blood parameters and the almost complete metabolization of DON into de-epoxy-DON. Altered growth conditions of the corn fed did not have single effects on sheep body temperature measures and differential blood count. Though the thermoregulatory activity of sheep was influenced by the thermal environment, the investigated cultivation factors did not indicate considerable impacts on the analysed parameters.
Evolved aniline catabolism in Acinetobacter calcoaceticus during continuous culture of river water.
Wyndham, R C
1986-01-01
Adaptation of Acinetobacter calcoaceticus from river water to aniline depends on the dynamics of parent and mutant populations. The parent, Acinetobacter strain DON26 phenotype Ani0, was common in river water and assimilated aniline effectively at micromolar concentrations, but was inhibited at higher concentrations of aniline. The Ani0 phenotype was also characterized by a broad specificity for oxidation of chloroanilines by aniline-induced cells. The mutant Ani+ phenotype was represented by DON2, isolated from a population of less than 100 cells ml-1 in a mixed river water culture, and by DON261, isolated during continuous culture of DON26. Ani+ strains assimilated aniline at a greater maximum specific rate than the parent and were able to grow at concentrations of aniline greater than 16 mM. These strains cooxidized phenol after growth at high aniline concentrations, but showed reduced activity toward chloroanilines. These changes plus kinetic data, oxygen uptake data, and the results of auxanography indicate that the mutant has an increased activity and altered specificity of the initial enzyme in the aniline catabolic pathway. The parent strain, DON26, was at a selective advantage relative to the mutant at low concentrations of aniline, but was replaced by the mutant when aniline concentrations increased. Adaptation of the mixed river water community to aniline involved selection of both phenotypes. Reversion of the Ani+ to Ani0 phenotype occurred at a frequency of 10(-2) in the absence of aniline selection. Plasmid content was not altered during either acquisition or loss of the Ani+ phenotype. Adaptive changes in Acinetobacter spp. populations illustrate important differences in the catabolic activities of natural and pollutant selected strains.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:3707123
Ren, Zhihua; Wang, Yachao; Deng, Huidan; Deng, Youtian; Deng, Junliang; Zuo, Zhicai; Wang, Ya; Peng, Xi; Cui, Hengmin; Shen, Liuhong; Yu, Shumin; Cao, Suizhong
2016-04-01
In this study, the in vitro effects of the treatment of concanavalin A (Con A)--stimulated splenic lymphocytes with DON were examined. Splenic lymphocytes isolated from chickens were stimulated with 12.5 μg/mL Con A and exposed to deoxynivalenol (DON) (0-50 μg/mL) for 48 h. The intracellular calcium concentration ([Ca(2+)]i), pH, calmodulin (CaM) mRNA levels, and Na(+),K(+)-ATPase and Ca(2+)-ATPase activities were detected. With the DON exposure concentrations increased, the [Ca(2+)]i and CaM mRNA levels gradually increased in a dose-dependent manner, and all the evaluated conconcentrations affected ATPase activity to the same extent. There were significant differences (P<0.05 or P<0.01) between the treatment groups and the control group. These results indicate that an imbalance in calcium homeostasis and intracellular acidification are components of DON cytotoxicity in chicken lymphocytes. Copyright © 2016 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Zahidul; Center for Integrative Toxicology, Michigan State University, 234 G.M. Trout Building, Michigan State University, East Lansing, MI 48824-1224; Gray, Jennifer S.
2006-06-15
The effects of the ribotoxic trichothecene deoxynivalenol (DON) on mitogen-activated protein kinase (MAPK)-mediated IL-8 expression were investigated in cloned human monocytes and peripheral blood mononuclear cells (PBMC). DON (250 to 1000 ng/ml) induced both IL-8 mRNA and IL-8 heteronuclear RNA (hnRNA), an indicator of IL-8 transcription, in the human U937 monocytic cell line in a concentration-dependent manner. Expression of IL-8 hnRNA, mRNA and protein correlated with p38 phosphorylation and was completely abrogated by the p38 MAPK inhibitor SB203580. DON at 500 ng/ml similarly induced p38-dependent IL-8 protein and mRNA expression in PBMC cultures from healthy volunteers. Significantly increased IL-6 andmore » IL-1{beta} intracellular protein and mRNA expression was also observed in PBMC treated with DON (500 ng/ml) which were also partially p38-dependent. Flow cytometry of PBMC revealed that DON-induced p38 phosphorylation varied among individuals relative to both threshold toxin concentrations (25-100 ng/ml) and relative increases in percentages of phospho-p38{sup +} cells. DON-induced p38 activation occurred exclusively in the CD14{sup +} monocyte population. DON was devoid of agonist activity for human Toll-like receptors 2, 3, 4, 5, 7, 8 and 9. However, two other ribotoxins, emetine and anisomycin, induced p38 phosphorylation in PBMC similarly to DON. Taken together, these data suggest that (1) p38 activation was required for induction of IL-8 and proinflammatory gene expression in the monocyte and (2) DON induced p38 activation in human monocytes via the ribotoxic stress response.« less
Dissolved organic nitrogen (DON) profile during backwashing cycle of drinking water biofiltration.
Liu, Bing; Gu, Li; Yu, Xin; Yu, Guozhong; Zhang, Huining; Xu, Jinli
2012-01-01
A comprehensive investigation was made in this study on the variation of dissolved organic nitrogen (DON) during a whole backwashing cycle of the biofiltration for drinking water treatment. In such a cycle, the normalized DON concentration (C(effluent)/C(influent)) was decreased from 0.98 to 0.90 in the first 1.5h, and then gradually increased to about 1.5 in the following 8h. Finally, it remained stable until the end of this 24-hour cycle. This clearly 3-stage profile of DON could be explained by three aspects as follows: (1) the impact of the backwashing on the biomass and the microbial activity; (2) the release of soluble microbial products (SMPs) during the biofiltration; (3) the competition between heterotrophic bacteria and nitrifying bacteria. All the facts supported that more DON was generated during later part of the backwashing cycle. The significance of the conclusion is that the shorter backwashing intervals between backwashing for the drinking water biofilter should further decrease the DON concentration in effluent of biofilter. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Awad, Wageha A.; Hess, Michael; Twarużek, Magdalena; Grajewski, Jan; Kosicki, Robert; Böhm, Josef; Zentek, Jürgen
2011-01-01
The aim of the present experiment was to investigate the effects of feeding grains naturally contaminated with Fusarium mycotoxins on morphometric indices of jejunum and to follow the passage of deoxynivalenol (DON) through subsequent segments of the digestive tract of broilers. A total of 45 1-d-old broiler chickens (Ross 308 males) were randomly allotted to three dietary treatments (15 birds/treatment): (1) control diet; (2) diet contaminated with 1 mg DON/kg feed; (3) diet contaminated with 5 mg DON/kg feed for five weeks. None of the zootechnical traits (body weight, body weight gain, feed intake, and feed conversion) responded to increased DON levels in the diet. However, DON at both dietary levels (1 mg and 5 mg DON/kg feed) significantly altered the small intestinal morphology. In the jejunum, the villi were significantly (P < 0.01) shorter in both DON treated groups compared with the controls. Furthermore, the dietary inclusion of DON decreased (P < 0.05) the villus surface area in both DON treated groups. The absolute or relative organ weights (liver, heart, proventriculus, gizzard, small intestine, spleen, pancreas, colon, cecum, bursa of Fabricius and thymus) were not altered (P > 0.05) in broilers fed the diet containing DON compared with controls. DON and de-epoxy-DON (DOM-1) were analyzed in serum, bile, liver, feces and digesta from consecutive segments of the digestive tract (gizzard, cecum, and rectum). Concentrations of DON and its metabolite DOM-1 in serum, bile, and liver were lower than the detection limits of the applied liquid chromatography coupled with mass spectrometry (LC-MS/MS) method. Only about 10 to 12% and 6% of the ingested DON was recovered in gizzard and feces, irrespective of the dietary DON-concentration. However, the DON recovery in the cecum as percentage of DON-intake varied between 18 to 22% and was not influenced by dietary DON-concentration. Interestingly, in the present trial, DOM-1 did not appear in the large intestine and in feces. The results indicate that deepoxydation in the present study hardly occurred in the distal segments of the digestive tract, assuming that the complete de-epoxydation occurs in the proximal small intestine where the majority of the parent toxin is absorbed. In conclusion, diets with DON contamination below levels that induce a negative impact on performance could alter small intestinal morphology in broilers. Additionally, the results confirm that the majority of the ingested DON quickly disappears through the gastrointestinal tract. PMID:22174646
Kinoshita, Asako; Keese, Christina; Meyer, Ulrich; Starke, Alexander; Wrenzycki, Christine; Dänicke, Sven
2018-01-01
The objective of this study was to investigate the effect of long-term exposure to a Fusarium toxin deoxynivalenol (DON, 5 mg/kg DM) on the energy metabolism in lactating cows fed diets with different amounts of concentrate. In Period 1 27 German Holstein cows were assigned to two groups and fed a control or mycotoxin-contaminated diet with 50% concentrate for 11 weeks. In Period 2 each group was further divided and fed either a diet containing 30% or 60% concentrate for 16 weeks. Blood samples were collected in week 0, 4, 8, 15, 21, and 27 for calculation of the Revised Quantitative Insulin Sensitivity Check Index and biopsy samples of skeletal muscle and the liver in w 0, 15, and 27 for analysis by real-time RT-qPCR. The DON-fed groups presented lower insulin sensitivities than controls at week 27. Concomitantly, muscular mRNA expression of insulin receptors and hepatic mRNA expression of glucose transporter 2 and key enzymes for gluconeogenesis and fatty acid metabolism were lower in DON-fed cows compared to the control. The study revealed no consistent evidence that DON effects were modified by dietary concentrate levels. In conclusion, long-term dietary DON intake appears to have mild effects on energy metabolism in lactating dairy cows. PMID:29738450
Xiao, Lie; Liu, Guo Bin; Li, Peng; Xue, Sha
2017-01-01
A pot experiment was conducted to study soil dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in the rhizosphere and non-rhizosphere of Bothriochloa ischaemum in loess hilly-gully region under the different treatments of CO 2 concentrations (400 and 800 μmol·mol -1 ) and nitrogen addition (0, 2.5, 5.0 g N·m -2 ·a -1 ). The results showed that eleva-ted CO 2 treatments had no significant effect on the contents of DOC, dissolved total nitrogen (DTN), DON, dissolved ammonium nitrogen (NH 4 + -N) and dissolved nitrate nitrogen (NO 3 - -N) in the soil of rhizosphere and non-rhizosphere of B. ischaemum. The contents of DTN, DON, and NO 3 - -N in the rhizosphere soil were significantly increased with the nitrogen application and the similar results of DTN and NO 3 - -N also were observed in the non-rhizosphere of B. ischaemum. Nitrogen application significantly decreased DOC/DON in the rhizosphere of B. ischaemum. The contents of DTN, NO 3 - -N and DON in the soil of rhizosphere were significantly lower than that in the non-rhizosphere soil, and DOC/DON was significantly higher in the rhizosphere soil than that in the non-rhizosphere soil. It indicated that short-term elevated CO 2 concentration had no significant influence on the contents of soil dissolved organic carbon and nitrogen. Simulated nitrogen deposition, to some extent, increased the content of soil dissolved nitrogen, but it was still insufficient to meet the demand of dissolved nitrogen for plant growing.
Xiao, H; Tan, B E; Wu, M M; Yin, Y L; Li, T J; Yuan, D X; Li, L
2013-10-01
Deoxynivalenol (DON) affects animal and human health and targets the gastrointestinal tract. The objective of this study was to evaluate the ability of composite antimicrobial peptides (CAP) to repair intestinal injury in piglets challenged with DON. A total of 28 piglets (Duroc × Landrace × Large Yorkshire) weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (7 pigs/treatment): negative control, basal diet (NC), basal diet + 0.4% composite antimicrobial peptide (CAP), basal diet + 4 mg/kg DON (DON), and basal diet + 4 mg/kg DON + 0.4% CAP (DON + CAP). After an adaptation period of 7 d, blood samples were collected on d 15 and 30 after the initiation of treatment for determinations of the concentrations of D-lactate and diamine oxidase. At the end of the study, all piglets were slaughtered to obtain small intestines for the determination of intestinal morphology, epithelial cell proliferation, and protein expression in the mammalian target of rapamycin (mTOR) signaling pathway. The results showed that DON increased serum concentrations of D-lactate and diamine oxidase, and these values in the CAP and DON + CAP treatments were less than those in the NC and DON treatments, respectively (P < 0.05). The villous height/crypt depth in the jejunum and ileum and the goblet cell number in the ileum in the CAP and DON + CAP treatments were greater than those in the NC and DON treatments (P < 0.05). The proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum in the DON + CAP treatment were greater than those in the DON treatment (P < 0.05). The DON decreased (P < 0.05) the relative protein expression of phosphorylated Akt (Protein Kinase B) and mTOR in the jejunal and ileal mucosa and of phosphorylated 4E-binding protein 1 (p-4EBP1) in the jejunal mucosa, whereas CAP increased (P < 0.05) the protein expression of p-4EBP1 in the jejunum. These findings showed that DON could enhance intestinal permeability, damage villi, cause epithelial cell apoptosis, and inhibit protein synthesis, whereas CAP improved intestinal morphology and promoted intestinal epithelial cell proliferation and protein synthesis, indicating that CAP may repair the intestinal injury induced by DON.
Interaction effects of enniatin B, deoxinivalenol and alternariol in Caco-2 cells.
Fernández-Blanco, Celia; Font, Guillermina; Ruiz, Maria-Jose
2016-01-22
Enniatin B (ENN B), deoxinivalenol (DON) and alternariol (AOH) are secondary metabolites of filamentous fungi. These mycotoxins are contaminants of vegetables and cereals. They are cytotoxic and their effects are enhanced by their mixtures. The objectives of this study were to compare the cytotoxicity of ENN B, DON and AOH alone or in combination in human adenocarcinoma (Caco-2) cells and to evaluate the type of interactions of mycotoxin mixtures by the isobologram analysis. Cells were treated with concentrations ranging from 1.85 to 90μM (AOH) and from 0.312 to 10μM (for ENN B and DON), individually and in combination of two and three mycotoxins (from 1.85 to 30μM for AOH and from 0.312 to 5μM for ENN B and DON). The relation ratios between the mixtures DON+ENN B was 1:1; AOH+DON and ENN B+AOH was 1:6, and for the tertiary combination DON, ENN B and AOH 1:1:6. The IC50 value of ENN B and DON were 3.87 and 5.54μM, respectively. No IC50 values were obtained for the AOH at any time tested in Caco-2 cells. With the isobologram the type of interaction between mycotoxin was evaluated. Synergistic, antagonistic and addictive effect was observed for the combination studied depending on the concentration affected. Mycotoxins combinations reduce cellular viability in the following increasing order: (DON+ENN B)>(ENN B+AOH)>(DON+AOH)>(DON+AOH+ENN B). Copyright © 2015. Published by Elsevier Ireland Ltd.
Export of dissolved organic matter in relation to land use along a European climatic gradient.
Mattsson, Tuija; Kortelainen, Pirkko; Laubel, Anker; Evans, Dylan; Pujo-Pay, Mireille; Räike, Antti; Conan, Pascal
2009-03-01
The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. We present a data-set including catchments from four areas covering the major climate and land use gradients within Europe: a forested boreal zone (Finland), a temperate agricultural area (Denmark), a wet and temperate mountain region in Wales, and a warm Mediterranean catchment draining into the Gulf of Lyon. In all study areas, DOC (dissolved organic carbon) was a major fraction of DOM, with much lower proportions of DON (dissolved organic nitrogen) and DOP (dissolved organic phosphorus). A south-north gradient with highest DOC concentrations and export in the northernmost catchments was recorded: DOC concentrations and loads were highest in Finland and lowest in France. These relationships indicate that DOC concentrations/export are controlled by several factors including wetland and forest cover, precipitation and hydrological processes. DON concentrations and loads were highest in the Danish catchments and lowest in the French catchments. In Wales and Finland, DON concentrations increased with the increasing proportion of agricultural land in the catchment, whereas in Denmark and France no such relationship was found. DOP concentrations and loads were low compared to DOC and DON. The highest DOP concentrations and loads were recorded in catchments with a high extent of agricultural land, large urban areas or a high population density, reflecting the influence of human impact on DOP loads.
Frequent biphasic cellular responses of permanent fish cell cultures to deoxynivalenol (DON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietsch, Constanze, E-mail: constanze.pietsch@unibas.ch; Bucheli, Thomas D.; Wettstein, Felix E.
Contamination of animal feed with mycotoxins is a major problem for fish feed mainly due to usage of contaminated ingredients for production and inappropriate storage of feed. The use of cereals for fish food production further increases the risk of a potential contamination. Potential contaminants include the mycotoxin deoxynivalenol (DON) which is synthesized by globally distributed fungi of the genus Fusarium. The toxicity of DON is well recognized in mammals. In this study, we confirm cytotoxic effects of DON in established permanent fish cell lines. We demonstrate that DON is capable of influencing the metabolic activity and cell viability inmore » fish cells as determined by different assays to indicate possible cellular targets of this toxin. Evaluation of cell viability by measurement of membrane integrity, mitochondrial activity and lysosomal function after 24 h of exposure of fish cell lines to DON at a concentration range of 0-3000 ng ml{sup -1} shows a biphasic effect on cells although differences in sensitivity occur. The cell lines derived from rainbow trout are particularly sensitive to DON. The focus of this study lies, furthermore, on the effects of DON at different concentrations on production of reactive oxygen species (ROS) in the different fish cell lines. The results show that DON mainly reduces ROS production in all cell lines that were used. Thus, our comparative investigations reveal that the fish cell lines show distinct species-related endpoint sensitivities that also depend on the type of tissue from which the cells were derived and the severity of exposure. - Highlights: > DON uptake by cells is not extensive. > All fish cell lines are sensitive to DON. > DON is most cytotoxic to rainbow trout cells. > Biphasic cellular responses were frequently observed. > Our results are similar to studies on mammalian cell lines.« less
Dissolved organic nitrogen dynamics in the North Sea: A time series analysis (1995-2005)
NASA Astrophysics Data System (ADS)
Van Engeland, T.; Soetaert, K.; Knuijt, A.; Laane, R. W. P. M.; Middelburg, J. J.
2010-09-01
Dissolved organic nitrogen (DON) dynamics in the North Sea was explored by means of long-term time series of nitrogen parameters from the Dutch national monitoring program. Generally, the data quality was good with little missing data points. Different imputation methods were used to verify the robustness of the patterns against these missing data. No long-term trends in DON concentrations were found over the sampling period (1995-2005). Inter-annual variability in the different time series showed both common and station-specific behavior. The stations could be divided into two regions, based on absolute concentrations and the dominant times scales of variability. Average DON concentrations were 11 μmol l -1 in the coastal region and 5 μmol l -1 in the open sea. Organic fractions of total dissolved nitrogen (TDN) averaged 38 and 71% in the coastal zone and open sea, respectively, but increased over time due to decreasing dissolved inorganic nitrogen (DIN) concentrations. In both regions intra-annual variability dominated over inter-annual variability, but DON variation in the open sea was markedly shifted towards shorter time scales relative to coastal stations. In the coastal zone a consistent seasonal DON cycle existed with high values in spring-summer and low values in autumn-winter. In the open sea seasonality was weak. A marked shift in the seasonality was found at the Dogger Bank, with DON accumulation towards summer and low values in winter prior to 1999, and accumulation in spring and decline throughout summer after 1999. This study clearly shows that DON is a dynamic actor in the North Sea and should be monitored systematically to enable us to understand fully the functioning of this ecosystem.
Dietary l-Arginine Supplementation Protects Weanling Pigs from Deoxynivalenol-Induced Toxicity
Wu, Li; Liao, Peng; He, Liuqin; Feng, Zemeng; Ren, Wenkai; Yin, Jie; Duan, Jielin; Li, Tiejun; Yin, Yulong
2015-01-01
This study was conducted to determine the positive effects of dietary supplementation with l-arginine (Arg) on piglets fed a deoxynivalenol (DON)-contaminated diet. A total of eighteen, 28-day-old healthy weanling pigs were randomly assigned into one of three groups: uncontaminated basal diet (control group), 6 mg/kg DON-contaminated diet (DON group) and 6 mg/kg DON + 1% l-arginine (DON + ARG group). After 21 days of Arg supplementation, piglets in the DON and DON + ARG groups were challenged by feeding 6 mg/kg DON-contaminated diet for seven days. The results showed that DON resulted in damage to piglets. However, clinical parameters, including jejunal morphology, amino acid concentrations in the serum, jejunum and ileum, were improved by Arg (p < 0.05). Furthermore, the mRNA levels for sodium-glucose transporter-1 (SGLT-1), glucose transporter type-2 (GLUT-2) and y+l-type amino acid transporter-1 (y+LAT-1) were downregulated in the DON group, but the values were increased in the DON + ARG group (p < 0.05). Collectively, these results indicate that dietary supplementation with Arg exerts a protective role in pigs fed DON-contaminated diets. PMID:25884909
NASA Astrophysics Data System (ADS)
Velescu, Andre; Valarezo, Carlos; Wilcke, Wolfgang
2016-05-01
In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth. In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes. Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments. Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P. The current increasing reactive N deposition will increase N export from the root zone, while it will only accelerate TOC and DON turnover if P availability is simultaneously increased. The Saharan dust-related Ca deposition has no impact on TOC and DON turnover.
Van De Walle, Jacqueline; Romier, Béatrice; Larondelle, Yvan; Schneider, Yves-Jacques
2008-04-01
Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. In human intestinal Caco-2 cells, DON activates the mitogen-activated protein kinases (MAPKs). We hypothesized a link between DON ingestion and intestinal inflammation, and used Caco-2 cells to assess the effects of DON, at plausible intestinal concentrations (250-10,000 ng/ml), on inflammatory mediators acting downstream the MAPKs cascade i.e. activation of nuclear factor-kappaB (NF-kappaB) and interleukin-8 (IL-8) secretion. In addition, Caco-2 cells were co-exposed to pro-inflammatory stimuli in order to mimic an inflamed intestinal epithelium. Dose-dependent increases in NF-kappaB activity and IL-8 secretion were observed, reaching 1.4- and 7.6-fold, respectively using DON at 10 microg/ml. Phosphorylation of inhibitor-kappaB (IkappaB) increased (1.6-fold) at DON levels <0.5 microg/ml. Exposure of Caco-2 cells to pro-inflammatory agents, i.e. 25 ng/ml interleukin-1beta, 100 ng/ml tumor necrosis factor-alpha or 10 microg/ml lipopolysaccharides, activated NF-kappaB and increased IL-8 secretion. Synergistic interactions between these stimuli and DON were observed. These data show that DON induces NF-kappaB activation and IL-8 secretion dose-dependently in Caco-2 cells, and this effect was accentuated upon pro-inflammatory stimulation, suggesting DON exposure could cause or exacerbate intestinal inflammation.
Sex Is a Determinant for Deoxynivalenol Metabolism and Elimination in the Mouse
Pestka, James J.; Clark, Erica S.; Schwartz-Zimmermann, Heidi E.
2017-01-01
Based on prior observations that deoxynivalenol (DON) toxicity is sex-dependent, we compared metabolism and clearance of this toxin in male and female mice. Following intraperitoneal challenge with 1 mg/kg bw DON, the dose used in the aforementioned toxicity study, ELISA and LC–MS/MS analyses revealed that by 24 h, most DON and DON metabolites were excreted via urine (49–86%) as compared to feces (1.2–8.3%). Females excreted DON and its principal metabolites (DON-3-, DON-8,15 hemiketal-8-, and iso-DON-8-glucuronides) in urine more rapidly than males. Metabolite concentrations were typically 2 to 4 times higher in the livers and kidneys of males than females from 1 to 4 h after dosing. Trace levels of DON-3-sulfate and DON-15-sulfate were found in urine, liver and kidneys from females but not males. Fecal excretion of DON and DON sulfonates was approximately 2-fold greater in males than females. Finally, decreased DON clearance rates in males could not be explained by glucuronidation activities in liver and kidney microsomes. To summarize, increased sensitivity of male mice to DON’s toxic effects as compared to females corresponds to decreased ability to clear the toxin via urine but did not appear to result from differences in toxin metabolism. PMID:28777306
Effect of cleaning, milling, and baking on deoxynivalenol in wheat.
Abbas, H K; Mirocha, C J; Pawlosky, R J; Pusch, D J
1985-01-01
Samples of wheat naturally infected by Fusarium graminearum Schwabe were obtained from mills in Oklahoma, Missouri, Kansas, and Minnesota and fields in Nebraska and Kansas in 1982; they were analyzed for deoxynivalenol (DON). The wheat was milled, and DON was found throughout all the milling fractions (bran, shorts, reduction flour, and break flour). The DON recoveries for each mill run ranged from 90 to 98%. These samples, regardless of DON concentration, also gave similar fractional distributions of DON. The greatest (21 ppm [21 micrograms/g]) concentration of DON was found in the bran, and the smallest (1 ppm) was found in the break flour. Cleaning and milling were not effective in removing DON; DON was not destroyed in the bread baked from the naturally contaminated whole wheat flour, but the effect on its concentration in the samples analyzed varied, the reduction ranging from 19 to 69%. The percent reduction found in the cleaned wheat ranged from 6 to 19%. DON concentrations in the following commercially made breads, caraway rye, seedless rye, and pumpernickel, were 45 ppb (ng/g), 39 ppb, and 0 ppb, respectively. The limits of detection by gas chromatography-mass spectrometry and high-pressure liquid chromatography for DON were 0.5 and 10 ng, respectively. PMID:4051489
Devreese, Mathias; Broekaert, Nathan; Verbrugghe, Elin; De Saeger, Sarah; Audenaert, Kris; Haesebrouck, Freddy; Pasmans, Frank; Ducatelle, Richard; Croubels, Siska; Martel, An
2016-01-01
Seed-based pigeon diets could be expected to result in exposure of pigeons to mycotoxins such as deoxynivalenol (DON). Ingestion of low to moderate contamination levels of DON may impair intestinal health, immune function and/or pathogen fitness, resulting in altered host-pathogen interactions and thus different outcome of infections. Here we demonstrate that DON was one of the most frequently detected mycotoxins in seed-based racing pigeons feed, contaminating 5 out of 10 samples (range 177–1,466 μg/kg). Subsequently, a toxicokinetic analysis revealed a low absolute oral bioavailability (F) of DON in pigeons (30.4%), which is comparable to other avian species. Furthermore, semi-quantitative analysis using high-resolution mass spectrometry revealed that DON-3α-sulphate is the major metabolite of DON in pigeons after intravenous as well as oral administration. Following ingestion of DON contaminated feed, the intestinal epithelial cells are exposed to significant DON concentrations which eventually may affect intestinal translocation and colonization of bacteria. Feeding pigeons a DON contaminated diet resulted in an increased percentage of pigeons shedding Salmonella compared to birds fed control diet, 87 ± 17% versus 74 ± 13%, respectively. However, no impact of DON was observed on the Salmonella induced disease signs, organ lesions, faecal and organ Salmonella counts. The presented risk assessment indicates that pigeons are frequently exposed to mycotoxins such as DON, which can affect the outcome of a Salmonella infection. The increasing number of pigeons shedding Salmonella suggests that DON can promote the spread of the bacterium within pigeon populations. PMID:27997572
Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun
2014-01-01
Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (P<0.05). Compared with DON treatment, dietary supplementation with glutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (P<0.05). Addition glutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (P<0.05). These novel findings indicate that glutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino acid metabolism induced by DON. PMID:25502722
Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun
2014-01-01
Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (P<0.05). Compared with DON treatment, dietary supplementation with glutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (P<0.05). Addition glutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (P<0.05). These novel findings indicate that glutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino acid metabolism induced by DON.
Paulick, Marleen; Winkler, Janine; Kersten, Susanne; Schatzmayr, Dian; Frahm, Jana; Kluess, Jeannette; Schwartz-Zimmermann, Heidi Elisabeth; Dänicke, Sven
2018-02-01
The objective of the present study was to demonstrate the efficiency of the decontamination process applied to deoxynivalenol (DON)-contaminated maize by sodium sulphite (Na 2 SO 3 ) treatment in vivo. Additionally, in vitro characterisation of the toxicity of the DON sulphonates (DONS 1, 2 and 3 denote structurally different forms), the resulting DON metabolites, on peripheral blood mononuclear cells (PBMC) should substantiate the inactivation of DON. In a piglet experiment, both DON-contaminated maize and -uncontaminated control maize either untreated (DON-, CON-) or Na 2 SO 3 -treated (DON+, CON+) were mixed into feed and fed for 42 d starting from weaning. The results showed that feed intake and daily weight gain of animals fed DON- were significantly lower compared to animals fed CON- and CON+, whereas group DON+ reached the control level or even exceeded it. The feed-to-gain ratio was unaffected (p = 0.45). Furthermore, DON concentrations in plasma markedly reflected the diets' DON concentrations. These were < 0.1, < 0.1, 5.4 and 0.8 mg/kg feed for CON-, CON+, DON- and DON+, and amounted to 0.3, 0.4, 33.0 and 9.3 ng/ml in plasma, respectively. Whereas DONS 2 and 3 were detected in the DON+ diet, only DONS 2 was recovered in plasma. Regarding the toxicity of DONS, no or much lower toxicity was found compared to DON. DONS 1 and Na 2 SO 3 did not affect the viability of PBMC. At 32.71μM DONS2 the viability was reduced by 50% and thus this compound was less toxic than DON by a factor of 73. Consequently, wet preservation of maize with Na 2 SO 3 was an effective tool to avoid the adverse effects of DON on performance of piglets.
Sources, behaviors and degradation of dissolved organic matter in the East China Sea
NASA Astrophysics Data System (ADS)
Chen, Yan; Yang, Gui-Peng; Liu, Li; Zhang, Peng-Yan; Leng, Wei-Song
2016-03-01
Concentrations of dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and its major compound classes-total hydrolysable amino acids (THAA) were measured at 4 cross-shelf transects of the East China Sea in July 2011. Surface concentrations of DOC, DIN, DON and THAA at the nearshore stations were mostly in excess of those found at the offshore sites, indicating either substantial autochthonous production or allochthonous inputs from the Changjiang River. The vertical distributions of DOC, DON and THAA showed similar trends with higher values in the surface layer, whereas the elevated concentrations of DIN were observed in the bottom layer. Major constituents of THAA presented in the study area were glycine, serine, alanine, glutamic acid, aspartic acid and valine. The mole percentages of neutral amino acids increased from surface water to bottom water, whereas acidic and hydroxy amino acids decreased with the water depth. Concentrations of DOC and THAA were negatively correlated to the ΔDIN values (the difference between the real concentration and theoretical concentration), respectively, indicating the coupling relation between dissolved organic matter (DOM) remineralization and nutrient regeneration in the water column. The C/N ratios in the water column exhibited different characteristics with elevated values appearing in the surface and bottom layers. Box and whisker plots showed that both degradation index (DI) values and THAA yields displayed a decreasing trend from the surface layer to the bottom layer, implying increasing degradation with the water depth. Our data revealed that glycine and alanine increased in relative abundance with decreasing DI, while tyrosine, valine, phenylalanine and isoleucine increased with increasing DI.
He, Wei-Jie; Yuan, Qing-Song; Zhang, You-Bing; Guo, Mao-Wei; Gong, An-Dong; Zhang, Jing-Bo; Wu, Ai-Bo; Huang, Tao; Qu, Bo; Li, He-Ping; Liao, Yu-Cai
2016-09-24
Globally, the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV) are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON). Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5-10) and temperatures (20-37 °C) values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase), as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation.
He, Wei-Jie; Yuan, Qing-Song; Zhang, You-Bing; Guo, Mao-Wei; Gong, An-Dong; Zhang, Jing-Bo; Wu, Ai-Bo; Huang, Tao; Qu, Bo; Li, He-Ping; Liao, Yu-Cai
2016-01-01
Globally, the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV) are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON). Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5–10) and temperatures (20–37 °C) values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase), as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation. PMID:27669304
NASA Astrophysics Data System (ADS)
Paerl, H. W.; Peierls, B. L.; Hounshell, A.; Osburn, C. L.
2015-12-01
Eutrophication is a widespread problem affecting the structure and function of estuaries and is often linked to anthropogenic nitrogen (N) enrichment, since N is the primary nutrient limiting algal production. Watershed management actions typically have ignored dissolved organic nitrogen (DON) loading because of its perceived refractory nature and instead focused on inorganic N as targets for loading reductions. A fluorescence-based model indicated that anthropogenic sources of DON near the head of the microtidal Neuse River Estuary (NRE), NC were dominated by septic systems and poultry waste. A series of bioassays were used to determine the bioavailability of river DON and DON-rich sources to primary producers and whether those additions promoted the growth of certain phytoplankton taxa, particularly harmful species. Overall, at time scales up to two to three weeks, estuarine phytoplankton and bacteria only showed limited responses to additions of high molecular weight (HMW, >1 kDa) river DON. When increases in productivity and biomass did occur, they were quite small compared with the response to inorganic N. Low molecular weight (LMW) river DON, waste water treatment plant effluent, and poultry litter extract did have a positive effect on phytoplankton and bacterial production, indicating a bioavailable fraction. High variability of bulk DON concentration suggested that bioavailable compounds added in the experimental treatments were low in concentration and turned over quite rapidly. Some phytoplankton taxa, as measured by diagnostic photopigments, appeared to be selectively enhanced by the HMW and specific source DON additions, although the taxa could not be positively identified as harmful species. Preliminary tests show that labile autochthonous organic matter may act as a primer for the mineralization of the HMW DON. These and other, longer-term bioavailability studies will be needed to adequately address the fate of watershed DON in estuarine ecosystems.
2011-01-01
Background The trichothecene mycotoxin deoxynivalenol (DON) may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation) when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm) in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-O-acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON), and may reduce its toxicity in plants and animals. Results Two Fusarium trichothecene 3-O-acetyltransferases (FgTRI101 and FfTRI201) were cloned and expressed in yeast (Saccharomyces cerevisiae) during a series of small-scale ethanol fermentations using barley (Hordeum vulgare). DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red®, which also consumed galactose when present in the mash. Conclusions This study demonstrates the potential of using yeast expressing a trichothecene 3-O-acetyltransferase to modify DON during commercial fuel ethanol fermentation. PMID:21888629
Bernhoft, Aksel; Høgåsen, Helga R; Rosenlund, Grethe; Ivanova, Lada; Berntssen, Marc H G; Alexander, Jan; Eriksen, Gunnar Sundstøl; Fæste, Christiane Kruse
2017-07-01
Post-smolt Atlantic salmon (Salmo salar) were fed standard feed with added 2 or 6 mg kg -1 pure deoxynivalenol (DON), 0.8 or 2.4 mg kg -1 pure ochratoxin A (OTA), or no added toxins for up to 8 weeks. The experiments were performed in duplicate tanks with 25 fish each per diet group, and the feed was given for three 2-h periods per day. After 3, 6 and 8 weeks, 10 fish from each diet group were sampled. In the following hours after the last feeding at 8 weeks, toxin elimination was studied by sampling three fish per diet group at five time points. Analysis of DON and OTA in fish tissues and plasma was conducted by liquid chromatography-mass spectrometry and high-pressure liquid chromatography with fluorescence detection, respectively. DON was distributed to the liver, kidney, plasma, muscle, skin and brain, and the concentrations in liver and muscle increased significantly from 3 to 8 weeks of exposure to the high-DON diet. After the last feeding at 8 weeks, DON concentration in liver reached a maximum at 1 h and decreased thereafter with a half-life (t 1/2 ) of 6.2 h. DON concentration in muscle reached a maximum at 6 h and was then eliminated with a t 1/2 = 16.5 h. OTA was mainly found in liver and kidney, and the concentration in liver decreased significantly from 3 to 8 weeks in the high-OTA group. OTA was eliminated faster than DON from various tissues. By using Norwegian food consumption data and kinetic findings in this study, we predicted the human exposure to DON and OTA from fish products through carryover from the feed. Following a comparison with tolerable daily intakes, we found the risk to human health from the consumption of salmon-fed diets containing maximum recommended levels of these toxins to be negligible.
Kovalsky, Paula; Kos, Gregor; Nährer, Karin; Schwab, Christina; Jenkins, Timothy; Schatzmayr, Gerd; Sulyok, Michael; Krska, Rudolf
2016-01-01
Global trade of agricultural commodities (e.g., animal feed) requires monitoring for fungal toxins. Also, little is known about masked and emerging toxins and metabolites. 1926 samples from 52 countries were analysed for toxins and metabolites. Of 162 compounds detected, up to 68 metabolites were found in a single sample. A subset of 1113 finished feed, maize and maize silage samples containing 57 compounds from 2012 to 2015 from 44 countries was investigated using liquid chromatography and mass spectrometry. Deoxynivalenol (DON), zearalenone (ZEN) and fumonisins showed large increases of annual medians in Europe. Within a region, distinct trends were observed, suggesting importance of local meteorology and cultivars. In 2015, median DON concentrations increased to 1400 μg·kg−1 in Austria, but were stable in Germany at 350 μg·kg−1. In 2014, enniatins occurred at median concentrations of 250 μg·kg−1 in Europe, at levels similar to DON and ZEN. The latter were frequently correlated with DON-3-glucoside and ZEN-14-sulfate. Co-occurrence of regulated toxins was frequent with e.g., enniatins, and moniliformin. Correlation was observed between DON and DON-3-glucoside and with beauvericin. Results indicate that considerably more than 25% of agricultural commodities could be contaminated with mycotoxins as suggested by FAO, although this is at least partly due to the lower limits of detection in the current survey. Observed contamination percentages ranged from 7.1 to 79% for B trichothecenes and 88% for ZEN. PMID:27929415
Li, Ruonan; Li, Yansen; Su, Yongteng; Shen, Dan; Dai, Pengyuan; Li, Chunmei
2018-05-28
The mycotoxin deoxynivalenol (DON) generally exists in cereals and affects human and animal health. The aim of this study is to analyze the impacts of DON in naturally contaminated feed on piglet growth performance and intestinal hormone secretion in the short term. We randomly divided 5-week-old piglets into four groups: Control, DON 1,000, DON 2,000 and DON 3,000 groups. Piglets received a feed naturally contaminated with DON (approximately 400, 1,000, 2,000 or 3,000 μg/kg) for 21 days. Body weight showed no significant difference following exposure to DON. The balance of anti-oxidation and oxidation was disrupted by DON after 21 days. The concentration of tumor necrosis factor-alpha (TNF-α) and cyclooxgenase-2 (COX-2) significantly increased (p < .001) in all DON-treated groups. Gut anorexigenic hormone secretion of peptide YY (PYY) and cholecystokinin (CCK) had a time- and dose-dependent relationship with DON exposure; however, there was no effect on orexigenic hormone ghrelin secretion. Changes of histomorphology in the jejunum were observed in DON-treated groups, including villi flattening and fusion, and apical necrosis of villi. These results indicated that DON could suppress piglet growth performance and alter gut hormone secretion in the short term. © 2018 Japanese Society of Animal Science.
Carbon and nitrogen stoichiometry across stream ecosystems
NASA Astrophysics Data System (ADS)
Wymore, A.; Kaushal, S.; McDowell, W. H.; Kortelainen, P.; Bernhardt, E. S.; Johnes, P.; Dodds, W. K.; Johnson, S.; Brookshire, J.; Spencer, R.; Rodriguez-Cardona, B.; Helton, A. M.; Barnes, R.; Argerich, A.; Haq, S.; Sullivan, P. L.; López-Lloreda, C.; Coble, A. A.; Daley, M.
2017-12-01
Anthropogenic activities are altering carbon and nitrogen concentrations in surface waters globally. The stoichiometry of carbon and nitrogen regulates important watershed biogeochemical cycles; however, controls on carbon and nitrogen ratios in aquatic environments are poorly understood. Here we use a multi-biome and global dataset (tropics to Arctic) of stream water chemistry to assess relationships between dissolved organic carbon (DOC) and nitrate, ammonium and dissolved organic nitrogen (DON), providing a new conceptual framework to consider interactions between DOC and the multiple forms of dissolved nitrogen. We found that across streams the total dissolved nitrogen (TDN) pool is comprised of very little ammonium and as DOC concentrations increase the TDN pool shifts from nitrate to DON dominated. This suggests that in high DOC systems, DON serves as the primary source of nitrogen. At the global scale, DOC and DON are positively correlated (r2 = 0.67) and the average C: N ratio of dissolved organic matter (molar ratio of DOC: DON) across our data set is approximately 31. At the biome and smaller regional scale the relationship between DOC and DON is highly variable (r2 = 0.07 - 0.56) with the strongest relationships found in streams draining the mixed temperate forests of the northeastern United States. DOC: DON relationships also display spatial and temporal variability including latitudinal and seasonal trends, and interactions with land-use. DOC: DON ratios correlated positively with gradients of energy versus nutrient limitation pointing to the ecological role (energy source versus nutrient source) that DON plays with stream ecosystems. Contrary to previous findings we found consistently weak relationships between DON and nitrate which may reflect DON's duality as an energy or nutrient source. Collectively these analyses demonstrate how gradients of DOC drive compositional changes in the TDN pool and reveal a high degree of variability in the C: N ratio (3-100) of stream water dissolved organic matter.
Fusarium mycotoxin content of UK organic and conventional wheat.
Edwards, S G
2009-04-01
Each year (2001-2005), 300 samples of wheat from fields of known agronomy were analysed for ten trichothecenes by gas chromatography-mass spectrometry (GC/MS) including deoxynivalenol (DON), nivalenol, 3-acetyl-DON, 15-acetyl-DON, fusarenone X, T2 toxin, HT2 toxin, diacetoxyscirpenol, neosolaniol and T-2 triol and zearalenone by high-performance liquid chromatography (HPLC). Of the eleven mycotoxins analysed from 1624 harvest samples of wheat, only eight were detected, and of these only five-deoxynivalenol, 15-acetyl-DON, nivalenol, HT-2 and zearalenone-were detected above 100 microg kg(-1). DON was the most frequently detected Fusarium mycotoxin, present above the limit of quantification (10 microg kg(-1)) in 86% of samples, and was usually present at the highest concentration. The percentage of samples that would have exceeded the recently introduced legal limits varied between 0.4% and 11.3% over the five-year period. There was a good correlation between DON and zearalenone concentrations, although the relative concentration of DON and zearalenone fluctuated between years. Year and region had a significant effect on all mycotoxins analysed. There was no significant difference in the DON concentration of organic and conventional samples. There was also no significant difference in the concentration of zearalenone between organic and conventional samples, however organic samples did have a significantly lower concentration of HT2 and T2. Overall, the risk of UK wheat exceeding the newly introduced legal limits for Fusarium mycotoxins in cereals intended for human consumption is low, but the percentage of samples above these limits will fluctuate between years.
Export of Nitrogen From the Yukon River Basin to the Bering Sea
NASA Astrophysics Data System (ADS)
Dornblaser, M. M.; Striegl, R. G.
2005-12-01
The US Geological Survey measured nitrogen export from the 831,400 km2 Yukon River basin during 2001-04 as part of a five year water quality study of the Yukon River and its major tributaries. Concentrations of NO2+NO3, NH4+DON, and particulate N were measured ~6 times annually during open water and once under ice cover at three locations on the Yukon River, and on the Porcupine and Tanana Rivers. Concentration and continuous flow data were used to generate daily and annual loads of N species. NH4 concentration was generally negligible when compared to DON concentration, allowing for comparison of the relative importance of DIN vs. DON export at various watershed scales. NO2 concentration was also small compared to NO3. At Pilot Station, the last site on the Yukon before it flows into the Yukon Delta and the Bering Sea, DIN, DON, and particulate N loads averaged 19.3 × 106 kg/yr, 52.6 × 106 kg/yr, and 39.1 × 106 kg/yr, respectively. Normalized for the watershed area at Pilot Station, corresponding N yields were 1.65, 4.52, and 3.35 mmol/m2/yr. DIN yield for the Yukon at Pilot Station is substantially less than the NO3 flux reported for tropical/temperate rivers such as the Amazon, the Yangtze, and the Mississippi. DIN yield in the upper Yukon River basin is similar to that of the Mackenzie and other arctic rivers, but increases substantially downstream. This is likely due to development around Fairbanks in the Tanana River basin. When compared to other headwater basins in the upper Yukon, the Tanana basin yields about four times more DIN and two times more particulate N, while DON yields are only slightly elevated.
Schwartz-Zimmermann, Heidi E.; Fruhmann, Philipp; Dänicke, Sven; Wiesenberger, Gerlinde; Caha, Sylvia; Weber, Julia; Berthiller, Franz
2015-01-01
Recently, deoxynivalenol-3-sulfate (DON-3-sulfate) was proposed as a major DON metabolite in poultry. In the present work, the first LC-MS/MS based method for determination of DON-3-sulfate, deepoxy-DON-3-sulfate (DOM-3-sulfate), DON, DOM, DON sulfonates 1, 2, 3, and DOM sulfonate 2 in excreta samples of chickens and turkeys was developed and validated. To this end, DOM-3-sulfate was chemically synthesized and characterized by NMR and LC-HR-MS/MS measurements. Application of the method to excreta and chyme samples of four feeding trials with turkeys, chickens, pullets, and roosters confirmed DON-3-sulfate as the major DON metabolite in all poultry species studied. Analogously to DON-3-sulfate, DOM-3-sulfate was formed after oral administration of DOM both in turkeys and in chickens. In addition, pullets and roosters metabolized DON into DOM-3-sulfate. In vitro transcription/translation assays revealed DOM-3-sulfate to be 2000 times less toxic on the ribosome than DON. Biological recoveries of DON and DOM orally administered to broiler chickens, turkeys, and pullets were 74%–106% (chickens), 51%–72% (roosters), and 131%–151% (pullets). In pullets, DON-3-sulfate concentrations increased from jejunum chyme samples to excreta samples by a factor of 60. This result, put into context with earlier studies, indicates fast and efficient absorption of DON between crop and jejunum, conversion to DON-3-sulfate in intestinal mucosa, liver, and possibly kidney, and rapid elimination into excreta via bile and urine. PMID:26569307
Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco basin
NASA Astrophysics Data System (ADS)
Rasse, R.; Pérez, T.; Giuliante, A.; Donoso, L.
2018-04-01
Atmospheric deposition of total dissolved nitrogen (TDN) is an important source of nitrogen for ocean primary productivity that has increased since the industrial revolution. Thus, understanding its role in the ocean nitrogen cycle will help assess recent changes in ocean biogeochemistry. In the anoxic Cariaco basin, the place of the CARIACO Ocean Time-Series Program, the influence of atmospherically-deposited TDN on marine biogeochemistry is unknown. In this study, we measured atmospheric TDN concentrations as dissolved organic (DON) and inorganic (DIN) nitrogen (TDN = DIN + DON) in atmospheric suspended particles and wet deposition samples at the northeast of the basin during periods of the wet (August-September 2008) and dry (March-April 2009) seasons. We evaluated the potential anthropogenic N influences by measuring wind velocity and direction, size-fractionated suspended particles, chemical traces and by performing back trajectories. We found DIN and DON concentration values that ranged between 0.11 and 0.58 μg-N m-3 and 0.11-0.56 μg-N m-3 in total suspended particles samples and between 0.08 and 0.54 mg-N l-1 and 0.02-1.3 mg-N l-1 in wet deposition samples, respectively. Continental air masses increased DON and DIN concentrations in atmospheric suspended particles during the wet season. We estimate an annual TDN atmospheric deposition (wet + particles) of 3.6 × 103 ton-N year-1 and concluded that: 1) Atmospheric supply of TDN plays a key role in the C and N budget of the basin because replaces a fraction of the C (20% by induced primary production) and N (40%) removed by sediment burial, 2) present anthropogenic N could contribute to 30% of TDN atmospheric deposition in the basin, and 3) reduced DON (gas + particles) should be a significant component of bulk N deposition.
2010-01-01
Background Fusarium head blight is a very important disease of small grain cereals with F. graminearum as one of the most important causal agents. It not only causes reduction in yield and quality but from a human and animal healthcare point of view, it produces mycotoxins such as deoxynivalenol (DON) which can accumulate to toxic levels. Little is known about external triggers influencing DON production. Results In the present work, a combined in vivo/in vitro approach was used to test the effect of sub lethal fungicide treatments on DON production. Using a dilution series of prothioconazole, azoxystrobin and prothioconazole + fluoxastrobin, we demonstrated that sub lethal doses of prothioconazole coincide with an increase in DON production 48 h after fungicide treatment. In an artificial infection trial using wheat plants, the in vitro results of increased DON levels upon sub lethal prothioconazole application were confirmed illustrating the significance of these results from a practical point of view. In addition, further in vitro experiments revealed a timely hyperinduction of H2O2 production as fast as 4 h after amending cultures with prothioconazole. When applying H2O2 directly to germinating conidia, a similar induction of DON-production by F. graminearum was observed. The effect of sub lethal prothioconazole concentrations on DON production completely disappeared when applying catalase together with the fungicide. Conclusions These cumulative results suggest that H2O2 induced by sub lethal doses of the triazole fungicide prothioconazole acts as a trigger of DON biosynthesis. In a broader framework, this work clearly shows that DON production by the plant pathogen F. graminearum is the result of the interaction of fungal genomics and external environmental triggers. PMID:20398299
Savard, Christian; Pinilla, Vicente; Provost, Chantale; Gagnon, Carl A; Chorfi, Younes
2014-12-05
Deoxynivalenol (DON), also known as vomitoxin, is the most prevalent type B trichothecene mycotoxin worldwide. Pigs show a great sensitivity to DON, and because of the high proportion of grains in their diets, they are frequently exposed to this mycotoxin. The objective of this study was to determine the impact of DON naturally contaminated feed on porcine reproductive and respiratory syndrome virus (PRRSV) infection, the most important porcine viral pathogen in swine. Experimental infections were performed with 30 animals. Piglets were randomly divided into three groups of 10 animals based on DON content of diets (0, 2.5 and 3.5 mg/kg DON). All experimental groups were further divided into subgroups of 6 pigs and were inoculated with PRRSV. The remaining pigs (control) were sham-inoculated with PBS. Pigs were daily monitored for temperature, weight and clinical signs for 21 days. Blood samples were collected and tested for PRRSV RNA and for virus specific antibodies. Results of PRRSV infection showed that ingestion of diet highly contaminated with DON greatly increases the effect of PRRSV infection on weight gain, lung lesions and mortality, without increasing significantly viral replication, for which the tendency is rather directed toward a decrease of replication. These results suggest that PRRSV infection could exacerbate anorectic effect of DON, when ingested in large doses. Results also demonstrate a DON negative effect on PRRSV-specific humoral responses. This study demonstrate that high concentrations of DON naturally contaminated feed decreased the immune response against PRRSV and influenced the course of PRRSV infection in pigs. Copyright © 2014 Elsevier B.V. All rights reserved.
Overt signs of toxicity to dogs and cats of dietary deoxynivalenol.
Hughes, D M; Gahl, M J; Graham, C H; Grieb, S L
1999-03-01
Studies were conducted to determine the dietary amounts of deoxynivalenol (DON; vomitoxin) in dog and cat food that are required to produce overt signs of toxicity (e.g., vomiting or reduced food intake). Wheat naturally contaminated with 37 mg of DON/kg was used to manufacture pet foods containing 0, 1, 2, 4, 6, 8, and 10 mg of DON/kg. Deoxynivalenol concentration in pet food following manufacture was unchanged, indicating that the toxin was stable during conventional extrusion processing. Dogs previously fed DON-contaminated food were able to preferentially select uncontaminated food. Dogs not previously exposed to DON-contaminated food consumed equal quantities of contaminated and uncontaminated food. There was no effect of 6 mg of DON/kg on dog food digestibility. Food intake of dogs was significantly reduced by DON concentrations greater than 4.5 +/- 1.7 mg/kg, and DON greater than 7.7 +/- 1.1 mg/kg reduced cat food intake. Vomiting by dogs and cats was commonly observed at the 8 and 10 mg DON levels.
Schumann, Barbara; Winkler, Janine; Mickenautsch, Nicola; Warnken, Tobias; Dänicke, Sven
2016-08-01
Both deoxynivalenol (DON), zearalenone (ZEN), and their metabolites are known to modulate immune cells in various species whereby viability and proliferation are influenced. Such effects were rarely examined in horses. Therefore, one aim of the present study was to titrate the inhibitory concentrations of DON, 3-acetyl-DON (3AcDON), de-epoxy-DON (DOM-1), ZEN, and α- and β-zearalenol (ZEL) at which viability and proliferation of equine PBMC were reduced by 50 % (IC50) and 10 % (IC10) in vitro. For evaluation of practical relevance of the in vitro findings, a further aim was to screen horses for the background occurrence of DON, ZEN, and their metabolites in systemic circulation and to relate toxin residues both to the inhibitory toxin concentrations and to hematological and clinical-chemical characteristics.The IC50 (μM) for DON, 3AcDON, β-ZEL, α-ZEL, and ZEN were determined at 3.09, 25.90, 75.44, 97.44, and 98.15 in unstimulated cells, respectively, while in proliferating cells, the corresponding IC50 values were 0.73, 6.89, 45.16, 75.96, and 82.51. Neither viability nor proliferation was influenced by DOM-1 up to a concentration of 100 μM.The in vivo screening (N = 49) revealed the occurrence of ZEN (N = 24), α-ZEL (N = 3), β-ZEL (N = 37), DON, and DOM-1 (N = 2). The detected concentrations were much lower than the corresponding IC50 while the IC10 of DON and β-ZEL for proliferating PBMC corresponded to approximately 26 and 35 ng/mL which might be relevant when contaminated diets are fed.Clinical-chemical and hematological traits were not related to mycotoxin residue levels excepting blood urea nitrogen which was positively correlated to the sum of β-ZEL, α-ZEL, and ZEN concentration. Whether this reflects simply the feeding history of the horses or renal failures giving rise to a prolonged half-life of the toxins needs to be clarified further.
Rare Earth Element Concentrations from Wells at the Don A. Campbell Geothermal Plant, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Andrew; Zierenberg, Robert
* Requires permission of originators for use. Rare earth element concentrations in thermal springs from the wells at the Don A. Campbell geothermal plant, Nevada. Samples taken from geothermal wells 85-11, 65-11, 54-11, and 64-11. Includes pH and concentrations for Cerium, Dysprosium, Erbium, Europium, Gadolinium, Holmium, Lanthanum, Lutetium, Neodymium, Praseodymium, Samarium, Terbium, Thulium, Yttrium, and Ytterbium. Samples from Don A. Campbell, Nevada collected on October 14, 2016.
Liu, Cheng; Wang, Jie; Cao, Zhen; Chen, Wei; Bi, Hongkai
2016-03-01
Algae cells were the main sources of dissolved organic nitrogen (DON) in raw water with plenty of algae, and ultrasonic pretreatment was one of the algae-controlling methods through the damage of algae cells. However, the variation of DON concentration during the ultrasonic treatment process was not confirmed. Variation of DON concentration during the processes of low frequency ultrasound treatment of Microcystis aeruginosa was investigated. In addition, the effect of sonication on the metabolite concentration, algae cellar activity and the subsequent coagulation performance were discussed. The results showed that after a long duration of ultrasonic (60 s), nearly 90% of the algal cells were damaged and the maximum concentration of DON attained more than 3 mg/L. In order to control the leakage extent of DON, the sonication time should be less than 30 s with power intensity of more than 1.0 W/cm(3). In the mean time, ultrasonic treatment could inhibit the reactivation and the proliferation of algal, keep the algae cell wall integrity and enhance coagulation effectively under the same condition. However, ultrasound frequency had little effect on DON at the frequency range used in this study (20-150 kHz). Copyright © 2015 Elsevier B.V. All rights reserved.
Goyarts, Tanja; Brüssow, Klaus-Peter; Valenta, Hana; Tiemann, Ute; Jäger, Kathrin; Dänicke, Sven
2010-05-01
Six pregnant sows of 180.6 ± 5.6 kg were fed either a Fusarium-contaminated (4.42 mg DON and 48.3 µg ZON per kg, DON per os, n = 3) or a control diet (0.15 mg DON and 5 µg ZON/kg) in the period of days 63 and 70 of gestation. On day 63 of gestation, sows fed the control diet were implanted with an intraperitoneal osmotic minipump (delivery rate of 10 µL/h, for 7 days) containing 50 mg pure (98%) DON in 2 ml 50% DMSO (DON ip, n = 3). Frequent plasma samples were taken to estimate the kinetics after oral and ip DON exposure. The intended continuous delivery of DON by the intraperitoneal minipump could not be shown, as there was a plasma peak (Cmax) of 4.2-6.4 ng DON/mL either immediately (sow IP-2+3) or 2.5 h (sow IP-1) after implantation of the pump followed by a one-exponential decline with a mean half-time (t1/2) of 1.75-4.0 h and only negligible DON plasma concentrations after 12 h. Therefore, the DON ip exposure has to be regarded as one single dose 1 week before termination of experiment. The DON per os sows showed a mean basis level (after achieving a steady state) of DON plasma concentration of about 6-8 ng/mL, as also indicated by the plasma DON concentration at the termination of the experiment. On day 70, caesarean section was carried out, the fetuses were killed immediately after birth, and samples of plasma, urine, and bile were taken to analyze the concentration of DON and its metabolite de-epoxy-DON. At necropsy there were no macroscopic lesions observed in any organ of either sows or piglets. Histopathological evaluation of sows liver and spleen revealed no alterations. The proliferation rate of peripheral blood mononuclear cells (PBMC) with or without stimulation was not affected by the kind of DON treatment. The exposure of pregnant sows at mid-gestation (days 63-70, period of organogenesis) to a Fusarium toxin-contaminated diet (4.42 mg DON and 0.048 mg ZON per kg) or pure DON via intraperitoneal osmotic minipump did not cause adverse effects on health, fertility, maintenance of pregnancy, and performance of sows and their fetuses. However, DON was detected in fetus plasma, indicating that this toxin can pass the placental barrier and may cause changes in the proportion of white blood cells (lower monocyte and neutrophil and higher lymphocyte proportion in DON per os fetuses).
NASA Astrophysics Data System (ADS)
Rappe-George, M. O.; Gärdenäs, A. I.; Kleja, D. B.
2012-09-01
Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in the Stråsan experimental forest (Norway spruce) in Central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity, but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n=6) and tension lysimeters were installed in the underlying B horizon (n=4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B-horizon leachates, the N1 treatment approximately doubled leachate concentration of DOC and DON. DON returned to control levels but DOC remained elevated in B-horizon leachates in N2 plots 19 yr after termination of N addition. Increased aromaticity of the sampled DOM in mineral B horizon in both the ongoing and terminated N treatment indicated that old SOM in the mineral soil was a source of the increased DOC.
Faixová, Zita; Faix, Stefan; Borutová, Radka; Leng, Lubomír
2010-09-01
This study was conducted to investigate the effects of deoxynivalenol (DON) and zearalenone (ZEA) on some biochemical indices of broiler chickens. Twenty-four Ross 308 hybrid broiler chickens of both sexes were fed diets containing maize contaminated with Fusarium mycotoxins. The diets included a control diet (DON 0.60 mg/kg feed; ZEA 0.07 mg/kg feed), an experimental 1 diet (DON 3.4 mg kg⁻¹ feed; ZEA 3.4 mg kg⁻¹ feed), and an experimental 2 diet (DON 8.2 mg kg⁻¹ feed; ZEA 8.3 mg kg⁻¹ feed). Contaminated diets were fed from 14 days of age for 14 days. Blood samples were collected from 4-week-old birds. Chicks fed a diet containing a low level of contaminated maize (experimental 1) had decreased plasma potassium, magnesium, phosphorus, total protein, albumin, triglycerides, free glycerol concentrations and increased cholesterol and calcium levels as well as alkaline phosphatase (ALP) and aspartate aminotransferase (AST) enzyme activities as compared to the control. Feeding a diet contaminated with high levels of mycotoxins (experimental 2) resulted in decreased plasma potassium, magnesium, total protein, albumin, triglycerides, free glycerol concentrations and increased plasma ALP, alanine aminotransferase (ALT) and AST enzyme activities. The effect of mycotoxin-contaminated diets on ALP activity was dose dependent. Chloride concentration was not affected by the diets. It can be concluded that feeding diets contaminated with both levels of Fusarium mycotoxins significantly affected protein, lipid and mineral metabolism as well as AST and ALP enzyme activities in broiler chickens.
Silva, Milena Veronezi; Pante, Giseli Cristina; Romoli, Jéssica Cristina Zoratto; de Souza, Alexandra Perdigão Maia; Rocha, Gustavo Henrique Oliveira da; Ferreira, Flavio Dias; Feijó, Adriane Lettnin Roll; Moscardi, Salesia Maria Prodócimo; de Paula, Karina Ruaro; Bando, Erika; Nerilo, Samuel Botião; Machinski, Miguel
2018-03-01
Deoxynivalenol (DON) is the most important of the trichothecenes in terms of amounts and occurrence in wheat. This compound was shown to be associated with a glomerulonephropathy involving an increase of immunoglobulin A in humans. This study assessed the occurrence of DON in wheat flour and the exposure of Brazilian teenagers, adults and elderly to this mycotoxin due to intake of wheat flour-based products. DON extraction in wheat flour was carried out by solid phase extraction and the quantification was performed by ultra-high proficiency liquid chromatography with diode-array detection. A total of 77.9% of all samples were positive for DON, with concentrations ranging from 73.50 to 2794.63 µg kg -1 . The intake was calculated for the average and 90th percentile of the contamination levels of DON in foods based-wheat for teenagers, adults and elderly in Brazil, and compared with the provisional maximum tolerable daily intakes (PMTDI). Females of all age groups were exposed to DON at higher levels when compared to males in regard of consumption of breads and pastas. Teenagers were the main consumers of foods derived from wheat flour, with maximum probable daily intakes of 1.28 and 1.20 µg kg -1 b.w. day -1 for females and males, respectively. This population is at an increased risk of exposure to DON due to consumption of wheat flour-based foods in Brazil.
Effects of Bread Making and Wheat Germ Addition on the Natural Deoxynivalenol Content in Bread
Giménez, Isabel; Blesa, Jesús; Herrera, Marta; Ariño, Agustín
2014-01-01
Deoxynivalenol (DON, vomitoxin) is a type-B trichothecene mycotoxin produced by several field fungi such as Fusarium graminearum and Fusarium culmorum and known to have various toxic effects. This study investigated the effect of the bread making process on the stability of DON in common bread and wheat germ-enriched bread using naturally contaminated ingredients at the level of 560 µg/kg. The concentration of DON and its evolution during bread making were determined by immunoaffinity column cleanup followed by liquid chromatography with diode array detection (HPLC-DAD). During the bread making process, DON was reduced by 2.1% after fermentation and dropped by 7.1% after baking, reaching a maximum reduction of 19.8% in the crust as compared with a decrease of 5.6% in the crumb. The addition of 15% wheat germ to the dough did not affect DON stability during bread making, showing an apparent increase of 3.5% after fermentation and a reduction by 10.2% after baking. PMID:24451845
Crosby, Heith A; Ihnat, Michael; Miller, Kenneth E
2018-01-01
6-diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist produced naturally by Streptomyces. It inhibits several glutamine-dependent enzyme pathways. Of particular note is its inhibitory effect on the mitochondrial enzyme, glutaminase (GLS), the primary producer of neuronal glutamate. Glutamate is an excitatory neurotransmitter released by primary sensory peripheral nerve terminals and spinal synaptic terminals during pain signaling. Previous work using the tail incision and inflammatory models of pain has demonstrated that a single application of the glutaminase inhibitor, DON, into a surgical incision or the paw of arthritic animals results in pain relief. Even though this compound shows promise as a therapeutic agent, limited data exist regarding its dermal toxicity. As a first approach, we evaluated the effect of several concentrations of DON, on the viability, mitochondrial oxidative capacity and proliferation of rat skin fibroblasts, and then examined the effect of DON after incubation with human liver microsomes on proliferation. Finally, we evaluated DON treated rat skin (tail and hind paw) for cellular necrosis, inflammation and mitotic bodies. No significant effects (p > 0.05) of DON were noted on apoptosis, necrosis, and mitochondrial activity in experiments with cultured rat skin fibroblasts. Flow cytometry revealed the absence of apoptosis in cells treated at the IC50 of 232.5 μM. Enhanced toxicity post-exposure to human microsomes was not observed when compared to DON alone. The H&E staining of the rat skin revealed no obvious pathology in the DON treatment group (10 mM). DON has no/minimal cellular toxicity in vitro on dermal fibroblasts at concentrations that effectively provide analgesia. The local application of concentrations greater than the in vitro IC50 for DON revealed no in vivo skin toxicity. These data provide results indicating zero-to-minimal cellular toxicity with DON and support the further investigation of DON as an analgesic. PMID:29750203
Purification, immunotoxic effects, and cellular uptake of trichothecene mycotoxins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witt, M.F.
1989-01-01
Studies were carried out to better understand how the trichothecenes alter immune function in animals and humans. Deoxynivalenol (DON) was purified for use in animal feeding studies. Dietary exposure to DON for 8 weeks altered the serum immunoglobulin profile in mice and decreased the splenic plaque-forming cell response to the antigen sheep red blood cells. The uptake of ({sup 3}H)T-2 toxin by a murine B-cell hybridoma was studied in order to learn more about the way in which trichothecenes interact with immune cells. A simple procedure was developed for the laboratory production and purification of gram quantities of crystalline DON.more » When Fusarium graminearum R6576 was grown on rice, concentrations of 600 to 700 ppm DON accumulated after 13 to 18 days of incubation. A DON derivative, 15-acetylDON, was also found at concentrations of 100 to 300 ppm after 7 to 10 days. DON was purified from crude culture extracts by water-saturated silica gel chromatography. Alpha-({sup 3}H)T-2 toxin of 99% chemical and radiochemical purity was prepared for use in uptake studies. Both the rate of uptake of ({sup 3}H)T-2 toxin by hybridomas and the time required for accumulation of ({sup 3}H)T-2 to reach equilibrium were proportional to the concentration of ({sup 3}H)T-2. ({sup 3}H)T-2 toxin accumulated by hybridomas was proportional to the concentration of ({sup 3}H)T-2 between 10{sup {minus}8} and 10{sup {minus}3} M. The rate of uptake of ({sup 3}H)jT-2 toxin by hybridomas was inhibited by the trichothecenes T-2 toxin, DON, verrucarin A, and roridin A, as well as the antibiotic anisomycin. The kinetics and concentration dependence of accumulation, along with the inhibition patterns, suggest that uptake of ({sup 3}H)T-2 toxin by hybridomas is mediated by binding of toxin to ribosomes.« less
Tran, Anh Tuan; Kluess, Jeannette; Berk, Andreas; Paulick, Marleen; Frahm, Jana; Schatzmayr, Dian; Winkler, Janine; Kersten, Susanne; Dänicke, Sven
2018-02-01
A feeding experiment with piglets was performed to examine the efficacy of a wet preservation of Fusarium (FUS)-contaminated maize with sodium sulphite (SoS) based on deoxynivalenol (DON) and zearalenone (ZEN) residue levels in urine, bile and liquor and health traits of piglets. For this purpose, 80 castrated male piglets (7.57 ± 0.92 kg BW) were assigned to four treatment groups: CON- (control diet, with 0.09 mg DON and <0.01 mg ZEN/kg diet), CON+ (diet CON-, wet-preserved with 5 g SoS/kg maize; containing 0.05 mg DON and <0.01 mg ZEN/kg diet), FUS- (diet with mycotoxin-contaminated maize; containing 5.36 mg DON and 0.29 mg ZEN/kg diet), and FUS+ (diet FUS-, wet-preserved with 5 g SoS/kg maize; resulting in 0.83 mg DON and 0.27 mg ZEN/kg diet). After 42 d, 40 piglets (n = 10 per group) were sampled. A clear reduction of DON levels by approximately 75% was detected in all specimens of pigs fed diet FUS+. ZEN was detected in all urine, bile and liquor samples, while their metabolites were only detectable in urine and bile. Additionally, their concentrations were not influenced by SoS treatment. Among the health-related traits, feeding of FUS diets increased the total counts of leukocytes and segmented neutrophil granulocytes irrespective of SoS treatment. SoS treatment increased the total blood protein content slightly with a similar numerical trend in albumin concentration. These effects occurred at an obviously lower level in FUS-fed groups. Moreover, SoS treatment recovered the reduction of NO production induced by feeding diet FUS- indicating an effect on the redox level. As this effect only occurred in group FUS+, it is obviously related to the adverse effects of the Fusarium toxins. In conclusion, treatment of FUS-contaminated maize with SoS decreased the inner exposure with DON as indicated by the lower DON levels in various piglet specimens. However, health-related traits did not consistently reflect this decreased exposure.
NASA Astrophysics Data System (ADS)
Wiegner, T. N.
2005-05-01
Dissolved organic matter (DOM) is metabolically important in streams. Its bioavailability is influenced by organic matter sources to streams and inorganic nutrient availability. As forest canopies and soils develop over time, organic matter inputs to streams should switch from algal to watershed sources. Across this succession gradient, nutrient limitation should also change. This study examines how chemical composition and bioavailability of DOM from tropical montane rainforest streams on Hawaii change across a geologic age gradient from 4 ky to 150 ky. Dissolved organic C (DOC) and N (DON) concentrations, chemical characteristics, and bioavailability varied with site age. With increasing stream age, DOC and DON concentrations, DOM aromaticity, and the C:N of the stream DOM increased. Changes in stream DOM chemistry and inorganic nutrient availability affected DOM bioavailability. Fifty percent of the DOC from the 4 ky site was bioavailable, where little to none was bioavailable from the older streams. Inorganic nutrient availability did not affect DOC bioavailability. In contrast, DON bioavailability was similar (12%) across sites and was affected by inorganic nutrient availability. This study demonstrates that the chemistry and metabolism of streams draining forests change with ecosystem age and development.
Ferreira Lopes, Silvia; Vacher, Gaëlle; Savova-Bianchi, Dessislava
2017-01-01
The type B trichothecene mycotoxins deoxynivalenol (DON), nivalenol (NIV) and fusarenon-X (FX) are structurally related secondary metabolites frequently produced by Fusarium on wheat. Consequently, DON, NIV and FX contaminate wheat dusts, exposing grain workers to toxins by inhalation. Those trichothecenes at low, relevant, exposition concentrations have differential effects on intestinal cells, but whether such differences exist with respiratory cells is mostly unknown, while it is required to assess the combined risk of exposure to mycotoxins. The goal of the present study was to compare the effects of DON, NIV and FX alone or in combination on the viability and IL-6 and IL-8-inducing capacity of human epithelial cells representative of the respiratory tract: primary human airway epithelial cells of nasal (hAECN) and bronchial (hAECB) origin, and immortalized human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines. We report that A549 cells are particularly resistant to the cytotoxic effects of mycotoxins. FX is more toxic than DON and NIV for all epithelial cell types. Nasal and bronchial primary cells are more sensitive than bronchial and alveolar cell lines to combined mycotoxin mixtures at low concentrations, although they are less sensitive to mycotoxins alone. Interactions between mycotoxins at low concentrations are rarely additive and are observed only for DON/NIV and NIV/FX on hAECB cells and DON/NIV/FX on A549 cells. Most interactions at low mycotoxin concentrations are synergistic, antagonistic interactions being observed only for DON/FX on hAECB, DON/NIV on 16HBE14o- and NIV/FX on A549 cells. DON, NIV and FX induce, albeit at different levels, IL-6 and IL-8 release by all cell types. However, NIV and FX at concentrations of low cytotoxicity induce IL-6 release by hAECB and A549 cells, and IL-8 release by hAECN cells. Overall, these data suggest that combined exposure to mycotoxins at low concentrations have a stronger effect on primary nasal epithelial cells than on bronchial epithelial cells and activate different inflammatory pathways. This information is particularly relevant for future studies about the hazard of occupational exposure to mycotoxins by inhalation and its impact on the respiratory tract. PMID:29068378
Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality.
Bolyard, Stephanie C; Reinhart, Debra R
2017-07-01
Nitrogen is limited more and more frequently in wastewater treatment plant (WWTP) effluents because of the concern of causing eutrophication in discharge waters. Twelve leachates from eight landfills in Florida and California were characterized for total nitrogen (TN) and dissolved organic nitrogen (DON). The average concentration of TN and DON in leachate was approximately 1146mg/L and 40mg/L, respectively. Solid-phase extraction was used to fractionate the DON based on hydrophobic (recalcitrant fraction) and hydrophilic (bioavailable fraction) chemical properties. The average leachate concentrations of bioavailable (bDON) and recalcitrant (rDON) DON were 16.5mg/L and 18.4mg/L, respectively. The rDON fraction was positively correlated, but with a low R 2 , with total leachate apparent color dissolved UV 254 , chemical oxygen demand (COD), and humic acid (R 2 equals 0.38, 0.49, and 0.40, respectively). The hydrophobic fraction of DON (rDON) was highly colored. This fraction was also associated with over 60% of the total leachate COD. Multiple leachate and wastewater co-treatment simulations were carried out to assess the effects of leachate on total nitrogen wastewater effluent quality using removals for four WWTPs under different scenarios. The calculated pass through of DON suggests that leachate could contribute to significant amounts of nitrogen discharged to aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xue, Chonghua; Wang, Qi; Chu, Wenhai; Templeton, Michael R
2014-12-01
This study examined the formation of disinfection by-products (DBPs), including nitrogenous DBPs, haloacetonitriles (HANs), and carbonaceous DBPs, trihalomethanes (THMs), upon chlorination of water samples collected from a conventional Chinese surface water treatment plant (i.e. applying coagulation, sedimentation, and filtration). Reductions in the average concentrations (and range, shown in brackets) of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) from 4.8 (3.0-7.3) μg/L and 0.52 (0.20-0.81) μg/L in 2010 to 2.4 (1.4-3.7) μg/L and 0.17 (0.11-0.31) μg/L in 2012, respectively, led to a decrease in HANs and THMs from 5.3 and 28.5 μg/L initially to 0.85 and 8.2 μg/L, as average concentrations, respectively. The bromide concentration in the source water also decreased from 2010 to 2012, but the bromine incorporation factor (BIF) for the THMs did not change significantly; however, for HAN the BIFs increased because the reduction in DON was higher than that of bromide. There was good linear relationship between DOC and THM concentrations, but not between DON and HANs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vaquer-Sunyer, Raquel; Conley, Daniel J; Muthusamy, Saraladevi; Lindh, Markus V; Pinhassi, Jarone; Kritzberg, Emma S
2015-10-06
Increased anthropogenic pressures on coastal marine ecosystems in the last century are threatening their biodiversity and functioning. Global warming and increases in nutrient loadings are two major stressors affecting these systems. Global warming is expected to increase both atmospheric and water temperatures and increase precipitation and terrestrial runoff, further increasing organic matter and nutrient inputs to coastal areas. Dissolved organic nitrogen (DON) concentrations frequently exceed those of dissolved inorganic nitrogen in aquatic systems. Many components of the DON pool have been shown to supply nitrogen nutrition to phytoplankton and bacteria. Predictions of how global warming and eutrophication will affect metabolic rates and dissolved oxygen dynamics in the future are needed to elucidate their impacts on biodiversity and ecosystem functioning. Here, we experimentally determine the effects of simultaneous DON additions and warming on planktonic community metabolism in the Baltic Sea, the largest coastal area suffering from eutrophication-driven hypoxia. Both bacterioplankton community composition and metabolic rates changed in relation to temperature. DON additions from wastewater treatment plant effluents significantly increased the activation energies for community respiration and gross primary production. Activation energies for community respiration were higher than those for gross primary production. Results support the prediction that warming of the Baltic Sea will enhance planktonic respiration rates faster than it will for planktonic primary production. Higher increases in respiration rates than in production may lead to the depletion of the oxygen pool, further aggravating hypoxia in the Baltic Sea.
Oboh, Ganiyu; Ogunsuyi, Opeyemi Babatunde; Olonisola, Oluwaseyi Emmanuel
2017-04-01
Caffeine is adjudged world's most consumed pharmacologically active food component. With reports of the potential cognitive enhancing properties of caffeine, we sought to investigate if caffeine can influence the anticholinesterase and antioxidant properties of donepezil-a selective acetylcholinesterase (AChE) inhibitor used in the management of Alzheimer's disease (AD). In vitro, we investigated the effect of donepezil (DON), caffeine (CAF) and their various combinations on the activity of AChE in rat brain homogenate, as well as determined their antioxidant properties. In vivo, two rat groups were administered single oral dose of DON (5 mg/kg) and CAF (5 mg/kg) separately, while three groups, each received 5 mg/kg DON plus either 5, 50 or 100 mg/kg CAF for three hours, after which the rats were sacrificed and brain isolated. Results show that CAF concentration dependently and synergistically increased the anticholinesterase properties of DON in vitro. Also, CAF produced a significant influence on investigated in vitro antioxidant properties of DON. Furthermore, rats administered 5 mg/kg CAF and DON produced no significant difference in AChE activity compared to rats administered DON alone. However, co-administration of either 50 or 100 mg/kg CAF with DON lead to higher AChE activity compared to both control and DON groups. In addition, DON, CAF and their various combinations augmented brain antioxidant status in treated rats. We conclude that while low caffeine consumption may improve the antioxidant properties of donepezil without having a significant influence on its anticholinesterase effect, moderate-high caffeine consumption could also improve the antioxidant properties of donepezil but reduce its anticholinesterase effect; nevertheless, a comprehensive clinical trial is essential to fully explore these possibilities in human AD condition.
Van Le Thanh, Bich; Lemay, Michel; Bastien, Alexandre; Lapointe, Jérôme; Lessard, Martin; Chorfi, Younès; Guay, Frédéric
2016-05-01
Seventy-two piglets (6.0 kg BW) were randomly distributed within six different dietary treatments to evaluate the effect of deoxynivalenol (DON) and the potential of four antioxidant feed additives in mitigating the adverse effects of DON on growth performances and oxidative status. Dietary treatments were as follows: control diet 0.8 mg/kg DON; contaminated diet (DON-contaminated diet) 3.1 mg/kg DON; and four contaminated diets, each supplemented with a different antioxidant feed additive, DON + vitamins, DON + organic selenium (Se)/glutathione (GSH), DON + quercetin, and DON + COMB (vitamins + Se/GSH + quercetin from the other treatments). Although DON was the main mycotoxin in the contaminated diet, this diet also contained 1.8 mg/kg of zearalenone (ZEN). The "mycotoxin" effects therefore included the combined effect of these two mycotoxins, DON, and ZEN. The DON-ZEN ingestion did not affect growth performances, average daily gain (ADG), average daily feed intake (ADFI), and feed efficiency (G:F ratio), but partially induced oxidative stress in weaned pigs as shown by increased malondialdehyde (MDA) content in the plasma and superoxide dismutase (SOD) activity in liver (P < 0.05). However, no change in the activity of other antioxidant enzymes or GSH concentrations was observed in plasma and liver of piglets fed the DON-contaminated diet (P > 0.05). Supplementation with individual antioxidant feed additive had a limited effect in weaned pigs fed DON-ZEN-contaminated diets. Combination of antioxidants (vitamins A, C, and E, quercetin, and organic Se/GSH) reduced plasma and liver MDA content and SOD activity in liver (P < 0.05) of piglets fed DON-ZEN-contaminated diets. Furthermore, this combination also reduced MDA content in the ileum (P < 0.05), although activity of glutathione peroxidases (GPx), SOD or catalase (CAT) in the ileum was not affected by DON-ZEN contamination or antioxidant supplements. In conclusion, DON-ZEN contamination induced oxidative stress in weaned pigs and combination of antioxidant feed additives restored partially the oxidative status. Further studies will be necessary to assess whether the effects of antioxidant feed additives on oxidative status are specific when feed is contaminated with DON-ZEN.
Fate of dissolved organic nitrogen in two stage trickling filter process.
Simsek, Halis; Kasi, Murthy; Wadhawan, Tanush; Bye, Christopher; Blonigen, Mark; Khan, Eakalak
2012-10-15
Dissolved organic nitrogen (DON) represents a significant portion of nitrogen in the final effluent of wastewater treatment plants (WWTPs). Biodegradable portion of DON (BDON) can support algal growth and/or consume dissolved oxygen in the receiving waters. The fate of DON and BDON has not been studied for trickling filter WWTPs. DON and BDON data were collected along the treatment train of a WWTP with a two-stage trickling filter process. DON concentrations in the influent and effluent were 27% and 14% of total dissolved nitrogen (TDN). The plant removed about 62% and 72% of the influent DON and BDON mainly by the trickling filters. The final effluent BDON values averaged 1.8 mg/L. BDON was found to be between 51% and 69% of the DON in raw wastewater and after various treatment units. The fate of DON and BDON through the two-stage trickling filter treatment plant was modeled. The BioWin v3.1 model was successfully applied to simulate ammonia, nitrite, nitrate, TDN, DON and BDON concentrations along the treatment train. The maximum growth rates for ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria, and AOB half saturation constant influenced ammonia and nitrate output results. Hydrolysis and ammonification rates influenced all of the nitrogen species in the model output, including BDON. Copyright © 2012 Elsevier Ltd. All rights reserved.
Do's and Don'ts of Computer Models for Planning
ERIC Educational Resources Information Center
Hammond, John S., III
1974-01-01
Concentrates on the managerial issues involved in computer planning models. Describes what computer planning models are and the process by which managers can increase the likelihood of computer planning models being successful in their organizations. (Author/DN)
Dänicke, Sven; Beineke, Andreas; Berk, Andreas; Kersten, Susanne
2017-01-01
The common feed contaminant deoxynivalenol (DON) was reported to influence the morphology of the pars nonglandularis (PN) of porcine stomach. Moreover, finely ground feed is known to trigger the development of ulcers and other pathologies of PN while coarsely ground feed protects from such lesions. The interactions between grinding fineness and DON contamination of feed were not examined so far. Therefore, both finely and coarsely ground feeds were tested either in the absence or presence of a DON contaminated wheat on growth performance and health of rearing piglets, including stomach integrity. DON contamination significantly reduced feed intake and serum albumin concentration with this effect being more pronounced after feeding the coarsely ground feed. Albeit at a higher level, albumin concentration was also reduced after feeding the finely ground and uncontaminated feed. Finely ground and DON-contaminated feed caused a significantly more pronounced lymphoplasmacytic infiltration both of PN and pars glandularis , partly paralleled by lymph follicle formation and detritus filled foveolae and tubes suggesting a local immune response probably triggered by epithelial lesions. It is concluded that DON contamination of feed exacerbates the adverse effects of finely ground feed on stomach mucosal integrity.
Dänicke, Sven; Beineke, Andreas; Berk, Andreas; Kersten, Susanne
2017-01-01
The common feed contaminant deoxynivalenol (DON) was reported to influence the morphology of the pars nonglandularis (PN) of porcine stomach. Moreover, finely ground feed is known to trigger the development of ulcers and other pathologies of PN while coarsely ground feed protects from such lesions. The interactions between grinding fineness and DON contamination of feed were not examined so far. Therefore, both finely and coarsely ground feeds were tested either in the absence or presence of a DON contaminated wheat on growth performance and health of rearing piglets, including stomach integrity. DON contamination significantly reduced feed intake and serum albumin concentration with this effect being more pronounced after feeding the coarsely ground feed. Albeit at a higher level, albumin concentration was also reduced after feeding the finely ground and uncontaminated feed. Finely ground and DON-contaminated feed caused a significantly more pronounced lymphoplasmacytic infiltration both of PN and pars glandularis, partly paralleled by lymph follicle formation and detritus filled foveolae and tubes suggesting a local immune response probably triggered by epithelial lesions. It is concluded that DON contamination of feed exacerbates the adverse effects of finely ground feed on stomach mucosal integrity. PMID:28045426
Ghareeb, K; Awad, W A; Böhm, J
2012-04-01
Although acute mycotoxicoses are rare in poultry production, chronic exposure to low levels of mycotoxins is responsible for reduced productivity and increased susceptibility to infectious diseases. Deoxynivalenol (DON) is known to modulate immune function, but only a few studies have investigated the effect of DON on the vaccinal immune response. In addition, the effects of Mycofix select (Biomin GmbH, Herzogenburg, Austria) supplementation to DON-contaminated broiler diets have not yet been demonstrated. Therefore, an experiment with 1-d-old male broilers (Ross 308) was carried out to examine the effects of feeding DON-contaminated low-protein grower diets on performance, serum biochemical parameters, lymphoid organ weight, and antibody titers to infectious bronchitis vaccination in serum and to evaluate the effects of Mycofix select dietary supplementation in either the presence or absence of DON in broilers. In total, thirty-two 1-d-old broiler chicks were randomly assigned to 1 of the 4 dietary treatments for 5 wk. The dietary treatments were 1) control; 2) artificially contaminated diets with 10 mg of DON/kg of diet; 3) DON-contaminated diets supplemented with Mycofix select; and 4) control diet supplemented with Mycofix select. Feeding of contaminated diets decreased (P = 0.000) the feed intake, BW (P = 0.001), BW gain (P = 0.044), and feed efficiency during the grower phase. Deoxynivalenol affected the blood biochemistry, whereas plasma total protein and uric acid concentrations in birds fed contaminated grains were decreased compared with those of the controls. Moreover, in birds fed contaminated feeds, there was a tendency to reduce triglycerides in the plasma (P = 0.090), suggesting that DON in the diets affected protein and lipid metabolism in broiler chickens. The feeding of contaminated diets altered the immune response in broilers by reducing the total lymphocyte count. Similarly, the antibody response against infectious bronchitis vaccination antigens was decreased (P = 0.003) after feeding contaminated diets, compared with the controls. Moreover, contamination of the broiler diet with DON increased the heteropil:lymphocyte ratio (stress index), suggesting that DON elevated the physiological stress responses of broilers. However, feeding of DON-containing diets did not alter the other plasma constituents, including activities of enzymes. Mycofix select addition to the DON-contaminated feed led to normal immunological and physiological functions in broilers that were comparable with those of the control group, indicating that the addition of the additive to the DON-contaminated feed of the broilers effectively alleviated the alterations caused by DON. It was concluded that broiler performance and some blood and immunological parameters were adversely affected by feeding diets contaminated with the Fusarium mycotoxin DON. However, the dietary Mycofix select supplementation as a detoxifying agent was successful in overcoming the mycotoxin-related effects.
Dissolved nitrogen seasonal dynamics in Alaskan Arctic streams & rivers
NASA Astrophysics Data System (ADS)
Khosh, M. S.; McClelland, J. W.; Douglas, T. A.; Jacobson, A. D.; Barker, A. J.; Lehn, G. O.
2011-12-01
Over the coming century, continued warming in the Arctic is expected to bring about many changes to the region including altered precipitation regimes, earlier snowmelt, and degradation of permafrost. These alterations are likely to modify the hydrology within the region, including changes in the quantity, seasonality, and flow paths of water; all of which may impact biogeochemical processes within Arctic catchments. The anticipated responses to warming in the Arctic are likely to become most apparent during the spring snowmelt period, and in the late summer to early fall when the seasonally-thawed active layer reaches its maximum depth. While our knowledge of the seasonal dynamics of water-borne constituents in Arctic rivers is improving, the spring snowmelt and the late summer/early fall are times of the year that Arctic rivers have historically been under sampled. An improved understanding of the mechanisms that control the seasonal variability of water chemistry may help us to better understand how these systems will respond to further warming. Between May and October of 2009 and 2010 we collected surface water samples from six different rivers/streams in the Alaskan Arctic, with particular emphasis placed on sampling during the spring snowmelt and during the late summer until fall freeze-up. These rivers were selected because they represent end-member physical characteristics ranging from high gradient rivers draining predominantly bedrock to low gradient rivers draining predominantly tundra. The catchments of all six rivers are underlain by continuous permafrost and range in size from 1.6 km2 to 610 km2. Samples were analyzed for total dissolved nitrogen (TDN), nitrate (NO3-), and ammonium (NH4+). Dissolved organic nitrogen (DON) was calculated as [TDN] - [NO3-] - [NH4+]. TDN concentrations exhibited maxima in the spring and fall, but the prevailing forms of nitrogen differed markedly between the early and late periods. There were also marked differences between the tundra and bedrock dominated streams. The DON fraction comprised the majority of TDN (>90%) in all of the rivers during the spring, but the tundra-dominated sites had higher DON concentrations. Additionally, DON concentrations in the bedrock-dominated streams declined more sharply after the spring freshet than DON concentrations in the tundra-dominated streams. Beginning in mid-late July and extending through freeze-up in the fall, DIN concentrations (predominantly nitrate) increased dramatically in the bedrock-dominated streams. Indeed, by late summer and early fall DIN made up the majority of TDN (often >90%) observed at the bedrock-dominated sites. A similar trend of increasing DIN was also seen at the tundra-dominated sites, but the increase occurred later in the year (mid to late September) and the magnitude of change was smaller than that observed in the bedrock-dominated sites. Observed increases in DIN starting in mid to late summer may suggest a decrease in nitrogen assimilation rates as vegetation senesces and/or water flow paths move through deeper mineral soils.
Vanhoutte, Ilse; De Mets, Laura; De Boevre, Marthe; Uka, Valdet; Di Mavungu, José Diana; De Saeger, Sarah; De Gelder, Leen; Audenaert, Kris
2017-01-01
Mycotoxins are toxic metabolites produced by fungi. To mitigate mycotoxins in food or feed, biotransformation is an emerging technology in which microorganisms degrade toxins into non-toxic metabolites. To monitor deoxynivalenol (DON) biotransformation, analytical tools such as ELISA and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) are typically used. However, these techniques do not give a decisive answer about the remaining toxicity of possible biotransformation products. Hence, a bioassay using Lemna minor L. was developed. A dose–response analysis revealed significant inhibition in the growth of L. minor exposed to DON concentrations of 0.25 mg/L and higher. Concentrations above 1 mg/L were lethal for the plant. This bioassay is far more sensitive than previously described systems. The bioassay was implemented to screen microbial enrichment cultures, originating from rumen fluid, soil, digestate and activated sludge, on their biotransformation and detoxification capability of DON. The enrichment cultures originating from soil and activated sludge were capable of detoxifying and degrading 5 and 50 mg/L DON. In addition, the metabolites 3-epi-DON and the epimer of de-epoxy-DON (3-epi-DOM-1) were found as biotransformation products of both consortia. Our work provides a new valuable tool to screen microbial cultures for their detoxification capacity. PMID:28208799
Vanhoutte, Ilse; De Mets, Laura; De Boevre, Marthe; Uka, Valdet; Di Mavungu, José Diana; De Saeger, Sarah; De Gelder, Leen; Audenaert, Kris
2017-02-13
Mycotoxins are toxic metabolites produced by fungi. To mitigate mycotoxins in food or feed, biotransformation is an emerging technology in which microorganisms degrade toxins into non-toxic metabolites. To monitor deoxynivalenol (DON) biotransformation, analytical tools such as ELISA and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) are typically used. However, these techniques do not give a decisive answer about the remaining toxicity of possible biotransformation products. Hence, a bioassay using Lemna minor L. was developed. A dose-response analysis revealed significant inhibition in the growth of L. minor exposed to DON concentrations of 0.25 mg/L and higher. Concentrations above 1 mg/L were lethal for the plant. This bioassay is far more sensitive than previously described systems. The bioassay was implemented to screen microbial enrichment cultures, originating from rumen fluid, soil, digestate and activated sludge, on their biotransformation and detoxification capability of DON. The enrichment cultures originating from soil and activated sludge were capable of detoxifying and degrading 5 and 50 mg/L DON. In addition, the metabolites 3-epi-DON and the epimer of de-epoxy-DON (3-epi-DOM-1) were found as biotransformation products of both consortia. Our work provides a new valuable tool to screen microbial cultures for their detoxification capacity.
Spatial and seasonal variability of dissolved organic matter in the Cariaco Basin
NASA Astrophysics Data System (ADS)
Lorenzoni, Laura; Taylor, Gordon T.; Benitez-Nelson, Claudia; Hansell, Dennis A.; Montes, Enrique; Masserini, Robert; Fanning, Kent; Varela, Ramón; Astor, Yrene; GuzmáN, Laurencia; Muller-Karger, Frank E.
2013-06-01
organic carbon (DOC), nitrogen (DON), and phosphorus (DOP) were measured monthly at the CARIACO Time Series station (10°30'N, 64°40'W) in the southeastern Caribbean Sea between 2005 and 2012. Marked seasonal variability in DOC concentrations was observed, with lower values (~66 µM) in the upper water column (<75 m) during the upwelling season (December-April) due to the injection of cool, DOC-impoverished Subtropical Underwater from the Caribbean Sea. During the rainy season (May-November) waters were stratified and upper layer DOC concentrations increased to ~71 µM. Interannual variability in surface (1 m) concentrations of DOC was also observed in response to the variable strength in upwelling and stratification that the Cariaco Basin experienced. DON and DOP showed no such seasonality. At depths >350 m, DOC concentrations were 56 ± 4.7 µM, roughly 10 µM higher than those in the Caribbean Sea over the same depth range. DON and DOP showed similar vertical profiles to that of DOC, with higher concentrations (6.8 ± 1.2 µM N and 0.15 ±0.09 µM P) in the upper water column and invariant, lower concentrations at depth (4.8 ± 1.6 µM N and 0.10 ± 0.08 µM P). Wind-driven advection of surface DOC out of the Cariaco Basin was estimated to support a net export ~15 Gmol C yr-1 into the Caribbean Sea; this rate is comparable to the flux of settling particulate organic carbon to depths >275 m within the basin.
Bencze, Szilvia; Puskás, Katalin; Vida, Gyula; Karsai, Ildikó; Balla, Krisztina; Komáromi, Judit; Veisz, Ottó
2017-08-01
Increasing atmospheric CO 2 concentration not only has a direct impact on plants but also affects plant-pathogen interactions. Due to economic and health-related problems, special concern was given thus in the present work to the effect of elevated CO 2 (750 μmol mol -1 ) level on the Fusarium culmorum infection and mycotoxin contamination of wheat. Despite the fact that disease severity was found to be not or little affected by elevated CO 2 in most varieties, as the spread of Fusarium increased only in one variety, spike grain number and/or grain weight decreased significantly at elevated CO 2 in all the varieties, indicating that Fusarium infection generally had a more dramatic impact on the grain yield at elevated CO 2 than at the ambient level. Likewise, grain deoxynivalenol (DON) content was usually considerably higher at elevated CO 2 than at the ambient level in the single-floret inoculation treatment, suggesting that the toxin content is not in direct relation to the level of Fusarium infection. In the whole-spike inoculation, DON production did not change, decreased or increased depending on the variety × experiment interaction. Cooler (18 °C) conditions delayed rachis penetration while 20 °C maximum temperature caused striking increases in the mycotoxin contents, resulting in extremely high DON values and also in a dramatic triggering of the grain zearalenone contamination at elevated CO 2 . The results indicate that future environmental conditions, such as rising CO 2 levels, may increase the threat of grain mycotoxin contamination.
Lin, Lijin; Shi, Jun; Liu, Qihua; Liao, Ming'an; Mei, Luoyin
2014-07-01
In a preliminary study, we found that the cadmium (Cd) concentrations in shoots of the winter farmland weeds Cardamine hirsuta Linn. and Gnaphalium affine D. Don exceeded the critical value of a Cd-hyperaccumulator (100 mg kg(-1)), indicating that these two farmland weeds might be Cd-hyperaccumulators. In this study, we grew these species in soil containing various concentrations of Cd to further evaluate their Cd accumulation characteristics. The biomasses of C. hirsuta and G. affine decreased with increasing Cd concentrations in the soil, while the root/shoot ratio and the Cd concentrations in shoot tissues increased. The Cd concentrations in shoots of C. hirsuta and G. affine reached 121.96 and 143.91 mg kg(-1), respectively, at the soil Cd concentration of 50 mg kg(-1). Both of these concentrations exceeded the critical value of a Cd-hyperaccumulator (100 mg kg(-1)). The shoot bioconcentration factors of C. hirsuta and G. affine were greater than 1. The translocation factor of C. hirsuta was less than 1 and that of G. affine was greater than 1. These findings indicated that C. hirsuta is a Cd-accumulator and G. affine is Cd-hyperaccumulator. Both plants are distributed widely in the field, and they could be used to remediate Cd-contaminated farmland soil in winter.
The effects of deoxynivalenol on gene expression in the murine thymus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kol, Sandra W.M. van; Department of Health Risk Analysis and Toxicology, Maastricht University; Netherlands Toxicogenomics Centre
Deoxynivalenol (DON) is a mycotoxin produced by several Fusarium species and is often detected in grains. Because of its high abundance, there has been a large interest in the effects of DON in animals and humans. DON is known to be immunosuppressive at high concentrations and immunostimulatory at low concentrations. The present study aimed to acquire insight into the modes of action of DON. For this, C57Bl6 mice were orally exposed to 5, 10, or 25 mg/kg bw DON for 3, 6, or 24 h and thymuses were subjected to genome-wide expression microarray analysis. Gene set enrichment analysis (GSEA) demonstratedmore » that DON downregulated genes involved in proliferation, mitochondria, protein synthesis, and ribosomal proteins. Furthermore, GSEA showed a selective downregulation of genes highly expressed at the early precursor thymocytes stage. This indicates that early precursor thymocytes, particularly at the double-positive CD4+CD8+ stage, are more vulnerable to DON than very early or late precursor thymocytes. There was a large overlap of genes upregulated by DON with genes previously reported to be either upregulated during T cell activation or upregulated during negative selection of thymocytes that recognize 'self-antigens'. This indicates that DON induces cellular events that also occur after activation of the T cell receptor, for example, release of calcium from the endoplasmatic reticulum. This T cell activation in the thymus then evokes negative selection and depletion of thymocytes, which provides a plausible explanation for the high sensitivity of the thymus for DON exposure. The expression patterns of four genes indicative for some of the processes that were affected after DON treatment were confirmed using real-time PCR. Immunocytological experiments with primary mouse thymocytes demonstrated the translocation of NFAT from the cytoplasm into the nucleus upon exposure top DON, thus providing further evidence for the involvement of T cell activation.« less
NASA Astrophysics Data System (ADS)
Rappe-George, M. O.; Gärdenäs, A. I.; Kleja, D. B.
2013-03-01
Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in Stråsan experimental forest (Norway spruce) in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6), and tension lysimeters were installed in the underlying B horizon (n = 4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i) the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii) indirectly via priming of old SOM, and/or (iii) a suppression of extracellular oxidative enzymes.
Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol.
Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao
2014-01-01
The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (P<0.05) induced oxidative stress in piglets, while this stress was remarkably reduced with glutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition.
Therapeutic Effects of Glutamic Acid in Piglets Challenged with Deoxynivalenol
Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao
2014-01-01
The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (P<0.05) induced oxidative stress in piglets, while this stress was remarkably reduced with glutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition. PMID:24984001
Soil warming opens the nitrogen cycle at the alpine treeline.
Dawes, Melissa A; Schleppi, Patrick; Hättenschwiler, Stephan; Rixen, Christian; Hagedorn, Frank
2017-01-01
Climate warming may alter ecosystem nitrogen (N) cycling by accelerating N transformations in the soil, and changes may be especially pronounced in cold regions characterized by N-poor ecosystems. We investigated N dynamics across the plant-soil continuum during 6 years of experimental soil warming (2007-2012; +4 °C) at a Swiss high-elevation treeline site (Stillberg, Davos; 2180 m a.s.l.) featuring Larix decidua and Pinus uncinata. In the soil, we observed considerable increases in the NH4+ pool size in the first years of warming (by >50%), but this effect declined over time. In contrast, dissolved organic nitrogen (DON) concentrations in soil solutions from the organic layer increased under warming, especially in later years (maximum of +45% in 2012), suggesting enhanced DON leaching from the main rooting zone. Throughout the experimental period, foliar N concentrations showed species-specific but small warming effects, whereas δ 15 N values showed a sustained increase in warmed plots that was consistent for all species analysed. The estimated total plant N pool size at the end of the study was greater (+17%) in warmed plots with Pinus but not in those containing Larix, with responses driven by trees. Irrespective of plot tree species identity, warming led to an enhanced N pool size of Vaccinium dwarf shrubs, no change in that of Empetrum hermaphroditum (dwarf shrub) and forbs, and a reduction in that of grasses, nonvascular plants, and fine roots. In combination, higher foliar δ 15 N values and the transient response in soil inorganic N indicate a persistent increase in plant-available N and greater cumulative plant N uptake in warmer soils. Overall, greater N availability and increased DON concentrations suggest an opening of the N cycle with global warming, which might contribute to growth stimulation of some plant species while simultaneously leading to greater N losses from treeline ecosystems and possibly other cold biomes. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Campbell, J.; Felix, J. D. D.; Wetz, M.; Cira, E.
2017-12-01
Harmful algal blooms (HABs) have the potential to adversely affect the water quality of estuaries and, consequently, their ability to support healthy and diverse ecosystems. Since the early 1990s, Baffin Bay, a semi-arid south Texas estuary, has progressively experienced harmful algal blooms. The primary species of HAB native to the Baffin Bay region, Aureoumbra lagunensis, is unable to utilize nitrate as a nutrient source, but instead relies on forms of reduced nitrogen (such as dissolved organic nitrogen (DON) and ammonium (NH4+)) for survival. DON levels in Baffin Bay (77 ± 10 µM) exceed the DON concentrations of not only typical Texas estuaries, but estuaries worldwide. Additionally, DON accounts for 90% of the total dissolved nitrogen (TDN) in Baffin Bay, followed by NH4+ at 8%, and NO3-+NO2- contributing 2%. Due to the dependence of A. lagunensis on the reduced forms of nitrogen as an energy source and the elevated concentrations of DON throughout the bay, it is important to identify the origin of this nitrogen as well as how it's being processed as it cycles through the ecosystem. The presented work investigates the stable isotopic composition of reactive nitrogen (Nr) (δ15N-DON, δ15N-NH4+, and δ15N-NO3-) in Baffin Bay samples collected monthly at nine stations over the period of one year. The work provides preliminary evidence of Nr sources and mechanisms driving favorable conditions for HAB proliferation. This information can be useful and applicable to estuarine ecosystems in various settings, advancing scientific progress towards mitigating blooms. Additionally, since the elevated concentrations of DON make Baffin Bay uniquely suited to investigate its sources and processing, this project will aid in characterizing the role of this largely unstudied form of Nr, which could provide insight and change perceptions about the role of DON in nitrogen dynamics.
Antonissen, G; De Baere, S; Devreese, M; Van Immerseel, F; Martel, A; Croubels, S
2017-01-01
The aim of the present study was to evaluate the effect of the Fusarium mycotoxins deoxynivalenol (DON) and fumonisins (FBs) on the stress response in broiler chickens, using corticosterone (CORT) in plasma as a biomarker. Chickens were fed either a control diet, a DON contaminated diet, a FBs contaminated diet, or a DON and FBs contaminated diet for 15 d at concentrations close to the European Union maximum guidance levels for DON and FBs in poultry. Mean plasma CORT levels were significantly higher in broiler chickens fed a DON contaminated and a DON and FBs contaminated diet compared to birds fed a control diet. A similar trend was observed for animals fed a FBs contaminated diet. Consequently, feeding broilers a diet contaminated with DON and/or FBs induced a CORT stress response, which may indicate a negative effect on animal welfare. © 2016 Poultry Science Association Inc.
NASA Astrophysics Data System (ADS)
Lee, Mi-Hee; Payeur-Poirier, Jean-Lionel; Park, Ji-Hyung; Matzner, Egbert
2016-09-01
Heavy storm events may increase the amount of organic matter in runoff from forested watersheds as well as the relation of dissolved to particulate organic matter. This study evaluated the effects of monsoon storm events on the runoff fluxes and on the composition of dissolved (< 0.45 µm) and particulate (0.7 µm to 1 mm) organic carbon and nitrogen (DOC, DON, POC, PON) in a mixed coniferous/deciduous (mixed watershed) and a deciduous forested watershed (deciduous watershed) in South Korea. During storm events, DOC concentrations in runoff increased with discharge, while DON concentrations remained almost constant. DOC, DON and NO3-N fluxes in runoff increased linearly with discharge pointing to changing flow paths from deeper to upper soil layers at high discharge, whereas nonlinear responses of POC and PON fluxes were observed likely due to the origin of particulate matter from the erosion of mineral soil along the stream benches. The integrated C and N fluxes in runoff over the 2-month study period were in the order of DOC > POC and NO3-N > DON > PON. The integrated DOC fluxes in runoff during the study period were much larger at the deciduous watershed (16 kg C ha-1) than at the mixed watershed (7 kg C ha-1), while the integrated NO3-N fluxes were higher at the mixed watershed (5.2 kg N ha-1) than at the deciduous watershed (2.9 kg N ha-1). The latter suggests a larger N uptake by deciduous trees. Integrated fluxes of POC and PON were similar at both watersheds. The composition of organic matter in soils and runoff indicates that the contribution of near-surface flow to runoff was larger at the deciduous than at the mixed watershed. Our results demonstrate different responses of particulate and dissolved C and N in runoff to storm events as a combined effect of tree species composition and watershed specific flow paths.
A Novel Source of DOC and DON to Watershed Soils
NASA Astrophysics Data System (ADS)
Aitkenhead-Peterson, J. A.
2017-12-01
A source of dissolved organic carbon (DOC) and nitrogen (DON) to soils and groundwater is that emanating from decomposing mammals. Although there is an increase in human donor facilities (body farms) in the USA and in mass mortality events (MME) worldwide, this injection of DOC and DON into watershed soils has received little attention. Studies at two human donor facilities in Texas, USA have revealed that the purge fluid associated with decomposition is extremely high in DOC and DON and migrates down the soil profile. Two studies were carried out 1) The southeast Texas Applied Forensic Science (STAFS) facility on an Alfisol with a saturated hydraulic conductivity of 331 mm hr-1 and 83% sand and 2) the Forensic Anthropology Research Facility (FARF) on Mollisols with a saturated hydraulic conductivity of 3.6-9.7 mm hr-1 and 28-33% sand. The numbers of days since donors were laid in the environment ranged from 219-680 d at STAFS and 306-960 d at FACTS. Purge can occur between 5 and 30 d dependent on the time of year the body is placed and the resultant phenomenon is termed cadaver decomposition island (CDI). Soil cores were taken at 5 cm increments to a depth of 30 cm in the sandy soil and 15 cm in the clayey/rocky soil. In the sandy soils, DOC concentrations were significantly higher in all the CDI soils when compared to control soils at depths of 15, 20, 25 and 30 cm and ranged from 121.7 µg g-1 (30 cm) to 167.6 µg g-1 (15 cm) in control soils and 461.9 µg g-1 (30 cm) to 660.4 µg g-1 (15 cm) in CDI soils, representing a three- to four-fold increase in DOC relative to control soils. DON in all CDI soils was not significantly higher than control soils until 30 cm depth and ranged from 9.9-32.3 µg g-1 in CDI soils and 121.7 µg g-1 in control soil, representing a two- to seven-fold increase in DON relative to control soils. DOC concentrations in control soils at the FARF site at 15 cm ranged 215-365 µg g-1 while in the CDI soils DOC was higher (range: 270-1175 µg g-1 and average: 567 µg g-1) suggesting a two-fold increase. DON at the FARF site at 15 cm ranged 9.5-10.4 µg g-1 in control soils while in the CDI soils the range was higher (range: 5.6-86.6; average: 38.7 µg g-1). This study highlights the implications for what could be expected during MMEs especially those which exceed 1,000's of deaths in creating hotspots of organic C and organic N across the landscape.
NASA Astrophysics Data System (ADS)
Frank, S.; Tiemeyer, B.; Gelbrecht, J.; Freibauer, A.
2013-10-01
Artificial drainage of peatlands causes dramatic changes in the release of greenhouse gases and in the export of dissolved carbon (C) and nutrients to downstream ecosystems. Rewetting anthropogenically altered peatlands offers a possibility to reduce nitrogen (N) and C losses. In this study, we investigate the impact of drainage and rewetting on the cycling of dissolved C and N as well as on dissolved gases over a period of 1 yr and 4 month, respectively. The peeper technique was used to receive a high vertical sampling resolution. Within one Atlantic bog complex a near natural site, two drained grasslands sites with different mean water table positions, and a former peat cutting area rewetted 10 yr ago were chosen. Our results clearly indicate that drainage increased the concentration of dissolved organic carbon (DOC), ammonia, nitrate and dissolved organic nitrogen (DON) compared to the near natural site. Drainage depth further determined the release and therefore the concentration level of DOC and N species, but the biochemical cycling and therefore dissolved organic matter (DOM) quality and N species composition were unaffected. Thus, especially deep drainage can cause high DOC losses. In general, DOM at drained sites was enriched in aromatic moieties as indicated by SUVA280 and showed a higher degradation status (lower DOC to DON ratio) compared to the near natural site. At the drained sites, equal C to N ratios of uppermost peat layer and DOC to DON ratio of DOM in soil solution suggest that the uppermost degraded peat layer is the main source of DOM. Nearly constant DOC to DON ratios and SUVA280 values with depth furthermore indicated that DOM moving downwards through the drained sites remained largely unchanged. DON and ammonia contributed most to the total dissolved nitrogen (TN). The subsoil concentrations of nitrate were negligible due to strong decline in nitrate around mean water table depth. Methane production during the winter months at the drained sites moved downwards to areas which were mostly water saturated over the whole year (>40 cm). Above these depths, the recovery of the water table in winter months led to the production of nitrous oxide around mean water table depth at drained sites. 10 yr after rewetting, the DOM quality (DOC to DON ratio and SUVA280) and quantity were comparable to the near natural site, indicating the re-establishment of mostly pristine biochemical processes under continuously water logged conditions. The only differences occur in elevated dissolved methane and ammonia concentrations reflecting the former disturbance by drainage and peat extraction. Rewetting via polder technique seems to be an appropriate way to revitalize peatlands on longer timescales and to improve the water quality of downstream water bodies.
Sobral, M Madalena C; Faria, Miguel A; Cunha, Sara C; Ferreira, Isabel M P L V O
2018-07-01
Aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FB1) and ochratoxin A (OTA) are toxic fungal metabolites co-occurring naturally in the environment. This study aimed to evaluate the toxicological interactions of these mycotoxins concerning additive, antagonistic and synergistic toxicity towards human cells. The theoretical biology-based Combination index-isobologram method was used to evaluate the individual and binary effect of these toxins and determine the type of the interaction using as models Caco-2 (intestinal) and HepG2 (hepatic) cells. Cytotoxicity was assessed using the MTT test at the concentrations of 0.625-20 μM for all the compounds. DON exerted the highest toxicity toward both cells, OTA and AFB1 also showed a dose-effect response, whereas no toxicity was verified for FB1. Synergism or antagonism effects occurred when exposing AFB1-DON and AFB1-OTA on Caco-2 cells at higher or lower concentrations, respectively; while DON-OTA showed synergism throughout all inhibition levels. Concerning HepG2, AFB1-DON exerted a strong synergism, regardless of the level; whereas AFB1-OTA had slight synergism/nearly additive effect; and, OTA-DON had a moderate antagonism/nearly additive effect. Synergistic strengths as high as a dose reduction index of 10 for AFB1-DON were observed in hepatic cells. Taken together our findings indicate that the toxicological effects differ regarding the type of mycotoxins used for combinations and the stronger synergistic effect was observed for mixtures containing DON in both cells. Therefore, even though DON has not been classified as to its carcinogenicity to humans, this mycotoxin may present a serious threat to health, mainly when co-occurring in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Pollution investigation of deoxynivalenol in wheat flour of China in 2013].
Lu, Jingjing; Yang, Dajin
2015-07-01
To study the deoxynivalenol (DON) contamination status in wheat flour of China in 2013. Stereotypes packaged or bulk wheat flour samples sold in 28 provinces were collected in a random sampling way. The concentration of DON in each flour wheat sample was measured by high performance liquid chromatography. The results were statistically analyzed and evaluated. A total of 5678 wheat flour was detected. The detection rate of DON was 58.74%. The excessive rate of the standard of DON was 4.60%. The average content of DON was 317 µg/kg. The content range of DON was 0-56.1 mg/kg. DON pollution is relatively common in wheat flour of China in 2013, but the excessive rate is not high. The degree of pollution in each area is different. The excessive rate of DON, which was associated with the local temperature and humidity conditions, in wheat flour sold in east, southwest and northwest area is relatively high. Pollution level of DON in wheat flour in 2013 is consistent with those in 2010 and 2011, but lower than the monitoring results in 2012.
Urinary analysis reveals high deoxynivalenol exposure in pregnant women from Croatia.
Sarkanj, Bojan; Warth, Benedikt; Uhlig, Silvio; Abia, Wilfred A; Sulyok, Michael; Klapec, Tomislav; Krska, Rudolf; Banjari, Ines
2013-12-01
In this pilot survey the levels of various mycotoxin biomarkers were determined in third trimester pregnant women from eastern Croatia. First void urine samples were collected and analysed using a "dilute and shoot" LC-ESI-MS/MS multi biomarker method. Deoxynivalenol (DON) and its metabolites: deoxynivalenol-15-glucuronide and deoxynivalenol-3-glucuronide were detected in 97.5% of the studied samples, partly at exceptionally high levels, while ochratoxin A was found in 10% of the samples. DON exposure was primarily reflected by the presence of deoxynivalenol-15-glucuronide with a mean concentration of 120 μg L(-1), while free DON was detected with a mean concentration of 18.3 μg L(-1). Several highly contaminated urine samples contained a third DON conjugate, tentatively identified as deoxynivalenol-7-glucuronide by MS/MS scans. The levels of urinary DON and its metabolites measured in this study are the highest ever reported, and 48% of subjects were estimated to exceed the provisional maximum tolerable daily intake (1 μg kg(-1) b.w.). Copyright © 2013 Elsevier Ltd. All rights reserved.
Phytotoxicity Evaluation of Type B Trichothecenes Using a Chlamydomonas reinhardtii Model System
Suzuki, Tadahiro; Iwahashi, Yumiko
2014-01-01
Type B trichothecenes, which consist of deoxynivalenol (DON) and nivalenol (NIV) as the major end products, are produced by phytotoxic fungi, such as the Fusarium species, and pollute arable fields across the world. The DON toxicity has been investigated using various types of cell systems or animal bioassays. The evaluation of NIV toxicity, however, has been relatively restricted because of its lower level compared with DON. In this study, the Chlamydomonas reinhardtii testing system, which has been reported to have adequate NIV sensitivity, was reinvestigated under different mycotoxin concentrations and light conditions. The best concentration of DON and NIV, and their derivatives, for test conditions was found to be 25 ppm (2.5 × 10−2 mg/mL). In all light test conditions, DON, NIV, and fusarenon-X (FusX) indicated significant growth inhibition regardless of whether a light source existed, or under differential wavelength conditions. FusX growth was also influenced by changes in photon flux density. These results suggest that C. reinhardtii is an appropriate evaluation system for type B trichothecenes. PMID:24476708
NASA Astrophysics Data System (ADS)
Wymore, Adam S.; Potter, Jody; Rodríguez-Cardona, Bianca; McDowell, William H.
2018-04-01
The advent of high-frequency in situ optical sensors provides new opportunities to study the biogeochemistry of dissolved organic matter (DOM) in aquatic ecosystems. We used fDOM (fluorescent dissolved organic matter) to examine the spatial and temporal variability in dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) across a heterogeneous stream network that varies in NO3- concentration. Across the ten study streams fDOM explained twice the variability in the concentration of DOC (r2 = 0.82) compared to DON (r2 = 0.39), which suggests that the N-rich fraction of DOM is either more variable in its sources or more bioreactive than the more stable C-rich fraction. Among sites, DON molar fluorescence was approximately 3x more variable than DOC molar fluorescence and was correlated with changes in inorganic N, indicating that DON is both more variable in composition as well as highly responsive to changes in inorganic N. Laboratory results also indicate that the fDOM sensors we used perform as well as the excitation-emission wavelength pair generally referred to as the "tryptophan-like" peak when measured under laboratory conditions. However, since neither the field sensor not the laboratory measurements explained a large percentage of variation in DON concentrations, challenges still remain for monitoring the ambient pool of dissolved organic nitrogen. Sensor networks provide new insights into the potential reactivity of DOM and the variability in DOC and DON biogeochemistry across sites. These insights are needed to build spatially explicit models describing organic matter dynamics and water quality.
Simsek, Halis; Kasi, Murthy; Ohm, Jae-Bom; Murthy, Sudhir; Khan, Eakalak
2016-04-01
Dissolved organic nitrogen (DON) and its biodegradability in treated wastewater have recently gained attention due to increased regulatory requirements on effluent quality to protect receiving waters. Laboratory scale chemostat experiments were conducted at 9 different solids retention times (SRTs) (0.3, 0.7, 2, 3, 4, 5, 7, 8, and 13 days) to examine whether SRT could be used to control DON, biodegradable DON (BDON), and DON biodegradability (BDON/DON) levels in treated wastewater. Results indicated no trend between effluent DON and SRTs. Effluent BDON was comparable for SRTs of 0.3-4 days and had a decreasing trend with SRT after that. Effluent DON biodegradability (effluent BDON/effluent DON) ranging from 23% to 59% tended to decrease with SRT. Chemostat during longer SRTs, however, was contributing to non-biodegradable DON (NBDON) and this fraction of DON increased with SRT above 4 days. Model calibration results indicated that ammonification rate, and growth rates for ordinary heterotrophs, ammonia oxidizing bacteria and nitrite oxidizing bacteria were not constants but have a decreasing trend with increasing SRT. This study indicates the benefit of high SRTs in term of producing effluent with less DON biodegradability leading to relatively less oxygen consumption and nutrient support in receiving waters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heinz, Marlen; Zak, Dominik
2018-03-01
This study aimed to evaluate the effects of freezing and cold storage at 4 °C on bulk dissolved organic carbon (DOC) and nitrogen (DON) concentration and SEC fractions determined with size exclusion chromatography (SEC), as well as on spectral properties of dissolved organic matter (DOM) analyzed with fluorescence spectroscopy. In order to account for differences in DOM composition and source we analyzed storage effects for three different sample types, including a lake water sample representing freshwater DOM, a leaf litter leachate of Phragmites australis representing a terrestrial, 'fresh' DOM source and peatland porewater samples. According to our findings one week of cold storage can bias DOC and DON determination. Overall, the determination of DOC and DON concentration with SEC analysis for all three sample types were little susceptible to alterations due to freezing. The findings derived for the sampling locations investigated here may not apply for other sampling locations and/or sample types. However, DOC size fractions and DON concentration of formerly frozen samples should be interpreted with caution when sample concentrations are high. Alteration of some optical properties (HIX and SUVA 254 ) due to freezing were evident, and therefore we recommend immediate analysis of samples for spectral analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mo, Qifeng; Li, Zhi'An; Zhu, Weixing; Zou, Bi; Li, Yingwen; Yu, Shiqin; Ding, Yongzhen; Chen, Yao; Li, Xiaobo; Wang, Faming
2016-01-01
Nitrogen availability and tree species selection play important roles in reforestation. However, long-term field studies on the effects and mechanisms of tree species composition on N transformation are very limited. Eight years after tree seedlings were planted in a field experiment, we revisited the site and tested how tree species composition affects the dynamics of N mineralization and nitrification. Both tree species composition and season significantly influenced the soil dissolved organic carbon (DOC) and nitrogen (DON). N-fixing Acacia crassicarpa monoculture had the highest DON, and 10-mixed species plantation had the highest DOC. The lowest DOC and DON concentrations were both observed in Eucalyptus urophylla monoculture. The tree species composition also significantly affected net N mineralization rates. The highest rate of net N mineralization was found in A. crassicarpa monoculture, which was over twice than that in Castanopsis hystrix monoculture. The annual net N mineralization rates of 10-mixed and 30-mixed plantations were similar as that of N-fixing monoculture. Since mixed plantations have good performance in increasing soil DOC, DON, N mineralization and plant biodiversity, we recommend that mixed species plantations should be used as a sustainable approach for the restoration of degraded land in southern China.
Mo, Qifeng; Li, Zhi'an; Zhu, Weixing; Zou, Bi; Li, Yingwen; Yu, Shiqin; Ding, Yongzhen; Chen, Yao; Li, Xiaobo; Wang, Faming
2016-01-22
Nitrogen availability and tree species selection play important roles in reforestation. However, long-term field studies on the effects and mechanisms of tree species composition on N transformation are very limited. Eight years after tree seedlings were planted in a field experiment, we revisited the site and tested how tree species composition affects the dynamics of N mineralization and nitrification. Both tree species composition and season significantly influenced the soil dissolved organic carbon (DOC) and nitrogen (DON). N-fixing Acacia crassicarpa monoculture had the highest DON, and 10-mixed species plantation had the highest DOC. The lowest DOC and DON concentrations were both observed in Eucalyptus urophylla monoculture. The tree species composition also significantly affected net N mineralization rates. The highest rate of net N mineralization was found in A. crassicarpa monoculture, which was over twice than that in Castanopsis hystrix monoculture. The annual net N mineralization rates of 10-mixed and 30-mixed plantations were similar as that of N-fixing monoculture. Since mixed plantations have good performance in increasing soil DOC, DON, N mineralization and plant biodiversity, we recommend that mixed species plantations should be used as a sustainable approach for the restoration of degraded land in southern China.
Degradability of dissolved soil organic carbon and nitrogen in relation to tree species.
Kiikkilä, Oili; Kitunen, Veikko; Smolander, Aino
2005-06-01
The degradability and chemical characteristics of water-extractable dissolved organic carbon (DOC) and nitrogen (DON) from the humus layer of silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) stands were compared in short-term incubation of soil solutions. For all extracts the degradation of DOC and DON was low (12-17% loss) and increased in the order: birch, spruce and pine. In the humus layer under pine a relatively larger pool of rapidly degrading dissolved soil organic matter (DOM) was indicated by the [3H]thymidine incorporation technique, which measures the availability of DOM to bacteria. The degradation of DOC was explained by a decrease in the hydrophilic fraction. For DON, however, both the hydrophilic and hydrophobic fractions tended to decrease during incubation. No major differences in concentrations of hydrophilic and hydrophobic fractions were detected between tree species. Molecular size distribution of DOC and DON, however, revealed slight initial differences between birch and conifers as well as a change in birch extract during incubation. The depletion of very rapidly degrading fractions (e.g., root exudates and compounds from the litter) may explain the low degradability of DOM in the humus layer under birch.
Savi, Geovana D; Piacentini, Karim C; de Souza, Stephany Ramos; Costa, Maíra E B; Santos, Cristina M R; Scussel, Vildes M
2015-07-16
The efficiency of zinc compounds (zinc sulfate, ZnSO4 and zinc oxide, ZnO in regular and nanosize, respectively) on wheat plants was evaluated against growth of Fusarium graminearum and DON formation. In addition, any possible effects on the grain microstructures were observed by scanning electron microscopy (SEM), and the remaining residue of Zn on wheat plants was analyzed. The plants were inoculated with F. graminearum and treated with Zn compounds (100mM) onto spikelets at the anthesis stage. When wheat plants reached maturation, grains were harvested and evaluated for Fusarium (number of colonies, CFU/g), DON formation, and SEM observation, followed by determination of possible remaining Zn residue. The groups treated with ZnSO4 and ZnO-NP showed a reduction in number of CFU of F. graminearum when compared to the control. Similarly for DON formation, i.e. the toxin was reduced to non-detected levels in the treated group. ZnO-NP efficiently reduced F. graminearum and DON formation in the grains at low concentration. Zn remained within the international recommended level for consumption and the treatment did not cause any damage to wheat grains. New strategies of control using Zn compounds in addition to conventional treatments could increase the efficiency against FBH and DON formation. Copyright © 2015 Elsevier B.V. All rights reserved.
Krysińska-Traczyk, Ewa; Perkowski, Juliusz; Dutkiewicz, Jacek
2007-01-01
During combine harvesting of 5 various cereal crops (rye, barley, oats, buckwheat, corn) 24 samples of grain and 24 samples of settled grain dust were collected on farms located in the Lublin province of eastern Poland. The samples were examined for the concentration of total microfungi, Fusarium species, deoxynivalenol (DON), nivalenol (NIV), and ochratoxin A (OTA). Microfungi able to grow on malt agar were present in 79.2% of grain samples and in 91.7% of grain dust samples in the concentrations of 1.0-801.3x10(3) cfu/g and 1.5-12440.0x10(3) cfu/g, respectively. The concentration of microfungi in grain dust samples was significantly greater than in grain samples (p<0.01). Fusarium strains were isolated from 54.2% of grain samples and from 58.3% of grain dust samples in the concentrations of 0.1-375.0x10(3) cfu/g and 4.0-7,700.0x10(3) cfu/g, respectively. They were found in all samples of grain and grain dust from rye, barley and corn, but only in 0-16.7% of samples of grain and grain dust from oats and buckwheat. DON was found in 79.2% of grain samples and in 100% of grain dust samples in the concentrations of 0.001-0.18 microg/g and 0.006-0.283 microg/g, respectively. NIV was detected in 62.5% of grain samples and in 94.4% of grain dust samples in the concentrations of 0.004-0.502 microg/g and 0.005-0.339 microg/g, respectively. OTA was detected in 58.3% of grain samples and in 91.7% of grain dust samples in the concentrations of 0.00039- 0.00195 microg/g and 0.00036-0.00285 microg/g, respectively. The concentrations of DON, total fusariotoxins (DON+NIV) and OTA were significantly greater in grain dust samples than in grain samples (p<0.05, p<0.05, and p<0.001, respectively). The concentration of Fusarium poae in the samples of rye grain and dust was significantly correlated with the concentrations of DON (p<0.05), NIV (p<0.01), and total fusariotoxins (p<0.05). Similarly, the concentration of Fusarium culmorum in the samples of barley grain and dust was significantly correlated with the concentration of total fusariotoxins (p<0.05). A significant correlation was also found between the concentration of total fungi grown on malt agar and the concentration of OTA (p<0.05). In conclusion, although the concentration of DON, NIV and OTA in the samples of grain dust collected from 5 various cereals on farms in eastern Poland was not large, the persistent presence of these mycotoxins in over 90% of examined samples poses a potential health risk of chronic respiratory intoxication for exposed grain farmers.
Assessment of human deoxynivalenol exposure using an LC-MS/MS based biomarker method.
Warth, Benedikt; Sulyok, Michael; Fruhmann, Philipp; Berthiller, Franz; Schuhmacher, Rainer; Hametner, Christian; Adam, Gerhard; Fröhlich, Johannes; Krska, Rudolf
2012-05-20
The Fusarium toxin deoxynivalenol (DON) is one of the most abundant mycotoxins worldwide and poses many adverse health effects to human and animals. Consequently, regulatory limits and a provisional maximum tolerable daily intake (PMTDI) for this important type B-trichothecene were assigned. We conducted a pilot survey to investigate the level of DON exposure in Austrian adults by measurements of DON and its glucuronide conjugates (DON-GlcA's), as biomarkers of exposure, in first morning urine. The average concentration of total DON (free DON+DON-GlcA's) was estimated to be 20.4±2.4 μg L⁻¹ (max. 63 μg L⁻¹). Surprisingly, we found that one third of the volunteers (n=27) exceeded the established PMTDI when consuming regular diet. DON-GlcA's were directly quantified by LC-MS/MS and the results were compared with indirect quantification after enzymatic hydrolysis and confirmed the suitability of the direct method. Moreover, we investigated the in vivo metabolism of DON in humans and were able to determine two closely eluting DON-GlcA's in naturally contaminated urine samples for the first time. In contrast to previous findings we have tentatively identified DON-15-glucuronide as a major DON metabolite in human urine based on the analysis of these samples. About 75% of total glucuronides were derived from this metabolite while DON-3-glucuronide accounted for approximately 25%. The reported new findings clearly demonstrate the great potential of suitable biomarkers to critically assess exposure of humans and animals to DON. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Nitrogen solutes in an Adirondack forested watershed: Importance of dissolved organic nitrogen
McHale, M.R.; Mitchell, M.J.; McDonnell, Jeffery J.; Cirmo, C.P.
2000-01-01
Nitrogen (N) dynamics were evaluated from 1 June 1995 through 31 May 1996 within the Arbutus Lake watershed in the Adirondack Mountains of New York State, U.S.A. At the Arbutus Lake outlet dissolved organic nitrogen (DON), NO3/- and NH4/+ contributed 61%, 33%, and 6% respectively, to the total dissolved nitrogen (TDN) flux (259 mol ha-1 yr-1). At the lake inlet DON, NO3/-, and NH4/+ constituted 36%, 61%, and 3% respectively, of TDN flux (349 mol ha-1 yr-1). Differences between the factors that control DON, NO3/-, and NH4+ stream water concentrations were evaluated using two methods for estimating annual N flux at the lake inlet. Using biweekly sampling NO3/- and NH4/+ flux was 10 and 4 mol ha-1 yr-1 respectively, less than flux estimates using biweekly plus storm and snowmelt sampling. DON flux was 18 mol ha-1 yr-1 greater using only biweekly sampling. These differences are probably not of ecological significance relative to the total flux of N from the watershed (349 mol ha-1 yr-1). Dissolved organic N concentrations were positively related to discharge during both the dormant (R2 = 0.31; P<0.01) and growing season (R2= 0.09; P<0.01). There was no significant relationship between NO3/- concentration and discharge during the dormant season, but a significant negative relationship was found during the growing season (R2 = 0.29; P<0.01). Biotic controls in the growing season appeared to have had a larger impact on stream water NO3- concentrations than on DON concentrations. Arbutus Lake had a major impact on stream water N concentrations of the four landscape positions sampled, suggesting the need to quantify within lake processes to interpret N solute losses and patterns in watershed-lake systems.
NASA Astrophysics Data System (ADS)
Lu, Dongliang; Yang, Nannan; Liang, Shengkang; Li, Keqiang; Wang, Xiulin
2016-10-01
Seasonal, land-sea synchronous surveys were conducted from 2012 to 2013 to characterize the relationship between the composition of land-based total dissolved nitrogen (TDN) and the concentration of dissolved inorganic nitrogen (DIN) in Jiaozhou Bay (JZB). A total of 11 freshwater riverine sampling sites were selected at the river mouths and at waste water outfalls around JZB, while a total 23 Bay stations were established in JZB. Among them, 11 Bay stations were located near the 11 outfalls. Each land-sea sampling was conducted synchronously during a semi-tidal cycle. The contribution of NO3sbnd N, NO2sbnd N, NH4sbnd N, and dissolved organic nitrogen (DON) to TDN in land-based freshwater were similar to those in JZB seawater, while the contribution of the sum of NO3sbnd N and NO2sbnd N to TDN and the contribution of DON to TDN were about 3.2 and 4.1 times higher than the contribution of NH4sbnd N to TDN, respectively. These results showed that inputs of all land-based forms of nitrogen impact the DIN in seawater. Spatial distributions of DIN and DON, showing a gradual decrease from inner bay to the mouth of the bay, were negatively correlated with S in different seasons. In summer and winter, the ratio of DIN to DON in seawater (Rs) gradually decreased from the inner bay to the center of the bay, and the ratio of land-based DIN to DON (RL) was less than RS, indicating net transformation from land-based DON into marine DIN. However, in spring and autumn, the distribution of Rs was opposite to that in summer and winter, and RL was greater than RS, indicating net conversion from land-based DIN into marine DON. Throughout the whole year, net land-based DON was transformed into marine DIN. We provided direct evidence that the variation in DIN concentration in JZB was affected both by land-based TDN inputs and by their hydrodynamic transport and biogeochemical transformation processes.
Subtropical urban turfs: Carbon and nitrogen pools and the role of enzyme activity.
Kong, Ling; Chu, L M
2018-03-01
Urban grasslands not only provide a recreational venue for urban residents, but also sequester organic carbon in vegetation and soils through photosynthesis, and release carbon dioxide through respiration, which largely contribute to carbon storage and fluxes at regional and global scales. We investigated organic carbon and nitrogen pools in subtropical turfs and found that dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were regulated by several factors including microbial activity which is indicated by soil enzymatic activity. We observed a vertical variation and different temporal patterns in both soil DOC, DON and enzyme activities, which decreased significantly with increasing soil depths. We further found that concentration of soil DON was linked with turf age. There were correlations between grass biomass and soil properties, and soil enzyme activities. In particular, soil bulk density was significantly correlated with soil moisture and soil organic carbon (SOC). In addition, DOC correlated significantly with DON. Significant negative correlations were also observed between soil total dissolved nitrogen (TDN) and grass biomass of Axonopus compressus and Zoysia matrella. Specifically, grass biomass was significantly correlated with the soil activity of urease and β-glucosidase. Soil NO 3 -N concentration also showed negative correlations with the activity of both β-glucosidase and protease but there were no significant correlations between cellulase and soil properties or grass biomass. Our study demonstrated a relationship between soil C and N dynamics and soil enzymes that could be modulated to enhance SOC pools through management and maintenance practices. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alassane-Kpembi, Imourana; Université de Toulouse, ENVT, INP, UMR 1331 Toxalim, F-31076 Toulouse; Institut des Sciences Biomédicales Appliquées, Cotonou, Bénin
Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. DON is often present with other type B trichothecenes such as 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV) and fusarenon-X (FX). Although the cytotoxicity of individual mycotoxins has been widely studied, data on the toxicity of mycotoxin mixtures are limited. The aim of this study was to assess interactions caused by co-exposure to Type B trichothecenes on intestinal epithelial cells. Proliferating Caco-2 cells were exposed to increasing doses of Type B trichothecenes, alone or in binary or ternary mixtures. The MTT test and neutral red uptake,more » respectively linked to mitochondrial and lysosomal functions, were used to measure intestinal epithelial cytotoxicity. The five tested mycotoxins had a dose-dependent effect on proliferating enterocytes and could be classified in increasing order of toxicity: 3-ADON < 15-ADON ≈ DON < NIV ≪ FX. Binary or ternary mixtures also showed a dose-dependent effect. At low concentrations (cytotoxic effect between 10 and 30–40%), mycotoxin combinations were synergistic; however DON–NIV–FX mixture showed antagonism. At higher concentrations (cytotoxic effect around 50%), the combinations had an additive or nearly additive effect. These results indicate that the simultaneous presence of low doses of mycotoxins in food commodities and diet may be more toxic than predicted from the mycotoxins alone. Considering the frequent co-occurrence of trichothecenes in the diet and the concentrations of toxins to which consumers are exposed, this synergy should be taken into account. - Highlights: • We assessed the individual and combined cytotoxicity of five trichothecenes. • The tested concentrations correspond to the French consumer exposure levels. • The type of interaction in combined cytotoxicity varied with the effect level. • Low doses of Type B trichothecenes induced synergistic cytotoxicity. • Ternary combination DON–NIV–FX showed antagonism.« less
Sanders, Melanie; McPartlin, Daniel; Moran, Kara; Guo, Yirong; Eeckhout, Mia; O'Kennedy, Richard; De Saeger, Sarah; Maragos, Chris
2016-04-11
A sample preparation method was developed for the screening of deoxynivalenol (DON) in wheat and wheat dust. Extraction was carried out with water and was successful due to the polar character of DON. For detection, an enzyme-linked immunosorbent assay (ELISA) was compared to the sensor-based techniques of surface plasmon resonance (SPR) and biolayer interferometry (BLI) in terms of sensitivity, affinity and matrix effect. The matrix effects from wheat and wheat dust using SPR were too high to further use this screenings method. The preferred ELISA and BLI methods were validated according to the criteria established in Commission Regulation 519/2014/EC and Commission Decision 2002/657/EC. A small survey was executed on 16 wheat lots and their corresponding dust samples using the validated ELISA method. A linear correlation (r = 0.889) was found for the DON concentration in dust versus the DON concentration in wheat (LOD wheat: 233 μg/kg, LOD wheat dust: 458 μg/kg).
The fate and tissue disposition of deoxynivalenol in broiler chickens
PRALATNET, Sasithorn; POAPOLATHEP, Saranya; IMSILP, Kanjana; TANHAN, Phanwimol; ISARIYODOM, Supaporn; KUMAGAI, Susumu; POAPOLATHEP, Amnart
2015-01-01
To evaluate the fate of deoxynivalenol (DON) in broilers, DON was administered either intravenously or orally to broilers at a dose of 1 mg/kg BW. Concentrations of DON in plasma were measurable up to 4 hr and 2 hr after intravenous and oral administration, respectively. Following intravenous administration, the values for the elimination half-life, the volume of distribution and the clearance were 1.25 ± 0.25 hr, 7.55 ± 2.03 l/kg and 4.16 ± 0.42 l/hr/kg, respectively. The oral bioavailability was 15.46 ± 4.02%. DON was detectable in all tissues examined after oral administration. These results suggest that DON is able to penetrate into the various tissues in broilers, though poorly absorbed from their gastrointestinal tract. PMID:25843039
Lactobacillus plantarum culture supernatants improve intestinal tissue exposed to deoxynivalenol.
Maidana, L G; Gerez, J; Pinho, F; Garcia, S; Bracarense, A P F L
2017-10-02
In the present study, histological, morphometrical and ultrastructural analysis were performed to investigate intestinal mucosa changes in piglets exposed to deoxynivalenol alone or associated with two strains of Lactobacillus plantarum and the respective culture supernatants. Jejunal explants were incubated for 4h in culture medium with a) only culture medium (DMEM, control group), b) deoxynivalenol (DON, 10μM), c) heat-inactivated Lactobacillus plantarum strain1 - LP1 (1.1×10 8 CFU/ml) plus DON, d) heat-inactivated Lactobacillus plantarum strain2-LP2 (2.0×10 9 CFU/ml) plus DON, e) heat-inactivated Lactobacillus plantarum strain1 culture supernatant (CS1) plus DON, and f) heat-inactivated Lactobacillus plantarum strain1 culture supernatant (CS1) plus DON. Explants exposed to DON and DON plus LP1 and LP2 showed a significant increase in histological changes (mainly villi atrophy and apical necrosis) and a significant decrease in villi height when compared to unexposed explants. However, explants treated with CS1+DON and CS2+DON remained similar to the control group both in histological and morphometrical aspects. DON also induced a significant decrease in goblet cell density compared to control whereas CS1+DON treatment induced an increase in the number of goblet cells in comparison to DON explants. In addition, ultrastructural assessment showed control, CS1+DON and CS2+DON explants with well delineated finger shape villi, meanwhile DON-treated, LP1+DON and LP2+DON explants showed a severe villi atrophy with leukocytes exudation on the intestinal surface. Taken together, our results indicate that the culture supernatant treatment reduced the toxic effects induced by DON on intestinal tissue and may contribute as an alternative strategy to reduce mycotoxin toxicity. Copyright © 2017 Elsevier GmbH. All rights reserved.
Nogueira, María Soledad; Decundo, Julieta; Martinez, Mauro; Dieguez, Susana Nelly; Moreyra, Federico; Moreno, Maria Virginia
2018-01-01
Two of the most common species of toxin-producing Fusarium contaminating small cereal grains are Fusarium graminearum and F. poae; with both elaborating diverse toxins, especially deoxynivalenol (DON) and nivalenol (NIV), respectively. The objective of our work during the 2012–2014 growing seasons was to screen crops for the most commonly isolated Fusarium species and to quantify DON and NIV toxins in natural malting-barley samples from different producing areas of Argentina. We identified 1180 Fusarium isolates in the 119 samples analyzed, with 51.2% being F. graminearum, 26.2% F. poae and 22.6% other species. We found high concentrations of mycotoxins, at maximum values of 12 μg/g of DON and 7.71 μg/g of NIV. Of the samples, 23% exhibited DON at an average of 2.36 μg/g, with 44% exceeding the maximum limits (average of 5.24 μg/g); 29% contained NIV at an average of 2.36 μg/g; 7% contained both DON and NIV; and 55% were without DON or NIV. Finally, we report the mycotoxin contamination of the grain samples produced by F. graminearum and F. poae, those being the most frequent Fusarium species present. We identified the main Fusarium species affecting natural malting-barley grains in Argentina and documented the presence of many samples with elevated concentrations of DON and NIV. To our knowledge, the investigation reported here was the first to quantify the contamination by Fusarium and its toxins in natural samples of malting barley in Argentina. PMID:29439459
Nogueira, María Soledad; Decundo, Julieta; Martinez, Mauro; Dieguez, Susana Nelly; Moreyra, Federico; Moreno, Maria Virginia; Stenglein, Sebastian Alberto
2018-02-11
Two of the most common species of toxin-producing Fusarium contaminating small cereal grains are Fusarium graminearum and F. poae ; with both elaborating diverse toxins, especially deoxynivalenol (DON) and nivalenol (NIV), respectively. The objective of our work during the 2012-2014 growing seasons was to screen crops for the most commonly isolated Fusarium species and to quantify DON and NIV toxins in natural malting-barley samples from different producing areas of Argentina. We identified 1180 Fusarium isolates in the 119 samples analyzed, with 51.2% being F. graminearum , 26.2% F. poae and 22.6% other species. We found high concentrations of mycotoxins, at maximum values of 12 μg/g of DON and 7.71 μg/g of NIV. Of the samples, 23% exhibited DON at an average of 2.36 μg/g, with 44% exceeding the maximum limits (average of 5.24 μg/g); 29% contained NIV at an average of 2.36 μg/g; 7% contained both DON and NIV; and 55% were without DON or NIV. Finally, we report the mycotoxin contamination of the grain samples produced by F. graminearum and F. poae , those being the most frequent Fusarium species present. We identified the main Fusarium species affecting natural malting-barley grains in Argentina and documented the presence of many samples with elevated concentrations of DON and NIV. To our knowledge, the investigation reported here was the first to quantify the contamination by Fusarium and its toxins in natural samples of malting barley in Argentina.
Genotoxic effects of deoxynivalenol in broiler chickens fed low-protein feeds.
Awad, W A; Ghareeb, K; Dadak, A; Gille, L; Staniek, K; Hess, M; Böhm, J
2012-03-01
Deoxynivalenol (DON) is one of the most abundant and important trichothecenes in food and feed, and it is a significant contaminant due to its frequent occurrence at toxicologically relevant concentrations worldwide. Deoxynivalenol has negative influences on the health and performance of chicks. However, there is little information available regarding the effect of DON on DNA fragmentation in blood lymphocytes. In addition, the effects of Mycofix select (Biomin GmbH, Herzogenburg, Austria) supplementation to DON-contaminated broiler diets on lymphocyte DNA have not yet been demonstrated. Therefore, the aim of the present study was to establish the effect of DON on lipid peroxidation and lymphocyte DNA fragmentation in broilers and to evaluate the potential of Mycofix select in the prevention of toxin-mediated changes. Thirty-two 1-d-old (Ross 308 male) broiler chicks were randomly divided into 4 groups. The control group was fed a noncontaminated diet, and a second group was fed the same diet but supplemented with Mycofix select (0.25%). A third group of broilers was fed a diet artificially contaminated with 10 mg of feed-grade DON/kg of diet, and a fourth group was fed a DON-contaminated diet supplemented with Mycofix select. At the end of the feeding trial, blood was collected and the degree of lymphocyte DNA damage was measured in the plasma by comet assay. Deoxynivalenol increased (P = 0.016) the amount of DNA damage in chicken lymphocytes by 46.8%. Mycofix select protected lymphocyte DNA from the DON effects. To our knowledge, these are the first data on genotoxic effects of a moderate dose of DON on chicken lymphocytes. However, the thiobarbituric acid reactive substances level in liver and liver enzyme activity did not differ among the groups. In conclusion, the present study demonstrated that the diets contaminated with the mycotoxin DON at moderate levels in combination with low-protein feed are able to induce lymphocyte DNA damage in chickens. Supplementation with Mycofix select protected lymphocyte DNA and it was beneficial for maintaining the lymphocyte DNA integrity.
Anorexic action of deoxynivalenol in hypothalamus and intestine.
Tominaga, Misa; Momonaka, Yuka; Yokose, Chihiro; Tadaishi, Miki; Shimizu, Makoto; Yamane, Takumi; Oishi, Yuichi; Kobayashi-Hattori, Kazuo
2016-08-01
Although deoxynivalenol (DON) suppresses food intake and subsequent weight gain, its contribution to anorexia mechanisms has not been fully clarified. Thus, we investigated the anorexic actions of DON in the hypothalamus and intestine, both organs related to appetite. When female B6C3F1 mice were orally exposed to different doses of DON, a drastic anorexic action was observed at a dose of 12.5 mg/kg body weight (bw) from 0 to 3 h after administration. Exposure to DON (12.5 mg/kg bw) for 3 h significantly increased the hypothalamic mRNA levels of anorexic pro-opiomelanocortin (POMC) and its downstream targets, including melanocortin 4 receptor, brain-derived neurotrophic factor, and tyrosine kinase receptor B; at the same time, orexigenic hormones were not affected. In addition, exposure to DON significantly elevated the hypothalamic mRNA levels of proinflammatory cytokines (IL-1β, TNF-α, and IL-6) and activated nuclear factor-kappa B (NF-κB), an upstream factor of POMC. These results suggest that DON-induced proinflammatory cytokines increased the POMC level via NF-κB activation. Moreover, exposure to DON significantly enhanced the gastrointestinal mRNA levels of anorexic cholecystokinin (CCK) and transient receptor potential ankyrin-1 channel (TRPA1), a possible target of DON; these findings suggest that DON induced anorexic action by increasing CCK production via TRPA1. Taken together, these results suggest that DON induces anorexic POMC, perhaps via NF-κB activation, by increasing proinflammatory cytokines in the hypothalamus and brings about CCK production, possibly through increasing intestinal TRPA1 expression, leading to anorexic actions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Piemontese, Luca; Messia, Maria Cristina; Marconi, Emanuele; Falasca, Luisa; Zivoli, Rosanna; Gambacorta, Lucia; Perrone, Giancarlo; Solfrizzo, Michele
2018-04-01
Deoxynivalenol (DON) is an important mycotoxin produced by several species of Fusarium. It occurs often in wheat grain and is frequently associated with significant levels of its modified form DON-3-glucoside (DON-3-Glc). Ozone (O 3 ) is a powerful disinfectant and oxidant, classified as GRAS (Generally Recognised As Safe), that reacts easily with specific compounds including the mycotoxins aflatoxins, ochratoxin A, trichothecenes and zearalenone. It degrades DON in aqueous solution and can be effective for decontamination of grain. This study reports the efficacy of gaseous ozone treatments in reducing DON, DON-3-Glc, bacteria, fungi and yeasts in naturally contaminated durum wheat. A prototype was used to dispense ozone continuously and homogeneously at different concentrations and exposure time, in 2 kg aliquots of durum wheat. The optimal conditions, which do not affect chemical and rheological parameters of durum wheat, semolina and pasta, were identified (55 g O 3 h -1 for 6 h). The measured mean reductions of DON and DON-3-Glc in ozonated wheat were 29% and 44%, respectively. Ozonation also produced a significant (p < 0.05) reduction of total count (CFU/g) of bacteria, fungi and yeasts in wheat grains.
Dissolved organic nitrogen in urban streams: Biodegradability and molecular composition studies.
Lusk, Mary G; Toor, Gurpal S
2016-06-01
A portion of the dissolved organic nitrogen (DON) is biodegradable in water bodies, yet our knowledge of the molecular composition and controls on biological reactivity of DON is limited. Our objective was to investigate the biodegradability and molecular composition of DON in streams that drain a gradient of 19-83% urban land use. Weekly sampling over 21 weeks suggested no significant relationship between urban land use and DON concentration. We then selected two streams that drain 28% and 83% urban land use to determine the biodegradability and molecular composition of the DON by coupling 5-day bioassay experiments with high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Both urban streams contained a wide range of N-bearing biomolecular formulas and had >80% DON in lignin-like compounds, with only 5-7% labile DON. The labile DON consisted mostly of lipid-and protein-like structures with high H/C and low O/C values. Comparison of reactive formulas and formed counterparts during the bioassay experiments indicated a shift toward more oxygenated and less saturated N-bearing DON formulas due to the microbial degradation. Although there was a little net removal (5-7%) of organic-bound N over the 5-day bioassay, there was some change to the carbon skeleton of DON compounds. These results suggest that DON in urban streams contains a complex mixture of compounds such as lipids, proteins, and lignins of variable chemical structures and biodegradability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of the mycotoxin deoxynivalenol on steroidogenesis and apoptosis in granulosa cells.
Guerrero-Netro, Hilda M; Chorfi, Younès; Price, Christopher A
2015-06-01
Mycotoxins can reduce fertility and development in livestock, notably in pigs and poultry, although the effect of most mycotoxins on reproductive function in cattle has not been established. One major mycotoxin, deoxynivalenol (DON), not only targets immune cells and activates the ribotoxic stress response (RSR) involving MAPK activation, but also inhibits oocyte maturation in pigs. In this study, we determined the effect of DON on bovine granulosa cell function using a serum-free culture system. Addition of DON inhibited estradiol and progesterone secretion, and reduced levels of mRNA encoding estrogenic (CYP19A1) but not progestogenic (CYP11A1 and STAR) proteins. Cell apoptosis was increased by DON, which also increased FASLG mRNA levels. The mechanism of action of DON was assessed by western blotting and PCR experiments. Addition of DON rapidly and transiently increased phosphorylation of MAPK3/1, and resulted in a more prolonged phosphorylation of MAPK14 (p38) and MAPK8 (JNK). Activation of these pathways by DON resulted in time- and dose-dependent increases in abundance of mRNA encoding the transcription factors FOS, FOSL1, EGR1, and EGR3. We conclude that DON is deleterious to granulosa cell function and acts through a RSR pathway. © 2015 Society for Reproduction and Fertility.
NASA Astrophysics Data System (ADS)
Frank, S.; Tiemeyer, B.; Gelbrecht, J.; Freibauer, A.
2014-04-01
Anthropogenic drainage of peatlands releases additional greenhouse gases to the atmosphere, and dissolved carbon (C) and nutrients to downstream ecosystems. Rewetting drained peatlands offers a possibility to reduce nitrogen (N) and C losses. In this study, we investigate the impact of drainage and rewetting on the cycling of dissolved C and N as well as on dissolved gases, over a period of 1 year and a period of 4 months. We chose four sites within one Atlantic bog complex: a near-natural site, two drained grasslands with different mean groundwater levels and a former peat cutting area rewetted 10 years ago. Our results clearly indicate that long-term drainage has increased the concentrations of dissolved organic carbon (DOC), ammonium, nitrate and dissolved organic nitrogen (DON) compared to the near-natural site. DON and ammonium contributed the most to the total dissolved nitrogen. Nitrate concentrations below the mean groundwater table were negligible. The concentrations of DOC and N species increased with drainage depth. In the deeply-drained grassland, with a mean annual water table of 45 cm below surface, DOC concentrations were twice as high as in the partially rewetted grassland with a mean annual water table of 28 cm below surface. The deeply drained grassland had some of the highest-ever observed DOC concentrations of 195.8 ± 77.3 mg L-1 with maximum values of >400 mg L-1. In general, dissolved organic matter (DOM) at the drained sites was enriched in aromatic moieties and showed a higher degradation status (lower DOC to DON ratio) compared to the near-natural site. At the drained sites, the C to N ratios of the uppermost peat layer were the same as of DOM in the peat profile. This suggests that the uppermost degraded peat layer is the main source of DOM. Nearly constant DOM quality through the profile furthermore indicated that DOM moving downwards through the drained sites remained largely biogeochemically unchanged. Unlike DOM concentration, DOM quality and dissolved N species distribution were similar in the two grasslands and thus unaffected by the drainage depth. Methane production during the winter months at the drained sites was limited to the subsoil, which was quasi-permanently water saturated. The recovery of the water table in the winter months led to the production of nitrous oxide around mean water table depth at the drained sites. The rewetted and the near-natural site had comparable DOM quantity and quality (DOC to DON ratio and aromaticity). 10 years after rewetting quasi-pristine biogeochemical conditions have been re-established under continuously water logged conditions in the former peat cut area. Only the elevated dissolved methane and ammonium concentrations reflected the former disturbance by drainage and peat extraction. Rewetting via polder technique seems to be an appropriate way to revitalize peatlands on longer timescales and to improve the water quality of downstream water bodies.
Necpalova, M; Fenton, O; Casey, I; Humphreys, J
2012-08-15
This study investigated concentrations of various N species in shallow groundwater (<2.2m below ground level) and N losses from dairy production involving grazing over the winter period on a clay loam soil with a high natural attenuation capacity in southern Ireland (52°51'N, 08°21'W) over a 2-year period. A dense network of shallow groundwater piezometers was installed to determine groundwater flow direction and N spatial and temporal variation. Estimated vertical travel times through the unsaturated zone (<0.5 yr, time lag) allowed the correlation of management with groundwater N within a short space of time. There was a two way interaction of the system and sampling date (P<0.05) on concentrations of DON, oxidised N and NO(3)(-)-N. In contrast, concentrations of NH(4)(+)-N and NO(2)(-)-N were unaffected by the dairy system. Grazing over the winter had no effect on N losses to groundwater. Mean concentrations of DON, NH(4)(+)-N, NO(2)(-)-N and NO(3)(-)-N were 2.16, 0.35, 0.01 and 0.37 mg L(-1) respectively. Soil attenuation processes such as denitrification and DNRA resulted in increased NH(4)(+)-N levels. For this reason, DON and NH(4)(+)-N represented the highest proportion of N losses from the site. Some of the spatial and temporal variation of N concentrations was explained by correlations with selected chemical and hydro-topographical parameters (NO(3)(-)-N/Cl(-) ratio, distance of the sampling point from the closest receptor, watertable depth, depth of sampling piezometer, DOC concentration). A high explanatory power of NO(3)(-)-N/Cl(-) ratio and the distance of the sampling point from the closest receptor indicated the influence of point sources and groundwater-surface water interactions. Copyright © 2012 Elsevier B.V. All rights reserved.
Clark, Erica S.; Flannery, Brenna M.; Gardner, Elizabeth M.; Pestka, James J.
2015-01-01
Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes. PMID:26492270
Clark, Erica S; Flannery, Brenna M; Gardner, Elizabeth M; Pestka, James J
2015-10-19
Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes.
Atalla, Mohamed Mabrouk; Hassanein, Naziha Mohamed; El-Beih, Ahmed Atef; Youssef, Youssef Abdel-ghany
2003-02-01
Four different Aspergilli (Aspergillus oryzae, A. parasiticus, A. terreus and A. versicolor) were grown on wheat grains underdifferent degrees of relative humidity 14, 50, 74, 80 and 90%. Samples of wheat grains were taken monthly for a period of six months and examined for mycotoxin production. A. oryzae was found to produce aflatoxins B1, B2, zearalenone, DON and T-2 toxins under elevated degrees of humidity and prolonged periods of storage. A. parasiticus produced aflatoxins B1, G1, NIV, DON and T-2 toxins in high concentrations during a period of not more than three months storage at 14% relative humidity; at an increased level of relative humidity of 74% ochratoxin A, zearalenone and sterigmatocystin were also produced at high levels. The isolate was drastic in toxin production. A. terrus produced toxins at 14% relative humidity (aflatoxin G2 and DON) at levels much higher than any other prevalent degrees of humidity. A. versicolor is highly sensitive to relative humidity and grain moisture content It produced aflatoxins B1, G1, NIV and DON at a relative humidity of 50% and another toxins (aflatoxin G2, ochratoxins A, B and zearalenone) at 74%. The microorganism can be considered a trichothecene producer under suitable relative humidity.
Mo, Qifeng; Li, Zhi’an; Zhu, Weixing; Zou, Bi; Li, Yingwen; Yu, Shiqin; Ding, Yongzhen; Chen, Yao; Li, Xiaobo; Wang, Faming
2016-01-01
Nitrogen availability and tree species selection play important roles in reforestation. However, long-term field studies on the effects and mechanisms of tree species composition on N transformation are very limited. Eight years after tree seedlings were planted in a field experiment, we revisited the site and tested how tree species composition affects the dynamics of N mineralization and nitrification. Both tree species composition and season significantly influenced the soil dissolved organic carbon (DOC) and nitrogen (DON). N-fixing Acacia crassicarpa monoculture had the highest DON, and 10-mixed species plantation had the highest DOC. The lowest DOC and DON concentrations were both observed in Eucalyptus urophylla monoculture. The tree species composition also significantly affected net N mineralization rates. The highest rate of net N mineralization was found in A. crassicarpa monoculture, which was over twice than that in Castanopsis hystrix monoculture. The annual net N mineralization rates of 10-mixed and 30-mixed plantations were similar as that of N-fixing monoculture. Since mixed plantations have good performance in increasing soil DOC, DON, N mineralization and plant biodiversity, we recommend that mixed species plantations should be used as a sustainable approach for the restoration of degraded land in southern China. PMID:26794649
Janaviciene, Sigita; Mankeviciene, Audrone; Suproniene, Skaidre; Kochiieru, Yuliia; Keriene, Ilona
2018-02-22
Deoxynivalenol (DON) together with two acetylated derivatives, 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) occurs in cereal grains and their products. Co-occurrence of DON and acetylated derivatives in cereal grain is detected worldwide. Until now, DON and its derivatives have been considered equally toxic by health authorities. In this study, we analysed 103 samples of spring wheat grain, originating from the fields of different production systems in Lithuania, for the co-occurrence of type-B trichothecenes (DON, 3-ADON, 15-ADON). The samples were classified according to the production system-organic, sustainable and intensive. Mycotoxin levels in the spring wheat grain samples were determined by the HPLC method with UV detection. The type-B trichothecenes were found to be present at higher concentrations in the grain from the intensive production system. Eighty-one percent of the spring wheat grain samples from the intensive production system were co-contaminated with a combination of DON+3-ADON+15-ADON, 1% with DON+3-ADON. Additionally, DON+15-ADON and DON were found in 5% and 10% of the tested samples, respectively. Two percent of the samples were free from mycotoxins. In the grain samples from the sustainable production system, DON and a combination of DON+3-ADON showed a higher incidence - 47% and 23%, respectively. The samples with a combination of DON+3-ADON+15-ADON accounted for 18%. Completely different results were obtained from the analyses of organic grain samples. A large number of the organic spring wheat grain samples were contaminated with DON+3-ADON (55%) or DON (36%). The combination of DON+3-ADON+15-ADON was not present, while DON+15-ADON was present in 9% of the samples tested. The production systems did not lead to significant differences in mycotoxin levels, although a trend toward higher incidence and higher contamination was observed for the samples from the intensive and sustainable production systems.
Abouzied, M M; Azcona, J I; Braselton, W E; Pestka, J J
1991-01-01
To assess the potential for mycotoxin contamination of the human food supply following the 1988 U.S. drought, 92 grain food samples were purchased from retail outlets in the summer of 1989 and surveyed for aflatoxin B1, zearalenone, and deoxynivalenol (DON [vomitoxin]) by monoclonal antibody-based competitive enzyme-linked immunosorbent assay (ELISA). Only one sample (buckwheat flour) was found to contain aflatoxin B1 (12 ng/g), whereas zearalenone was found in 26% of the samples at a mean concentration of 19 ng/g. In contrast, the DON ELISA was positive in 50% of the samples at a detection level of 1.0 micrograms/g. Between 63 and 88% of corn cereals, wheat flour/muffin mixes, rice cereals, and corn meal/muffin mixes yielded positive results for DON, whereas 25 to 50% of oat cereals, wheat- and oat-based cookies/crackers, corn chips, popcorn, and mixed-grain cereals were positive for DON. The mean DON content of the positive samples was 4.0 micrograms/g, and the minimum and maximum levels were 1.2 and 19 micrograms/g, respectively. When positive ELISA samples were also analyzed by high-performance liquid chromatography, a strong correlation between the two methods was found. The presence of DON in the two highest samples, corn meal and mixed-grain cereal, which contained 19 and 16 micrograms/g, respectively, was quantitatively confirmed by gas chromatography-mass spectrometry. The results indicated that DON was present in 1989 retail food products at concentrations that exceeded those found in previous market surveys and that have been experimentally associated with impaired animal health. Images PMID:1828138
Co-occurrence and distribution of deoxynivalenol, nivalenol and zearalenone in wheat from Brazil.
Calori-Domingues, Maria Antonia; Bernardi, Carolina Maria Gil; Nardin, Mariana Sartori; de Souza, Gláucia Vendramini; Dos Santos, Fernanda Gregório Ribeiro; Stein, Mirella de Abreu; Gloria, Eduardo Micotti da; Dias, Carlos Tadeu Dos Santos; de Camargo, Adriano Costa
2016-06-01
Fusarium mycotoxins deoxynivalenol (DON), nivalenol (NIV) and zearalenone (ZEN) were investigated in wheat from the 2009 and 2010 crop years. Samples (n = 745) from commercial fields were collected in four wheat producing regions (WPR) which differed in weather conditions. Analyses were performed using HPLC-DAD. Contamination with ZEN, DON and NIV occurred in 56, 86 and 50%, respectively. Also, mean concentrations were different: DON = 1046 µg kg(-1), NIV < 100 µg kg(-1) and ZEN = 82 µg kg(-1). Co-occurrence of ZEN, DON and NIV was observed in 74% of the samples from 2009 and in 12% from 2010. Wet/cold region WPR I had the highest mycotoxin concentration. Wet/moderately hot region WPR II had the lowest mycotoxin levels. Furthermore, the mean concentration of each mycotoxin was higher in samples from 2009 as compared with those from 2010. Precipitation during flowering or harvest periods may explain these results.
Dissemination of Evidence-Based Practice to Directors of Nursing by an Outreach Campaign in Taiwan.
Weng, Yi-Hao; Chen, Chiehfeng; Chen, Kee-Hsin; Kuo, Ken N; Yang, Chun-Yuh; Chiu, Ya-Wen
2016-04-01
Directors of nursing (DONs) have an important influence in the dissemination of evidence-based practice (EBP) in hospital settings. The current study examined how the knowledge, skills, and behaviors of DONs changed when EBP was implemented during a 5-year, nationwide promotional campaign providing EBP-related information resources and promotional activities in regional hospitals in Taiwan. Cross-sectional questionnaire surveys for a nationwide representative sample of DONs were conducted in 2007, 2009, and 2011 to examine views related to EBP, including changes in beliefs, attitudes, knowledge, skills, behaviors, and barriers. This study enrolled 267 DONs in 2007, 257 in 2009, and 287 in 2011. During the study period, DONs' EBP knowledge and skills increased, but their beliefs and attitudes did not significantly change. Furthermore, the use of Internet-based resources, including web portals, electronic textbooks, electronic journals, and evidence-based online databases, increased. Most barriers significantly declined after the intervention. DONs' knowledge, skills, and behaviors regarding EBP increased after the multifaceted intervention. The data suggest this outreach program is useful in disseminating EBP implementation to DONs. Copyright 2016, SLACK Incorporated.
Deoxynivalenol Exposure in Norway, Risk Assessments for Different Human Age Groups.
Sundheim, Leif; Lillegaard, Inger Therese; Fæste, Christiane Kruse; Brantsæter, Anne-Lise; Brodal, Guro; Eriksen, Gunnar Sundstøl
2017-02-04
Deoxynivalenol (DON) is the most common mycotoxin in Norwegian cereals, and DON is detected in most samples of crude cereal grain and cereal food commodities such as flour, bran, and oat flakes. The Norwegian Scientific Committee for Food Safety assessed the risk for adverse effects of deoxynivalenol (DON) in different age groups of the domestic population. This review presents the main results from the risk assessment, supplemented with some recently published data. Impairment of the immune system together with reduced feed intake and weight gain are the critical effects of DON in experimental animals on which the current tolerable daily intake was established. Based on food consumption and occurrence data, the mean exposure to DON in years with low and high levels of DON in the flour, respectively, were in the range of or up to two times the Tolerable Daily Intake (TDI) in 1-year-old infants and 2-year-old children. In years with high mean DON concentration, the high (95th-percentile) exposure exceeded the TDI by up to 3.5 times in 1-, 2- , 4-, and 9-year-old children. The assessment concluded that exceeding the TDI in infants and children is of concern. The estimated dietary DON intakes in adolescent and adult populations are in the range of the TDI or below, and are not a health concern. Acute human exposure to DON is not of concern in any age group.
Sanders, Melanie; McPartlin, Daniel; Moran, Kara; Guo, Yirong; Eeckhout, Mia; O’Kennedy, Richard; De Saeger, Sarah; Maragos, Chris
2016-01-01
A sample preparation method was developed for the screening of deoxynivalenol (DON) in wheat and wheat dust. Extraction was carried out with water and was successful due to the polar character of DON. For detection, an enzyme-linked immunosorbent assay (ELISA) was compared to the sensor-based techniques of surface plasmon resonance (SPR) and biolayer interferometry (BLI) in terms of sensitivity, affinity and matrix effect. The matrix effects from wheat and wheat dust using SPR were too high to further use this screenings method. The preferred ELISA and BLI methods were validated according to the criteria established in Commission Regulation 519/2014/EC and Commission Decision 2002/657/EC. A small survey was executed on 16 wheat lots and their corresponding dust samples using the validated ELISA method. A linear correlation (r = 0.889) was found for the DON concentration in dust versus the DON concentration in wheat (LOD wheat: 233 μg/kg, LOD wheat dust: 458 μg/kg). PMID:27077883
Characterisation of intact proteins in aquatic samples from the Florida Everglades
NASA Astrophysics Data System (ADS)
Jones, V.; Ruddell, C. J.; Wainwright, G.; Rees, H. H.; Jaffe, R.; Penkman, K. E. H.; Collins, C. J.; Wolff, G. A.
2003-04-01
Dissolved organic nitrogen (DON) is the largest reservoir of reduced nitrogen in the oceans. Limited knowledge of the molecular composition of DON hinders our understanding of its cycling. The need to comprehend the DON cycle is nowadays more imperative than ever, as there is evidence that concentrations of nitrate are decreasing, while concentrations of DON are increasing in the surface ocean, as an indirect effect of global warming and hence stratification of the water column (Karl et al., 2001). Proteins typically account for 5-10% of DON. Recently, it has been suggested that certain, bacterially-derived, proteins found in the ocean are not as labile as was originally thought (e.g. Tanoue et al., 1995) and may therefore form a crucial part of the long term DON cycle. Here, we have applied gel electrophoresis in combination with mass spectrometry and amino acid enantiomer (D/L) analysis, to characterise proteins from aquatic samples and consider their origin. Samples were collected in the Florida Everglades at locations selected to represent an array of ecosystems, ranging from marsh water to marine coastal environments. Application of gel electrophoresis in combination with mass spectrometry revealed that each sample had a complex and characteristic protein distribution. Some proteins were common to more than one site. The bacterial protein of 48 kDa, previously reported as ubiquitous in the open ocean (e.g. Tanoue et al., 1995), was only present at one sampling location strongly affected by offshore currents. Amino acid enantiomer (D/L) analysis revealed that the bacterial input to amino acid nitrogen was an order of magnitude smaller than that reported for open ocean samples (McCarthy et al., 1998), although a trend towards higher bacterial input was observed from freshwater to marine sampling locations. We suggest that this is due to the presence of additional sources of protein to the DON pool, such as the higher plant vegetation, in freshwater and coastal environments compared to the open ocean. References Karl, D., Bidigare, R.R., Letelier, R.M., 2001. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: The domain shift hypothesis. Deep-Sea Research II, 48: 1449-1470. McCarthy, M.D., Hedges, J.J. Benner, R., 1998. Major bacterial contribution to marine dissolved organic nitrogen. Science, 281: 231-234. Tanoue E., Sumie, N., Kamo, M., Tsurita, A, 1995. Bacterial membranes: Possible sources of major dissolved protein in seawater. Geochimica and Cosmochimica Acta, 59: 2643-2648
Riparian zones attenuate nitrogen loss following bark beetle-induced lodgepole pine mortality
NASA Astrophysics Data System (ADS)
Biederman, Joel A.; Meixner, Thomas; Harpold, Adrian A.; Reed, David E.; Gutmann, Ethan D.; Gaun, Janelle A.; Brooks, Paul D.
2016-03-01
A North American bark beetle infestation has killed billions of trees, increasing soil nitrogen and raising concern for N loss impacts on downstream ecosystems and water resources. There is surprisingly little evidence of stream N response in large basins, which may result from surviving vegetation uptake, gaseous loss, or dilution by streamflow from unimpacted stands. Observations are lacking along hydrologic flow paths connecting soils with streams, challenging our ability to determine where and how attenuation occurs. Here we quantified biogeochemical concentrations and fluxes at a lodgepole pine-dominated site where bark beetle infestation killed 50-60% of trees. We used nested observations along hydrologic flow paths connecting hillslope soils to streams of up to third order. We found soil water NO3 concentrations increased 100-fold compared to prior research at this and nearby southeast Wyoming sites. Nitrogen was lost below the major rooting zone to hillslope groundwater, where dissolved organic nitrogen (DON) increased by 3-10 times (mean 1.65 mg L-1) and NO3-N increased more than 100-fold (3.68 mg L-1) compared to preinfestation concentrations. Most of this N was removed as hillslope groundwater drained through riparian soils, and NO3 remained low in streams. DON entering the stream decreased 50% within 5 km downstream, to concentrations typical of unimpacted subalpine streams (~0.3 mg L-1). Although beetle outbreak caused hillslope N losses similar to other disturbances, up to 5.5 kg ha-1y-1, riparian and in-stream removal limited headwater catchment export to <1 kg ha-1y-1. These observations suggest riparian removal was the dominant mechanism preventing hillslope N loss from impacting streams.
Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.
2014-01-01
Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate show direct and rapid effects on forest streams that may be widespread, although undocumented, throughout nitrogen-polluted temperate forests. In contrast to a week-long nitrate decline during peak autumn litterfall, base flow DON concentrations increased after leaf fall and remained high for 2 months. Dissolved organic nitrogen was hydrologically flushed to the stream from riparian soils during stormflow. In contrast to distinct seasonal changes in base flow nitrate and DON concentrations, ammonium concentrations were typically at or below the detection limit, similar to the rest of the year. Our findings reveal couplings among catchment flow paths, nutrient sources, and transformations that control seasonal extremes of stream nitrogen in forested landscapes.
Occurrence of Deoxynivalenol and Zearalenone in Commercial Fish Feed: An Initial Study
Pietsch, Constanze; Kersten, Susanne; Burkhardt-Holm, Patricia; Valenta, Hana; Dänicke, Sven
2013-01-01
The control of mycotoxins is a global challenge not only in human consumption but also in nutrition of farm animals including aquatic species. Fusarium toxins, such as deoxynivalenol (DON) and zearalenone (ZEN), are common contaminants of animal feed but no study reported the occurrence of both mycotoxins in fish feed so far. Here, we report for the first time the occurrence of DON and ZEN in samples of commercial fish feed designed for nutrition of cyprinids collected from central Europe. A maximal DON concentration of 825 μg kg−1 feed was found in one feed whereas average values of 289 μg kg−1 feed were noted. ZEN was the more prevalent mycotoxin but the concentrations were lower showing an average level of 67.9 μg kg−1 feed. PMID:23325300
Bernhoft, A.; Torp, M.; Clasen, P.-E.; Løes, A.-K.; Kristoffersen, A.B.
2012-01-01
A total of 602 samples of organically and conventionally grown barley, oats and wheat was collected at grain harvest during 2002–2004 in Norway. Organic and conventional samples were comparable pairs regarding cereal species, growing site and harvest time, and were analysed for Fusarium mould and mycotoxins. Agronomic and climatic factors explained 10–30% of the variation in Fusarium species and mycotoxins. Significantly lower Fusarium infestation and concentrations of important mycotoxins were found in the organic cereals. The mycotoxins deoxynivalenol (DON) and HT-2 toxin (HT-2) constitute the main risk for human and animal health in Norwegian cereals. The impacts of various agronomic and climatic factors on DON and HT-2 as well as on their main producers F. graminearum and F. langsethiae and on total Fusarium were tested by multivariate statistics. Crop rotation with non-cereals was found to reduce all investigated characteristics significantly – mycotoxin concentrations as well as various Fusarium infestations. No use of mineral fertilisers and herbicides was also found to decrease F. graminearum, whereas lodged fields increased the occurrence of this species. No use of herbicides was also found to decrease F. langsethiae, but for this species the occurrence was lower in lodged fields. Total Fusarium infestation was decreased with no use of fungicides or mineral fertilisers, and with crop rotation, as well as by using herbicides and increased by lodged fields. Clay and to some extent silty soils seemed to reduce F. graminearum in comparison with sandy soils. Concerning climate factors, low temperature before grain harvest was found to increase DON; and high air humidity before harvest to increase HT-2. F. graminearum was negatively correlated with precipitation in July but correlated with air humidity before harvest. F. langsethiae was correlated with temperature in July. Total Fusarium increased with increasing precipitation in July. Organic cereal farmers have fewer cereal intense rotations than conventional farmers. Further, organic farmers do not apply mineral fertiliser or pesticides (fungicides, herbicides or insecticides), and have less problem with lodged fields. The study showed that these agronomic factors were related to the infestation of Fusarium species and the concentration of mycotoxins. Hence, it is reasonable to conclude that farming system (organic versus conventional) impacts Fusarium infestation, and that organic management tends to reduce Fusarium and mycotoxins. However, Fusarium infestation and mycotoxin concentrations may be influenced by a range of factors not studied here, such as local topography and more local climate, as well as cereal species and variety. PMID:22494553
Urbanization Changes the Temporal Dynamics of Nutrients and Water Chemistry
NASA Astrophysics Data System (ADS)
Steele, M.; Badgley, B.
2017-12-01
Recent studies find that urban development alters the seasonal dynamics of nutrient concentrations, where the highest concentrations of nitrogen occurred during the winter in urban watersheds, rather than the summer. However, the effects of urbanization on the seasonal concentrations of other nutrients and chemical components is unknown. Therefore, to determine how urbanization changes the seasonal dynamics, once a week we measured concentrations of dissolved organic carbon (DOC), nutrients (NO3, DON, TN, PO4), base cations (Ca, Mg, Na, K), anions (F, Cl, SO4), pH, sediment, temperature, conductivity, and dissolved oxygen (DO) of nine urban, agricultural, and minimally developed watersheds in southwest Virginia, USA. We found that urbanization disrupted the seasonal dynamics of all metrics, except DON, PO4, Ca, sediment, and DO, where some shifted to high concentrations during the winter (Cl, conductivity), highs during late winter or spring (DOC, Na), a season low (TN, SO4, NO3) or high (NH4) during the summer, or remained more constant throughout the year compared to the reference watersheds (Mg, K, pH). The complex changes in seasonal dynamics coincide with a decoupling of common correlations between constituents; for example, DO and NO3 are negatively correlated in reference watersheds (NO3 increases, DO decreases), but positively correlated in urban watersheds. These results suggest that as watersheds become more intensely developed, the influence of natural drivers like temperature and vegetation become steadily overcome by the influence of urban drivers like deicing salts and wastewater leakage, which exert increasing control of seasonal water quality and aquatic habitat.
ERIC Educational Resources Information Center
Finkel, Ed
2016-01-01
As some community college students know all too well, it's difficult to concentrate on your studies if you are hungry, don't have a roof over your head, lack adequate transportation, or just had your laptop stolen and don't have the money for a new one. In some cases, it makes staying in school, period, very challenging. Recognizing the roadblocks…
Effect of Prothioconazole Application Timing on Fusarium Mycotoxin Content in Maize Grain.
Limay-Rios, Victor; Schaafsma, Arthur W
2018-05-16
In 2010 and 2011, studies to determine the optimal timing of prothioconazole application (200 g a.i./ha) for reducing Fusarium mycotoxin accumulation in grain were conducted in controlled replicated experiments under small-plot mist-irrigated experiments and in field-scale experiments using two hybrids susceptible to F. gramineaerum infection. A significant decrease in total deoxynivalenol (DON) [DON + 15-acetyl-DON + DON 3-glucoside + 3-acetyl-DON] and zearalenone concentrations was observed when fungicide was sprayed at VT (tasseling) and R1 (silking; P < 0.01) followed by applications at V18 (18th leaf) and R2 (blister; P < 0.05) stages, corresponding to silk completely emerged and fully elongated and to silk emergence and browning, respectively. No reduction in Fusarium graminearum toxins was found after silk senescence (R3 or milk) stage. Moniliformin, fumonisins, beauvericin, enniatins, HT-2 and T-2 toxins were also found in small quantities, and no reduction was observed after treatment ( P > 0.05). Mean reduction (±s.d.) of 59 ± 20% and 57 ± 38% of total DON and zearalenone was observed at full silk elongation, respectively.
Effect of Ozone Treatment on Deoxynivalenol and Wheat Quality
Wang, Li; Shao, Huili; Luo, Xiaohu; Wang, Ren; Li, Yongfu; Li, Yanan; Luo, Yingpeng; Chen, Zhengxing
2016-01-01
Deoxynivalenol (DON) is a secondary metabolite produced by Fusarium fungi, which is found in a wide range of agricultural products, especially in wheat, barley, oat and corn. In this study, the distribution of DON in the wheat kernel and the effect of exposure time to ozone on DON detoxification were investigated. A high concentration of toxin was found in the outer part of the kernel, and DON was injected from the outside to the inside. The degradation rates of DON were 26.40%, 39.16%, and 53.48% after the samples were exposed to 75 mg/L ozone for 30, 60, and 90 min, respectively. The effect of ozonation on wheat flour quality and nutrition was also evaluated. No significant differences (P > 0.05) were found in protein content, fatty acid value, amino acid content, starch content, carbonyl and carboxyl content, and swelling power of ozone-treated samples. Moreover, the ozone-treated samples exhibited higher tenacity and whiteness, as well as lower extensibility and yellowness. This finding indicated that ozone treatment can simultaneously reduce DON levels and improve flour quality. PMID:26812055
Fusarium mycotoxin content of UK organic and conventional oats.
Edwards, S G
2009-07-01
Every year between 2002 and 2005 approximately 100 samples of oats from fields of known agronomy were analysed by GC/MS for 10 trichothecenes: deoxynivalenol (DON), nivalenol, 3-acetylDON, 15-acetylDON, fusarenone X, T-2 toxin (T2), HT-2 toxin (HT2), diacetoxyscirpenol, neosolaniol and T-2 triol. Samples were also analysed for moniliformin and zearalenone by HPLC. Of the 10 trichothecenes analysed from 458 harvest samples of oat only three, 15-acetylDON, fusarenone X and diacetoxyscirpenol, were not detected. Moniliformin and zearalenone were absent or rarely detected, respectively. HT2 and T2 were the most frequently detected fusarium mycotoxins, present above the limit of quantification (10 microg kg(-1)) in 92 and 84% of samples, respectively, and were usually present at the highest concentrations. The combined mean and median for HT2 and T2 (HT2 + T2) was 570 and 213 microg kg(-1), respectively. There were good correlations between concentrations of HT2 and all other type A trichothecenes detected (T2, T2 triol and neosolaniol). Year and region had a significant effect on HT2 + T2 concentration. There was also a highly significant difference between HT2 + T2 content in organic and conventional samples, with the predicted mean for organic samples five times lower than that of conventional samples. This is the largest difference reported for any mycotoxin level in organic and conventional cereals. No samples exceeded the legal limits for DON or zearalenone in oats intended for human consumption. Legislative limits for HT2 and T2 are currently under consideration by the European Commission. Depending on the limits set for unprocessed oats intended for human consumption, the levels detected here could have serious consequences for the UK oat-processing industry.
Deoxynivalenol Exposure in Norway, Risk Assessments for Different Human Age Groups
Sundheim, Leif; Lillegaard, Inger Therese; Fæste, Christiane Kruse; Brantsæter, Anne-Lise; Brodal, Guro; Eriksen, Gunnar Sundstøl
2017-01-01
Deoxynivalenol (DON) is the most common mycotoxin in Norwegian cereals, and DON is detected in most samples of crude cereal grain and cereal food commodities such as flour, bran, and oat flakes. The Norwegian Scientific Committee for Food Safety assessed the risk for adverse effects of deoxynivalenol (DON) in different age groups of the domestic population. This review presents the main results from the risk assessment, supplemented with some recently published data. Impairment of the immune system together with reduced feed intake and weight gain are the critical effects of DON in experimental animals on which the current tolerable daily intake was established. Based on food consumption and occurrence data, the mean exposure to DON in years with low and high levels of DON in the flour, respectively, were in the range of or up to two times the Tolerable Daily Intake (TDI) in 1-year-old infants and 2-year-old children. In years with high mean DON concentration, the high (95th-percentile) exposure exceeded the TDI by up to 3.5 times in 1-, 2- , 4-, and 9-year-old children. The assessment concluded that exceeding the TDI in infants and children is of concern. The estimated dietary DON intakes in adolescent and adult populations are in the range of the TDI or below, and are not a health concern. Acute human exposure to DON is not of concern in any age group. PMID:28165414
Jia, Hui; Wu, Wen-Da; Lu, Xi; Zhang, Jie; He, Cheng-Hua; Zhang, Hai-Bin
2017-09-01
Deoxynivalenol (DON), which is a Type B trichothecene mycotoxin produced by Fusarium, frequently contaminates cereal staples, such as wheat, barley and corn. DON threatens animal and human health by suppressing food intake and impairing growth. While anorexia induction in mice exposed to DON has been linked to the elevation of the satiety hormones cholecystokinin and peptide YY3-36 in plasma, the effects of DON on the release of other satiety hormones, such as glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), have not been established. The purpose of this study was to determine the roles of GLP-1 and GIP in DON-induced anorexia. In a nocturnal mouse food consumption model, the elevation of plasma GLP-1 and GIP concentrations markedly corresponded to anorexia induction by DON. Pretreatment with the GLP-1 receptor antagonist Exendin9-39 induced a dose-dependent attenuation of both GLP-1- and DON-induced anorexia. In contrast, the GIP receptor antagonist Pro3GIP induced a dose-dependent attenuation of both GIP- and DON-induced anorexia. Taken together, these results suggest that GLP-1 and GIP play instrumental roles in anorexia induction following oral exposure to DON, and the effect of GLP-1 is more potent and long-acting than that of GIP. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kimmance, Susan; McCormack, Paul
2017-01-01
The capacity of bacteria for degrading dissolved organic nitrogen (DON) and remineralising ammonium is of importance for marine ecosystems, as nitrogen availability frequently limits productivity. Here, we assess the capacity of a widely distributed and metabolically versatile marine bacterium to degrade phytoplankton-derived dissolved organic carbon (DOC) and nitrogen. To achieve this, we lysed exponentially growing diatoms and used the derived dissolved organic matter (DOM) to support an axenic culture of Alteromonas sp.. Bacterial biomass (as particulate carbon and nitrogen) was monitored for 70 days while growth dynamics (cell count), DOM (DOC, DON) and dissolved nutrient concentrations were monitored for up to 208 days. Bacterial biomass increased rapidly within the first 7 days prior to a period of growth/death cycles potentially linked to rapid nutrient recycling. We found that ≈75% of the initial DOC and ≈35% of the initial DON were consumed by bacteria within 40 and 4 days respectively, leaving a significant fraction of DOM resilient to degradation by this bacterial species. The different rates and extents to which DOC and DON were accessed resulted in changes in DOM stoichiometry and the iterative relationship between DOM quality and bacterial growth over time influenced bacterial cell C:N molar ratio. C:N values increased to 10 during the growth phase before decreasing to values of ≈5, indicating a change from relative N-limitation/C-sufficiency to relative C-limitation/N-sufficiency. Consequently, despite its reported metabolic versatility, we demonstrate that Alteromonas sp. was unable to access all phytoplankton derived DOM and that a bacterial community is likely to be required. By making the relatively simple assumption that an experimentally derived fraction of DOM remains resilient to bacterial degradation, these experimental results were corroborated by numerical simulations using a previously published model describing the interaction between DOM and bacteria in marine systems, thus supporting our hypothesis. PMID:28158278
NASA Astrophysics Data System (ADS)
Wickland, Kimberly P.; Waldrop, Mark P.; Aiken, George R.; Koch, Joshua C.; Torre Jorgenson, M.; Striegl, Robert G.
2018-06-01
Permafrost (perennially frozen) soils store vast amounts of organic carbon (C) and nitrogen (N) that are vulnerable to mobilization as dissolved organic carbon (DOC) and dissolved organic and inorganic nitrogen (DON, DIN) upon thaw. Such releases will affect the biogeochemistry of permafrost regions, yet little is known about the chemical composition and source variability of active-layer (seasonally frozen) and permafrost soil DOC, DON and DIN. We quantified DOC, total dissolved N (TDN), DON, and DIN leachate yields from deep active-layer and near-surface boreal Holocene permafrost soils in interior Alaska varying in soil C and N content and radiocarbon age to determine potential release upon thaw. Soil cores were collected at three sites distributed across the Alaska boreal region in late winter, cut in 15 cm thick sections, and deep active-layer and shallow permafrost sections were thawed and leached. Leachates were analyzed for DOC, TDN, nitrate (NO3 ‑), and ammonium (NH4 +) concentrations, dissolved organic matter optical properties, and DOC biodegradability. Soils were analyzed for C, N, and radiocarbon (14C) content. Soil DOC, TDN, DON, and DIN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. These relationships were significantly different for active-layer and permafrost soils such that for a given soil C or N content, or radiocarbon age, permafrost soils released more DOC and TDN (mostly as DON) per gram soil than active-layer soils. Permafrost soil DOC biodegradability was significantly correlated with soil Δ14C and DOM optical properties. Our results demonstrate that near-surface Holocene permafrost soils preserve greater relative potential DOC and TDN yields than overlying seasonally frozen soils that are exposed to annual leaching and decomposition. While many factors control the fate of DOC and TDN, the greater relative yields from newly thawed Holocene permafrost soils will have the largest potential impact in areas dominated by organic-rich soils.
Polimene, Luca; Clark, Darren; Kimmance, Susan; McCormack, Paul
2017-01-01
The capacity of bacteria for degrading dissolved organic nitrogen (DON) and remineralising ammonium is of importance for marine ecosystems, as nitrogen availability frequently limits productivity. Here, we assess the capacity of a widely distributed and metabolically versatile marine bacterium to degrade phytoplankton-derived dissolved organic carbon (DOC) and nitrogen. To achieve this, we lysed exponentially growing diatoms and used the derived dissolved organic matter (DOM) to support an axenic culture of Alteromonas sp.. Bacterial biomass (as particulate carbon and nitrogen) was monitored for 70 days while growth dynamics (cell count), DOM (DOC, DON) and dissolved nutrient concentrations were monitored for up to 208 days. Bacterial biomass increased rapidly within the first 7 days prior to a period of growth/death cycles potentially linked to rapid nutrient recycling. We found that ≈75% of the initial DOC and ≈35% of the initial DON were consumed by bacteria within 40 and 4 days respectively, leaving a significant fraction of DOM resilient to degradation by this bacterial species. The different rates and extents to which DOC and DON were accessed resulted in changes in DOM stoichiometry and the iterative relationship between DOM quality and bacterial growth over time influenced bacterial cell C:N molar ratio. C:N values increased to 10 during the growth phase before decreasing to values of ≈5, indicating a change from relative N-limitation/C-sufficiency to relative C-limitation/N-sufficiency. Consequently, despite its reported metabolic versatility, we demonstrate that Alteromonas sp. was unable to access all phytoplankton derived DOM and that a bacterial community is likely to be required. By making the relatively simple assumption that an experimentally derived fraction of DOM remains resilient to bacterial degradation, these experimental results were corroborated by numerical simulations using a previously published model describing the interaction between DOM and bacteria in marine systems, thus supporting our hypothesis.
Causes and consequences of the hydrological droughts in the south region of European Russia
NASA Astrophysics Data System (ADS)
Kireeva, Maria; Ilich, Vladislav; Kharlamov, Maksim; Frolova, Natalia; Goncharov, Aleksandr
2017-04-01
In the last decade the number of extreme low-flow periods on Russian rivers has increased significantly. The most severe water shortage currently observed in the Don and Volga basin. Also suffers from lack of water of Lake Baikal region, left-bank tributaries of the Lena. The most acute problem of water shortage is in the basin of the Don river. It is located in the south od European part of Russia and has an area of 422 ths km2, which is very densely populated (more than 29 million inhabitants). The river and its tributaries are the main sources of fresh water for the population. In addition, they play a key role in industries such as fisheries, recreation, shipping, hydropower (HPP Tsimlyanskaya). Don anciently was very famous for its biodiversity and the number of organisms of the floodplain ecosystems. However, at the present time due to anthropogenic stress and climate change, these figures dropped down. This study is devoted to the complex analysis arising in the district. Don water shortage. As part of the research was carried out the spatial distribution of runoff, revealing its meteorological reasons of water shortage, the impact of water scarcity on the ecosystem in general and fish fauna in particular. Hydrological drought is clearly manifested in the annual runoff only in the lower part of the basin. From 2007 the annual runoff probability here are higher than 80%. It was found that the longest (during record from 1930ths) duration of the event associated with rotation of water shortages on the left and right-bank tributaries of the river. In addition, the analysis of the spatial distribution of seasonal runoff probability showed that in the upper catchment hydrological drought is hardly observed: the rate accounts for 60% and lower. Drought has led to the transformation of the aquatic ecosystem of the Don river and its transition from oligotrophic to eutrophic state. The concentration of phytoplankton in the August - September during low flow period has increased 10 times. Deficit of water affected the reproduction of fish communities - for some species has decreased the number of young fish due to the reduction of spawning areas. At the same time, for others, warm water and improved low levels affected beneficially. The unfavorable combination of natural and anthropogenic factors can be named as reasons for the origin of extreme low-flow period. On the one hand, the increase in the number of thaws and seasonal-floods in winter led to drawdown of snowmelt water in spring, increasing deadweight losses. On the other hand, in recent years it has increased anthropogenic press on the Don basin associated with the intensification of economic activities in the catchment area. This set of factors has led to significant damage from hydrological drought in 2007-2015 in the Don basin.This research was supported by Russian President Grant 2017 (contract No. MK-2331.2017.5)
Tola, Siriporn; Bureau, Dominique P.; Hooft, Jamie M.; Beamish, Frederick W. H.; Sulyok, Michael; Krska, Rudolf; Encarnação, Pedro; Petkam, Rakpong
2015-01-01
An 8-week feeding trial was conducted to examine effects of wheat naturally contaminated with Fusarium mycotoxins (deoxynivalenol, DON 41 mg·kg−1) on growth performance and selected health indices of red tilapia (Oreochromis niloticus × O. mossambicus; initial weight = 4.3 g/fish). Five experimental diets were formulated by replacement of clean wheat with naturally contaminated wheat resulting in graded levels of DON and zearalenone (ZEN) (Diet 1 0.07/0.01, Diet 2 0.31/0.09, Diet 3 0.50/0.21, Diet 4 0.92/0.37 and Diet 5 1.15/0.98 mg·kg−1). Groups of 50 fish were randomly allocated into each of 20 aquaria and fed to near-satiety for eight weeks. Growth rate, feed intake and feed efficiency of fish fed the experimental diets decreased linearly with increasing levels of Fusarium mycotoxins (p < 0.05). Although growth depression was associated with feeding diets naturally contaminated with Fusarium mycotoxins, especially DON, no biochemical and histopathological parameters measured in blood and liver appeared affected by Fusarium mycotoxin concentrations of diets (p > 0.05). Though there was no clear evidence of overt DON toxicity to red tilapia, it is recommended that feed ingredients should be screened for Fusarium mycotoxin contamination to ensure optimal growth performance. PMID:26035489
Ji, Fang; Wu, Jirong; Zhao, Hongyan; Xu, Jianhong; Shi, Jianrong
2015-03-05
A total of 122 wheat varieties obtained from the Nordic Genetic Resource Center were infected artificially with an aggressive Fusariumasiaticum strain in a field experiment. We calculated the severity of Fusarium head blight (FHB) and determined the deoxynivalenol (DON) content of wheat grain, straw and glumes. We found DON contamination levels to be highest in the glumes, intermediate in the straw, and lowest in the grain in most samples. The DON contamination levels did not increase consistently with increased FHB incidence. The DON levels in the wheat varieties with high FHB resistance were not necessarily low, and those in the wheat varieties with high FHB sensitivity were not necessarily high. We selected 50 wheat genotypes with reduced DON content for future research. This study will be helpful in breeding new wheat varieties with low levels of DON accumulation.
Olsson, J; Börjesson, T; Lundstedt, T; Schnürer, J
2002-02-05
Mycotoxin contamination of cereal grains can be detected and quantified using complex extraction procedures and analytical techniques. Normally, the grain odour, i.e. the presence of non-grain volatile metabolites, is used for quality classification of grain. We have investigated the possibility of using fungal volatile metabolites as indicators of mycotoxins in grain. Ten barley samples with normal odour, and 30 with some kind of off-odour were selected from Swedish granaries. The samples were evaluated with regard to moisture content, fungal contamination, ergosterol content, and levels of ochratoxin A (OA) and deoxynivalenol (DON). Volatile compounds were also analysed using both an electronic nose and gas chromatography combined with mass spectrometry (GC-MS). Samples with normal odour had no detectable ochratoxin A and average DON contents of 16 microg kg(-1) (range 0-80), while samples with off-odour had average OA contents of 76 microg kg(-1) (range 0-934) and DON contents of 69 microg kg(-1) (range 0-857). Data were evaluated by multivariate data analysis using projection methods such as principal component analysis (PCA) and partial least squares (PLS). The results show that it was possible to classify the OA level as below or above the maximum limit of 5 microg kg(-1) cereal grain established by the Swedish National Food Administration, and that the DON level could be estimated using PLS. Samples with OA levels below 5 microg kg(-1) had higher concentration of aldehydes (nonanal, 2-hexenal) and alcohols (1-penten-3-ol, 1-octanol). Samples with OA levels above 5 microg kg(-1) had higher concentrations of ketones (2-hexanone, 3-octanone). The GC-MS system predicted OA concentrations with a higher accuracy than the electronic nose, since the GC-MS misclassified only 3 of 37 samples and the electronic nose 7 of 37 samples. No correlation was found between odour and OA level, as samples with pronounced or strong off-odours had OA levels both below and above 5 microg kg(-1). We were able to predict DON levels in the naturally contaminated barley samples using the volatile compounds detected and quantified by either GC-MS or the electronic nose. Pentane, methylpyrazine, 3-pentanone, 3-octene-2-ol and isooctylacetate showed a positive correlation with DON, while ethylhexanol, pentadecane, toluene, 1-octanol, 1-nonanol, and 1-heptanol showed a negative correlation with DON. The root mean square error of estimation values for prediction of DON based on GC-MS and electronic nose data were 16 and 25 microg kg(-1), respectively.
Effects of feed-borne Fusarium mycotoxins on hematology and immunology of laying hens.
Chowdhury, S R; Smith, T K; Boermans, H J; Woodward, B
2005-12-01
Feeding grains naturally contaminated with Fusarium mycotoxins has been shown to alter metabolism and performance of laying hens. The objectives of the current experiment were to examine the effects of feeding grains naturally contaminated with Fusarium mycotoxins on hematology and immunological indices and functions of laying hens and the possible protective effect of feeding a polymeric glucomannan mycotoxin adsorbent (GMA). One hundred forty-four laying hens were fed for 12 wk with diets formulated with (1) uncontaminated grains, (2) contaminated grains, or (3) contaminated grains + 0.2% GMA. Fusarium mycotoxins such as deoxynivalenol (DON, 12 mg/kg), 15-acetyl-DON (0.5 mg/kg), and zearalenone (0.6 mg/kg) were identified in the contaminated diets arising from contaminated grains grown in Ontario, Canada. The concentrations of DON arising from naturally contaminated grains in this study were similar to purified mycotoxin fed to experimental mice. The chronic feeding of Fusarium mycotoxins induced small decreases in hematocrit values, total numbers of white blood cells, lymphocytes including both CD4+ and CD8+ T lymphocytes and B lymphocytes, and biliary IgA concentration. Supplementation of diets containing feedborne mycotoxins with GMA prevented the reduction in total number of B lymphocytes in the peripheral blood and the reduction in biliary IgA concentration. In addition, the delayed-type hypersensitivity response to dinitrochlorobenzene was increased by feed-borne mycotoxins, whereas IgG and IgM antibody titers to sheep red blood cells were not affected by diet. We concluded that chronic consumption of grains naturally contaminated with Fusarium mycotoxins at levels likely to be encountered in practice were not systemically immunosuppressive or hematotoxic; however, mucosal immunocompetence needs to be explored further.
NASA Astrophysics Data System (ADS)
Kiikkilä, O.; Nieminen, T.; Starr, M.; Ukonmaanaho, L.
2012-04-01
Boreal peatlands form an important terrestrial carbon reserve and are a major source of dissolved organic matter (DOM) to surface waters, particularly when disturbed through forestry practices such as draining or timber harvesting. Heavy metals show a strong affinity to organic matter and so, along with DOM, heavy metals can be mobilized and transported from the soil to surface waters and sediments where they may become toxic to aquatic organisms and pass up the food chain. The complexation of heavy metals with DOM can be expected to be related and determined by the chemical characteristics of DOM and oxidation/reducing conditions in the peat. We extracted interstitial water from peat samples and determined the concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and Al, Cu, Zn and Fe in various fractions of DOM isolated by adsorption properties (XAD-8 fractionation) and molecular-weight (ultrafiltration). The peat samples were taken from 0-30 and 30-50 cm depth in drained peatland catchments two years after whole-tree or stem-only clear-cut harvesting (Scots pine or Norway spruce) had been carried out. The samples from the upper layer had been subject to alternating saturation/aeration conditions while the deeper layer had been continuously under the water table. The fractionation of DOC and DON according to both adsorption properties and molecular-weight fractions clearly differed between the upper and lower peat layers. While the hydrophobic acid fraction contained proportionally more DOC and DON than the hydrophilic acid fraction in the upper peat layer the results were vice versa in the lower peat layer. High-molecular-weight compounds (> 100 kDa) were proportionally more abundant in the upper and low-molecular-weight compounds (< 1 kDa) in the lower peat layer. These differences are assumed to reflect differences in the aerobic/ anaerobic conditions and degree of decomposition between the two layers. The concentrations of Zn, Al, Fe and DON correlated positively with DOC concentrations whereas the concentration Cu did not correlate with DOC concentrations. Heavy metal concentrations in different molecular-weight fractions indicated that Al, Cu, Zn and Fe were mostly associated with high-molecular-weight compounds and only a small fraction existed as free metal ions in solution. There were no clear differences in the chemical characteristics of DOC or DON or heavy metal concentrations between the two harvesting treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jun; Wang, Qiao-Chu; Zhu, Cheng-Cheng
Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates agricultural staples and elicits a complex spectrum of toxic effects on humans and animals. It has been shown that DON impairs oocyte maturation, reproductive function and causes abnormal fetal development in mammals; however, the mechanisms remain unclear. In the present study, we investigate the possible reasons of the toxic effects of DON on porcine oocytes. Our results showed that DON significantly inhibited porcine oocyte maturation and disrupted meiotic spindle by reducing p-MAPK protein level, which caused retardation of cell cycle progression. In addition, up-regulated LC3 protein expression and aberrant Lamp2, LC3more » and mTOR mRNA levels were observed with DON exposure, together with Annexin V-FITC staining assay analysis, these results indicated that DON treatment induced autophagy/apoptosis in porcine oocytes. We also showed that DON exposure increased DNA methylation level in porcine oocytes through altering DNMT3A mRNA levels. Histone methylation levels were also changed showing with increased H3K27me3 and H3K4me2 protein levels, and mRNA levels of their relative methyltransferase genes, indicating that epigenetic modifications were affected. Taken together, our results suggested that DON exposure reduced porcine oocytes maturation capability through affecting cytoskeletal dynamics, cell cycle, autophagy/apoptosis and epigenetic modifications. - Highlights: • DON exposure disrupted meiotic spindle by reducing p-MAPK expression. • DON exposure caused retardation of cell cycle progression in porcine oocytes. • DON triggered autophagy and early-apoptosis in porcine oocytes. • DON exposure led to aberrant epigenetic modifications in porcine oocytes.« less
Mycological survey of Korean cereals and production of mycotoxins by Fusarium isolates.
Lee, U S; Jang, H S; Tanaka, T; Toyasaki, N; Sugiura, Y; Oh, Y J; Cho, C M; Ueno, Y
1986-01-01
The fungal species isolated from Korean cereals (barley, polished barley, wheat, rye, and malt) were Alternaria spp., Aspergillus spp., Chaetomium spp., Drechslera spp., Epicoccum sp., Fusarium spp., and Penicillium spp., etc. The number of Fusarium strains isolated was 36, and their ability to produce Fusarium mycotoxins on rice was tested. Nivalenol (NIV) was produced by Fusarium graminearum (7 of 9 isolates), Fusarium oxysporum (3 of 10 isolates), and Fusarium spp. (7 of 15 isolates). Of 15 isolates of Fusarium spp., 6 formed deoxynivalenol (DON). Fusarenon-X and 3-acetyl-DON were produced by most NIV- and DON-forming isolates, respectively. Zearalenone was produced by 3 isolates of F. graminearum, 1 isolate of Fusarium equiseti, and 11 isolates of Fusarium spp. T-2 toxin was not produced by any Fusarium isolates. The highest concentrations of mycotoxins produced by Fusarium isolates were 77.4 (NIV), 5.3 (DON), 138.3 (fusarenon-X), 40.6 (3-acetyl-DON), and 23.2 (zearalenone) micrograms/g. PMID:2947538
Mycological survey of Korean cereals and production of mycotoxins by Fusarium isolates.
Lee, U S; Jang, H S; Tanaka, T; Toyasaki, N; Sugiura, Y; Oh, Y J; Cho, C M; Ueno, Y
1986-12-01
The fungal species isolated from Korean cereals (barley, polished barley, wheat, rye, and malt) were Alternaria spp., Aspergillus spp., Chaetomium spp., Drechslera spp., Epicoccum sp., Fusarium spp., and Penicillium spp., etc. The number of Fusarium strains isolated was 36, and their ability to produce Fusarium mycotoxins on rice was tested. Nivalenol (NIV) was produced by Fusarium graminearum (7 of 9 isolates), Fusarium oxysporum (3 of 10 isolates), and Fusarium spp. (7 of 15 isolates). Of 15 isolates of Fusarium spp., 6 formed deoxynivalenol (DON). Fusarenon-X and 3-acetyl-DON were produced by most NIV- and DON-forming isolates, respectively. Zearalenone was produced by 3 isolates of F. graminearum, 1 isolate of Fusarium equiseti, and 11 isolates of Fusarium spp. T-2 toxin was not produced by any Fusarium isolates. The highest concentrations of mycotoxins produced by Fusarium isolates were 77.4 (NIV), 5.3 (DON), 138.3 (fusarenon-X), 40.6 (3-acetyl-DON), and 23.2 (zearalenone) micrograms/g.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katika, Madhumohan R.; Department of Health Risk Analysis and Toxicology, Maastricht University; Netherlands Toxicogenomics Centre
Deoxynivalenol (DON) or vomitoxin is a commonly encountered type-B trichothecene mycotoxin, produced by Fusarium species predominantly found in cereals and grains. DON is known to exert toxic effects on the gastrointestinal, reproductive and neuroendocrine systems, and particularly on the immune system. Depending on dose and exposure time, it can either stimulate or suppress immune function. The main objective of this study was to obtain a deeper insight into DON-induced effects on lymphoid cells. For this, we exposed the human T-lymphocyte cell line Jurkat and human peripheral blood mononuclear cells (PBMCs) to various concentrations of DON for various times and examinedmore » gene expression changes by DNA microarray analysis. Jurkat cells were exposed to 0.25 and 0.5 μM DON for 3, 6 and 24 h. Biological interpretation of the microarray data indicated that DON affects various processes in these cells: It upregulates genes involved in ribosome structure and function, RNA/protein synthesis and processing, endoplasmic reticulum (ER) stress, calcium-mediated signaling, mitochondrial function, oxidative stress, the NFAT and NF-κB/TNF-α pathways, T cell activation and apoptosis. The effects of DON on the expression of genes involved in ER stress, NFAT activation and apoptosis were confirmed by qRT-PCR. Other biochemical experiments confirmed that DON activates calcium-dependent proteins such as calcineurin and M-calpain that are known to be involved in T cell activation and apoptosis. Induction of T cell activation was also confirmed by demonstrating that DON activates NFATC1 and induces its translocation from the cytoplasm to the nucleus. For the gene expression profiling of PBMCs, cells were exposed to 2 and 4 μM DON for 6 and 24 h. Comparison of the Jurkat microarray data with those obtained with PBMCs showed that most of the processes affected by DON in the Jurkat cell line were also affected in the PBMCs. -- Highlights: ► The human T cell line Jurkat and human PBMCs were exposed to DON. ► Whole-genome microarray experiments were performed. ► Microarray data indicates that DON affects ribosome and RNA/protein synthesis. ► DON treatment induces ER stress, calcium mediated signaling, NFAT and NF-κB. ► Exposure to DON induces T cell activation, oxidative stress and apoptosis.« less
Xia, Shuang; Zhu, Pei; Pi, Fuwei; Zhang, Yinzhi; Li, Yun; Wang, Jiasheng; Sun, Xiulan
2017-11-15
A simple and convenient cell-based electrochemical biosensor was developed to assess the individual and combined toxicity of deoxynivalenol (DON), zearalenone (ZEN), and Aflatoxin B 1 (AFB 1 ) on Hep G2 cells. The sensor was modified in succession with AuNPs (gold nanoparticles), cysteamine, and laminin. The cells interacting with laminin formed tight cell-to-electrode contacts, and collagen was used to maintain cell adhesion and viability. Electrochemical impedance spectroscopy (EIS) was developed to evaluate mycotoxin toxicity. Experimental results show that DON, ZEN, and AFB 1 caused a significant decrease in cell viability in a dose dependent manner. The EIS value decreased with concentrations of DON, ZEN, and AFB 1 in the range of 0.01-20, 0.1-50, and 0.1-3.5μg/mL, and IC 50 obtained using the developed method was 48.5, 59.0, and 3.10μg/mL, respectively. A synergistic effect was observed between DON and ZEN, an additive effect was observed between DON and AFB 1 , and an antagonism effect was found in the binary mixtures of ZEN and AFB 1 and ternary mixtures. These results were confirmed via CCK-8 assay. Utilizing SEM, we found that cells treated with mycotoxins caused significant changes in cell morphology, thus lessening cell adsorption and impedance reduction. Biological assay indicated that EIS patterns correlated with [Ca 2+ ] i concentrations and apoptosis and necrotic cells ratios, thus effecting electrochemical signals. This method is simpler, more convenient, sensitive, and has a quicker response rate than most conventional cytotoxicity evaluation methods. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Tremblay, J.-É.; Raimbault, P.; Garcia, N.; Lansard, B.; Babin, M.; Gagnon, J.
2014-09-01
The concentrations and elemental stoichiometry of particulate and dissolved pools of carbon (C), nitrogen (N), phosphorus (P) and silicon (Si) on the Canadian Beaufort Shelf during summer 2009 (MALINA program) were assessed and compared with those of surface waters provided by the Mackenzie river as well as by winter mixing and upwelling of upper halocline waters at the shelf break. Neritic surface waters showed a clear enrichment in dissolved and particulate organic carbon (DOC and POC, respectively), nitrate, total particulate nitrogen (TPN) and dissolved organic nitrogen (DON) originating from the river. Silicate as well as bulk DON and DOC declined in a near-conservative manner away from the delta's outlet, whereas nitrate dropped non-conservatively to very low background concentrations inside the brackish zone. By contrast, the excess of soluble reactive P (SRP) present in oceanic waters declined in a non-conservative manner toward the river outlet, where concentrations were very low and consistent with P shortage in the Mackenzie River. These opposite gradients imply that the admixture of Pacific-derived, SRP-rich water is necessary to allow phytoplankton to use river-derived nitrate and to a lesser extent DON. A coarse budget based on concurrent estimates of primary production shows that river N deliveries support a modest fraction of primary production when considering the entire shelf, due to the ability of phytoplankton to thrive in the subsurface chlorophyll maximum beneath the thin, nitrate-depleted river plume. Away from shallow coastal bays, local elevations in the concentration of primary production and dissolved organic constituents were consistent with upwelling at the shelf break. By contrast with shallow winter mixing, nutrient deliveries by North American rivers and upwelling relax surface communities from N limitation and permit a more extant utilization of the excess SRP entering through the Bering Strait. In this context, increased nitrogen supply by rivers and upwelling potentially alters the vertical distribution of the excess P exported into the North Atlantic.
Michlmayr, Herbert; Malachová, Alexandra; Varga, Elisabeth; Kleinová, Jana; Lemmens, Marc; Newmister, Sean; Rayment, Ivan; Berthiller, Franz; Adam, Gerhard
2015-01-01
Glycosylation is an important plant defense mechanism and conjugates of Fusarium mycotoxins often co-occur with their parent compounds in cereal-based food and feed. In case of deoxynivalenol (DON), deoxynivalenol-3-O-β-d-glucoside (D3G) is the most important masked mycotoxin. The toxicological significance of D3G is not yet fully understood so that it is crucial to obtain this compound in pure and sufficient quantities for toxicological risk assessment and for use as an analytical standard. The aim of this study was the biochemical characterization of a DON-inactivating UDP-glucosyltransferase from rice (OsUGT79) and to investigate its suitability for preparative D3G synthesis. Apparent Michaelis constants (Km) of recombinant OsUGT79 were 0.23 mM DON and 2.2 mM UDP-glucose. Substrate inhibition occurred at DON concentrations above 2 mM (Ki = 24 mM DON), and UDP strongly inhibited the enzyme. Cu2+ and Zn2+ (1 mM) inhibited the enzyme completely. Sucrose synthase AtSUS1 was employed to regenerate UDP-glucose during the glucosylation reaction. With this approach, optimal conversion rates can be obtained at limited concentrations of the costly co-factor UDP-glucose. D3G can now be synthesized in sufficient quantity and purity. Similar strategies may be of interest to produce β-glucosides of other toxins. PMID:26197338
Jani, Jariani; Toor, Gurpal S
2018-06-15
Nitrogen (N) transport from land to water is a dominant contributor of N in estuarine waters leading to eutrophication, harmful algal blooms, and hypoxia. Our objectives were to (1) investigate the composition of inorganic and organic N forms, (2) distinguish the sources and biogeochemical mechanisms of nitrate-N (NO 3 -N) transport using stable isotopes of NO 3 - and Bayesian mixing model, and (3) determine the dissolved organic N (DON) bioavailability using bioassays in a longitudinal gradient from freshwater to estuarine ecosystem located in the Tampa Bay, Florida, United States. We found that DON was the most dominant N form (mean: 64%, range: 46-83%) followed by particulate organic N (PON, mean: 22%, range: 14-37%), whereas inorganic N forms (NO x -N: 7%, NH 4 -N: 7%) were 14% of total N in freshwater and estuarine waters. Stable isotope data of NO 3 - revealed that nitrification was the main contributor (36.4%), followed by soil and organic N sources (25.5%), NO 3 - fertilizers (22.4%), and NH 4 + fertilizers (15.7%). Bioassays showed that 14 to 65% of DON concentrations decreased after 5-days of incubation indicating utilization of DON by microbes in freshwater and estuarine waters. These results suggest that despite low proportion of inorganic N forms, the higher concentrations and bioavailability of DON can be a potential source of N for algae and bacteria leading to water quality degradation in the estuarine waters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pagilla, K R; Urgun-Demirtas, M; Czerwionka, K; Makinia, J
2008-01-01
The fate of N species, particularly dissolved organic nitrogen (DON), through process trains of a wastewater treatment plant (WWTP) was investigated. In this study, three fully nitrifying plants in Illinois, USA and biological nutrient removal (BNR) plants in northern Poland were sampled for N characterization in the primary and secondary effluents as a function of the particle size distribution. The correlations between dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations were examined. The key findings are that DON becomes significant portion (about 20%) of the effluent N, reaching up to 50% of effluent total N in one of the Polish plants. The DON constituted 56-95% of total ON (TON) in the secondary effluents, whereas in the Polish plants the DON contribution was substantially lower (19-62%) and in one case (Gdansk WWTP) colloidal ON was the dominating fraction (62% of TON). The DOC to DON ratio in the US plants is significantly lower than that in the receiving waters indicating potential for deterioration of receiving water quality. In Polish plants, the influent and effluent C:N ratios are similar, but not in the US plants. IWA Publishing 2008.
Generotti, Silvia; Cirlini, Martina; Malachova, Alexandra; Sulyok, Michael; Berthiller, Franz; Dall’Asta, Chiara; Suman, Michele
2015-01-01
In the scientific field, there is a progressive awareness about the potential implications of food processing on mycotoxins especially concerning thermal treatments. High temperatures may cause, in fact, transformation or degradation of these compounds. This work is aimed to study the fate of mycotoxins during bakery processing, focusing on deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3Glc), along the chain of industrial rusk production. Starting from naturally contaminated bran, we studied how concentrations of DON and DON3Glc are influenced by modifying ingredients and operative conditions. The experiments were performed using statistical Design of Experiment (DoE) schemes to synergistically explore the relationship between mycotoxin reduction and the indicated processing transformation parameters. All samples collected during pilot plant experiments were analyzed with an LC-MS/MS multimycotoxin method. The obtained model shows a good fitting, giving back relevant information in terms of optimization of the industrial production process, in particular suggesting that time and temperature in baking and toasting steps are highly relevant for minimizing mycotoxin level in rusks. A reduction up to 30% for DON and DON3Glc content in the finished product was observed within an acceptable technological range. PMID:26213969
Generotti, Silvia; Cirlini, Martina; Malachova, Alexandra; Sulyok, Michael; Berthiller, Franz; Dall'Asta, Chiara; Suman, Michele
2015-07-24
In the scientific field, there is a progressive awareness about the potential implications of food processing on mycotoxins especially concerning thermal treatments. High temperatures may cause, in fact, transformation or degradation of these compounds. This work is aimed to study the fate of mycotoxins during bakery processing, focusing on deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3Glc), along the chain of industrial rusk production. Starting from naturally contaminated bran, we studied how concentrations of DON and DON3Glc are influenced by modifying ingredients and operative conditions. The experiments were performed using statistical Design of Experiment (DoE) schemes to synergistically explore the relationship between mycotoxin reduction and the indicated processing transformation parameters. All samples collected during pilot plant experiments were analyzed with an LC-MS/MS multimycotoxin method. The obtained model shows a good fitting, giving back relevant information in terms of optimization of the industrial production process, in particular suggesting that time and temperature in baking and toasting steps are highly relevant for minimizing mycotoxin level in rusks. A reduction up to 30% for DON and DON3Glc content in the finished product was observed within an acceptable technological range.
Warth, Benedikt; Petchkongkaew, Awanwee; Sulyok, Michael; Krska, Rudolf
2014-01-01
Human exposures to mycotoxins through dietary intake are a major health hazard and may result in various pathophysiological effects. Although Thailand is a country at increased risk due to its climatic conditions, no comprehensive dataset is available to perform proper exposure assessment of its population with regard to mycotoxins. Therefore, this pilot study was conducted to investigate and evaluate the exposure levels of major mycotoxins (aflatoxin B₁, ochratoxin A, fumonisins, zearalenone and trichothecenes). Sixty first-morning urine samples were collected from healthy volunteers who live in the Bangkok metropolitan area and surrounding provinces (Pathumthani, Nonthaburi, Samutprakarn and Samutsakorn). Urine samples were analysed by a LC-MS/MS-based multi-biomarker method following a so-called 'dilute and shoot' approach. Results generally indicated low mycotoxin exposures in most individuals through the determination of the four biomarkers that were detected in urine samples, i.e. aflatoxin M₁, ochratoxin A (OTA), as well as the deoxynivalenol (DON) metabolites DON-3-glucuronide and DON-15-glucuronide in 10 of 60 individuals. The maximum concentrations were used to estimate the daily intake confirming that none of the individuals exceeded the tolerable daily intake (TDI) of DON (maximum 26% of TDI) or OTA (maximum 22% of TDI). However, the maximum exposure of aflatoxin B₁, estimated to be 0.91 µg (kg bw)⁻¹ day⁻¹, should raise some concerns and suggests further studies utilising a more sensitive method. Low exposure to Fusarium toxins was also confirmed by the absence of zearalenone, α-zearalanol, β-zearalanol and zearalenone-14-glucuronide as well as T-2 toxin, HT-2 toxin, nivalenol and free DON. This is the first multi-mycotoxin biomarker study performed in Southeast Asia.
Devreese, Mathias; Girgis, George N; Tran, Si-Trung; De Baere, Siegrid; De Backer, Patrick; Croubels, Siska; Smith, Trevor K
2014-01-01
An experiment was conducted to investigate the effects of feeding grains naturally contaminated with Fusarium mycotoxins and a yeast derived glucomannan mycotoxin adsorbent (GMA) on selected specific and non-specific parameters in turkey poults. Two hundred and forty 1-day-old male turkey poults were fed the experimental diets for twelve weeks. Experimental diets were formulated with control grains, control grains+0.2% GMA, naturally-contaminated grains, or naturally-contaminated grains+0.2% GMA. Deoxynivalenol (DON) was the major contaminant of the contaminated grains and concentrations varied from 4.0 to 6.5 mg/kg in the contaminated diets. Non-specific parameters measured included: performance parameters, plasma biochemistry profiles, morphometry and CD8(+) T-lymphocyte counts in the duodenum. Plasma concentrations of DON and de-epoxydeoxynivalenol (DOM-1) were used as specific parameters. Performance parameters and plasma biochemistry were altered by the feeding of contaminated diets and GMA but this was not consistent throughout the trial. The feeding of contaminated diets reduced duodenal villus height and apparent villus surface area. This effect was prevented by GMA supplementation. The feeding of contaminated diets elevated total duodenal CD8(+) T-lymphocyte counts but this effect was not prevented by GMA. No significant differences were seen in plasma concentrations of DON and DOM-1 comparing birds fed contaminated and contaminated+GMA diets suggesting that GMA did not prevent DON absorption under these conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Khatibi, Piyum A.; McMaster, Nicole J.; Musser, Robert; Schmale, David G.
2014-01-01
Fuel ethanol co-products known as distillers’ dried grains with solubles (DDGS) are a significant source of energy, protein, and phosphorous in animal feed. Fuel ethanol production may concentrate mycotoxins present in corn into DDGS. One hundred and forty one corn DDGS lots collected in 2011 from 78 ethanol plants located in 12 states were screened for the mycotoxins deoxynivalenol (DON), 15-acetyldeoxynivalenol (15-ADON), 3-acetyldeoxynivalenol (3-ADON), nivalenol (NIV), and zearalenone (ZON). DON ranged from <0.50 to 14.62 μg g−1, 15-ADON ranged from <0.10 to 7.55 μg g−1, and ZON ranged from <0.10 to 2.12 μg g−1. None of the DDGS lots contained 3-ADON or NIV. Plants in OH had the highest levels of DON overall (mean of 9.51 μg g−1), and plants in NY, MI, IN, NE, and WI had mean DON levels >1 and <4 μg g−1. Twenty six percent (36/141) of the DDGS lots contained 1.0 to 5.0 μg g−1 DON, 2% (3/141) contained >5.0 and <10.0 μg g−1 DON, and 3% (4/141) contained >10.0 μg g−1 DON. All DDGS lots contaminated with unacceptable levels of DON evaded detection prior to their commercial distribution and were likely sold as feed products. PMID:24674933
Ji, Jian; Zhu, Pei; Cui, Fangchao; Pi, Fuwei; Zhang, Yinzhi; Li, Yun; Wang, Jiasheng; Sun, Xiulan
2017-01-01
Metabolic profiling in liver and serum of mice was studied for the combined toxic effects of deoxynivalenol (DON) and zearalenone (ZEN), through gas chromatography mass spectrum. The spectrum of serum and liver sample of mice, treated with individual 2 mg/kg DON, 20 mg/kg ZEN, and the combined DON + ZEN with final concentration 2 mg/kg DON and 20 mg/kg ZEN for 21 days, were deconvoluted, aligned and identified with MS DIAL. The data matrix was processed with univariate analysis and multivariate analysis for selection of metabolites with variable importance for the projection (VIP) > 1, t-test p value < 0.05. The metabolic pathway analysis was performed with MetaMapp and drawn by CytoScape. Results show that the combined DON and ZEN treatment has an obvious “antagonistic effect” in serum and liver tissue metabolic profiling of mice. The blood biochemical indexes, like alkaline phosphatase, alanine transaminase, and albumin (ALB)/globulin (GLO), reveal a moderated trend in the combined DON + ZEN treatment group, which is consistent with histopathological examination. The metabolic pathway analysis demonstrated that the combined DON and ZEN treatment could down-regulate the valine, leucine and isoleucine biosynthesis, glycine, serine and threonine metabolism, and O-glycosyl compounds related glucose metabolism in liver tissue. The metabolic profiling in serum confirmed the finding that the combined DON and ZEN treatment has an “antagonistic effect” on liver metabolism of mice. PMID:28075412
Pasternak, J Alex; Aiyer, Vaishnavi Iyer Aka; Hamonic, Glenn; Beaulieu, A Denise; Columbus, Daniel A; Wilson, Heather L
2018-01-12
We intended to assess how exposure of piglets to deoxynivalenol (DON)-contaminated feed impacted their growth, immune response and gut development. Piglets were fed traditional Phase I, Phase II and Phase III diets with the control group receiving 0.20-0.40 ppm DON (referred to as the Control group) and treatment group receiving much higher level of DON-contaminated wheat (3.30-3.80 ppm; referred to as DON-contaminated group). Feeding a DON-contaminated diet had no impact on average daily feed intake (ADFI) ( p < 0.08) or average daily gain (ADG) ( p > 0.10) but it did significantly reduce body weight over time relative to the control piglets ( p < 0.05). Cytokine analysis after initial exposure to the DON-contaminated feed did not result in significant differences in serum interleukin (IL) IL1β, IL-8, IL-13, tumor necrosis factor (TNF)-α or interferon (IFN)-γ. After day 24, no obvious changes in jejunum or ileum gut morphology, histology or changes in gene expression for IL-1β, IL-6, IL-10, TNFα, or Toll-like receptor (TLR)-4 genes. IL-8 showed a trend towards increased expression in the ileum in DON-fed piglets. A significant increase in gene expression for claudin (CLDN) 7 gene expression and a trend towards increased CLDN 2-expression was observed in the ileum in piglets fed the highly DON-contaminated wheat. Because CLDN localization was not negatively affected, we believe that it is unlikely that gut permeability was affected. Exposure to DON-contaminated feed did not significantly impact weaner piglet performance or gut physiology.
Reddy, Kondreddy Eswar; Song, Jaeyong; Lee, Hyun-Jeong; Kim, Minseok; Kim, Dong-Wook; Jung, Hyun Jung; Kim, Bumseok; Lee, Yookyung; Yu, Dongjo; Kim, Dong-Woon; Oh, Young Kyoon; Lee, Sung Dae
2018-01-01
Background: Deoxynivalenol (DON) and zearalenone (ZEN) are common food contaminants produced by Fusarium sp. Mycotoxins are a potential health hazard because of their toxicological effects on both humans and farmed animals. Methods: We analyzed three groups of pigs: a control group (fed a standard diet), and the DON and ZEN groups, fed a diet containing 8 mg/kg DON and 0.8 mg/kg ZEN respectively, for four weeks. Results: DON and ZEN exposure decreased body weight (BW), average daily feed intake (ADFI), food conversion rate (FCR), and the serum levels of immunoglobulin (Ig)G and IgM. The total antioxidant levels significantly decreased in serum and increased in urine samples of both treatment groups. Additionally, DON and ZEN exposure increased serotonin levels in urine. Hematological parameters were not affected by the investigated toxins. Microscopic lesions were evident in sections of kidneys from either treatment group: we found sporadic interstitial nephritis in the DON group and renal glomerulus atrophy in the ZEN group. The expression levels of inflammatory cytokines and chemokine marker genes were reduced in tissues from DON- and ZEN-exposed pigs. Conclusions: chronic ingestion of high doses of DON and ZEN alters the immune response and causes organs damage, and might be associated with various diseases in pigs. PMID:29518941
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Xiao; Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824; Whitten, Douglas A.
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium that commonly contaminates food, is capable of activating mononuclear phagocytes of the innate immune system via a process termed the ribotoxic stress response (RSR). To encapture global signaling events mediating RSR, we quantified the early temporal (≤ 30 min) phosphoproteome changes that occurred in RAW 264.7 murine macrophage during exposure to a toxicologically relevant concentration of DON (250 ng/mL). Large-scale phosphoproteomic analysis employing stable isotope labeling of amino acids in cell culture (SILAC) in conjunction with titanium dioxide chromatography revealed that DON significantly upregulated or downregulated phosphorylation of 188 proteins at bothmore » known and yet-to-be functionally characterized phosphosites. DON-induced RSR is extremely complex and goes far beyond its prior known capacity to inhibit translation and activate MAPKs. Transcriptional regulation was the main target during early DON-induced RSR, covering over 20% of the altered phosphoproteins as indicated by Gene Ontology annotation and including transcription factors/cofactors and epigenetic modulators. Other biological processes impacted included cell cycle, RNA processing, translation, ribosome biogenesis, monocyte differentiation and cytoskeleton organization. Some of these processes could be mediated by signaling networks involving MAPK-, NFκB-, AKT- and AMPK-linked pathways. Fuzzy c-means clustering revealed that DON-regulated phosphosites could be discretely classified with regard to the kinetics of phosphorylation/dephosphorylation. The cellular response networks identified provide a template for further exploration of the mechanisms of trichothecenemycotoxins and other ribotoxins, and ultimately, could contribute to improved mechanism-based human health risk assessment. - Highlights: ► Mycotoxin deoxynivalenol (DON) induces immunotoxicity via ribotoxic stress response. ► SILAC phosphoproteomics using TiO{sub 2} was applied to DON-treated RAW 264.7 cells. ► DON induces extensive protein phosphorylation changes involving 188 phosphoproteins. ► The main target of early DON-induced RSR is transcriptional regulation. ► Early DON-induced RSR is mediated by MAPK-, NFκB-, AKT- and AMPK-linked pathways.« less
Uhlig, Silvio; Stanic, Ana; Hofgaard, Ingerd S.; Kluger, Bernhard; Schuhmacher, Rainer; Miles, Christopher O.
2016-01-01
A glutathione (GSH) adduct of the mycotoxin 4-deoxynivalenol (DON), together with a range of related conjugates, has recently been tentatively identified by LC-MS of DON-treated wheat spikelets. In this study, we prepared samples of DON conjugated at the 10- and 13-positions with GSH, Cys, CysGly, γ-GluCys and N-acetylcysteine (NAC). The mixtures of conjugates were used as standards for LC-HRMS analysis of one of the DON-treated wheat spikelet samples, as well as 19 Norwegian grain samples of spring wheat and 16 grain samples of oats that were naturally-contaminated with DON at concentrations higher than 1 mg/kg. The artificially-contaminated wheat spikelets contained conjugates of GSH, CysGly and Cys coupled at the olefinic 10-position of DON, whereas the naturally-contaminated harvest-ripe grain samples contained GSH, CysGly, Cys, and NAC coupled mainly at the 13-position on the epoxy group. The identities of the conjugates were confirmed by LC-HRMS comparison with authentic standards, oxidation to the sulfoxides with hydrogen peroxide, and examination of product-ion spectra from LC-HRMS/MS analysis. No γ-GluCys adducts of DON were detected in any of the samples. The presence of 15-O-acetyl-DON was demonstrated for the first time in Norwegian grain. The results indicate that a small but significant proportion of DON is metabolized via the GSH-conjugation pathway in plants. To our knowledge, this is the first report of in vivo conjugation of trichothecenes via their epoxy group, which has generally been viewed as unreactive. Because conjugation at the 13-position of DON and other trichothecenes has been shown to be irreversible, this type of conjugate may prove useful as a biomarker of exposure to DON and other 12,13-epoxytrichothecenes. PMID:27845722
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Ogawa, H.; Miyajima, T.
2010-09-01
The effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen (DOC and DON, respectively) from the coral Montipora digitata were investigated in the laboratory. Nitrate (NO3 -) and phosphate (PO4 3-) were supplied to the aquarium to get the final concentrations of 10 and 0.5 μmol l-1, respectively, and the corals were incubated for 8 days. The release rate of DON per unit coral surface area significantly decreased after the nutrient enrichment, while the release rate of DOC was constant. Because the chlorophyll a (chl a) content of zooxanthellae per unit surface area increased, the release rate of DOC significantly decreased when normalized to unit chl a. These results suggested that the incorporation of NO3 - and PO4 3- stimulated the synthesis of new cellular components in the coral colonies and consequently, reduced extracellular release of DOC and DON. Actually, significant increase in N and P contents relative to C content was observed in the coral’s tissue after the nutrient enrichment. The present study has concluded that inorganic nutrient enrichment not only affects coral-algal metabolism inside the colony but also affects a microbial community around the coral because the organic matter released from corals functions as energy carrier in the coral reef ecosystem.
Tran, S T; Smith, T K
2014-02-01
Deoxynivalenol (DON, vomitoxin) is a trichothecene mycotoxin which can be considered to be an indicator of Fusarium mycotoxin contamination in grain, feed and food. Recent studies have described the presence of glucose conjugated DON, which is a product of plant metabolism, but there is a lack of information available on DON conjugation by fungi. The aim of the current study was, therefore, to investigate the ability of fungi to metabolize DON into hydrolysable conjugated DON. Alternaria alternata (54028 NRRL) and Rhizopus microsporus var. rhizopodiformis (54029 NRRL) were found to be capable of metabolizing DON into hydrolysable conjugated DON. This ranged from 13-23 % conjugation of DON in potato dextrose agar media and from 11-36 % in corn-based media. There was, however, considerable variation between fungal strains in the ability to conjugate DON as only a slight increase in hydrolysable conjugated DON (1-6 %) was observed when incubating with A. oryzae (5509 NRRL). A. oryzae (5509 NRRL) was also shown to degrade DON (up to 92 %) over 21 days of incubation on corn-based media. The current study shows that conjugation of DON can be achieved through fungal metabolism in addition to being a product of plant metabolism.
DOC and DON Dynamics along the Bagmati Drainage Network in Kathmandu Valley
NASA Astrophysics Data System (ADS)
Bhatt, M. P.; McDowell, W. H.
2005-05-01
We studied organic matter dynamics and inorganic chemistry of the Bagmati River in Kathmandu valley, Nepal, to understand the influence of human and geochemical processes on chemical loads along the drainage system. Population density appears to be the most fundamental control on the chemistry of surface waters within the Bagmati drainage system. DOC concentration increases 10-fold with distance downstream (from 2.38 to 23.95 mg/L) and shows a strong relationship with human population density. The composition of river water (nutrients, Cl) suggests that sewage effluent to the river has a major effect on water quality. Concentrations were highest during summer, and lowest during the winter monsoon season. In contrast to DOC, DON concentration shows surprisingly little variation, and tends to decrease in concentration with distance downstream. Ammonium contributes almost all nitrogen in the total dissolved nitrogen fraction and the concentration of nitrate is negligible, probably due to rapid denitrification within the stream channel under relatively low-oxygen conditions. Decreases in sulfate along the stream channel may also be due to the reduction of sulfate to sulfide due to the heavy organic matter loading. Water quality is unacceptable for any use and the whole ecosystem is severely affected within the urban areas. Based on a comparison of downstream and upstream water quality, it appears that human activities along the Bagmati, principally inputs of human sewage, are largely responsible for the changes in surface water chemistry within Kathmandu valley.
NASA Astrophysics Data System (ADS)
Lønborg, Christian; Yokokawa, Taichi; Herndl, Gerhard J.; Antón Álvarez-Salgado, Xosé
2015-02-01
The distribution and fate of coloured dissolved organic matter (CDOM) in the epipelagic Eastern North Atlantic was investigated during a cruise in the summer 2009 by combining field observations and culture experiments. Dissolved organic carbon (DOC) and nitrogen (DON), the absorption spectra of CDOM and the fluorescence intensity of proteins (Ex/Em 280/320 nm; F(280/320)) and marine humic-like substances (F(320/410)) were measured in the upper 200 m. DOC and DON showed higher concentrations in the top 20 m than below, and DOC increased southwards, while DON decreased. F(280/320) and F(320/410) showed maxima near the deep chlorophyll maximum (at about 50 m), suggesting that these fluorophores were linked to phytoplankton production and the metabolism of the associated microbial community. The coloured and fluorescent fractions of DOM showed low levels south of the Azores Front, at about 35 °N, likely due to the accumulated photobleaching of the waters transported eastwards by the Azores current into the study area (at 20°W). Twelve culture experiments were also conducted with surface water (5 m) to assess the impact of microbial degradation processes on the bulk, coloured and fluorescent fractions of DOM. After 72 h of incubation in the darkness, 14±9% (average±SD) of the initial DON was consumed at an average rate of 0.24±0.14 μmol l-1 d-1 and the protein-like fluorescence decayed by 29±9% at a net rate of 0.06±0.03 QSU d-1. These rates were significantly lower south of the Azores front, suggesting that DOM in this region was of a more recalcitrant nature. Conversely, the marine humic-like fluorescence increased at a net rate of 0.013±0.003 QSU d-1. The close linear relationship of DON uptake with F(280/320) consumption (R2= 0.91, p <0.0001, n=12) and F(320/410) production (R2= 0.52, p <0.008, n=12) that we found during these incubation experiments suggest that the protein-like fluorescence can be used as a proxy for the dynamics of the labile DON pool and that marine humic-like materials can be produced as a by-product of microbial DOM degradation.
Ghareeb, Khaled; Awad, Wageha A.; Sid-Ahmed, Omer E.; Böhm, Josef
2014-01-01
Mycotoxins pose an important danger to human and animal health. Poultry feeds are frequently contaminated with deoxynivalenol (DON) mycotoxin. It is thus of great importance to evaluate the effects of DON on the welfare related parameters in poultry industry. In the present study, the effects of contamination of broiler diet with 10 mg DON/kg feed on plasma corticosterone and heterophil to lymphocyte (H/L) ratio as indicators of stress, tonic immobility duration as an index for fear response and growth performance of broiler chickens were studied. In addition, the effect of a microbial feed additive either alone or in combination with DON contamination on these different aspects was also evaluated. The results showed that DON feeding significantly affected the welfare related parameters of broiler chickens. The feeding of DON contaminated diet resulted in an elevation of plasma corticosterone, higher H/L ratio and increased the fear levels as indicated by longer duration of tonic immobility reaction. Furthermore, DON reduced the body weight and body weight gain during the starter phase definitely at the second and third week. However, during grower phase, feeding of DON decreased the body weight at the fourth week and reduced the body gain at the fifth week. Addition of the microbial feed additive, a commercial antidote for DON mycotoxin, was able to overcome DON effects on stress index (H/L ratio), fearfulness and growth parameters of broilers. In conclusion, we showed for the first time that the DON feeding increased the underlying fearfulness and physiological stress responses of broilers and resulted in a reduction in the welfare status as indicated by higher plasma corticosterone, higher H/L ratio and higher fearfulness. Additionally, feeding the microbial feed additive was effective in reducing the adverse effects of DON on the bird's welfare and can improve the performance of broiler chickens. PMID:24498179
Ghareeb, Khaled; Awad, Wageha A; Sid-Ahmed, Omer E; Böhm, Josef
2014-01-01
Mycotoxins pose an important danger to human and animal health. Poultry feeds are frequently contaminated with deoxynivalenol (DON) mycotoxin. It is thus of great importance to evaluate the effects of DON on the welfare related parameters in poultry industry. In the present study, the effects of contamination of broiler diet with 10 mg DON/kg feed on plasma corticosterone and heterophil to lymphocyte (H/L) ratio as indicators of stress, tonic immobility duration as an index for fear response and growth performance of broiler chickens were studied. In addition, the effect of a microbial feed additive either alone or in combination with DON contamination on these different aspects was also evaluated. The results showed that DON feeding significantly affected the welfare related parameters of broiler chickens. The feeding of DON contaminated diet resulted in an elevation of plasma corticosterone, higher H/L ratio and increased the fear levels as indicated by longer duration of tonic immobility reaction. Furthermore, DON reduced the body weight and body weight gain during the starter phase definitely at the second and third week. However, during grower phase, feeding of DON decreased the body weight at the fourth week and reduced the body gain at the fifth week. Addition of the microbial feed additive, a commercial antidote for DON mycotoxin, was able to overcome DON effects on stress index (H/L ratio), fearfulness and growth parameters of broilers. In conclusion, we showed for the first time that the DON feeding increased the underlying fearfulness and physiological stress responses of broilers and resulted in a reduction in the welfare status as indicated by higher plasma corticosterone, higher H/L ratio and higher fearfulness. Additionally, feeding the microbial feed additive was effective in reducing the adverse effects of DON on the bird's welfare and can improve the performance of broiler chickens.
Mastanjević, Kristina; Šarkanj, Bojan; Krska, Rudolf; Sulyok, Michael; Warth, Benedikt; Mastanjević, Krešimir; Šantek, Božidar; Krstanović, Vinko
2018-07-15
The aim was to determine the mycotoxin transfer rate into beer during a semi-industrial production process and the effect of fungicide treatment in the field on mycotoxins concentrations in beer. To ensure the usual practical agronomical conditions, sample A was treated with fungicide Prosaro® 250, and sample B was infected with Fusarium culmorum spores, in order to obtain infected malt. Malt was produced using standard procedure and beer was produced in a semi-industrial unit. During fermentation measurement of sugars (maltotriose and maltose), glycerol and ethanol content was performed on a daily basis. Multiple toxins were determined in malt and beer. Deoxynivalenol (DON), its modified plant metabolite DON-3-glucoside (DON-glucoside), brevianamide F, tryptophol, linamarin, lotaustralin, culmorin (CUL), 15-hydroxy-CUL and 5-hydroyx-CUL were detected in all samples. Results indicate that F. culmorum infection did not influence the fermentation process or the alcohol concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kostelanska, Marta; Dzuman, Zbynek; Malachova, Alexandra; Capouchova, Ivana; Prokinova, Evzenie; Skerikova, Alena; Hajslova, Jana
2011-09-14
The co-occurrence of the major Fusarium mycotoxin deoxynivalenol (DON) and its conjugate deoxynivalenol-3-glucoside (DON-3-Glc) has been documented in infected wheat. This study reports on the fate of this masked DON within milling and baking technologies for the first time and compares its levels with those of the free parent toxin. The fractionation of DON-3-Glc and DON in milling fractions was similar, tested white flours contained only approximately 60% of their content in unprocessed wheat grains. No substantial changes of both target analytes occurred during the dough preparation process, i.e. kneading, fermentation, and proofing. However, when bakery improvers enzymes mixtures were employed as a dough ingredient, a distinct increase up to 145% of conjugated DON-3-Glc occurred in fermented dough. Some decrease of both DON-3-Glc and DON (10 and 13%, respectively, compared to fermented dough) took place during baking. Thermal degradation products of DON, namely norDON A, B, C, D, and DON-lactone were detected in roasted wheat samples and baked bread samples by means of UPLC-Orbitrap MS. Moreover, thermal degradation products derived from DON-3-Glc were detected and tentatively identified in heat-treated contaminated wheat and bread based on accurate mass measurement performed under the ultrahigh mass resolving power. These products, originating from DON-3-Glc through de-epoxidation and other structural changes in the seskviterpene cycle, were named norDON-3-Glc A, B, C, D, and DON-3-Glc-lactone analogically to DON degradation products. Most of these compounds were located in the crust of experimental breads.
Wu, Li; Wang, Bujun
2015-10-15
The present study investigated the changes and conversion profiles of DON, its conjugations 3-ADON, and 15-ADON during bread making process, by spiking targeted mycotoxin standards to Fusarium mycotoxins-free wheat flour. No significant (p < 0.05) changes of DON levels were observed during dough preparation stages, including kneading, fermentation, and proofing. A reduction of DON level ranged from 4% to 14% was observed during baking process. The main thermal degradation products of DON, namely norDON A, B, C, and F were detected in the bread crust. Regarding ADONs, decreases of 20-40% for 3-ADON and 28-60% for 15-ADON were found during fermentation stage, and further losses of ADONs were observed after proofing process. Although ADONs levels gained an increase after baking. This study demonstrated that ADONs were converted to DON, while no ADONs were detectable in DON spiked samples during bread making process. The mechanism that ADONs could be converted into DON is unclear so far. Copyright © 2015. Published by Elsevier Ltd.
Chang, Chao; Wang, Kun; Zhou, Sheng-Nan; Wang, Xue-Dong; Wu, Jin-E
2017-05-01
The aims of our study were to evaluate the effects of Saccharomyces boulardii (S. boulardii) on deoxynivalenol (DON)-induced injury in porcine alveolar macrophage cells (PAMCs) and to explore the underlying mechanisms. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometric analysis, ELISA, qRT-PCR, and western blot were performed to assess whether S. boulardii could prevent DON-induced injury by p38 mitogen-activated protein kinase (p38 MAPK) signal pathway. The results showed that pretreatment with 8 μM DON could decrease the viability of PAMC and significantly increase the apoptosis rate of PAMC, whereas S. boulardii could rescue apoptotic PAMC cells induced by DON. Further experiments revealed that S. boulardii effectively reversed DON-induced cytotoxicity via downregulating the expression of TNF-α, IL-6, and IL-lβ. In addition, S. boulardii significantly alleviated DON-induced phosphorylation and mRNA expression of p38 and further increased the expression of apoptosis regulation genes Bcl-xl and Bcl-2 and inhibited the activation of Bax. Our results suggest that S. boulardii could suppress DON-induced p38 MAPK pathway activation and reduce the expression of downstream inflammatory cytokines, as well as promote the expression of anti-apoptotic genes to inhibit apoptosis induced by DON in PAMC.
Novak, Barbara; Vatzia, Eleni; Springler, Alexandra; Pierron, Alix; Reisinger, Nicole; Hessenberger, Sabine; Mayer, Elisabeth
2018-01-01
Deoxynivalenol (DON) is one of the most prevalent mycotoxins, contaminating cereals and cereal-derived products. Its derivative deepoxy-deoxynivalenol (DOM-1) is produced by certain bacteria, which either occur naturally or are supplemented in feed additive. DON-induced impairments in protein synthesis are particularly problematic for highly proliferating immune cells. This study provides the first comparison of the effects of DON and DOM-1 on the concanavalin A-induced proliferation of porcine, chicken, and bovine peripheral blood mononuclear cells (PBMCs). Therefore, isolated PBMCs were treated with DON (0.01–3.37 µM) and DOM-1 (1.39–357 µM) separately, and proliferation was measured using a bromodeoxyuridine (BrdU) assay. Although pigs are considered highly sensitive to DON, the present study revealed a substantially higher sensitivity of bovine (IC50 = 0.314 µM) PBMCs compared to chicken (IC50 = 0.691 µM) and porcine (IC50 = 0.693 µM) PBMCs. Analyses on the proliferation of bovine T-cell subsets showed that all major subsets, namely, CD4+, CD8β+, and γδ T cells, were affected to a similar extent. In contrast, DOM-1 did not affect bovine PBMCs, but reduced the proliferation of chicken and porcine PBMCs at the highest tested concentration (357 µM). Results confirm the necessity of feed additives containing DON-to-DOM-1-transforming bacteria and highlights species-specific differences in the DON sensitivity of immune cells. PMID:29641442
Chen, Stephanie S.; Li, Yi-Hung; Lin, Mei-Fong
2017-01-01
This study investigates the long-term effects of deoxynivalenol (DON) consumption on avian growth performance, on the proliferation, apoptosis, and DNA damage of spleen cells, and on intestinal integrity. Two hundred and eight 5-day-old black-feathered Taiwan country chickens were fed diets containing 0, 2, 5, and 10 mg/kg of DON for 16 weeks. Body weight gain of male birds in the 2 mg/kg group was significantly lower than that in the 5 mg/kg group. At the end of trial, feeding DON-contaminated diets of 5 mg/kg resulted in heavier spleens. Moreover, the increase in DON induced cellular proliferation, apoptosis, and DNA damage signals in the spleen, the exception being female birds fed 10 mg/kg of DON showing reduced proliferation. Expression of claudin-5 was increased in jejunum of female birds fed 2 and 5 mg/kg of DON, whereas decreased expression levels were found in male birds. In conclusion, our results verified that DON may cause a disturbance to the immune system and alter the intestinal barrier in Taiwan country chickens, and may also lead to discrepancies in growth performances in a dose- and sex-dependent manner. PMID:29053594
McKinney, Selina H; Corazzini, Kirsten; Anderson, Ruth A; Sloane, Richard; Castle, Nicholas G
2016-01-01
Nursing homes are becoming increasingly complex clinical environments because of rising resident acuity and expansion of postacute services within a context of historically poor quality performance. Discrete quality markers have been linked to director of nursing (DON) leadership behaviors. However, the impact of DON leadership across all measured areas of DON jurisdiction has not been tested using comprehensive domains of quality deficiencies. The aim of this study was to examine the effects of DON leadership style including behaviors that facilitate the exchange of information between diverse people on care quality domains through the lens of complexity science. Three thousand six hundred nine DONs completed leadership and intent-to-quit surveys. Quality markers that were deemed DON sensitive included all facility survey deficiencies in the domains of resident behaviors/facility practices, quality of life, nursing services, and quality of care. Logistic regression procedures estimated associations between variables. The odds of deficiencies for all DON sensitive survey domains were lower in facilities where DONs practiced complexity leadership including more staff input and shared decisional authority. DON quit intentions were aligned with higher odds of facility deficiencies across all domains. Results supported the hypotheses that DONs using complexity leadership approaches by interacting more freely with staff, discussing resident issues, and sharing decision making produced better care outcomes from every DON sensitive metric assessed by Centers for Medicare and Medicaid Services. The mechanism linking poor quality with high DON quit intentions is an area for future research. Encouraging DON use of complexity leadership approaches has the potential to improve a broad swath of quality outcomes.
NASA Astrophysics Data System (ADS)
Garcin, Yannick; Schildgen, Taylor F.; Acosta, Verónica Torres; Melnick, Daniel; Guillemoteau, Julien; Willenbring, Jane; Strecker, Manfred R.
2017-09-01
The authors regret that the 10Be concentrations and uncertainties displayed in Table 2 were reported erroneously in the original version. The corrected table appears below for the reader's convenience. We emphasize that the calculations of erosion rates and integration times were performed using the correct data. Thus, these corrections don't affect the discussion and conclusions presented in this study.
Kobayashi-Hattori, Kazuo; Amuzie, Chidozie J; Flannery, Brenna M; Pestka, James J
2011-07-01
To characterize the effects of ingesting the common foodborne mycotoxin deoxynivalenol (DON) on body weight and composition in the high-fat (HF) diet-induced obese mice, a model of human obesity. Female B6C3F1 mice were initially fed HF diets containing 45% kcal (HF45) or 60% kcal (HF60) as fat for 94 days to induce obesity. Half of each group was either continued on unamended HF diets or fed HF diets containing 10 mg/kg DON (DON-HF45 or DON-HF60) for another 54 days. Additional control mice were fed a low-fat (LF) diet containing 10% kcal as fat for the entire 148-day period. DON induced rapid decreases in body weights and fat mass, which stabilized to those of the LF control within 11 days. These effects corresponded closely to a robust transient decrease in food consumption. While lean body mass did not decline in DON-fed groups, further increases were suppressed. DON exposure reduced plasma insulin, leptin, insulin-like growth factor 1, and insulin-like growth factor acid labile subunit as well as increased hypothalamic mRNA level of the orexigenic agouti-related protein. DON-mediated effects on body weight, fat mass, food intake, and hormonal levels in obese mice were consistent with a state of chronic energy restriction. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Export of dissolved carbonaceous and nitrogenous substances in rivers of the "Water Tower of Asia".
Qu, Bin; Sillanpää, Mika; Kang, Shichang; Yan, Fangping; Li, Zhiguo; Zhang, Hongbo; Li, Chaoliu
2018-03-01
Rivers are critical links in the carbon and nitrogen cycle in aquatic, terrestrial, and atmospheric environments. Here riverine carbon and nitrogen exports in nine large rivers on the Tibetan Plateau - the "Water Tower of Asia" - were investigated in the monsoon season from 2013 to 2015. Compared with the world average, concentrations of dissolved inorganic carbon (DIC, 30.7mg/L) were high in river basins of the plateau due to extensive topographic relief and intensive water erosion. Low concentrations of dissolved organic carbon (DOC, 1.16mg/L) were likely due to the low temperature and unproductive land vegetation environments. Average concentrations of riverine DIN (0.32mg/L) and DON (0.35 mg/L) on the Tibetan Plateau were close to the world average. However, despite its predominantly pristine environment, discharge from agricultural activities and urban areas of the plateau has raised riverine N export. In addition, DOC/DON ratio (C/N, ~6.5) in rivers of the Tibetan Plateau was much lower than the global average, indicating that dissolved organic carbon in the rivers of this region might be more bioavailable. Therefore, along with global warming and anthropogenic activities, increasing export of bioavailable riverine carbon and nitrogen from rivers of the Tibetan Plateau can be expected in the future, which will possibly influence the regional carbon and nitrogen cycle. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Lohse, K. A.; Sanderman, J.; Amundson, R. G.
2005-12-01
Patterns of precipitation and runoff in California are changing and likely to influence the structure and functioning of watersheds. Studies have demonstrated that hydrologic flushing during seasonal transitions in Mediterranean ecosystems can exert a strong control on nitrogen (N) export, yet few studies have examined the influence of different hydrological flow paths on rates and forms of nitrogen (N) losses. Here we illuminate the influence of variations in precipitation and hydrological pathways on the rate and form of N export along a toposequence of a well-characterized Mediterranean catchment in northern California. As a part of a larger study examining particulate and dissolved carbon loss, we analyzed seasonal patterns of dissolved organic nitrogen (DON), nitrate and ammonium concentrations in rainfall, throughfall, matrix and preferential flow, and stream samples over the course of one water year. We also analyzed seasonal soil N dynamics along this toposequence. During the transition to the winter rain season, but prior to any soil water displacement to the stream, DON and nitrate moved through near-surface soils as preferential flow. Once hillslope soils became saturated, saturated subsurface flow flushed nitrate from the hollow resulting in high stream nitrate/DON concentrations. Between storms, stream nitrate/DON concentrations were lower and appeared to reflect deep subsurface water flow chemistry. During the transition to the wet season, rates of soil nitrate production were high in the hollow relative to the hillslope soils. In the spring, these rates systematically declined as soil moisture decreased. Results from our study suggest seasonal fluctuations in soil moisture control soil N cycling and seasonal changes in the hydrological connection between hillslope soils and streams control the seasonal production and export of hydrologic N.
Nitrogen transformations along a shallow subterranean estuary
NASA Astrophysics Data System (ADS)
Couturier, Mathilde; Tommi-Morin, Gwendoline; Sirois, Maude; Rao, Alexandra; Nozais, Christian; Chaillou, Gwénaëlle
2017-07-01
The transformations of chemical constituents in subterranean estuaries (STEs) control the delivery of nutrient loads from coastal aquifers to the ocean. It is important to determine the processes and sources that alter nutrient concentrations at a local scale in order to estimate accurate regional and global nutrient fluxes via submarine groundwater discharge (SGD), particularly in boreal environments, where data are still very scarce. Here, the biogeochemical transformations of nitrogen (N) species were examined within the STE of a boreal microtidal sandy beach located in the Magdalen Islands (Quebec, Canada). This study revealed the vertical and horizontal distribution of nitrate (NO3-), nitrite (NO2-), ammonia (NH4+), dissolved organic nitrogen (DON) and total dissolved nitrogen (TDN) measured in beach groundwater during four spring seasons (June 2011, 2012, 2013 and 2015) when aquifer recharge was maximal after snowmelt. Inland groundwater supplied high concentrations of NOx and DON to the STE, whereas inputs from seawater infiltration were very limited. Non-conservative behaviour was observed along the groundwater flow path, leading to low NOx and high NH4+ concentrations in the discharge zone. The long transit time of groundwater within the beach (˜ 166 days), coupled with oxygen-depleted conditions and high carbon concentrations, created a favourable environment for N transformations such as heterotrophic and autotrophic denitrification and ammonium production. Biogeochemical pathways led to a shift in nitrogen species along the flow path from NOx-rich to NOx-poor groundwater. An estimate of SGD fluxes of N was determined to account for biogeochemical transformations within the STE based on a N-species inventory and Darcy's flow. Fresh inland groundwater delivered 37 mol NOx yr-1 per metre of shoreline and 63 mol DON m-1 yr-1 to the STE, and NH4+ input was negligible. Near the discharge zone, the potential export of N species was estimated around 140, 1.5 and 33 mol yr-1 per metre of shoreline for NH4+, NOx and DON respectively. In contrast to the fresh inland groundwater, the N load of beach groundwater near the discharge zone was dominated by NH4+ and DON. Our study shows the importance of tidal sands in the biogeochemical transformation of the terrestrial N pool. This local export of bioavailable N probably supports benthic production and higher trophic levels leading to its rapid transformation in surface sediments and coastal waters.
Awad, Wageha A.; Ghareeb, Khaled; Dadak, Agnes; Hess, Michael; Böhm, Josef
2014-01-01
The immune and intestinal epithelial cells are particularly sensitive to the toxic effects of deoxynivalenol (DON). The aim of this experiment was to study the effects of DON and/or a microbial feed additive on the DNA damage of blood lymphocytes and on the level of thiobarbituric acid reactive substance (TBARS) as an indicator of lipid peroxidation and oxidative stress in broilers. A total of forty 1-d-old broiler chicks were randomly assigned to 1 of 4 dietary treatments (10 birds per group) for 5 wk. The dietary treatments were 1) basal diet; 2) basal diet contaminated with 10 mg DON/kg feed; 3) basal diet contaminated with 10 mg DON/kg feed and supplemented with 2.5 kg/ton of feed of Mycofix Select; 4) basal diet supplemented with Mycofix Select (2.5 kg/ton of feed). At the end of the feeding trial, blood were collected for measuring the level of lymphocyte DNA damage of blood and the TBARS level was measured in plasma, heart, kidney, duodenum and jejunum. The dietary exposure of DON caused a significant increase (P = 0.001) of DNA damage in blood lymphocytes (31.99±0.89%) as indicated in the tail of comet assay. Interestingly addition of Mycofix Select to DON contaminated diet decreased (P = 0.001) the DNA damage (19.82±1.75%) induced by DON. In order to clarify the involvement of lipid peroxidation in the DNA damage of DON, TBARS levels was measured. A significant increase (P = 0.001) in the level of TBARS (23±2 nmol/mg) was observed in the jejunal tissue suggesting that the lipid peroxidation might be involved in the DNA damage. The results indicate that DON is cytotoxic and genotoxic to the chicken intestinal and immune cells and the feed additive have potential ability to prevent DNA damage induced by DON. PMID:24498242
Kiviniemi, Marc T; Orom, Heather; Waters, Erika A; McKillip, Megan; Hay, Jennifer L
2018-05-01
Risk perception is a key determinant of preventive health behaviour, but when asked, some individuals indicate they do not know their health risk. Low education is associated with both lack of knowledge about health risk and with the persistence and exacerbation of gaps in knowledge about health issues. This study uses the context of an emerging infectious disease threat to explore the hypothesis that the education-don't know risk relation results from differences in knowledge about the health issue of interest. Specifically, we examine whether patterns of change over time follow theoretical predictions that disparities in risk knowledge would increase over time in less educated sectors of the population (knowledge gap hypothesis). Secondary analysis of population-representative behavioural surveillance survey. We analysed data from the 1993 to 2000 Behavior Risk Factor Surveillance System surveys, which measured education and perceived HIV/AIDS risk in a population sample collected separately in each survey year; don't know responses were coded. In each year, individuals with higher education were less likely to respond don't know. The absolute prevalence of don't know responding dropped over time; nonetheless, there was an increase over time in the magnitude of the pattern of lower education being associated with greater don't know responding. We found support for the knowledge gap hypothesis. Over time, populations with greater education gained more knowledge about their HIV risk than populations with lower education. Results highlight the need to carefully consider health communication strategies to reach and address those individuals with low education and health knowledge. Statement of contribution What is already known on this subject? A meaningful potion of the population answers 'don't know' when asked to report their risk for health problems, indicating a lack of risk perception in the domain. Previous studies have shown that level of education is associated with don't know responding - those with lower educational attainment are more likely to respond don't know. The education-don't know responding relation suggests that lack of health information and health domain knowledge might be a factor in lacking risk perception, but this mechanism has not been previously tested. What does this study add? Patterns of changes in don't know responding over time as population-level knowledge of a health risk increase are consistent with the health information/health knowledge hypothesis outlined above. As population knowledge of HIV/AIDS risk in the United States increased over time (indicated by declining overall rates of don't know responses), the relation of education level to don't know responding actually became stronger. The pattern of change over time is the classic 'knowledge gap hypothesis' pattern, which has not been previously demonstrated for knowledge of personal health risk. The knowledge gap response pattern supports the health information/health knowledge hypothesis. © 2018 The British Psychological Society.
Dąbrowski, Michał; Jakimiuk, Ewa; Baranowski, Mirosław; Gajęcka, Magdalena; Zielonka, Łukasz; Gajęcki, Maciej Tadeusz
2017-04-26
Deoxynivalenol (DON) is one of the most prevalent mycotoxins in Europe. Pigs are an animal species that is most susceptible to this mycotoxin. Deoxynivalenol causes significant losses in pig production by lowering feed intake, decreasing daily weight gains, disrupting immune responses, and increasing susceptibility to diseases. The aim of this experiment was to determine the influence of feed contaminated with DON at concentrations insignificantly higher than recommended by the European Commission (900 µg/kg). The experimental feed contained 1008 μg DON/kg. The experiment was performed on eight weaners from the same litter. The animals were randomly divided into two groups: an experimental group (M, n = 4) fed contaminated feed and a control group (C, n = 4) administered feed free of mycotoxins. The experiment lasted for six weeks, and peripheral blood samples were collected from the animals for analyses of selected morphological parameters and changes in the percentages of CD4⁺8 - , CD4 - 8⁺, and CD4⁺8⁺ lymphocytes and antigen-presenting cells (APC) with CD14⁺172⁺ (monocytes), CD172a high 4 - 14 - (conventional dendritic cells, cDC), and CD172a dim 4⁺14 - (plasmacytoid dendritic cells, pDC) phenotypes. The morphological parameters of porcine blood samples were determined by flow cytometry with non-fluorescent particle-size calibration standards, and no differences were observed between groups M and C. An immunophenotyping analysis of lymphocytes and dendritic cells (DC) revealed an increase in the percentage of CD4⁺8 - , CD172a high 4 - 14 - , and CD172a dim 4⁺14 - cells, and a decrease in the number of CD4 - 8⁺ cells in group M. The results of this experiment suggest that prolonged exposure to low doses of DON can change the proportions of immunocompetent cells (a shift towards humoral immunity), without affecting their overall counts.
Awad, Wageha A; Ghareeb, Khaled; Bohm, Josef; Zentek, Jurgen
2010-04-01
Trichothecenes are a group of mycotoxins mainly produced by fungi of the Fusarium genus. Deoxynivalenol (DON) is one of the most abundant and important trichothecenes in food and feed, and is a significant contaminants due to its frequent occurrence in toxicologically relevant concentrations worldwide. Since toxin production depends strongly on environmental conditions, such as temperature and humidity, Fusarium toxin contamination can not be avoided completely. Therefore, exposure to this toxin is a permanent health risk for both humans and farm animals. As cereal crops are commonly contaminated with DON and animal diets consist mainly of cereals, it can be assumed that animals are frequently exposed to DON-contaminated feeds. Many strategies can be undertaken to reduce the toxic effect of DON. In addition to the general necessity for minimizing all risk factors that might influence the contamination of cereals with DON, such as the so-called field toxins before harvest, several post-harvest strategies can be applied to counteract possible deleterious effects of this mycotoxin in farm animals. Another approach for decontamination in feedstuffs is the use of adsorbent materials. Adsorbent materials may bind mycotoxins in the gastrointestinal tract and reduce absorption and systemic toxicity. It has been shown that some adsorbents are suitable to alleviate the toxic effects of specific mycotoxins, but its efficacy against trichothecenes is practically zero. Therefore, alternative strategies to reduce animal and human health risk are needed. The use of microbial additives is a method which uses microorganisms having the capability to detoxify mycotoxins by metabolism or degradation prior to their resorption in the gastrointestinal tract. DON has been reported to be completely transformed to de-epoxy-DON by ruminal and intestinal microflora. Eubacterium BBSH 797 was capable of DON degradation and counteracted the toxic effects of DON in animals. This review focuses on the efficacy of microbial feed additives in ameliorating the toxic effects of DON. According to the results of experiments to date, it appears that microorganisms are the main living organisms suitable for this mycotoxin biodegradation. However, the use of this approach depends on its effectiveness from both a practical and economic perspective.
Zhu, Yan; Hassan, Yousef I; Shao, Suqin; Zhou, Ting
2018-06-29
Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly detected in grains infested with Fusarium species. The maximum tolerated levels of DON in the majority of world's countries are restricted to 0.75 mg kg -1 within the human food chain and to less than 1-5 mg kg -1 in animal feed depending on the feed material and/or animal species due to DON's short and long-term adverse effects on human health and animal productivity. The ability to accurately analyze DON and some of its fungal/bacterial metabolites is increasingly gaining a paramount importance in food/feed analysis and research. In this study, we used the immuno-affinity approach to enrich and detect DON and three of its bacterial metabolites, namely 3-epi-DON, 3-keto-DON, and deepoxy-DON (DOM-1). The optimized enrichment step coupled with high performance liquid chromatography can accurately and reproducibly quantify the aforementioned metabolites in feed matrixes (silage extract as an example in this case). It minimizes any background interface and provides a fast and easy-to-operate protocol for the analytical determination of such metabolites. More importantly, the presented data demonstrates the ability of the utilized monoclonal antibody, generated originally to capture DON in Enzyme-Linked Immunosorbent Assays (ELISA), to cross react with three less/non-toxic DON metabolites. This raises the concerns about the genuine need to account for such cross-reactivity when DON contamination is assessed through an immuno-affinity based analyses using the investigated antibody. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McGroddy, M. E.; Baisden, W. T.; Hedin, L. O.
2008-03-01
Hydrologic losses can play a key role in regulating ecosystem nutrient balances, particularly in regions where baseline nutrient cycles are not augmented by industrial deposition. We used first-order streams to integrate hydrologic losses at the watershed scale across unpolluted old-growth forests in New Zealand. We employed a matrix approach to resolve how stream water concentrations of dissolved organic carbon (DOC), organic and inorganic nitrogen (DON and DIN), and organic and inorganic phosphorus (DOP and DIP) varied as a function of landscape differences in climate and geology. We found stream water total dissolved nitrogen (TDN) to be dominated by organic forms (medians for DON, 81.3%, nitrate-N, 12.6%, and ammonium-N, 3.9%). The median stream water DOC:TDN:TDP molar ratio of 1050:21:1 favored C slightly over N and P when compared to typical temperate forest foliage ratios. Using the full set of variables in a multiple regression approach explained approximately half of the variability in DON, DOC, and TDP concentrations. Building on this approach we combined a simplified set of variables with a simple water balance model in a regression designed to predict DON export at larger spatial scales. Incorporating the effects of climate and geologic variables on nutrient exports will greatly aid the development of integrated Earth-climate biogeochemical models which are able to take into account multiple element dynamics and complex natural landscapes.
Wan, Xiao-Hua; Huang, Zhi-Qun; He, Zong-Ming; Hu, Zhen-Hong; Yu, Zai-Peng; Wang, Min-Huang; Yang, Yu-Sheng; Fan, Shao-Hui
2014-01-01
Based on the comparison between reforested 19-year-old Mytilaria laosensis and Cunninghamia lanceolata plantations on cut-over land of C. lanceolata, effects of tree species transfer on soil dissolved organic matter were investigated. Cold water, hot water and 2 mol x L(-1) KCl solution were used to extract soil dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) from 0-5, 5-10 and 10-20 cm soil layers. In M. laosensis plantaion, the concentrations of soil DOC extracted by cold water, hot water and 2 mol L(-1) KCl solutions were significantly higher than that in C. lanceolata plantation. In the 0-5 and 5-10 cm layers, the concentrations of soil DON extracted by cold water and hot water in M. laosensis plantation were significantly higher than that in C. lanceolata plantation. The extracted efficiencies for DOC and DON were both in order of KCl solution > hot water > cold water. In the 0-5 cm layers, soil microbial biomass carbon (MBC) under M. laosensis was averagely 76.3% greater than under C. lanceolata. Correlation analysis showed that there were significant positive relationships between hot water extractable organic matter and soil MBC. Differences in the sizes of soil DOC and DON pools between the M. laosensis and C. lanceolata forests might be attributed to the quality and quantity of organic matter input. The transfer from C. lanceolata to M. laosensis could improve soil fertility in the plantation.
Individual and Combined Occurrence of Mycotoxins in Feed Ingredients and Complete Feeds in China.
Ma, Rui; Zhang, Lei; Liu, Meng; Su, Yong-Teng; Xie, Wen-Mei; Zhang, Ni-Ya; Dai, Jie-Fan; Wang, Yun; Rajput, Shahid Ali; Qi, De-Sheng; Karrow, Niel Alexander; Sun, Lv-Hui
2018-03-07
The objective of this study was to investigate the individual and combined contamination of aflatoxin B₁ (AFB₁), zearalenone (ZEN) and deoxynivalenol (DON) in feedstuffs from different Provinces of China between 2016 and 2017. A total of 1569 samples, including 742 feed ingredients and 827 complete pig feed samples, were collected from various regions of China for mycotoxins analysis. The results showed that individual occurrence rates of AFB₁, ZEN, and DON were more than 83.3%, 88%, and 74.5%, respectively, in all the tested samples. DON was the most prevalent contaminant, followed by ZEN and AFB₁, with the average concentrations ranging from 450.0-4381.5 μg/kg, 2.3-729.2 μg/kg, and 1.3-10.0 μg/kg, respectively. Notable, 38.2%, 10.8%, and 0.6% of complete pig feeds were contaminated with DON, ZEN, and AFB₁ over China's regulatory limits, respectively. Moreover, over 75.0% analyzed samples were co-contaminated with two or three mycotoxins. In conclusion, the current study revealed that the feedstuffs in China were severely contaminated with DON, followed by ZEN and AFB₁ during the past two years. These findings highlight the importance of monitoring mycotoxins in livestock feed and implementing feed management and bioremediation strategies to reduce mycotoxin exposure.
Sayyari, Amin; Fæste, Christiane Kruse; Hansen, Ulrik; Uhlig, Silvio; Framstad, Tore; Schatzmayr, Dian; Sivertsen, Tore
2018-06-01
Deoxynivalenol (DON) is one of the most prevalent Fusarium mycotoxins in grain and can cause economic losses in pig farming due to reduced feed consumption and lower weight gains. Biodetoxification of mycotoxins using bacterial strains has been a focus of research for many years. However, only a few in vivo studies have been conducted on the effectiveness of microbial detoxification of fusariotoxins. This study was therefore aimed at investigating the effect of a feed additive containing the bacterial strain Coriobacteriaceum DSM 11798 (the active ingredient in Biomin® BBSH 797) on growth performance and blood parameters, as well as uptake and metabolism of DON, in growing pigs. Forty-eight crossbred (Landrace-Yorkshire/Duroc-Duroc) weaning pigs were fed with pelleted feed made from naturally contaminated oats, with DON at four concentration levels: (1) control diet (DON < 0.2 mg kg -1 ), (2) low-contaminated diet (DON = 0.92 mg kg -1 ), (3) medium-contaminated diet (DON = 2.2 mg kg -1 ) and (4) high-contaminated diet (DON = 5.0 mg kg -1 ) and equivalent diets containing DSM 11798 as feed additive. During the first 7 days of exposure, pigs in the highest-dose group showed a 20-28% reduction in feed intake and a 24-34% reduction in weight gain compared with pigs in the control and low-dose groups. These differences were levelled out by study completion. Towards the end of the experiment, dose-dependent reductions in serum albumin, globulin and total serum protein were noted in the groups fed with DON-contaminated feed compared with the controls. The addition of DSM 11798 had no effect on the DON-related clinical effects or on the plasma concentrations of DON. The ineffectiveness of the feed additive in the present study could be a consequence of its use in pelleted feed, which might have hindered its rapid release, accessibility or detoxification efficiency in the pig's gastrointestinal tract.
NASA Astrophysics Data System (ADS)
Krishna, M. S.; Prasad, V. R.; Sarma, V. V. S. S.; Reddy, N. P. C.; Hemalatha, K. P. J.; Rao, Y. V.
2015-10-01
Dissolved organic carbon (DOC) and nitrogen (DON) were measured in 27 major and medium monsoonal estuaries along the Indian coast during southwest monsoon in order to understand the spatial variability in their concentrations and fluxes to the northern Indian Ocean. A strong spatial variability (~20-fold) in DOC and DON was observed in the Indian monsoonal estuaries due to variable characteristics of the catchment area and volume of discharge. It is estimated that the Indian monsoonal estuaries transport ~2.37 ± 0.47 Tg (1 Tg = 1012 g) of DOC and ~0.41 ± 0.08 Tg of DON during wet period to the northern Indian Ocean. The Bay of Bengal receives 3 times higher DOC and DON (1.82 and 0.30 Tg, respectively) than the Arabian Sea (0.55 and 0.11 Tg). Catchment area normalized fluxes of DOC and DON were found to be higher in the estuaries located in the southwestern than the estuaries from other regions of India. It was attributed to relatively higher soil organic carbon, biomass carbon, and heavy rainfall in catchment areas of the rivers from the former region. It has been noticed that neither catchment area nor discharge volume of the river controls the fluxes of DOC and DON to the northern Indian Ocean. Since the total load of DOC and DON is strongly linked to the volume of discharge, alterations in the freshwater discharge due to natural or anthropogenic activities may have significant influence on organic matter fluxes to the Indian coastal waters and its impact on microbial food web dynamics needs further evaluation.
Wu, Wenda; Zhou, Hui-Ren; Bursian, Steven J.; Pan, Xiao; Link, Jane E.; Berthiller, Franz; Adam, Gerhard; Krantis, Anthony; Durst, Tony; Pestka, James J.
2014-01-01
The mycotoxin deoxynivalenol (DON) elicits robust anorectic and emetic effects in several animal species. However, less is known about the potential for naturally occurring and synthetic congeners of this trichothecene to cause analogous responses. Here we tested the hypothesis that alterations in DON structure found in the plant metabolite deoxynivalenol-3-glucoside (D3G) and two pharmacologically active synthetic DON derivatives, EN139528 and EN139544, differentially impact their potential to evoke food refusal and emesis. In a nocturnal mouse food consumption model, oral administration with DON, D3G, EN139528, or EN139544 at doses from 2.5 to 10 mg/kg BW induced anorectic responses that lasted up to 16, 6, 6, and 3 h, respectively. Anorectic potency rank orders were EN139544>DON>EN139528>D3G from 0 to 0.5 h but DON>D3G>EN139528>EN139544 from 0 to 3 h. Oral exposure to each of the four compounds at a common dose (2.5 mg/kg BW) stimulated plasma elevations of the gut satiety peptides cholecystokinin and to a lesser extent, peptide YY3–36 that corresponded to reduced food consumption. In a mink emesis model, oral administration of increasing doses of the congeners differentially induced emesis, causing marked decreases in latency to emesis with corresponding increases in both the duration and number of emetic events. The minimum emetic doses for DON, EN139528, D3G, and EN139544 were 0.05, 0.5, 2, and 5 mg/kg BW, respectively. Taken together, the results suggest that although all three DON congeners elicited anorectic responses that mimicked DON over a narrow dose range, they were markedly less potent than the parent mycotoxin at inducing emesis. PMID:25173790
Hong, Huachang; Qian, Lingya; Xiong, Yujing; Xiao, Zhuoqun; Lin, Hongjun; Yu, Haiying
2015-01-01
The deterioration of water quality, especially organic pollution in Tai Lake and the Qiantang River, have recently received attention in China. The objectives of this study were to evaluate the formation of halonitromethanes (HNMs) using multiple regression models for chlorination and chloramination and to identify the key factors that influence the formation of HNMs in Tai Lake and the Qiantang River. The results showed that the total formation of HNMs (T-HNMs) during chlorination and chloramination could be described using the following models: (1) [Formula: see text] =(10)(5.267)(DON)(6.645)(Br(-))(0.737)(DOC)(-)(5.537)(Cl2)(0.333)(t)(0.165) (R(2)=0.974, p<0.01, n=33), and (2) T-HNMNH2Cl=(10)(-)(2.481)(Cl2)(0.451)(NO2(-))(0.382)(Br(-))(0.630)(t)(0.640)(Temp)(0.581) (R(2)=0.961, p<0.05, n=33), respectively. The key factors that influenced the T-HNM yields during chlorination were dissolved organic nitrogen (DON), bromide and dissolved organic carbon (DOC). The nitrite and bromide concentrations and the reaction time mainly affected the T-HNM yields during chloramination. Additional analysis indicated that the bromine incorporation factors (BIFs) for trihalogenated HNMs generally decreased as the chlorine/chloramine dose, temperature and reaction time decreased and increased as the bromide concentration increased. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Xin; Shin, Sanghyun; Heinen, Shane; Dill-Macky, Ruth; Berthiller, Franz; Nersesian, Natalya; Clemente, Thomas; McCormick, Susan; Muehlbauer, Gary J
2015-11-01
Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a devastating disease of wheat that results in economic losses worldwide. During infection, F. graminearum produces trichothecene mycotoxins, including deoxynivalenol (DON), that increase fungal virulence and reduce grain quality. Transgenic wheat expressing a barley UDP-glucosyltransferase (HvUGT13248) were developed and evaluated for FHB resistance, DON accumulation, and the ability to metabolize DON to the less toxic DON-3-O-glucoside (D3G). Point-inoculation tests in the greenhouse showed that transgenic wheat carrying HvUGT13248 exhibited significantly higher resistance to disease spread in the spike (type II resistance) compared with nontransformed controls. Two transgenic events displayed complete suppression of disease spread in the spikes. Expression of HvUGT13248 in transgenic wheat rapidly and efficiently conjugated DON to D3G, suggesting that the enzymatic rate of DON detoxification translates to type II resistance. Under field conditions, FHB severity was variable; nonetheless, transgenic events showed significantly less-severe disease phenotypes compared with the nontransformed controls. In addition, a seedling assay demonstrated that the transformed plants had a higher tolerance to DON-inhibited root growth than nontransformed plants. These results demonstrate the utility of detoxifying DON as a FHB control strategy in wheat.
Limits of linearity and detection for some drugs of abuse.
Needleman, S B; Romberg, R W
1990-01-01
The limits of linearity (LOL) and detection (LOD) are important factors in establishing the reliability of an analytical procedure for accurately assaying drug concentrations in urine specimens. Multiple analyses of analyte over an extended range of concentrations provide a measure of the ability of the analytical procedure to correctly identify known quantities of drug in a biofluid matrix. Each of the seven drugs of abuse gives linear analytical responses from concentrations at or near their LOD to concentrations several-fold higher than those generally encountered in the drug screening laboratory. The upper LOL exceeds the Department of Navy (DON) cutoff values by factors of approximately 2 to 160. The LOD varies from 0.4 to 5.0% of the DON cutoff value for each drug. The limit of quantitation (LOQ) is calculated as the LOD + 7 SD. The range for LOL is greater for drugs analyzed with deuterated internal standards compared with those using conventional internal standards. For THC acid, cocaine, PCP, and morphine, LOLs are 8 to 160-fold greater than the defined cutoff concentrations. For the other drugs, the LOL's are only 2 to 4-fold greater than the defined cutoff concentrations.
Yang, Xin; Li, Long; Duan, Yongle; Yang, Xiaojun
2017-02-01
The aim of this experiment was to study the antioxidant capacity of JM113 isolated from healthy intestinal contents of Tibetan chicken and its protective effect on broiler chickens challenged with deoxynivalenol (DON). Compared with PZ01 and M23, JM113 demonstrated maximum reducing ( < 0.05) activity and resistance in the presence of 1.2 mmol/L hydrogen peroxide, and great scavenging ability ( < 0.05) against hydroxyl, superoxide anion, and 1,1-diphenyl-2-picrylhydrazyl radicals in vitro. For each strain, the antioxidant activities of live bacterial strains were greater ( < 0.05) than of cell free extracts and dead bacterial strains. To examine the antioxidant capacity of JM113 in vivo, 192 1-d-old Arbor Acres chicks were randomly divided into 4 treatments groups consisting of 6 replicates with 8 birds per replicate. The dietary treatments were 1) control; 2) control diet supplemented with JM113 at 1 × 10 cfu/kg; 3) control diet contaminated with DON at 10 mg/kg; 4) control diet contaminated with DON at 10 mg/kg and supplemented with JM113 at 1 × 10 cfu/kg. Dietary supplementation with DON decreased ( < 0.05) superoxide dismutase activity in serum and increased ( < 0.05) malondialdehyde in the jejunal mucosa of broilers, compared to the control. However, supplementation with JM113 to both the DON-contaminated diet and the control diet, caused a significant reduction ( < 0.05) in malondialdehyde activity in the jejunal mucosa. A reduction ( < 0.05) in expression of nuclear factor erythroid 2-related factor 2 was observed in the jejunal mucosa of broilers fed dietary supplementation with DON, whereas the mRNA levels of and its corresponding downstream gene increased ( < 0.05) with JM113 treatment. Addition of JM113 resulted in longer villi ( < 0.05), even in combination with DON compared to the DON group. JM113 treatment, especially in the DON plus JM113 group, up-regulated ( < 0.05) the expression of mRNA. In conclusion, the present study demonstrates that the JM113 strain has great antioxidant activity and supplementation in feed protected the integrity of the intestinal barrier in broilers challenged with DON, suggesting its use for alleviation of negative effects of DON in poultry.
Bönnighausen, Jakob; Gebhard, Daniel; Kröger, Cathrin; Hadeler, Birgit; Tumforde, Thomas; Lieberei, Reinhard; Bergemann, Jörg; Schäfer, Wilhelm; Bormann, Jörg
2015-12-01
The cereal pathogen Fusarium graminearum threatens food and feed production worldwide. It reduces the yield and poisons the remaining kernels with mycotoxins, notably deoxynivalenol (DON). We analyzed the importance of gamma-aminobutanoic acid (GABA) metabolism for the life cycle of this fungal pathogen. GABA metabolism in F. graminearum is partially regulated by the global nitrogen regulator AreA. Genetic disruption of the GABA shunt by deletion of two GABA transaminases renders the pathogen unable to utilize the plant stress metabolites GABA and putrescine. The mutants showed increased sensitivity against oxidative stress, GABA accumulation in the mycelium, downregulation of two key enzymes of the TCA cycle, disturbed potential gradient in the mitochondrial membrane and lower mitochondrial oxygen consumption. In contrast, addition of GABA to the wild type resulted in its rapid turnover and increased mitochondrial steady state oxygen consumption. GABA concentrations are highly upregulated in infected wheat tissues. We conclude that GABA is metabolized by the pathogen during infection increasing its energy production, whereas the mutants accumulate GABA intracellularly resulting in decreased energy production. Consequently, the GABA mutants are strongly reduced in virulence but, because of their DON production, are able to cross the rachis node. © 2015 John Wiley & Sons Ltd.
Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Sakshi; Department of Biochemistry, Banaras Hindu University; Tripathi, Anurag
Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84–672 nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672 nmol) caused significant enhancement in [{sup 3}H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168 nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposuremore » also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168 nmol) showed no tumorigenesis after 24 weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24 weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. - Highlights: • Topical application of DON enhanced epidermal inflammation and cell proliferation. • DON follows PI3K/Akt/MAPK signaling cascade, with activation of AP-1 and NF-κB. • DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. • No tumor promotion was observed up to 24 weeks of topical application of DON. • Enhanced Peyer's patches and inflammatory cytokines suggested inflammation in skin.« less
Lin, Tao; Hou, Bingwei; Wang, Jian; Xu, Yaqun; Chen, Wei
2017-03-01
Dissolved organic matter (DOM), as a very fine colloidal suspension, could inevitably affect the transformation process of dissolved organic nitrogen (DON) in drinking water treatment. Tryptophan and tyrosine were used as representatives of DON to investigate the interactions between amino acids and fulvic-like components of fluorescent DOM using titration experiments. The fluorescence intensity decreased significantly with the increasing fulvic acid (FA) concentration, suggesting that FA could greatly quench the intrinsic fluorescence of amino acids such as tryptophan and tyrosine. The absolute spectrum peaks of amino acids (AA) were changed in the presence of FA, possibly being resulted from non-covalent interactions between amino acids and FA. The specific hydrogen bonding and van der Waals forces played dominant roles in the interactions according to the results of theoretical analysis and thermodynamic calculation. The distance between donor and acceptor was 1.25 and 1.14 nm for the FA-tyrosine and FA-tryptophan system, indicating the energy transfer from tyrosine or tryptophan to FA. The association constant (K) decreased with the increase of temperature and pH value, while the change of ionic strength had no obvious influence on K value.
NASA Astrophysics Data System (ADS)
Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland
2016-04-01
Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no isotope data for site C. Delta-15N is more enriched at site B than at site A, indicating differences in C and N cycling and potential influence of the dominant vegetation (grasses vs. Sphagnum mosses).
Chronic DON exposure and acute LPS challenge: effects on porcine liver morphology and function.
Renner, Lydia; Kahlert, Stefan; Tesch, Tanja; Bannert, Erik; Frahm, Jana; Barta-Böszörményi, Anikó; Kluess, Jeannette; Kersten, Susanne; Schönfeld, Peter; Rothkötter, Hermann-Josef; Dänicke, Sven
2017-08-01
The aim of the present study was to examine the role of chronic deoxynivalenol (DON) exposition on the liver morphology and function in combination with pre- and post-hepatic lipopolysaccharide (LPS) stress in young pigs fed for 4 weeks with a DON-contaminated diet (4.59 mg/kg feed). At the end of the experiment, LPS (7.5 μg/kg BW) was administered for 1 h pre-hepatically (Vena portae hepatis) or post-hepatically (Vena jugularis). Liver morphology was macroscopically checked and showed haemorrhage in all LPS groups, significantly higher relative liver weights, accompanied by marked oedema in the gallbladder wall. Histological changes were judged by a modified histology activity index (HAI). Liver HAI score was significantly increased in all LPS groups compared to placebo, primarily due to neutrophil infiltration and haemorrhage. DON feed alone was without effect on the liver HAI. Liver function was characterized by (i) hepatic biochemical markers, (ii) mitochondrial respiration and (iii) Ca 2+ accumulation capacity of isolated mitochondria. Clinical chemical parameters characterizing liver function were initially (<3 h) slightly influenced by LPS. After 3 h, bilirubin and alkaline phosphatase were increased significantly, in DON-fed, jugular-infused LPS group. Respiration and Ca 2+ accumulation capacity of isolated liver mitochondria was not impaired by chronic DON exposure, acute LPS challenge or combined treatments. DON-contaminated feed did not change macroscopy and histology of the liver, but modified the function under LPS stress. The different function was not linked to modifications of liver mitochondria.
Trichothecenes NIV and DON modulate the maturation of murine dendritic cells.
Luongo, D; Severino, L; Bergamo, P; D'Arienzo, R; Rossi, M
2010-01-01
Nivalenol (NIV) and Deoxynivalenol (DON), mycotoxins of the trichothecene family are considered very common food contaminants. In this work, we investigated whether the immunotoxic effects ascribed to these trichothecenes may be mediated by perturbations in the activity of dendritic cells (DCs). Murine bone marrow-derived DCs were used to evaluate the effects of NIV and DON on the LPS-induced maturation process. We found that the expression of the class II MHC and of the accessory CD11c molecules, but not of the costimulatory CD86 marker, was down-regulated by NIV and DON exposure in LPS-treated DCs, as well as nitric oxide (NO) production. Interestingly, NIV, but not DON, induced DC necrosis. Moreover, the analysis of the cytokine pattern showed that IL-12 and IL-10 expressions induced by LPS exposure were suppressed by both trichothecenes in a dose-dependent fashion. On the other hand, the secretion of the proinflammatory cytokine TNF-alpha was increased as a direct consequence of DON and NIV exposure. Taken together, our data indicated that the immunotoxicity of NIV and DON was related to the capacity of both trichothecenes to interfere with phenotypic and functional features of maturing DCs.
Abdel-Wahhab, Mosaad A; El-Nekeety, Aziza A; Salman, Asmaa S; Abdel-Aziem, Sekena H; Mehaya, Fathy M; Hassan, Nabila S
2018-02-01
Deoxynivalenol (DON) is a Fusarium mycotoxin that frequently contaminates cereal and cereal-based food and induces liver injury. This study evaluated the protective role of silymarin nanoparticles (SILNPs) and inulin nanoparticles (INNPs) against DON-induced liver injury in rats. Eleven groups of rats were treated orally for 3 weeks as follows: the control group, DON-treated group (5 mg/kg b.w.); INNPs-treated groups at low (LD) or high (HD) dose (100 or 200 mg/kg b.w.); SILPNs-treated group (50 mg/kg b.w.); SILNPs plus INNPs(LD) or INNPs(HD)-treated groups; INNPs(LD) or INNPs(HD) plus DON-treated groups and DON plus SILNPs and INNPs(LD) or INNPs(HD)-treated groups. Blood and tissue samples were collected for different analyses. The results revealed that the practical sizes were 200 and 98 nm for SILNPs and INNPs respectively. DON increased liver enzymes activity, lipid profile, serum cytokines, number and percentage of chromosomal aberration, DNA fragmentation and comet score. It disturbed the oxidative stress markers, down regulated gene expression and induced histological changes in the liver tissue. Treatment with DON and SILNPs and/or INNPs at the two tested doses improved all the tested parameters and SILNPs plus INNPs(HD) normalized most of these parameters in DON-treated animals. SILNPs and INNPs could be promising candidates as hepatoprotective against DON or other hepatotoxins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gu, Wenshu; Zhu, Pei; Jiang, Donglei; He, Xingxing; Li, Yun; Ji, Jian; Zhang, Lijuan; Sun, Yange; Sun, Xiulan
2015-08-15
In this study, a novel and simple cell-based electrochemical biosensor was developed to assess the individual and combined toxicity of deoxynivalenol (DON) and zearalenone (ZEN) on BEL-7402 cells. The sensor was fabricated by modification with AuNPs, p-aminothiophenol, and folic acid in succession. The BEL-7402 cells which had a good activity were adhered on the electrode through the high affinity between the folate receptor and folic acid selectivity. We used the collagen to maintain the cell adhesion and viability. Electrochemical impedance spectroscopy (EIS) was developed to evaluate the individual and combined toxicity of DON and ZEN. Our results indicate that DON and ZEN caused a marked decrease in the cell viability in a dose-dependent manner. The value of electrochemical impedance spectroscopy decreased with the concentration of DON and ZEN in range of 0.1-20, 0.1-50 μg/ml with the detection limit as 0.03, 0.05 μg/ml, respectively, the IC50 for DON and ZEN as obtained by the proposed electrochemical method were 7.1 μg/ml and 24.6 μg/ml, respectively, and the combination of two mycotoxins appears to generate an additive response. The electrochemical cytotoxicity evaluation result was confirmed by biological assays. Compared to conventional methods, this electrochemical test is inexpensive, highly sensitive, and fast to respond, with long-term monitoring and real-time measurements. The proposed method provides a new avenue for evaluating the toxicity of mycotoxins. Copyright © 2015 Elsevier B.V. All rights reserved.
Pascale, Michelangelo; De Girolamo, Annalisa; Visconti, Angelo; Magan, Naresh; Chianella, Iva; Piletska, Elena V; Piletsky, Sergey A
2008-02-25
Molecular modelling and computational design were used to identify itaconic acid (IA) as a functional monomer with high affinity towards deoxynivalenol (DON), a Fusarium-toxin frequently occurring in cereals. IA-based polymers were photochemically synthesised in dimethyl formamide (porogen) using ethylenglycol dimethacrylate as cross-linker and 1,1'-azo-bis(cyclohexane carbonitrile) as initiator, and the relevant binding interactions with DON in solvents with different polarity were investigated. The performances of the non-imprinted IA-based polymer (blank polymer, BP) and the corresponding molecularly imprinted polymer (MIP) were compared using DON as a template. Both BP and MIP were able to bind about 90% DON either in toluene, water or water containing 5% polyethylene glycol. Non-imprinted polymers with different molar ratios of IA to cross-linker were evaluated as adsorbents for solid-phase extraction (SPE) clean-up and pre-concentration of DON from wheat and pasta samples prior to HPLC analysis. Samples were extracted with PBS/0.1M EDTA solution and cleaned up through a cartridge containing blank IA-based polymer. The column was washed with PBS (pH 9.2) and the toxin was eluted with methanol and quantified by reversed-phase HPLC with UV detector (lambda=220nm), using methanol:water:acetic acid (15:85:0.1, v/v/v) as the mobile phase. Effective removal of matrix interferences was observed only for pasta with DON recoveries higher than 70% (RSD<7%, n=3) at levels close to or higher than EU regulatory limit.
Individual and Combined Occurrence of Mycotoxins in Feed Ingredients and Complete Feeds in China
Ma, Rui; Zhang, Lei; Liu, Meng; Su, Yong-Teng; Xie, Wen-Mei; Zhang, Ni-Ya; Dai, Jie-Fan; Wang, Yun; Qi, De-Sheng; Karrow, Niel Alexander; Sun, Lv-Hui
2018-01-01
The objective of this study was to investigate the individual and combined contamination of aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON) in feedstuffs from different Provinces of China between 2016 and 2017. A total of 1569 samples, including 742 feed ingredients and 827 complete pig feed samples, were collected from various regions of China for mycotoxins analysis. The results showed that individual occurrence rates of AFB1, ZEN, and DON were more than 83.3%, 88%, and 74.5%, respectively, in all the tested samples. DON was the most prevalent contaminant, followed by ZEN and AFB1, with the average concentrations ranging from 450.0–4381.5 μg/kg, 2.3–729.2 μg/kg, and 1.3–10.0 μg/kg, respectively. Notable, 38.2%, 10.8%, and 0.6% of complete pig feeds were contaminated with DON, ZEN, and AFB1 over China’s regulatory limits, respectively. Moreover, over 75.0% analyzed samples were co-contaminated with two or three mycotoxins. In conclusion, the current study revealed that the feedstuffs in China were severely contaminated with DON, followed by ZEN and AFB1 during the past two years. These findings highlight the importance of monitoring mycotoxins in livestock feed and implementing feed management and bioremediation strategies to reduce mycotoxin exposure. PMID:29518909
Mechanisms underlying export of N from high-elevation catchments during seasonal transitions
Sickman, J.O.; Leydecker, A.L.; Chang, Cecily C.Y.; Kendall, C.; Melack, J.M.; Lucero, D.M.; Schimel, J.
2003-01-01
Mechanisms underlying catchment export of nitrogen (N) during seasonal transitions (i.e., winter to spring and summer to autumn) were investigated in high-elevation catchments of the Sierra Nevada using stable isotopes of nitrate and water, intensive monitoring of stream chemistry and detailed catchment N-budgets. We had four objectives: (1) determine the relative contribution of snowpack and soil nitrate to the spring nitrate pulse, (2) look for evidence of biotic control of N losses at the catchment scale, (3) examine dissolved organic nitrogen (DON) export patterns to gain a better understanding of the biological and hydrological controls on DON loss, and (4) examine the relationship between soil physico-chemical conditions and N export. At the Emerald Lake watershed, nitrogen budgets and isotopic analyses of the spring nitrate pulse indicate that 50 to 70% of the total nitrate exported during snowmelt (ca. April to July) is derived from catchment soils and talus; the remainder is snowpack nitrate. The spring nitrate pulse occurred several weeks after the start of snowmelt and was different from export patterns of less biologically labile compounds such as silica and DON suggesting that: (1) nitrate is produced and released from soils only after intense flushing has occurred and (2) a microbial N-sink is operating in catchment soils during the early stages of snowmelt. DON concentrations varied less than 20-30% during snowmelt, indicating that soil processes tightly controlled DON losses.
Heavy metal flows in aquatic systems of the Don and Kuban river deltas
NASA Astrophysics Data System (ADS)
Tkachenko, A. N.; Tkachenko, O. V.; Lychagin, M. Yu.; Kasimov, N. S.
2017-05-01
This paper presents the calculated heavy metal (Fe, Mn, Zn, Ni, Cu, Cr, Co, Cd, and Pb) flows in suspended and dissolved forms in the main navigable branches of the Don and Kuban river deltas during the low-water period of 2013-2014. This work is based on the data of field studies in which water and suspended matter samples were collected and the turbidity and water discharge in deltas were measured. A quantitative estimate of heavy metal inflows into the deltas of the Don and Kuban rivers is provided. Transformation of flows of suspended and dissolved metal forms from the delta top to the sea edge is discussed. The influence of localities (Rostov-on-Don, Temryuk) on the increase in heavy metal flows downstream is shown, and the heavy metal flows in the deltas of the Don and Kuban rivers are compared.
Lewis, Kyle T; Bullock, John R; Drumright, Ryan T; Olsen, Matthew J; Penman, Alan D
2018-03-08
The purpose is to evaluate the utility of optical coherence tomography (OCT) angiography in the evaluation of Graves' orbitopathy (GO) and response to orbital decompression in patients with and without dysthyroid optic neuropathy (DON). This was a single-center, prospective case series in a cohort of 12 patients (24 orbits) with GO and ±DON, (6 orbits) who underwent bilateral orbital decompression. All patients underwent pre- and postoperative OCT angiography of the peripapillary area. Vessel density indices were calculated in a 4.5 mm × 4.5 mm ellipsoid centered on the optic disk using split-spectrum amplitude decorrelation angiography algorithm, producing the vessel density measurements. Mean change in vessel density indices was compared between pre- and postoperative sessions and between patients with and without DON. Patient 1, a 34-year-old male with GO and unilateral DON OD, showed a significant reduction in blood vessel density indices oculus dexter (OD) (DON eye) after decompression while a more modest reduction was found oculus sinister (OS) with the greatest change noted intrapapillary. Patient 2, a 50-year-old male with DON OU, showed worsening neuropathy following decompression OD that was confirmed by angiographic density indices. Patient 3, a 55-year-female with DON, showed a reduction in blood vessel density OD and increased density OS. Patients without DON showed overall less impressive changes in indices as compared to those with DON. Using OCT angiography, response to surgical treatment in GO orbits, more so in orbits with DON, can be demonstrated and quantified using vessel density indices with reproducibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casale, W.L.
1987-01-01
The 12,13-epoxytrichothecene mycotoxins deoxynivalenol (DON, vomitoxin) and T-2 toxin inhibited protein synthesis in vivo and in cell-free systems from wheat and maize, host plants of trichothecene-producing Fusarium spp.Protein synthesis in tissue (leaf discs and kernel sections) was measured by incorporation of /sup 3/H-leucine into acetone:ethanol insoluble material, and in cell-free translation systems from wheat embryos and maize seedling plumules by incorporation of /sup 3/H-leucine into trichloroacetic acid-insoluble material. The toxin concentration inhibiting 50% of /sup 3/H-leucine incorporation (ID/sub 50/) by several maize varieties were 0.9 ..mu..M (T-2 toxin) and 9-22 ..mu..M (DON). ID/sub 50/ values for wheat were 0.25 ..mu..Mmore » (T-2 toxin) and 4.5 ..mu..M (DON).« less
Determination of multiple mycotoxins levels in poultry feeds from Cameroon.
Abia, Wilfred Angie; Simo, Grace Nella; Warth, Benedikt; Sulyok, Michael; Krska, Rudolf; Tchana, Angele; Moundipa, Paul Fewou
2013-02-01
For the first time in Cameroon, this paper reports on multiple mycotoxins occurrences in poultry feeds. Twenty feed samples collected from different poultry farms were analyzed for 320 fungal metabolites by liquid chromatography electrospray ionization tandem mass spectrometry. Results showed feeds contamination by 68 metabolites including 18 mycotoxins/metabolites currently regulated in the European Union such as fumonisins B1 (FB1), B2, and B3; deoxynevalenol (DON); and beta-zearalenol recovered in all samples. FB1 reported highest FB mean level of 468 (range 16-1930) microg kg(-1). Levels of DON and ZEN were mostly concentrated in feeds from western-highlands conversely for FBs and aflatoxins concentrations in Yaounde. Aflatoxin B1 mean level of 40 microg kg(-1) exceeded the worldwide permitted limit for aflatoxins in feed and generally inversely proportional to weight gain in chicken.
Lindblad, M; Börjesson, T; Hietaniemi, V; Elen, O
2012-01-01
The relationship between weather data and agronomical factors and deoxynivalenol (DON) levels in oats was examined with the aim of developing a predictive model. Data were collected from a total of 674 fields during periods of up to 10 years in Finland, Norway and Sweden, and included DON levels in the harvested oats crop, agronomical factors and weather data. The results show that there was a large regional variation in DON levels, with higher levels in one region in Norway compared with other regions in Norway, Finland and Sweden. In this region the median DON level was 1000 ng g⁻¹ and the regulatory limit for human consumption (1750 ng g⁻¹) was exceeded in 28% of the samples. In other regions the median DON levels ranged from 75 to 270 ng g⁻¹, and DON levels exceeded 1750 ng g⁻¹ in 3-8% of the samples. Including more variables than region in a multiple regression model only increased the adjusted coefficient of determination from 0.17 to 0.24, indicating that very little of the variation in DON levels could be explained by weather data or agronomical factors. Thus, it was not possible to predict DON levels based on the variables included in this study. Further studies are needed to solve this problem. Apparently the infection and/or growth of DON producing Fusarium species are promoted in certain regions. One possibility may be to study the species distribution of fungal communities and their changes during the oats cultivation period in more detail.
Satratoxin G interaction with 40S and 60S ribosomal subunits precedes apoptosis in the macrophage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Hee Kyong; Shinozuka, Junko; Islam, Zahidul
2009-06-01
Satratoxin G (SG) and other macrocyclic trichothecene mycotoxins are potent inhibitors of eukaryotic translation that are potentially immunosuppressive. The purpose of this research was to test the hypothesis that SG-induced apoptosis in the macrophage correlates with binding of this toxin to the ribosome. Exposure of RAW 264.7 murine macrophages to SG at concentrations of 10 to 80 ng/ml induced DNA fragmentation within 4 h that was indicative of apoptosis. To relate these findings to ribosome binding of SG, RAW cells were exposed to different toxin concentrations for various time intervals, ribosomal fractions isolated by sucrose density gradient ultracentrifugation and resultantmore » fractions analyzed for SG by competitive ELISA. SG was found to specifically interact with 40S and 60S ribosomal subunits as early as 5 min and that, at high concentrations or extended incubation times, the toxin induced polysome disaggregation. While co-incubation with the simple Type B trichothecene DON had no effect on SG uptake into cell cytoplasm, it inhibited SG binding to the ribosome, suggesting that the two toxins bound to identical sites and that SG binding was reversible. Although both SG and DON induced mobilization of p38 and JNK 1/2 to the ribosome, phosphorylation of ribosomal bound MAPKs occurred only after DON treatment. SG association with the 40S and 60S subunits was also observed in the PC-12 neuronal cell model which is similarly susceptible to apoptosis. To summarize, SG rapidly binds small and large ribosomal subunits in a concentration- and time-dependent manner that was consistent with induction of apoptosis.« less
Effect of preceding crop on Fusarium species and mycotoxin contamination of wheat grains.
Qiu, Jianbo; Dong, Fei; Yu, Mingzheng; Xu, Jianhong; Shi, Jianrong
2016-10-01
The Fusarium graminearum species complex infects several cereals and causes the reduction of grain yield and quality. Many factors influence the extent of Fusarium infection and mycotoxin levels. Such factors include crop rotation. In the present study, we explored the effect of rice or maize as former crops on mycotoxin accumulation in wheat grains. More than 97% of samples were contaminated with deoxynivalenol (DON). DON concentrations in wheat grains from rice and maize rotation fields were 884.37 and 235.78 µg kg(-1) . Zearalenone (ZEN) was detected in 45% of samples which were mainly collected from maize-wheat rotation systems. Fusarium strains were isolated and more F. graminearum sensu stricto (s. str.) isolates were cultured from wheat samples obtained from maize rotation fields. DON levels produced by Fusarium isolates from rice rotation fields were higher than those of samples from maize rotation fields. Rice-wheat rotation favours DON accumulation, while more ZEN contamination may occur in maize-wheat rotation models. Appropriate crop rotation may help to reduce toxin levels in wheat grains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Deoxynivalenol, zearalenone and T-2 in grain based swine feed in Hungary.
Tima, Helga; Rácz, Anita; Guld, Zsuzsanna; Mohácsi-Farkas, Csilla; Kiskó, Gabriella
2016-12-01
Fusarium genera can produce trichothecenes like deoxynivalenol (DON), zearalenone (ZEN) and T-2 toxin, which can occur in feed cereal grains. Enzyme-linked immunosorbent assays (ELISA) tests of different Hungarian swine feedstuff proved that these mycotoxins were present. In this survey, 45 feed samples from 3 significant Hungarian swine feedstuff manufacturers were tested. ELISA methodology validation showed mean recovery rates in ranges from 85.3% to 98.1%, with intermediate precision of 86.9-96.9% and variation coefficients of 3.4-5.7% and 5.9-7.1%, respectively. The results showed that among Fusarium toxins, generally DON was present in the highest concentration, followed by T-2 and finally ZEN in all tested swine feeds. Each of the mycotoxins was found above the limit of detection in all swine feedstuffs. Boars feed's DON (average ± standard deviation was 872 ± 139 µg kg -1 ) and ZEN (172 ± 18 µg kg -1 ) results of one of the manufacturers were above the guidance values. It indicates the necessity for efficient monitoring of DON, ZEN and T-2 mycotoxins in swine feeds.
Quantification of Microbial Osmolytes in a Drought Impacted California Grassland
NASA Astrophysics Data System (ADS)
Boot, C. M.; Schaeffer, S. M.; Doyle, A. P.; Schimel, J. P.
2008-12-01
With drought frequency and severity likely increasing in the future, understanding its effect on terrestrial carbon (C) and nitrogen (N) cycling has become essential for accurately modeling ecosystem responses to climate change. Microbes respond to drought stress by accumulating internal solutes, or osmolytes, such as amino acids, betaines and polyols, to balance cell membrane water potential as the soil dries. However, when seasonal rains arrive, internal solutes are released and rapidly mineralized. We have been studying these processes in a California grassland. Beginning in summer 2007, we made monthly measurements of soil moisture, individual amino acid concentration in total soil and in microbial biomass, total dissolved organic carbon and nitrogen (DOC and DON), and microbial biomass carbon and nitrogen (MBC and MBN). We expected microbial concentrations of the known amino acid osmolytes glutamate (glu) and proline (pro) to fluctuate inversely with soil moisture. However, pro was only recovered in Mar 2008 (0.30 μg C g-1 dry soil) and the glu concentration varied proportionally with soil moisture: lowest during summer (0.06 g H2O g-1 dry soil, 2.22 μg glutamate-C g-1 dry soil) and highest in winter (0.27 g H2O g-1 dry soil, 4.43 μg glutamate-C g-1 dry soil). The trend from DOC, MBC, and DON measurements was opposite, however, with all concentrations decreasing as soil moisture shifted from dry to wet, (DOC: 64.61 to 32.49 μg C g-1 dry soil respectively). MBN was the exception to this trend, with concentrations staying nearly constant across seasons. These patterns suggest that the expected amino acids glu and pro are not being used for microbial osmoregulation in the CA grassland, and given the summer to winter decrease in MBC, the primary osmolyte source is likely to be either polyol-type compounds such as mannitol or betaines. The implications for terrestrial carbon cycle are considerable because as the frequency of drought increases, the accumulation and release of osmolytes in response to drought has potential to pump carbon out of the grassland ecosystem.
A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance
Walter, Stephanie; Kahla, Amal; Arunachalam, Chanemoughasoundharam; Perochon, Alexandre; Khan, Mojibur R.; Scofield, Steven R.; Doohan, Fiona M.
2015-01-01
The mycotoxin deoxynivalenol (DON) acts as a disease virulence factor for Fusarium fungi, and tolerance of DON enhances wheat resistance to Fusarium head blight (FHB) disease. Two variants of an ATP-binding cassette (ABC) family C transporter gene were cloned from DON-treated wheat mRNA, namely TaABCC3.1 and TaABCC3.2. These represent two of three putative genes identified on chromosomes 3A, 3B, and 3D of the wheat genome sequence. Variant TaABCC3.1 represents the DON-responsive transcript previously associated with DON resistance in wheat. PCR-based mapping and in silico sequence analyses located TaABCC3.1 to the short arm of wheat chromosome 3B (not within the FHB resistance quantitative trait locus Fhb1). In silico analyses of microarray data indicated that TaABCC3 genes are expressed in reproductive tissue and roots, and in response to the DON producer Fusarium graminearum. Gene expression studies showed that TaABCC3.1 is activated as part of the early host response to DON and in response to the FHB defence hormone jasmonic acid. Virus-induced gene silencing (VIGS) confirmed that TaABCC3 genes contributed to DON tolerance. VIGS was performed using two independent viral construct applications: one specifically targeted TaABCC3.1 for silencing, while the other targeted this gene and the chromosome 3A homeologue. In both instances, VIGS resulted in more toxin-induced discoloration of spikelets, compared with the DON effects in non-silenced spikelets at 14 d after toxin treatment (≥2.2-fold increase, P<0.05). Silencing by both VIGS constructs enhanced head ripening, and especially so in DON-treated heads. VIGS of TaABCC3 genes also reduced the grain number by more than 28% (P<0.05), both with and without DON treatment, and the effects were greater for the construct that targeted the two homeologues. Hence, DON-responsive TaABCC3 genes warrant further study to determine their potential as disease resistance breeding targets and their function in grain formation and ripening. PMID:25732534
Soodoi, Chimidtseren; Sasgary, Soleman; Strasser, Alois; Böhm, Josef
2013-01-01
An experiment was conducted to investigate the individual and combined effects of dietary deoxynivalenol (DON) and a microbial feed additive on plasma cytokine level and on the expression of immune relevant genes in jejunal tissues of broilers. A total of 40 broiler chicks were obtained from a commercial hatchery and divided randomly into four groups (10 birds per group). Birds were reared in battery cages from one day old for 5 weeks. The dietary groups were 1) control birds fed basal diet; 2) DON group fed basal diet contaminated with 10 mg DON/ kg feed; 3) DON + Mycofix group fed basal diet contaminated with 10 mg DON/ kg feed and supplemented with a commercial feed additive, Mycofix® Select (MS) (2.5 kg/ton of feed); 4) Mycofix group fed basal diet supplemented with MS (2.5 kg/ton of feed). At 35 days, the plasma levels of tumor necrosis factor alpha (TNF-α) and interleukin 8 (IL-8) were quantified by ELISA test kits. Furthermore, the mRNA expression of TNF-α, IL-8, IL-1β, interferon gamma (IFNγ), transforming growth factor beta receptor I (TGFBR1) and nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κβ1) in jejunum were quantified by qRT-PCR. The results showed that the plasma TNF-α decreased in response to DON, while in combination with MS, the effect of DON was reduced. DON down-regulated the relative gene expression of IL-1β, TGFBR1 and IFN-γ, and addition of MS to the DON contaminated diet compensates these effects on IL-1β, TGFBR1 but not for IFN-γ. Furthermore, supplementation of MS to either DON contaminated or control diet up-regulated the mRNA expression of NF-κβ1. In conclusion, DON has the potential to provoke and modulate immunological reactions of broilers and subsequently could increase their susceptibility to disease. The additive seemed to have almost as much of an effect as DON, albeit on different genes. PMID:23977054
Ghareeb, Khaled; Awad, Wageha A; Soodoi, Chimidtseren; Sasgary, Soleman; Strasser, Alois; Böhm, Josef
2013-01-01
An experiment was conducted to investigate the individual and combined effects of dietary deoxynivalenol (DON) and a microbial feed additive on plasma cytokine level and on the expression of immune relevant genes in jejunal tissues of broilers. A total of 40 broiler chicks were obtained from a commercial hatchery and divided randomly into four groups (10 birds per group). Birds were reared in battery cages from one day old for 5 weeks. The dietary groups were 1) control birds fed basal diet; 2) DON group fed basal diet contaminated with 10 mg DON/ kg feed; 3) DON + Mycofix group fed basal diet contaminated with 10 mg DON/ kg feed and supplemented with a commercial feed additive, Mycofix® Select (MS) (2.5 kg/ton of feed); 4) Mycofix group fed basal diet supplemented with MS (2.5 kg/ton of feed). At 35 days, the plasma levels of tumor necrosis factor alpha (TNF-α) and interleukin 8 (IL-8) were quantified by ELISA test kits. Furthermore, the mRNA expression of TNF-α, IL-8, IL-1β, interferon gamma (IFNγ), transforming growth factor beta receptor I (TGFBR1) and nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κβ1) in jejunum were quantified by qRT-PCR. The results showed that the plasma TNF-α decreased in response to DON, while in combination with MS, the effect of DON was reduced. DON down-regulated the relative gene expression of IL-1β, TGFBR1 and IFN-γ, and addition of MS to the DON contaminated diet compensates these effects on IL-1β, TGFBR1 but not for IFN-γ. Furthermore, supplementation of MS to either DON contaminated or control diet up-regulated the mRNA expression of NF-κβ1. In conclusion, DON has the potential to provoke and modulate immunological reactions of broilers and subsequently could increase their susceptibility to disease. The additive seemed to have almost as much of an effect as DON, albeit on different genes.
Bergamini, E; Catellani, D; Dall'asta, C; Galaverna, G; Dossena, A; Marchelli, R; Suman, M
2010-05-01
Fusarium mycotoxins are a relevant problem in the cereal supply chain at a worldwide level, with wheat, maize and barley being the main contaminated crops. Mould growth can happen in the pre-harvest phase and also during transport and storage due to ineffective drying conditions. Among Fusarium toxins, deoxynivalenol (DON) is considered the most important contaminant in wheat due to its widespread occurrence. In the last years the European Food Safety Authority (EFSA) and the European Commission have frequently expressed opinions on Fusarium toxins, setting limits, regulations and guidelines in order to reduce their levels in raw materials and food commodities. In particular, European legislation (Reg. 1881/2006) sets the maximum limit for DON in flour and bread as 750 and 500 microg kg(-1) respectively. Relatively few studies have taken into account the loss of trichothecenes during processing, focusing on how processing factors may influence their degradation. In particular, the description of DON behaviour during bread-making is very difficult, since complex physico-chemical modifications occur during the transformation of the raw ingredients into the final product. In the present study, we studied how DON concentration may be influenced by modifying bread-making parameters, with a special emphasis on the fermentation and baking stages, starting from a naturally contaminated flour at both pilot and industrial scales. Exploiting the power of a Design of Experiments (DoE) approach to consider the great complexity of the studied system, the obtained model shows satisfying goodness-of-fit and prediction, suggesting that the baking step (time/temperature ranges) is crucial for minimizing native DON level in bread.
Wu, Wenda; Zhou, Hui-Ren; He, Kaiyu; Pan, Xiao; Sugita-Konishi, Yoshiko; Watanabe, Maiko; Zhang, Haibin; Pestka, James J.
2014-01-01
Cereal grain contamination by trichothecene mycotoxins is known to negatively impact human and animal health with adverse effects on food intake and growth being of particular concern. The head blight fungus Fusarium graminearum elaborates five closely related 8-ketotrichothecene congeners: (1) deoxynivalenol (DON), (2) 3-acetyldeoxynivalenol (3-ADON), (3) 15-acetyldeoxynivalenol (15-ADON), (4) fusarenon X (FX), and (5) nivalenol (NIV). While anorexia induction in mice exposed intraperitoneally to DON has been linked to plasma elevation of the satiety hormones cholecystokinin (CCK) and peptide YY3–36 (PYY3–36), the effects of oral gavage of DON or of other 8-keotrichothecenes on release of these gut peptides have not been established. The purpose of this study was to (1) compare the anorectic responses to the aforementioned 8-ketotrichothecenes following oral gavage at a common dose (2.5 mg/kg bw) and (2) relate these effects to changes plasma CCK and PYY3–36 concentrations. Elevation of plasma CCK markedly corresponded to anorexia induction by DON and all other 8-ketotrichothecenes tested. Furthermore, the CCK1 receptor antagonist SR 27897 and the CCK2 receptor antagonist L-365,260 dose-dependently attenuated both CCK- and DON-induced anorexia, which was consistent with this gut satiety hormone being an important mediator of 8-ketotrichothecene-induced food refusal. In contrast to CCK, PYY3–36 was moderately elevated by oral gavage with DON and NIV but not by 3-ADON, 15-ADON, or FX. Taken together, the results suggest that CCK plays a major role in anorexia induction following oral exposure to 8-ketotrichothecenes, whereas PYY3–36 might play a lesser, congener-dependent role in this response. PMID:24385417
Wu, Wenda; Zhou, Hui-Ren; He, Kaiyu; Pan, Xiao; Sugita-Konishi, Yoshiko; Watanabe, Maiko; Zhang, Haibin; Pestka, James J
2014-04-01
Cereal grain contamination by trichothecene mycotoxins is known to negatively impact human and animal health with adverse effects on food intake and growth being of particular concern. The head blight fungus Fusarium graminearum elaborates five closely related 8-ketotrichothecene congeners: (1) deoxynivalenol (DON), (2) 3-acetyldeoxynivalenol (3-ADON), (3) 15-acetyldeoxynivalenol (15-ADON), (4) fusarenon X (FX), and (5) nivalenol (NIV). While anorexia induction in mice exposed intraperitoneally to DON has been linked to plasma elevation of the satiety hormones cholecystokinin (CCK) and peptide YY₃₋₃₆ (PYY₃₋₃₆), the effects of oral gavage of DON or of other 8-keotrichothecenes on release of these gut peptides have not been established. The purpose of this study was to (1) compare the anorectic responses to the aforementioned 8-ketotrichothecenes following oral gavage at a common dose (2.5 mg/kg bw) and (2) relate these effects to changes plasma CCK and PYY₃₋₃₆ concentrations. Elevation of plasma CCK markedly corresponded to anorexia induction by DON and all other 8-ketotrichothecenes tested. Furthermore, the CCK1 receptor antagonist SR 27897 and the CCK2 receptor antagonist L-365,260 dose-dependently attenuated both CCK- and DON-induced anorexia, which was consistent with this gut satiety hormone being an important mediator of 8-ketotrichothecene-induced food refusal. In contrast to CCK, PYY₃₋₃₆ was moderately elevated by oral gavage with DON and NIV but not by 3-ADON, 15-ADON, or FX. Taken together, the results suggest that CCK plays a major role in anorexia induction following oral exposure to 8-ketotrichothecenes, whereas PYY₃₋₃₆ might play a lesser, congener-dependent role in this response.
ERIC Educational Resources Information Center
Penich-Thacker, Dawn
2010-01-01
Penich-Thacker points to the increasing digital presence of the U.S. military, not only on official dot.mil sites but also on commercial social networking sites, and suggests that the interactions and intersections of military and civilian personnel online challenge the notion of "fundamental differences" between these populations.
Khidkhan, Kraisiri; Imsilp, Kanjana; Poapolathep, Amnart; Poapolathep, Saranya; Tanhan, Phanwimol
2017-04-15
Environmental pollutants have raised more concerns for human health risk, especially via consumption of contaminated food. Terrestrial as well as aquatic animals are capable of bioaccumulation a variety of toxic substances including metallic elements. With increasing anthropogenic activities along the coastal areas, living organisms have more chances to be exposed to released contaminants. In this study, seven metallic elements (Cd, Cu, Fe, Mn, Ni, Pb and Zn) were determined in sediments and water from Don Hoi Lot sandbar, Samutsongkharm province, Thailand. Potential human health risks via the consumption of two benthic bivalves Solen corneus (Larmarck, 1818) and Meretrix meretrix (Linnaeus, 1758) were also estimated using the target hazard quotients (THQs). The variations of metallic element concentrations were apparent between wet and dry season. Fe was the predominate metallic element in the sediment and the remaining were Mn>Pb>Zn>Ni>Cu>Cd. Whereas metallic element concentrations in water were Pb>Ni>Fe>Zn>Cu>Mn>Cd. PCA analysis confirmed that the contaminations of these metallic elements were from Mae Klong river surface water. Most Pb THQ values in both S. corneus and M. meretrix were >1 indicating that human health risk is of concern. However, the sum of THQs of an individual metallic element should also be considered since multiple metallic elements exposure is so common. Copyright © 2017 Elsevier B.V. All rights reserved.
Multiplexed detection of mycotoxins in foods with a regenerable array.
Ngundi, Miriam M; Shriver-Lake, Lisa C; Moore, Martin H; Ligler, Frances S; Taitt, Chris R
2006-12-01
The occurrence of different mycotoxins in cereal products calls for the development of a rapid, sensitive, and reliable detection method that is capable of analyzing samples for multiple toxins simultaneously. In this study, we report the development and application of a multiplexed competitive assay for the simultaneous detection of ochratoxin A (OTA) and deoxynivalenol (DON) in spiked barley, cornmeal, and wheat, as well as in naturally contaminated maize samples. Fluoroimmunoassays were performed with the Naval Research Laboratory array biosensor, by both a manual and an automated version of the system. This system employs evanescent-wave fluorescence excitation to probe binding events as they occur on the surface of a waveguide. Methanolic extracts of the samples were diluted threefold with buffer containing a mixture of fluorescent antibodies and were then passed over the arrays of mycotoxins immobilized on a waveguide. Fluorescent signals of the surface-bound antibody-antigen complexes decreased with increasing concentrations of free mycotoxins in the extract. After sample analysis was completed, surfaces were regenerated with 6 M guanidine hydrochloride in 50 mM glycine, pH 2.0. The limits of detection determined by the manual biosensor system were as follows: 1, 180, and 65 ng/g for DON and 1, 60, and 85 ng/g for OTA in cornmeal, wheat, and barley, respectively. The limits of detection in cornmeal determined with the automated array biosensor were 15 and 150 ng/g for OTA and DON, respectively.
Adesso, Simona; Autore, Giuseppina; Quaroni, Andrea; Popolo, Ada; Severino, Lorella; Marzocco, Stefania
2017-12-11
Fusarium mycotoxins are fungal metabolites whose ability to affect cereal grains as multi-contaminants is progressively increasing. The trichothecene mycotoxins nivalenol (NIV) and deoxynivalenol (DON) are often found in almost all agricultural commodities worldwide. They are able to affect animal and human health, including at the intestinal level. In this study, NIV, both alone and in combination with DON, induced inflammation and increased the inflammatory response induced by lipopolysaccharide (LPS) plus Interferon-γ (IFN) in the non-tumorigenic intestinal epithelial cell line (IEC-6). The inflammatory response induced by NIV and DON involves tumor necrosis factor-α (TNF-α) production, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, nitrotyrosine formation, reactive oxygen species (ROS) release, Nuclear Factor-κB (NF-κB), Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and inflammasome activation. The pro-inflammatory effect was strongly induced by NIV and by the mycotoxin mixture, when compared to DON alone. Mechanistic studies indicate a pivotal role for ROS in the observed pro-inflammatory effects induced by mycotoxins. In this study, the interactions between NIV and DON point out the importance of their food co-contamination, further highlighting the risk assessment process that is of growing concern.
The mycotoxin deoxynivalenol facilitates allergic sensitization to whey in mice.
Bol-Schoenmakers, M; Braber, S; Akbari, P; de Graaff, P; van Roest, M; Kruijssen, L; Smit, J J; van Esch, B C A M; Jeurink, P V; Garssen, J; Fink-Gremmels, J; Pieters, R H H
2016-11-01
Intestinal epithelial stress or damage may contribute to allergic sensitization against certain food antigens. Hence, the present study investigated whether impairment of intestinal barrier integrity by the mycotoxin deoxynivalenol (DON) contributes to the development of whey-induced food allergy in a murine model. C3H/HeOuJ mice, orally exposed to DON plus whey once a week for 5 consecutive weeks, showed whey-specific IgG1 and IgE in serum and an acute allergic skin response upon intradermal whey challenge, although early initiating mechanisms of sensitization in the intestine appeared to be different compared with the widely used mucosal adjuvant cholera toxin (CT). Notably, DON exposure modulated tight-junction mRNA and protein levels, and caused an early increase in IL-33, whereas CT exposure affected intestinal γδ T cells. On the other hand, both DON- and CT-sensitized mice induced a time-dependent increase in the soluble IL-33 receptor ST2 (IL-1R1) in serum, and enhanced local innate lymphoid cells type 2 cell numbers. Together, these results demonstrate that DON facilitates allergic sensitization to food proteins and that development of sensitization can be induced by different molecular mechanisms and local immune responses. Our data illustrate the possible contribution of food contaminants in allergic sensitization in humans.
NASA Astrophysics Data System (ADS)
Bernal, Susana; Lupon, Anna; Catalán, Núria; Castelar, Sara; Martí, Eugènia
2018-03-01
Streams are important sources of carbon to the atmosphere, though knowing whether they merely outgas terrestrially derived carbon dioxide or mineralize terrestrial inputs of dissolved organic matter (DOM) is still a big challenge in ecology. The objective of this study was to investigate the influence of riparian groundwater (GW) and in-stream processes on the temporal pattern of stream DOM concentrations and quality in a forested headwater stream, and whether this influence differed between the leaf litter fall (LLF) period and the remaining part of the year (non-LLF). The spectroscopic indexes (fluorescence index, biological index, humification index, and parallel factor analysis components) indicated that DOM had an eminently protein-like character and was most likely originated from microbial sources and recent biological activity in both stream water and riparian GW. However, paired samples of stream water and riparian GW showed that dissolved organic carbon (DOC) and nitrogen (DON) concentrations as well as the spectroscopic character of DOM differed between the two compartments throughout the year. A simple mass balance approach indicated that in-stream processes along the reach contributed to reducing DOC and DON fluxes by 50 and 30 %, respectively. Further, in-stream DOC and DON uptakes were unrelated to each other, suggesting that these two compounds underwent different biogeochemical pathways. During the LLF period, stream DOC and DOC : DON ratios were higher than during the non-LLF period, and spectroscopic indexes suggested a major influence of terrestrial vegetation on stream DOM. Our study highlights that stream DOM is not merely a reflection of riparian GW entering the stream and that headwater streams have the capacity to internally produce, transform, and consume DOM.
Know Concentration Before Giving Acetaminophen to Infants
... Pain Reliever and Triaminic Infants’ Syrup Fever Reducer Pain Reliever. There are also store brands on the shelves. December 22, 2011 ... or Cold Don't Need Medicines Codeine and Tramadol Can Cause Breathing Problems for Children Reducing Fever ...
Izquieta-Rojano, S; García-Gomez, H; Aguillaume, L; Santamaría, J M; Tang, Y S; Santamaría, C; Valiño, F; Lasheras, E; Alonso, R; Àvila, A; Cape, J N; Elustondo, D
2016-03-01
Deposition of dissolved organic nitrogen (DON) in both bulk precipitation (BD) and canopy throughfall (TF) has been measured for the first time in the western Mediterranean. The study was carried out over a year from 2012 to 2013 at four evergreen holm oak forests located in the Iberian Peninsula: two sites in the Province of Barcelona (Northeastern Spain), one in the Province of Madrid (central Spain) and the fourth in the Province of Navarra (Northern Spain). In BD the annual volume weighted mean (VWM) concentration of DON ranged from 0.25 mg l(-1) in Madrid to 1.14 mg l(-1) in Navarra, whereas in TF it ranged from 0.93 mg l(-1) in Barcelona to 1.98 mg l(-1) in Madrid. The contribution of DON to total nitrogen deposition varied from 34% to 56% in BD in Barcelona and Navarra respectively, and from 38% in Barcelona to 72% in Madrid in TF. Agricultural activities and pollutants generated in metropolitan areas were identified as potential anthropogenic sources of DON at the study sites. Moreover, canopy uptake of DON in Navarra was found in spring and autumn, showing that organic nitrogen may be a supplementary nutrient for Mediterranean forests, assuming that a portion of the nitrogen taken up is assimilated during biologically active periods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schwartz-Zimmermann, Heidi E; Hametner, Christian; Nagl, Veronika; Fiby, Iris; Macheiner, Lukas; Winkler, Janine; Dänicke, Sven; Clark, Erica; Pestka, James J; Berthiller, Franz
2017-12-01
The Fusarium mycotoxin deoxynivalenol (DON) is a frequent contaminant of cereal-based food and feed. Mammals metabolize DON by conjugation to glucuronic acid (GlcAc), the extent and regioselectivity of which is species-dependent. So far, only DON-3-glucuronide (DON-3-GlcAc) and DON-15-GlcAc have been unequivocally identified as mammalian DON glucuronides, and DON-7-GlcAc has been proposed as further DON metabolite. In the present work, qualitative HPLC-MS/MS analysis of urine samples of animals treated with DON (rats: 2 mg/kg bw, single bolus, gavage; mice: 1 mg/kg bw, single i.p. injection; pigs: 74 µg/kg bw, single bolus, gavage; cows: 5.2 mg DON/kg dry mass, oral for 13 weeks) revealed additional DON and deepoxy-DON (DOM) glucuronides. To elucidate their structures, DON and DOM were incubated with human (HLM) and rat liver microsomes (RLM). Besides the expected DON/DOM-3- and 15-GlcAc, minor amounts of four DON- and four DOM glucuronides were formed. Isolation and enzymatic hydrolysis of four of these compounds yielded iso-DON and iso-DOM, the identities of which were eventually confirmed by NMR. Incubation of iso-DON and iso-DOM with RLM and HLM yielded two main glucuronides for each parent compound, which were isolated and identified as iso-DON/DOM-3-GlcAc and iso-DON/DOM-8-GlcAc by NMR. Iso-DON-3-GlcAc, most likely misidentified as DON-7-GlcAc in the literature, proved to be a major DON metabolite in rats and a minor metabolite in pigs. In addition, iso-DON-8-GlcAc turned out to be one of the major DON metabolites in mice. DOM-3-GlcAc was the dominant DON metabolite in urine of cows and an important DON metabolite in rat urine. Iso-DOM-3-GlcAc was detected in urine of DON-treated rats and cows. Finally, DON-8,15-hemiketal-8-glucuronide, a previously described by-product of DON-3-GlcAc production by RLM, was identified in urine of DON-exposed mice and rats. The discovery of several novel DON-derived glucuronides in animal urine requires adaptation of the currently used methods for DON-biomarker analysis.
Song, Lei; Tian, Peng; Zhang, Jinbo; Jin, Guangze
2017-12-31
Continuously enhanced nitrogen (N) deposition alters the pattern of N and carbon (C) transformations, and thus influences greenhouse gas emissions. It is necessary to clarify the effect of N deposition on greenhouse gas emissions and soil N dynamics for an accurate assessment of C and N budgets under increasing N deposition. In this study, four simulated N deposition treatments (control [CK: no N addition], low-N [L: 20kgNha -1 yr -1 ], medium-N [M: 40kgNha -1 yr -1 ], and high-N [H: 80kgNha -1 yr -1 ]) were operated from 2014. Carbon dioxide, methane and nitrous oxide fluxes were monitored semimonthly, as were soil variables such as temperature, moisture and the concentrations of total dissolved N (TDN), NO 3 - , NO 2 - , NH 4 + , and dissolved organic N (DON) in soil solutions. The simulated N deposition resulted in a significant increase in TDN, NO 3 - and DON concentrations in soil solutions. The average CO 2 emission rate ranged from 222.6mgCO 2 m -2 h -1 in CK to 233.7mgCO 2 m -2 h -1 in the high-N treatment. Three years of simulated N deposition had no effect on soil CO 2 emission, which was mainly controlled by soil temperature. The mean N 2 O emission rate during the whole 3years was 0.02mgN 2 Om -2 h -1 for CK, which increased significantly to 0.05mgN 2 Om -2 h -1 in the high-N treatment. The N 2 O emission rate positively correlated with NH 4 + concentrations, and negatively correlated with soil moisture. The average CH 4 flux during the whole 3years was -0.74μgCH 4 m -2 h -1 in CK, which increased to 1.41μgCH 4 m -2 h -1 in the low-N treatment. CH 4 flux positively correlated with NO 3 - concentrations. These results indicate that short-term N deposition did not affect soil CO 2 emissions, while CH 4 and N 2 O emissions were sensitive to N deposition. Copyright © 2017 Elsevier B.V. All rights reserved.
Terzyan, Simon S; Cook, Paul F; Heroux, Annie; Hanigan, Marie H
2017-06-01
Intense efforts are underway to identify inhibitors of the enzyme gamma-glutamyl transpeptidase 1 (GGT1) which cleaves extracellular gamma-glutamyl compounds and contributes to the pathology of asthma, reperfusion injury and cancer. The glutamate analog, 6-diazo-5-oxo-norleucine (DON), inhibits GGT1. DON also inhibits many essential glutamine metabolizing enzymes rendering it too toxic for use in the clinic as a GGT1 inhibitor. We investigated the molecular mechanism of human GGT1 (hGGT1) inhibition by DON to determine possible strategies for increasing its specificity for hGGT1. DON is an irreversible inhibitor of hGGT1. The second order rate constant of inactivation was 0.052 mM -1 min -1 and the K i was 2.7 ± 0.7 mM. The crystal structure of DON-inactivated hGGT1 contained a molecule of DON without the diazo-nitrogen atoms in the active site. The overall structure of the hGGT1-DON complex resembled the structure of the apo-enzyme; however, shifts were detected in the loop forming the oxyanion hole and elements of the main chain that form the entrance to the active site. The structure of hGGT1-DON complex revealed two covalent bonds between the enzyme and inhibitor which were part of a six membered ring. The ring included the OG atom of Thr381, the reactive nucleophile of hGGT1 and the α-amine of Thr381. The structure of DON-bound hGGT1 has led to the discovery of a new mechanism of inactivation by DON that differs from its inactivation of other glutamine metabolizing enzymes, and insight into the activation of the catalytic nucleophile that initiates the hGGT1 reaction. © 2017 The Protein Society.
Don’t Ask, Don’t Tell: A Costly and Wasteful Choice
2004-09-01
side of their family.[2] Other studies have linked increased incidence of gay sons to mothers who suffered severe stress during pregnancy . The...during pregnancy to increased likelihood of gay offspring because these substances block “masculinization of the nervous system during neuro...there would still be 15,000 more 18 – 30 year-old volunteers for the military. In May 2004, Democratic Presidential Candidate John Kerry remarked
Evaluating the Analgesic Effect of the GLS Inhibitor 6-Diazo-5-Oxo-L-Norleucine in Vivo
Crosby, Heith A; Miller, Kenneth E
2018-01-01
Glutamate is an excitatory neurotransmitter, produced by its synthetic enzyme, glutaminase (GLS), and packaged by vesicular transporters (VGluT2) into synaptic vesicles. Primary sensory peripheral nerve and spinal synaptic terminals release glutamate during nociceptive (pain) signaling. In post-incisional and inflammation models in rats, GLS and VGluT2 production is elevated in dorsal root ganglion neuronal cell bodies and transported to peripheral and spinal terminals for increased glutamate synthesis and release. 6-Diazo-5-oxo-l-norleucine (DON) is a GLS inhibitor that produces long lasting pain relief when applied to the inflamed paw of arthritic rats, but its effect in a post-incisional model has not been evaluated. In this study, we examined the analgesic efficacy of DON in a surgical incision model by measuring thermal latency and mechanical allodynia. Following behavioral evaluation, we examined the skin for VGluT2, GLS and glutamate immunoreactivity (ir). Our findings revealed that VGluT2-ir is elevated in the stratum lucidum by approximately 19%, 64 hours post-surgical incision and attenuated by approximately 5.4% after the administration of DON. During that same period GLS-ir was elevated in dermal nerve fibers by 52% and was attenuated by approximately 27.9% after the application of DON. Additionally, glutamate-ir was elevated in epidermal nerve fibers by 35% after incision and attenuated by approximately 23% after the administration of DON. Behavioral testing 24 and 48 hours after a single local administration of DON showed five out of six animals having an analgesic response to mechanical allodynia, but not to thermal hyperalgesia. Following a surgical incision, the area of injury shows increased VGluT2-, GLS-, glutamate-ir, mechanical allodynia and no change in thermal latency. After the application of the GLS inhibitor, DON, nerve fiber of the skin showed decreased VGluT2, GLS, and glutamate-ir. Furthermore, post-incision DON treated animals exhibited decreased mechanical allodynia with no change in thermal latency when compared to control animals. PMID:29888760
Meurens, François; Cognie, Juliette; Abrami, Roberta; Oswald, Isabelle P.; Guzylack-Piriou, Laurence
2013-01-01
Background/Aims Deoxynivalenol (DON) is a mycotoxin produced by Fusarium species which is commonly found in temperate regions worldwide as a natural contaminant of cereals. It is of great concern not only in terms of economic losses but also in terms of animal and public health. The digestive tract is the first and main target of this food contaminant and it represents a major site of immune tolerance. A finely tuned cross-talk between the innate and the adaptive immune systems ensures the homeostatic equilibrium between the mucosal immune system and commensal microorganisms. The aim of this study was to analyze the impact of DON on the intestinal immune response. Methodology Non-transformed intestinal porcine epithelial cells IPEC-1 and porcine jejunal explants were used to investigate the effect of DON on the intestinal immune response and the modulation of naive T cells differentiation. Transcriptomic proteomic and flow cytometry analysis were performed. Results DON induced a pro-inflammatory response with a significant increase of expression of mRNA encoding for IL-8, IL-1α and IL-1β, TNF-α in all used models. Additionally, DON significantly induced the expression of genes involved in the differentiation of Th17 cells (STAT3, IL–17A, IL-6, IL-1β) at the expenses of the pathway of regulatory T cells (Treg) (FoxP3, RALDH1). DON also induced genes related to the pathogenic Th17 cells subset such as IL–23A, IL-22 and IL-21 and not genes related to the regulatory Th17 cells (rTh17) such as TGF-β and IL-10. Conclusion DON triggered multiple immune modulatory effects which could be associated with an increased susceptibility to intestinal inflammatory diseases. PMID:23326479
NASA Astrophysics Data System (ADS)
Alkhatib, M.; del Giorgio, P. A.; Gelinas, Y.; Lehmann, M. F.
2013-11-01
The distribution of dissolved organic nitrogen (DON) and carbon (DOC) in sediment porewaters was determined at nine locations along the St. Lawrence estuary and in the gulf of St. Lawrence. In a previous manuscript (Alkhatib et al., 2012a), we have shown that this study area is characterized by gradients in the sedimentary particulate organic matter (POM) reactivity, bottom water oxygen concentrations, and benthic respiration rates. Based on the porewater profiles, we estimated the benthic diffusive fluxes of DON and DOC in the same area. Our results show that DON fluxed out of the sediments at significant rates (110 to 430 μmol m-2 d-1). DON fluxes were positively correlated with sedimentary POM reactivity and varied inversely with sediment oxygen exposure time (OET), suggesting direct links between POM quality, aerobic remineralization and the release of DON to the water column. DON fluxes were on the order of 30 to 64% of the total benthic inorganic fixed N loss due to denitrification, and often exceeded the diffusive nitrate fluxes into the sediments. Hence they represented a large fraction of the total benthic N exchange, a result that is particularly important in light of the fact that DON fluxes are usually not accounted for in estuarine and coastal zone nutrient budgets. In contrast to DON, DOC fluxes out of the sediments did not show any significant spatial variation along the Laurentian Channel (LC) between the estuary and the gulf (2100 ± 100 μmol m-2 d-1). The molar C / N ratio of dissolved organic matter (DOM) in porewater and the overlying bottom water varied significantly along the transect, with lowest C / N in the lower estuary (5-6) and highest C / N (> 10) in the gulf. Large differences between the C / N ratios of porewater DOM and POM are mainly attributed to a combination of selective POM hydrolysis and elemental fractionation during subsequent DOM mineralization, but selective adsorption of DOM to mineral phases could not be excluded as a potential C / N fractionating process. The extent of this C- versus N- element partitioning seems to be linked to POM reactivity and redox conditions in the sediment porewaters. Our results thus highlight the variable effects selective organic matter (OM) preservation can have on bulk sedimentary C / N ratios, decoupling the primary source C / N signatures from those in sedimentary paleoenvironmental archives. Our study further underscores that the role of estuarine sediments as efficient sinks of bioavailable nitrogen is strongly influenced by the release of DON during early diagenetic reactions, and that DON fluxes from continental margin sediments represent an important internal source of N to the ocean.
Fate of Fusarium mycotoxins in maize flour and grits during extrusion cooking.
Scudamore, Keith A; Guy, Robin C E; Kelleher, Brian; MacDonald, Susan J
2008-11-01
Extrusion technology is used widely in the manufacture of a range of breakfast cereals and snacks for human consumption and animal feeds. To minimise consumer exposure to mycotoxins, the levels of deoxynivalenol (DON) and zearalenone (ZON) in cereals/cereal products and fumonisins B(1) and B(2) (FB(1) and FB(2)) in maize are controlled by European Union legislation. Relatively few studies, however, have examined the loss of Fusarium mycotoxins during processing. The behaviour of FB(1), FB(2) and fumonisin B(3) (FB(3)), DON and ZON during extrusion of naturally contaminated maize flour and maize grits is examined using pilot-scale equipment. DON and ZON are relatively stable during extrusion cooking but the fumonisins are lost to varying degrees. There is some loss of ZON when present in low concentrations and extruded at higher moisture contents. The presence of additives, such as reducing sugars and sodium chloride, can also affect mycotoxin levels. Moisture content of the cereal feed during extrusion is important and has a greater effect than temperature, particularly on the loss of fumonisins at the lower moistures. The effects are complex and not easy to explain, although more energy input to the extruder is required for drier materials. However, on the basis of these studies, the relationship between the concentration of Fusarium toxins in the raw and finished product is toxin- and process-dependent.
Chu, Wen-Hai; Gao, Nai-Yun; Templeton, Michael R; Yin, Da-Qiang
2011-04-01
The formation of disinfection by-products (DBPs), including both nitrogenous disinfection by-products (N-DBPs) and carbonaceous disinfection by-products (C-DBPs), was investigated upon chlorination of water samples following two treatment processes: (i) coagulation-inclined plate sedimentation (IPS)-filtration and (ii) coagulation-dissolved air flotation (DAF)-filtration. The removal of algae, dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and UV(254) by coagulation-DAF-filtration was superior to coagulation-IPS-filtration. On average, 53%, 53% and 31% of DOC, DON and UV(254) were removed by coagulation-DAF-filtration process, which were higher than 47%, 31% and 27% of that by coagulation-IPS-filtration process. Additionally, coagulation-IPS-filtration performed less well at removing the low molecular weight organics than coagulation-DAF-filtration process. The concentrations of chloroform, dichloroacetamide (DCAcAm) and dichloroacetonitrile (DCAN) formed during chlorination after coagulation-DAF-filtration reached their maximum values of 13, 1.5 and 4.7μgL(-1), respectively, and were lower than those after coagulation-IPS-filtration with the maximum detected levels of 17, 2.9 and 6.3μgL(-1). However, the trichloronitromethane (TCNM) concentration after the two processes was similar, suggesting that DON may have less of a contribution to TCNM formation than DCAcAm and DCAN. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wu, Li; Wang, Bujun
2016-07-01
We hereby report the transformation of deoxynivalenol (DON) and its acetylated derivatives (3-ADON and 15-ADON) by spiking targeted mycotoxins to Fusarium mycotoxin-free flour in the process of making Chinese steamed bread (CSB). The impacts of pH, yeast level, and steaming time on the transformation of 3-ADON to DON were investigated. DON, 3-ADON, and 15-ADON were analyzed by UPLC-MS/MS. Spiked DON was stable throughout the CSB making process. Spiked 3-ADON and 15-ADON were partially deacetylated and transformed to DON during kneading (54.1-60.0% and 59.3-77.5%, respectively), fermentation (64.0-76.9% and 78.2-91.6%, respectively), and steaming (47.2-52.7% and 52.4-61.9%, respectively). The ADONs level increased after steaming compared with their level in the previous step. The pH level and steaming duration significantly (P<0.05) affected the conversion of 3-ADON during the CSB making process. Briefly, alkaline conditions and short steaming times favored the deacetylation of 3-ADON. The level of yeast did not remarkably (P<0.05) alter the transformation between ADONs and DON. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alassane-Kpembi, Imourana; Pinton, Philippe; Hupé, Jean-François; Neves, Manon; Lippi, Yannick; Combes, Sylvie; Castex, Mathieu; Oswald, Isabelle P
2018-05-15
Type B trichothecene mycotoxin deoxynivalenol (DON) is one of the most frequently occurring food contaminants. By inducing trans-activation of a number of pro-inflammatory cytokines and increasing the stability of their mRNA, trichothecene can impair intestinal health. Several yeast products, especially Saccharomyces cerevisiae , have the potential for improving the enteric health of piglets, but little is known about the mechanisms by which the administration of yeast counteracts the DON-induced intestinal alterations. Using a pig jejunum explant model, a whole-transcriptome analysis was performed to decipher the early response of the small intestine to the deleterious effects of DON after administration of S. cerevisiae boulardii strain CNCM I-1079. Compared to the control condition, no differentially expressed gene (DE) was observed after treatment by yeast only. By contrast, 3619 probes-corresponding to 2771 genes-were differentially expressed following exposure to DON, and 32 signaling pathways were identified from the IPA software functional analysis of the set of DE genes. When the intestinal explants were treated with S. cerevisiae boulardii prior to DON exposure, the number of DE genes decreased by half (1718 probes corresponding to 1384 genes). Prototypical inflammation signaling pathways triggered by DON, including NF-κB and p38 MAPK, were reversed, although the yeast demonstrated limited efficacy toward some other pathways. S. cerevisiae boulardii also restored the lipid metabolism signaling pathway, and reversed the down-regulation of the antioxidant action of vitamin C signaling pathway. The latter effect could reduce the burden of DON-induced oxidative stress. Altogether, the results show that S. cerevisiae boulardii reduces the DON-induced alteration of intestinal transcriptome, and point to new mechanisms for the healing of tissue injury by yeast.
Alassane-Kpembi, Imourana; Hupé, Jean-François; Neves, Manon; Lippi, Yannick; Combes, Sylvie; Castex, Mathieu
2018-01-01
Type B trichothecene mycotoxin deoxynivalenol (DON) is one of the most frequently occurring food contaminants. By inducing trans-activation of a number of pro-inflammatory cytokines and increasing the stability of their mRNA, trichothecene can impair intestinal health. Several yeast products, especially Saccharomyces cerevisiae, have the potential for improving the enteric health of piglets, but little is known about the mechanisms by which the administration of yeast counteracts the DON-induced intestinal alterations. Using a pig jejunum explant model, a whole-transcriptome analysis was performed to decipher the early response of the small intestine to the deleterious effects of DON after administration of S. cerevisiae boulardii strain CNCM I-1079. Compared to the control condition, no differentially expressed gene (DE) was observed after treatment by yeast only. By contrast, 3619 probes—corresponding to 2771 genes—were differentially expressed following exposure to DON, and 32 signaling pathways were identified from the IPA software functional analysis of the set of DE genes. When the intestinal explants were treated with S. cerevisiae boulardii prior to DON exposure, the number of DE genes decreased by half (1718 probes corresponding to 1384 genes). Prototypical inflammation signaling pathways triggered by DON, including NF-κB and p38 MAPK, were reversed, although the yeast demonstrated limited efficacy toward some other pathways. S. cerevisiae boulardii also restored the lipid metabolism signaling pathway, and reversed the down-regulation of the antioxidant action of vitamin C signaling pathway. The latter effect could reduce the burden of DON-induced oxidative stress. Altogether, the results show that S. cerevisiae boulardii reduces the DON-induced alteration of intestinal transcriptome, and point to new mechanisms for the healing of tissue injury by yeast. PMID:29762474
Mycotoxin profiling of 1000 beer samples with a special focus on craft beer
van Dam, Ruud; van Doorn, Ronald; Katerere, David; Berthiller, Franz; Haasnoot, Willem; Nielen, Michel W. F.
2017-01-01
Currently beer is booming, mainly due to the steady rise of craft breweries worldwide. Previous surveys for occurrence of mycotoxins in beer, were mainly focussed on industrial produced beer. The present survey reports the presence of mycotoxins in craft beer and how this compares to industrial produced beer. More than 1000 beers were collected from 47 countries, of which 60% were craft beers. A selection of 1000 samples were screened for the presence of aflatoxin B1, ochratoxin A (OTA), zearalenone (ZEN), fumonisins (FBs), T-2 and HT-2 toxins (T-2 and HT-2) and deoxynivalenol (DON) using a mycotoxin 6-plex immunoassay. For confirmatory analysis, a liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and applied. The 6-plex screening showed discrepancies with the LC-MS/MS analysis, possibly due to matrix interference and/or the presence of unknown mycotoxin metabolites. The major mycotoxins detected were DON and its plant metabolite deoxynivalenol-3-β-D-glucopyranoside (D3G). The 6-plex immunoassay reported the sum of DON and D3G (DON+D3G) contaminations ranging from 10 to 475 μg/L in 406 beers, of which 73% were craft beers. The popular craft beer style imperial stout, had the highest percentage of samples suspected positive (83%) with 29% of all imperial stout beers having DON+D3G contaminations above 100 μg/L. LC-MS/MS analysis showed that industrial pale lagers from Italy and Spain, predominantly contained FBs (3–69 μg/L). Besides FBs, African traditional beers also contained aflatoxins (0.1–1.2 μg/L). The presence of OTA, T-2, HT-2, ZEN, β-zearalenol, 3/15-acetyl-DON, nivalenol and the conjugated mycotoxin zearalenone 14-sulfate were confirmed in some beers. This study shows that in 27 craft beers, DON+D3G concentrations occurred above (or at) the Tolerable Daily Intake (TDI). Exceeding the TDI, may have a health impact. A better control of brewing malts for craft beer, should be put in place to circumvent this potential problem. PMID:28982162
Mycotoxin profiling of 1000 beer samples with a special focus on craft beer.
Peters, Jeroen; van Dam, Ruud; van Doorn, Ronald; Katerere, David; Berthiller, Franz; Haasnoot, Willem; Nielen, Michel W F
2017-01-01
Currently beer is booming, mainly due to the steady rise of craft breweries worldwide. Previous surveys for occurrence of mycotoxins in beer, were mainly focussed on industrial produced beer. The present survey reports the presence of mycotoxins in craft beer and how this compares to industrial produced beer. More than 1000 beers were collected from 47 countries, of which 60% were craft beers. A selection of 1000 samples were screened for the presence of aflatoxin B1, ochratoxin A (OTA), zearalenone (ZEN), fumonisins (FBs), T-2 and HT-2 toxins (T-2 and HT-2) and deoxynivalenol (DON) using a mycotoxin 6-plex immunoassay. For confirmatory analysis, a liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and applied. The 6-plex screening showed discrepancies with the LC-MS/MS analysis, possibly due to matrix interference and/or the presence of unknown mycotoxin metabolites. The major mycotoxins detected were DON and its plant metabolite deoxynivalenol-3-β-D-glucopyranoside (D3G). The 6-plex immunoassay reported the sum of DON and D3G (DON+D3G) contaminations ranging from 10 to 475 μg/L in 406 beers, of which 73% were craft beers. The popular craft beer style imperial stout, had the highest percentage of samples suspected positive (83%) with 29% of all imperial stout beers having DON+D3G contaminations above 100 μg/L. LC-MS/MS analysis showed that industrial pale lagers from Italy and Spain, predominantly contained FBs (3-69 μg/L). Besides FBs, African traditional beers also contained aflatoxins (0.1-1.2 μg/L). The presence of OTA, T-2, HT-2, ZEN, β-zearalenol, 3/15-acetyl-DON, nivalenol and the conjugated mycotoxin zearalenone 14-sulfate were confirmed in some beers. This study shows that in 27 craft beers, DON+D3G concentrations occurred above (or at) the Tolerable Daily Intake (TDI). Exceeding the TDI, may have a health impact. A better control of brewing malts for craft beer, should be put in place to circumvent this potential problem.
Qiu, Yu-Lou; He, Qing-Hua; Xu, Yang; Wang, Wei; Liu, Yuan-Yuan
2016-01-01
A nanobody (N-28) which can act as a deoxynivalenol (DON) antigen has been generated, and its residues Thr102-Ser106 were identified to bind with anti-DON monoclonal antibody by alanine-scanning mutagenesis. Site-saturation mutagenesis was used to analyze the plasticity of five residues and to improve the sensitivity of the N-28-based immunoassay. After mutagenesis, three mutants were selected by phage immunoassay and were sequenced. The half-maximal inhibitory concentrations of the immunoassay based on mutants N-28-T102Y, N-28-V103L, and N-28-Y105F were 24.49 ± 1.0, 51.83 ± 2.5, and 35.65 ± 1.6 ng/mL, respectively, showing the assay was, respectively, 3.2, 1.5, and 2.2 times more sensitive than the wild-type-based assay. The best mutant, N-28-T102Y, was used to develop a competitive phage ELISA to detect DON in cereals with high specificity and accuracy. In addition, the structural properties of N-28-T102Y and N-28 were investigated, revealing that the affinity of N-28-T102Y decreased because of increased steric hindrance with the large side chain. The lower-binding-affinity antigen mimetic may contribute to the improvement of the sensitivity of competitive immunoassays. These results demonstrate that nanobodies would be a favorable tool for engineering. Moreover, our results have laid a solid foundation for site-saturation mutagenesis of antigen-mimicking nanobodies to improve immunoassay sensitivity for small molecules.
NASA Astrophysics Data System (ADS)
Santos, Isaac R.; Burnett, William C.; Dittmar, Thorsten; Suryaputra, I. G. N. A.; Chanton, Jeffrey
2009-03-01
We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ˜5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ˜25% of DOC and ˜50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.
Zhang, Qichun; Shamsi, Imran Haider; Wang, Jinwen; Song, Qiujin; Xue, Qiaoyun; Yu, Yan; Lin, Xianyong; Hussain, Sayed
2013-07-01
Nitrogen (N) losses from agricultural fields have been extensively studied. In contrast, surface runoff and N losses have rarely been considered for bamboo forests that are widespread in regions such as southern China. The thriving of bamboo industries has led to increasing fertilizer use in bamboo forests. In this study, we evaluated surface runoff and N losses in runoff following different fertilization treatments under field conditions in a bamboo (Phyllostachys pubescens) forest in the catchment of Lake Taihu in Jiangsu, China. Under three different fertilization regimes, i.e., control, site-specific nutrient management (SSNM), and farmer's fertilization practice (FFP), the water runoff rate amounted to 356, 361, and 342 m(3) ha(-1) and accounted for 1.91, 1.98, and 1.85% of the water input, respectively, from June 2009 to May 2010. The total N losses via surface runoff ranged from 1.2 to 1.8 kg ha(-1). Compared with FFP, the SSNM treatment reduced total nitrogen (TN) and dissolved nitrogen (DN) losses by 31 and 34%, respectively. The results also showed that variations in N losses depended mainly on runoff fluxes, not N concentrations. Runoff samples collected from all treatments throughout the year showed TN concentrations greater than 0.35 mg L(-1), with the mean TN concentration in the runoff from the FFP treatment reaching 8.97 mg L(-1). The loss of NO3(-)-N was greater than the loss of NH4(+)-N. The total loss of dissolved organic nitrogen (DON) reached 23-41% of the corresponding DN. Therefore, DON is likely the main N species in runoff from bamboo forests and should be emphasized in the assessment and management of N losses in bamboo forest.
DON'T BE TRICKED BY YOUR INTEGRATED RATE PLOT!
Reaction order can be determined from kinetic data in a variety of ways. Two methods commonly employed are comparison of initial rates (while varying reactant concentration) and plotting integrated rate expressions. Both of these are introduced in general and physical chemistry t...
Kluger, Bernhard; Bueschl, Christoph; Lemmens, Marc; Michlmayr, Herbert; Malachova, Alexandra; Koutnik, Andrea; Maloku, Imer; Berthiller, Franz; Adam, Gerhard; Krska, Rudolf; Schuhmacher, Rainer
2015-01-01
In this study, a total of nine different biotransformation products of the Fusarium mycotoxin deoxynivalenol (DON) formed in wheat during detoxification of the toxin are characterized by liquid chromatography—high resolution mass spectrometry (LC-HRMS). The detected metabolites suggest that DON is conjugated to endogenous metabolites via two major metabolism routes, namely 1) glucosylation (DON-3-glucoside, DON-di-hexoside, 15-acetyl-DON-3-glucoside, DON-malonylglucoside) and 2) glutathione conjugation (DON-S-glutathione, “DON-2H”-S-glutathione, DON-S-cysteinyl-glycine and DON-S-cysteine). Furthermore, conjugation of DON to a putative sugar alcohol (hexitol) was found. A molar mass balance for the cultivar ‘Remus’ treated with 1 mg DON revealed that under the test conditions approximately 15% of the added DON were transformed into DON-3-glucoside and another 19% were transformed to the remaining eight biotransformation products or irreversibly bound to the plant matrix. Additionally, metabolite abundance was monitored as a function of time for each DON derivative and was established for six DON treated wheat lines (1 mg/ear) differing in resistance quantitative trait loci (QTL) Fhb1 and/or Qfhs.ifa-5A. All cultivars carrying QTL Fhb1 showed similar metabolism kinetics: Formation of DON-Glc was faster, while DON-GSH production was less efficient compared to cultivars which lacked the resistance QTL Fhb1. Moreover, all wheat lines harboring Fhb1 showed significantly elevated D3G/DON abundance ratios. PMID:25775425
Onaran, Zafer; Konuk, Onur; Oktar, Suna Özhan; Yücel, Cem; Unal, Mehmet
2014-07-01
To investigate the effects of combined orbital bone and fat decompression on intraocular pressure (IOP) and superior ophthalmic vein blood flow velocity (SOV-BFV), and their association with the clinical features of Graves orbitopathy (GO). During the 2002-2008 period, 72 eyes of 36 GO cases demonstrating moderate to severe orbitopathy were evaluated according to their clinical features as: cases with or without dysthyroid optic neuropathy (DON), and underwent orbital decompression. A control group comprised 40 eyes of 20 healthy subjects. In both groups, a full ophthalmic examination including IOP and Hertel measurements was performed, and SOV-BFV was analyzed with color Doppler imaging. Examinations were repeated after orbital decompression in GO patients. All the cases demonstrated clinical features of inactive disease. Among the patients 24 of 72 eyes (33.3%) showed clinical features of DON. After surgery, the mean decrease in Hertel values was 6.2 ± 1.8 mm (p = 0.001). The mean decrease in IOP was 3.0 ± 1.7 mmHg (from 17.3 ± 2.7 to 14.3 ± 2.0 mmHg) after orbital decompression where the post-operative values were comparable with the control group (12.9 ± 1.4 mmHg, p = 0.36). The mean increase in SOV-BFV achieved with decompression was 1.2 ± 0.6 cm/s (from 4.8 ± 1.7 to 6.0 ± 1.8 cm/s) and post-operative SOV-BFV values were also comparable with the control group (6.6 ± 1.3 cm/s, p = 0.26). The increase in SOV-BFV in cases with DON did not differ from cases without DON (p = 0.32), however, post-operative SOV-BFV of cases with DON was stil lower than cases without DON (p = 0.035). Combined orbital bone and fat decompression significantly reduced the IOP levels and increased the SOV-BFV in GO. This could be the confirmative finding of prediction that elevated IOP in GO is associated with increased episcleral venous pressure. The post-operative changes in IOP and SOV-BFV show differences regarding the clinical features of disease.
Angioni, Alberto; Barra, Andrea; Arlorio, Marco; Coisson, Jean Daniel; Russo, Maria T; Pirisi, Filippo M; Satta, Maurizio; Cabras, Paolo
2003-02-12
The chemical composition of the essential oil of the Sardinian dwarf curry plant [Helichrysum italicum G. Don ssp. microphyllum (Willd) Nym] was studied. Genetic analysis suggested the presence of two chemotypes; morphological and chemical differences confirmed the presence of two chemotypes (A and B). The maximum yields were 0.18 and 0.04% (v/w) for flowering tops and stems, respectively. The concentrations of nerol and its esters (acetate and propionate), limonene, and linalool reach their highest values during the flowering stage both in flowers and in stems. Besides the essential oil, type B showed an interesting antifungal activity.
Cost Estimates Of Concentrated Photovoltaic Heat Sink Production
2016-06-01
steady year-round sunshine and in many cases high levels of direct normal irradiance (DNI). Beyond traditional PV , some climates favor rooftop solar ...water heating, but the majority of installed solar systems, are PV (EIA, 2015). Solar power generation has great benefits for the DON considering the...systems concentrate and focus sunlight onto a smaller focal point in order to take advantage of the highly efficient solar cells. Generally, PV
Title II, Part A: Don't Scrap It, Don't Dilute It, Fix It
ERIC Educational Resources Information Center
Coggshall, Jane G.
2015-01-01
The Issue: Washington is taking a close look at Title II, Part A (Title IIA) of the Elementary and Secondary Education Act (ESEA) as Congress debates reauthorization. The program sends roughly $2.5 billion a year to all states and nearly all districts to "(1) increase student academic achievement through strategies such as improving teacher…
Digital Competence Assessment: A Proposal for Operationalizing the Critical Dimension
ERIC Educational Resources Information Center
Cortoni, Ida; LoPresti, Veronica; Cervelli, Pierluigi
2015-01-01
The European Commission considers the development of digital competences a strategic action to spread and to develop a more active digital participation of citizens. The objective is to increase the level of digital competence in the European citizens up to 2015 and to reduce the number of those who don't use new technologies and don't surf the…
Microbial biotransformation of DON: molecular basis for reduced toxicity
Pierron, Alix; Mimoun, Sabria; Murate, Leticia S.; Loiseau, Nicolas; Lippi, Yannick; Bracarense, Ana-Paula F. L.; Schatzmayr, Gerd; He, Jian Wei; Zhou, Ting; Moll, Wulf-Dieter; Oswald, Isabelle P.
2016-01-01
Bacteria are able to de-epoxidize or epimerize deoxynivalenol (DON), a mycotoxin, to deepoxy-deoxynivalenol (deepoxy-DON or DOM-1) or 3-epi-deoxynivalenol (3-epi-DON), respectively. Using different approaches, the intestinal toxicity of 3 molecules was compared and the molecular basis for the reduced toxicity investigated. In human intestinal epithelial cells, deepoxy-DON and 3-epi-DON were not cytotoxic, did not change the oxygen consumption or impair the barrier function. In intestinal explants, exposure for 4 hours to 10 μM DON induced intestinal lesions not seen in explants treated with deepoxy-DON and 3-epi-DON. A pan-genomic transcriptomic analysis was performed on intestinal explants. 747 probes, representing 323 genes, were differentially expressed, between DON-treated and control explants. By contrast, no differentially expressed genes were observed between control, deepoxy-DON and 3-epi-DON treated explants. Both DON and its biotransformation products were able to fit into the pockets of the A-site of the ribosome peptidyl transferase center. DON forms three hydrogen bonds with the A site and activates MAPKinases (mitogen-activated protein kinases). By contrast deepoxy-DON and 3-epi-DON only form two hydrogen bonds and do not activate MAPKinases. Our data demonstrate that bacterial de-epoxidation or epimerization of DON altered their interaction with the ribosome, leading to an absence of MAPKinase activation and a reduced toxicity. PMID:27381510
Microbial biotransformation of DON: molecular basis for reduced toxicity
NASA Astrophysics Data System (ADS)
Pierron, Alix; Mimoun, Sabria; Murate, Leticia S.; Loiseau, Nicolas; Lippi, Yannick; Bracarense, Ana-Paula F. L.; Schatzmayr, Gerd; He, Jian Wei; Zhou, Ting; Moll, Wulf-Dieter; Oswald, Isabelle P.
2016-07-01
Bacteria are able to de-epoxidize or epimerize deoxynivalenol (DON), a mycotoxin, to deepoxy-deoxynivalenol (deepoxy-DON or DOM-1) or 3-epi-deoxynivalenol (3-epi-DON), respectively. Using different approaches, the intestinal toxicity of 3 molecules was compared and the molecular basis for the reduced toxicity investigated. In human intestinal epithelial cells, deepoxy-DON and 3-epi-DON were not cytotoxic, did not change the oxygen consumption or impair the barrier function. In intestinal explants, exposure for 4 hours to 10 μM DON induced intestinal lesions not seen in explants treated with deepoxy-DON and 3-epi-DON. A pan-genomic transcriptomic analysis was performed on intestinal explants. 747 probes, representing 323 genes, were differentially expressed, between DON-treated and control explants. By contrast, no differentially expressed genes were observed between control, deepoxy-DON and 3-epi-DON treated explants. Both DON and its biotransformation products were able to fit into the pockets of the A-site of the ribosome peptidyl transferase center. DON forms three hydrogen bonds with the A site and activates MAPKinases (mitogen-activated protein kinases). By contrast deepoxy-DON and 3-epi-DON only form two hydrogen bonds and do not activate MAPKinases. Our data demonstrate that bacterial de-epoxidation or epimerization of DON altered their interaction with the ribosome, leading to an absence of MAPKinase activation and a reduced toxicity.
ERIC Educational Resources Information Center
Morton, N.
1991-01-01
Various modes of reflection are classified and practical examples of devices, such as cat's eyes, are discussed. Typical light rays are traced through several systems, providing exercises with varying degrees of difficulty. Corner-cube retroreflectors, glass spheres, reflecting luminaries, light concentrators, parabolic reflectors, and off-set and…
ORGANIC WASTE CONTAMINATION INDICATORS IN SMALL GEORGIA PIEDMONT STREAMS
We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 kilometers) of the South Fork Broad River waters...
Mycotoxins in commercial dry pet food in China.
Shao, Manyu; Li, Li; Gu, Zuli; Yao, Ming; Xu, Danning; Fan, Wentao; Yan, Liping; Song, Suquan
2018-05-10
The aim of this study was to investigate the occurrence of the most common mycotoxins in commercial dry dog food using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Aflatoxin B1 (AFB1), aflatoxin G1 (AFG1), zearalenone (ZEN), deoxynivalenol (DON), T-2, beauvericin (BEA), citrinin (CIT), ochratoxin A (OTA), fumonisin B1 (FB1) were included in this study. The results showed that all these analytes could be found in the samples. Furthermore, only one sample was found free of mycotoxins contamination. All other samples (96.9%) were contaminated by at least three different types of mycotoxins. Among these mycotoxins, DON, ZEN, AFB1, FB1, CIT and BEA exhibited relatively high incidence, with occurrence rates of 78.1%, 62.5%, 87.5%, 93.8%, 68.8 and 96.9%. Furthermore, it is worth noting that AFB1 concentration in all AFB1 positive samples exceeded the maximum limits set by the EU, with concentrations ranging from 30.3 µg/kg to 242.7 µg/kg.
Zhou, Hongyuan; George, Saji; Hay, Crystal; Lee, Joel; Qian, He; Sun, Xiulan
2017-05-01
To understand the combinatorial toxicity of mycotoxins, we measured the effects of individual, binary and tertiary combinations of Aflatoxin B 1 (AFB 1 ), Deoxynivalenol (DON) and Zearalenone (ZEN) on the cell viability and cellular perturbations of HepG2 and RAW 264.7 cells. The nature of mycotoxins interactions was assessed using mathematical modeling (Chou-Talalay). Mechanisms of cytotoxicity were studied using high content screening (HCS) that probed cytotoxicity responses, such as changes in intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), intracellular calcium ([Ca 2+ ] i ) flux, and cell membrane damage. Our results showed that individual cytotoxicity of mycotoxins in a decreasing order was DON>AFB 1 >ZEN. Varying combinations of mycotoxins at differing concentrations showed different types of interactions. Most of the mixtures showed increasing toxic effects-synergism and/or addition while antagonistic effects were observed with combination of AFB 1 +ZEN. Generally, combination of mycotoxins showed significantly increased intracellular ROS production and [Ca 2+ ] i flux, and decreased MMP in both cell lines, showing that the synergistic and additive effects of mycotoxin combination originate from perturbations of multiple cellular functions. Additionally, this study demonstrated the applicability of HCS for gaining mechanistic understanding on the toxicity of individual as well as combinatorial mycotoxins, and also provided scientific bases for formulating regulatory policies. Copyright © 2017. Published by Elsevier Ltd.
Evaluation of genetic toxicity of 6-diazo-5-oxo-l-norleucine (DON).
Kulkarni, Rohan M; Dakoulas, Emily W; Miller, Ken E; Terse, Pramod S
2017-09-01
DON (6-diazo-5-oxo-l-norleucine), a glutamine antagonist, was demonstrated to exhibit analgesic, antibacterial, antiviral and anticancer properties. The study was performed to characterize its in vitro and in vivo genetic toxicity potential. DON was tested in the bacterial reverse mutation assay (Ames test) using Salmonella typhimurium tester strains (TA98, TA100, TA1535 and TA1537) and Escherichia coli tester strain (WP2 uvrA) with and without S9 and also with reductive S9. In addition, DON was tested for the chromosome aberrations in Chinese hamster ovary (CHO) cells with or without S9 to evaluate the clastogenic potential. Furthermore, DON was also evaluated for its in vivo clastogenic activity by detecting micronuclei in polychromatic erythrocyte (PCE) cells in bone marrow collected from the male mice dosed intravenously with 500, 100, 10, 1 and 0.1 mg/kg at 24 and 48-h post-dose. The Ames mutagenicity assay showed no positive mutagenic responses. However, the in vitro chromosome aberration assay demonstrated dose dependent statistically positive increase in structural aberrations at 4 and 20-h exposure without S9 and also at 4-h exposure with S9. The in vivo micronucleus assay also revealed a statistically positive response for micronucleus formation at 500, 100 and 10 mg/kg at 24 and 48-h post-dose. Thus, DON appears to be negative in the Ames test but positive in the in vitro chromosome aberration assay and in the in vivo micronucleus assay. In conclusion, the results indicate DON is a genotoxic compound with a plausible epigenetic mechanism.
NASA Astrophysics Data System (ADS)
Powley, Helen R.; Krom, Michael D.; Van Cappellen, Philippe
2018-03-01
Human activities have significantly modified the inputs of land-derived phosphorus (P) and nitrogen (N) to the Mediterranean Sea (MS). Here, we reconstruct the external inputs of reactive P and N to the Western Mediterranean Sea (WMS) and Eastern Mediterranean Sea (EMS) over the period 1950-2030. We estimate that during this period the land derived P and N loads increased by factors of 3 and 2 to the WMS and EMS, respectively, with reactive P inputs peaking in the 1980s but reactive N inputs increasing continuously from 1950 to 2030. The temporal variations in reactive P and N inputs are imposed in a coupled P and N mass balance model of the MS to simulate the accompanying changes in water column nutrient distributions and primary production with time. The key question we address is whether these changes are large enough to be distinguishable from variations caused by confounding factors, specifically the relatively large inter-annual variability in thermohaline circulation (THC) of the MS. Our analysis indicates that for the intermediate and deep water masses of the MS the magnitudes of changes in reactive P concentrations due to changes in anthropogenic inputs are relatively small and likely difficult to diagnose because of the noise created by the natural circulation variability. Anthropogenic N enrichment should be more readily detectable in time series concentration data for dissolved organic N (DON) after the 1970s, and for nitrate (NO3) after the 1990s. The DON concentrations in the EMS are predicted to exhibit the largest anthropogenic enrichment signature. Temporal variations in annual primary production over the 1950-2030 period are dominated by variations in deep-water formation rates, followed by changes in riverine P inputs for the WMS and atmospheric P deposition for the EMS. Overall, our analysis indicates that the detection of basin-wide anthropogenic nutrient concentration trends in the MS is rendered difficult due to: (1) the Atlantic Ocean contributing the largest reactive P and N inputs to the MS, hence diluting the anthropogenic nutrient signatures, (2) the anti-estuarine circulation removing at least 45% of the anthropogenic nutrients inputs added to both basins of the MS between 1950 and 2030, and (3) variations in intermediate and deep water formation rates that add high natural noise to the P and N concentration trajectories.
Pallarés, Noelia; Font, Guillermina; Mañes, Jordi; Ferrer, Emilia
2017-11-29
The aim of the present study was to develop a multimycotoxin liquid chromatography tandem mass spectrometry (LC-MS/MS) method with a dispersive liquid-liquid microextraction procedure (DLLME) for the analysis of AFs, 3aDON, 15aDON, NIV, HT-2, T-2, ZEA, OTA, ENNs, and BEA in tea beverages and to evaluate their mycotoxin contents. The proposed method was characterized in terms of linearity, limits of detection (LODs), limits of quantification (LOQs), recoveries, repeatability (intraday precision), reproducibility (interday precision), and matrix effects to check suitability. The results show LODs in the range of 0.05-10 μg/L, LOQs in the range of 0.2-33 μg/L, and recoveries in the range of 65-127% (RSD < 20%). The method developed in this study was applied to 44 commercial samples of black tea, red tea, green tea, and green mint tea. The results show that, of the analyzed mycotoxins, AFB2, AFG2, 15aDON, AFG1, and ENB were detected in the samples. AFB2 (14.4-32.2 μg/L) and 15aDON (60.5-61 μg/L) presented the highest levels. Green mint tea contained the highest concentration of mycotoxins. The risk assessment study shows that the population is not much exposed to mycotoxins through the consumption of tea beverages.
He, Quan; Huang, Shaohui; Wu, Yuehong; Zhang, Wenqi; Wang, Fanchao; Cao, Jiawei; Sheng, Qing; Liang, Zongsuo; Liu, Lili; Ou, Wen-Bin
2018-04-01
Xiebai is an edible Chinese herb with various health and therapeutic benefits. To evaluate its nutritional and health values, the free amino acids and derivatives of its two botanical origins (i.e., Allium chinense G. Don and Allium macrostemon Bunge) were isolated using a solvent extraction method and analyzed using automatic amino acid analysis and ultra-performance liquid chromatography-quadrupole-time of flight (UPLC-Q-TOF) mass spectrometry. Our data show that both plants contain abundant free amino acids, and the amount of total free amino acids in A. chinense G. Don is higher than that in A. macrostemon Bunge. The free amino acid compositions in the two plants are qualitatively similar, including nineteen proteinogenic and four non-proteinogenic amino acids. The identified proteinogenic amino acids include eight essential amino acids and five semi-essential amino acids. The sum of essential and semi-essential amino acids accounts for 64.9% and 69.7% of the total free amino acids of the two plants, respectively. The principal amino acids of both plants, from highest concentration to lowest concentration, are arginine, glutamine, glutamic acid, asparagine and serine. A. chinense G. Don is also rich in citrulline and lysine. In addition, two amino acid derivatives were identified from the two plants, i.e., the proline analog N‑methyl‑proline and the dipeptide H-Glu-Tyr-OH. For the first time, the presence of N‑methyl‑proline in the plants of the Allium genus and the presence of H-Glu-Tyr-OH in unprocessed food sources are reported. The influences of the identified substances on the flavor, nutrition and health values of Xiebai are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Regulation of IL-8 promoter activity by verrucarin A in human monocytic THP-1 cells.
Liu, Jun; Simmons, Steve O; Pei, Ruoting
2014-01-01
Macrocyclic trichothecenes have been frequently detected in fungi in water-damaged buildings and exhibited higher toxicity than the well-studied trichothecenes; however, the mechanism underlying their toxicity has been poorly understood. In this study, transcriptional regulation of the cytokine interleukin (IL)-8 by a macrocyclic trichothecene, verrucarin A (VA), in human monocytic THP-1 cells is reported. Consistent with previous findings, VA was 100-fold more cytotoxic than deoxynivalenol (DON), while ochratoxin A (OA) was not cytotoxic. In cells transduced with the wild-type IL-8 promoter luciferase construct, VA induced a biphasic dose response composed of an upregulation of luciferase expression at low concentrations of 0.01-1 ng/ml and a downregulation at high levels of 10 ng/ml and higher. In contrast, DON induced a sigmoid-shaped dose response with the EC50 of 11.6 ng/ml, while OA did not markedly affect the IL-8 expression. When cells were transduced with IL-8 promoter with a mutation of transcription factor nuclear factor-κB (NF-κB)-binding site, VA (1 ng/ml), DON (1000 ng/ml), and tumor necrosis factor (TNF) α (20 ng/ml)-induced luciferase expression were impaired. In addition, the NF-κB inhibitor caffeic acid phenethyl ester inhibited VA-, DON-, and TNFα-induced luciferase expression. Mutation of the CCAAT/enhancer-binding protein (CEBP) β binding site of the IL-8 promoter affected only DON-, but not VA- and TNFα-induced luciferase expression. Taken together, these results suggested that VA activated IL-8 promoter via an NF-κB-dependent, but not CEBPβ-dependent, pathway in human monocytes.
Qi, Xin; Jiang, Chang-sheng; Hao, Qing-ju; Li, Jian-lin
2015-10-01
In this paper, we take Jinyun Mountain where located in Beibei district of Chongqing as the research object and explore the effect of different ways of land use on soil active organic carbon, nitrogen components by collecting the soil samples from 0 to 60 cm depth in subtropical evergreen broad-leaved forest (hereinafter referred to as the forest), abandoned land, orchard, farmland and measuring the content of MBC, MBN, DOC and DON. The research results show that the contents of soil MBC, MBN, DOC, DON are reduced with the increase of soil depth in four types of land using soils. Variance analysis of the single factor shows that four kinds of land uses have no significant difference in the contents of MBC, MBN and DON, but the DOC content of the abandoned land is significantly higher than that of other three kinds. It shows that the different ways of land use have no obvious effects on soil MBC, MBN and DON but the abandonment of slope cropland can significantly increase the content of soil DOC. There is no significant difference among the distribution ratio of MBN, DOC, DON in forest, abandoned land, orchard and farmland within the soil from 0 to 60 cm, but the distribution ratio of slope MBC is significantly higher than that of other three kinds. It means farmland soil organic carbon has a higher biological activity, this could due to the application of green manure, farmland manure and other organic fertilizers. Under different land utilizations, DOC/DON is the highest, MBC/MBN is the second, and SOC/TN is the lowest. It means the biological solidification of dissolved organic matter is the strongest, and the mineralization of soil organic matter is the most obvious. Under the four kinds of land uses, there are the lowest ratios in SOC/TN, MBC/MBN and DOC/DON in the farmland. And all the ratios are less than 20, which suggest that the mineralization of farmland soil organic matter is stronger and it's easy to cause the loss of soil carbon.
Harvest regimen changes sericea lespedeza condensed tannin, fiber and protein concentrations
USDA-ARS?s Scientific Manuscript database
Sericea lespedeza [Lespedeza cuneata (Dumont de Courset) G. Don.; SL] is a perennial, warm-season legume that contains condensed tannins (CT) that could play crucial roles in ruminant ecosystems, among them gastro-intestinal nematode suppression, methane suppression, rumen protein bypass, as well as...
Mitochondrial functions of THP-1 monocytes following the exposure to selected natural compounds.
Schultze, Nadin; Wanka, Heike; Zwicker, Paula; Lindequist, Ulrike; Haertel, Beate
2017-02-15
The immune system is an important target of various xenobiotics, which may lead to severe adverse effects including immunosuppression or inappropriate immunostimulation. Mitochondrial toxicity is one possibility by which xenobiotics exert their toxic effects in cells or organs. In this study, we investigated the impact of three natural compounds, cyclosporine A (CsA), deoxynivalenol (DON) and cannabidiol (CBD) on mitochondrial functions in the THP-1 monocytic cell line. The cells were exposed for 24h to two different concentrations (IC 10 and IC 50 determined by MTT) of each compound. The cells showed concentration-dependent elevated intracellular reactive oxygen species (iROS) and induction of apoptosis (except DON) in response to the three test compounds. Mitochondrial functions were characterized by using bioenergetics profiling experiments. In THP-1 monocytes, the IC 50 of CsA decreased basal and maximal respiration as well as ATP production with an impact on spare capacity indicating a mitochondrial dysfunction. Similar reaction patterns were observed following CBD exposure. The basal respiration level and ATP-production decreased in the THP-1 cells exposed to the IC 50 of DON with no major impact on mitochondrial function. In conclusion, impaired mitochondrial function was accompanied by elevated iROS and apoptosis level in a monocytic cell line exposed to CsA and CBD. Mitochondrial dysfunction may be one explanation for the cytotoxicity of CBD and CsA also in other in immune cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Qichun; Tian, Hanqin; Friedrichs, Marjorie A. M.; Hopkinson, Charles S.; Lu, Chaoqun; Najjar, Raymond G.
2015-06-01
We used a process-based land model, Dynamic Land Ecosystem Model 2.0, to examine how climatic and anthropogenic changes affected riverine fluxes of ammonium (NH4+), nitrate (NO3-), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) from eastern North America, especially the drainage areas of the Gulf of Maine (GOM), Mid-Atlantic Bight (MAB), and South Atlantic Bight (SAB) during 1901-2008. Model simulations indicated that annual fluxes of NH4+, NO3-, DON, and PON from the study area during 1980-2008 were 0.019 ± 0.003 (mean ± 1 standard deviation) Tg N yr-1, 0.18 ± 0.035 Tg N yr-1, 0.10 ± 0.016 Tg N yr-1, and 0.043 ± 0.008 Tg N yr-1, respectively. NH4+, NO3-, and DON exports increased while PON export decreased from 1901 to 2008. Nitrogen export demonstrated substantial spatial variability across the study area. Increased NH4+ export mainly occurred around major cities in the MAB. NO3- export increased in most parts of the MAB but decreased in parts of the GOM. Enhanced DON export was mainly distributed in the GOM and the SAB. PON export increased in coastal areas of the SAB and northern parts of the GOM but decreased in the Piedmont areas and the eastern parts of the MAB. Climate was the primary reason for interannual variability in nitrogen export; fertilizer use and nitrogen deposition tended to enhance the export of all nitrogen species; livestock farming and sewage discharge were also responsible for the increases in NH4+ and NO3- fluxes; and land cover change (especially reforestation of former agricultural land) reduced the export of the four nitrogen species.
Breuer, Lutz; Hiery, Noreen; Kraft, Philipp; Bach, Martin; Aubert, Alice H.; Frede, Hans-Georg
2015-01-01
We organized a crowdsourcing experiment in the form of a snapshot sampling campaign to assess the spatial distribution of nitrogen solutes, namely, nitrate, ammonium and dissolved organic nitrogen (DON), in German surface waters. In particular, we investigated (i) whether crowdsourcing is a reasonable sampling method in hydrology and (ii) what the effects of population density, soil humus content and arable land were on actual nitrogen solute concentrations and surface water quality. The statistical analyses revealed a significant correlation between nitrate and arable land (0.46), as well as soil humus content (0.37) but a weak correlation with population density (0.12). DON correlations were weak but significant with humus content (0.14) and arable land (0.13). The mean contribution of DON to total dissolved nitrogen was 22%. Samples were classified as water quality class II or above, following the European Water Framework Directive for nitrate and ammonium (53% and 82%, respectively). Crowdsourcing turned out to be a useful method to assess the spatial distribution of stream solutes, as considerable amounts of samples were collected with comparatively little effort. PMID:26561200
NASA Astrophysics Data System (ADS)
Silver, Matthew; Schlögl, Johanna; Knöller, Kay; Schüth, Christoph
2017-04-01
The EU FP7 project MARSOL addresses water scarcity challenges in arid regions, where managed aquifer recharge (MAR) is an upcoming technology to recharge depleted aquifers using alternative water sources. However, a potential impact to water quality is increasing ammonium concentrations, which are known to be a problem resulting from bank filtration. In the context of MAR, increasing ammonium concentrations have received little attention so far. A soil column experiment was conducted to investigate transformations of nitrogen species when secondary treated wastewater (TWW) is infiltrated through a natural soil (organic matter content 5.6%) being considered for MAR. The TWW contains nitrate and dissolved organic nitrogen (DON), but typically very low (<0.2 mg/L) concentrations of nitrite and ammonium. In addition to the nitrate and DON in the inflow water, nitrogen in the soil organic matter is a third possible source for ammonium produced during infiltration. The experiment simulated MAR using a series of wetting-drying cycles. At the end of the wetting phases, pore water samples were collected from six depths. Results show that the largest decreases in nitrate concentration occur in the upper part of the soil, with on average 77% attenuated by 15 cm depth and 94% by 30 cm depth. Starting at 30 cm and continuing downward, ammonium concentrations increased, with concentrations reaching as high as 4 mg-N/L (the EU drinking water limit is 0.41 mg-N/L). Selected samples were also measured for stable nitrogen and oxygen isotopes. Nitrate became isotopically heavier (both N and O) with increasing depth (samples collected at 5 and 15 cm below the soil surface), with most results forming a linear trend for δ18O vs. δ15N. This pattern is consistent with denitrification, which is also supported by the fact that the ammonium concentration first increases at a depth below where most of the nitrate is consumed. However, the relationship between δ15N-NO3- and nitrate concentration is not clearly logarithmic, so processes other than denitrification are not ruled out for explaining the fate of nitrate. The δ15N of ammonium in the water samples and of nitrogen in the soil were also measured. With increasing depth and time, the δ15N-NH4+ (mean 4.3‰) decreases and approaches the δ15N of the pre-experimental soil of 2.4‰. This suggests that ammonium is formed at least in part from the soil organic matter, likely through a combination of leaching and microbial processes. Although most nitrate attenuates by 15 cm depth and very little ammonium is observed here, some nitrate (usually <0.5 mg-N/L) was observed at depths of 30 cm and below, especially early in the experiments. Starting at 30 cm depth, organic carbon concentrations and thereby also C:NO3-ratios become high (>10), which are conditions sometimes found to be favorable to dissimilatory nitrate reduction to ammonium. Rayleigh enrichment factors also suggest that nitrate may be the source of some of the ammonium. Measurements of additional samples and organic nitrogen isotopes are planned, in order to further evaluate the fate of nitrate and the source(s) of the ammonium.
De Zutter, N; Audenaert, K; Arroyo-Manzanares, N; De Boevre, M; Van Poucke, C; De Saeger, S; Haesaert, G; Smagghe, G
2016-12-08
Biotransformation of mycotoxins in animals comprises phase I and phase II metabolisation reactions. For the trichothecene deoxynivalenol (DON), several phase II biotransformation reactions have been described resulting in DON-glutathiones, DON-glucuronides and DON-sulfates made by glutathione-S-transferases, uridine-diphosphoglucuronyl transferases and sulfotransferases, respectively. These metabolites can be easily excreted and are less toxic than their free compounds. Here, we demonstrate for the first time in the animal kingdom the conversion of DON to DON-3-glucoside (DON-3G) via a model system with plant pathogenic aphids. This phase II biotransformation mechanism has only been reported in plants. As the DON-3G metabolite was less toxic for aphids than DON, this conversion is considered a detoxification reaction. Remarkably, English grain aphids (Sitobion avenae) which co-occur with the DON producer Fusarium graminearum on wheat during the development of fusarium symptoms, tolerate DON much better and convert DON to DON-3G more efficiently than pea aphids (Acyrthosiphon pisum), the latter being known to feed on legumes which are no host for F. graminearum. Using a non-targeted high resolution mass spectrometric approach, we detected DON-diglucosides in aphids probably as a result of sequential glucosylation reactions. Data are discussed in the light of an eventual co-evolutionary adaptation of S. avenae to DON.
De Zutter, N.; Audenaert, K.; Arroyo-Manzanares, N.; De Boevre, M.; Van Poucke, C.; De Saeger, S.; Haesaert, G.; Smagghe, G.
2016-01-01
Biotransformation of mycotoxins in animals comprises phase I and phase II metabolisation reactions. For the trichothecene deoxynivalenol (DON), several phase II biotransformation reactions have been described resulting in DON-glutathiones, DON-glucuronides and DON-sulfates made by glutathione-S-transferases, uridine-diphosphoglucuronyl transferases and sulfotransferases, respectively. These metabolites can be easily excreted and are less toxic than their free compounds. Here, we demonstrate for the first time in the animal kingdom the conversion of DON to DON-3-glucoside (DON-3G) via a model system with plant pathogenic aphids. This phase II biotransformation mechanism has only been reported in plants. As the DON-3G metabolite was less toxic for aphids than DON, this conversion is considered a detoxification reaction. Remarkably, English grain aphids (Sitobion avenae) which co-occur with the DON producer Fusarium graminearum on wheat during the development of fusarium symptoms, tolerate DON much better and convert DON to DON-3G more efficiently than pea aphids (Acyrthosiphon pisum), the latter being known to feed on legumes which are no host for F. graminearum. Using a non-targeted high resolution mass spectrometric approach, we detected DON-diglucosides in aphids probably as a result of sequential glucosylation reactions. Data are discussed in the light of an eventual co-evolutionary adaptation of S. avenae to DON. PMID:27929076
Terrestrial C sequestration at elevated CO2 and temperature: the role of dissolved organic N loss
Rastetter, Edward B.; Perakis, Steven S.; Shaver, Gaius R.; Agren, Goran I.
2005-01-01
We used a simple model of carbon–nitrogen (C–N) interactions in terrestrial ecosystems to examine the responses to elevated CO2 and to elevated CO2 plus warming in ecosystems that had the same total nitrogen loss but that differed in the ratio of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) loss. We postulate that DIN losses can be curtailed by higher N demand in response to elevated CO2, but that DON losses cannot. We also examined simulations in which DON losses were held constant, were proportional to the amount of soil organic matter, were proportional to the soil C:N ratio, or were proportional to the rate of decomposition. We found that the mode of N loss made little difference to the short‐term (<60 years) rate of carbon sequestration by the ecosystem, but high DON losses resulted in much lower carbon sequestration in the long term than did low DON losses. In the short term, C sequestration was fueled by an internal redistribution of N from soils to vegetation and by increases in the C:N ratio of soils and vegetation. This sequestration was about three times larger with elevated CO2 and warming than with elevated CO2 alone. After year 60, C sequestration was fueled by a net accumulation of N in the ecosystem, and the rate of sequestration was about the same with elevated CO2 and warming as with elevated CO2alone. With high DON losses, the ecosystem either sequestered C slowly after year 60 (when DON losses were constant or proportional to soil organic matter) or lost C (when DON losses were proportional to the soil C:N ratio or to decomposition). We conclude that changes in long‐term C sequestration depend not only on the magnitude of N losses, but also on the form of those losses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terzyan, Simon S.; Cook, Paul F.; Heroux, Annie
Intense efforts are underway to identify inhibitors of the enzyme gamma–glutamyl transpeptidase 1 (GGT1) which cleaves extracellular gamma–glutamyl compounds and contributes to the pathology of asthma, reperfusion injury and cancer. The glutamate analog, 6–diazo–5–oxo–norleucine (DON), inhibits GGT1. DON also inhibits many essential glutamine metabolizing enzymes rendering it too toxic for use in the clinic as a GGT1 inhibitor. We investigated the molecular mechanism of human GGT1 (hGGT1) inhibition by DON to determine possible strategies for increasing its specificity for hGGT1. DON is an irreversible inhibitor of hGGT1. The second order rate constant of inactivation was 0.052 m M –1 minmore » –1 and the K i was 2.7 ± 0.7 m M. The crystal structure of DON–inactivated hGGT1 contained a molecule of DON without the diazo–nitrogen atoms in the active site. The overall structure of the hGGT1–DON complex resembled the structure of the apo–enzyme; however, shifts were detected in the loop forming the oxyanion hole and elements of the main chain that form the entrance to the active site. The structure of hGGT1–DON complex revealed two covalent bonds between the enzyme and inhibitor which were part of a six membered ring. The ring included the OG atom of Thr381, the reactive nucleophile of hGGT1 and the α–amine of Thr381. As a result, the structure of DON–bound hGGT1 has led to the discovery of a new mechanism of inactivation by DON that differs from its inactivation of other glutamine metabolizing enzymes, and insight into the activation of the catalytic nucleophile that initiates the hGGT1 reaction.« less
Terzyan, Simon S.; Cook, Paul F.; Heroux, Annie; ...
2017-04-05
Intense efforts are underway to identify inhibitors of the enzyme gamma–glutamyl transpeptidase 1 (GGT1) which cleaves extracellular gamma–glutamyl compounds and contributes to the pathology of asthma, reperfusion injury and cancer. The glutamate analog, 6–diazo–5–oxo–norleucine (DON), inhibits GGT1. DON also inhibits many essential glutamine metabolizing enzymes rendering it too toxic for use in the clinic as a GGT1 inhibitor. We investigated the molecular mechanism of human GGT1 (hGGT1) inhibition by DON to determine possible strategies for increasing its specificity for hGGT1. DON is an irreversible inhibitor of hGGT1. The second order rate constant of inactivation was 0.052 m M –1 minmore » –1 and the K i was 2.7 ± 0.7 m M. The crystal structure of DON–inactivated hGGT1 contained a molecule of DON without the diazo–nitrogen atoms in the active site. The overall structure of the hGGT1–DON complex resembled the structure of the apo–enzyme; however, shifts were detected in the loop forming the oxyanion hole and elements of the main chain that form the entrance to the active site. The structure of hGGT1–DON complex revealed two covalent bonds between the enzyme and inhibitor which were part of a six membered ring. The ring included the OG atom of Thr381, the reactive nucleophile of hGGT1 and the α–amine of Thr381. As a result, the structure of DON–bound hGGT1 has led to the discovery of a new mechanism of inactivation by DON that differs from its inactivation of other glutamine metabolizing enzymes, and insight into the activation of the catalytic nucleophile that initiates the hGGT1 reaction.« less
Titov, V N; Shoibonov, B B
2016-03-01
From aposition of phylogenetic theory of general pathology, obesity and metabolic syndrome are pathology of fatty cells. However, the first is a pathology of phylogenetically early visceral fatty cells of omentum. They supply with substratum of energy realization of biologic function of trophology, homeostasis, endoecology and adaptation. The visceral fatty cells of omentum have no receptors to insulin and synthesize adaptively insulin and they are not characterized by biologic reaction of proliferation. The obesity is a pathology of late in phylogenesis subcutaneous adpocytes. They are insulin-dependent and supply with substratum of energy realization of one biologic function of locomotion--movement at the expense of constriction of cross-striated miocytes. The adipocytes in terms of adaptation synthesize humoral mediator adponectin and actively implement biologic function of proliferation. Under both aphysiologic conditions increases passive by gradient of concentration, absorption by cells albumin-unbound free fatty acids in unionized form in micellae's composition. The passive aphysiologic absorption of free fatty acids by cells which under intracellular compartmentalization don't oxidize mitochondria results in synthesis, accumulation of triglycerides in cytoplasm of cells which don't implement it physiologically. The aphysiologic absorption of free fatty acids by cells, their etherification in triglyceride, in particular, in phylogenetically late β-cells of islets and either late cardiomyocytes which fatty acids don't synthesize de novo results in development of aphysiologic processes and disorder of function. From position of biology, these cells in vivo are subjected to loss similar to apoptosis. The formation of corpuscles of apoptosis compromise biologic function of endoecology activating biologic reaction of inflammation.
Soluble organic nutrient fluxes
Robert G. Qualls; Bruce L. Haines; Wayne Swank
2014-01-01
Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...
BIOGEOCHEMICAL INDICATORS OF ORGANIC WASTE CONTAMINATION IN SMALL STREAMS OF THE GEORGIA PIEDMONT
We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 km2) of the South Fork Broad River, Georgia wate...
BIOGEOCHEMICAL INDICATORS OF ORGANIC WASTE CONTAMINATION IN GEORGIA PIEDMONT STREAMS
We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 km2) of the South Fork Broad River, Georgia wate...
R.W. Tinus; K.E. Burr; N. Atzmon; J. Riov
2000-01-01
Greenhouse-cultured, container-grown seedlings of Aleppo pine (Pinus halepensis Mill.), radiata pine (Pinus radiata D. Don), and interior Douglas fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) were cold acclimated and deacclimated in growth chambers over 24 weeks....
Sources of reactive nitrogen in marine aerosol over the Northwest Pacific Ocean in spring
NASA Astrophysics Data System (ADS)
Luo, Li; Kao, Shuh-Ji; Bao, Hongyan; Xiao, Huayun; Xiao, Hongwei; Yao, Xiaohong; Gao, Huiwang; Li, Jiawei; Lu, Yangyang
2018-05-01
Atmospheric deposition of long-range transport of anthropogenic reactive nitrogen (Nr, mainly comprised of NHx, NOy and water-soluble organic nitrogen, WSON) from continents may have profound impact on marine biogeochemistry. In addition, surface ocean dissolved organic nitrogen (DON) may also contribute to aerosol WSON in the overlying atmosphere. Despite the importance of off-continent dispersion and Nr interactions at the atmosphere-ocean boundary, our knowledge of the sources of various nitrogen species in the atmosphere over the open ocean remains limited due to insufficient observations. We conducted two cruises in the spring of 2014 and 2015 from the coast of China through the East China seas (ECSs, i.e. the Yellow Sea and East China Sea) to the open ocean (i.e. the Northwest Pacific Ocean, NWPO). Concentrations of water-soluble total nitrogen (WSTN), NO3- and NH4+, as well as the δ15N of WSTN and NO3- in marine aerosol, were measured during both cruises. In the spring of 2015, we also analysed the concentrations and δ15N of NO3- and the DON of surface seawater (SSW; at a depth of 5 m) along the cruise track. Aerosol NO3-, NH4+ and WSON decreased logarithmically (1-2 orders of magnitude) with distance from the shore, reflecting strong anthropogenic emission sources of NO3-, NH4+ and WSON in China. Average aerosol NO3- and NH4+ concentrations were significantly higher in 2014 (even in the remote NWOP) than in 2015 due to the stronger wind field in 2014, underscoring the role of the Asian winter monsoon in the seaward transport of anthropogenic NO3- and NH4+. However, the background aerosol WSON over the NWPO in 2015 (13.3 ± 8.5 nmol m-3) was similar to that in 2014 (12.2 ± 6.3 nmol m-3), suggesting an additional non-anthropogenic WSON source in the open ocean. Obviously, marine DON emissions should be considered in model and field assessments of net atmospheric WSON deposition in the open ocean. This study contributes information on parallel isotopic marine DON composition and aerosol Nr datasets, but more research is required to explore complex Nr sources and deposition processes in order to advance our understanding of anthropogenic influences on the marine nitrogen cycle and nitrogen exchange at land-ocean and atmosphere-ocean interfaces.
Pestka, James J.
2013-01-01
Although the acute toxic effects of trichothecene mycotoxin deoxynivalenol (DON or vomitoxin), a known cause of human food poisoning, have been well characterized in several animal species, much less is known about closely related 8-ketotrichothecenes that similarly occur in cereal grains colonized by toxigenic fusaria. To address this, we compared potencies of DON, 15-acetyldeoxynivalenol (15-ADON), 3-acetyldeoxynivalenol (3-ADON), fusarenon X (FX), and nivalenol (NIV) in the mink emesis model following intraperitoneal (ip) and oral administration. All five congeners dose-dependently induced emesis by both administration methods. With increasing doses, there were marked decreases in latency to emesis with corresponding increases in emesis duration and number of emetic events. The effective doses resulting in emetic events in 50% of the animals for ip exposure to DON, 15-ADON, 3-ADON, FX, and NIV were 80, 170, 180, 70, and 60 µg/kg bw, respectively, and for oral exposure, they were 30, 40, 290, 30, and 250 µg/kg bw, respectively. The emetic potency of DON determined here was comparable to that reported in analogous studies conducted in pigs and dogs, suggesting that the mink is a suitable small animal model for investigating acute trichothecene toxicity. The use of a mouse pica model, based on the consumption of kaolin, was also evaluated as a possible surrogate for studying emesis but was found unsuitable. From a public health perspective, comparative emetic potency data derived from small animal models such as the mink should be useful for establishing toxic equivalency factors for DON and other trichothecenes. PMID:22997060
Identifying Rare FHB-Resistant Segregants in Intransigent Backcross and F2 Winter Wheat Populations.
Clark, Anthony J; Sarti-Dvorjak, Daniela; Brown-Guedira, Gina; Dong, Yanhong; Baik, Byung-Kee; Van Sanford, David A
2016-01-01
Fusarium head blight (FHB), caused mainly by Fusarium graminearum Schwabe [telomorph: Gibberella zeae Schwein.(Petch)] in the US, is one of the most destructive diseases of wheat (Triticum aestivum L. and T. durum L.). Infected grain is usually contaminated with deoxynivalenol (DON), a serious mycotoxin. The challenge in FHB resistance breeding is combining resistance with superior agronomic and quality characteristics. Exotic QTL are widely used to improve FHB resistance. Success depends on the genetic background into which the QTL are introgressed, whether through backcrossing or forward crossing; QTL expression is impossible to predict. In this study four high-yielding soft red winter wheat breeding lines with little or no scab resistance were each crossed to a donor parent (VA01W-476) with resistance alleles at two QTL: Fhb1 (chromosome 3BS) and QFhs.nau-2DL (chromosome 2DL) to generate backcross and F2 progeny. F2 individuals were genotyped and assigned to 4 groups according to presence/ absence of resistance alleles at one or both QTL. The effectiveness of these QTL in reducing FHB rating, incidence, index, severity, Fusarium-damaged kernels (FDK) and DON, in F2-derived lines was assessed over 2 years. Fhb1 showed an average reduction in DON of 17.5%, and conferred significant resistance in 3 of 4 populations. QFhs.nau-2DL reduced DON 6.7% on average and conferred significant resistance in 2 of 4 populations. The combination of Fhb1 and QFhs.nau-2DL resistance reduced DON 25.5% across all populations. Double resistant lines had significantly reduced DON compared to double susceptible lines in 3 populations. Backcross derived progeny were planted in replicated yield trials (2011 and 2012) and in a scab nursery in 2012. Several top yielding lines performed well in the scab nursery, with acceptable DON concentrations, even though the average effect of either QTL in this population was not significant. Population selection is often viewed as an "all or nothing" process: if the average resistance level is insufficient, the population is discarded. These results indicate that it may be possible to find rare segregants which combine scab resistance, superior agronomic performance and acceptable quality even in populations in which the average effect of the QTL is muted or negligible.
Antonissen, Gunther; Devreese, Mathias; Van Immerseel, Filip; De Baere, Siegrid; Hessenberger, Sabine; Martel, An; Croubels, Siska
2015-01-01
Both deoxynivalenol (DON) and fumonisin B1 (FB1) are common contaminants of feed. Fumonisins (FBs) in general have a very limited oral bioavailability in healthy animals. Previous studies have demonstrated that chronic exposure to DON impairs the intestinal barrier function and integrity, by affecting the intestinal surface area and function of the tight junctions. This might influence the oral bioavailability of FB1, and possibly lead to altered toxicity of this mycotoxin. A toxicokinetic study was performed with two groups of 6 broiler chickens, which were all administered an oral bolus of 2.5 mg FBs/kg BW after three-week exposure to either uncontaminated feed (group 1) or feed contaminated with 3.12 mg DON/kg feed (group 2). No significant differences in toxicokinetic parameters of FB1 could be demonstrated between the groups. Also, no increased or decreased body exposure to FB1 was observed, since the relative oral bioavailability of FB1 after chronic DON exposure was 92.2%. PMID:25690690
ERIC Educational Resources Information Center
Hynes, Michelle
2014-01-01
"Don't Call Them Dropouts" adds to the large and growing body of research about why some young people fail to complete high school on the traditional four-year timeline. While a high school diploma is only a starting line for adult success, it has become increasingly clear that it is crucial for taking the next steps in college and…
In vivo toxicity assessment of deoxynivalenol-contaminated wheat after ozone degradation.
Wang, Li; Wang, Ying; Shao, Huili; Luo, Xiaohu; Wang, Ren; Li, Yongfu; Li, Yanan; Luo, Yingpeng; Zhang, Dongjie; Chen, Zhengxing
2017-01-01
The effect of ozone on deoxynivalenol (DON) detoxification was investigated. Ozone treatment could significantly reduce the levels of DON in wheat; 53% of DON in wheat was decomposed with 90 mg l -1 of ozone at a flow rate of 15 l min -1 for 4 h. The safety of DON-contaminated wheats (DCWs) untreated/treated by ozone was also evaluated. Institute of Cancer Research (ICR) mice were divided into a standard diet group and five experimental diet groups for a 51-day orally administration experiment. In the experiment, no remarkable changes in the general appearance of the mice were observed, and all the mice survived until the scheduled necropsy. The results of sub-chronic toxicity indicated that mice fed on DCWs alone had significantly decreased in body weight gain, thymus and spleen weights, ratios of liver, thymus and spleen to body weight, blood indices (red blood cell, haemoglobin, white blood cell), and pro-inflammatory cytokines (interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α)), while showing a significant increase in alanine aminotransferase, aspartate aminotransferase, blood creatinine and blood urea nitrogen levels. Histopathological examination indicate that DON elicited some degree of toxicity on the liver, kidney and thymus tissue. Mice fed on DCWs treated by ozone mitigated the adverse effects compared with mice fed on DCWs. All the results suggested that the deleterious effects of DON could be highly reduced by ozone, and ozone itself shows minor toxic effects on animals in this process.
Szabó-Fodor, Judit; Fébel, Hedvig; Mézes, Miklós; Balogh, Krisztián; Bázár, György; Kocsó, Dániel; Kovács, Melinda
2017-01-01
(1) Background and (2) Methods: A 14-day in vivo, multitoxic (pure mycotoxins) rat experiment was conducted with zearalenone (ZEA; 15 μg/animal/day), deoxynivalenol (DON; 30 μg/animal/day) and fumonisin B1 (FB1; 150 μg/animal/day), as individual mycotoxins, binary (FD, FZ and DZ) and ternary combinations (FDZ), via gavage in 1 mL water boluses. (3) Results: Body weight was unaffected, while liver (ZEA↑ vs. DON) and kidney weight (ZEA↑ vs. FDZ) increased. Hepatocellular membrane lipid fatty acids (FAs) referred to ceramide synthesis disturbance (C20:0, C22:0), and decreased unsaturation (C22:5 n3 and unsat. index), mainly induced by DON and to a lesser extent by ZEA. The DON-FB1 interaction was additive on C20:0 in liver lipids. In renal phospholipids, ZEA had the strongest effect on the FA profile, affecting the saturated (C18:0) and many n6 FAs; ZEA was in an antagonistic relationship with FB1 (C18:0) or DON (C18:2 n6, C20:1 n9). Hepatic oxidative stress was the most expressed in FD (reduced glutathione and glutathione peroxidase), while the nephrotoxic effect was further supported by lipid peroxidation (malondialdehyde) in the DON treatment. (4) Conclusions: In vivo study results refer to multiple mycotoxin interactions on membrane FAs, antioxidants and lipid peroxidation compounds, needing further testing. PMID:29271890
Olsen, Rachelle R.; Mary-Sinclair, Michelle N.; Yin, Zhirong; Freeman, Kevin W.
2015-01-01
Neuroblastomas (NBL) and Ewing’s sarcomas (EWS) together cause 18% of all pediatric cancer deaths. Though there is growing interest in targeting the dysregulated metabolism of cancer as a therapeutic strategy, this approach has not been fully examined in NBL and EWS. In this study, we first tested a panel of metabolic inhibitors and identified the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON) as the most potent chemotherapeutic across all NBL and EWS cell lines tested. Myc, a master regulator of metabolism, is commonly overexpressed in both of these pediatric malignancies and recent studies have established that Myc causes cancer cells to become “addicted” to glutamine. We found DON strongly inhibited tumor growth of multiple tumor lines in mouse xenograft models. In vitro, inhibition of caspases partially reversed the effects of DON in high Myc expressing cell lines, but not in low Myc expressing lines. We further showed that induction of apoptosis by DON in Myc-overexpressing cancers is via the pro-apoptotic factor Bax. To relieve inhibition of Bax, we tested DON in combination with the Bcl-2 family antagonist navitoclax (ABT-263). In vitro, this combination caused an increase in DON activity across the entire panel of cell lines tested, with synergistic effects in two of the N-Myc amplified neuroblastoma cell lines. Our study supports targeting glutamine metabolism to treat Myc overexpressing cancers, such as NBL and EWS, particularly in combination with Bcl-2 family antagonists. PMID:25615615
Don Young Don Young Professional IV-ESH Don.Young@nrel.gov | 303-384-7144 Don Young is an EHS Professional at the NWTC. He received his B.S. from Colorado State University in Biological Science before
Zhou, Liqiang; Wu, Longhua; Li, Zhu; Yang, Bingfan; Yin, Bin; Luo, Yongming; Christie, Peter
2015-01-01
A glasshouse pot experiment was conducted to study the effects of phytoextraction by Sedum plumbizincicola and application of rapeseed cake (RSC) on heavy metal accumulation by a subsequent rice (Oryza sativa L.) crop in a contaminated paddy soil collected from east China. After phytoextraction by S. plumbizincicola the soil and brown rice Cd concentrations effectively declined. After phytoextraction, RSC application reduced brown rice Cd concentrations in the subsequent rice crop to 0.23-0.28 mg kg(-1), almost down to the standard limit (0.2 mg kg(-1)). After phytoextraction and then application of RSC, the soil solution pH, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations increased during early stages of rice growth resulting directly and indirectly in lowering the bioavailability of the heavy metals. Thus the grain yield of the subsequent rice crop increased and the heavy metals in the brown rice declined significantly. In this contaminated acid soil, growing the hyperaccumulator S. plumbizincicola and rice in rotation together with RSC application may therefore be regarded as a viable strategy for safe grain production and bioremediation.
[Effects of simulated nitrogen deposition on organic matter leaching in forest soil].
Duan, Lei; ma, Xiao-Xiao; Yu, De-Xiang; Tan, Bing-Quan
2013-06-01
The impact of nitrogen deposition on the dynamics of carbon pool in forest soil was studied through a field experiment at Tieshanping, Chongqing in Southwest China. The changes of dissolved organic matter (DOM) concentration in soil water in different soil layers were monitored for five years after addition of ammonium nitrate (NH4NO3) or sodium nitrate (NaNO3) at the same dose as the current nitrogen deposition to the forest floor. The results indicated that the concentration and flux of dissolved organic carbon (DOC) were increased in the first two years and then decreased by fertilizing. Fertilizing also reduced the DOC/DON (dissolved organic nitrogen) ratio of soil water in the litter layer and the DOC concentration of soil water in the upper mineral layer, but had no significant effect on DOC flux in the lower soil layer. Although there was generally no effect of increasing nitrogen deposition on the forest carbon pool during the experimental period, the shift from C-rich to N-rich DOM might occur. In addition, the species of nitrogen deposition, i. e., NH4(+) and NO3(-), did not show difference in their effect on soil DOM with the same equivalence.
Reading in the Social Studies: What Not to Do
ERIC Educational Resources Information Center
Parsons, James; Tomas, Douglas
1978-01-01
Five points are: (1) don't assume students know how to use their textbooks; (2) don't ignore the problem or take only short term measures for improvement; (3) don't give undirected assignments; (4) don't force students to pronounce every word correctly; (5) don't send students to the dictionary for words they don't know. (Author/JK)
Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard
2015-01-01
Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives. PMID:26274975
Fusarium and Aspergillus mycotoxins contaminating wheat silage for dairy cattle feeding in Uruguay.
Del Palacio, Agustina; Bettucci, Lina; Pan, Dinorah
Wheat is one of the most important cultivated cereals in Uruguay for human consumption; however, when harvest yields are low, wheat is usually used in ensiling for animal feeding. Ensiling is a forage preservation method that allows for storage during extended periods of time while maintaining nutritional values comparable to fresh pastures. Silage is vulnerable to contamination by spoilage molds and mycotoxins because ensilage materials are excellent substrates for fungal growth. The aim of the study was to identify the mycobiota composition and occurrence of aflatoxins and DON from wheat silage. A total of 220 samples of wheat were collected from four farms in the southwest region of Uruguay were silage practices are developed. The main fungi isolated were Fusarium (43%) and Aspergillus (36%), with Fusarium graminearum sensu lato and Aspergillus section Flavi being the most prevalent species. Aflatoxin concentrations in silo bags ranged from 6.1 to 23.3μg/kg, whereas DON levels ranged between 3000μg/kg and 12,400μg/kg. When evaluating aflatoxigenic capacity, 27.5% of Aspergillus section Flavi strains produced AFB1, 5% AFB2, 10% AFG1 and 17.5% AFG2. All isolates of F. graminearum sensu lato produced DON and 15-AcDON. The results from this study contribute to the knowledge of mycobiota and mycotoxins present in wheat silage. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Lusk, Mary G; Toor, Gurpal S
2016-04-05
Dissolved organic nitrogen (DON) can be a significant part of the reactive N in aquatic ecosystems and can accelerate eutrophication and harmful algal blooms. A bioassay method was coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to determine the biodegradability and molecular composition of DON in the urban stormwater runoff and outflow water from an urban stormwater retention pond. The biodegradability of DON increased from 10% in the stormwater runoff to 40% in the pond outflow water and DON was less aromatic and had lower overall molecular weight in the pond outflow water than in the stormwater runoff. More than 1227 N-bearing organic formulas were identified with FT-ICR-MS in the stormwater runoff and pond outflow water, which were only 13% different in runoff and outflow water. These molecular formulas represented a wide range of biomolecules such as lipids, proteins, amino sugars, lignins, and tannins in DON from runoff and pond outflow water. This work implies that the urban infrastructure (i.e., stormwater retention ponds) has the potential to influence biogeochemical processes in downstream water bodies because retention ponds are often a junction between the natural and the built environment.
NASA Astrophysics Data System (ADS)
Khosh, M. S.; McClelland, J. W.
2014-12-01
Our understanding of the seasonal dynamics of fluvial dissolved organic matter (DOM) concentrations and fluxes in Arctic catchments has increased substantially during recent years, especially during the spring, which historically has been an under-sampled time period. While a number of studies have observed peaks in both DOM concentrations and fluxes during the spring snowmelt, our knowledge of the mechanisms that control these observations are still lacking. During the initial snowmelt period, frozen ground and the snow matrix act to constrain melt-water to the soil surface. We hypothesize that restriction of flow during this time facilitates leaching of DOM from senescent above ground vegetation and detritus contributing to the high DOM concentrations observed during the spring melt. This study focuses on the effect of freezing and drying on the leaching of dissolved organic carbon and nitrogen (DOC and DON) from above ground vascular plant material. Specifically, we examined the treatment effects of freezing, drying, and freeze-drying on three genera of common Alaskan Arctic vascular plants; Eriophorum (spp.), Carex (spp.), and Salix (spp.). Frozen and freeze-dried plant material released more DOC over the experimental 96 hour leaching period compared to plant material that was only dried. Qualitatively, these patterns were similar among the different plant types, while quantitatively Salix leached more DOC than either Eriophorum or Carex in all treatments. Similar patterns were also seen for DON between the different treatments and among the different plant types. Compositionally, DOM that was leached from frozen and freeze-dried material had higher C:N ratios than material that was only dried. Comparatively, DOM leached from Salix had much higher C:N ratios than either Eriophorum or Carex. During the first 24 hours of leaching, C:N ratios tended to increase followed by a subsequent leveling or decrease, suggesting that the composition of leached DOM varied during the 96 hour time period. Our findings suggest that the seasonal timing of freezing and drying conditions experienced by senesced plant material during the late summer, fall, and winter may impact DOM leaching dynamics on that same plant material the following spring during snowmelt.
ERIC Educational Resources Information Center
Rogers, Ruth Ann
2009-01-01
In 2002, the UK Government set the target of increasing participation in higher education to 50% of 18-30 year olds by 2010, with a particular focus on young people from "non-traditional backgrounds". In order to increase this participation, a range of initiatives have been introduced in an effort to encourage young people to enter…
Wu, Qinghua; Kuča, Kamil; Humpf, Hans-Ulrich; Klímová, Blanka; Cramer, Benedikt
2017-02-01
Deoxynivalenol (DON), the most commonly occurring trichothecene in nature, may affect animal and human health through causing diarrhea, vomiting, gastrointestinal inflammation, and immunomodulation. DON-3-glucoside (DON-3G) as a major plant metabolite of the mycotoxin is another "emerging" food safety issue in recent years. Humans may experience potential health risks by consuming DON-contaminated food products. Thus, it is crucial for human and animal health to study also the degradation of DON and DON-3G during thermal food processing. Baking, boiling, steaming, frying, and extrusion cooking are commonly used during thermal food processing and have promising effects on the reduction of mycotoxins in food. For DON, however, the observed effects of these methods, as reported in numerous studies, are ambiguous and do not present a clear picture with regard to reduction or transformation. This review summarized the influence of thermal processing on the stability of DON and the formation of degradation/conversion products. Besides this, also a release of DON and DON-3G from food matrix as well as the release of DON from DON-3G during processing is discussed. In addition, some conflicting findings as reported from the studies on thermal processing as well as cause-effect relationships of the different thermal procedures are explored. Finally, the potential toxic profiles of DON degradation products are discussed as well when data are available.
Kelly L. Balcarczyk; Jeremy B. Jones; Rudolf Jaffe; Nagamitsu Maie
2009-01-01
We examined the impact of permafrost on dissolved organic matter (DOM) composition in Caribou-Poker Creeks Research Watershed (CPCRW), a watershed underlain with discontinuous permafrost, in interior Alaska. The stream draining the high permafrost watershed had higher DOC and dissolved organic nitrogen (DON) concentrations, higher DOCDON and greater specific...
Dzhndoian, Z T
2012-01-01
The determination of serum myeloid-related protein MRP 8/14 (calprotectin) in Armenian patients with FMF before and after treatment with colchicine (including colchicine-resistant patients who don't respond to 2 mg of colchicine; t patients who don't respond to 1,5 mg of colchicine, and also responders to different dose of colchicine) and estimation of the response to antiinflammatory therapy. MRP 8/14 serum levels were measured in 80 FMF patients before and after treatment with colchicine and in healthy individuals (n = 11) and patients with rheumatoid arthritis RA (n=11) as a control group. Serum MRP 8/14 concentration was measured by ELISA (Enzyme Linked-Immuno-Sorbent-Assay) method using "Buhlmann" kit (Switzerland) in the laboratory with modern equipment. Serum MRP 8/14 concentrations were within a normal ranges in healthy individuals and elevated in patients with FMF and RA. MRP 8/14 serum levels in FMF patients were higher than in RA patients. Serum MRP 8/14 concentrations in FMF patients before colchicines therapy were higher than after treatment. The findings of our study indicate that myeloid-related protein MRP 8/14 is a very sensitive marker of the disease activity and response to antiinflammatory therapy in FMF.
Dong, Fei; Qiu, Jianbo; Xu, Jianhong; Yu, Mingzheng; Wang, Shufang; Sun, Yue; Zhang, Gufeng; Shi, Jianrong
2016-08-02
The present study was performed to identify prevailing Fusarium species and the environmental factors affecting their frequencies and the contamination of grain with major mycotoxins in Jiangsu province. The precipitation levels were 184.2mm, 156.4mm, and 245.8mm in the years 2013-2015, respectively, and the temperature fluctuated by an average of 10.6±7.2°C in 2013, 10.9±7.2°C in 2014, and 10.6±6.3°C in 2015. Co-occurrence of deoxynivalenol (DON), 3-acetyldeoxynivalenol (3ADON), and 15-acetyldeoxynivalenol (15ADON) were observed in wheat. The average concentrations of DON were 879.3±1127.8, 627.8±640.5, and 1628.6±2,168.0μg/kg in 2013-2015, respectively. The average concentrations of 3ADON were 43.5±59.0, 71.2±102.5, and 33.5±111.9μg/kg in 2013-2015, respectively. We found that the average concentration of DON in wheat was positively correlated with precipitation (r=0.998, p<0.01), and 3ADON was negatively correlated with precipitation (r=-0.887, p<0.05). However, there was no correlation between precipitation and 15ADON or nivalenol (NIV). The differences in temperature were not as significant as the differences in rainfall amount over a short time period. Therefore, there were no correlations between temperature and the concentrations of trichothecenes, excluding 3ADON (r=0.996, p<0.01). Our data indicated that Fusarium asiaticum is the primary pathogenic fungus prevalent in the Fusarium head blight disease nursery. The trichothecene chemotype composition differed between Fusarium graminearum sensu stricto (s. str.) and F. asiaticum isolates. The 3ADON chemotype was found only among strains of F. asiaticum. The NIV chemotype was not observed among strains of F. graminearum, while the 15ADON chemotype represented 100% of the F. graminearum strains collected. The results of this study indicated no correlations between environmental conditions and the species or genetic chemotype composition of pathogens in Jiangsu province in 2013-2015. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Dissolved organic nitrogen (DON) transport from animal agriculture to surface waters can lead to eutrophication and dissolved oxygen depletion. Biodegradable DON (BDON) is a portion of DON that is mineralized by bacteria while bioavailable DON (ABDON) is utilized by bacteria and/or algae. This stu...
Trinkoff, Alison M; Lerner, Nancy B; Storr, Carla L; Han, Kihye; Johantgen, Mary E; Gartrell, Kyungsook
2015-01-01
Leadership is a key consideration in improving nursing home care quality. Previous research found nursing homes with more credentialed leaders had lower rates of care deficiencies than nursing homes with less credentialed leaders. Evidence that nursing home administrator (NHA) and director of nursing (DON) education and certification is related to resident outcomes is limited. To examine associations of education and certification among NHAs and DONs with resident outcomes. Cross-sectional secondary data analysis. This study used National Nursing Home Survey data on leadership education and certification and Nursing Home Compare quality outcomes (e.g. pain, catheter use). 1142 nursing homes in the survey which represented 16628 nursing homes in the US. Leadership education and certification were assessed separately for NHAs and DONs. Nursing home resident outcomes were measured using facility-level nursing home quality indicator rates selected from the Minimum Data Set. Facility-level quality indicators were regressed onto leadership variables in models that also held constant facility size and ownership status. Nursing homes led by NHAs with both Master's degrees or higher and certification had significantly better outcomes for pain. Nursing homes led by DONs with Bachelor's degrees or higher plus certification also had significantly lower pain and catheter use. Whereas pressure ulcer rates were higher in facilities led by DONs with more education. Selected outcomes for nursing home residents might be improved by increasing the education and certification requirements for NHAs and DONs. Additional research is needed to clarify these relationships. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Brooks, P. D.; Harpold, A. A.; Gochis, D. J.; Ewers, B. E.; Reed, D. E.; Gutmann, E. D.
2013-12-01
Forested montane catchments are critical to the amount and quality of downstream water resources. In western North America more than 60 million people rely on mountain precipitation, and water managers face uncertain response to an unprecedented forest die-off from mountain pine beetle (MPB) infestation. Reduced snow interception and transpiration are expected to increase streamflow, while increased organic matter decay is expected to increase biogeochemical stream fluxes. Tree- to plot-scale observations have documented some of the expected changes, but there has been little significant change to streamflow or water quality at the larger scales relevant to water resources. A critical gap exists in our understanding of why tree-scale process changes have not led to the expected, large-scale increases in streamflow and biogeochemical fluxes. We address this knowledge gap with observations of water and biogeochemical fluxes at nested spatial scales including tree, hillslope, and catchments from 3 to 700 ha with more than 75% mortality. Catchment discharge showed reduced water yield consistent with co-located eddy covariance observations showing increased vapor losses following MPB. Stable water isotopes showed progressive kinetic fractionation (i.e. unsaturated transition layer above the evaporating surface) in snowpack, soil water and streams indicating greater abiotic evaporation from multiple water sources offsetting decreased interception and transpiration. In the 3rd to 5th years following MPB forest mortality, soil water DOC and DON were similar beneath killed and healthy trees, but concentrations were elevated 2-10 times in groundwater of MPB-impacted sites as compared to unimpacted. Stream water DOC and DON were about 3 times as large during snowmelt runoff in ephemeral zero-order channels of MPB-impacted sites compared to unimpacted. Processing in the headwater streams of MPB-impacted forests rapidly attenuated dissolved organic matter. From the MPB-impacted zero-order channel, DOC and DON were reduced by ~50 % within 5 km downstream in a 700-ha catchment with similar MPB forest mortality. Soil water NO3 up to 500 μeq l-1 during the snowmelt flush was attenuated by an order of magnitude in the riparian groundwater and was usually below detection limit in the adjacent zero-order channel. These observations demonstrate that water resources impacts of insect-induced forest mortality may be muted because 1) compensatory vapor loss can offset expected water yield increases and 2) processing of carbon and nitrogen along both hillslope flowpaths and within headwater streams can rapidly attenuate biogeochemical fluxes.
NASA Astrophysics Data System (ADS)
Asmala, E.; Autio, R.; Kaartokallio, H.; Pitkänen, L.; Stedmon, C. A.; Thomas, D. N.
2013-11-01
The microbial degradation of dissolved organic carbon and nitrogen (DOC, DON) was studied in three Finnish boreal estuaries with contrasting land use patterns (Kiiminkijoki - natural forest and peatland; Kyrönjoki - agricultural; Karjaanjoki - mixed/urban). Bioassays of 12-18 d long durations were used in 3 seasons at in situ temperatures. Besides the bulk parameters, a suite of dissolved organic matter (DOM) quality parameters were also investigated, including colored DOM (CDOM), fluorescent DOM and the molecular weight of DOM. Bioavailable DOC and DON pools varied significantly between the estuaries, from 7.9 to 10.6% and from 5.5 to 21.9%, respectively. DOM originating from the catchment dominated by natural forests and peatlands (Kiiminkijoki) had the lowest DOC and DON degradation rates, as well as the lowest proportions of biodegradable DOC and DON. A greater proportion of agricultural land in the catchment increased the bioavailability of DON, but not the bioavailability of DOC (Kyrönjoki). Additionally, DOM quality varied significantly between the estuaries, and DOM originating from the agricultural Kyrönjoki catchment sustained higher DOC and DON degradation rates and higher bacterial growth efficiency (BGE) compared to those of the natural forest and peat dominated Kiiminkijoki catchment. The quality of DOM, indicated by differences in CDOM, fluorescent DOM and molecular weight, varied between estuaries with differing land use and was concluded to be major driver of BGE of these systems and thereafter to the microbial CO2 fluxes from the estuaries. The differences in BGE resulted in a 5-fold difference in the calculated daily bacterial CO2 emissions between the study's estuaries due to bacterial activity, ranging from 40 kg C d-1 in the Karjaanjoki estuary to 200 kg C d-1 in the Kyrönjoki estuary. Lower DOC:DON ratios, smaller molecular weight and higher CDOM absorption spectral slope values of DOM resulted in higher proportion of the initial DOC and DON being transferred to microbial growth and therefore to the pelagic food web. The pristine, peatland and forest-dominated Kiiminkijoki catchment had the lowest BGE, and therefore proportionally highest CO2 fluxes.
U.S. Navy Officer Attitudes on the Repeal of Don’t Ask, Don’t Tell
2013-03-01
military units; a pre- test / post - test quasi experiment; survey analysis; relevant media analysis of articles related to the repeal and published within...and 2010. The surveys revealed an increasing acceptance of gays in the Navy. The present study, conducted post - repeal, utilized the same NPS survey...and enlisted personnel. Further, the post -repeal effects on readiness should be monitored, particularly for fairness and potential harassment. The
’Don’t Ask, Don’t Tell’: The Law and Military Policy on Same-Sex Behavior
2010-10-14
created a legal avenue via which homosexuals could announce their sexuality without being discharged. Shortly afterward, the Department of Defense...increase in statement cases. Discharges for homosexual acts and marriages has declined by 20% over the past three years [1994-1997]. Second, most of those...continuation of homosexual discharges while addressing legal concerns over the wording of the previous policy.39 The active duty force numbered approximately
Spacsuit donning and doffing in zero-g training for Don Peterson STS-6
NASA Technical Reports Server (NTRS)
1982-01-01
Spacsuit donning and doffing in zero-g training for Don Peterson of the STS-6 crew. The training is being held aboard the KC-135 to simulate weightlessness. He is being assisted to don the lower torso of the extravehicular mobility unit (EMU) by an ILC technician.
Podgorski, David C; McKenna, Amy M; Rodgers, Ryan P; Marshall, Alan G; Cooper, William T
2012-06-05
Dissolved organic nitrogen (DON) comprises a heterogeneous family of organic compounds that includes both well-known biomolecules such as urea or amino acids and more complex, less characterized compounds such as humic and fulvic acids. Typically, DON represents only a small fraction of the total dissolved organic carbon pool and therefore presents inherent problems for chemical analysis and characterization. Here, we demonstrate that DON may be selectively ionized by atmospheric pressure photionization (APPI) and characterized at the molecular level by Fourier transform ion cyclotron resonance mass spectrometry. Unlike electrospray ionization (ESI), APPI ionizes polar and nonpolar compounds, and ionization efficiency is not determined by polarity. APPI is tolerant to salts, due to the thermal treatment inherent to nebulization, and thus avoids salt-adduct formation that can complicate ESI mass spectra. Here, for dissolved organic matter from various aquatic environments, we selectively ionize DON species that are not efficiently ionized by other ionization techniques and demonstrate significant signal-to-noise increase for nitrogen species by use of APPI relative to ESI.
NASA Astrophysics Data System (ADS)
Wang, Yujue; Liu, Dongyan; Lee, Kenneth; Dong, Zhijun; Di, Baoping; Wang, Yueqi; Zhang, Jingjing
2017-11-01
Seasonal and spatial distributions of nutrients and chlorophyll-a (Chl-a), together with temperature, salinity and total suspended matter (TSM), were investigated in the Yellow River estuary (China) to examine the biogeochemical influence of the ;Water and Sediment Regulation Scheme (WSRS); that is used to manage outflows from the river. Four cruises in April, June (early phase of WSRS), July (late phase of WSRS) and September were conducted in 2013 (WSRS from 19th June to 12th July). The results showed that nutrient species could be divided into two major groups according to their seasonal and spatial distributions. One group included NO3-, dissolved organic nitrogen (DON) and Si(OH)4, primarily from freshwater discharge. NO3- and DON related to anthropogenic sources were also separated from Si(OH)4, which was related to weather. The other group included dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP), NO2-, and NH4+. Along with freshwater inputs, sediment absorption/desorption showed impacts on DIP and DOP concentration and distribution. Nitrification was a dominant factor controlling NO2- concentrations. NH4+ was influenced by both sediment absorption/desorption and nitrification. The WSRS not only shifted the seasonal patterns of nutrients in the estuary, with high concentrations moved from autumn to June and July, but also promoted the nutrient spread to the south central part of the Bohai Sea. Spatial distribution of Chlorophyll-a (Chl-a) was influenced by the WSRS, with high concentrations being found in the river mouth in June and September, flanking the river mouth in July, and in the south central part of the Bohai Sea in September. Although Chl-a concentrations increased in June and July, the seasonal patterns did not change. The highest concentrations were found in September. Nutrient loadings during the WSRS relieved DIP and Si(OH)4 limitation in the estuary and south central Bohai Sea, causing an excess of DIN and disrupting the balance of DIN/DIP in the estuary and Bohai Sea. High turbidity and freshwater flushing depressed the growth of phytoplankton during the WSRS. The growth of phytoplankton was nutrient limited in June (DIP) when the WSRS started and in September after DIP and Si(OH)4 had been consumed by phytoplankton.
Warth, Benedikt; Sulyok, Michael; Fruhmann, Philipp; Mikula, Hannes; Berthiller, Franz; Schuhmacher, Rainer; Hametner, Christian; Abia, Wilfred Angie; Adam, Gerhard; Fröhlich, Johannes; Krska, Rudolf
2012-07-15
Mycotoxins regularly occur in food worldwide and pose serious health risks to consumers. Since individuals can be exposed to a variety of these toxic secondary metabolites of fungi at the same time, there is a demand for proper analytical methods to assess human exposure by suitable biomarkers. This study reports on the development of a liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method for the quantitative measurement of 15 mycotoxins and key metabolites in human urine using polarity switching. Deoxynivalenol (DON), DON-3-O-glucuronide, DON-15-O-glucuronide (D15GlcA), de-epoxy DON, nivalenol (NIV), T-2 toxin, HT-2 toxin, zearalenone, zearalenone-14-O-glucuronide, α- and β-zearalenol, fumonisins B(1) and B(2) (FB(1), FB(2)), ochratoxin A (OTA) and aflatoxin M(1) (AFM(1)) were determined without the need for any cleanup using a rapid and simple dilute and shoot approach. Validation was performed in the range of 0.005-40 µg L(-1) depending on the analyte and expected urinary concentration levels. Apparent recoveries between 78 and 119% and interday precisions of 2-17% relative standard deviation (RSD) were achieved. The applicability of the method was demonstrated by the analysis of urine samples obtained from Cameroon. In naturally contaminated urine samples up to six biomarkers of exposure (AFM(1), DON, D15GlcA, NIV, FB(1), and OTA) were detected simultaneously. We conclude that the developed LC/MS/MS method is well suited to quantify multiple mycotoxin biomarkers in human urine down to the sub-ppb range within 18 min and without any prior cleanup. The co-occurrence of several mycotoxins in the investigated samples clearly emphasizes the great potential and importance of this method to assess exposure of humans and animals to naturally occurring mycotoxins. Copyright © 2012 John Wiley & Sons, Ltd.
Serum cation profile of broilers at various stages of exposure to deoxynivalenol.
Yunus, Agha Waqar; Böhm, Josef
2013-05-01
The present experiment was carried out to investigate if levels of serum cations in broilers are modulated differently at various stages of exposure to deoxynivalenol (DON). Male broiler chicks at 7 days of age were fed a basal diet (0.27 mg of DON; 0.01 mg of zearalenone/kg), or either a low DON diet (1.68 mg of DON; 0.15 mg of zearalenone/kg) or a high DON diet (12.21 mg of DON; 1.09 mg of zearalenone/kg) produced using extracts from Fusarium graminearum cultures. Blood samples from the birds were collected during weeks 2, 4, and 5 of exposure. The high DON diet resulted in lower serum calcium levels compared to the basal diet at all the 3 sampling stages, while the low DON diet resulted in lower serum calcium levels only during weeks 2 and 5. Serum potassium levels were reduced under both the DON diets during weeks 2 and 5, while no diet-associated changes were found for serum levels of magnesium, sodium, and zinc. Under the present experimental conditions, the serum levels of calcium were consistently modulated in the broilers exposed to the DON-contaminated diets. The modulation of serum levels of potassium was, however, dependent upon the stage of exposure to DON.
Assuming the mantle of leadership: issues and challenges for directors of nursing.
Fleming, Mary Louise; Kayser-Jones, Jeanie
2008-11-01
This ethnographic study investigated leadership from the perspective of directors of nursing (DONs) in proprietary nursing homes. Data from interviews and extensive participant observation with 10 DONs were analyzed using open coding and content analysis. The study drew on a priori concepts from transformational leadership theory to describe the role, DON approaches to leadership, and factors that facilitate or impede leadership in nursing homes. This article reports findings from a larger study related to conditions existing when participants entered the DON position. Antecedent conditions influenced organizational expectations of incoming DONs and shaped participants' leadership experiences. DONs filling long-standing vacancies had to reestablish the influence and authority of the role. Those replacing unsuccessful DONs confronted serious regulatory, care, and morale issues. In contrast, DONs with successful predecessors experienced organizational support and had confidence in their abilities to lead.
Sebestyen, Stephen D.; Boyer, Elizabeth W.; Shanley, James B.; Kendall, Carol; Doctor, Daniel H.; Aiken, George R.; Ohte, Nobuhito
2008-01-01
We explored catchment processes that control stream nutrient concentrations at an upland forest in northeastern Vermont, USA, where inputs of nitrogen via atmospheric deposition are among the highest in the nation and affect ecosystem functioning. We traced sources of water, nitrate, and dissolved organic matter (DOM) using stream water samples collected at high frequency during spring snowmelt. Hydrochemistry, isotopic tracers, and end‐member mixing analyses suggested the timing, sources, and source areas from which water and nutrients entered the stream. Although stream‐dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) both originated from leaching of soluble organic matter, flushing responses between these two DOM components varied because of dynamic shifts of hydrological flow paths and sources that supply the highest concentrations of DOC and DON. High concentrations of stream water nitrate originated from atmospheric sources as well as nitrified sources from catchment soils. We detected nitrification in surficial soils during late snowmelt which affected the nitrate supply that was available to be transported to streams. However, isotopic tracers showed that the majority of nitrate in upslope surficial soil waters after the onset of snowmelt originated from atmospheric sources. A fraction of the atmospheric nitrogen was directly delivered to the stream, and this finding highlights the importance of quick flow pathways during snowmelt events. These findings indicate that interactions among sources, transformations, and hydrologic transport processes must be deciphered to understand why concentrations vary over time and over space as well as to elucidate the direct effects of human activities on nutrient dynamics in upland forest streams.
Carbon Dioxide Exposure Resulting From Hood Protective Equipment Used in Joint Arthroplasty Surgery.
Patel, Suhani; Fine, Janelle M; Lim, Michael J; Copp, Steven N; Rosen, Adam S; West, John B; Prisk, G Kim
2017-08-01
To protect both the surgeon and patient during procedures, hooded protection shields are used during joint arthroplasty procedures. Headache, malaise, and dizziness, consistent with increased carbon dioxide (CO 2 ) exposure, have been anecdotally reported by surgeons using hoods. We hypothesized that increased CO 2 concentrations were causing reported symptoms. Six healthy subjects (4 men) donned hooded protection, fan at the highest setting. Arm cycle ergometry at workloads of 12 and 25 watts (W) simulated workloads encountered during arthroplasty. Inspired O 2 and CO 2 concentrations at the nares were continuously measured at rest, 12 W, and 25 W. At each activity level, the fan was deactivated and the times for CO 2 to reach 0.5% and 1.0% were measured. At rest, inspired CO 2 was 0.14% ± 0.04%. Exercise had significant effect on CO 2 compared with rest (0.26% ± 0.08% at 12 W, P = .04; 0.31% ± 0.05% at 25 W, P = .003). Inspired CO 2 concentration increased rapidly with fan deactivation, with the time for CO 2 to increase to 0.5% and 1.0% after fan deactivation being rapid but variable (0.5%, 12 ± 9 seconds; 1%, 26 ± 15 seconds). Time for CO 2 to return below 0.5% after fan reactivation was 20 ± 37 seconds. During simulated joint arthroplasty, CO 2 remained within Occupational Safety and Health Administration (OSHA) standards with the fan at the highest setting. With fan deactivation, CO 2 concentration rapidly exceeds OSHA standards. Copyright © 2017 Elsevier Inc. All rights reserved.
Sun, Jingyi; Khan, Eakalak; Simsek, Senay; Ohm, Jae-Bom; Simsek, Halis
2017-11-01
Dissolved organic nitrogen (DON) from animal wastes can contribute to pollution of surface waters. Bioavailable DON (ABDON) is a portion of DON utilized by algae with or without bacteria. This study determined DON and ABDON levels in animal wastewater collected from two different sources: an animal feedlot wastewater storage tank and a sheep wastewater storage lagoon. Inocula for the ABDON bioassays were comprised of individual species and several combinations involving two algae (Chlamydomonas reinhardtii and Chlorella vulgaris) and a mixed liquor suspended solids (MLSS) bacterial culture. The ratio of initial DON to initial total dissolved nitrogen was 18% in the feedlot wastewater samples and 70% in the lagoon wastewater samples. The results showed that between 1.6 and 4.5 mg-NL-1 DON (45-79% of initial DON) in the feedlot samples and between 3.4 and 7.5 mg-NL-1 DON (36%-79% of initial DON) in the lagoon samples were bioavailable with the inocula tested. These results suggest that when considering eutrophication potential of livestock wastewater, organic nitrogen should be included in addition to the obvious culprits, ammonia and nitrate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yuan, Xiao Chun; Lin, Wei Sheng; Pu, Xiao Ting; Yang, Zhi Rong; Zheng, Wei; Chen, Yue Min; Yang, Yu Sheng
2016-06-01
Using the negative pressure sampling method, the concentrations and spectral characte-ristics of dissolved organic matter (DOM) of soil solution were studied at 0-15, 15-30, 30-60 cm layers in Castanopsis carlesii forest (BF), human-assisted naturally regenerated C. carlesii forest (RF), C. carlesii plantation (CP) in evergreen broad-leaved forests in Sanming City, Fujian Pro-vince. The results showed that the overall trend of dissolved organic carbon (DOC) concentrations in soil solution was RF>CP>BF, and the concentration of dissolved organic nitrogen (DON) was highest in C. carlesii plantation. The concentrations of DOC and DON in surface soil (0-15 cm) were all significantly higher than in the subsurface (30-60 cm). The aromatic index (AI) was in the order of RF>CP>BF, and as a whole, the highest AI was observed in the surface soil. Higher fluorescence intensity and a short wave absorption peak (320 nm) were observed in C. carlesii plantation, suggesting the surface soil of C. carlesii plantation was rich in decomposed substance content, while the degree of humification was lower. A medium wave absorption peak (380 nm) was observed in human-assisted naturally regenerated C. carlesii forest, indicating the degree of humification was higher which would contribute to the storage of soil fertility. In addition, DOM characte-ristics in 30-60 cm soil solution were almost unaffected by forest regeneration patterns.
Frobose, H L; Fruge, E D; Tokach, M D; Hansen, E L; DeRouchey, J M; Dritz, S S; Goodband, R D; Nelssen, J L
2015-03-01
Four experiments were conducted to investigate the effects of deoxynivalenol (DON) from naturally contaminated dried distillers grains with solubles (DDGS) and the efficacy of feed additives in nursery pig diets. In Exp. 1, 180 pigs (10.3 ± 0.2 kg BW) were fed 1 of 5 diets for 21 d. Diets were 1) Positive Control (PC; < 0.5 mg/kg DON), 2) Negative Control (NC; 4 mg/kg DON), 3) NC + 0.10% Biofix (Biomin Inc., Herzogenburg, Austria), 4) NC + 0.15% Cel-can (VAST Inc., Mason City, IA) and 0.50% bentonite clay, and 5) NC + 0.25% Defusion Plus (Cargill Animal Nutrition, Minneapolis, MN). Pigs fed the NC diet had poorer ( < 0.01) ADG than those fed the PC. Pigs fed Defusion Plus had improved ( < 0.03) ADG over those fed NC, whereas pigs fed Biofix or Cel-can with bentonite clay had reduced ADG ( < 0.01) compared with those fed PC. In Exp. 2, 340 pigs (11.7 ± 0.1 kg BW) were fed 1 of 8 diets for 21 d. Diets were 1) PC (< 0.5 mg/kg DON), 2) Low NC (1.5 mg/kg DON), 3) Low NC + 0.15% Biofix, 4) Low NC + 0.30% Biofix, 5) High NC (3.0 mg/kg DON), 6) High NC + 0.30% Biofix, 7) High NC + 0.45% Biofix, and 8) Diet 7 with 5% added water. Increasing the DON level reduced (linear; < 0.05) ADG, ADFI, and pig BW, and Biofix did not improve performance. In Exp. 3, 1,008 pigs (12.5 ± 0.3 kg BW) were fed 6 treatments for 24 d. Diets were 1) PC ( < 0.5 mg/kg DON), 2) NC (3 mg/kg DON), 3) NC + 0.25% Defusion, 4) NC + 0.50% Defusion, 5) Diet 3 with supplemental nutrients, and 6) Diet 5, pelleted. Pigs fed the NC had decreased ( < 0.01) ADG and ADFI, but adding Defusion improved (linear; < 0.04) ADG and ADFI over pigs fed NC. Pelleting improved ( < 0.01) both ADG and G:F, resulting in ADG above PC pigs. In Exp. 4, 980 pigs (12.0 ± 0.3 kg BW) were fed 1 of 7 diets in a 28-d trial in a 2 × 3 + 1 factorial arrangement. The 7 treatments were based on 3 diets fed in meal or pellet form: 1) PC (< 0.5 mg/kg DON), 2) NC (3 mg/kg DON), and 3) NC + 0.25% Defusion. Treatment 7 was Diet 3 with supplemental nutrients in pellet form. No interactions were observed between pelleting and Defusion. Pigs fed the NC had decreased ( < 0.01) ADG and ADFI, and pelleting improved ( < 0.01) ADG to PC levels, driven by improved ( < 0.01) G:F. Adding nutrients or Defusion had no effect. Overall, these studies show that Defusion and pelleting can help overcome some of the negative effects of DON, whereas other feed additives and additional nutrients do not.
Knight, Nicole; Watson, Kalinda; Farré, Maria José; Shaw, Glen
2012-07-01
This study assesses the prevalence of disinfection by-product (DBP) precursors in some Southeast Queensland drinking water sources by conducting formation potential experiments for the four regulated trihalomethanes (THMs), and the potent carcinogen, N-nitrosodimethylamine (NDMA). NDMA formation potentials were consistently low (<5-21 ng/L), and total THM (tTHM) formation potentials were consistently below the Australian Drinking Water Guideline (250 μg/L). NDMA concentration of finished drinking waters was also monitored and found to be <5 ng/L in all cases. The effect of coagulation and advanced oxidation on the formation of NDMA and THMs is also reported. UV/H(2)O(2) pre-treatment was effective in producing water with very low THMs concentrations, and UV irradiation was an effective method for NDMA degradation. H(2)O(2) was not required for the observed NDMA degradation to occur. Coagulation using alum, ferric chloride or poly(diallyldimethylammonium chloride) (polyDADMAC) was ineffective in removing DBPs precursors from the source water studied, irrespective of the low dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) attained. Rather, coagulation with polyDADMAC caused an increase in NDMA formation potential upon chloramination, and all coagulants led to an increased tTHM formation potential upon chlorination due to the high bromide concentration of the source water studied.
Akbari, Peyman; Fink-Gremmels, Johanna; Willems, Rianne H A M; Difilippo, Elisabetta; Schols, Henk A; Schoterman, Margriet H C; Garssen, Johan; Braber, Saskia
2017-08-01
The direct effects of galacto-oligosaccharides (GOS), including Vivinal ® GOS syrup (VGOS) and purified Vivinal ® GOS (PGOS), on the epithelial integrity and corresponding interleukin-8 (IL-8/CXCL8) release were examined in a Caco-2 cell model for intestinal barrier dysfunction. To investigate structure-activity relationships, the effects of individual DP fractions of VGOS were evaluated. Moreover, the obtained results with GOS were compared with Caco-2 monolayers incubated with fructo-oligosaccharides (FOS) and inulin. Caco-2 monolayers were pretreated (24 h) with or without specific oligosaccharides or DP fractions of VGOS (DP2 to DP6) before being exposed for 12 or 24 h to the fungal toxin deoxynivalenol (DON). Transepithelial electrical resistance and lucifer yellow permeability were measured to investigate barrier integrity. A calcium switch assay was used to study the reassembly of tight junction proteins. Release of CXCL8, a typical marker for inflammation, was quantified by ELISA. In comparison with PGOS, FOS and inulin, VGOS showed the most pronounced protective effect on the DON-induced impairment of the monolayer integrity, acceleration of the tight junction reassembly and the subsequent CXCL8 release. DP2 and DP3 in concentrations occurring in VGOS prevented the DON-induced epithelial barrier disruption, which could be related to their high prevalence in VGOS. However, no effects of the separate DP GOS fractions were observed on CXCL8 release. This comparative study demonstrates the direct, microbiota-independent effects of oligosaccharides on the intestinal barrier function and shows the differences between individual galacto- and fructo-oligosaccharides. This microbiota-independent effect of oligosaccharides depends on the oligosaccharide structure, DP length and concentration.
Deoxynivalenol and its acetyl derivatives in bread and biscuits in Shandong province of China.
Jiang, Dafeng; Chen, Jindong; Li, Fenghua; Li, Wei; Yu, Lianlong; Zheng, Fengjia; Wang, Xiaolin
2018-03-01
In the present study, 100 commercial breads and biscuits were investigated for the occurrence of deoxynivalenol (DON) and its acetylated derivatives 3-acetyldeoxynivalenol (3-Ac-DON) and 15-acetyldeoxynivalenol (15-Ac-DON). The target mycotoxins were determined by isotope dilution ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). DON was determined in 95% of the test samples with a mean value of 153.3 µg/kg. Compared with DON, 3-Ac-DON and 15-Ac-DON were far less frequently detected, with mean values of 1.14 and 0.37 µg/kg, respectively. The estimated daily intakes of the sum of DON and its derivatives in breads and biscuits were 0.0059 and 0.0313 µg/kg bw/day, respectively, which was within the group provisional tolerable daily intake of 1.0 µg/kg bw/day set by the Joint FAO/WHO Expert Committee on Food Additives. In the future, systematic monitoring programmes of DON and its derivatives in relevant foodstuffs are still necessary for food safety and human health.
Food Chain Mycotoxin Exposure, Gut Health, and Impaired Growth: A Conceptual Framework1
Smith, Laura E.; Stoltzfus, Rebecca J.; Prendergast, Andrew
2012-01-01
Childhood stunting is an important and intractable public health problem that underlies ∼20% of deaths among children aged <5 y in developing countries. Environmental enteropathy (EE), a subclinical condition of the small intestine characterized by reduced absorptive capacity and increased intestinal permeability, is almost universal among children in developing countries and may mediate stunting. However, the etiology of EE is poorly understood. Mycotoxins are metabolites of fungi that frequently contaminate the staple foods of children living in developing countries. We review evidence from human and animal studies that exposure to mycotoxins, particularly aflatoxin (AF), fumonisin (FUM), and deoxynivaenol (DON), may impair child growth. Although these toxins have distinct actions, they all mediate intestinal damage through: 1) inhibition of protein synthesis (AF, DON); 2) an increase in systemic proinflammatory cytokines (DON); and 3) inhibition of ceramide synthase (FUM). The intestinal pathology that arises from mycotoxin exposure is very similar to that of EE. We propose that future studies should address the role of mycotoxins in the pathogenesis of EE and evaluate interventions to limit mycotoxin exposure and reduce childhood stunting. PMID:22797988
Sureda, Antoni; Tejada, Silvia; Box, Antonio; Deudero, Salud
2013-06-15
The fan mussel (Pinna nobilis Linné, 1758) is the largest endemic Mediterranean bivalve subject to strict protection as an endangered species. Antioxidant biomarkers in P. nobilis gills for biomonitoring marine pollution were researched after the Don Pedro oil spill. Two sampling locations on the east and southeast of the island of Ibiza (Western Mediterranean, Spain) were selected, one extensively affected by the oil spill and the other unaffected (control area). Mussels were sampled 1 month, 6 months and 1 year after the accident. Polycyclic aromatic hydrocarbon levels and antioxidant enzymes significantly increased as result of the oil spill in all sampling periods (p<0.05). Oxidative damage in lipids significantly increased in the mussels collected in the affected area (p<0.05), though such damage was back to normal after 1 year. In conclusion, the Don Pedro oil spill induced a situation of oxidative stress on P. nobilis that continued a year later. Copyright © 2013 Elsevier Ltd. All rights reserved.
2011-01-01
Background One of the most critical problems about antimicrobial therapy is the increasing resistance to antibiotics. Previous studies have shown that there is a direct relation between erroneous prescription, dosage, route, duration of the therapy and the antibiotics resistance. Other important point is the uncertainty about the quality of the prescribed medicines. Some physicians believe that generic drugs are not as effective as innovator ones, so it is very important to have evidence that shows that all commercialized drugs are suitable for therapeutic use. Methods Microbial assays were used to establish the potency, the Minimal Inhibitory Concentrations (MICs), the Minimal Bactericidal Concentration (MBCs), the critical concentrations, and the production of spontaneous mutants that are resistant to vancomycin. Results The microbial assay was validated in order to determine the Vancomycin potency of the tasted samples. All the products showed that have potency values between 90 - 115% (USP requirement). The products behave similarly because the MICs, The MBCs, the critical concentrations, the critical concentrations ratios between standard and samples, and the production of spontaneous mutants don't have significant differences. Conclusions All products analyzed by microbiological tests, show that both trademarks and generics do not have statistical variability and the answer of antimicrobial activity Show also that they are pharmaceutical equivalents. PMID:21777438
Diaz, Jorge A; Silva, Edelberto; Arias, Maria J; Garzón, María
2011-07-21
One of the most critical problems about antimicrobial therapy is the increasing resistance to antibiotics. Previous studies have shown that there is a direct relation between erroneous prescription, dosage, route, duration of the therapy and the antibiotics resistance. Other important point is the uncertainty about the quality of the prescribed medicines. Some physicians believe that generic drugs are not as effective as innovator ones, so it is very important to have evidence that shows that all commercialized drugs are suitable for therapeutic use. Microbial assays were used to establish the potency, the Minimal Inhibitory Concentrations (MICs), the Minimal Bactericidal Concentration (MBCs), the critical concentrations, and the production of spontaneous mutants that are resistant to vancomycin. The microbial assay was validated in order to determine the Vancomycin potency of the tasted samples. All the products showed that have potency values between 90 - 115% (USP requirement). The products behave similarly because the MICs, The MBCs, the critical concentrations, the critical concentrations ratios between standard and samples, and the production of spontaneous mutants don't have significant differences. All products analyzed by microbiological tests, show that both trademarks and generics do not have statistical variability and the answer of antimicrobial activity Show also that they are pharmaceutical equivalents.
Sureda, Antoni; Box, Antonio; Tejada, Silvia; Blanco, Andreu; Caixach, Josep; Deudero, Salud
2011-02-01
In the present work, the potential use of several antioxidant and detoxification biomarkers in the digestive gland of wild mussels (Mytilus galloprovincialis) for biomonitoring the marine pollution induced by the Don Pedro oil spill has been investigated. Two locations from the East to South-East of Eivissa (Ibiza) and Formentera islands were selected, one extensively affected by the oil spill and the other one not affected and considered as the control area. Mussels were sampled one, two and six months after the Don Pedro accident. Polycyclic aromatic hydrocarbon (PAH) levels were significantly increased in the soft tissues of mussels in the affected area one month after the disaster, returning to normal values after six months. Markers of oxidative damage in lipids--malondialdehyde, and in proteins--carbonyl derivates, and antioxidant enzyme--catalase, superoxide dismutase and glutathione peroxidase, activities significantly increased as result of the spill oil after one month, returning to basal values at two month sampling time. Glutathione/glutathione disulfide ratio (GSH/GSSG), as a marker of the redox status, was reduced after one and two months indicating a more oxidized situation. Markers of detoxification--glutathione-S-transferase and cytochrome P4501A activities and metallothionein gene expression--were significantly increased by the oil spill one month after the accident, returning to the basal values at two month sampling time. In conclusion, the Don Pedro accident induced a transient situation of PAHs pollution resulting in enhanced antioxidant and detoxification defense systems in the wild mussel M. galloprovincialis returning to normal levels six months from the spill. The selected biomarkers are a useful tool for biomonitoring the response to acute exposure to pollutants in marine mussels. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bytnerowicz, A.; Olszyk, D.M.; Dawson, P.J.
Concentrations of gaseous and particulate air pollutants, and deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup {minus}2}{sub 4}, and NH{sup +}{sub 4} ions to branches of California lilac (Ceanothus crassifolius Torr.), Coulter pine (Pinus coulteri D. Don.), ponderosa pine (P. ponderosa Dougl. ex P. C. Lawson), nylon filters, and paper filters were measured in open-top field chambers with different filtration materials and in chamberless outside plots. Additionally, concentrations of O{sub 3}, NO{sub 2}, NO, SO{sub 2} and total S compounds also were determined in the chambers. Effects of different air filtrations were more evident for deposition fluxes to plant and surrogatemore » surfaces. On the average, in the CHARCOAL chambers, deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup 2{minus}}{sub 4}, and NH{sup +}{sub 4} to the surfaces were reduced to 21, 38, and 26% of the outside values, respectively. In the DUST 1 DUST 2 chambers, deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup 2{minus}}{sub 4}, and NH{sup +}{sub 4} were reduced to about 50, 56, and 75% of the outside levels, respectively. Deposition fluxes of the studied ions to plants were much lower than to nylon and paper filters.« less
Krysińska-Traczyk, Ewa; Perkowski, Juliusz; Kostecki, Marian; Dutkiewicz, Jacek; Kiecana, Irena
2003-01-01
The studies to determine the level of filamentous fungi and mycotoxins were carried out in samples of grain and grain dust during threshing of cereals by a combine harvester. High concentration of fungi was noted in grain and grain dust samples, it ranged from 5.0 to 520.0 cfu/g.10(3) and from 275.0 to 2825.0 cfu/g.10(3), respectively Allergizing and toxigenic fungi of Alternaria, Geotrichum, Cladosporium, Penicillium, Aspergillus and Fusarium species were observed in the study samples of grain and grain dust. In the samples of wheat grain, mycotoxins were also noted: moniliformin (MON), deoxynivalenol (DON) and ochratoxin A (OTA); their concentrations ranged from 0.025 to 0.088 microgram/g; 0.015-0.068 microgram/g; and from 0.0004 to 0.0008 microgram/g, respectively. The level of mycotoxins in the grain dust samples was within the range of 0.025-0.149 microgram/g-MON; 0.015-0.215 microgram/g-DON; 0.015-0.360 microgram/g-NIV; and 0.0004-0.0012 microgram/g-OTA. A significant correlation was observed between the occurrence of fungi of Fusarium species and the concentration of pathologic mycotoxins. The results confirm a considerable occupational risk among farmers engaged in grain threshing due to inhalation of pathogenic species of filamentous fungi and mycotoxins.
Wang, Qinhu; Chen, Daipeng; Wu, Mengchun; Zhu, Jindong; Jiang, Cong; Xu, Jin-Rong; Liu, Huiquan
2018-01-01
Trichothecene mycotoxins, such as deoxynivalenol (DON) produced by the fungal pathogen, Fusarium graminearum, are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis) 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium. In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum, suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA), a known inducer of DON production in F. graminearum, are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 (PUT2-2) is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum. PMID:29706976
Wang, Qinhu; Chen, Daipeng; Wu, Mengchun; Zhu, Jindong; Jiang, Cong; Xu, Jin-Rong; Liu, Huiquan
2018-01-01
Trichothecene mycotoxins, such as deoxynivalenol (DON) produced by the fungal pathogen, Fusarium graminearum , are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis) 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium . In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum , suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA), a known inducer of DON production in F. graminearum , are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 ( PUT2-2 ) is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum .
[Removal of DON in micro-polluted raw water by coagulation and adsorption using activated carbon].
Liu, Bing; Yu, Guo-Zhong; Gu, Li; Zhao, Cheng-Mei; Li, Qing-Fei; Zhai, Hui-Min
2013-04-01
Dissolved organic nitrogen as a precursor of new type nitrogenous disinfection by-products in drinking water attracted gradually the attention of scholars all over the world. In order to explore the mechanism of DON removal in micro-polluted raw water by coagulation and adsorption, water quality parameters, such as DON, DOC, NH4(+) -N, UV254, pH and dissolved oxygen, were determined in raw water and the molecular weight distribution of the DON and DOC was investigated. The variations in DON, DOC and UV254 in the coagulation and adsorption tests were investigated, and the changes of DON in raw water were characterized using three-dimensional fluorescence spectroscopy. The results showed that DON, DOC and UV254 were 1.28 mg x L(-1), 8.56 mg x L(-1), 0.16 cm(-1), and DOC/DON and SUVA were 6.69 mg x mg(-1), 1.87 m(-1) x (mg x L(-1))(-1) in raw water, respectively. The molecular weight distribution of the DON in raw water showed a bimodal distribution. The small molecular weight (< 6 000) fractions accounted for a high proportion of 68% and the large (> 20 000) fractions accounted for about 22%. The removal of DON, DOC and UV254 was about 20%, 26% and 70%, respectively, in the coagulation test and the dosage of coagulant was 10 mg x L(-1). The removal of DON, DOC and UV254 was about 60%, 35% and 100%, respectively, in the adsorption test and the dosage of activated carbon was 1.0 g. In the combination of coagulation and adsorption, the removal of DON and DOC reached approximately 82% and 64%, respectively. 3DEEM revealed that the variation of DON in the coagulation and adsorption tests depended intimately on tryptophan protein-like substances, aromatic protein-like substances and fulvic acid-like substances.
Li, Keqiang; Ma, Yunpeng; Dai, Aiquan; Wang, Xiulin
2017-11-30
Dissolved organic nitrogen (DON) is the major nitrogen form in the Bohai Sea. Land-based DON is released into the nitrogen pool and degraded by planktonic microbiota in coastal ocean. In this study, we evaluated the degradation of land-based DON, particularly its dynamics and bioavailability, in coastal water by linking experiment and modeling. Results showed that the degradation rate constant of DON from sewage treatment plant was significantly faster than those of other land-based sources (P<0.05). DON was classified into three categories based on dynamics and bioavailability. The supply of dissolved inorganic nitrogen (DIN) pool from the DON pool of Liao River, Hai River, and Yellow River was explored using a 3D hydrodynamic multi-DON biogeochemical model in the Bohai Sea. In the model, large amounts of DIN were supplied from DON of Liao River than the other rivers because of prolonged flushing time in Liaodong Bay. Copyright © 2017 Elsevier Ltd. All rights reserved.
SPACESUIT DONNING AND DOFFING - ZERO-G TRAINING - DON PETERSON - STS-6
1982-07-14
Spacesuit Donning and Doffing in Zero-G Training for Don Peterson of the STS-6 Crew with Astronaut Jerry Ross assisting; and, apparatus for testing the JSC Mechanically-Induced Settling Technology (MIST) Experiment. The training is being held aboard the KC-135 to simulate weightlessness. He is being assisted to don the lower torso of the Extravehicular Mobility Unit (EMU) by an ILC Technician. 1. ASTRONAUT ROSS, JERRY L. - ZERO-G SUITING 2. SHUTTLE - EXPERIMENTS (MIST)
Determination of Deoxynivalenol in the Urine of Pregnant Women in the UK
Wells, Liz; Hardie, Laura; Williams, Courtney; White, Kay; Liu, Yunru; De Santis, Barbara; Debegnach, Francesca; Moretti, Georgio; Greetham, Stephanie; Brera, Carlo; Rigby, Alan; Atkin, Stephen; Sathyapalan, Thozhukat
2016-01-01
Deoxynivalenol (DON) is one of the most commonly occurring trichothecenes, produced mainly by Fusarium graminearum. Little is known about the effect of DON exposure or the levels of DON exposure that occur during pregnancy. The project aimed to provide data on levels of total DON and de-epoxi Deoxynivalenol (DOM-1) in pregnant human urine samples analysed by liquid chromatography-mass spectrometry (LC-MS). Morning urine samples were collected over two consecutive days from 42 volunteers and associated food consumption was recorded for the 24 h prior to the sample. Spearman’s rho non-parametric test for correlation was used to assess the data. Levels of DON did not differ significantly between day 1 (mean 29.7 ng/mL urine or 40.1 ng DON/mg creatinine) and day 2 (mean 28.7 ng/mL urine or 38.8 ng DON/mg creatinine ng/mL/day) urine samples. The only significant positive correlation was found between total ng DON/mg creatinine and parity (rho = 0.307, n = 42, p < 0.005 two-tailed) and total ng DON/mg creatinine with baked goods on day 1 (rho = 0.532, n = 42, p < 0.0005 two-tailed). This study provides data on the DON levels in pregnancy in this suburban population and reassurance that those levels are within acceptable limits. PMID:27792137
Mylona, Kalliopi; Sulyok, Michael; Magan, Naresh
2012-01-01
This study examined the relationship between storage environmental factors (water activity (a(w)) (0.89-0.97) and temperature (15°C-30°C)), colonisation of wheat and maize by Fusarium graminearum and F. verticillioides respectively and the dry matter losses (DMLs) caused and quantified by contamination with deoxynivalenol (DON), zearalenone (ZEA) and fumonisins (FUMs) during storage. Fungal growth was assessed by the amount of CO(2) produced under different interacting conditions of a(w) and temperature. DMLs were quantified using the cumulative CO(2) data, and these were shown to increase as temperature and a(w) increased. The amount of DON, ZEA (wheat for human consumption) and FUMs (feed maize) produced was significantly affected by the storage conditions. The three toxins however showed different patterns of production. Optimum for DON was at the wettest conditions (0.97a(w)) and the highest temperature assessed (30°C), whereas for ZEA this shifted to 25°C. FUMs were produced in higher amounts in maize at 30°C and 0.97a(w); however, at intermediate a(w) levels (0.955a(w)), the highest production occurred at 25°C followed by 20°C. Polynomial models were developed for the effect of the storage factors on DMLs and toxin production. DMLs under different environmental conditions were significantly correlated with DON and FUMs. DON contamination was above the EU limits in at least 80% of the wheat samples with DMLs >1%, whereas at least 70% of the same samples contained ZEA above the respective EU legislative limits. Similarly, at least 75% of the maize samples with DMLs ≥ 0.9% exceeded the EU limits for the sum of FUMs in feed. These results show that it may be possible to use temporal CO(2) production during storage of grains as an indicator of the level of contamination of the grain with mycotoxins.
Rapid Analysis of Deoxynivalenol in Durum Wheat by FT-NIR Spectroscopy
De Girolamo, Annalisa; Cervellieri, Salvatore; Visconti, Angelo; Pascale, Michelangelo
2014-01-01
Fourier-transform-near infrared (FT-NIR) spectroscopy has been used to develop quantitative and classification models for the prediction of deoxynivalenol (DON) levels in durum wheat samples. Partial least-squares (PLS) regression analysis was used to determine DON in wheat samples in the range of <50–16,000 µg/kg DON. The model displayed a large root mean square error of prediction value (1,977 µg/kg) as compared to the EU maximum limit for DON in unprocessed durum wheat (i.e., 1,750 µg/kg), thus making the PLS approach unsuitable for quantitative prediction of DON in durum wheat. Linear discriminant analysis (LDA) was successfully used to differentiate wheat samples based on their DON content. A first approach used LDA to group wheat samples into three classes: A (DON ≤ 1,000 µg/kg), B (1,000 < DON ≤ 2,500 µg/kg), and C (DON > 2,500 µg/kg) (LDA I). A second approach was used to discriminate highly contaminated wheat samples based on three different cut-off limits, namely 1,000 (LDA II), 1,200 (LDA III) and 1,400 µg/kg DON (LDA IV). The overall classification and false compliant rates for the three models were 75%–90% and 3%–7%, respectively, with model LDA IV using a cut-off of 1,400 µg/kg fulfilling the requirement of the European official guidelines for screening methods. These findings confirmed the suitability of FT-NIR to screen a large number of wheat samples for DON contamination and to verify the compliance with EU regulation. PMID:25384107
Rapid analysis of deoxynivalenol in durum wheat by FT-NIR spectroscopy.
De Girolamo, Annalisa; Cervellieri, Salvatore; Visconti, Angelo; Pascale, Michelangelo
2014-11-06
Fourier-transform-near infrared (FT-NIR) spectroscopy has been used to develop quantitative and classification models for the prediction of deoxynivalenol (DON) levels in durum wheat samples. Partial least-squares (PLS) regression analysis was used to determine DON in wheat samples in the range of <50-16,000 µg/kg DON. The model displayed a large root mean square error of prediction value (1,977 µg/kg) as compared to the EU maximum limit for DON in unprocessed durum wheat (i.e., 1,750 µg/kg), thus making the PLS approach unsuitable for quantitative prediction of DON in durum wheat. Linear discriminant analysis (LDA) was successfully used to differentiate wheat samples based on their DON content. A first approach used LDA to group wheat samples into three classes: A (DON ≤ 1,000 µg/kg), B (1,000 < DON ≤ 2,500 µg/kg), and C (DON > 2,500 µg/kg) (LDA I). A second approach was used to discriminate highly contaminated wheat samples based on three different cut-off limits, namely 1,000 (LDA II), 1,200 (LDA III) and 1,400 µg/kg DON (LDA IV). The overall classification and false compliant rates for the three models were 75%-90% and 3%-7%, respectively, with model LDA IV using a cut-off of 1,400 µg/kg fulfilling the requirement of the European official guidelines for screening methods. These findings confirmed the suitability of FT-NIR to screen a large number of wheat samples for DON contamination and to verify the compliance with EU regulation.
NASA Astrophysics Data System (ADS)
Yates, C. A.; Johnes, P.; Spencer, R. G.
2012-12-01
Riverine DOM is a significant component of C, N and P transport from source to sea. Research to date has focused on characterising DOC in upland and boreal moorland and forested catchments. Here we present the results of an investigation of DOM character and DOC, DON and DOP flux relative to C, N and P flux in two contrasting lowland UK catchments: the Wylye and Millersford Brook. Both were sampled at daily frequency at 3 sites over a 2 year period, (2010-11 WY, 2011-12 WY) with fluorescence EEMs and UV-Vis determined weekly. The Wylye is a Chalk catchment, underlain by a major aquifer. It has predominantly calcareous brown earth soils, intensive arable agriculture, scattered farms and riparian villages with a major settlement in the lower reaches of the river. There are few natural organic sources in the catchment and flows are baseflow dominated with a BFI of 0.93. DOC (NPOC) concentrations averaged 2.59 mg C/l in water year 2011-12, while Total N concentrations averaged 10.0 mg N/l, with DON averaging 0.9 mg N/l, and Total P concentrations averaged 0.18 mg/l with DOP averaging 0.026 mg/l. Millersford Brook drains peaty soils over glacial sands and clays, with moorland and forestry as the dominant land uses. Flows are dominated by overland and subsurface quick flow through with a BFI of 0.34. There is some low intensity grazing, no fertiliser use and no dwellings in the headwaters of the catchment. As a result nutrient concentrations are lower, but C flux is higher, with mean annual concentrations in WY 2011-12 of 0.93 mg TN/l, 0.051 mg TP/l, 8.83 mg DOC/l, 0.55 mg DON/l and 0.029 mg DOP/l. DOM character in Millersford Brook is comparable for that observed in other catchments with peaty soils and low acid neutralising capacity. The character of DOM varies along the length of the river, with HMW compounds dominating the signal in the headwaters, and LMW fluorescence intensities added to the signal in the lower reaches of the river, where septic tank effluent discharges and livestock wastes from small areas of improved grassland contribute to the DOM flux. The signal for the Wylye differs markedly from that for Millersford Brook. DOM character varies markedly along the length of the river to a greater extent than in Millersford Brook, with fluorescence centres indicating a high proportion of LMW material peaking downstream from septic tank and STW discharges. However, in the summer months lack of dilution of bankside septic tank and STW discharges leads to a high concentration of N-rich LMW DOM in the river, with C:N ratios approaching 1:1. This contrasts with data recorded for Millersford Brook, where DOM flux is dominated by HMW matter with low N content and a much higher N:C ratio. The results from this programme illustrate the variability in the composition of DOM relative to source character, both downstream within catchments, and between catchments of differing character. The specific composition of DOM varies markedly between peaty catchments and lowland intensively farmed catchments in sedimentary environments, and along gradients of nutrient enrichment within each catchment, changing the ecological significance of the DOM flux relative to stoichiometric ratios for differing biotic groups
Bacterial quorum sensing and nitrogen cycling in rhizosphere soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.
2008-10-01
Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizospheremore » colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... prefers non-destructive, in situ research on DON ship and aircraft wrecks, it recognizes that site... DON ship and aircraft wreck on an individual basis. In some cases, the removal of DON ship and... of DON ship and aircraft wrecks may be justified in specific cases where the existence of a cultural...
Code of Federal Regulations, 2014 CFR
2014-07-01
... prefers non-destructive, in situ research on DON ship and aircraft wrecks, it recognizes that site... DON ship and aircraft wreck on an individual basis. In some cases, the removal of DON ship and... of DON ship and aircraft wrecks may be justified in specific cases where the existence of a cultural...
Code of Federal Regulations, 2013 CFR
2013-07-01
... prefers non-destructive, in situ research on DON ship and aircraft wrecks, it recognizes that site... DON ship and aircraft wreck on an individual basis. In some cases, the removal of DON ship and... of DON ship and aircraft wrecks may be justified in specific cases where the existence of a cultural...
Code of Federal Regulations, 2011 CFR
2011-07-01
... prefers non-destructive, in situ research on DON ship and aircraft wrecks, it recognizes that site... DON ship and aircraft wreck on an individual basis. In some cases, the removal of DON ship and... of DON ship and aircraft wrecks may be justified in specific cases where the existence of a cultural...
Code of Federal Regulations, 2012 CFR
2012-07-01
... prefers non-destructive, in situ research on DON ship and aircraft wrecks, it recognizes that site... DON ship and aircraft wreck on an individual basis. In some cases, the removal of DON ship and... of DON ship and aircraft wrecks may be justified in specific cases where the existence of a cultural...
Lusk, Mary G; Toor, Gurpal S; Inglett, Patrick W
2017-12-08
Understanding the mechanisms of nitrogen (N) retention and loss from fertilized urban turfgrass is critical to develop practices that mitigate N transport and protect water quality in urban ecosystems. We investigated the fate of N in lysimeters sodded with St. Augustine turfgrass and amended with labeled 15 N from either ammonium sulfate or urea. Fourier transform ion cyclotron resonance mass spectroscopy (FTICR-MS) was employed to identify various biomolecular classes in the leached dissolved organic N (DON) from one lysimeter for each treatment and the control. Mean DON concentrations, over 92 days, were 88, 94, and 94% of total N in the leachate from the control, urea, and ammonium sulfate treatments, respectively. Isotopic analysis showed that <3% of N in the leachate originated from newly applied N fertilizer, suggesting that the remainder of the N in the leachate was derived from the lysimeter soil or sod biomass pools. The 15 N fertilizer recovery was greatest in soil (44-48%), followed by sod+thatch (18-33%), grass clippings (10-13%), and leachate (<3%). Despite isotopic evidence of little contribution of N from fertilizers in the leachate, a fraction of ammonium sulfate fertilizer was recovered as DON in the leachate, likely after uptake and conversion of inorganic fertilizer to organic plant exudates and/or microbial byproducts. FTICR-MS identified N-bearing organic molecular formulas in the leachate from urea and ammonium sulfate treatments, providing evidence of N leaching from newly established turfgrass of DON compounds in a range of biomolecular compositions such as lipid-, protein-, carbohydrate-, and lignin-like molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kolosova, Anna Yu; Sibanda, Liberty; Dumoulin, Frédéric; Lewis, Janet; Duveiller, Etienne; Van Peteghem, Carlos; De Saeger, Sarah
2008-06-02
A lateral-flow immunoassay using a colloidal gold-labelled monoclonal antibody was developed for the rapid detection of deoxynivalenol (DON). Different parameters, such as the amount of immunoreagents, type of the materials, composition of the blocking solution and of the detector reagent mixture, were investigated to provide the optimum assay performance. The experimental results demonstrated that such a visual test had an indicator range rather than a cut-off value. Thus, tests for DON determination with two different indicator ranges of 250-500 and 1000-2000 microg kg(-1) were designed. The method allowed detection of DON at low and high concentration levels, which could be useful for research and practical purposes. The assay applied to spiked wheat and pig feed samples demonstrated accurate and reproducible results. The applicability of the developed lateral-flow test was also confirmed under real field conditions. The test strips prepared in Belgium were sent to Mexico, where they were used for the screening of DON contamination in different bread wheat entries from Fusarium Head Blight inoculated plots. The results were compared with those obtained by ELISA and LC-MS/MS. A poor correlation between ELISA and LC-MS/MS was observed. Visual results of the dipstick tests were in a good agreement with the results of the LC-MS/MS method. Coupled with a simple and fast sample preparation, this qualitative one-step test based on the visual evaluation of results did not require any equipment. Results could be obtained within 10 min. The described assay format can be used as a simple, rapid, cost-effective and robust on-site screening tool for mycotoxin contamination in different agricultural commodities.
Phase-change related epigenetic and physiological changes in Pinus radiata D. Don.
Fraga, Mario F; Cañal, Maria Jesús; Rodríguez, Roberto
2002-08-01
DNA methylation and polyamine levels were analysed before and after Pinus radiata D. Don. phase change in order to identify possible molecular and physiological phase markers. Juvenile individuals (without reproductive ability) were characterised by a degree of DNA methylation of 30-35% and a ratio of free polyamines to perchloric acid-soluble polyamine conjugates greater than 1, while mature trees (with reproductive ability) had 60% 5-methylcytosine and a ratio of free polyamines to perchloric acid-soluble polyamine conjugates of less than 1. Results obtained with trees that attained reproductive capacity during the experimental period confirmed that changes in the degree of DNA methylation and polyamine concentrations found among juvenile and mature states come about immediately after the phase change. We suggest that both indicators may be associated with the loss of morphogenic ability during ageing, particularly after phase change, through a number of molecular interactions, which are subsequently discussed.
Peng, Kai; Jin, Long; Niu, Yan D; Huang, Qianqian; McAllister, Tim A; Yang, Hee Eun; Denise, Hubert; Xu, Zhongjun; Acharya, Surya; Wang, Shunxi; Wang, Yuxi
2017-12-15
Purple prairie clover (PPC; Dalea purpurea Vent.) containing 84.5 g/kg DM of condensed tannin (CT) was ensiled without (Control) or with polyethylene glycol (PEG) for 76 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics were determined and bacterial and fungal communities were assessed using metagenomic sequencing. Addition of PEG that deactivated CT at ensiling increased ( P < 0.05∼0.001) soluble N, non-protein N, lactic acid, total volatile fatty acids, ammonia N, deoxynivalenol (DON) and ochratoxin A (OTA), but decreased ( P < 0.001) pH and water soluble carbohydrates. Concentration of DON and OTA increased ( P < 0.001) for both silages with the extent of increase being greater for Control than for PEG treated silage during aerobic exposure. The PEG treated silage exhibited higher ( P < 0.01∼0.001) copy numbers of total bacteria, Lactobacillus , yeasts and fungi than Control. Addition of PEG decreased ( P < 0.01) bacterial diversity during both ensiling and aerobic exposure, whereas it increased ( P < 0.05) fungal diversity during aerobic exposure. Addition of PEG at ensiling increased ( P < 0.05) abundances of Lactobacillus and Pediococcus , but decreased ( P < 0.01) abundances of Lactococcus and Leuconostoc Filamentous fungi were found in the microbiome at ensiling and after aerobic exposure, whereas the Bacillus were the dominate bacteria after aerobic exposure. In conclusion, CT decreased protein degradation and improved aerobic stability of silage. These desirable outcomes likely reflect the ability of PPC CT to inhibit those microorganisms involved in lowering silage quality and in the production of mycotoxins. IMPORTANCE The present study reports the effects of condensed tannins on the complex microbial communities involved in ensiling and aerobic exposure of purple prairie clover. This study documents the ability of condensed tannins to lower mycotoxin production and associated microbiome. Taxonomic bacterial community profiles were dominated by the Lactobacillales after fermentation, with a notable increase in Bacillus as a result of aerobic exposure. It is interesting to observe that condensed tannins decreased bacterial diversity during both ensiling and aerobic exposure but increased fungal diversity during aerobic exposure only. The present study indicates that the effects of condensed tannins on microbial communities lead to a reduced lactic acid and total volatile fatty acids production, proteolysis and mycotoxin concentration in the terminal silage and an improved aerobic stability. Condensed tannins could be used as additive to control unfavorable microbial development and maybe enhanced feed safety. © Crown copyright 2017.
Djihane, Bouzid; Wafa, Nouioua; Elkhamssa, Soltani; Pedro, De Haro Juan; Maria, Angeles Esteban; Mohamed Mihoub, Zerroug
2017-07-01
The aerial parts of Helichrysum italicum (Roth) G. Don were subjected to hydrodistillation to obtain essential oils which had been analyzed by gas chromatography and gas chromatography coupled with mass spectrometry and tested for antimicrobial activity against 12 bacteria, two yeasts and four fungi by agar diffusion method. The essential oil yielded 0.44% (v/w) and 67 compounds accounting for 99.24% of the oil were identified with a high content of oxygenated sesquiterpenes (61.42%). The most oxygenated sesquiterpene compounds were α-Cedrene (13.61%), α-Curcumene (11.41%), Geranyl acetate (10.05%), Limonene (6.07%), Nerol (5.04%), Neryl acetate (4.91%) and α-Pinene (3.78%). The antimicrobial activity of the essential oil was assayed by using the disk diffusion method on Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538, Micrococcus luteus ATCC 4698, Klebsiella pneumonia ATCC 4352, Enterococcus cereus ATCC 2035, Bacillus cereus ATCC 10876, Staphylococcus epidermidis ATCC 12228, Bacillus subtilis ATCC 9372, Pseudomonas aeruginosa ATCC 27853, Enterococcus faecalis ATCC 49452, Proteus mirabilis ATCC 35659, Listeria monocytogenes ATCC 15313 and yeasts Candida albicans ATCC 10231, Saccharomyces cerevisiae ATCC 9763 and fungi, Fusarium solani var. coeruleum , Aspergillus niger , Alternaria alternata , Ascochyta rabiei . H. italicum inhibited the growth of all the tested microorganisms except three bacteria, E. coli ATCC 25922, K. pneumonia ATCC 4352 and L. monocytogenes ATCC 15313. The most sensitive bacterium was E. cereus ATCC 2035 with minimum inhibitory and bactericidal concentrations of 0.79 μg ml -1 . A minimum fungistatic and fungicide concentration of 6.325 μg ml -1 and 12.65 μg ml -1 respectively was obtained with C. albicans ATCC 10231 and S. cerevisiae ATCC 9763. However the four fungi were more resistant with fungistatic minimum concentration ranging from 6.325 μg ml -1 to 50.6 μg ml -1 and a fungicide minimum concentration of 50.6 μg ml -1 . This antimicrobial activity could be attributed to the essential oil chemical composition. Thus this study represents a first step in the study of the chemical composition of H. italicum (Roth) G. Don collected from north Algeria and its antimicrobial properties.
USDA-ARS?s Scientific Manuscript database
The fungus Fusarium graminearum produces the toxic compound deoxynivalenol (DON) that contaminates wheat, barley, and maize. New strategies are needed to mitigate DON in the United States. Microbes were isolated from different soil types, and cultured in a mineral salt media using 100 ppm DON as the...
33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Don Pedro Dams and Reservoirs. 208.82 Section 208.82 Navigation and Navigable Waters CORPS OF..., Cherry Valley, and Don Pedro Dams and Reservoirs. The Turlock Irrigation District and Modesto Irrigation District, acting jointly, hereinafter called the Districts, shall operate Don Pedro Dam and Reservoir in...
33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Don Pedro Dams and Reservoirs. 208.82 Section 208.82 Navigation and Navigable Waters CORPS OF..., Cherry Valley, and Don Pedro Dams and Reservoirs. The Turlock Irrigation District and Modesto Irrigation District, acting jointly, hereinafter called the Districts, shall operate Don Pedro Dam and Reservoir in...
Factors Influencing Deoxynivalenol Accumulation in Small Grain Cereals
Wegulo, Stephen N.
2012-01-01
Deoxynivalenol (DON) is a mycotoxin produced by the plant pathogenic fungi Fusarium graminearum and F. culmorum. These and other closely related fungi cause a disease known as Fusarium head blight (FHB) in small grain cereals. Other mycotoxins produced by FHB-causing fungi include nivalenol, T-2 toxin, and zearalenone. Ingestion of mycotoxin-contaminated food and feed can lead to toxicosis in humans and animals, respectively. DON is the predominant and most economically important of these mycotoxins in the majority of small grain-producing regions of the world. This review examines the factors that influence DON accumulation in small grain cereals from an agricultural perspective. The occurrence and economic importance of FHB and DON in small grain cereals, epidemiological factors and cereal production practices that favor FHB development and DON accumulation in grain under field conditions, and regulatory/advisory standards for DON in food and feed are discussed. This information can be used to develop strategies that reduce DON accumulation in grain before harvest and to mitigate the human and animal health risks associated with DON contamination of food and feed. PMID:23202310
Deoxynivalenol Biomarkers in the Urine of UK Vegetarians.
Wells, Liz; Hardie, Laura; Williams, Courtney; White, Kay; Liu, Yunru; De Santis, Barbara; Debegnach, Francesca; Moretti, Georgio; Greetham, Stephanie; Brera, Carlo; Papageorgiou, Maria; Thatcher, Natalie J; Rigby, Alan; Atkin, Stephen L; Sathyapalan, Thozhukat
2017-06-22
Deoxynivalenol (DON) is produced by Fusarium graminearum and is one of the most commonly occurring trichothecenes. Vegetarians are alleged to be a high-risk group for DON exposure due to high intakes of cereals susceptible to the growth of the mycotoxin. This study provides the levels of DON and de-epoxi Deoxynivalenol (DOM-1) in urine analysed by liquid chromatography-mass spectrometry (LC-MS) in UK vegetarians. Over two consecutive days, morning urine samples were collected from 32 vegetarians and 31 UK adult volunteers, and associated food consumption 24 h prior to the sample was recorded. Statistically significant differences between the weight of the UK adults and vegetarians ( t = 3.15. df = 61, p ≤ 0.005 two-tailed) were observed. The mean levels of DON in urine for adults on day 1 was 3.05 ng free DON/mg creatinine, and on day 2 was 2.98 ng free DON/mg creatinine. Even though high mean levels were observed, most adults were within the tolerable daily intake. However, for vegetarians, the mean level of urinary DON on day 1 was 6.69 ng free DON/mg creatinine, and on day 2 was 3.42 ng free DON/mg creatinine. These levels equate to up to 32% of vegetarians exceeding recommended tolerable daily intakes (TDI) of exposure (1 µg/kg b.w./day).
Sanders, Melanie; Guo, Yirong; Iyer, Abhishek; García, Yara Ruiz; Galvita, Anastasia; Heyerick, Arne; Deforce, Dieter; Risseeuw, Martijn D P; Van Calenbergh, Serge; Bracke, Marc; Eremin, Sergei; Madder, Annemieke; De Saeger, Sarah
2014-01-01
An immunogen synthesis strategy was designed to develop anti-deoxynivalenol (DON) monoclonal antibodies with low cross-reactivity against structurally similar trichothecenes. A total of eight different DON immunogens were synthesised, differing in the type and position of the linker on the DON molecule. After immunisation, antisera from mice immunised with different DON immunogens were checked for the presence of relevant antibodies. Then, both homologous and heterologous enzyme-linked immunosorbent assays (ELISAs) were performed for hybridoma screening. Finally, three monoclonal antibodies against DON and its analogues were generated. In addition, monoclonal antibody 13H1 could recognise DON and its analogues in the order of HT-2 toxin > 15-acetyldeoxynivalenol (15-ADON) > DON, with IC₅₀ ranging from 1.14 to 2.13 µg ml⁻¹. Another monoclonal antibody 10H10 manifested relatively close sensitivities to DON, 3-acetyldeoxynivalenol (3-ADON) and 15-ADON, with IC₅₀ values of 22, 15 and 34 ng ml⁻¹, respectively. Using an indirect ELISA format decreases the 10H10 sensitivity to 15-ADON with 92%. A third monoclonal antibody 2A9 showed to be very specific and sensitive to 3-ADON, with IC₅₀ of 0.38 ng ml⁻¹. Using both 2A9 and 10H10 monoclonal antibodies allows determining sole DON contamination.
Alt, Jesse; Potter, Michelle C.; Rojas, Camilo; Slusher, Barbara S.
2015-01-01
Glutamine is an abundant amino acid that plays pivotal roles in cell growth, cell metabolism and neurotransmission. Dysregulation of glutamine-utilizing pathways has been associated with pathological conditions such as cancer and neurodegenerative diseases. 6-Diazo-5-Oxo-L-Norleucine (DON) is a reactive glutamine analog that inhibits enzymes affecting glutamine metabolism such as glutaminase, 2-N-amidotransferase, L-asparaginase and several enzymes involved in pyrimidine and purine de novo synthesis. As a result, DON is actively used in preclinical models of cancer and neurodegenerative disease. Moreover, there have been several clinical trials using DON to treat a variety of cancers. Considerations of dose and exposure are especially important with DON treatment due to its narrow therapeutic window and significant side effects. Consequently, a robust quantification bioassay is of interest. DON is a polar unstable molecule which has made quantification challenging. Here we report on the characterization of a bioanalytical method to quantify DON in tissue samples involving DON derivatization with 3N HCl in butanol. The derivatized product is lipophilic and stable. Detection of this analyte by mass spectrometry is fast, specific and can be used to quantify DON in plasma and brain tissue with a limit of detection in the low nanomolar level. PMID:25584882
Effects of deoxynivalenol on content of chloroplast pigments in barley leaf tissues.
Bushnell, W R; Perkins-Veazie, P; Russo, V M; Collins, J; Seeland, T M
2010-01-01
To understand further the role of deoxynivalenol (DON) in development of Fusarium head blight (FHB), we investigated effects of the toxin on uninfected barley tissues. Leaf segments, 1 to 1.2 cm long, partially stripped of epidermis were floated with exposed mesophyll in contact with DON solutions. In initial experiments with the leaf segments incubated in light, DON at 30 to 90 ppm turned portions of stripped tissues white after 48 to 96 h. The bleaching effect was greatly enhanced by addition of 1 to 10 mM Ca(2+), so that DON at 10 to 30 ppm turned virtually all stripped tissues white within 48 h. Content of chlorophylls a and b and of total carotenoid pigment was reduced. Loss of electrolytes and uptake of Evans blue indicated that DON had a toxic effect, damaging plasmalemmas in treated tissues before chloroplasts began to lose pigment. When incubated in the dark, leaf segments also lost electrolytes, indicating DON was toxic although the tissues remained green. Thus, loss of chlorophyll in light was due to photobleaching and was a secondary effect of DON, not required for toxicity. In contrast to bleaching effects, some DON treatments that were not toxic kept tissues green without bleaching or other signs of injury, indicating senescence was delayed compared with slow yellowing of untreated leaf segments. Cycloheximide, which like DON, inhibits protein synthesis, also bleached some tissues and delayed senescence of others. Thus, the effects of DON probably relate to its ability to inhibit protein synthesis. With respect to FHB, the results suggest DON may have multiple roles in host cells of infected head tissues, including delayed senescence in early stages of infection and contributing to bleaching and death of cells in later stages.
Jovaišienė, J; Bakutis, B; Baliukonienė, V; Gerulis, G
2016-01-01
One hundred two samples of feeds made in Lithuania, which included maize silage, grass-legume silage, hay and ensiled crimped maize were investigated during 2008-2012 for contamination with some mycotoxins. The highest concentrations of mycotoxins determined were those of deoxynivalenol (DON)--471.0 μg/kg and aflatoxin B1 (AFB1)--21.2 μg/kg in ryegrass silage from bales, and zearalenone (ZEA)--625.0 μg/kg in maize silage from trenches. The present study has been carried out based on these data because animal feeds contaminated with mycotoxins can cause reduced productivity of dairy cows and health disorders in the long term. The aim of this study was to investigate the long-term exposure of toxic effects of a diet naturally contaminated with low concentrations of mycotoxins on milk composition and biochemical, hematological, immunological parameters of dairy cows and to determine the anti-mycotoxin effect of Mycofix Plus 3.E. Twenty eight clinically healthy, medium productive Lithuanian Red cows were selected. ZEA was a major contaminant found in the corn silage at concentration levels of up to 1000.0 μg/kg of dry matter. DON was the second major found in the hay at concentration levels of up to 600.0 μg/kg of dry matter. The highest concentration AFB1- 10.0 μg/kg was determined in ground barley. The Anti-Mycotoxin Additive (AMA) Mycofix Plus 3.E was given individually to 14 cows at a concentration of 40.0 g daily for 9 weeks. The present results indicate that feeds naturally contaminated with low concentration of mycotoxins produced by Fusarium spp. and Aspergillus spp. in a diet of dairy cows can have a negative influence on somatic cell count, blood parameters and immunity. The addition of an Anti-Mycotoxin Additive (Mycofix Plus 3.E) to diet of dairy cows can prevent many of these effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wenda; Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824; He, Kaiyu
The foodborne mycotoxin deoxynivalenol (DON) induces a ribotoxic stress response in mononuclear phagocytes that mediate aberrant multi-organ upregulation of TNF-α, interleukins and chemokines in experimental animals. While other DON congeners also exist as food contaminants or pharmacologically-active derivatives, it is not known how these compounds affect expression of these cytokine genes in vivo. To address this gap, we compared in mice the acute effects of oral DON exposure to that of seven relevant congeners on splenic expression of representative cytokine mRNAs after 2 and 6 h. Congeners included the 8-ketotrichothecenes 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX), nivalenol (NIV), themore » plant metabolite DON-3-glucoside (D3G) and two synthetic DON derivatives with novel satiety-inducing properties (EN139528 and EN139544). DON markedly induced transient upregulation of TNF-α IL-1β, IL-6, CXCL-2, CCL-2 and CCL-7 mRNA expressions. The two ADONs also evoked mRNA expression of these genes but to a relatively lesser extent. FX induced more persistent responses than the other DON congeners and, compared to DON, was: 1) more potent in inducing IL-1β mRNA, 2) approximately equipotent in the induction of TNF-α and CCL-2 mRNAs, and 3) less potent at upregulating IL-6, CXCL-2, and CCL-2 mRNAs. EN139528's effects were similar to NIV, the least potent 8-ketotrichothecene, while D3G and EN139544 were largely incapable of eliciting cytokine or chemokine mRNA responses. Taken together, the results presented herein provide important new insights into the potential of naturally-occurring and synthetic DON congeners to elicit aberrant mRNA upregulation of cytokines associated with acute and chronic trichothecene toxicity. - Highlights: • We compared effects of DON congeners on biomarker proinflammatory genes in mice. • Oral DON induced splenic IL-1β, IL-6, TNF-α,CXCL-2, CCL-2 and CCL-7 mRNAs. • 8-Ketotrichothecene ranking for biomarkers was FX ≈ DON > 15ADON > 3ADON > NIV. • Plant metabolite DON-3-glucoside failed to induce proinflammatory biomarkers. • Synthetic DON congeners EN139528 and EN139544 did not affect biomarkers.« less
Effect of flow velocity on the photoacoustic detection for glucose aqueous solutions
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Ding, Yu; Yao, Qingkai
2018-01-01
The blood glucose non-invasive detection has become the research hot-spot. The photoacoustic spectroscopy is a well-promising, high-efficient and noninvasive detection method because it combines the advantages of the pure optic and pure ultrasonic. In practice, the photoacoustic detection of blood glucose is impacted by many factors because the human body is a complicated bio-system. To study the effect of flow velocity in the blood vessel on the photoacoustic detection of blood glucose, a photoacoustic detection system based on optical parameter oscillator (OPO) pulsed laser induced ultrasonic was established. In this system, a 532nm pumped Nd: YAG OPO pulsed laser was used as the excitation source, and the photoacoustic signals of glucose were captured by ultrasonic transducer. Moreover, a set of blood circulation system was built to simulate the real blood flow situation in the human body. The experiments of the photoacoustic detection of glucose aqueous solutions with different concentrations at different flow velocities were experimentally investigated. Experimental results show that the photoacoustic peak-to-peak value linearly increases with the glucose concentration, but it decreases with the increase of the flow velocity although the profiles of photoacoustic signals don't change.
David E. Pelster; Randall K. Kolka; Ellie E. Prepas
2009-01-01
Nitrate, ammonium, total dissolved nitrogen (TDN), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and flux were measured for one year in bulk deposition and throughfall from three stand types (upland deciduous, upland conifer and wetland conifer) on the Boreal Plain, Canada. Annual (November 2006 to October 2007 water year) flux...
Han, X M; Zhang, H Y; Zhang, J; Xu, W J; Liu, D; Jiang, T; Xu, J; Li, F Q
2016-10-06
Objective: To investigate fungi contamination and the natural occurrence of mycotoxins in corn feed ingredients collected from China. Methods: A total of 94 corn feed ingredient samples were collected from 8 Chinese provinces(i.e., Anhui, Hebei, Heilongjiang, Jilin, Jiangsu, Liaoning, Inner Mongolia, and Shandong)in February 2014. A tandem ultra-performance liquid chromatographymass spectrometry method was used for simultaneous detection of twelve kinds of mycotoxins, including aflatoxin(AF), type A and type B tricothecenes, and zearalenone(ZEN). Contaminated fungi were also identified and counted. Results: AF was detected in 36.2%(34/94)of samples; the concentration of AFB 1 was the highest in the four AFs with the range: 0.3~181.3 μg/kg; and then followed by AFB 2 (range: 1.0-74.3 μg/kg). There were 7 samples(7.5%)with AFB 1 concentrations higher than the tolerance limit of 50 μg/kg. The concentration of type A tricothecenes in all samples was lower(0.1-10.5 μg/kg). DON had the most serious contamination than other kind of type B tricothecenes(range: 0.7-606.6 μg/kg; median: 66.3 μg/kg). The DON concentration in all samples was below the tolerance limit of 1 000 μg/kg. ZEN was detected in 76.6%(72/ 94)of samples(median: 36.9 μg/kg), with 3 samples having ZEN concentrations higher than the tolerance limit of 500 μg/kg. The survey on fungi contamination showed that all samples were contaminated by fungi(range: 5.0-1.4×10 5 CFU/g). There were 18 and 3 samples with quantities of fungi higher than the tolerance and forbidden limits, respectively. The Aspergillus , Penicillium , Fusarium , Trichoderma and Mucor genuses were the predominant fungi in corn feed ingredients, with detection rates of 71.3%(67), 60.6%(57), 71.3%(67), 27.7%(26), and 24.5%(23), respectively. The detection rate of Fusarium moniliforme , 73.4%(69/94)was higher than that of Aspergillus flavus , 41.5%(39/94). Conclusion: In this survey, the corn feed ingredients were not seriously contaminated by AF and type A tricothecenes but mainly contaminated by type B trichothecenes, including DON and its derivatives, as well as ZEN. They were also contaminated by fungi such as Aspergillus , Penicillium , and Fusarium .
NASA Astrophysics Data System (ADS)
Chen, H. Y.; Yeh, J. X.; Lin, C. T.
2016-02-01
We collected 11 sets of size-segregated particulate aerosol (include coarse and fine particles) and 53 rain samples from January to December 2014 at a coastal city (Keelung) on the southern East China Sea. Here we present measurements of water-soluble inorganic/organic nitrogen and carbon (WSIN/WSON and WSIC/WSOC, respectively) in aerosol samples and dissolved inorganic/organic nitrogen and carbon (DIN/DON and DIC/DOC, respectively) in rain samples. In addition, 4-d back trajectories of air masses arriving daily at the sampling site were calculated to determine the potential aerosol source regions. The concentrations of water-soluble species in particulate aerosols were relatively high in March (WSON: 223±48 nmol m-3; WSOC: 203±51 nmol m-3) and dissolved species in rain samples were high in December (DON: 157±69 μM; DOC: 294±168 μM), which occur frequently during the spring and winter. The monsoon system of East Asia play a key role on the atmospheric composition of nitrogen and carbon, with higher loadings in northerly (winter to spring) than southerly (summer to autumn) monsoon periods, owing to strong emissions from the East Asian continent. Our results indicate that biomass burning and dust events yielded the largest concentrations of ON and OC not only on particulate aerosols but also in precipitations. For aerosols, the amounts of WSON and WSOC accounted for 42±8% and 80±7% of the water-soluble total nitrogen (WSTN) and carbon (WSTC), respectively. Additionally, the concentrations of DON and DOC accounted for 40±5% and 75±3% of total dissolved nitrogen (TDN) and carbon (TDC), respectively, for precipitations. By using dry and wet deposition flux estimations, we estimated that the fluxes of WSTN/TDN and WSTC/TDC were 47.1±24.4 / 266±20 mmol m-2 yr-1 and 23±9 / 153±3 mmol m-2 yr-1, respectively. These results suggest that atmospheric deposition contributed approximately 25-34% of the annual biological new production in the southern East China Sea.
The Status of Nonagreeing "Don't" and Theories of Root Infinitives
ERIC Educational Resources Information Center
Schutze, Carson T.
2010-01-01
This paper examines two issues concerning nonagreeing "don't" in child English, e.g., "He don't fit". (1) Do children know that "don't" consists of auxiliary "do" plus sentential negation, or do they misanalyze it simply as negation? I argue that the former claim yields both empirical (distributional) and conceptual advantages, while the latter…
Don Quixote Pond: A Small Scale Model of Weathering and Salt Accumulation
NASA Technical Reports Server (NTRS)
Englert, P.; Bishop, J. L.; Patel, S. N.; Gibson, E. K.; Koeberl, C.
2015-01-01
The formation of Don Quixote Pond in the North Fork of Wright Valley, Antarctica, is a model for unique terrestrial calcium, chlorine, and sulfate weathering, accumulation, and distribution processes. The formation of Don Quixote Pond by simple shallow and deep groundwater contrasts more complex models for Don Juan Pond in the South Fork of Wright Valley. Our study intends to understand the formation of Don Quixote Pond as unique terrestrial processes and as a model for Ca, C1, and S weathering and distribution on Mars.
Pelyhe, Csilla; Kövesi, Benjámin; Zándoki, Erika; Kovács, Balázs; Szabó-Fodor, Judit; Mézes, Miklós; Balogh, Krisztián
2016-12-01
The purpose of this study was to investigate the short-term effects of a single oral dose of T-2 and HT-2 toxin at 0.15, 0.33 and 1.82 mg kg -1 body weight, or deoxynivalenol (DON) and 15-acetyl-DON at 0.13, 0.31 and 1.75 mg kg -1 body weight in common carp. Conjugated dienes and trienes (the early markers of lipid peroxidation) were elevated in all DON-treated groups at the 16th hour, while thiobarbituric acid reactive substances (TBARS; termination marker) were increased at the highest dose of DON at the 16th and 24th hours. T-2 toxin did not cause changes in these parameters. Glutathione content and glutathione peroxidase activity showed higher levels at the 16th hour as the effect of both mycotoxins. The expression of glutathione peroxidase (GPx4) genes (gpx4a and gpx4b) revealed a dual response. Downregulation was observed at the 8th hour, followed by an induction at the 16th hour, at the lowest dose of both mycotoxins. Higher doses revealed long-drawn emergence and an elevation was observed only at the 24th hour. However, at the lowest and highest doses of DON or T-2 toxin the changes in gene expression were delayed, which may be related to the low oxidative stress response, as suggested by the expression profiles of the nrf2, keap1, gpx4a and gpx4b genes.
Yekkour, Amine; Toumatia, Omrane; Meklat, Atika; Verheecke, Carol; Sabaou, Nasserdine; Zitouni, Abdelghani; Mathieu, Florence
2015-06-01
The cereal-pathogenic Fusarium culmorum (W.G. Smith), causal agent of various blights and rot diseases, is considered as a chronic fungus of economic concern worldwide including North African countries such as Algeria. This pathogen produces a wide range of mycotoxins, amongst which the type B-trichothecene deoxynivalenol (DON). In addition to its acute and chronic side effects in livestock and humans, DON is believed to play a determinant role in the pathogenesis toward Triticeae. However, regardless its significant occurrence and impact, little is known about trichothecenes-producing ability of F. culmorum infecting cereals in Algeria. The PCR assay based on Tri genes of 12 F. culmorum strains (designated Fc1-Fc12), which were recovered from several cropping areas of North Algeria, revealed their trichothecenes-producing ability with 3-AcDON genotype. The molecular prediction was confirmed by HPLC analysis. All strains were able to produce the toxin at detectable levels. Strains Fc1 and Fc12 were the highest producers of this mycotoxin with 220 and 230 µg g(-1), respectively. The evaluation of pathogenic ability of strains through a barley infesting experiment exhibited the significant disease impact of most strains. Significant correlation between the DON-producing ability of strains and the increase in both disease severity (r = 0.88, P = 0.05) and disease occurrence (r = 0.70, P = 0.05) was observed. Chemotyping of F. culmorum isolates and evaluation of their pathogenic ability are reported for the first time for isolates from Algeria, and highlights the important potential of F. culmorum to contaminate cultivated cereal with DON trichothecenes.
Deoxynivalenol Biomarkers in the Urine of UK Vegetarians
Wells, Liz; Hardie, Laura; Williams, Courtney; White, Kay; Liu, Yunru; De Santis, Barbara; Debegnach, Francesca; Moretti, Georgio; Greetham, Stephanie; Brera, Carlo; Papageorgiou, Maria; Thatcher, Natalie J.; Rigby, Alan; Atkin, Stephen L.; Sathyapalan, Thozhukat
2017-01-01
Deoxynivalenol (DON) is produced by Fusarium graminearum and is one of the most commonly occurring trichothecenes. Vegetarians are alleged to be a high-risk group for DON exposure due to high intakes of cereals susceptible to the growth of the mycotoxin. This study provides the levels of DON and de-epoxi Deoxynivalenol (DOM-1) in urine analysed by liquid chromatography-mass spectrometry (LC-MS) in UK vegetarians. Over two consecutive days, morning urine samples were collected from 32 vegetarians and 31 UK adult volunteers, and associated food consumption 24 h prior to the sample was recorded. Statistically significant differences between the weight of the UK adults and vegetarians (t = 3.15. df = 61, p ≤ 0.005 two-tailed) were observed. The mean levels of DON in urine for adults on day 1 was 3.05 ng free DON/mg creatinine, and on day 2 was 2.98 ng free DON/mg creatinine. Even though high mean levels were observed, most adults were within the tolerable daily intake. However, for vegetarians, the mean level of urinary DON on day 1 was 6.69 ng free DON/mg creatinine, and on day 2 was 3.42 ng free DON/mg creatinine. These levels equate to up to 32% of vegetarians exceeding recommended tolerable daily intakes (TDI) of exposure (1 µg/kg b.w./day). PMID:28640201
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-16
... DEPARTMENT OF COMMERCE Bureau of Industry and Security Donald V. Bernardo, a/k/a Don Bernarndo... the U.S. District Court, Southern District of Florida, Donald V. Bernardo, a/k/a Don Bernardo.... Accordingly, it is hereby ordered I. Until November 16, 2016, Donald V. Bernardo, a/k/a Don Bernardo, with a...
Warth, Benedikt; Del Favero, Giorgia; Wiesenberger, Gerlinde; Puntscher, Hannes; Woelflingseder, Lydia; Fruhmann, Philipp; Sarkanj, Bojan; Krska, Rudolf; Schuhmacher, Rainer; Adam, Gerhard; Marko, Doris
2016-01-01
The mycotoxin deoxynivalenol (DON) is an abundant contaminant of cereal based food and a severe issue for global food safety. We report the discovery of DON-3-sulfate as a novel human metabolite and potential new biomarker of DON exposure. The conjugate was detectable in 70% of urine samples obtained from pregnant women in Croatia. For the measurement of urinary metabolites, a highly sensitive and selective LC-MS/MS method was developed and validated. The method was also used to investigate samples from a duplicate diet survey for studying the toxicokinetics of DON-3-sulfate. To get a preliminary insight into the biological relevance of the newly discovered DON-sulfates, in vitroexperiments were performed. In contrast to DON, sulfate conjugates lacked potency to suppress protein translation. However, surprisingly we found that DON-sulfates enhanced proliferation of human HT-29 colon carcinoma cells, primary human colon epithelial cells (HCEC-1CT) and, to some extent, also T24 bladder cancer cells. A proliferative stimulus, especially in tumorigenic cells raises concern on the potential impact of DON-sulfates on consumer health. Thus, a further characterization of their toxicological relevance should be of high priority. PMID:27659167
NASA Astrophysics Data System (ADS)
Warth, Benedikt; Del Favero, Giorgia; Wiesenberger, Gerlinde; Puntscher, Hannes; Woelflingseder, Lydia; Fruhmann, Philipp; Sarkanj, Bojan; Krska, Rudolf; Schuhmacher, Rainer; Adam, Gerhard; Marko, Doris
2016-09-01
The mycotoxin deoxynivalenol (DON) is an abundant contaminant of cereal based food and a severe issue for global food safety. We report the discovery of DON-3-sulfate as a novel human metabolite and potential new biomarker of DON exposure. The conjugate was detectable in 70% of urine samples obtained from pregnant women in Croatia. For the measurement of urinary metabolites, a highly sensitive and selective LC-MS/MS method was developed and validated. The method was also used to investigate samples from a duplicate diet survey for studying the toxicokinetics of DON-3-sulfate. To get a preliminary insight into the biological relevance of the newly discovered DON-sulfates, in vitroexperiments were performed. In contrast to DON, sulfate conjugates lacked potency to suppress protein translation. However, surprisingly we found that DON-sulfates enhanced proliferation of human HT-29 colon carcinoma cells, primary human colon epithelial cells (HCEC-1CT) and, to some extent, also T24 bladder cancer cells. A proliferative stimulus, especially in tumorigenic cells raises concern on the potential impact of DON-sulfates on consumer health. Thus, a further characterization of their toxicological relevance should be of high priority.
Nontransmission of deoxynivalenol (vomitoxin) to milk following oral administration to dairy cows.
Prelusky, D B; Trenholm, H L; Lawrence, G A; Scott, P M
1984-10-01
The absorption of deoxynivalenol (DON; vomitoxin), a trichothecene mycotoxin produced by Fusarium species, was studied in the dairy cow. Serum and milk DON levels were quantitated following a single oral dose of 920 mg DON to each of two lactating cows of similar weight. Maximum blood levels for the two animals following DON administration were 200 and 90 ng/ml serum, occurring at times 4.7 and 3.5 hr, respectively. By 24 hr after dosing only trace levels (less than 2 ng/ml) were still detectable. DON in its conjugated form accounted for 24-46% of the total levels present in serum. Free and conjugated DON were also present in cow's milk, but only extremely low amounts (less than 4 ng/ml) were detected. Detection of DON was carried out utilizing Sep-Pak C18 extraction cartridges for isolation, with additional purification of the sample achieved by passing the extract through a short charcoal/alumina column. The extract was then reacted with N-heptafluorobutyrylimidazole prior to quantitation of the resulting DON-tris-heptafluorobutyrate derivative by combined gas chromatography-quadrupole mass spectrometry, using multiple selected ion monitoring. Detection limits were as low as 1 ng/ml (1 ppb).
Sun, Jingyi; Simsek, Halis
2017-07-01
Effluent dissolved organic nitrogen (DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits. Bioavailable DON (ABDON) is a portion of DON utilized by algae or algae+bacteria, while biodegradable DON (BDON) is a portion of DON decomposable by bacteria. ABDON and BDON in a two-stage trickling filter (TF) wastewater treatment plant was evaluated using three different microalgal species, Selenastrum capricornutum, Chlamydomonas reinhardtii and Chlorella vulgaris and mixed cultured bacteria. Results showed that up to 80% of DON was bioavailable to algae or algae+bacteria inoculum while up to 60% of DON was biodegradable in all the samples. Results showed that C. reinhardtii and C. vulgaris can be used as a test species the same as S. capricornutum since there were no significant differences among these three algae species based on their ability to remove nitrogen species. Copyright © 2017. Published by Elsevier B.V.
Cascading effects of predator activity on tick-borne disease risk.
Hofmeester, Tim R; Jansen, Patrick A; Wijnen, Hendrikus J; Coipan, Elena C; Fonville, Manoj; Prins, Herbert H T; Sprong, Hein; van Wieren, Sipke E
2017-07-26
Predators and competitors of vertebrates can in theory reduce the density of infected nymphs (DIN)-an often-used measure of tick-borne disease risk-by lowering the density of reservoir-competent hosts and/or the tick burden on reservoir-competent hosts. We investigated this possible indirect effect of predators by comparing data from 20 forest plots across the Netherlands that varied in predator abundance. In each plot, we measured the density of questing Ixodes ricinus nymphs (DON), DIN for three pathogens, rodent density, the tick burden on rodents and the activity of mammalian predators. We analysed whether rodent density and tick burden on rodents were correlated with predator activity, and how rodent density and tick burden predicted DON and DIN for the three pathogens. We found that larval burden on two rodent species decreased with activity of two predator species, while DON and DIN for all three pathogens increased with larval burden on rodents, as predicted. Path analyses supported an indirect negative correlation of activity of both predator species with DON and DIN. Our results suggest that predators can indeed lower the number of ticks feeding on reservoir-competent hosts, which implies that changes in predator abundance may have cascading effects on tick-borne disease risk. © 2017 The Authors.
Monitoring of neonicotinoid pesticides in beekeeping.
Cicero, Nicola; Naccari, Clara; Cammilleri, Gaetano; Giangrosso, Giuseppe; Cicero, Antonello; Gervasi, Teresa; Tropea, Alessia; Albergamo, Ambrogina; Ferrantelli, Vincenzo
2017-06-01
The decline of pollinating species is correlated to the extensive use of neonicotinoids against pest insects for crop protection. In this study, the concentrations of neonicotinoid insecticides were determined in honeybees, honeycomb and honey samples, collected in Spring 2015 (blooming period) from different areas in Sicily (IT), to carry out an evaluation of bees products' safety and an overview of neonicotinoid contamination in beekeeping. The results obtained showed only the presence of clothianidin in bee samples and these concentrations don't represent a risk for bees' vitality and safety. The absence of residue in all honey samples, instead, showed the quality of bee products.
NASA Astrophysics Data System (ADS)
Asmala, E.; Autio, R.; Kaartokallio, H.; Pitkänen, L.; Stedmon, C. A.; Thomas, D. N.
2013-06-01
The microbial degradation of dissolved organic carbon and nitrogen (DOC, DON) was studied in three boreal estuaries with contrasting land use patterns (Kiiminkijoki - natural forest and peatland; Kyrönjoki - agricultural; Karjaanjoki - mixed/urban). Bioassays conducted for 12-18 days were used in 3 seasons at in situ temperatures. Besides the bulk parameters, a suite of dissolved organic matter (DOM) quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM and the molecular weight of DOM. Bioavailable DOC and DON pools varied significantly between the estuaries, from 7.9% in Kiiminkijoki to 10.6% in Karjaanjoki and from 5.5% in Kiiminkijoki to 21.9% in Kyrönjoki, respectively. DOM originating from catchment dominated by natural forests and peatlands had the lowest DOC and DON degradation rates, as well as the lowest proportions of biodegradable DOC and DON. A greater proportion of agricultural land in the catchment increased the bioavailability of DON, but not the bioavailability of DOC. Also DOM quality varied significantly between the estuaries, and DOM originating from the agricultural Kyrönjoki catchment sustained higher DOC and DON degradation rates and higher bacterial growth efficiency (BGE) compared to those of the natural forest and peat dominated Kiiminkijoki catchment. The quality of DOM, indicated by differences in CDOM, fluorescent DOM and molecular weight, varied between estuaries with differing land use and was concluded to be major driver of BGE of these systems and thereafter to the microbial CO2 fluxes from the estuaries. The differences in BGE resulted in a 5-fold differences in the calculated daily bacterial CO2-emissions between the study estuaries due to bacterial activity, ranging from 40 kg C d-1 in Karjaanjoki estuary to 200 kg C d-1 in Kyrönjoki estuary. Two of the study systems (Karjaanjoki, mixed land use; Kyrönjoki, intensive agriculture) in which the DOM pool had lower DOC : DON ratio, smaller molecular weight and higher CDOM absorption spectral slope values resulted in higher proportion of the initial DOC and DON being transferred to microbial growth and therefore to the pelagic food web. The pristine, peatland and forest-dominated Kiiminkijoki catchment had the lowest BGE, and therefore proportionally highest CO2 fluxes. The slope coefficient S275-295 was a good proxy of molecular weight across estuaries and seasons, and also for different diagenetic stages of DOM during biological degradation.
Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng
2014-11-01
A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.
The Don'ts and Don'ts of Teaching
ERIC Educational Resources Information Center
Rubinstein, Gary
2012-01-01
Gary Rubinstein doesn't buy the adage that rules--for students or for teachers--must be stated positively, without don'ts or nots. So he lists 10 rules for things teachers must not do in their first years. Tops on his list is "Don't try to teach too much in one day," which Rubinstein says is a common mis-step because teacher preparation programs,…
Palliative Care: Increasing the Quality of Life for Patients and Families...
... on. Feature: Palliative Care Palliative Care: Increasing the quality of life for patients and families… Past Issues / Spring 2014 ... you as comfortable as possible and improve your quality of life. You don't have to be in hospice ...
Winter, Mark; Koopmann, Birger; Döll, Katharina; Karlovsky, Petr; Kropf, Ute; Schlüter, Klaus; von Tiedemann, Andreas
2013-07-01
Factors limiting trichothecene contamination of mature wheat grains after Fusarium infection are of major interest in crop production. In addition to ear infection, systemic translocation of deoxynivalenol (DON) may contribute to mycotoxin levels in grains after stem base infection with toxigenic Fusarium spp. However, the exact and potential mechanisms regulating DON translocation into wheat grains from the plant base are still unknown. We analyzed two wheat cultivars differing in susceptibility to Fusarium head blight (FHB), which were infected at the stem base with Fusarium culmorum in climate chamber experiments. Fungal DNA was found only in the infected stem base tissue, whereas DON and its derivative, DON-3-glucoside (D3G), were detected in upper plant parts. Although infected stem bases contained more than 10,000 μg kg⁻¹ dry weight (DW) of DON and mean levels of DON after translocation in the ear and husks reached 1,900 μg kg⁻¹ DW, no DON or D3G was detectable in mature grains. D3G quantification revealed that DON detoxification took mainly place in the stem basis, where ≤ 50% of DON was metabolized into D3G. Enhanced expression of a gene putatively encoding a uridine diphosphate-glycosyltransferase (GenBank accession number FG985273) was observed in the stem base after infection with F. culmorum. Resistance to F. culmorum stem base infection, DON glycosylation in the stem base, and mycotoxin translocation were unrelated to cultivar resistance to FHB. Histological studies demonstrated that the vascular transport of DON labeled with fluorescein as a tracer from the peduncle to the grain was interrupted by a barrier zone at the interface between grain and rachilla, formerly described as "xylem discontinuity". This is the first study to demonstrate the effective control of influx of systemically translocated fungal mycotoxins into grains at the rachilla-seed interface by the xylem discontinuity tissue in wheat ears.
USDA-ARS?s Scientific Manuscript database
The significant and consistent reduction of Fusarium head blight (FHB) and deoxynivalenol (DON) contamination of wheat and barley remains elusive though research results indicate that utilizing an integrated pest management approach achieves the greatest level of disease/toxin control. The use of y...
Guidelines: the do's, don'ts and don't knows of feedback for clinical education.
Lefroy, Janet; Watling, Chris; Teunissen, Pim W; Brand, Paul
2015-12-01
The guidelines offered in this paper aim to amalgamate the literature on formative feedback into practical Do's, Don'ts and Don't Knows for individual clinical supervisors and for the institutions that support clinical learning. The authors built consensus by an iterative process. Do's and Don'ts were proposed based on authors' individual teaching experience and awareness of the literature, and the amalgamated set of guidelines were then refined by all authors and the evidence was summarized for each guideline. Don't Knows were identified as being important questions to this international group of educators which if answered would change practice. The criteria for inclusion of evidence for these guidelines were not those of a systematic review, so indicators of strength of these recommendations were developed which combine the evidence with the authors' consensus. A set of 32 Do and Don't guidelines with the important Don't Knows was compiled along with a summary of the evidence for each. These are divided into guidelines for the individual clinical supervisor giving feedback to their trainee (recommendations about both the process and the content of feedback) and guidelines for the learning culture (what elements of learning culture support the exchange of meaningful feedback, and what elements constrain it?) Feedback is not easy to get right, but it is essential to learning in medicine, and there is a wealth of evidence supporting the Do's and warning against the Don'ts. Further research into the critical Don't Knows of feedback is required. A new definition is offered: Helpful feedback is a supportive conversation that clarifies the trainee's awareness of their developing competencies, enhances their self-efficacy for making progress, challenges them to set objectives for improvement, and facilitates their development of strategies to enable that improvement to occur.
Review of mechanisms of deoxynivalenol-induced anorexia: The role of gut microbiota.
Peng, Zhao; Chen, Liangkai; Xiao, Jie; Zhou, Xiaoqi; Nüssler, Andreas K; Liu, Liegang; Liu, Jinping; Yang, Wei
2017-09-01
Deoxynivalenol (DON) is one of the most important mycotoxins in cereal-based foods or other food productions, produced by Fusarium species. Because of the high occurrence of DON in food combined with vast consumption of cereals and grain worldwide, the DON-contaminated food is a very harmful factor for human and animal health. DON has been reported to induce anorexia at lower or chronic doses in animal models. However, further researches for DON-induced anorexia are limited. Previous publications demonstrated a close link between Bacteroidetes and Firmicutes, two kinds of gut microbiota, with weight loss and the effect of low administration of DON on neurotransmitters in the frontal cortex, cerebellum, hypothalamus, hippocampus and pons/medulla. These data are similar to other studies, which show selective 5HT α receptor agonists apparently causing hyperphagia whereas 5HT 1β agonists appear to induce anorexia. Thus, the neurochemical effects of lower DON exposure can be as a result of peripheral toxicological events such as emesis, which overwhelmed its more subtle feed refusal activity. Besides, changes in the microbiota have an impact on stress-related behaviors like anxiety and depression, which can lead to weight loss through decreased feed intake. Gut dysbiosis is also associated with brain dysfunction and with behavioral changes. These conclusions illustrate as well a potential explanation for DON-induced anorexia.In this review, we summarize information about DON-induced anorexia from previous studies and provide our opinion for future investigations that could establish a link between gut microbiota, neurotransmitters, anorexia and weight loss under the DON exposure. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Osborne, Daniel M; Podgorski, David C; Bronk, Deborah A; Roberts, Quinn; Sipler, Rachel E; Austin, David; Bays, James S; Cooper, William T
2013-04-30
Dissolved organic nitrogen (DON) represents a significant fraction of the total dissolved nitrogen pool in most surface waters and serves as an important nitrogen source for phytoplankton and bacteria. As with other natural organic matter mixtures, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) is the only technique currently able to provide molecular composition information on DON. Although electrospray ionization (ESI) is the most commonly used ionization method, it is not very efficient at ionizing most DON components. Positive- and negative-mode atmospheric pressure photoionization (APPI) coupled with ultrahigh resolution FTICRMS at 9.4 T were compared for determining the composition of DON before and after bioassays. Toluene was added as the APPI dopant to the solid-phase DON extracts, producing a final sample that was 90% methanol and 10% toluene by volume. Positive-mode (+) APPI proved significantly more efficient at ionizing DON; 62% of the formulas that could be assigned in the positive-ion spectrum contained at least one nitrogen atom vs. 31% in the negative-ion spectrum. FTICR mass spectral data indicated that most of the refractory DON compounds (i.e. nonreactive during the 5 days of the incubation) had molecular compositions representative of lignin-like molecules, while lipid-like and protein-like molecules comprised most of the small reactive component of the DON pool. From these data we conclude that (+) APPI FTICRMS is a promising technique for describing the molecular composition of DON mixtures. The technique is particularly valuable in assessing the bioavailability of individual components of DON when combined with bioassays. Copyright © 2013 John Wiley & Sons, Ltd.
Brandon, A.L.; Gibson, D.J.; Middleton, B.A.
2004-01-01
Researchers studying invasive plants often concentrate their efforts on predictive models thought to allow invasive plants to dominate native landscapes. However, if an invasive is already well established then experimental research is necessary to provide the information necessary to effectively manage the species. Prescribing appropriate management strategies without prior experimental research may not only be ineffective but also may squander limited resources or have the unintended consequence of furthering spread. Lespedeza cuneata (Dum. Cours.) G. Don. is a well-established invasive plant of old fields and tall-grass prairie in the US. Managers suspect this species shades-out native plants and this is proposed as its primary mechanism for dominance. Using field experiments we tested probable factors allowing the speices to establish itself and once established, interfere in old field plant communities. We also examined the effects of two common anthropogenic disturbances (mowing and nutrients) on L. cuneata growth and establishment. When L. cuneata was treated (clipping, herbicide and stem pull-back) there was a significant increase in species richness and native speices cover. Stem density and canopy cover of L. cuneata increased significantly with mowing frequency but decreased with nutrient input. We suggest that mowing benefits L. cuneata while also hindering woody competition. Results also indicate L. cuneata is less prevalent on nutrient enriched soils than on unamended soil. Lespedeza cuneata appears to suppress native plants by shading them out and it can subsequently take over grassland communities. Since it has a varying response to human induced disturbances and may actually benefit from mowing, land managers should be cautious when utilizing this as a management tool.
The rise of repeal: policy entrepreneurship and Don't Ask, Don't Tell.
Neff, Christopher L; Edgell, Luke R
2013-01-01
We report on policy entrepreneurship by Servicemembers Legal Defense Network (SLDN) and how its legislative strategies used mini-windows of opportunity to shift Capitol Hill perspectives of Don't Ask, Don't Tell (DADT) from political plutonium to an emerging issue requiring a second look. Four phases in the legislative history of DADT are identified: radioactive, contested, emerging, and viable. In all, this article argues that SLDN's entrepreneurship focused on contesting congressional sensibilities to wait or defer on repeal, maintained that every discharge was damaging and transitioned toward a post-repeal mind set. Finally, we illustrate the importance of these transitions by comparing SLDN's 2004 estimated vote count for the introduction of the Military Readiness Enhancement Act with the final 2010 voting results on the Don't Ask, Don't Tell Repeal Act.
Deoxynivalenol: rationale for development and application of a urinary biomarker.
Turner, Paul C; Burley, Victoria J; Rothwell, Joseph A; White, Kay L M; Cade, Janet E; Wild, Christopher P
2008-07-01
Mycotoxins are common dietary contaminants in most regions of the world. The frequency of exposure to the various families of mycotoxins is often dependent on geographic location, national wealth and related agricultural and regulatory infrastructure, combined with diversity of diet and degree of food sufficiency. Deoxynivalenol (DON) is a Fusarium mycotoxin that frequently contaminates wheat, corn and barley in temperate regions. A number of acute poisoning incidences have been linked to DON-contaminated foods and chronic exposure to lower levels of DON has been predicted in many regions. DON is a potent animal toxin and exposure in humans may cause gastroenteritis, growth faltering and immune toxicity. An ability to conduct accurate exposure assessment at the individual level is required to fully understand the potential health consequences for humans. To date, such exposure biomarkers have been lacking for many important mycotoxins, including DON. To better assess exposure to DON at the individual level, we have developed a robust urinary assay, incorporating immunoaffinity column (IAC) enrichment and LC-MS detection. Further refinement of this urinary assay, by inclusion of (13)C-DON as an internal standard, was then undertaken and tested within the UK. DON was frequently observed in urine and was significantly associated with cereal intake. A dietary intervention study demonstrated that avoiding wheat in the diet markedly reduced urinary levels of DON. This biomarker requires further validation but our initial data suggest it may provide a useful tool in epidemiological investigations of the potential health consequences of this common environmental toxin.
Capó, Xavier; Tejada, Silvia; Box, Antonio; Deudero, Salud; Sureda, Antoni
2015-09-01
Several biomarkers were determined to evaluate the effects of the Don Pedro spillage on the digestive gland of the fan mussel Pinna nobilis (Linnaeus, 1758). Two areas in the southeast of Ibiza Island (Western Mediterranean) were selected; one affected by the oil spill (Talamanca) and one did not affected (Espardell). Mussels were sampled one, six and twelve months after the accident. PAH levels were elevated in P. nobilis from the affected area one month after the accident and, although they were decreasing gradually, they were always higher than in the control area. An increase in enzyme activities, reduced glutathione and lipid peroxidation were evidenced one month after the spillage, with no changes in acetylcholinesterase. All biomarkers progressively returned to basal levels one year after the oil spill. In conclusion, the Don Pedro oil spill induced an acute situation of oxidative stress on P. nobilis that were recovered twelve months later. Copyright © 2015 Elsevier Ltd. All rights reserved.
News from the CFHT/ESPaDOnS spectropolarimeter
NASA Astrophysics Data System (ADS)
Moutou, C.; Malo, L.; Manset, N.; Selliez-Vandernotte, L.; Desrochers, M.-E.
2015-12-01
The ESPaDOnS spectropolarimeter has been in use on the Canada-France-Hawaii Telescope (CFHT) since 2004, for studying stars, galactic objects and planets. ESPaDOnS is used in queued service observing mode since 2008, which allows an optimization of the science outcome. In this article, we summarize the new functionalities and analyses made on ESPaDOnS operations and data for the present and future users. These modifications include: signal-to-noise ratio based observing, radial velocity nightly drifts, the OPERA pipeline under development, the measurement of H2O content in the Maunakea sky, and the use of ESPaDOnS with the neighbour telescope Gemini.
... you don't drink enough water during hot weather — especially if you are exercising vigorously. You can ... it's important to increase water intake during hot weather or when you're ill. The signs and ...
ERIC Educational Resources Information Center
Gans, Curtis; And Others
1988-01-01
Discusses several reasons for decreasing voter participation in the United States, specifically focusing on lack of voter participation by youth. Highlights recommendations for increasing young voter turnout. Presents three voting activity lesson plans for middle school students and three activities entitled "Increasing Participation in…
Song, Yang; Breider, Florian; Ma, Jun; von Gunten, Urs
2017-10-01
In this study, nitrate formation from ammonium and/or dissolved organic nitrogen (DON) was investigated as a novel surrogate parameter to evaluate the abatement of micropollutants during ozonation of synthetic waters containing natural organic matter (NOM) isolates, a natural water and secondary wastewater effluents. Nitrate formation during ozonation was compared to the changes in UV absorbance at 254 nm (UVA 254 ) including the effect of pH. For low specific ozone doses UVA 254 was abated more efficiently than nitrate was formed. This is due to a relatively slow rate-limiting step for nitrate formation from the reaction between ozone and a proposed nitrogen-containing intermediate. This reaction cannot compete with the fast reactions between ozone and UV-absorbing moieties (e.g., activated aromatic compounds). To further test the kinetics of nitrate formation, two possible intermediates formed during ozonation of DON were tested. At pH 7, nitrate was formed during ozonation of acetone oxime and methyl nitroacetate with second-order rate constants of 256.7 ± 4.7 M -1 s -1 and 149.5 ± 5.8 M -1 s -1 , respectively. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) was investigated for specific ozone doses ≤1.53 mgO 3 /mgDOC and its efficiency depended strongly on the reactivity of the selected compounds with ozone. The relative abatement of micropollutants (i.e., EE2 and CBZ) with high ozone reactivity showed linear relationships with nitrate formation. The abatement of micropollutants with intermediate-low ozone reactivity (BZF, IBU, and pCBA) followed one- and two-phase behaviors relative to nitrate formation during ozonation of water samples containing high and low concentrations of nitrate-forming DON, respectively. During ozonation of a wastewater sample, the N-nitrosodimethylamine formation potential (NDMA-FP) during chloramination decreased with increasing specific ozone doses. A good correlation was obtained between NDMA-FP abatement and nitrate formation. Therefore, nitrate formation after pre-ozonation may be a useful parameter to estimate the reduction of the NDMA-FP during post-chloramination. Overall, the results of this study suggest that nitrate formation (possibly in combination with UVA 254 abatement) during ozonation of DON-containing waters may be a good surrogate for assessing the abatement of micropollutants and the NDMA-FP. Copyright © 2017 Elsevier Ltd. All rights reserved.
Systemic Growth of F. graminearum in Wheat Plants and Related Accumulation of Deoxynivalenol
Moretti, Antonio; Panzarini, Giuseppe; Somma, Stefania; Campagna, Claudio; Ravaglia, Stefano; Logrieco, Antonio F.; Solfrizzo, Michele
2014-01-01
Fusarium head blight (FHB) is an important disease of wheat worldwide caused mainly by Fusarium graminearum (syn. Gibberella zeae). This fungus can be highly aggressive and can produce several mycotoxins such as deoxynivalenol (DON), a well known harmful metabolite for humans, animals, and plants. The fungus can survive overwinter on wheat residues and on the soil, and can usually attack the wheat plant at their point of flowering, being able to infect the heads and to contaminate the kernels at the maturity. Contaminated kernels can be sometimes used as seeds for the cultivation of the following year. Poor knowledge on the ability of the strains of F. graminearum occurring on wheat seeds to be transmitted to the plant and to contribute to the final DON contamination of kernels is available. Therefore, this study had the goals of evaluating: (a) the capability of F. graminearum causing FHB of wheat to be transmitted from the seeds or soil to the kernels at maturity and the progress of the fungus within the plant at different growth stages; (b) the levels of DON contamination in both plant tissues and kernels. The study has been carried out for two years in a climatic chamber. The F. gramineraum strain selected for the inoculation was followed within the plant by using Vegetative Compatibility technique, and quantified by Real-Time PCR. Chemical analyses of DON were carried out by using immunoaffinity cleanup and HPLC/UV/DAD. The study showed that F. graminearum originated from seeds or soil can grow systemically in the plant tissues, with the exception of kernels and heads. There seems to be a barrier that inhibits the colonization of the heads by the fungus. High levels of DON and F. graminearum were found in crowns, stems, and straw, whereas low levels of DON and no detectable levels of F. graminearum were found in both heads and kernels. Finally, in all parts of the plant (heads, crowns, and stems at milk and vitreous ripening stages, and straw at vitreous ripening), also the accumulation of significant quantities of DON-3-glucoside (DON-3G), a product of DON glycosylation, was detected, with decreasing levels in straw, crown, stems and kernels. The presence of DON and DON-3G in heads and kernels without the occurrence of F. graminearum may be explained by their water solubility that could facilitate their translocation from stem to heads and kernels. The presence of DON-3G at levels 23 times higher than DON in the heads at milk stage without the occurrence of F. graminearum may indicate that an active glycosylation of DON also occurs in the head tissues. Finally, the high levels of DON accumulated in straws are worrisome since they represent additional sources of mycotoxin for livestock. PMID:24727554
NASA Astrophysics Data System (ADS)
Silva, S. R.; Kendall, C.; Bemis, B.; Wankel, S.; Bergamaschi, B.; Kratzer, C.; Dileanis, P.; Erickson, D.; Avery, E.; Paxton, K.
2002-12-01
Fish migration through the deep-water channel in the San Joaquin River at Stockton, California is inhibited by low oxygen concentrations during the summer months. The cause for this condition appears to be stagnation and decomposition of algae with attendant oxygen consumption. Algae growth in the San Joaquin River is promoted by nutrients entering the river mainly in the form of nitrate. Possible significant sources of nitrate include soil, fertilizer from agriculture, manure from dairy operations, and N derived from municipal sewage. A 2000 CALFED pilot study investigated the sources and cycling of nitrate at four sites along the San Joaquin River upstream of Stockton using the carbon and nitrogen isotopes of total dissolved and particulate organic matter, together with hydrological measurements and various concentration data, including chlorophyll-a. The nitrate source, its relationship to phytoplankton, and the effect of the nitrate source and cycling on the N isotopic composition of dissolved and particulate organic matter were the primary concerns of the study. The d15N values of dissolved organic nitrogen (DON) were used as a proxy for nitrate d15N because nitrate comprised about 90% of DON. Chlorophyll-a and C:N ratios indicated that the particulate organic matter (POM) consisted largely of plankton and therefore the d15N of POM was used as a proxy for the d15N of plankton. A tentative interpretation of the pilot study was that nitrate was a major nutrient for the plankton and the nitrate was of anthropogenic origin, possibly sewage or animal waste. To test these assumptions and interpretations, we are currently analyzing a set of samples collected in 2001. In addition to the previous sample types, a subset of samples will be measured directly for nitrate d15N to assess the validity of using d15N of DON as a proxy for nitrate.
Fitness for Kids Who Don't Like Sports
... Español Fitness for Kids Who Don't Like Sports KidsHealth / For Parents / Fitness for Kids Who Don' ... look for something new. Still Shopping for a Sport Some kids haven't found the right sport. ...
... and increasing your risk of infection and poor wound healing. Immunosuppression. If you have an infection with the ... putting you at risk of infection and slow wound healing. Don't use tobacco. The chronic use of ...
Li, Yuqin; Wang, Hao; Jia, Baoxiu; Liu, Caihong; Liu, Ke; Qi, Yongxiu; Hu, Zhide
2013-01-01
The mechanism of interaction between deoxynivalenol (DON) and human serum albumin (HSA) was studied using spectroscopic methods including fluorescence spectra, UV-VIS, Fourier transform infrared (FT-IR) and circular dichroism (CD). The quenching mechanism was investigated in terms of the association constants, number of binding sites and basic thermodynamic parameters. The distance between the HSA donor and the acceptor DON was 2.80 nm as derived from fluorescence resonance energy transfer. The secondary structure compositions of free HSA and its DON complexes were estimated by the FT-IR spectra. Alteration of the secondary protein structure in the presence of DON was confirmed by UV-VIS and CD spectroscopy. Molecular modelling revealed that a DON-protein complex was stabilised by hydrophobic forces and hydrogen bonding. It was potentially useful for elucidating the toxigenicity of DON when combined with biomolecular function effect, transmembrane transport, toxicological testing and the other experiments.
Grösbacher, Michael; Eckert, Dominik; Cirpka, Olaf A; Griebler, Christian
2018-06-01
Aromatic hydrocarbons belong to the most abundant contaminants in groundwater systems. They can serve as carbon and energy source for a multitude of indigenous microorganisms. Predictions of contaminant biodegradation and microbial growth in contaminated aquifers are often vague because the parameters of microbial activity in the mathematical models used for predictions are typically derived from batch experiments, which don't represent conditions in the field. In order to improve our understanding of key drivers of natural attenuation and the accuracy of predictive models, we conducted comparative experiments in batch and sediment flow-through systems with varying concentrations of contaminant in the inflow and flow velocities applying the aerobic Pseudomonas putida strain F1 and the denitrifying Aromatoleum aromaticum strain EbN1. We followed toluene degradation and bacterial growth by measuring toluene and oxygen concentrations and by direct cell counts. In the sediment columns, the total amount of toluene degraded by P. putida F1 increased with increasing source concentration and flow velocity, while toluene removal efficiency gradually decreased. Results point at mass transfer limitation being an important process controlling toluene biodegradation that cannot be assessed with batch experiments. We also observed a decrease in the maximum specific growth rate with increasing source concentration and flow velocity. At low toluene concentrations, the efficiencies in carbon assimilation within the flow-through systems exceeded those in the batch systems. In all column experiments the number of attached cells plateaued after an initial growth phase indicating a specific "carrying capacity" depending on contaminant concentration and flow velocity. Moreover, in all cases, cells attached to the sediment dominated over those in suspension, and toluene degradation was performed practically by attached cells only. The observed effects of varying contaminant inflow concentration and flow velocity on biodegradation could be captured by a reactive-transport model. By monitoring both attached and suspended cells we could quantify the release of new-grown cells from the sediments to the mobile aqueous phase. Studying flow velocity and contaminant concentrations as key drivers of contaminant transformation in sediment flow-through microcosms improves our system understanding and eventually the prediction of microbial biodegradation at contaminated sites.
Mixing regime as a key factor to determine DON formation in drinking water biological treatment.
Lu, Changqing; Li, Shuai; Gong, Song; Yuan, Shoujun; Yu, Xin
2015-11-01
Dissolved organic nitrogen (DON) can act as precursor of nitrogenous disinfection by-products formed during chlorination disinfection. The performances of biological fluidized bed (continuous stirred tank reactor, CSTR) and bio-ceramic filters (plug flow reactor, PFR) were compared in this study to investigate the influence of mixing regime on DON formation in drinking water treatment. In the shared influent, DON ranged from 0.71mgL(-1) to 1.20mgL(-1). The two biological fluidized bed reactors, named BFB1 (mechanical stirring) and BFB2 (air agitation), contained 0.12 and 0.19mgL(-1) DON in their effluents, respectively. Meanwhile, the bio-ceramic reactors, labeled as BCF1 (no aeration) and BCF2 (with aeration), had 1.02 and 0.81mgL(-1) DON in their effluents, respectively. Comparative results showed that the CSTR mixing regime significantly reduced DON formation. This particular reduction was further investigated in this study. The viable/total microbial biomass was determined with propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) and qPCR, respectively. The results of the investigation demonstrated that the microbes in BFB2 had higher viability than those in BCF2. The viable bacteria decreased more sharply than the total bacteria along the media depth in BCF2, and DON in BCF2 accumulated in the deeper media. These phenomena suggested that mixing regime determined DON formation by influencing the distribution of viable, total biomass, and ratio of viable biomass to total biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.
Department of the Navy Transformation Plan: FY 2014-2016
alignment don business priorities (fy14-16) strategic opportunities for transformation don institutional Closing... summary don transformation model Download PDF Submit an Idea Department of the Navy Transformation Plan FY 2014-2016
Lutz, Matthias P.; Feichtinger, Georg; Défago, Geneviève; Duffy, Brion
2003-01-01
Mycotoxin contamination associated with head blight of wheat and other grains caused by Fusarium culmorum and F. graminearum is a chronic threat to crop, human, and animal health throughout the world. One of the most important toxins in terms of human exposure is deoxynivalenol (DON) (formerly called vomitoxin), an inhibitor of protein synthesis with a broad spectrum of toxigenicity against animals. Certain Fusarium toxins have additional antimicrobial activity, and the phytotoxin fusaric acid has recently been shown to modulate fungus-bacterium interactions that affect plant health (Duffy and Défago, Phytopathology 87:1250-1257, 1997). The potential impact of DON on Fusarium competition with other microorganisms has not been described previously. Any competitive advantage conferred by DON would complicate efforts to control Fusarium during its saprophytic growth on crop residues that are left after harvest and constitute the primary inoculum reservoir for outbreaks in subsequent plantings. We examined the effect of the DON mycotoxin on ecological interactions between pathogenic Fusarium and Trichoderma atroviride strain P1, a competitor fungus with biocontrol activity against a wide range of plant diseases. Expression of the Trichoderma chitinase genes, ech42 and nag1, which contribute to biocontrol activity, was monitored in vitro and on crop residues of two maize cultivars by using goxA reporter gene fusions. We found that DON-producing F. culmorum and F. graminearum strains repressed expression of nag1-gox. DON-negative wild-type Fusarium strains and a DON-negative mutant with an insertional disruption in the tricothecene biosynthetic gene, tri5, had no effect on antagonist gene expression. The role of DON as the principal repressor above other pathogen factors was confirmed. Exposure of Trichoderma to synthetic DON or to a non-DON-producing Fusarium mutant resulted in the same level of nag1-gox repression as the level observed with DON-producing Fusarium. DON repression was specific for nag1-gox and had no effect, either positive or negative, on expression of another key chitinase gene, ech42. This is the first demonstration that a target pathogen down-regulates genes in a fungal biocontrol agent, and our results provide evidence that mycotoxins have a novel ecological function as factors in Fusarium competitiveness. PMID:12788701
ERIC Educational Resources Information Center
Thetford, Terry
2010-01-01
With most school districts all over the country scrambling to cover educational funding shortfalls and increasing class sizes, at least one state governor is publicly questioning why all school districts don't contract custodial services. School district administrators are facing the increasing budget cuts pressure to consider (or reconsider)…
Walvoord, Michelle Ann; Striegl, Robert G.
2007-01-01
Arctic and subarctic watersheds are undergoing climate warming, permafrost thawing, and thermokarst formation resulting in quantitative shifts in surface water - groundwater interaction at the basin scale. Groundwater currently comprises almost one fourth of Yukon River water discharged to the Bering Sea and contributes 5-10% of the dissolved organic carbon (DOC) and nitrogen (DON) and 35-45% of the dissolved inorganic carbon (DIC) and nitrogen (DIN) loads. Long-term strearnflow records (>30 yrs) of the Yukon River basin indicate a general upward trend in groundwater contribution to streamflow of 0.7-0.9%/yr and no pervasive change in annual flow. We propose that the increases in groundwater contributions were caused predominately by climate warming and permafrost thawing that enhances infiltration and supports deeper flowpaths. The increased groundwater fraction may result in decreased DOC and DON and increased DIC and DIN export when annual flow remains unchanged.
Effect of food processing on exposure assessment studies with mycotoxins.
Cano-Sancho, German; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia
2013-01-01
The goals of the present work were, on the one hand, to assess the effect of baking on the stability of zearalenone (ZEA) and deoxynivalenol (DON), as well as the transfer of DON from pasta to boiling water, and, on the other hand, to quantify the impact of DON depletion, during cooking of pasta, on overall exposure estimates. Therefore, the bread-making process was simulated on a pilot-plant scale by using naturally contaminated flour with DON and ZEA. Transfer of DON from pasta to water was evaluated at different boiling times. Pasta was prepared on a pilot-plant scale by using naturally contaminated durum wheat flour; subsequently, it was boiled simulating home cooking. The experiments examined the stability of DON and ZEA during the bread-making process, including fermentation with Saccharomyces cerevisiae and baking at 200°C. Our results showed a high transfer of DON from pasta to boiling water, reaching depletion levels of almost 75%, which correlated with levels found in water. Accordingly, these cooking depletion rates were computed through a stochastic exposure model to weight their impact on the final exposure estimates. Finally, statistically significant differences were found in most of the parameters and populations assessed, but these were not enough to consider the process as protective because the contribution of pasta to the overall DON intake was commonly low.
Wu, Wenda; Zhang, Haibin
2014-01-01
The trichothecene deoxynivalenol (DON), a foodborne mycotoxin found in grain-based foods, has been associated with human and animal food poisoning. Although induction of anorexia has been described as a hallmark of DON-induced toxicity in many animal species, the mechanistic basis for this adverse effect is not fully understood. The purpose of this research was to determine the role of two proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in DON-induced anorexia. In a nocturnal mouse food consumption model, DON-induced anorectic response occurred at 1 hr and lasted up to 6 hr. Similar anorectic effects were observed following acute administration of exogenous TNF-α and IL-1β. Oral exposure to DON at 5 mg/kg bw stimulated splenic and hepatic mRNA and plasma protein elevations of TNF-α and IL-1β that corresponded to anorexia induction. Pretreatment with the TNF-α receptor (TNFR) antagonist R-7050 dose-dependently attenuated both TNF-α- and DON-induced anorexia. While, the type 1 IL-1 receptor (IL-1R1) antagonist IL-1RA dose-dependently attenuated both IL-1β- and DON-induced anorexia. Taken together, the results suggest that both TNF-α and IL-1β play contributory role in anorexia induction following oral exposure to DON.
Assessment of heavy metals in sediments of the Don Hoi Lot area in the Mae Klong estuary, Thailand.
Pengthamkeerati, Patthra; Kornkanitnan, Narumol; Sawangarreruks, Suchat; Wanichacheva, Nantanit; Wainiphithapong, Chantana; Sananwai, Nipawan
2013-01-01
The status and seasonal variation of heavy metals in surface sediment were investigated at Don Hoi Lot, located in the Mae Klong estuary, Thailand. Results revealed that all the measured heavy metals, except Zn, in the sediments had lower concentrations than in other nearby estuaries. Only Zn may be of concern for potential negative effects on estuarine biota in the study area. With the exception of Fe, all the studied heavy metals showed seasonal variation, but the patterns were diverse. Organic matter and the clay fraction in sediments were good sinks for heavy metals, excluding Zn, while Fe and Mn were good catchers. Principal component analysis suggested that Zn might have different origins and/or mechanisms of transport, accumulation and circulation, compared with the other heavy metals studied. A better understanding of sources and the behavior of Zn would enhance the efficiency of the estuary management plan in this study area.
An extraterrestrial habitat on earth: The algal mat of Don Jaun Pond
NASA Astrophysics Data System (ADS)
Siegel, B. Z.; Siegel, S. M.; Chen, J.; Larock, P.
On the edge of Don Juan Pond in the Wright Valley of Antarctica lies a mat of mineral and detritus cemented by organic matter. In spite of a CaCl2 concentration of about 33% (w/v), the mat contains Oscillatoria and other cyanobacteria, unicellular forms, colonial forms rich in carotenoids, and diatoms. Bacteria are rare; fungal filaments are not. Oscillatoria showed motility, but only at temperatures <10°C. Acetone extracts of the mat and nearby muds yielded visible spectra similar to those of laboratory grown O. sancta, with 50- to 70-fold molar ratio of chlorophyll a to b. Although rare, tardigrades were also found. The algal mat had enzymatic activities characteristic of peroxidase, catalase, dehydrogenase, and amylase. Cellulose, chitin, protein, lipid and ATP were present. Previously, algae in the Wright Valley have been described in melt water, not in the brine itself. Wright Valley has been used as a near sterile Martian model. It obviously contains an array of hardy terrestrial organisms.
An extraterrestrial habitat on Earth: the algal mat of Don Juan [correction of Jaun] Pond.
Siegel, B Z; Siegel, S M; Chen, J; LaRock, P
1983-01-01
On the edge of Don Juan Pond in the Wright Valley of Antarctica lies a mat of mineral and detritus cemented by organic matter. In spite of a CaCl2 concentration of about 33% (w/v), the mat contains Oscillatoria and other cyanobacteria, unicellular forms, colonial forms rich in carotenoids, and diatoms. Bacteria are rare; fungal filaments are not. Oscillatoria showed motility but only at temperatures <10 degrees C. Acetone extracts of the mat and nearby muds yielded visible spectra similar to those of laboratory grown O. sancta, with 50- to 70-fold molar ratio of chlorophyll a to b. Although rare, tardigrades were also found. The algal mat had enzymatic activities characteristic of peroxidase, catalase, dehydrogenase, and amylase. Cellulose, chitin, protein, lipid and ATP were present. Previously, algae in the Wright Valley have been described in melt water, not in the brine itself. Wright Valley has been used as a near sterile Martian model. It obviously contains an array of hardy terrestrial organisms.
Vyas, Falguni S; Hargreaves, Alan J; Bonner, Philip L R; Boocock, David J; Coveney, Clare; Dickenson, John M
2016-05-01
The regulation of tissue transglutaminase (TG2) activity by the GPCR family is poorly understood. In this study, we investigated the modulation of TG2 activity by the A1 adenosine receptor in cardiomyocyte-like H9c2 cells. H9c2 cells were lysed following stimulation with the A1 adenosine receptor agonist N(6)-cyclopentyladenosine (CPA). Transglutaminase activity was determined using an amine incorporating and a protein cross linking assay. TG2 phosphorylation was assessed via immunoprecipitation and Western blotting. The role of TG2 in A1 adenosine receptor-induced cytoprotection was investigated by monitoring hypoxia-induced cell death. CPA induced time and concentration-dependent increases in amine incorporating and protein crosslinking activity of TG2. CPA-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Responses to CPA were blocked by PKC (Ro 31-8220), MEK1/2 (PD 98059), p38 MAPK (SB 203580) and JNK1/2 (SP 600125) inhibitors and by removal of extracellular Ca(2+). CPA triggered robust increases in the levels of TG2-associated phosphoserine and phosphothreonine, which were attenuated by PKC, MEK1/2 and JNK1/2 inhibitors. Fluorescence microscopy revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (Histone H4) and novel (Hexokinase 1) protein substrates for TG2. CPA pre-treatment reversed hypoxia-induced LDH release and decreases in MTT reduction. TG2 inhibitors R283 and Z-DON attenuated A1 adenosine receptor-induced cytoprotection. TG2 activity was stimulated by the A1 adenosine receptor in H9c2 cells via a multi protein kinase dependent pathway. These results suggest a role for TG2 in A1 adenosine receptor-induced cytoprotection. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Onodera, S.; Saito, M.; Maruyama, Y.; Jin, G.; Miyaoka, K.; Shimizu, Y.
2013-12-01
In coastal megacities, sever groundwater depression and water pollution occurred. These impacts affected to river environment change. Especially, the river mouth area has been deposited the polluted matters. These areas have characteristics of water level fluctuation which causes river water-groundwater interaction and the associated change in dynamics of nutrients. However, these effects on the nutrient transport in tidal reaches and nutrient load to the sea have not been fully evaluated in previous studies. Therefore, we aimed to clarify the characteristics of the nutrient transport with the river water-groundwater interaction in the tidal river of Osaka metropolitan city. We conducted the field survey from the river mouth to the 7km upstream area of Yamato River, which has a length of 68km and a watershed area of 1070 km2. Spatial variations in radon (222Rn) concentrations and the difference of hydraulic potential between river waters and the pore waters suggest that the groundwater discharges to the river channel in the upstream area. In contrast, the river water recharged into the groundwater near the river mouth area. It may be caused by the lowering of groundwater level associated with the excess abstraction of groundwater in the urban area. The result also implies the seawater intrusion would accelerate the salinization of groundwater. The spatial and temporal variations in nutrient concentrations indicate that nitrate-nitrogen (NO3-N) concentrations changed temporally and it negative correlated with dissolved organic nitrogen (DON) concentrations. Inorganic phosphorous (PO4-P) concentrations showed the increasing trend with the increase of the river water level. Based on the mass balance, nutrient reproduction from the river bed was suggested in tidal reach. That was estimated to be 10 % of total nitrogen and 3% of phosphorus loads from the upstream.
32 CFR 701.103 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DOCUMENTS AFFECTING THE PUBLIC DON Privacy Program § 701.103 Applicability. (a) DON activities. Applies to... contractors, vendors, and other entities that develop, procure, or use Information Technology (IT) systems....privacy.navy.mil (Admin Tools)). (5) DON activities must furnish PA Program guidance to their personnel...
Moore, John R; Watt, Michael S
2015-08-01
Wind is the major abiotic disturbance in New Zealand's planted forests, but little is known about how the risk of wind damage may be affected by future climate change. We linked a mechanistic wind damage model (ForestGALES) to an empirical growth model for radiata pine (Pinus radiata D. Don) and a process-based growth model (cenw) to predict the risk of wind damage under different future emissions scenarios and assumptions about the future wind climate. The cenw model was used to estimate site productivity for constant CO2 concentration at 1990 values and for assumed increases in CO2 concentration from current values to those expected during 2040 and 2090 under the B1 (low), A1B (mid-range) and A2 (high) emission scenarios. Stand development was modelled for different levels of site productivity, contrasting silvicultural regimes and sites across New Zealand. The risk of wind damage was predicted for each regime and emission scenario combination using the ForestGALES model. The sensitivity to changes in the intensity of the future wind climate was also examined. Results showed that increased tree growth rates under the different emissions scenarios had the greatest impact on the risk of wind damage. The increase in risk was greatest for stands growing at high stand density under the A2 emissions scenario with increased CO2 concentration. The increased productivity under this scenario resulted in increased tree height, without a corresponding increase in diameter, leading to more slender trees that were predicted to be at greater risk from wind damage. The risk of wind damage was further increased by the modest increases in the extreme wind climate that are predicted to occur. These results have implications for the development of silvicultural regimes that are resilient to climate change and also indicate that future productivity gains may be offset by greater losses from disturbances. © 2015 John Wiley & Sons Ltd.
Plagiarism: What Don't They Know?
ERIC Educational Resources Information Center
Voelker, Troy A.; Love, Leonard G.; Pentina, Iryna
2012-01-01
The present economic environment is beneficial for universities and schools of business that are experiencing significant enrollment increases. But just as the U.S. economy is suffering from an economic recession, universities increasingly suffer from an integrity recession. Student academic misconduct, particularly plagiarism, is at an all-time…
Decker, Frederic H; Castle, Nicholas G
2009-01-01
Research indicates that the length of time a nursing home administrator (NHA) or director of nursing (DON) has worked in a nursing home may have a positive relationship to quality of care. Few studies, however, have focused on factors associated with the job tenure of NHAs and DONs. One important factor may be education level. This study used a nationally representative sample of nursing homes to examine the influence of education level on the current job tenure of NHAs and DONs. The data sources were the 2004 National Nursing Home Survey and the Area Resource File. Control variables for facility characteristics (e.g., ownership type), market characteristics (e.g., unemployment rate), and career experience were included. Data on NHAs, DONs, and nursing facility characteristics came from the National Nursing Home Survey. Market characteristics came from the Area Resource File. The analysis on NHA tenure included 1,082 cases with usable data from the 1,174 sampled facilities in the National Nursing Home Survey. The analysis on DON tenure included 1,048 cases. Job tenure was measured in number of months. Regression models on NHA and DON tenure were analyzed. Among NHAs, and to a lesser extent among DONs, higher education was significantly associated with shorter tenure rather than longer tenure. Ownership status was a notable predictor. For owners of nursing homes, our findings may raise a hiring dilemma. Hiring the best educated NHA and DON may be advantageous, but the retention for these same top managers may be the shortest. Initiatives to hire NHAs and DONs with better educational training may need to be coupled with initiatives designed to promote greater retention.
Mycotoxin co-occurrence in rice, oat flakes and wheat noodles used as staple foods in Ecuador.
Ortiz, Johana; Van Camp, John; Mestdagh, Frédéric; Donoso, Silvana; De Meulenaer, Bruno
2013-01-01
The co-occurrence of aflatoxin B₁ (AFB₁), B₂ (AFB₂), G₁ (AFG₁) and G₂ (AFG₂), ochratoxin A (OTA), deoxynivalenol (DON), fumonisin B₁ (FB₁), zearalenone (ZEN), and HT-2 and T-2 toxins in the main Ecuadorian staple cereals (rice, oat flakes, and yellow and white wheat noodles) was evaluated. A ultra high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) method was developed and validated to screen for the presence of these mycotoxins in those cereal matrices. Matrix-matched calibration curves were used to compensate for ion suppression and extraction losses and the recovery values were in agreement with the minimum requirements of Regulation 401/2006/EC (70-110%). For most mycotoxins, the LODs obtained allowed detection in compliance with the maximum permitted levels set in Regulation EC/2006/1881, with the exception of OTA in all cereals and AFB1 in yellow noodles. Extra target analysis of OTA in oat flakes and wheat noodles was performed by HPLC with fluorescence detection. High rates of contamination were observed in paddy rice (23% DON, 23% FB₁, 7% AFB₁, 2% AFG₁ and 2% AFG₂), white wheat noodles (33% DON and 5% OTA) and oat flakes (17% DON, 2% OTA and 2% AFB₁), whereas the rates of contamination were lower in polished rice (2% AFG₁ and 4% HT-2 toxin) and yellow noodles (5% DON). Low rates of co-occurrence of several mycotoxins were observed only for white wheat noodles (5%) and paddy rice (7%). White noodles were contaminated with DON and/or OTA, while combinations of AFG₁, AFB₁, DON and FB₁ were found in paddy rice. Yellow noodles were contaminated with DON only; oat flakes contained DON, OTA or AFB₁, and polished rice was contaminated with AFG₁ and HT-2 toxin.
Zhuang, Ziqing; Bergman, Michael; Lei, Zhipeng; Niezgoda, George; Shaffer, Ronald
2017-01-01
This study assessed key test parameters and pass/fail criteria options for developing a respirator fit capability (RFC) test for half-mask air-purifying particulate respirators. Using a 25-subject test panel, benchmark RFC data were collected for 101 National Institute for Occupational Safety and Health-certified respirator models. These models were further grouped into 61 one-, two-, or three-size families. Fit testing was done using a PortaCount® Plus with N95-Companion accessory and an Occupational Safety and Health Administration-accepted quantitative fit test protocol. Three repeated tests (donnings) per subject/respirator model combination were performed. The panel passing rate (PPR) (number or percentage of the 25-subject panel achieving acceptable fit) was determined for each model using five different alternative criteria for determining acceptable fit. When the 101 models are evaluated individually (i.e., not grouped by families), the percentages of models capable of fitting >75% (19/25 subjects) of the panel were 29% and 32% for subjects achieving a fit factor ≥100 for at least one of the first two donnings and at least one of three donnings, respectively. When the models are evaluated grouped into families and using >75% of panel subjects achieving a fit factor ≥100 for at least one of two donnings as the PPR pass/fail criterion, 48% of all models can pass. When >50% (13/25 subjects) of panel subjects was the PPR criterion, the percentage of passing models increased to 70%. Testing respirators grouped into families and evaluating the first two donnings for each of two respirator sizes provided the best balance between meeting end user expectations and creating a performance bar for manufacturers. Specifying the test criterion for a subject obtaining acceptable fit as achieving a fit factor ≥100 on at least one out of the two donnings is reasonable because a majority of existing respirator families can achieve an PPR of >50% using this criterion. The different test criteria can be considered by standards development organizations when developing standards. PMID:28278067
Zhuang, Ziqing; Bergman, Michael; Lei, Zhipeng; Niezgoda, George; Shaffer, Ronald
2017-06-01
This study assessed key test parameters and pass/fail criteria options for developing a respirator fit capability (RFC) test for half-mask air-purifying particulate respirators. Using a 25-subject test panel, benchmark RFC data were collected for 101 National Institute for Occupational Safety and Health-certified respirator models. These models were further grouped into 61 one-, two-, or three-size families. Fit testing was done using a PortaCount® Plus with N95-Companion accessory and an Occupational Safety and Health Administration-accepted quantitative fit test protocol. Three repeated tests (donnings) per subject/respirator model combination were performed. The panel passing rate (PPR) (number or percentage of the 25-subject panel achieving acceptable fit) was determined for each model using five different alternative criteria for determining acceptable fit. When the 101 models are evaluated individually (i.e., not grouped by families), the percentages of models capable of fitting >75% (19/25 subjects) of the panel were 29% and 32% for subjects achieving a fit factor ≥100 for at least one of the first two donnings and at least one of three donnings, respectively. When the models are evaluated grouped into families and using >75% of panel subjects achieving a fit factor ≥100 for at least one of two donnings as the PPR pass/fail criterion, 48% of all models can pass. When >50% (13/25 subjects) of panel subjects was the PPR criterion, the percentage of passing models increased to 70%. Testing respirators grouped into families and evaluating the first two donnings for each of two respirator sizes provided the best balance between meeting end user expectations and creating a performance bar for manufacturers. Specifying the test criterion for a subject obtaining acceptable fit as achieving a fit factor ≥100 on at least one out of the two donnings is reasonable because a majority of existing respirator families can achieve an PPR of >50% using this criterion. The different test criteria can be considered by standards development organizations when developing standards.
Wu, Li; Wang, Wence; Yao, Kang; Zhou, Ting; Yin, Jie; Li, Tiejun; Yang, Lin; He, Liuqin; Yang, Xiaojian; Zhang, Hongfu; Wang, Qi; Huang, Ruilin; Yin, Yulong
2013-01-01
Deoxynivalenol (DON) is a mycotoxin that reduces feed intake and animal performance, especially in swine. Arginine and glutamine play important roles in swine nutrition. The objective of this study was to determine the effects of dietary supplementation with arginine and glutamine on both the impairment induced by DON stress and immune relevant cytokines in growing pigs. A total of forty 60-d-old healthy growing pigs with a mean body weight of 16.28±1.54 kg were randomly divided into 5 groups, and assigned to 3 amino acid treatments fed 1.0% arginine (Arg), 1.0% glutamine (Gln) and 0.5% Arg+0.5% Gln, respectively, plus a toxin control and a non-toxin control. Pigs in the 3 amino acid treatments were fed the corresponding amino acids, and those in non-toxin control and toxin control were fed commercial diet with 1.64% Alanine as isonitrogenous control for 7 days. The toxin control and amino acid treatments were then challenged by feeding DON-contaminated diet with a final DON concentration of 6 mg/kg of diet for 21 days. No significant differences were observed between toxin control and the amino acid groups with regard to the average daily gain (ADG), although the values for average daily feed intake (ADFI) in the amino acid groups were significantly higher than that in toxin control (P<0.01). The relative liver weight in toxin control was significantly greater than those in non-toxin control, arginine and Arg+Glu groups (P<0.01), but there were no significant differences in other organs. With regard to serum biochemistry, the values of BUN, ALP, ALT and AST in the amino acid groups were lower than those in toxin control. IGF1, GH and SOD in the amino acid groups were significantly higher than those in toxin control (P<0.01). The IL-2 and TNFα values in the amino acid groups were similar to those in non-toxin control, and significantly lower than those in toxin control (P<0.01). These results showed the effects of dietary supplementation with arginine and glutamine on alleviating the impairment induced by DON stress and immune relevant cytokines in growing pigs.
He, Xinjian; Grinshpun, Sergey A; Reponen, Tiina; McKay, Roy; Bergman, Michael S; Zhuang, Ziqing
2014-03-01
The objective of this study was to investigate the effects of breathing frequency and flow rate on the total inward leakage (TIL) of an elastomeric half-mask donned on an advanced manikin headform and challenged with combustion aerosols. An elastomeric half-mask respirator equipped with P100 filters was donned on an advanced manikin headform covered with life-like soft skin and challenged with aerosols originated by burning three materials: wood, paper, and plastic (polyethylene). TIL was determined as the ratio of aerosol concentrations inside (C in) and outside (C out) of the respirator (C in/C out) measured with a nanoparticle spectrometer operating in the particle size range of 20-200nm. The testing was performed under three cyclic breathing flows [mean inspiratory flow (MIF) of 30, 55, and 85 l/min] and five breathing frequencies (10, 15, 20, 25, and 30 breaths/min). A completely randomized factorial study design was chosen with four replicates for each combination of breathing flow rate and frequency. Particle size, MIF, and combustion material had significant (P < 0.001) effects on TIL regardless of breathing frequency. Increasing breathing flow decreased TIL. Testing with plastic aerosol produced higher mean TIL values than wood and paper aerosols. The effect of the breathing frequency was complex. When analyzed using all combustion aerosols and MIFs (pooled data), breathing frequency did not significantly (P = 0.08) affect TIL. However, once the data were stratified according to combustion aerosol and MIF, the effect of breathing frequency became significant (P < 0.05) for all MIFs challenged with wood and paper combustion aerosols, and for MIF = 30 l/min only when challenged with plastic combustion aerosol. The effect of breathing frequency on TIL is less significant than the effects of combustion aerosol and breathing flow rate for the tested elastomeric half-mask respirator. The greatest TIL occurred when challenged with plastic aerosol at 30 l/min and at a breathing frequency of 30 breaths/min.
NASA Astrophysics Data System (ADS)
Yamaguchi, Yasuhiko T.; McCarthy, Matthew D.
2018-01-01
This study explores the use of compound-specific nitrogen isotopes of amino acids (δ15NAA) of coupled dissolved and particulate organic nitrogen (DON, PON) samples as a new approach to examine relative sources, transformation processes, and the potential coupling of these two major forms of N cycle in the ocean water column. We measured δ15NAA distributions in high-molecular-weight dissolved organic nitrogen (HMW DON) and suspended PON in the North Pacific Subtropical Gyre (NPSG) from surface to mesopelagic depths. A new analytical approach achieved far greater δ15NAA measurement precision for DON than earlier work, allowing us to resolve previously obscured differences in δ15NAA signatures, both with depth and between ON pools. We propose that δ15N values of total hydrolysable amino acids (THAA) represents a proxy for proteinaceous ON δ15N values in DON and PON. Together with bulk δ15N values, this allows δ15N values and changes in bulk, proteinaceous, and ;other-N; to be directly evaluated. These novel measurements suggest three main conclusions. First, the δ15NAA signatures of both surface and mesopelagic HMW DON suggest mainly heterotrophic bacterial sources, with mesopelagic HMW DON bearing signatures of far more degraded material compared to surface material. These results contrast with a previous proposal that HMW DON δ15NAA patterns are essentially ;pre-formed; by cyanobacteria in the surface ocean, undergo little change with depth. Second, different δ15NAA values and patterns of HMW DON vs. suspended PON in the surface NPSG suggest that sources and cycling of these two N reservoirs are surpisingly decoupled. Based on molecular δ15N signatures, we propose a new hypothesis that production of surface HMW DON is ultimately derived from subsurface nitrate, while PON in the mixed layer is strongly linked to N2 fixation and N recycling. In contrast, the comparative δ15NAA signatures of HMW DON vs. suspended PON in the mesopelagic also suggest a possible PON source for some HMW DON in the mid-water column. Together, these results suggest that conversion of relatively labile ON to less labile DON by heterotrophic bacteria (a ;microbial nitrogen pump;) may be the key pathway for production and alteration of DON in both the surface and the mesopelagic oligotrophic ocean. Finally, in contrast to THAA, δ15N values of the other-N were substantially less affected by heterotrophic alteration, which may be consistent with a larger than expected contribution of amino sugars, or other less labile nitrogenous organic molecules.
... and don't share needles used to inject drugs. Use a condom during sex. If you choose to have tattoos or body piercings, be picky about cleanliness and safety when selecting a shop. Get vaccinated. If you're at increased risk ...
USDA-ARS?s Scientific Manuscript database
Effect of moisture content variation on the accuracy of single kernel deoxynivalenol (DON) prediction by near-infrared (NIR) spectroscopy was investigated. Sample moisture content (MC) considerably affected accuracy of the current NIR DON calibration by underestimating or over estimating DON at high...
Payroll: A Headache You Can Cure!
Miller, Rita J; Mattern, Jay
2015-01-01
Payroll is not only an expense for your practice; it can be a headache for you or your practice manager. Payroll is also a major scope of audit procedures. Don't rely on the word of anyone else that your taxes were processed and remitted. Demand to see proof. By outsourcing your human resources and payroll functions to one company, you can free up valuable time to concentrate on your area of expertise, leaving the administrative hassles to the staffing firm.
Alizadeh, Arash; Braber, Saskia; Akbari, Peyman; Garssen, Johan; Fink-Gremmels, Johanna
2015-01-01
Deoxynivalenol (DON) is one of the major mycotoxins produced by Fusarium fungi, and exposure to this mycotoxin requires an assessment of the potential adverse effects, even at low toxin levels. The aim of this study was to investigate the effects of a short-term, low-dose DON exposure on various gut health parameters in pigs. Piglets received a commercial feed or the same feed contaminated with DON (0.9 mg/kg feed) for 10 days, and two hours after a DON bolus (0.28 mg/kg BW), weight gain was determined and samples of different segments of the intestine were collected. Even the selected low dose of DON in the diet negatively affected weight gain and induced histomorphological alterations in the duodenum and jejunum. The mRNA expression of different tight junction (TJ) proteins, especially occludin, of inflammatory markers, like interleukin-1 beta and interleukin-10 and the oxidative stress marker heme-oxigenase1, were affected along the intestine by low levels of DON in the diet. Taken together, our results indicate that even after low-level exposure to DON, which has been generally considered as acceptable in animal feeds, clinically-relevant changes are measurable in markers of gut health and integrity. PMID:26067367
Saeed, Peerooz; Tavakoli Rad, Shahzad; Bisschop, Peter H L T
2018-06-19
Dysthyroid optic neuropathy (DON) is a serious complication of Graves orbitopathy that can result in irreversible and profound visual loss. Controversy exists regarding the pathogenesis and management of the disease. The authors provide an overview of the current understanding of DON and present a therapeutic guideline. A review of the literature. The mechanism of DON appears to be multifactorial: direct compression of the optic nerve by enlarged extraocular muscles, stretching of the optic nerve by proptosis, orbital pressure, vascular insufficiency, and inflammation. Some or all of these factors may be involved in an individual patient. There has only been one controlled trial comparing high-dose intravenous methylprednisolone to bony orbital decompression for DON. Both 2-wall and 3-wall decompression techniques successfully improve visual functions of patients with DON. There are few case reports/case series that suggest biologic agents may improve visual function in DON. DON is a serious complication of Graves orbitopathy, the diagnosis and management of which is complex and requires a multidisciplinary approach. There is little evidence regarding the optimum management strategy. Based on the current literature, the first line of treatment is intravenous methylprednisolone, with the exact timing and indication of bony orbital decompression still to be determined. In addition, there may be a role for the use of biologic agents that will require a systematic program to determine efficacy.
Don Quixote, Machiavelli, and Robin Hood: public health practice, past and present.
Mullan, F
2000-05-01
Since the mid-19th century, when the first formal health departments were established in the United States, commissioners, directors, and secretaries of public health have functioned as senior members of the staffs of public executives, mayors, governors, and presidents. They have provided important political, managerial, and scientific leadership to agencies of government that have played increasingly important roles in national life, from the sanitary revolution of the 19th century to the prevention of HIV/AIDS and the control of tobacco use today. Although public health officials come from a variety of backgrounds and oversee agencies of varied size and composition, there are philosophical themes that describe and define the commonality of their work. These themes are captured metaphorically by 3 celebrated figures: Don Quixote, Machiavelli, and Robin Hood. By turns, the public health official functions as a determined idealist (Don Quixote), a cunning political strategist (Machiavelli), and an agent who redistributes resources from the wealthier sectors of society to the less well off (Robin Hood.) All 3 personae are important, but, it is argued, Robin Hood is the most endangered.
Don Quixote, Machiavelli, and Robin Hood: public health practice, past and present.
Mullan, F
2000-01-01
Since the mid-19th century, when the first formal health departments were established in the United States, commissioners, directors, and secretaries of public health have functioned as senior members of the staffs of public executives, mayors, governors, and presidents. They have provided important political, managerial, and scientific leadership to agencies of government that have played increasingly important roles in national life, from the sanitary revolution of the 19th century to the prevention of HIV/AIDS and the control of tobacco use today. Although public health officials come from a variety of backgrounds and oversee agencies of varied size and composition, there are philosophical themes that describe and define the commonality of their work. These themes are captured metaphorically by 3 celebrated figures: Don Quixote, Machiavelli, and Robin Hood. By turns, the public health official functions as a determined idealist (Don Quixote), a cunning political strategist (Machiavelli), and an agent who redistributes resources from the wealthier sectors of society to the less well off (Robin Hood.) All 3 personae are important, but, it is argued, Robin Hood is the most endangered. PMID:10800417
Response of non-added solutes during nutrient addition experiments in streams
NASA Astrophysics Data System (ADS)
Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.
2015-12-01
Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may provide insights into fundamental aspects of stream nutrient cycling.
Regulation of metabolic products and gene expression in Fusarium asiaticum by agmatine addition.
Suzuki, Tadahiro; Kim, Young-Kyung; Yoshioka, Hifumi; Iwahashi, Yumiko
2013-05-01
The metabolic products resulting from the cultivation of F. asiaticum in agmatine were identified using capillary electrophoresis-time of flight mass spectrometry. Glyoxylic acid was detected from fungal cultures grown in agmatine, while it was absent in control cells. The abundance of other metabolic products of the glycolytic pathway also increased because of agmatine; however, there was no increase in the amounts of pyruvic acid or metabolites from the tricarboxylic acid cycle. Moreover, gene expression levels within Fusarium asiaticum exposed to agmatine were analyzed by DNA microarray. Changes in gene expression levels directed the changes in metabolic products. Our results suggest that acetyl coenzyme A, which is a starting substrate for the biosynthesis of deoxynivalenol (DON), was simultaneously produced by activated β-oxidation. Furthermore, the content of 4-aminobutyrate (GABA) was increased in the agmatine addition culture medium. GABA can be synthesized from agmatine through putrescine and might influence the regulation of DON-related genes.
Joshi, Sweccha; Annida, Rumaisha M; Zuilhof, Han; van Beek, Teris A; Nielen, Michel W F
2016-11-02
A competitive inhibition immunoassay is described for the mycotoxins deoxynivalenol (DON) and ochratoxin A (OTA) in beer using a portable nanostructured imaging surface plasmon resonance (iSPR) biosensor, also referred to as imaging nanoplasmonics. The toxins were directly and covalently immobilized on a 3-dimensional carboxymethylated dextran (CMD) layer on a nanostructured iSPR chip. The assay is based on competition between the immobilized mycotoxins and free mycotoxins in the solution for binding to specific antibodies. The chip surface was regenerated after each cycle, and the combination of CMD and direct immobilization of toxins allowed the chips to be used for more than 450 cycles. The limits of detection (LODs) in beer were 17 ng/mL for DON and 7 ng/mL for OTA (or 0.09 ng/mL after 75 times enrichment). These LODs allowed detection of even less than 10% depletion of the tolerable daily intake of DON and OTA by beer. Significant cross-reactivity of anti-DON was observed toward DON-3-glucoside and 3-acetyl-DON, while no cross-reactivity was seen for 15-acetyl-DON. A preliminary in-house validation with 20 different batches of beer showed that both toxins can be detected at the considered theoretical safe level for beer. The assay can be used for in-field or at-line detection of DON in beer and also in barley without preconcentration, while OTA in beer requires an additional enrichment step, thus making the latter in its present form less suitable for field applications.
Li, FuChang; Wang, JinQuan; Huang, LiBo; Chen, HongJu; Wang, ChunYang
2017-01-01
Deoxynivalenol (DON) is commonly detected in cereals, and is a threat to human and animal health. The effects of microbiological detoxification are now being widely studied. A total of 24 pigs (over four months) were randomly divided into three treatments. Treatment A was fed with a basal diet as the control group. Treatment B was fed with naturally DON-contaminated wheat as a negative control group. Treatment C was fed with a contaminated diet that also had Clostridium sp. WJ06, which was used as a detoxicant. Growth performance, relative organ weight, intestinal morphology, and the intestinal flora of bacteria and fungi were examined. The results showed that after consuming a DON-contaminated diet, the growth performance of the pigs decreased significantly (p < 0.05), the relative organ weight of the liver and kidney increased significantly (p < 0.05), and the integrity of the intestinal barrier was also impaired, though the toxic effects of the contaminated diets on growing pigs were relieved after adding Clostridium sp. WJ06. The data from MiSeq sequencing of the 16S ribosomal ribonucleic acid (rRNA) gene and internal transcribed spacer 1 (ITS1) gene suggested that the abundance of intestinal flora was significantly different across the three treatments. In conclusion, the application of Clostridium sp. WJ06 can reduce the toxic effects of DON and adjust the intestinal microecosystem of growing pigs. PMID:29186895
Don't ask, don't tell . . . and don't donate.
Neill, Ushma S
2010-05-01
Did you know that gay men can't donate blood, nor can they donate sperm anonymously to sperm banks? I applaud the 18 senators who have banded together to urge FDA Commissioner Margaret Hamburg to revisit this issue, as current scientific data on infectious diseases does not lend credence to these policies.
Three Do's and Three Don'ts for Expert Witnesses.
ERIC Educational Resources Information Center
Oates, R. Kim
1993-01-01
Guidelines are offered for child protection workers who are appearing in court as expert witnesses. Guidelines include be objective, be accurate, stick to the area of expertise, don't get manipulated by lawyers, don't be greedy, and maintain one's expert witness work as a minor part of one's professional activities. (JDD)
Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas
2013-01-01
Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...
Brain-Based Education in Action
ERIC Educational Resources Information Center
Jensen, Eric
2012-01-01
An essential understanding about brain-based education is that most neuroscientists don't teach and most teachers don't do research. It's unrealistic to expect neuroscientists to reveal which classroom strategies will work best. That's not appropriate for neuroscientists, and most don't do that. Many critics could cite this as a weakness, but it's…
The Psychology of Human Performance.
ERIC Educational Resources Information Center
Thomas, David A.
This paper offers a theoretically grounded template for analyzing the root causes of individual performance problems in school, work, or personal pursuits. There are four basic reasons why individuals fail to perform as desired: they don't know what to do (communication problem); they don't know how to do it (knowledge problem); they don't want to…
USDA-ARS?s Scientific Manuscript database
Nivalenol (NIV) and Deoxynivalenol (DON) are trichothecene mycotoxins produced by Fusarium spp. that contaminate mainly cereal crops, such as wheat, barley, and maize. These mycotoxins are serious health hazards to humans and domestic animals. In Japan, there have been many reports of DON and NIV ...
An intimate understanding of place: Charles Sauriol and Toronto’s Don River Valley, 1927-1989.
Bonnell, Jennifer
2011-01-01
Every summer from 1927 to 1968, Toronto conservationist Charles Sauriol and his family moved from their city home to a rustic cottage just a few kilometres away, within the urban wilderness of Toronto’s Don River Valley. In his years as a cottager, Sauriol saw the valley change from a picturesque setting of rural farms and woodlands to an increasingly threatened corridor of urban green space. His intimate familiarity with the valley led to a lifelong quest to protect it. This paper explores the history of conservation in the Don River Valley through Sauriol’s experiences. Changes in the approaches to protecting urban nature, I argue, are reflected in Sauriol’s personal experience – the strategies he employed, the language he used, and the losses he suffered as a result of urban planning policies. Over the course of Sauriol’s career as a conservationist, from the 1940s to the 1990s, the river increasingly became a symbol of urban health – specifically, the health of the relationship between urban residents and the natural environment upon which they depend. Drawing from a rich range of sources, including diary entries, published memoirs, and unpublished manuscripts and correspondence, this paper reflects upon the ways that biography can inform histories of place and better our understanding of individual responses to changing landscapes.
Obituary: Donald Edward Osterbrock, 1924-2007
NASA Astrophysics Data System (ADS)
Veilleux, Sylvain
2007-12-01
Donald Edward Osterbrock, one of the leading figures of post-World War II astronomy, died suddenly of a heart attack on 11 January 2007, while walking near his office at the University of California, Santa Cruz. He was 82 years old. His initials spelled D.E.O. (God in latin!), but he was known simply as Don to his many friends and colleagues. Don's long and productive career spanned five decades. His scientific work helped shape our understanding of lower main-sequence stars, the ionized interstellar medium, and active galactic nuclei. He was also a highly respected historian of astronomy who shed new light on 19th- and 20th-century astronomy. Don was born in Cincinnati, Ohio, on 13 July 1924. Both of his parents were of German descent and valued hard work, education, and science. They both completed their high-school education at night while working full-time during the day. His father eventually became a professor of electrical engineering at the University of Cincinnati. Don's plan to become an astronomer was put on hold when the Japanese attacked Pearl Harbor in 1941. After graduation from high school, Don joined the United States Army and trained as a meteorologist, taking all of the physics and mathematics courses required for a bachelor's degree in physics from the University of Chicago. He was eventually sent to islands in the Pacific Ocean but never was in harm's way. After three years of service, Don returned to Chicago to obtain his bachelor's degree in 1948, his M.S. in astronomy in 1949, and a Ph.D. in astronomy in 1952. Don's years at the University of Chicago and the University's Yerkes Observatory in Williams Bay, Wisconsin, were pivotal for his career and personal life. He came in contact with such luminaries as Otto Struve, Bengt Strömgren, Subrahmanyan Chandrasekhar, and William W. Morgan. At Yerkes, he also met and married Irene L. Hansen, a native of Williams Bay, who was employed as a member of the Yerkes staff. They had a son, William, now living in Santa Cruz; two daughters, Laura of Seattle, Washington, and Carol of Santa Cruz; and three grandchildren. Don did a theoretical Ph.D. thesis with Chandrasekhar calculating the effects of gravitational interactions between interstellar clouds and stars, but arguably his best known graduate work was observational in nature, helping Morgan map the nearest spiral arms of our Galaxy. Morgan put Don's name on the landmark 1952 paper (Morgan, Sharpless, & Osterbrock, AJ, 57, p. 3, 1952), even though, according to Don's own account in his 2000 autobiography A Fortunate Life in Astronomy, the work was mostly Morgan's. This generous gesture by Morgan likely fashioned what was to become Don's own trademark generosity towards his Ph.D. students and colleagues for years to come. After obtaining his Ph.D. degree, Don spent a single but very productive year as a postdoctoral fellow at Princeton University, becoming interested in the stellar structures of red dwarfs. Using numerical integration methods generously provided by Martin Schwarzschild, Don produced the first models of red dwarfs that took into account their outer convective layers (Osterbrock, ApJ, 118, pp. 529-546, 1953). These calculations also inspired Fred Hoyle and Schwarzschild to successfully model red giant stars with similar convective envelopes. In 1953, Osterbrock accepted an instructorship at Caltech, joining a young astronomy department led by Jesse Greenstein. Direct access to Caltech's outstanding astronomical facilities on Mounts Wilson and Palomar marked a turning point in Don's career, since it allowed him to pursue his observational interests in gaseous nebulae. Drawing on his expertise in atomic physics, and a very productive collaboration via air mail with young atomic theorist Michael Seaton, he pioneered the use of spectroscopic methods for the study of gaseous nebulae. In a daring move in 1958, Don left Caltech for the University of Wisconsin, to appease his wife's and his own homesickness for the Midwest. There he continued his work on gaseous nebulae, both observational and theoretical, often as part of the Ph.D. thesis of one of his many excellent graduate students. As time went on, Don became increasingly fascinated by the emission-line spectra of active galactic nuclei (AGN), and this fed a growing need for larger telescope apertures. In 1973, the ``lure of the big telescope in the land of clear skies'' (his own words from his 2000 autobiography) won out, and he finally accepted the long-pending offer from the Chancellor of the University of California at Santa Cruz to become director of Lick Observatory. Lick's 120-inch telescope and its unique image-dissector scanner were ideally suited for the spectroscopic AGN survey that Don had in mind at the time. In the decade and a half that followed, Don amassed arguably the best and largest collection of high-quality spectra on AGN in the world, published several seminal papers based on these unique data, and became in the process one of the world's leading authorities on AGN. During that same period, Don published his ``little blue book'' on the Astrophysics of Gaseous Nebulae (1974). This textbook and the two subsequent revisions Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (1989 and 2005—the later edition, with co-author Gary Ferland) have been the standard references for graduate courses and researchers in the field for more than thirty years. This prolific period of Don's career was doubly remarkable considering that, from 1973 to 1981, he was the Director of Lick Observatory. This was a time when tough choices had to be made in order to get the 10-meter Keck Telescopes project under way. Don very effectively and diplomatically guided the upper echelons of the University of California, Santa Cruz, through this process. He also served as president of the American Astronomical Society from 1988 to 1990, no doubt having too much time on his hands after stepping down from the Lick directorship! Don received several awards and honors for his research work. In 1991, he won lifetime achievement awards from the American Astronomical Society and Astronomical Society of the Pacific, two of astronomy's highest honors. In 1997, the Royal Astronomical Society awarded him its Gold Medal, its highest honor, seldom given to an American astronomer. He was a member of the National Academy of Sciences, the American Academy of Arts and Sciences, and the American Philosophical Society. He received honorary D.Sc. degrees from five universities. Over the years, Don produced 21 Ph.D. students who turned out a significant number of today's researchers in AGN and emission line studies. Mostly after his retirement in 1992, Don authored numerous books, historical studies, and biographies of key figures in 19th- and 20th-century astronomy. He felt that history was too important to be left to historians, and adhered to the ``great man'' theory of history (that aims to explain history by the impact of great men or women) rather than pursue the deconstructionist approach of historians. In recognition for this work, the AAS's Historical Astronomy Division awarded him in 2002 the Leroy E. Doggett Prize, the highest award given to a historian of astronomy. Don was a brilliant scientist, a natural leader, and a gifted historian, yet he was also very modest and unassuming. His firm handshake, warm, infectious smile, and congenial personality were hard to resist. He thrived in the companies of his colleagues and students, freely sharing his ideas on science, history of science, or history in general. In his later years, he seemed at his best when observing on top of Mount Hamilton's Lick Observatory, once the Sun had set and the photons from an AGN were quietly and effortlessly being captured for the next exposure. He would then often kick back on ``his'' La-Z-Boy recliner in the 120-inch telescope control room and take off on one of his many fascinating stories about the history of astronomy. These were truly wonderful moments, and many of us are very grateful to have had the opportunity to share them with him. Don will always have a very special place in our hearts. He was a great mentor, a wonderful role model, and a true gentleman. Our very fond memories of our time with him will never cease to inspire us. He will always be an Ideal to which to aspire.
Dziubińska-Parol, Izabella; Gasowska, Urszula; Rzymowska, Jolanta; Kwaśniewska, Anna
2003-09-01
Many recent studies indicate that long term use of contraceptives is a strong risk factor in the development of cervical cancer. Steroid hormones, in persistent papilloma virus infection act on various levels, one of them is enhancing transforming activity of the virus. The aim of the study was to estimate if physiological concentrations of 17 beta-estradiol could influence expression of viral transforming genes. HeLa cell lines were incubated with three different physiological concentrations and and on the third day of incubation the level of E6 gene expression was determined. Results show no differences in expression between the control culter, and cultures incubated with physiological concentrations. It indicates that normal levels of 17 beta-estradiol don't play role in transforming process but it also shows need to analyse higher levels of hormones by quantitative analyses in prospective studies.
Milles, G A
1999-01-01
There is an increasing population of working poor in our community. They earn too little to afford health insurance, yet they don't qualify for government assistance. Physician volunteers Howard County have joined together and developed a free clinic to meet this challenge.
Functional Agents to Biologically Control Deoxynivalenol Contamination in Cereal Grains
Tian, Ye; Tan, Yanglan; Liu, Na; Liao, Yucai; Sun, Changpo; Wang, Shuangxia; Wu, Aibo
2016-01-01
Mycotoxins, as microbial secondary metabolites, frequently contaminate cereal grains and pose a serious threat to human and animal health around the globe. Deoxynivalenol (DON), a commonly detected Fusarium mycotoxin, has drawn utmost attention due to high exposure levels and contamination frequency in the food chain. Biological control is emerging as a promising technology for the management of DON contamination. Functional biological control agents (BCAs), which include antagonistic microbes, natural fungicides derived from plants and detoxification enzymes, can be used to control DON contamination at different stages of grain production. In this review, studies regarding different biological agents for DON control in recent years are summarized for the first time. Furthermore, this article highlights the significance of BCAs for controlling DON contamination, as well as the need for more practical and efficient BCAs concerning food safety. PMID:27064760
Supercritical Extraction of Scopoletin from Helichrysum italicum (Roth) G. Don Flowers.
Jokić, Stela; Rajić, Marina; Bilić, Blanka; Molnar, Maja
2016-09-01
The increasing popularity of immortelle (Helichrysum italicum (Roth) G. Don) and its products, particularly in the cosmetic industry, is evident nowadays. This plant is a source of coumarins, especially scopoletin, which are highly soluble in supercritical CO2 . The objective of this study was to perform the supercritical CO2 extraction process of Helichrysum italicum flowers at different values of pressure and temperature and to optimise the extraction process using response surface methodology in terms of obtaining the highest extraction yield and yield of extracted scopoletin. Extraction was performed in a supercritical extraction system under different extraction conditions of pressure and temperature determined by central composite rotatable design. The mass of flowers in the extractor of 40 g, extraction time of 90 min and CO2 mass flow rate of 1.94 kg/h were kept constant during experiments. Antioxidant activity was determined using the DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging assay method. Scopoletin concentration was determined by HPLC. Changes in extraction conditions affect the extracting results remarkably. The greatest extraction yield (6.31%) and the highest yield of scopoletin (1.933 mg/100 g) were obtained under extraction conditions of 20 MPa and 40°C. Extracts have also proven to possess antioxidant activity (44.0-58.1% DPPH scavenging activity) influenced by both temperature and pressure applied within the investigated parameters. The extraction conditions, especially pressure, exhibited significant influence on the extraction yield as well as the yield of extracted scopoletin and antioxidant activity of extracts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Low concentration solar louvres for building integration
NASA Astrophysics Data System (ADS)
Vincenzi, D.; Aldegheri, F.; Baricordi, S.; Bernardoni, P.; Calabrese, G.; Guidi, V.; Pozzetti, L.
2013-09-01
The building integration of CPV modules offers several advantages over the integration of flat panel systems, but the decreasing price trend of standard modules observed in the last years has hampered the market expansion of CPV systems, which still don't rely on a low-cost mass production supply chain. To overcome this contingent issue and to foster the diffusion of innovative PV systems we developed a low concentration BIPV module with added functionalities, such as sunlight shading and building illumination. The electrical performances, retrieved under outdoor conditions, and the lighting performances of the Solar F-Light are shown. The latter indicate that it is suitable for ambient lighting, with a very limited power draw.
Amarasinghe, Chami C; Simsek, Senay; Brûlé-Babel, Anita; Fernando, W G Dilantha
2016-07-01
Contamination of wheat grains with Fusarium mycotoxins and their modified forms is an important issue in wheat industry. The objective of this study was to analyse the deoxynivalenol (DON) and deoxynivalenol-3-glucosides (D3G) content in Canadian spring wheat cultivars grown in two locations, inoculated with a mixture of 3-acetyldeoxynivalenol (3-ADON)-producing Fusarium graminearum strains and a mixture of 15-acetlyldeoxynivalenol (15-ADON)-producing F. graminearum strains. According to the analysis of variance, significant differences were observed among the cultivars for Fusarium head blight (FHB) disease index, Fusarium-damaged kernel percentage (%FDK), DON content and D3G content. When the effect of chemotype was considered, significant differences were observed for FHB disease index, FDK percentage and DON content. The D3G content and D3G/DON ratio were not significantly different between the chemotypes, except for D3G content at the Winnipeg location. The Pearson correlation coefficient between DON and D3G was 0.84 and 0.77 at Winnipeg and Carman respectively. The highest D3G/DON ratio was observed in cultivars Carberry (44%) in Carman and CDC Kernen (63.8%) in Winnipeg. The susceptible cultivars showed lower D3G/DON ratio compared with the cultivars rated as moderately resistant and intermediate. The current study indicated that Canadian spring cultivars produce D3G upon Fusarium infection.
An Interview with Don Meyer on Siblings of Individuals with Disabilities
ERIC Educational Resources Information Center
Laman, Effie; Shaughnessy, Michael F.
2007-01-01
In this article, the authors present an interview with Don Meyer, an advocate for the siblings of children with disabilities. Don Meyer has conducted "SibShops," a peer support and information for school-age siblings of children with disabilities, and written extensively on the difficult situation of children in this underserved demographic. Here,…
USDA-ARS?s Scientific Manuscript database
Deoxynivalenol (DON) is a toxin produced by certain species of fungi that can infest wheat, barley, and corn. The fungi cause diseases in crops worldwide and some of the secondary metabolites, such as DON, can adversely affect animal health and food safety. To rapidly monitor DON in wheat a biosenso...
ERIC Educational Resources Information Center
Berliner, David C.; Glass, Gene V.
2015-01-01
School improvement programs that work in some places don't work in others. School improvement programs that work with some students don't work with others. Programs that appear to have positive effects in the hands of some teachers don't work for other teachers. If we can't be confident that a program will travel well, from one…
Pestka, James J.
2013-01-01
Deoxynivalenol (DON, vomitoxin), a trichothecene mycotoxin produced by Fusarium sp. that frequently occurs in cereal grains, has been associated with human and animal food poisoning. Although a common hallmark of DON-induced toxicity is the rapid onset of emesis, the mechanisms for this adverse effect are not fully understood. Recently, our laboratory has demonstrated that the mink (Neovison vison) is a suitable small animal model for investigating trichothecene-induced emesis. The goal of this study was to use this model to determine the roles of two gut satiety hormones, peptide YY3–36 (PYY3–36) and cholecystokinin (CCK), and the neurotransmitter 5-hydroxytryptamine (5-HT) in DON-induced emesis. Following ip exposure to DON at 0.1 and 0.25mg/kg bw, emesis induction ensued within 15–30min and then persisted up to 120min. Plasma DON measurement revealed that this emesis period correlated with the rapid distribution and clearance of the toxin. Significant elevations in both plasma PYY3–36 (30–60min) and 5-HT (60min) but not CCK were observed during emesis. Pretreatment with the neuropeptide Y2 receptor antagonist JNJ-31020028 attenuated DON- and PYY-induced emesis, whereas the CCK1 receptor antagonist devezapide did not alter DON’s emetic effects. The 5-HT3 receptor antagonist granisetron completely suppressed induction of vomiting by DON and the 5-HT inducer cisplatin. Granisetron pretreatment also partially blocked PYY3–36-induced emesis, suggesting a potential upstream role for this gut satiety hormone in 5-HT release. Taken together, the results suggest that both PYY3–36 and 5-HT play contributory roles in DON-induced emesis. PMID:23457120
Tongchang, Phanawan; Kumsuvan, Jindalak; Phatthalung, Warangkana Na; Suksaroj, Chaisri; Wongrueng, Aunnop; Musikavong, Charongpun
2018-05-12
Raw water from the Banglen (BL) water treatment plant (WTP) and Bangkhen (BK) WTP in central Thailand and Hatyai (HY) WTP in southern Thailand was investigated for dissolved organic nitrogen (DON) reduction. The DON(mg N/L) and the dissolved organic carbon (DOC)/DON ratio were 0.34 and 21, 0.24 and 18, and 1.12 and 3 for the raw waters from BL, BK, and HY WTPs, respectively. Polyaluminum chloride (PACl) dosages of 150, 80, and 40 mg/L at pH 7 were the optimal coagulation conditions for the raw waters from BL, BK, and HY WTPs, respectively, and could reduce DON by 50%, 42%, and 42%, respectively. PACl and powder activated carbon (PAC, both in mg/L) at 150 and 20, 80 and 20, and 40 and 60 could reduce DON in the raw waters from BL, BK, and HY WTPs by 71%, 67%, and 29%, respectively. DOC/DON values of water treated with PACl were similar to those of raw water. DOC/DON values of water treated with PACl and PAC were lower than those of raw water. N-nitrosodimethylamine (NDMA) formation potentials of raw water, water treated with PACl, or both PACl and PAC, and organic fractions of BL, BK, and HY WTPs were below the detection limits of 542 and 237 ng/L, respectively. Reductions in fluorescence intensities of tryptophan-like substances at peaks 240/350 and 280/350 (nm Ex /nm Em ) were moderately (correlation coefficient, R = 0.85 and 0.86) and fairly (R = 0.59, 0.67, and 0.75) correlated with DON reduction.
Kwon, Jennie H; Burnham, Carey-Ann D; Reske, Kimberly A; Liang, Stephen Y; Hink, Tiffany; Wallace, Meghan A; Shupe, Angela; Seiler, Sondra; Cass, Candice; Fraser, Victoria J; Dubberke, Erik R
2017-09-01
OBJECTIVE To evaluate healthcare worker (HCW) risk of self-contamination when donning and doffing personal protective equipment (PPE) using fluorescence and MS2 bacteriophage. DESIGN Prospective pilot study. SETTING Tertiary-care hospital. PARTICIPANTS A total of 36 HCWs were included in this study: 18 donned/doffed contact precaution (CP) PPE and 18 donned/doffed Ebola virus disease (EVD) PPE. INTERVENTIONS HCWs donned PPE according to standard protocols. Fluorescent liquid and MS2 bacteriophage were applied to HCWs. HCWs then doffed their PPE. After doffing, HCWs were scanned for fluorescence and swabbed for MS2. MS2 detection was performed using reverse transcriptase PCR. The donning and doffing processes were videotaped, and protocol deviations were recorded. RESULTS Overall, 27% of EVD PPE HCWs and 50% of CP PPE HCWs made ≥1 protocol deviation while donning, and 100% of EVD PPE HCWs and 67% of CP PPE HCWs made ≥1 protocol deviation while doffing (P=.02). The median number of doffing protocol deviations among EVD PPE HCWs was 4, versus 1 among CP PPE HCWs. Also, 15 EVD PPE protocol deviations were committed by doffing assistants and/or trained observers. Fluorescence was detected on 8 EVD PPE HCWs (44%) and 5 CP PPE HCWs (28%), most commonly on hands. MS2 was recovered from 2 EVD PPE HCWs (11%) and 3 CP PPE HCWs (17%). CONCLUSIONS Protocol deviations were common during both EVD and CP PPE doffing, and some deviations during EVD PPE doffing were committed by the HCW doffing assistant and/or the trained observer. Self-contamination was common. PPE donning/doffing are complex and deserve additional study. Infect Control Hosp Epidemiol 2017;38:1077-1083.
Perakis, S.S.; Hedin, L.O.
2007-01-01
We sampled 100 unpolluted, old-growth forested watersheds, divided among 13 separate study areas over 5 years in temperate southern Chile and Argentina, to evaluate relationships among dominant soil-forming state factors and dissolved carbon and nitrogen concentrations in watershed streams. These watersheds provide a unique opportunity to examine broad-scale controls over carbon (C) and nitrogen (N) biogeochemistry in the absence of significant human disturbance from chronic N deposition and land use change. Variations in the ratio dissolved organic carbon (DOC) to nitrogen (DON) in watershed streams differed by underlying soil parent material, with average C:N = 29 for watersheds underlain by volcanic ash and basalt versus C:N = 73 for sedimentary and metamorphic parent materials, consistent with stronger adsorption of low C:N hydrophobic materials by amorphous clays commonly associated with volcanic ash and basalt weathering. Mean annual precipitation was related positively to variations in both DOC (range: 0.2-9.7 mg C/L) and DON (range: 0.008-0.135 mg N/L) across study areas, suggesting that variations in water volume and concentration may act synergistically to influence C and N losses across dry to wet gradients in these forest ecosystems. Dominance of vegetation by broadleaf versus coniferous trees had negligible effects on organic C and N concentrations in comparison to abiotic factors. We conclude that precipitation volume and soil parent material are important controls over chemical losses of dissolved organic C and N from unpolluted temperate forest watersheds. Our results raise the possibility that biotic imprints on watershed C and N losses may be less pronounced in naturally N-poor forests than in areas impacted by land use change and chronic N deposition. Copyright 2007 by the American Geophysical Union.
2015-03-19
2013 .... 10 Table 3. Clinical Description of MDR Escherichia coli and Carbapenem- Resistant Enterobacteriaceae Burden in the DON and DOD, CY 2013...Multidrug- Resistant Escherichia coli Burden among DON Active Duty Service Members, CY 2013...17 Table 9. Clinical Description of Multidrug- Resistant Escherichia coli Burden among DON Active Duty Service
James A. Moore; David A Hamilton; Yu Xiao; John Byrne
2004-01-01
Individual tree mortality models for western white pine (Pinus monticola Dougl. ex D. Don), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), grand fir (Abies grandis (Dougl. ex D. Don) Lindl.), western redcedar (Thuja plicata Donn ex. D. Don), western hemlock (Tsuga heterophylla (Raf.) Sarg.), and western larch (Larix occidentalis Nutt.) were developed using data...
An Arduino Investigation of Simple Harmonic Motion
ERIC Educational Resources Information Center
Galeriu, Calin; Edwards, Scott; Esper, Geoffrey
2014-01-01
We cannot hope for a new generation of scientists and engineers if we don't let our young students take ownership of their scientific and engineering explorations, if we don't let them enjoy the hands-on cycle of design and production, and if we don't let them implant their creativity into a technologically friendly environment.…
Can we restore the fire process? What awaits us if we don't?
R. Gordon Schmidt
1996-01-01
This paper's title - "Can we restore the fire process? What awaits us if we don't?" - represents an ecologist's view of the world. I submit that this view is unrealistic. The first clause uses the term "restore" which implies reestablishing the fire process of the past. The second phrase uses the absolute term "don't"...
Greener cities: U.S. Forest Service software package helps cities manage their urban treescape
Jim Kling; Greg Featured: McPherson
2008-01-01
Urban forests don't get the recognition that natural forests do. They don't encompass sweeping vistas and magnificent views and they don't provide critical habitat to endangered species. Nevertheless, they are vital. More than 90 percent of all Californians live, work, and play in urban forests. Trees in the urban landscape provide vital ecosystem...
2016-07-05
This image from NASA Terra spacecraft shows Rostov-on-Don, a Russian City on the Don River, 32 kilometers from the Sea of Azov. Its strategic location made it an important trading center, early port city, and railway junction. With the construction of the Volga-Don Shipping Canal in 1952, Rostov-on-Don became a port of five seas: the Black Sea, the Sea of Azov, the Caspian Sea, the White Sea, and the Baltic Sea. The image was acquired 20 September 2010, covers an area of 42 by 45 km, and is located at 47.2 degrees north, 39.6 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA20776
Kos, Gregor; Krska, Rudolf; Lohninger, Hans; Griffiths, Peter R
2004-01-01
An investigation into the rapid detection of mycotoxin-producing fungi on corn by two mid-infrared spectroscopic techniques was undertaken. Corn samples from a single genotype (RWA2, blanks, and contaminated with Fusarium graminearum) were ground, sieved and, after appropriate sample preparation, subjected to mid-infrared spectroscopy using two different accessories (diffuse reflection and attenuated total reflection). The measured spectra were evaluated with principal component analysis (PCA) and the blank and contaminated samples were classified by cluster analysis. Reference data for fungal metabolites were obtained with conventional methods. After extraction and clean-up, each sample was analyzed for the toxin deoxynivalenol (DON) by gas chromatography with electron capture detection (GC-ECD) and ergosterol (a parameter for the total fungal biomass) by high-performance liquid chromatography with diode array detection (HPLC-DAD). The concentration ranges for contaminated samples were 880-3600 microg/kg for ergosterol and 300-2600 microg/kg for DON. Classification efficiency was 100% for ATR spectra. DR spectra did not show as obvious a clustering of contaminated and blank samples. Results and trends were also observed in single spectra plots. Quantification using a PLS1 regression algorithm showed good correlation with DON reference data, but a rather high standard error of prediction (SEP) with 600 microg/kg (DR) and 490 microg/kg (ATR), respectively, for ergosterol. Comparing measurement procedures and results showed advantages for the ATR technique, mainly owing to its ease of use and the easier interpretation of results that were better with respect to classification and quantification.
Thermal degradation of deoxynivalenol during maize bread baking.
Numanoglu, E; Gökmen, V; Uygun, U; Koksel, H
2012-01-01
The thermal degradation of deoxynivalenol (DON) was determined at isothermal baking conditions within the temperature range of 100-250°C, using a crust-like model, which was prepared with naturally contaminated maize flour. No degradation was observed at 100°C. For the temperatures of 150, 200 and 250°C, thermal degradation rate constants (k) were calculated and temperature dependence of DON degradation was observed by using Arrhenius equation. The degradation of DON obeyed Arrhenius law with a regression coefficient of 0.95. A classical bread baking operation was also performed at 250°C for 70 min and the rate of DON degradation in the bread was estimated by using the kinetic data derived from the model study. The crust and crumb temperatures recorded during bread baking were used to calculate the thermal degradation rate constants (k) and partial DON degradations at certain time intervals. Using these data, total degradation at the end of the entire baking process was predicted for both crust and crumb. This DON degradation was consistent with the experimental degradation data, confirming the accuracy of kinetic constants determined by means of the crust-like model.
Preliminary Estimation of Deoxynivalenol Excretion through a 24 h Pilot Study
Rodríguez-Carrasco, Yelko; Mañes, Jordi; Berrada, Houda; Font, Guillermina
2015-01-01
A duplicate diet study was designed to explore the occurrence of 15 Fusarium mycotoxins in the 24 h-diet consumed by one volunteer as well as the levels of mycotoxins in his 24 h-collected urine. The employed methodology involved solvent extraction at high ionic strength followed by dispersive solid phase extraction and gas chromatography determination coupled to mass spectrometry in tandem. Satisfactory results in method performance were achieved. The method’s accuracy was in a range of 68%–108%, with intra-day relative standard deviation and inter-day relative standard deviation lower than 12% and 15%, respectively. The limits of quantitation ranged from 0.1 to 8 µg/Kg. The matrix effect was evaluated and matrix-matched calibrations were used for quantitation. Only deoxynivalenol (DON) was quantified in both food and urine samples. A total DON daily intake amounted to 49.2 ± 5.6 µg whereas DON daily excretion of 35.2 ± 4.3 µg was determined. DON daily intake represented 68.3% of the established DON provisional maximum tolerable daily intake (PMTDI). Valuable preliminary information was obtained as regards DON excretion and needs to be confirmed in large-scale monitoring studies. PMID:25723325
Cirlini, Martina; Generotti, Silvia; Dall'Erta, Andrea; Lancioni, Pietro; Ferrazzano, Gianluca; Massi, Andrea; Galaverna, Gianni; Dall'Asta, Chiara
2013-12-24
Deoxynivalenol (DON) is the most prevalent trichothecene in Europe and its occurrence is associated with infections of Fusarium graminearum and F. culmorum, causal agents of Fusarium head blight (FHB) on wheat. Resistance to FHB is a complex character and high variability occurs in the relationship between DON content and FHB incidence. DON conjugation to glucose (DON-3-glucoside, D3G) is the primary plant mechanism for resistance towards DON accumulation. Although this mechanism has been already described in bread wheat and barley, no data are reported so far about durum wheat, a key cereal in the pasta production chain. To address this issue, the ability of durum wheat to detoxify and convert deoxynivalenol into D3G was studied under greenhouse controlled conditions. Four durum wheat varieties (Svevo, Claudio, Kofa and Neodur) were assessed for DON-D3G conversion; Sumai 3, a bread wheat variety carrying a major QTL for FHB resistance (QFhs.ndsu-3B), was used as a positive control. Data reported hereby clearly demonstrate the ability of durum wheat to convert deoxynivalenol into its conjugated form, D3G.
He, Cheng-Hua; Fan, Yan-Hong; Wang, Ying; Huang, Chao-Ying; Wang, Xi-Chun; Zhang, Hai-Bin
2010-01-01
Aflatoxin B1 (AFB1) and deoxynivalenol (DON) are important food-borne mycotoxins that have been implicated in animal and human health. In this study, individual and combinative effects of AFB1 and DON were tested in primary hepatocytes of Cyprinus carpio. The results indicated that the combinative effects of AFB1 and DON (0.01 μg/mL AFB1 and 0.25 μg/mL DON; 0.02 μg/mL AFB1 and 0.25 μg/mL DON; 0.02 μg/mL AFB1 and 0.5 μg/mL DON) were higher than that of individual mycotoxin (P < 0.05). The activity of AST, ALT and LDH in cell supernatant was higher than that of control group (P < 0.05) when the mycotoxins were exposed to primary hepatocytes for 4 h. The decreased cell number was observed in tested group by inverted light microscopy. The mitochondrial swelling, endoplasmic reticulum dilation and a lot of lipid droplets were observed in primary hepatocytes by transmission electron microscope. Therefore, this combination was classified as an additive response of the two mycotoxins. PMID:21152299
NASA Astrophysics Data System (ADS)
Silver, Matthew; Wefer-Roehl, Annette; Kübeck, Christine; Schüth, Christoph
2016-04-01
The EU FP7 project MARSOL seeks to address water scarcity challenges in arid regions, where managed aquifer recharge (MAR) is an upcoming technology to recharge depleted aquifers using alternative water sources. Within this framework, we conduct column experiments to investigate transformations of nitrogen species when secondary treated wastewater (STWW) is infiltrated through two natural soils being considered for managed aquifer recharge. The soils vary considerably in organic matter content, with total organic matter determined by loss on ignition of 6.8 and 2.9 percent by mass for Soil 1 and Soil 2, respectively. Ammonium (NH4+) concentrations as high as 8.6 mg/L have been measured in pore water samples from Soil #1, indicating that ammonium could be a contaminant of concern in MAR applications using STWW, with consideration of the EU limit of 0.5 mg/L for NH4+. The two forms of nitrogen with the highest concentrations in the secondary treated wastewater are nitrate (NO3-) and dissolved organic nitrogen (DON). In water samples taken from the soil columns, a mass balance of measured ions shows a deficit of nitrogen in ionic form in the upper to middle depths of the soil, suggesting the presence of unmeasured species. These are likely nitrous oxide or dinitrogen gas, which would signify that denitrification is occurring. Measurements of N2O from water samples will verify its presence and spatial variation. The ammonium concentrations increase slowly in the upper parts of the soil but then increase more sharply at greater depth, after NO3- is depleted, suggesting that DON is the source of the produced NH4+. The production of NH4+ is presumed to be facilitated microbiologically. It is hypothesized that at higher organic carbon to total nitrogen (C:N) ratios, more NH4+ will be formed. To test this, in the experiments with Soil #2, three different inflow waters are used, listed in order of decreasing C:N ratio: STWW, STWW with NO3- added to a concentration of 80 mg/L, and STWW diluted with tapwater and with NO3- added to 80 mg/L. Soil pore water samples show that at 30 cm depth, NH4+ concentrations are highest with the original STWW, and progressively lower with the NO3- enriched STWW and the tapwater-diluted STWW. This shows that the C:N ratio of the inflow water is positively correlated with NH4+ concentration in soil water and suggests lower inflow C:N ratios may diminish NH4+ production. In addition, outflow rates from the column with unaltered STWW are approximately 15% higher than outflow rates from the column with added NO3-, an effect that could be caused by gas (N2 or N2O) clogging of the soil. As MAR is an upcoming technology already being practiced, these results will be used to develop guidance on how to mitigate the impact of pollutants to groundwater (NH4+) and the atmosphere (N2O). Key factors diminishing the production of NH4+ appear to be lower organic matter content of the soil and elevated NO3- concentrations in the inflow water, although the latter could have adverse effects with respect to emission of N2O.
Biogeochemistry of a treeline watershed, northwestern Alaska
Stottlemyer, R.
2001-01-01
Since 1950, mean annual temperatures in northwestern Alaska have increased. Change in forest floor and soil temperature or moisture could alter N mineralization rates, production of dissolved organic carbon (DOC) and organic nitrogen (DON), and their export to the aquatic ecosystem. In 1990, we began study of nutrient cycles in the 800-ha Asik watershed, located at treeline in the Noatak National Preserve, northwestern Alaska. This paper summarizes relationships between topographic aspect, soil temperature and moisture, inorganic and organic N pools, C pools, CO2 efflux, growing season net N mineralization rates, and stream water chemistry. Forest floor (O2) C/N ratios, C pools, temperature, and moisture were greater on south aspects. More rapid melt of the soil active layer (zone of annual freeze-thaw) and permafrost accounted for the higher moisture. The O2 C and N content were correlated with moisture, inorganic N pools, CO2 efflux, and inversely with temperature. Inorganic N pools were correlated with temperature and CO2 efflux. Net N mineralization rates were positive in early summer, and correlated with O2 moisture, temperature, and C and N pools. Net nitrification rates were inversely correlated with moisture, total C and N. The CO2 efflux increased with temperature and moisture, and was greater on south aspects. Stream ion concentrations declined and DOC increased with discharge. Stream inorganic nitrogen (DIN) output exceeded input by 70%. Alpine stream water nitrate (NO-3) and DOC concentrations indicated substantial contributions to the watershed DIN and DOC budgets.
Biogeochemistry of a treeline watershed, northwestern Alaska.
Stottlemyer, R
2001-01-01
Since 1950, mean annual temperatures in northwestern Alaska have increased. Change in forest floor and soil temperature or moisture could alter N mineralization rates, production of dissolved organic carbon (DOC) and organic nitrogen (DON), and their export to the aquatic ecosystem. In 1990, we began study of nutrient cycles in the 800-ha Asik watershed, located at treeline in the Noatak National Preserve, northwestern Alaska. This paper summarizes relationships between topographic aspect, soil temperature and moisture, inorganic and organic N pools, C pools, CO2 efflux, growing season net N mineralization rates, and stream water chemistry. Forest floor (O2) C/N ratios, C pools, temperature, and moisture were greater on south aspects. More rapid melt of the soil active layer (zone of annual freeze-thaw) and permafrost accounted for the higher moisture. The O2 C and N content were correlated with moisture, inorganic N pools, CO2 efflux, and inversely with temperature. Inorganic N pools were correlated with temperature and CO2 efflux. Net N mineralization rates were positive in early summer, and correlated with O2 moisture, temperature, and C and N pools. Net nitrification rates were inversely correlated with moisture, total C and N. The CO2 efflux increased with temperature and moisture, and was greater on south aspects. Stream ion concentrations declined and DOC increased with discharge. Stream inorganic nitrogen (DIN) output exceeded input by 70%. Alpine stream water nitrate (NO3-) and DOC concentrations indicated substantial contributions to the watershed DIN and DOC budgets.
Donahue, Neil M; Hartz, Kara E Huff; Chuong, Bao; Presto, Albert A; Stanier, Charles O; Rosenhørn, Thomas; Robinson, Allen L; Pandis, Spyros N
2005-01-01
A substantial fraction of the total ultrafine particulate mass is comprised of organic compounds. Of this fraction, a significant subfraction is secondary organic aerosol (SOA), meaning that the compounds are a by-product of chemistry in the atmosphere. However, our understanding of the kinetics and mechanisms leading to and following SOA formation is in its infancy. We lack a clear description of critical phenomena; we often don't know the key, rate limiting steps in SOA formation mechanisms. We know almost nothing about aerosol yields past the first generation of oxidation products. Most importantly, we know very little about the derivatives in these mechanisms; we do not understand how changing conditions, be they precursor levels, oxidant concentrations, co-reagent concentrations (i.e., the VOC/NOx ratio) or temperature will influence the yields of SOA. In this paper we explore the connections between fundamental details of physical chemistry and the multitude of steps associated with SOA formation, including the initial gas-phase reaction mechanisms leading to condensible products, the phase partitioning itself, and the continued oxidation of the condensed-phase organic products. We show that SOA yields in the alpha-pinene + ozone are highly sensitive to NOx, and that SOA yields from beta-caryophylene + ozone appear to increase with continued ozone exposure, even as aerosol hygroscopicity increases as well. We suggest that SOA yields are likely to increase substantially through several generations of oxidative processing of the semi-volatile products.
Effect of test exercises and mask donning on measured respirator fit.
Crutchfield, C D; Fairbank, E O; Greenstein, S L
1999-12-01
Quantitative respirator fit test protocols are typically defined by a series of fit test exercises. A rationale for the protocols that have been developed is generally not available. There also is little information available that describes the effect or effectiveness of the fit test exercises currently specified in respiratory protection standards. This study was designed to assess the relative impact of fit test exercises and mask donning on respirator fit as measured by a controlled negative pressure and an ambient aerosol fit test system. Multiple donnings of two different sizes of identical respirator models by each of 14 test subjects showed that donning affects respirator fit to a greater degree than fit test exercises. Currently specified fit test protocols emphasize test exercises, and the determination of fit is based on a single mask donning. A rationale for a modified fit test protocol based on fewer, more targeted test exercises and multiple mask donnings is presented. The modified protocol identified inadequately fitting respirators as effectively as the currently specified Occupational Safety and Health Administration (OSHA) quantitative fit test protocol. The controlled negative pressure system measured significantly (p < 0.0001) more respirator leakage than the ambient aerosol fit test system. The bend over fit test exercise was found to be predictive of poor respirator fit by both fit test systems. For the better fitting respirators, only the talking exercise generated aerosol fit factors that were significantly lower (p < 0.0001) than corresponding donning fit factors.
Flannery, Brenna M; Clark, Erica S; Pestka, James J
2012-12-01
Consumption of deoxynivalenol (DON), a trichothecene mycotoxin known to commonly contaminate grain-based foods, suppresses growth of experimental animals, thus raising concerns over its potential to adversely affect young children. Although this growth impairment is believed to result from anorexia, the initiating mechanisms for appetite suppression remain unknown. Here, we tested the hypothesis that DON induces the release of satiety hormones and that this response corresponds to the toxin's anorectic action. Acute ip exposure to DON had no effect on plasma glucagon-like peptide-1, leptin, amylin, pancreatic polypeptide, gastric inhibitory peptide, or ghrelin; however, the toxin was found to robustly elevate peptide YY (PYY) and cholecystokinin (CCK). Specifically, ip exposure to DON at 1 and 5mg/kg bw induced PYY by up to 2.5-fold and CCK by up to 4.1-fold. These responses peaked within 15-120 min and lasted up to 120 min (CCK) and 240 min (PPY), corresponding with depressed rates of food intake. Direct administration of exogenous PYY or CCK similarly caused reduced food intake. Food intake experiments using the NPY2 receptor antagonist BIIE0246 and the CCK1A receptor antagonist devazepide, individually, suggested that PYY mediated DON-induced anorexia but CCK did not. Orolingual exposure to DON induced plasma PYY and CCK elevation and anorexia comparable with that observed for ip exposure. Taken together, these findings suggest that PYY might be one critical mediator of DON-induced anorexia and, ultimately, growth suppression.
Environmental cost-benefit analysis of ultra low sulfur jet fuel.
DOT National Transportation Integrated Search
2011-12-01
Aircraft emissions can reduce air quality, leading to adverse health impacts including : increased risk of premature mortality. A technically viable way to mitigate the health : impacts of aviation is the use of desulfurized jet fuel, as has been don...
Science 101: Why Don't Spiders Stick to Their Own Webs?
ERIC Educational Resources Information Center
Robertson, Bill
2011-01-01
This article explains why spiders don't stick to their webs. Spiders don't get stuck in their own webs (and they aren't immune to their own glue) because they use a combination of sticky and nonsticky threads (different glands for producing those), and the glue is in droplets that the spider can avoid but the prey can't. The spider's nervous…
USDA-ARS?s Scientific Manuscript database
Deoxynivalenol (DON) is a mycotoxin found in wheat that is infected with Fusarium fungus. DON may also be converted to a type of "masked mycotoxin," named deoxynivalenol-3-glucoside (D3G), as a result of detoxification process of the plant. Both DON and D3G are known to be toxic. Due to the lack o...
2010-01-01
Background The fungal pathogen Fusarium graminearum causes Fusarium Head Blight (FHB) disease on wheat which can lead to trichothecene mycotoxin (e.g. deoxynivalenol, DON) contamination of grain, harmful to mammalian health. DON is produced at low levels under standard culture conditions when compared to plant infection but specific polyamines (e.g. putrescine and agmatine) and amino acids (e.g. arginine and ornithine) are potent inducers of DON by F. graminearum in axenic culture. Currently, host factors that promote mycotoxin synthesis during FHB are unknown, but plant derived polyamines could contribute to DON induction in infected heads. However, the temporal and spatial accumulation of polyamines and amino acids in relation to that of DON has not been studied. Results Following inoculation of susceptible wheat heads by F. graminearum, DON accumulation was detected at two days after inoculation. The accumulation of putrescine was detected as early as one day following inoculation while arginine and cadaverine were also produced at three and four days post-inoculation. Transcripts of ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), two key biosynthetic enzymes for putrescine biosynthesis, were also strongly induced in heads at two days after inoculation. These results indicated that elicitation of the polyamine biosynthetic pathway is an early response to FHB. Transcripts for genes encoding enzymes acting upstream in the polyamine biosynthetic pathway as well as those of ODC and ADC, and putrescine levels were also induced in the rachis, a flower organ supporting DON production and an important route for pathogen colonisation during FHB. A survey of 24 wheat genotypes with varying responses to FHB showed putrescine induction is a general response to inoculation and no correlation was observed between the accumulation of putrescine and infection or DON accumulation. Conclusions The activation of the polyamine biosynthetic pathway and putrescine in infected heads prior to detectable DON accumulation is consistent with a model where the pathogen exploits the generic host stress response of polyamine synthesis as a cue for production of trichothecene mycotoxins during FHB disease. However, it is likely that this mechanism is complicated by other factors contributing to resistance and susceptibility in diverse wheat genetic backgrounds. PMID:21192794
NASA Astrophysics Data System (ADS)
Aitkenhead-Peterson, J. A.
2016-12-01
Generally the quality of urban streams has been attributed to storm water runoff and sewage effluent discharge. Recent work in the upper Trinity Basin downstream from the Dallas/Fort Worth metropolis, TX concluded that sewage effluent only contributed between 1 and 35% of DOC dependent upon the population of the watershed. Change from native to urban land use increased DOC exports to between 938 - 1840 kg km-2 yr-1relative to the 517 kg km-2 yr-1 expected from native land use. Where this excess DOC might come from in an urban ecosystem was addressed in a separate study examining water extractable DOC (WEDOC) and DON (WEDON) in soils of single-family home lawns in Chicago, IL, Frederick, MD, Bryan/College Station, TX and Galveston, TX. These cities were exposed to different sources of sodium. Time of exposure to sodium was considered on the assumption that as new sub-divisions are built, new soil or turfgrass sod is introduced to the site. Exposure times were 0-5, 6-10, 11-20, 21-30 and > 30 yr. Length of exposure time of the soil to the urban environment was significant among the four cities examined for DOC (p < 0.001), DON (p < 0.001), sodium adsorption ratio (p < 0.006) but not for sodium (p = 0.08) or exchangeable sodium percent (ESP) (p = 0.09). In all cities WEDON increased with urban exposure time and in all cities except Galveston WEDOC increased with urban exposure time. Sodium, regardless of its source, explained 60% of the variance in WEDOC and 54% of the variance in WEDON across all cities (n = 136). To determine what other factors might be involved in increasing WEDOC and WEDON losses from suburban soils, backward stepwise regression models were used. Across the four cities, time of urban exposure, soil saturated hydraulic conductivity (Ksat), NO3-N, NH4-N, S, PO4-P, Na, Cu, Ca, Fe and Zn produced a significant model for WEDOC (Adjusted r2 = 0.85; p < 0.001) and Ksat, pH, NH4-N, PO4-P, S, Alkalinity and Cu produced a significant model for WEDON (adjusted r2 = 0.81; p < 0.0001). Models for estimating WEDOC and WEDON were also produced for the individual cities. While sodium may be a player in the increasing DOC and DON observed in urban surface waters, more research is needed to determine the mechanisms of WEDOC and WEDON release from urban soils.
Design and Construction of an Urban Runoff Research Facility
Wherley, Benjamin G.; White, Richard H.; McInnes, Kevin J.; Fontanier, Charles H.; Thomas, James C.; Aitkenhead-Peterson, Jacqueline A.; Kelly, Steven T.
2014-01-01
As the urban population increases, so does the area of irrigated urban landscape. Summer water use in urban areas can be 2-3x winter base line water use due to increased demand for landscape irrigation. Improper irrigation practices and large rainfall events can result in runoff from urban landscapes which has potential to carry nutrients and sediments into local streams and lakes where they may contribute to eutrophication. A 1,000 m2 facility was constructed which consists of 24 individual 33.6 m2 field plots, each equipped for measuring total runoff volumes with time and collection of runoff subsamples at selected intervals for quantification of chemical constituents in the runoff water from simulated urban landscapes. Runoff volumes from the first and second trials had coefficient of variability (CV) values of 38.2 and 28.7%, respectively. CV values for runoff pH, EC, and Na concentration for both trials were all under 10%. Concentrations of DOC, TDN, DON, PO4-P, K+, Mg2+, and Ca2+ had CV values less than 50% in both trials. Overall, the results of testing performed after sod installation at the facility indicated good uniformity between plots for runoff volumes and chemical constituents. The large plot size is sufficient to include much of the natural variability and therefore provides better simulation of urban landscape ecosystems. PMID:25146420
Wu, Hongmiao; Wu, Linkun; Wang, Juanying; Zhu, Quan; Lin, Sheng; Xu, Jiahui; Zheng, Cailiang; Chen, Jun; Qin, Xianjin; Fang, Changxun; Zhang, Zhixing; Azeem, Saadia; Lin, Wenxiong
2016-01-01
Radix pseudostellariae L. is a common and popular Chinese medication. However, continuous monoculture has increased its susceptibility to severe diseases. We identified two pathogenic microorganisms, Talaromyces helicus M. (KU355274) and Kosakonia sacchari W. (KU324465), and their antagonistic bacterium, Bacillus pumilus Z. in rhizosphere soil of continuously monocultured R. pseudostellariae. Nine types of phenolic acids were identified both in the rhizosphere soil and in culture medium under sterile conditions. A syringic acid and phenolic acid mixture significantly promoted the growth of T. helicus and K. sacchari. T. helicus could utilize eight types of phenolic acids, whereas K. sacchari could only use four phenolic acids. K. sacchari produced protocatechuic acid when consuming vanillin. Protocatechuic acid negatively affected the growth of B. pumilus. The 3A-DON toxin produced by T. helicus promoted the growth of K. sacchari and inhibited growth of B. pumilus at low concentrations. These data help explain why phenolic exudates mediate a microflora shift and structure disorder in the rhizosphere soil of continuously monocultured R. pseudostellariae and lead to increased replanting disease incidence. PMID:27014250
Almami, Ibtesam; Dickenson, John M; Hargreaves, Alan J; Bonner, Philip L R
2014-01-01
BACKGROUND AND PURPOSE Tissue transglutaminase (TG2) has been shown to mediate cell survival in many cell types. In this study, we investigated whether the role of TG2 in cytoprotection was mediated by the activation of PKA and PKC in cardiomyocyte-like H9c2 cells. EXPERIMENTAL APPROACH H9c2 cells were extracted following stimulation with phorbol-12-myristate-13-acetate (PMA) and forskolin. Transglutaminase activity was determined using an amine incorporating and a protein crosslinking assay. The presence of TG isoforms (TG1, 2, 3) was determined using Western blot analysis. The role of TG2 in PMA- and forskolin-induced cytoprotection was investigated by monitoring H2O2-induced oxidative stress in H9c2 cells. KEY RESULTS Western blotting showed TG2 >> TG1 protein expression but no detectable TG3. The amine incorporating activity of TG2 in H9c2 cells increased in a time and concentration-dependent manner following stimulation with PMA and forskolin. PMA and forskolin-induced TG2 activity was blocked by PKC (Ro 31-8220) and PKA (KT 5720 and Rp-8-Cl-cAMPS) inhibitors respectively. The PMA- and forskolin-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Immunocytochemistry revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (β-tubulin) and novel (α-actinin) protein substrates for TG2. Pretreatment with PMA and forskolin reversed H2O2-induced decrease in MTT reduction and release of LDH. TG2 inhibitors R283 and Z-DON blocked PMA- and forskolin-induced cytoprotection. CONCLUSIONS AND IMPLICATIONS TG2 activity was stimulated via PKA- and PKC-dependent signalling pathways in H9c2 cells These results suggest a role for TG2 in cytoprotection induced by these kinases. PMID:24821315
Sphagnum can 'filter' N deposition, but effects on the plant and pore water depend on the N form.
Chiwa, Masaaki; Sheppard, Lucy J; Leith, Ian D; Leeson, Sarah R; Tang, Y Sim; Cape, J Neil
2016-07-15
The ability of Sphagnum moss to efficiently intercept atmospheric nitrogen (N) has been assumed to be vulnerable to increased N deposition. However, the proposed critical load (20kgNha(-1)yr(-1)) to exceed the capacity of the Sphagnum N filter has not been confirmed. A long-term (11years) and realistic N manipulation on Whim bog was used to study the N filter function of Sphagnum (Sphagnum capillifolium) in response to increased wet N deposition. On this ombrotrophic peatland where ambient deposition was 8kgNha(-1)yr(-1), an additional 8, 24, and 56kgNha(-1)yr(-1) of either ammonium (NH4(+)) or nitrate (NO3(-)) has been applied for 11years. Nutrient status of Sphagnum and pore water quality from the Sphagnum layer were assessed. The N filter function of Sphagnum was still active up to 32kgNha(-1)yr(-1) even after 11years. N saturation of Sphagnum and subsequent increases in dissolved inorganic N (DIN) concentration in pore water occurred only for 56kgNha(-1)yr(-1) of NH4(+) addition. These results indicate that the Sphagnum N filter is more resilient to wet N deposition than previously inferred. However, functionality will be more compromised when NH4(+) dominates wet deposition for high inputs (56kgNha(-1)yr(-1)). The N filter function in response to NO3(-) uptake increased the concentration of dissolved organic N (DON) and associated organic anions in pore water. NH4(+) uptake increased the concentration of base cations and hydrogen ions in pore water though ion exchange. The resilience of the Sphagnum N filter can explain the reported small magnitude of species change in the Whim bog ecosystem exposed to wet N deposition. However, changes in the leaching substances, arising from the assimilation of NO3(-) and NH4(+), may lead to species change. Copyright © 2016 Elsevier B.V. All rights reserved.
Occurrence of 26 Mycotoxins in the Grain of Cereals Cultivated in Poland
Bryła, Marcin; Waśkiewicz, Agnieszka; Podolska, Grażyna; Szymczyk, Krystyna; Jędrzejczak, Renata; Damaziak, Krzysztof; Sułek, Alicja
2016-01-01
The levels of 26 mycotoxins were determined in 147 samples of the grain of cereals cultivated in five regions of Poland during the 2014 growing season. The HPLC-HRMS (time-of-flight) analytical technique was used. An analytical procedure to simultaneously determine 26 mycotoxins in grain was developed, tested and verified. Samples from eastern and southern Poland were more contaminated with mycotoxins than the samples from northern and western Poland. Toxins produced by Fusarium fungi were the main contaminants found. Some deoxynivalenol (DON) was found in 100% of the tested samples of wheat (Osiny, Borusowa, Werbkowice), triticale, winter barley and oats, while the maximum permissible DON level (as defined in the EU Commission Regulation No. 1881/2006) was exceeded in 10 samples. Zearalenone (ZEN), DON metabolites and enniatins were also commonly found. The presence of mycotoxins in grain reflected the prevailing weather conditions during the plant flowering/earing stages, which were favorable for the development of blight. Among all investigated wheat genotypes, cv. Fidelius was the least contaminated, while Bamberka, Forkida and Kampana were the most contaminated. However, the single-factor ANOVA analysis of variance did not reveal (at a statistical significance level α = 0.05) any differences between levels of mycotoxins in individual genotypes. Triticale was the most contaminated grain among all of the tested varieties. ZEN, DON and the sum of 3-acetyldexynivalenol and 15-acetyldeoxynivalenol (3- and 15-ADON) were found in 100% of the tested triticale samples at concentrations within the 4–86, 196–1326 and 36–374 µg·kg−1 range, respectively. Of particular concern was the fact that some “emerging mycotoxins” (enniatins) (in addition to commonly-known and legally-regulated mycotoxins) were also found in the tested triticale samples (enniatin B (Enn-B), enniatin B1 (Enn-B1), enniatin A-1 (Enn-A1), 100% of samples, and enniatin A (Enn-A), 70% of samples). Depending on the toxin, they were found at levels between 8 and 3328 µg·kg−1. PMID:27231939
2012-09-01
under fire (MANUF) (DoN, 2008a). The MTC is an 880 yard sprint (DoN, 2008a). Figure 2 illustrates the layout of MANUF. The AL is a continuous...00-8:59 0 9:00-9:59 0 10:00-10:59 0 11:00-11:59 0 12:00-12:59 0 13:00+ 0 I don’t remember my time *54. Select your 450 meter swim time. (Time...55. Select your calorie(s) burned on the elliptical machine. O G-99 0 100-199 0 200-299 0 300-399 0 400 + 0 I don’t remember 73 An Examination
... inflamed bursa. A new bursa sac will grow back. Prevention Overuse is the most common cause of hip bursitis. To help prevent hip pain: Always warm up and stretch before exercising and cool down afterward. Stretch your quadriceps and hamstrings. Don't increase the distance, intensity, and amount ...
What You Need to Know about Stroke
... diabetes, learn how to manage it. As with high blood pressure, diabetes usually causes no symptoms but it increases the ... 1-800-352-9424. STROKE PREVENTION Manage your diabetes Eat right Control your high blood pressure Exercise Don't smoke I had a stroke ...
The Navy’s Management of Software Licenses Needs Improvement
2013-08-07
Enterprise Software Licensing ( ESL ) as a primary DON etliciency target. Through policy and Integrated Product Team actions, this efficiency...review, as well as with DoD Enterprise Software Initiative ( ESl ) Blanket Pw·chase Agreements and any r•elated fedeml Acquisition Regulation and General...organizational and multi-functional DON ESL team. The DON is also participating in DoD level enterprise softwru·e licensing project~ through the Dol